
Full citation: Jebreen, I., Wellington, R., & MacDonell, S.G. (2013) Packaged software

implementation requirements engineering by small software enterprises, in Proceedings of the 20th

Asia-Pacific Software Engineering Conference (APSEC2013). Bangkok, Thailand, IEEE Computer

Society Press, pp.50-57. doi:10.1109/APSEC.2013.18

Packaged Software Implementation Requirements

Engineering by Small Software Enterprises

Issam Jebreen, Robert Wellington and Stephen G. MacDonell
SERL, School of Computing and Mathematical Sciences

AUT University

Auckland 1142, New Zealand

issam.jebreen@aut.ac.nz, rwelling@aut.ac.nz, stephen.macdonell@aut.ac.nz

Abstract

Small to medium sized business enterprises (SMEs)

generally thrive because they have successfully done

something unique within a niche market. For this reason,

SMEs may seek to protect their competitive advantage by

avoiding any standardization encouraged by the use of

packaged software (PS). Packaged software

implementation at SMEs therefore presents challenges

relating to how best to respond to misfits between the

functionality offered by the packaged software and each

SME’s business needs. An important question relates to

which processes small software enterprises – or Small to

Medium-Sized Software Development Companies

(SMSSDCs) – apply in order to identify and then deal with

these misfits. To explore the processes of packaged

software (PS) implementation, an ethnographic study was

conducted to gain in-depth insights into the roles played by

analysts in two SMSSDCs. The purpose of the study was to

understand PS implementation in terms of requirements

engineering (or ‘PSIRE’). Data collected during the

ethnographic study were analyzed using an inductive

approach. Based on our analysis of the cases we

constructed a theoretical model explaining the

requirements engineering process for PS implementation,

and named it the PSIRE Parallel Star Model. The Parallel

Star Model shows that during PSIRE, more than one RE

process can be carried out at the same time. The Parallel

Star Model has few constraints, because not only can

processes be carried out in parallel, but they do not always

have to be followed in a particular order. This paper

therefore offers a novel investigation and explanation of RE

practices for packaged software implementation,

approaching the phenomenon from the viewpoint of the

analysts, and offers the first extensive study of packaged

software implementation RE (PSIRE) in SMSSDCs.

Keywords: requirements engineering; packaged software

implementation; ERP; SMEs

I. INTRODUCTION

In recent years the market through which packaged software
(PS) is sold to large companies has become saturated [1]. PS
companies and vendors have therefore begun to target small
to medium-sized business enterprises (SMEs), and various
midrange and less complex software packages have been
developed for this purpose [2]. SMEs are of critical
importance to many economies; according to Snider et al.
[24] SMEs “with less than 500 employees provided 51 per
cent of all employment in the USA as of March, 2004 and
64 per cent of all Canadian private sector employment in
2005. In the European Union, firms with 250 employees or
less provided 67 per cent of employment in 2003”. While
SMEs are an integral part of economies, they face specific
challenges when implementing packaged software [2, 24,
25].

SMEs are considered to be fundamentally different from
large enterprises in several respects [3]. Some distinguishing
characteristics of SMEs include ownership type, culture,
structure, and market orientation [5, 6]. Researchers have
found that when it comes to IT/IS adoption, SMEs are
constrained by limited resources and limited IS knowledge,
or by a lack of IT expertise [3, 4]. These distinguishing
characteristics may influence the PS implementation issues
SMEs face [2] and lead to PS implementation being a
challenge for many SMEs [2, 7, 8]. Studies of PS
implementations have argued that findings relating to
implementations in large companies cannot be applied to
SMEs [3, 4]. Despite the importance of PS implementation
being recognized by these former studies, there has been
little research exploring this issue further. In particular,
discussions about SMEs rarely occur in the PS
implementation literature, and the question of whether or
how the structure of SMEs shapes software throughout its
implementation life cycle is rarely mentioned [2].

Since SMEs generally thrive because they have successfully
done something unique within a niche market, they may
seek to protect that competitive advantage by avoiding any
standardization encouraged by the use of packaged software.
Hence, the one of the key challenges of PS implementation

http://doi.ieeecomputersociety.org/10.1109/APSEC.2013.18

in SMEs relates to functional misfits between the
functionality offered by the packaged software and the
business needs of the SME. In order to understand such
challenges fully, it would be beneficial to understand the
requirements engineering processes that Small to Medium
Sized Software Development Companies (SMSSDCs) apply
in order to identify misfits between the PS functionalities
and SME business processes, in order to achieve a better fit.
Gaining a better understanding of such processes is
necessary as researchers have argued that most current
requirements engineering practices are unsuitable for
SMSSDCs [10, 11].

