
Full citation: Kirk, D., & MacDonell, S. (2009) A systems approach to software process
improvement in small organisations, in Proceedings of the 16th European Software Process
Improvement and Innovation (EuroSPI) Conference. Alcala, Spain, Delta/Publizon, pp.2.21-30.

A Systems Approach to Software Process Improvement
in Small Organisations

Diana Kirk and Stephen G. MacDonell
SERL, Auckland University of Technology

Private Bag 92006, Auckland 1142, New Zealand
{dkirk, stephen.macdonell}@aut.ac.nz

Abstract
There is, at the present time, no model to effectively
support context-aware process change in small
software organisations. The assessment reference
models, for example, SPICE and CMMI, provide a tool
for identifying gaps with best practice, but do not take
into account group culture and environment, and do
not help with prioritisation. These approaches thus do
not support the many small software organisations that
need to make effective changes that are linked to
business objectives in short time periods. In this paper,
we propose a model to support such change. We base
the model on an analogy of 'software system as human'
and suggest that we can apply the idea of human
health to help identify business objectives and
improvement steps appropriate for these objectives. We
describe a 'proof-of-concept' case study in which the
model is retrospectively applied to a process
improvement effort with a local software group.

Keywords: Software process improvement,
process modelling, systems approach

1. INTRODUCTION

Existing models for software process improvement
(SPI), for example, CMMI (Chrissis et al. 2007),
ISO/IEC 15504 (SPICE) (ISO 2006) and ISO/IEC
12207 (ISO 1997), have been criticised by researchers
and practitioners as being limited to large, traditional
organisations and failing to provide the necessary
guidance for small software groups (CaterSteel 2001,
Grunbacher 1997, Huack et al. 2008, McCaffery et al.
2008). As software groups comprising fewer than 25

persons represent a majority in Europe, Ireland,
Canada, Brazil and elsewhere (Laporte et al. 2008),
this is seen as a major issue. Some characteristics of
smaller organisations that may affect the success of SPI
adoption include more informal management and
planning, greater need for flexibility, a human-centric
culture (Laporte et al. 2008), 'flatter' structure with
imprecisely-defined responsibilities, a lack of exposure
to standards and limited funds (Grunbacher 1997).
Such characteristics imply an environment where
dependence upon individuals is high. It has also been
observed that existing models state which processes
should be in place, but provide no guidance as to which
to implement first (Chen et al. 2008). This means that
the need of small organisations to prioritise according
to business objectives (Aaen 2003, Laporte et al. 2008)
is not supported.
We have earlier suggested that a model to support
activity selection during software projects must take
into account the business-related objectives for the
software project and have proposed that a more holistic
and flexible approach to process selection involves a
change in focus from 'defining activities' to 'selecting
activities to meet objectives' (Kirk 2007). In this
approach, focus is on the whole system i.e. is not
limited to considerations of cost and quality but rather
includes consideration of human-related factors. For
example, the owner of a small software organisation
may be extremely interested in retaining and increasing
the knowledge of developers and so may consider
'developer knowledge' to be of importance. This
understanding may inform his choice of process and he
may, for example, choose informal reviews over unit
testing as a means of meeting objectives.

The need to focus on system objectives during software
process improvement (SPI) initiatives is also suggested
by others. Aaen (2003) criticises the use of existing
assessment models as creating "a blueprint of a future
software process'' without providing any understanding
of how processes emerge. He believes that it is
necessary to understand an organisation's values and
goals before understanding how it may change and that
a preferred approach would be to support process users
in deciding what a specific situation requires. Laporte
et al. (2008) have found that one reason for the failure
of small organisations to adopt standard models is that
such organisations "find it difficult to relate ISO/IEC
12207 to their business needs''.

