A Tile Based Colour Picture with Hidden QR Code for
Augmented Reality and Beyond

H. Tran, H. Le, M. Nguyen, W. Yan.
Auckland University of Technology
No. 2-14, Wakefiled Street, Auckland, 1010 New Zealand

ABSTRACT

Most existing Augmented Reality (AR) applications use either tem-
plate (picture) markers or bar-code markers to overlay computer-
generated graphics on the real world surfaces. The use of template
markers is computationally expensive and unreliable. On the other
hand, bar-code markers display only black and white blocks; thus,
they look uninteresting and uninformative. In this short paper, we
describe a new way to optically hide a QR code inside a tile based
colour picture. Each AR marker is built from hundreds of small tiles
(just like tiling a bathroom), and the unique gaps between the tiles
are used to determine the elements of the hidden QR Code. This
novel type of AR marker presents not only a realistic-looking colour
picture but also contains self-Correcting information (stored in QR
code). In this article, we demonstrate that this tile based colour
picture with hidden QR code is relatively robust under various
conditions and scaling. We believe many nowadays’ AR challenges
could be solved with this type of marker. AR-enabled medias could
then be easily generated. For instance, it would be capable of storing
and displaying virtual figures of an entire book or magazine. Thus,
it provides a promising AR approach to be used in many different
AR applications; and beyond, it may even replace the barcodes and
QR Codes in some cases.

KEYWORDS
Augmented Reality

ACM Reference format:

H. Tran, H. Le, M. Nguyen, W. Yan. . 2017. A Tile Based Colour Picture with
Hidden QR Code for Augmented Reality and Beyond . In Proceedings of 23rd
ACM Symposium on Virtual Reality Software and Technology, Gothenburg,
Sweden, November 2017 (VRST 2017), 4 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION AND BACKGROUNDS

For decades, researchers have been trying to create intuitive virtual
environments by blending reality and virtual reality to let general
users interact with the digital domain as easily as with the real
world. The result is “augmented reality” (AR) whereby virtual ob-
jects seamlessly superimpose upon a real environment in three
dimensions and in real time. AR is widely used in medical visu-
alisation, manufacturing, maintenance and repair, path planning,
entertainment, and military applications [1, 2]. One of the earliest

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

VRST 2017, Gothenburg, Sweden

© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-X/YY/MM...$15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

AR interfaces was created by Sutherland over 50 years ago [19]. For
years, many researchers have tried to create AR applications for
users to interact easily with both the digital and the real world.

o]
‘e

1
o,
S Camera Screen
Y Coordinates

Camera Coordinates

(a) Camera Pose Relationship.

(b) Camera Pose 3D Sample.

Figure 1: Marker detection and computer graphic rendering.

Creating an effective AR experience requires the use of various
tools such as graphics rendering tools, tracking and registration
tools, and various display or interaction techniques. There are many
long-term problems of AR such as visuality, processing complexity,
and the number of allowed virtual items. One central problem of cre-
ating AR applications is the determination of computer-generated
objects and their position and orientation so that they could be
aligned accurately with the physical objects in the real world. In
many existing applications, graphical content is often put on pre-
defined markers as they provide a convenient way for detecting the
encoded contents and calculating the camera poses. For example,
an image tag system such as BazAR [7, 8] uses natural (colour)
picture as markers. As seen in Fig.1(a), the camera position relative
to the marker is calculated to blend the virtual information into the
real world environment. The relationship is called pinhole camera
model [18] or pose estimation in computer vision.

(c) Circular Marker

(a) Template Marker

(b) Bar-code Marker

Figure 2: Popular types of AR tags.

For robust and unambiguous applications [16], black and white
markers with thick borders are often used [5, 10, 15] and these
include template markers (Fig 2(a)), barcode markers (Fig 2(b)),

VRST 2017, November 2017, Gothenburg, Sweden

and circular marker (Fig 2(c)). These markers are made up of a
white/light coloured padding, surrounded by a thick black/dark
coloured border and a high contrast pattern of either a template
figure, a square or a circular 2D bar code. The pattern is what makes
these markers unique. The black border of markers is recognised,
tracked and used to calculate the position in 3D space. Some other
newly invented fiducial marker designs combining payload with
the structure of the tag such as [3] [4], are still collections of black
and white squares or dots.