This study addresses the lack of understanding of Packaged
Software Implementation (PSI) in terms of Requirements
Engineering (RE) by Small to Medium Sized Software
Development Companies (SMSSDCs). It investigates this
phenomenon from the perspective of the SMSSDCs. RE as
it relates to Packaged Software Implementation will
hereafter be referred to as PSIRE.

In focusing on developing an understanding of PSIRE we
construct a “theory of understanding” to represent how and
why events occur during the implementation process of PS
in terms of RE. According to Gregor [12] this type of theory
is suitable when the researcher uses an interpretive
paradigm.

The rest of this paper is organized as follows: in Section II
we provide a review of previous literature relevant to our
study; in Section III we briefly describe the research
method; in Section IV we present our findings and results,
which are then discussed in Section V; Section VI delivers
our conclusion and considers future work.

II. LITERATURE REVIEW

The poor use of requirements engineering (RE) practices has
often been identified as one of the major factors that can
jeopardize the success of a software project [13, 14], and,
conversely, following appropriate RE practices has been
found to contribute to the success of software projects [15,
16]. Aranda et al. [14] state that gathering and managing
requirements properly are key factors when it comes to the
success of a software project. However, it is not possible to
improve RE practices until areas that need have been
identified [11, 17], and the solution for improving RE
practices will be different in each company; a one-size-fits-
all approach does not work in such a scenario [11, 14, 17].

In general, SMSSDCs are unable to apply conventional RE
methods and techniques without modification [14, 16, 17].
In addition, shortcomings in applying RE methods may arise
due to time constraints [16]. Bürsner & Merten [17] note
that “RE research has to intensify the investigation of RE
practices in SMEs [SMSSDCs]. Otherwise SMEs
[SMSSDCs] will have to continue their search for
methodical orientation and dedicated tool support.
Normally, the people responsible for requirements in SMEs
are ambitious, but suffer from scarcity of resources. Their
time for doing experiments and trying different methods is
very limited. They need quick methodical improvement of
requirements elicitation, documentation, communication

and traceability as well as more continuity of requirements
management through the whole software lifecycle”.

Karlsson et al. [18] observe that there are “several studies
that concern or include RE issues. However, none of these
focus primarily on packaged software development and
implementation. Furthermore, in most of these studies, the
studied projects and organisations are mainly large, both in
terms of the number of persons and requirements involved,
and in terms of the duration of the projects”. Quispe et al.
[11] highlight that “there is a lack of knowledge about the
requirements engineering practices in these types of
companies [small-medium]”. In short, researchers encounter
a general lack of information about how RE is carried out in
packaged software companies. It is difficult for researchers
to gain knowledge about how SMSSDCs carry out RE given
that most SMSSDCs seldom request external support,
probably due to limited finances. However, RE research
should eventually enable those companies to become aware
of more state of the art or innovative RE techniques and to
be able to improve their RE practice without external help
[16].

Merten et al. [16] argue that SMSSDCs may not need to
have formal or conventional forms of RE. Instead, “light
organization and unconventional RE” may work better for
many SMSSDCs. They also discuss the various RE models
that have been provided in previous studies; for example,
Olsson et al. [19] presented a pragmatic framework for RE
in SMSSDCs. However, Merten et al. [16] suggest that the
list provided needs to be expanded in future because the
selection of RE techniques is a central problem in all aspects
of process improvement. They note another study by
Hardiman [20] but observe that the RE practices and
techniques discussed in that study seem to be tailored
toward particular individual SMSSDCs and therefore do not
seem to offer solutions that can be applied to the whole
domain. Pino et al. [21] provide an extensive list of
Software Processes Improvement (SPI) models, and discuss
methods based on ideas put forward by the Software
Engineering Institute (SEI) or by the International
Organization for Standardization (ISO). However, Pino et
al. [21] note that many of the models proposed by these two
organizations could be too complex for SMSSDCs to apply.

This study presumes that the specific characteristics of
SMEs, SMSSDCs, and PS implementation may influence
RE, while recognizing that recent literature has paid little
attention to RE as it applies to PS implementation from the
perspective of SMSSDCs [2, 10]. While software
engineering comprises a group of influential approaches that
are often considered good practice, including ‘structured
programming’, ‘stepwise refinement’, and collecting ‘a
complete set of test cases’ [23], these approaches do not
apply for PS implementation. Dittrich et al. [23] argue that
such implementation requires “independent consideration”.