We have suggested that a fruitful analogy to aid
understanding of contextualised software systems is to
consider the software system as a human and to apply
ideas from human health (MacDonell et al. 2008). With
this analogy, the focus is on identifying gaps in values
of relevant 'health' factors and selecting activities to
close the gaps. In this paper, we extend this analogy
and apply it as a basis for a model for SPI. We explore
the potential usefulness of the model by retrospectively
applying it to an SPI initiative with a small, local
software group. We then show how we have used the
model as a basis for creating hypotheses for more
formal investigation in small software organisations.

2. RELATED WORK

There is increasing interest in supporting software
process improvement in small groups as a result of the
realisation that such groups form a majority in many
countries (Laporte et al. 2008). A selection from the
literature is presented below.

The International Standards Organisation (ISO) has
established a working group to address the creation of a
software engineering standard tailored to very small
enterprises (Laporte et al. 2008). The approach taken is
to tailor an existing Mexican standard, MoProsoft, for
small and medium enterprises. MoProsoft is based on
ISO/IEC 12207, with practices from ISO9001, CMMI,
the Project Management Body of Knowledge and the
Software Engineering Body of Knowledge.

The University of Southern Queensland has developed
a method, RAPID for software process assessment in
small organisations and have applied this method in
four organisations (CaterSteel 2001). The approach
involved selecting eight processes based on ISO/IEC
15504 and restricting assessment to rating levels 1-3.

McCaffery et al. (2008) introduce AHAA, a ''new low-

overhead method that has been designed for small-to-
medium-sized organisations wishing to be automative
software suppliers''. The method integrates the
structuredness of CMMI and Automative SPICE with
the flexibility of agile practices. The development of
AHAA included a restriction of the CMMI process
areas most suitable for inclusion in an SPI model for
small-to-medium-sized organisations, based on a
number of criteria extracted from the literature. The
four process areas selected for the first release were
Requirements Management, Project Planning, Project
Monitoring and Control and Configuration
Management.

Pikkarainen et al (2005) discuss deploying agile
practices in organisations and applies a framework
based on a continuous improvement ideology that
''addresses the importance of utilizing the experiences
of the software developers'' as an important input to
SPI. The approach involves selecting the agile
practices to be deployed and the author comments that
the ''existing ways to discover the agile methods to
deploy are unstructured'' (Pikkarainen et al. 2005).

In the above examples, the approach is to select a
subset of process areas from established models and
create assessment models based on this subset. The
resulting models have been applied with some success.
However, none supports the ability to choose a project-
specific development model based upon key objectives
or to make tradeoffs when planning changes
(MacCormack et al. 2003).

3. HUMAN HEALTH ANALOGY
We have proposed that a useful analogy to aid
understanding of software system health is that of the
human system. In this Section, we expand on this
analogy in order to provide a motivation for our SPI
model. Some drivers of the analogy are (MacDonell et
al. 2008):

• Human health is established by measurement of
indicators, for example, blood pressure and cholesterol
levels. We measure the 'health' of a software system (in
its broadest sense, as described in Section 4) by
indicators such as cost and defect levels and
stakeholder satisfaction.
• Humans pass through a number of life stages, for
example, adolescence and mid-life crisis. Each stage
exhibits some common characteristics. For example,
midlife crisis might occur when the children leave
home and 'business as usual' is no longer appropriate,
forcing a struggle to fit in with new situations and