Both template and bar-code tags have their pros and cons. Tem-
plate tag may contain some meaningful picture of the object it is
presenting; such as a flying eager in Fig 2(a). As such, one could
use feature matching techniques for identifying template markers
(by comparing them with marker templates stored in a database).
However, such a system must be trained sufficiently for proper
template matching but nonetheless template recognition could be
unreliable due to the undesired similarity between template mark-
ers. [20]. Consequently, in such a system, the number of different
templates need to be small for good results.

On the other hand, bar-code and circular markers are encoded in
“0” or “1” by arranging the marker region into many black and white
bars. Examples are CyberCode [15], Bokode [12], and AprilTag [13].
Decoding techniques are used to decrypt the encoded data. It
is relatively easy to detect and recognise bar-code using various
feature detection technologies [9]. However, these markers display
no useful information for the users. It is thus difficult to know
which marker represents which virtual object just by looking at
the black and white pattern themselves.

]
=
]
=
=
v
-
L2
el
| &
W
Elﬂ x
L1
[
]
]
]
]
]
[}
-

Figure 3: Design of the proposed AR marker.

In this paper, we present a way to optically hide a QR code [17]
inside a tile based colour picture. We choose QR Code due to

H. Tran, H. Le, M. Nguyen, W. Yan.

its popularity; moreover, it is self-error corrected and orientation
detectable [11]. The proposed AR marker is built from hundreds of
small tiles (just like tiling a bathroom) as seen in Fig. 3, and the gaps
between the tiles are used to determine the elements of the hidden
QR Code. The QR code is then used to determine the graphics to
be rendered in the image of an AR application.

2 DESIGN OF A TILE-BASED AR MARKER

Our idea is motivated by the 3D illusion created by looking at a
tiled wall in a kitchen or a bathroom. If both eyes are paralleled
and virtually looked at a point behind that wall, the tiles appear
to float at different layers of depth. The effect is very similar to
autostereogram or magic eye pictures described in [21]. The various
depths of individual tiles are, in fact, created by the irregular gaps
between the tiles. So, if we consider a QR code an M x M tiled wall
and black and white dots are simply many tiles lying at different
depth levels; we can build a wall that optically hides a QR code.

Therefore, we design a tile-based AR marker which displays not
only a realistic-looking image but also contains numeric informa-
tion encoded by a QR Code. The tiles are all having the same size,
but gaps between them are different. However, for a row of tiles,
there are only two sizes of gaps: larger and smaller for binary val-
ues of ‘1’ and ‘0’ respectively. The marker is thus pictorial and yet
robust enough to be detected under various lighting conditions.
In other words, our new AR marker includes the advantageous
features of both template and bar-code tags. Moreover, gaps are
small compared to tiles; on average, 80-90% of the original picture
is retained.

The basic design of our marker is shown in Fig. 3. Only two
components are needed for the creation: a colour picture and a QR
code. QR codes are now easily obtained by either an online tool
such as www.qr-code-generator.com or a public library such as
QRcode python library at pypi.python.org/pypi/qrcode.

Assume that we have a QR code with dimension M X M , to be
mapped on a colour picture of dimension W x H pixels. In order to
build a tiled walled, that neatly fit in the image, we need to have
(M + 1) X M rectangular tiles. Each tile should have the same size
of wy, hy pixels. We firstly calculate the components of the vertical
cap (gy), as follow:

H-Mxh

e T M
The horizontal big gap g b for black QR dot and horizontal small gap
gxs for white QR dot are calculated differently for each horizontal
line i*" of the QR code. Assume that a QR scan-line i has a black
dots and b white dots: a + b = M, and the big gap g b is n times
the small gap gys. They are calculated as follow:

w - (M + 1) X wg

gxs(i) = B E— (2)

gxb(i) = n X gxs(i) ®3)