In this study, we set out to discover which RE practices are
actually being used by SMSSDCs during packaged software
implementation. We also highlight some of the dynamics
and complexity that these SMSSDCs face, as well as their
reaction to these challenges. Putting the organisation and
organisational process at the centre of attention, this

research advances our understanding of packaged software
implementation from a work organisation point of view, and
in terms of requirements engineering. The SMSSDC is the
point of entry for this study, and this research provides a
SMSSDC’s perspective.

III. RESEARCH APPROACH

Ethnographic research was conducted over a period of seven
months in an SMSSDC. Data were collected throughout the
field work. The three data collection methods, namely,
interviews, participant observation, and focus groups, were
used due to their suitability for qualitative research.

A. Research setting

The software development company that participated in this
research was established in 1997. It has 40 employees,
working in marketing and sales, as analysts, developers, and
in management teams. The services they offer include
software development, systems integration, and software
localization. The company’s software products deal with
accounting, inventory management, purchasing, retail,
school management, freight management, and human
resource management.

The total number of individual participants was 16,
comprising a mix of analysts, developers and team leaders.
The majority of the participants had between 3-10 years
experience in the field. Most of the participants had
experience working as analysts, designers, and developers at
the same time, with business application software and
database system software. During the seven month period
the first author observed 35 project cases. The specific form
of PS considered was Human Resource (HR) software,
Enterprise Resource Planning (ERP) software, Special
Solution software, such as a school management system,
Restaurant Management software, and Point of Sale (PoS)
software. Figure 1 visually represents the number of cases
observed.

Fig. 1. Number of cases observed

B. Data analysis

Inductive analysis, as used in this study, refers to an
approach that primarily uses detailed reading of raw data to
derive concepts, themes, and models through the
researcher’s interpretations of the raw data [27, 29]. During
ethnographic research the ethnographer goes through a
learning process at the same time as conducting their
research. This process allows any prior presumptions that
are found to be false to be redefined, reformed, or discarded
[27]. The researcher is then more open to experiencing what

is going on around them, to paying attention to the details of
the process, and to observing what was actually happening
in the company, rather than trying to search for relevant
data.

In this study, an initial round of field observations was
conducted to find interesting topics associated with the
company’s practices for PS implementation. We wished to
discover the situations in which PS implementation occurs
and understand the process that participants apply. After the
initial field work, an initial round of coding was conducted
in order to single out descriptive and interpretive codes [29].

Excerpts from the text of the interview/focus group
transcripts or specific phrases from the transcripts were
assigned as interpretive codes in the initial coding. Further
analysis of the initial codes supported the grouping of
similar descriptive and interpretive codes in order to form
categories with common themes. The theme names were
derived based on the concepts in the organizations’ projects.
This concluded the second round of coding. For example,
‘Present software’, ‘Explain software functions’, ‘Help
users’, and ‘Users’ business Support’ were categorized
under software demonstration (see Table I). A third round of
analysis was conducted to derive higher-level concepts that
would comprise the theoretical constructs in a model of the
PSIRE. Engaging in a third round of analysis aids the
researcher in reaching a higher level of abstraction [29]. For
example, ‘live scenario software demonstration’ was
conceptualized as a strategy that was intended to help
analysts convince clients about the software solution, as
they demonstrate and negotiate a possible solution.
Theoretical concepts of themes are identified by an
abstraction that describes the themes.

TABLE I. CODING PROCESS

Data Extract Codes for

Question:
Tell about software demonstration?

The software we present is based on the notes

from the sales team about the user’s interest in
potential software. Then we present the

functions of the software that supports the

user’s business….. I think that helps the user
know what their expectations could be for the

software functions

Present software
Sales team report

User’s Interest

Explain software
functions

Users’ business

Support
Help users

Users’ expectations

It is good for us to make a software
demonstration, in which we start to present a

possible solution for users’ issues. The

flexibility that we want to have during software
demonstration was constrained by a time limit

since we only have one hour and a half to

present our software….so we have to do our

best to explain our software functions to the

users.

Benefits of software
demonstration

Present a possible

solution
Users’ Issues

Constraints

Time limitation

Present software

Explain software

functions

IV. FINDINGS AND RESULTS

Our inductive analysis of the collected data, across
participants, provided a rich set of findings to inform a view
of PSIRE. Five main processes that emerged from the
analysis are: (1) PS feasibility study; (2) installation; (3) PS
software demonstration; (4) identify misalignments; and (5)
assessment.

0

5

10

15

HR ERP Special
Solution

H2O PoS

A. Feasibility Study

The feasibility study (FD) stage in PSIRE resembles, at a
high level, such feasibility studies as those used in
traditional RE. This is because feasibility studies in
traditional RE and the FD stage discussed here are similar in
terms of their purpose, such as dealing with software
objectives, time and budget. However, at the more detailed
practical level, the feasibility study (FD) stage in PSIRE
practice has its own characteristics.