expectations. Software systems may also be perceived
as having similar 'life stages'. For example, a step
change in technology may result in an established
software product no longer behaving as required,
forcing efforts to make the product 'fit in'.
• The relevant indicators for humans and their
expected values depend upon the life stage. For
example, an Apgar test is carried out on newborn
babies to establish health; the 'normal' pulse rate for an
infant is different from the 'normal' rate for an adult. In
a similar way, for a software system it is expected that
the numbers of defects identified when the system is 'in
adulthood' (i.e. established in the field) will be far
fewer than when the system is 'in embryo' (under
development).
• Human health is dependent upon environmental
factors. For example, a thin person may be 'healthy' in a
hot country with food freely available but may not fare
so well in a very cold climate with low food
availability. In a similar way, software targeted for
experienced users may cease to be 'healthy' when the
customer base extends to include naive users.
• Human health can be affected by behaviours. For
example, mothers can support a positive outcome for
babies by eating well and not smoking. Software
systems can also be affected by behaviours. For
example, developers can support a positive outcome by
following best practices.
• Once a human becomes unhealthy (as defined by
indicators such as blood pressure), considerable effort
is required to return to health. Success depends upon
the human's willingness to change behaviours and the
availability of opportunities to effect the new
behaviours. For 'unhealthy' software systems,
considerable effort is also required to effect change as
factors such as cost and resistance-to-change come into
effect.

We observe that a human may embark upon a health
improvement initiative for one of a number of reasons
(MacDonell et al. 2008):

• Sickness. The person may be experiencing
symptoms that indicate sickness, for example, chest
pains or headaches. The physician will probably check
a number of key indicators, for example, blood
pressure and temperature, for values that deviate from
'normal'. As a result of findings, the physician will infer
the root cause of the symptoms and suggest a treatment
that will remove the root cause, thus returning indicator
values to 'normal' and removing symptoms. During
diagnosis of root cause, the physician will probably
take into account the specific life stage of the person.

The suggested treatment must a) take into account the
human system in a holistic way and b) consider the
constraints imposed by contexts. For example,
medication that lowers blood pressure but induces
depression is probably not an ideal solution; nor is
medication that lowers blood pressure for a person who
reliably fails to take prescribed medication.
• Prevention. The person may choose to monitor
health in a proactive way, for example, undergo a
yearly check of cholesterol levels and blood pressure.
Should values be abnormal, the physician will
generally progress as for 'sickness'.
• Growth. The person may have some goal that
involves improving physical or mental capability, for
example, 'run a marathon'. In this case, the first task is
to identify appropriate indicators and the changes
required, for example, 'increase stamina' and the next
task is to choose a suitable activity that addresses
required changes, for example, 'running'. Again,
choosing a suitable activity involves both considering
indicators in a holistic way and identifying factors that
may affect success. For example, if I live on a busy
street and lack motivation, I may decide that 'personal
trainer at the gym' will give me a better chance of
success than 'running a circuit from my home at 5:30
a.m.'. However, if I am concerned about financial
status, a personal trainer might be too expensive and I
might decide to join a group fitness class instead.
• Adaptation. The person may be required to move to
a new environment, for example, leave the childhood
home or move to a different country. Behaviours that
worked well in the original environment, for example,
leaving cooking to others or speaking in English, may
be ineffective in the new one. To mitigate the risk of
failure-to-adapt, (s)he must identify the gap in key
indicators (for example, `independence') and aim to
close the gap by suitable activity selection.

In Figure 1, we illustrate the analogy with an example
for each motivation (MacDonell et al. 2008). A key
observation from the analogy is that, rather than
focusing on processes, as is common for SPI models,
we focus on goals and indicators and it is the indicator
values that inform processes. Relevant indicators are
situation-specific and thus appropriate process is
situation-specific. For example, if I want to improve
my ability to speak French, I do not need to improve
my cholesterol level.

In the next Section, we introduce a model for SPI based
on an extension of the above analogy.

Scenario Person Software

Sickness
 - Symptoms
 - Indicators unhealthy
 - Find cause and
treat

Headache
Blood pressure
Take medicine

Customers unhappy
Defect numbers
Requirements process

Prevention
 - Monitor indicators
 - Preventative action

Cholesterol,
lipids
Lifestyle change

Defect levels
Process/product change

Growth
 - Identify objectives
 - Confounding factors
 - Make changes

Run a marathon
Motivation
Training, diet

New innovative product
Processes don’t support
creativity
Gap analysis and change

Adaptation
 - New environment
 - Indicators gaps
 - Confounding factors
 - Close gaps

Redundancy
Computer skills
Confidence
Computer course

Business environment
All web-based
No web expertise
Hire web developers

Figure 1: Human and software systems: SPI examples

4. PROPOSED MODEL
We commence our description of the proposed model
by overviewing the architecture of a software system
from the perspective of our analogy. A software system
comprises a number of components (see Figure 2) and
associated with each of these is a number of
representative characteristics.