When all the components (tiles and gaps) are defined, they can
be placed accordingly on top of the provided picture. Each tile
is a transparent glass with a black frame; the gaps are filled with
white cement. After that, a black border is placed with width =
1% of the image on top. This rectangular border is used for the
marker recognition, detection, and segmentation (the quadrilateral
property of the squares can be used to detect their four straight

www.qr-code-generator.com
pypi.python.org/pypi/qrcode

A Tile Based Colour Picture with Hidden QR Code for Augmented Reality and Beyond VRST 2017, November 2017, Gothenburg, Sweden

Figure 4: Steps of detection and decryption process.

lines and four corners). The final result is what shown in Fig. 3: a
tiled picture of a flower garden, that also hides the QR code storing
an “aut” word. Another example is shown in Fig. 4-top-left, the
marker was printed on a sheet of paper. This marker will be used to
demonstrate the next section of Marker Detection and Decryption.

3 DETECTION AND DECRYPTION

The detection and decryption of aforementioned AR Marker are
demonstrated in Fig. 4. The procedure includes four steps: (1) rect-
angular marker detection, (2) gap region segmentation, (3) binary
gap classification, and (4) QR Code reconstruction from gapfis dis-
tances.

3.1 Rectangular marker detection

This is a common AR-related problem which has been solved effec-
tively by Contour Approximation Method [6]. First, we find closed
contours on the input image and unwarp the image inside it to a
square shape. A contour detection is applied on the picture; the
contour traces the perimeter of the pattern polygons that have the
four corner characteristic. The steps to detect black-border markers
are outlined below:

o Convert the input image from RGB to greyscale

e Perform an adaptive binary thresholding method.

e Detect contours in the image. If there are four vertices in
the contour, it should be a quadrilateral.

e Apply Perspective Transform [14] to retrieve the internal
image of the tag (Fig. 4-top-left). Once an image’s border
is detected, we can obtain the internal image for further
decryption.

3.2 Gap Region Segmentation

The internal tiled image is detected and resize to a suitable dimen-
sion (1024 X 1024 pixels in this case). With the knowledge of the
white colour gaps between tiles, and each tile has a thin black frame;

a simple flood filling algorithm can be applied. This is also called
seed fill algorithm, that determines the area connected to a given
node in a multi-dimensional array. Shadows and lights can change
the appearance of the photo; for a robust segmentation, we set eight
seed points at the corners and boundaries of the image, as seen in
Fig. 4-top-right. At each seed point, the below flood fill algorithm
applied:

def floodFill(x, y, fillColor , interiorColor):
getPixel (x,y, colour)

if colour is similar to interiorColor:
setPixel(x, y, fillColour)
floodFill (x+1, y, fillColor, interiorColor)
floodFill (x—1, y, fillColor, interiorColor)
floodFill (x, y+1, fillColor , interiorColor)
floodFill (x, y—1, fillColor, interiorColor)

3.3 Binary Gap Classification

Flood fill segmentation can separate gaps and tiles and a typical
result is shown in Fig. 4-bottom-left. We do not expect all the gaps
are detected due to many constraints such as noises and lighting
condition. However, there is an assumption that a majority of the
gaps are segmented. The tiles can be reconstructed to find the
marker orientation. All the components described in Sec. 2: the
dimension M X M of QR Code, the size of each tile w;, h; pixels, the
vertical cap (gy), the horizontal big gap gxb and horizontal small
gap gxs; can also be estimated statistically.

After segmentation, the result is similar to what shown in Fig. 4-
bottom-left, every horizontal and vertical scan line are analysed to
create collections of:

o Number of horizontal and vertical black and white gaps.
e Sizes of horizontal and vertical black and white gaps.

If the statistics mode value (the data value that appears most
often) of horizontal white gaps for all scan lines is one value higher
than the mode value of vertical white gaps for all scan lines, then
the marker is at correct orientation or up-side-down orientation. If
not, a rotation needs to apply on the image.