The results indicate that the analysts attempted to define the
scope of the packaged software they were implementing
during discussions with potential clients about their needs.
Analysts believed it was important to carry out this scoping
process early on since this would help them to construct a
sensible software offer, and help all involved to exercise
control over the time taken for implementation. Analysts felt
that collecting such information not only provided them
with details about what the new software needed to do, but
also helped them to see what its limitations would be and
what features or modifications would be unnecessary. This
therefore helped them to design a PS offer that would likely
suit the client.

Software scoping was generally limited to finding out
information about the core requirements of the system or
solution to be designed. This was found to principally
involve transaction issues and output format issues; during
the scoping process the analysts were not concerned with
discovering detailed requirements. Another aspect that was
considered during the scoping process was the cost of
implementing the software. Analysts needed to take into
account what clients might be prepared to pay and what
software was worthwhile for their own company to
implement.

The study results indicate many of the aspects that analysts
took into consideration when making a software offer, and
pre-conditions to be met by packaged software that are
mentioned in the software offer. When creating a packaged
software offer, the SMSSDC decided on the scope of the
offer and exactly how to develop the software based on the
client’s initial requirements, the modifications requested by
the client, the extent of the modifications, and the technical
requirements involved in meeting such requirements.

It was also found that the software company applied
different criteria of assessment when considering how to
make a software offer and when estimating the effort and
time needed to develop, customize, and modify the
packaged software. These assessment criteria related to
various offer elements. The assessment criteria mentioned
by the General Manager related to: New Features,
Customization, Input/Output, and Technical Issues.

B. Installation

The determination of users’ needs consists of identifying
misalignments by conducting discussions with users to
determine what feature wants and needs the user has in
relation to the packaged software on offer. The analysts
observed in this study commonly installed a copy of the
packaged software in order to identify misalignments
between the packaged software’s technical requirements and

the user’s IT infrastructure. Analysts then used the installed
copy of the software to provide a software demonstration to
users. This helped the analysts to identify the business
misalignments between the software functionalities and the
user’s business process functions, and to gather information
about necessary customization, new features, and output
requirements.

In one of the cases observed, a Human Resource
Management System (HRMS) had been offered to an
organization. Since the client accepted the software offer,
further in-depth understanding of the users’ needs was
required. The analysts started to identify technical
misalignments between the packaged software’s technical
requirements and the user’s IT infrastructure via the
installation of a copy of the packaged software. This was
done to determine if there would be any software integration
issues or software infrastructure issues involved with a full
implementation of the software. When implementing
packaged software, there is a need for certainty regarding
whether the infrastructure required by the packaged
software is in place at the client’s site. Several technical
issues were discovered by installing the copy of the
software. For example, issues were found that related to
server compatibility. Other issues were found on the users’
desktop side, such as their computer missing some
components that were related to running files.

Hence, it is clear that analysts need to identify the
misalignments between the software’s technical
requirements and the users’ infrastructure capability in order
for the PS to be implemented. However, how is such a copy
of the software used by analysts to identify business
misalignments: new features, customizations, and output
adjustments?

C. Software Demonstration

The analysts spoke about this installation of the copy as a
way to educate users about the software’s functionalities and
to increase users’ participation in discussions. After the
software was installed successfully, analysts used the
version of the software to carry on identifying
misalignments. For example, in the case of this HRMS
software, the users’ issues were categorized under
transaction issues such as ‘add employees’, ‘bonuses
mechanism’, and ‘payments made for uniforms’, and output
format issues. Analysts spoke of how using this installed
copy of the software could minimize the customization
effort.

A transaction misalignment was found that required
customization of the software. Analysts explained to the
users the functionality related to payments made for
uniforms. The users accepted the interface layout and the
output data but asked for the customization of a relationship
between ‘payments made for uniforms’ and ‘employees’
salary’. That is, the software needed to include a mechanism
by which a fee was deducted from the first month of an
employee’s salary, as a guarantee for uniforms, and then
returned to the employee after three months. In this case, the
analysts minimized the customization effort by explaining
how the software could help users when kept in its present

form, and then agreeing to customize the software in terms
of the transaction formula.

There was strong consensus amongst the analysts
interviewed that analysts should consider carrying out
software demonstrations for packaged software as a means
of convincing users that there were often alternative
solutions to misalignments. The general recommendation
from analysts who participated in this study was that
demonstrations of a trial version of the packaged software
should be used as part of the implementation process to
educate users about the software’s functionalities, to
increase users’ participation in discussions, and to discover
and discuss user needs and misalignments.