Figure 2: Software system components

• Software product. The 'body' of the software system
is the software product or products. Common
characteristics include quality indicators, such as defect
density, cost indicators, such as effort, and content
indicators, such as number of features.

• Software product owner. The 'consciousness' of the
software system is represented by the entity that has
authority for making decisions about planned change to

the software product or its stakeholders, generally the
organisation responsible for creating and deploying the
software product(s). Common characteristics include
organisational maturity, size, culture and management
style.

• Stakeholders. The environment for the software
system includes all humans with an interest in the
software product. These may include members of the
development organisation (for example, developers,
project management, QA and support personnel) and
the deployment organisation (for example, purchasers
and users). Stakeholders may effect unplanned change
to the product environment. For example, experienced
users of a product may be replaced by inexperienced
users. Common characteristics relate to skills,
experience and personality type.

We now extend the ideas from Section 3 to create a
methodology for analysing the health of software
organisations and recommending change. We begin
with some definitions:

• Software system. Comprises the software product,
the software product owner and stakeholders.

• Key indicators. Factors that characterise the
various components of the software system and are
identified as being relevant for a specific SPI initiative.

• Goal indicators. Key indicators that represent the
desired level of health of a software system, for

Software product(s)
(Body)

Development
(Stakeholder)

Software product owner
(Consciousness)

Support
(Stakeholder)

Government
(Stakeholder)

User
(Stakeholder)

Purchaser
(Stakeholder)

example, relating to cost, quality and satisfaction
levels.

• Context indicators. Key indicators that
characterise the software system's ability to change the
values of goal indicators, for example, relating to cost,
motivation and skill levels.

• Software system lifecycle. The stages through
which a software system passes, for example,
'Childhood' and 'Adolescence', as defined in MacDonell
et al. (2008). Each stage is associated with changes to
some key indicators, for example, 'adolescence' is
associated with high levels of defects discovered in the
field.

• Symptom. Problem reported by any stakeholder.

• Prevention. An assessment requested by the
software product owner in which no symptoms are
reported, rather the need is to 'check that everything is
fine'. The assessment will result in a categorisation of
the software system as one of sickness, growth,
adaptation or health.

• Growth. Planned change to product or product
owner that is outside ’business as usual’, resulting in a
gap between current and desired goal indicator values.
For example, a plan for an innovative new product may
mean that developer and test expertise becomes 'low'.

• Adaptation. Unplanned change to stakeholders
also results in a gap between current and desired goal
indicator values. For example, if naive users are
permitted to use a product intended for use by
experienced users, the 'product usability' level will fall.

• Sickness. Values of goal indicators are lower than
expected for one or more of software product, software
product owner or stakeholders and the software system
is not in growth or adaptation. For example, effort or
defect numbers may be too high or satisfaction levels
too low.

Application of the model involves carrying out the
following three steps (see Figure 3). For each, we
present some examples to illustrate the need to take
into account context indicators and software system
lifecycle stages.

Figure 3: SPI model steps

4.1 Step 1: Establish if growth, adaptation or
sickness

We first interview staff to establish whether the
initiative relates to a situation of growth, adaptation or
sickness. We take this approach also in the case of a
preventative assessment initiative.

For growth, we look for ‘business-not-as-usual’. For
example, a medium-sized organisation, A, is ‘doing
well', with a mature product sold to a global market

(adulthood). Although management reports some
existing problems with quality, we learn that there are
plans to launch a new, innovative product into a
marketplace characterised by rapidly changing
technology. We categorise as a growth situation.