The mode value of all horizontal black gaps is the estimate of
the width of each tile w;. Thus, the mode value of all vertical black
gaps is the height h; of each tile. Vertical gap gy is found from the
statistics mode of all vertical white gaps.

Knowing the height of each tile, each line of QR code (shown
as the red region in Fig. 4-bottom-left) can be processed. Gap sizes
are harvested horizontally, the known width w; of each tile is used
to control the quality to make sure no gaps are missing. From the
collection of tile gaps, they can be separated into two group: big
with size gxb and small gaps with size gyxs. Big gaps represent
black dots, and small gaps represent white dots of the QR Code.

3.4 QR Code Reconstruction and Decryption

Gaps are detected correctly help reconstruct the full QR code as
shown in Fig. 4-bottom-right. The QR Code can now be used to

VRST 2017, November 2017, Gothenburg, Sweden

extract hidden data and also the orientation of the tag (correct or up-
side-down orientation). There are several libraries that are capable
for the decode such as ZBar!, ZXingz, Q)Jliec3, or Libdecodeqr4.

Each of those libraries can read an image frame, automatically
detect the boundaries of the QR code, decode it to a meaningful
text, and also determine the orientation of the code. In other words,
the four corners of the QR Code are defined, it helps specify the
orientation (direction) of the AR marker. Such information is crucial
for the rendering of computer graphics on the marker.

4 INITIAL RESULTS AND LIMITATIONS

Two other simple pictorial AR markers are shown in Fig. 5. They are
cartoon images, both hide the same QR Code of the text “aut”. These
markers are printed on papers, and we use a smart-phone to acquire
their photos. The markers are placed at various distances (0.5, 1.0,
1.5, 2.0 metres away) from the camera under indoor fluorescent
lighting condition. The detection and decryption processes are
carried out.

| e e o

Ao 0
EEEEEeEEEE
(b) A dog AR Marker

(a) A chicken AR Marker

Figure 5: Examples of other AR Markers.

After some initial analysis of the results, we have the following
conclusions. The rectangular marker detection and segmentation
is relatively efficient and robust. In most cases, it can quickly
separate the marker out from the background. The decryption, on
the other hand, is not as accurate as we expected, especially when
the marker is located at a distance (more than 1.5 metres away). In
these cases, the small gaps appear too thin, which stop the flood
filling algorithms to spread towards the centre of the image. Light
condition and camera resolution also affect the results. With good
lightings, high-resolution cameras, and the marker is not too far
away; the QR Code decryption is working efficiently. What is more,
we found that the higher the size ratio between large gaps and
small gaps, the more accurate the detection was.

5 CONCLUSION AND FUTURE WORKS

This short paper describes a new presentation of pictorial AR marker
that can optically hide a QR code and can be effectively used in

Uhttps://github.com/ZBar/ZBar
Zhttps://github.com/zxing/zxing
3https://github.com/dIbeer/quirc
4https://github.com/josephholsten/libdecodeqr

H. Tran, H. Le, M. Nguyen, W. Yan.

many AR applications. This pictorial AR marker itself contains a
tile-based colour image concealing a self-correcting QR code. The
codes are optically encoded by the small gaps between individual
tiles; thus, most of the picture features depicted on the card are
reserved. Blank and monotone regions of the original image do
not affect the detection and decryption results. This tag can also
be used in collectable trading cards to turn a traditional game en-
vironment into an interactive AR experience. From some limited
experiments, these proposed tags are relatively robust if used with
high-resolution cameras (this assumption is not too rare for today’s
technology). Therefore, this design could be a promising approach
for use in applications where a traditional barcode marker would
distract from the content presented.

At this stage, we only encode QR Codes busing horizontal gaps.
However, this design can, in fact, allow the users to use vertical tile
gaps. In the future, we will investigate this direction, to build an
AR marker that encodes two QR Codes, vertically and horizontally.

REFERENCES

[1] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon Julier,
and Blair MacIntyre. 2001. Recent advances in augmented reality. Computer
Graphics and Applications, IEEE 21, 6 (2001), 34-47.