More comprehensive discussions of misalignment types can
be found in Yen et al. [30] and Sia & Soh [31]. However,
these approaches do not hold for the investigated small –
medium sized software development companies as their
studies consider only the perspective of users, not the
perspective of the packaged software companies.

D. Identify misalignments

In general terms, analysts respond to the discovery of a
misalignment in one of two ways: either that the user’s
company should adopt the packaged software and its
functionality as is – a decision that might require the
company to change their business processes – or that the
packaged software needs modification in terms of
customizing a function or adding new functionality.
However, various factors need to be taken into consideration
before the analyst decides what action to take in response to
finding a misalignment.

The analysts first need to determine whether the
misalignment that has been discovered is in fact an ‘actual’
misalignment, or only a perceived one (a distinction that
does not exist in the RE practice for bespoke software). A
misalignment is ‘actual’ only when the software does not
support such a transaction or does not support a specific
transaction formula. A misalignment might seem to exist in
cases where the software functions actually support a
particular desired transaction, but in a different way than
expected.

If an ‘actual’ misalignment is found, the impact of various
factors related to the misalignment must be considered.
These factors may make it impossible to fix the
misalignment. For example, analysts need to determine
whether the misalignment is within the software scope or
outside the software scope, and will also need to consider
the size of the user’s organization. After carrying out such
assessments of misalignments, the analysts can choose a
course of action.

However, the individual SMSSDC’s strategy for dealing
with users’ needs and misalignments must also be kept in
mind. For example, the SMSSDC observed in this study
wished to minimize customization of software as much as
possible. Meanwhile, one last factor bears some importance
when misalignments are discovered: finding a misalignment
is not necessarily negative, and may in fact hold some
benefits. The presence of a misalignment may sometimes

provide the opportunity for SMSSDC developers to test
aspects of their software or to improve their current
packaged software.

E. Assessment

Assessment generally involves making decisions related to
misalignments that have been found between the packaged
software and the client’s requirements or the client’s
business environment. The misalignments found may relate
to output functions and to the user interface, but more
commonly relate to transactions. While engaging in
‘assessment’, analysts need to consider both the software
dimension and business dimension of responding to
misalignments. In terms of the software dimension, there
could be risks to the software if modifications are made. In
terms of the business dimension, the analysts will consider
whether dealing with the misalignment is within their work
domain, and whether there is any benefit to their
organization from dealing with the misalignment.

1) Identifying ‘actual’ & ‘perceived’ misalignments
As suggested above, before assigning misalignments to a
specific category such as ‘new feature’, ‘customization’, and
‘output’, it should be decided whether a particular
misalignment is ‘actual’ or only ‘perceived’. A
misalignment might be perceived to exist in cases where the
software functions actually support a particular desired
transaction, but in a different order. One such example
occurred in the case relating to HRMS software, when the
accounting manager asked the analysts to add some
attributes to employees’ salary reports. However, the
analysts explained that these attributes were already
represented by other reports. As a result, the accounting
manager accepted the software report order as it was,
without requesting further changes. However, in another
case, as mentioned above, analysts explained to the users the
functionality related to payments made for uniforms. The
users accepted the interface layout and the output data but
asked for the customization of a relationship between
‘payments made for uniforms’ and ‘employees’ salary’ that
would involve a transaction formula that was not supported
by the software.

Both of these situations involve misalignments, but in the
case where the accounting manager asked for attributes to
be added to the salary reports, the misalignment can be
categorized as a ‘perceived’ misalignment since it could be
‘worked around’ by carrying out a process in a slightly
different way than was initially desired (by finding the
attributes in other reports). However, the misalignment that
was found in relation to payments for uniforms can be
categorized as an ‘actual’ misalignment because the
misalignment was such that the user’s business process
could not work unless a customization was made. As
sometimes happens with RE for bespoke software, in
packaged software implementation, analysts may use work-
arounds, but this is in order to minimize customization,
rather than to reduce conflicts between requirements.

2) Minimizing customization
The general managers and analysts spoken to during the
field work for this study supported the idea that users should

adopt a package’s software functions as they are and change
their own business processes, rather than seek to modify the
software. One reason for this recommendation was that the
business processes of the user may be so idiosyncratic that
carrying out the modifications desired by the user might
have significant impact on the software functions. The
mechanism of minimizing customization and dealing with
misalignments involves gaining an understanding of what is
redundant in software for a particular user context, what
functions are essential for the operation of the software, and
which customization requests can be met without disrupting
the software. Such considerations must extend to involve
users’ needs, the scope of the project, and customization
risk. In packaged software implementation, when users
inform the analyst that a particular function is redundant to
their needs, the analyst has to consider whether the
unwanted function is actually connected to other functions
of the software and whether changes made to the redundant
function may impact other areas of the software. In the case
that the unwanted function cannot be deleted, the user needs
to adopt the functions of the software, even if it does not
match the user’s current business processes.