A mature organisation, B, with an established product
used by experienced personnel would like an
assessment to ‘check things out' (prevention). When
interviewing members of the support team, we discover
that an increasing number of issues are being logged by
users who ‘do not know how to use the product'.

Further probing with management reveals that
downsizing in the client sector has resulted in the
product being used by ‘naive' users. The situation is
one of adaptation.

Organisation C is a small group with low levels of
formal process and reports problems of product quality
(symptoms). In the absence of growth or adaptation
scenarios, we categorise as sickness.

4.2 Step 2: Identify goal indicators and
establish gap

We next establish the business objectives of interest
within the given situation. We use these to help inform
goal indicators and establish gaps between desired and
current values.

Goals for organisation A relate to timely delivery and
marketing and selected goal indicators are ‘time to
market’ and ‘number of hits on web page’.
Organisation B decides that, as the client base
comprises a small number of large clients, it must focus
on keeping existing clients happy. Selected goal
indicator is ‘client satisfaction levels'. Goals for C
relate to defect levels and the group decides to focus on
‘defects found during testing’.

4.3 Step 3: Choose activities to close gap

We finally work with the organisation to establish
appropriate activities to close gaps between the current
and desired values of goal indicators. To help inform
choice, we consider relevant context indicators,
existing standards such as ISO/IEC 12207 (ISO 1997)
and the organisational literature.

Organisation A is structured into marketing,
development and QA teams and has in place some
sound development processes. We understand from the
literature that “more flexible product development
procedures are important to the success of new
products in dynamic environments” (Carbonell &
Rodriguez-Escudero, 2009, p. 32, citing Henard &
Szymanski, 2001) and that innovation effectiveness is
supported by the use of cross-functional teams in
conjunction with strong management support (p. 29,
citing Cooper & Edgett, 2008). We suggest that such a
team be set up and supported by the owner.

For organisation B, possible activities to improve
‘client satisfaction levels’ may include upgrading the
product, assigning a client advocate and weekly
contact. We learn that a new version of the product is
pending and management, now aware of the dangers of
reduced satisfaction levels, chooses to assign a

dedicated client advocate to each major client during
the transition period.

For C, we identify context indicators and values as 'low
process knowledge', 'culture flexible', 'no spare time'
and ’motivated’. We also learn that the source of the
problem is believed to be lack of clarity about the
product requirements i.e. resides in the interface
between product definition, development and QA. We
decide that the most appropriate way to support process
change is to provide options relating to the situation
and work with group members to establish the most
acceptable option(s). The group decides to hold a
weekly meeting at which uncertainties in features will
be identified and a senior member assigned to flesh out
features, if deemed necessary.

5. CASE STUDY

In this Section, we describe how the model was
retrospectively applied in the context of a software
process improvement initiative in a small software
organisation in Auckland. For reasons of
confidentiality, only relevant aspects of the study are
reported.

As is common for small organisations, members of the
target team had an in-depth knowledge of the product
and client base. Each member 'owned' one or more
roles that included development with both existing and
new technologies, testing and support for the client-
facing sections of the organisation. Management was
very happy with the group's performance and simply
wanted to confirm that nothing important was being
missed. Interviews aimed at understanding strategic
objectives were held with the management team and
individual interviews aimed at uncovering potential
issues were held with group members. These were
followed by two group sessions aimed at consolidating
and agreeing on issues and brainstorming appropriate
solutions.