[2] Ronald T Azuma. 1997. A survey of augmented reality. Presence: Teleoperators
and virtual environments 6, 4 (1997), 355-385.

[3] Filippo Bergamasco, Andrea Albarelli, Luca Cosmo, Emanuele Rodola, and An-
drea Torsello. 2016. An Accurate and Robust Artificial Marker based on Cyclic
Codes. (2016).

[4] Filippo Bergamasco, Andrea Albarelli, and Andrea Torsello. 2013. Pi-Tag: a fast
image-space marker design based on projective invariants. Machine vision and
applications 24, 6 (2013), 1295-1310.

[5] Tai-Wei Kan, Chin-Hung Teng, and Wen-Shou Chou. 2009. Applying QR code in
augmented reality applications. In Proceedings of the 8th International Conference
on Virtual Reality Continuum and its Applications in Industry. ACM, 253-257.

[6] Jin-Hun Kim. 1998. Contour approximation method for representing a contour
of an object. (June 30 1998). US Patent 5,774,595.

[7] Vincent Lepetit and Pascal Fua. 2006. Keypoint recognition using randomized
trees. Pattern Analysis and Machine Intelligence, IEEE Transactions on 28, 9 (2006),
1465-1479.

[8] Vincent Lepetit, Pascal Lagger, and Pascal Fua. 2005. Randomized trees for
real-time keypoint recognition. In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, Vol. 2. IEEE, 775-781.

[9] Tony Lindeberg. 1998. Feature detection with automatic scale selection. Interna-
tional journal of computer vision 30, 2 (1998), 79-116.

[10] Tsung-Yu Liu, Tan-Hsu Tan, and Yu-Ling Chu. 2010. QR code and augmented
reality-supported mobile English learning system. In Mobile multimedia process-
ing. Springer, 37-52.

[11] Yue Liu, Ju Yang, and Mingjun Liu. 2008. Recognition of QR Code with mobile
phones. In Control and Decision Conference, 2008. CCDC 2008. Chinese. IEEE,
203-206.

[12] Ankit Mohan, Grace Woo, Shinsaku Hiura, Quinn Smithwick, and Ramesh Raskar.
2009. Bokode: imperceptible visual tags for camera based interaction from a
distance. In ACM Transactions on Graphics (TOG), Vol. 28. ACM, 98.

[13] Edwin Olson. 2011. AprilTag: A robust and flexible visual fiducial system. In
Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE,
3400-3407.

[14] Learning OpenCV. 2008. Computer vision with the OpenCV library. GaryBradski
& Adrian Kaebler-OfiReilly (2008).

[15] Jun Rekimoto and Yuji Ayatsuka. 2000. CyberCode: designing augmented re-
ality environments with visual tags. In Proceedings of DARE 2000 on Designing
augmented reality environments. ACM, 1-10.

[16] Sanni Siltanen. 2012. Theory and applications of marker-based augmented reality.

[17] Tan Jin Soon. 2008. QR code. Synthesis Journal 2008 (2008), 59-78.

[18] Peter Sturm. 2014. Pinhole camera model. In Computer Vision. Springer, 610-613.

[19] Ivan E Sutherland. 1965. The ultimate display. Multimedia: From Wagner to
virtual reality (1965).

[20] Antti Tikanméki and Juha Roning. 2011. Markers—toward general purpose
information representation. In IROS2011 workshop: knowledge representation for
autonomous robots.

[21] Christopher W Tyler and Maureen B Clarke. 1990. Autostereogram. In SC-DL
tentative. International Society for Optics and Photonics, 182-197.

	Abstract
	1 Introduction and Backgrounds
	2 Design of A Tile-Based AR Marker
	3 Detection and Decryption
	3.1 Rectangular marker detection
	3.2 Gap Region Segmentation
	3.3 Binary Gap Classification
	3.4 QR Code Reconstruction and Decryption

	4 Initial Results and Limitations
	5 Conclusion and Future Works
	References