During this study, however, it was found that despite the
potential problems associated with customization and even
though analysts try to encourage users to adopt the existing
functions of the software package, when there are ‘actual’
misalignments analysts are left with no choice but to agree
to customization.

3) Organisation size and price of software
The level of customization engaged in by a company often
corresponds to company size. Some clients, especially small
and medium sized enterprises (SMEs), may wish to carry
out a large degree of customization. This is because many
such companies view it as essential that they keep the ‘best
practices’ that they believe give them a competitive
advantage. A larger SME may be more able to afford a
greater number or extent of customizations and to be able to
match the software price. During this study, it was
suggested by analysts at the SMSSDC that if an organisation
can afford to pay for a particular customization, it will likely
go ahead. Customization decisions are usually associated
with challenges involving increased costs and longer
implementation periods. However, the existence of actual
misalignments, factors related to the user’s organisation
size, and the price that the client pays for the software all
have an influence on customization decisions.

4) Benefits derived from users’ needs/misalignments
A SMSSDC may sometimes benefit from the identification
of misalignments. For example, when a user points out
functionalities that the package does not provide and that
they desire, even if the SMSSDC cannot develop the new
function in time to include it in the current package or
considers it too risky or costly to include in the current
package, the SMSSDC may still have been provided with an
idea for a useful function to add to a to the next release of
the package. It may therefore be the case that unforeseen
benefits can be derived from discovering misalignments.

V. DISCUSSION

Previous studies have typically focused on the users’
perspective on PS implementation, revolving around their
attempts to select packaged software that fits their process.
By changing the perspective used from ‘outside’ the
SMSSDC to ‘inside’ the SMSSDC, this research provides a
new understanding of an RE process for packaged software
implementation for SMSSDCs (a process that we term
‘PSIRE’). This process should help to identify
misalignments between users’ needs and packaged software
functionalities. Part of our new understanding of this
process involves our proposing a Parallel Star Model for
PSIRE which is based on empirical observations of analysts
made during our ethnographic research.

The Parallel Star Model is especially designed to support the
parallel processes (that include feasibility study, assessment,
implementation, software demonstration, and identifying
misalignments) of PSIRE, especially as conducted at
SMSSDCs. It bears both similarities to and differences from
the star model theorized by Hartson & Hix [32]. The first
similarity between Hartson & Hix’s [32] model and our own
lies in the use of a star-shaped configuration to show the
possible interconnections between different processes
involved in the development and provision of packaged
software (or in Hartson & Hix’s study, the development of
interfaces). Both models feature a group of processes that
are connected to each other by means of a central step which
relates to making assessments about the next action to take
or activity to engage in. In Hartson & Hix’s [32] model, this
central step is referred to as ‘usability evaluation’; in our
model, the central step is ‘assessment’. In abstract terms,
these central terms are very similar, involving pausing to
check information and to carefully consider the next step. In
more practical and specific terms, the central steps differ.
Hartson & Hix’s [32] model focuses on human-computer
interface development and the central issue involved in their
‘evaluation’ step is to address the interface usability. The
forms of ‘assessment’ involved in our Parallel Star Model
for PSIRE (shown in Figure 2) are quite different, as PSIRE
has different concerns. In our Parallel Star Model,
‘assessment’ generally involves making decisions related to
misalignments that have been found between the packaged
software and the client’s requirements or the client’s
business environment. The misalignments found may relate
to output functions and to the user interface, but more
commonly relate to transactions. While engaging in
‘assessment’, analysts need to consider both the software
dimension and business dimension of responding to
misalignments. In terms of the software dimension, there
could be risks to the software if modifications are made. In
terms of the business dimension, the analysts will consider
whether dealing with the misalignment is within their work
domain, and whether there is any likely benefit to their
organisation.

Apart from the fact that PSIRE involves different concerns
than those that are relevant to human-computer interface
development, the Parallel Star Model contains one large
structural change from Hartson & Hix’s model. While their
model showed that there can be flexible connections
between different processes, their model does not show any

processes running in parallel. The Parallel Star Model,
however, shows not only that the processes involved in
PSIRE are interconnected in flexible ways, arranged around
the central step of ‘assessment’, but that multiple PSIRE
processes can be followed simultaneously.