The ISO/IEC 12207 model (ISO 1997) was applied in
the backgound as reference model. However, the target
team operated at a very immature level with respect to
this model, with virtually no process areas formalised
at any level. Regardless of this, the team appeared to
function well within the existing setup no one had any
complaints about quality or delivery schedules and the
team was largely happy with how things were. The
author involved in the initiative first attempted to
understand expectations for change, as a knowledge
that the status quo was about to change would
hopefully help both management and team to

understand the need for implementing some basic
processes. Management had plans for product growth
and thought the team 'might grow' but didn't expect this
would affect performance. During individual team
interviews, the likelihood of team growth was
presented and members asked to identify issues that
might occur should this happen. Thirty one issues were
identified: twenty six relating to growth scenario, one
relating to product strategy and four relating to current
issues. During team brainstorming, 'solutions' were
identified and included, for example, formalisation of a
team space as mitigation for cultural issues on growth,
strategies for inconsistent coding style and gold-plating
and the introduction of more formal version control,
build, defect tracking and testing processes.
Brainstorming effectively addressed contextual
considerations.

A simple gap analysis with standard models simply did
not help as a result of the immaturity of the
organisation (they 'didn't know what they didn't know').
In order to support progression, it was necessary to
establish a motivation for change (increase in size),
support the team in identifying pending issues (goal
indicators) and help them brainstorm ways to address
these.

Both team members and management appeared 'happy'
with resulting recommendations and reported plans to
action these. No followup has been carried out, as yet,
and so the success of the initiative is not yet certain.
However, it became apparent during interviews with
management that the expectation was that team would
continue to contribute towards product strategic
direction, a growth situation according to our model.
Athough the approach taken supported
recommendations that appeared to be appropriate for
the team at that point in time, our model leads us to
believe that very little will have changed and the
success of the initiative will have been minimal.

6. DISCUSSION AND FUTURE WORK

The model presented in Section 4 has been created as a
result of our experiences with local New Zealand
software organisations. At this stage, the model has
been tested only informally. We now plan to formally
test some hypotheses based on the model, as discussed
below.

Our first observation relates to the ’manufacturing
process’ source of the popular process improvement
models, such as CMMI and ISO/IEC 12207. We
suggest these models are based on an assumption of

stable product development whereas many small
organisations are characterised by innovation and
creativity. We believe the mismatch may be a
contributing factor in failed SPI initiatives. Application
of our model involves first identifying growth (i.e.
business-not-as-normal) situations. We hypothesise that
small organisations characterised by growth are less
likely to achieve successful SPI outcomes because
efforts must be focussed elsewhere. Our interest in this
hypothesis relates to preventing doomed SPI initiatives
with corresponding loss of money, time and morale.

Our second observation concerns the need to identify
which goals are most important and focus improvement
efforts on meeting these. Traditional models contain an
implicit assumption of cost and quality related goals
and the risk is that simple solutions, such as assigning a
client advocate to promote client satisfaction, will be
missed. The standard reference models mandate which
processes are acceptable and do not support, for
example, weekly meetings to clarify requirements. The
'blueprint' approach of traditional models means that,
even if the traditional models were to include all kinds
of activities and key indicators, they simply do not go
far enough as they do not help organisations decide
which gaps to close. I do not want to improve my
testing process if the problem lies in clarity of
requirements or if the test team is overworked and
annoyed. We hypothesise that the outcomes of SPI
initiatives are more likley to be favourable if
recommendations are based on the identification of
goal indicators, root causes and context indicators.

The key contribution of this paper is the provision of a
model from which we may create and formally test
hypotheses with the aim of improving our
understanding of the issues surrounding SPI initiatives.

7. SUMMARY

We have suggested that a suitable model for a software
system that will provide support for SPI initiatives is
that of 'software system health'. The health of a human
changes through time as changes to body,
consciousness or environment occur. In an analogous
way, the health of a software system changes through
time as values of key indicators for any of software
product, software product owner or stakeholders
change. An SPI initiative may occur at any point in the
software system lifecycle and must take into account
the motivation for change, i.e. sickness, growth or
adaptation, the goal indicators that inform a focus for
change and the context indicators that must be taken

into account when identifying what to change and how
to change it. We have applied the model retrospectively
to an SPI initiative in a small local software
organisation. We have identified two hypotheses based
on the model and plan to test these within local
software organisations.