All of these considerations lead to a different kind of RE life
cycle approach in the Parallel Star Model (see Figure 2).
This model shows that during PSIRE, processes can be
carried out in parallel and do not always have to be followed
in a particular order. There are very few constraints to the
sequence in which processes can be followed. This model
shows that analysts can theoretically carry out multiple
processes at the same time (hence, it is a parallel process
model).

Because multiple processes can be carried out at the same
time or swapped between quite easily, one particular benefit
of the model is that it reduces the ordering constraints acting
upon process activities. For example, analysts do not
necessarily need to have found all of the misalignments that
are present before working on the training of users. In fact,
analysts can train users in how to use the software at the
same time as they identify misalignments. They can also
validate that they have changed the software to deal with a
misalignment at the same time as training the users, or can
identify technical misalignments in parallel with software
installation. Analysts can also move back and forth between
finding misalignments and developing a solution to the
misalignments, and looking for more misalignments. It is
essential to support continual assessment and iteration
during PSIRE, including smaller loops of iteration; the
Parallel Star Model supports such an approach.

 The feasibility study and the installation process are the
initial processes needed to set up the software environment.
This is the initial constraint on the model; these two actions
must be taken before analysts can use this model. Once the
software environment is set up, and the model is entered,
there is only one major constraint on the model and the
order in which steps are taken: this is that analysts should go
through the central ‘assessment’ process before moving on
to the next activity. When analysts are engaged in the
central assessment process, the results of each process that
has been carried out are assessed. This is done in order to
help analysts make decisions on how to next take action. In
general, a different kind of assessment is required after each
different process in this model. Figure 2 shows that there are
three different kinds of ‘assessment criteria’. For example,
in terms of deciding on a project’s feasibility, analysts will
not be able to take their next step without addressing how
the client’s organisation structure should affect their
decision, or how their own work domain might impact their
decision.

As shown in Figure 2, the form of assessment focusing on
the software dimension of implementing packaged software
in response to misalignments involves addressing the risk of
adding new features, the risk of customization, the output
customization risk, and the technical needs of dealing with
the misalignment. Analysts will consider whether they can
or should carry out all of the modifications desired by the
user, and what technical risks or risks to the software would

be involved in carrying out such modifications. They will
assess, for example, whether the changes made would have
significant impact on the software functions, and especially
whether they would disrupt essential functions. They will
also assess whether the software may be disrupted even if a
non-essential (‘redundant’) function is modified or removed.

Fig. 2. PSIRE Parallel Star Model

The form of assessment dealing with the business dimension
of making changes to the software involves addressing
whether misalignments are actual or perceived, making
assessments related to the preference to minimize
customization, considering the client organisation’s size,
considering the software scope and the software price, and
addressing the possible benefits to be gained from working
with misalignments. The first consideration they make is
whether a misalignment that has been discovered is an
‘actual’ misalignment, or only a perceived one. Even when
the misalignment that has been found is ‘actual’, analysts
will still stop to determine whether the misalignment is
within or beyond the software scope. Here, ‘scope’ is
determined by looking back at the original software offer
that the analyst company made to the clients during the pre-
implementation. The size of the client’s organisation and the
price they are willing to pay for software or for
customizations are also considered during ‘assessment’.
When considering whether to go ahead with customizations,
analysts consider the size of the user’s organisation, because
larger organisations can generally better afford
customizations.

The Parallel Star Model is flexible, as there are very few
constraints involved: the only major limitation on analysts is
that they will usually need to go through the central
assessment process before moving on to beginning a new
process. However, this step of engaging in assessment is
only needed if the analyst actually needs to consider the
risks involved with making a particular decision or engaging
in a particular action. If there are no risks associated with a
particular decision or action, the analyst can omit the
assessment step and move on to the next desired process.

VI. CONCLUSION

Given the growing importance of packaged software it is
increasingly necessary to understand the engineering
practices associated with packaged software
implementation. This study reports an in-depth,
ethnographic investigation of requirements engineering
practices for implementing packaged software at SMEs, but
does so from the point of view of analysts working for
SMSSDCs. It also captures the processes involved in RE for
PSI by proposing and describing a Parallel Star Model that
supports the parallel processes of PSIRE.

Some limitations to this study should be acknowledged: the
results that we have gained during this study could be
validated further if researchers gained data about PSIRE
from other SMSSDCs. As suggested in our ‘Discussion’
section, it could be desirable for researchers to shift their
focus from examining users’ organisations to examining the
views SMSSDCs have of packaged software
implementation. If such action is taken, researchers and
practitioners will be able to gain a more complete
understanding of all of the sites and participants involved
with packaged software implementation.