8. REFERENCES

Chrissis MB, Konrad M, Shrum S. CMMI Second
Edition Guidelines for Process Integration and
Product Improvement. Addison-Wesley: Massachusetts
USA, 2007.

International Standards Organisation (ISO). ISO/IEC
15504.5: Information Technology – Process
Assessment – An exemplar Process Assessment Model.
The International Standards Organisation, 2006.

International Standards Organisation (ISO). ISO/IEC
12207: Information Technology – Software Lifecycle
Processes. The International Standards Organisation,
1997.

Cater-Steel A. Process Improvement in Four Small
Software Companies. Proceedings of the Australian
Software Engineering Conference (ASWEC’01) 2001,
pp. 262-272.

Grunbacher P. A software assessment process for small
software enterprises. Proceedings of the 23rd
EuroMicro Conference (EUROMICRO97) 1997, pp.
123-128.

Huack JCR, von Wagenheim CG, de Souza RH, Thirty
M. Process Reference Guides – Support for Improving
Software Processes in Alignment with Reference
Models and Standards. Communications in Computer
and Information Science (CCIS) 2008; 16, pp. 70-81.

McCaffery F, Pikkarainen M, Richardson I. AHAA –
Agile, Hybrid Assessment Method for Automative,
Safety Critical SMEs. Proceedings of the 30th
International Conference on Software Engineering
(ICSE’08) 2008, pp. 551-560.

Laporte CY, Alexandre S, O’Connor RV. A Software
Engineering Lifecycle Standard for Very Small
Enterprises. Communications in Computer and
Information Science (CCIS) 2008; 16, pp. 129-141.

Chen X, Staples M, Bannerman P. Analysis of
Dependencies between Specific Practices in CMMI
Maturity Level 2. Communications in Computer and
Information Science (CCIS) 2008; 16, pp. 94-105.

Aaen I. Software Process Improvement: Blueprints

versus Recipes. IEEE Software 2003; 20(5), pp. 86-93.

Kirk D. A Flexible Software Process Model. PhD
thesis, University of Auckland: 2007.

MacDonell S, Kirk D, McLeod L. Raining Healthy
Software Systems. The 4th International ERCIM
Workshop on Software Evolution and Evolvability
(Evol’08) 2008, pp. 21-24.

Pikkarainen M, Salo O, Still J. Deploying Agile
Practices in Organizations: A Case Study. Lecture
Notes in Computer Science (LNCS) 2005; 3792, pp.
16-27.

MacCormack A, Kemerer C, Cusumano C. Trade-offs
between Productivity and Quality in Selecting Software
Development Practices. IEEE Software 2003; 20(5),
pp. 86-93.

Carbonell P., Rodriguez-Escudero A.I. Relationships
among team’s organizational context, innovation speed,
and technology uncertainty: An empirical analysis.
Journal of Engineering and Technology Management
2009; 26, pp. 28-45.

9. AUTHOR CVS
Diana Kirk
Diana Kirk is Research Fellow at the Software
Engineering Research Laboratory (SERL) at the
Auckland University of Technology (AUT) in New
Zealand. Diana was awarded a Masters in Computer
Science from the University of Edinburgh and a
Doctorate from the University of Auckland in 2007.
Her industry experience spans twenty years and
includes technical programming, co-directing an
emerging company, project management, software
quality management and consulting. Diana's main
interests relate to maximising effectiveness in the
processes applied during software projects.

Stephen MacDonell
Stephen MacDonell is Professor of Software
Engineering and Director of the Software Engineering
Research Laboratory (SERL) at the Auckland
University of Technology (AUT) in New Zealand.
Stephen was awarded BCom(Hons) and MCom
degrees from the University of Otago and a PhD from
the University of Cambridge. He undertakes research
in software metrics and measurement, project planning,
estimation and management, software forensics, and
the application of empirical analysis methods to
software engineering data sets.

	1. Introduction