Another topic related to PSI that would be very interesting
to investigate is how the philosophy behind release plans for
packaged software differs between large packaged software
development companies and SMSSDCs. From observations
made here and in previous literature, it appears that large
packaged software development companies tend to have
very detailed release plans and schedules for future
packaged software products, mapped out months or years in
advance, while SMSSDCs may take a more ad hoc
approach to release planning that instead involves
continuous improvement of their product in response to
clients’ requirements and clients’ responses to their product.
Other research areas of interest would be discovering tools
that could support misalignments management for
SMSSDCs and developing a document template suite that
could support PSIRE for SMSSDCs.

REFERENCES

[1] V. Morabito, S. Pace, and P. Previtali, "ERP marketing and Italian

SMEs," European Management Journal, vol. 23, pp. 590-598,
2005.

[2] O. Zach and B. E. Munkvold, "Identifying reasons for ERP system

customization in SMEs: a multiple case study," Journal of
Enterprise Information Management, vol. 25, pp. 462-478, 2012.

[3] S. Laukkanen, S. Sarpola, and P. Hallikainen, "Enterprise size

matters: objectives and constraints of ERP adoption," Journal of
Enterprise Information Management, vol. 20, pp. 319-334, 2007.

[4] G. Buonanno, P. Faverio, F. Pigni, A. Ravarini, D. Sciuto, and M.

Tagliavini, "Factors affecting ERP system adoption: A
comparative analysis between SMEs and large companies,"

Journal of Enterprise Information Management, vol. 18, pp. 384-

426, 2005.
[5] A. Ghobadian and D. Gallear, "TQM and organization size,"

International Journal of Operations & Production Management,

vol. 17, pp. 121-163, 1997.
[6] K. Y. Wong and E. Aspinwall, "Characterizing knowledge

management in the small business environment," Journal of

Knowledge management, vol. 8, pp. 44-61, 2004.
[7] R. Malhotra and C. Temponi, "Critical decisions for ERP

integration: Small business issues," International Journal of

Information Management, vol. 30, pp. 28-37, 2010.

[8] D. L. Olson and J. Staley, "Case study of open-source enterprise

resource planning implementation in a small business," Enterprise

Information Systems, vol. 6, pp. 79-94, 2012.

[9] L. Xu and S. Brinkkemper, "Concepts of Product Software: Paving

the Road for Urgently Needed Research," in Proceedings of the

First International Workshop on Philosophical Foundations of
Information Systems Engineering, 2005.

[10] S. Jantunen, "The benefit of being small: Exploring market-driven

requirements engineering practices in five organizations," in
Proceedings of the 1st Workshop on RE in Small Companies

(RESC),[4], 2010, pp. 131-140.

[11] A. Quispe, M. Marques, L. Silvestre, S. F. Ochoa, and R. Robbes,
"Requirements Engineering Practices in Very Small Software

Enterprises: A Diagnostic Study," in Chilean Computer Science

Society (SCCC), 2010 XXIX International Conference of the,
2010, pp. 81-87.

[12] S. Gregor, "The nature of theory in information systems," Mis

Quarterly, vol. 30, pp. 611-642, 2006.
[13] K. El Emam and N. H. Madhavji, "A field study of requirements

engineering practices in information systems development," in

Requirements Engineering, 1995., Proceedings of the Second
IEEE International Symposium on, 1995, pp. 68-80.

[14] J. Aranda, S. Easterbrook, and G. Wilson, "Requirements in the

wild: How small companies do it," in Requirements Engineering
Conference, 2007. RE'07. 15th IEEE International, 2007, pp. 39-

48.

[15] B. Solemon, S. Sahibuddin, and A. A. A. Ghani, "Requirements
engineering problems and practices in software companies: An

industrial survey," in Advances in Software Engineering, ed:

Springer, 2009, pp. 70-77.
[16] B. Solemon, S. Sahibuddin, and A. A. A. Ghani, "Requirements

engineering problems and practices in software companies: An

industrial survey," in Advances in Software Engineering, ed:
Springer, 2009, pp. 70-77.

[17] S. Bürsner and T. Merten, "RESC 2010: 1st Workshop on

Requirements Engineering in Small Companies," econstor, p.
128, 2010.

[18] L. Karlsson, Å. G. Dahlstedt, B. Regnell, J. Natt och Dag, and A.
Persson, "Requirements engineering challenges in market-driven

software development–An interview study with practitioners,"
Information and Software technology, vol. 49, pp. 588-604, 2007.

[19] T. Olsson, J. Doerr, T. Koenig, and M. Ehresmann, "A flexible and

pragmatic requirements engineering framework for SME,"
Proceedings: Methods, Techniques and Tools to Support

Situation-Specific Requirements Engineering Processes, pp. 1-12,

2005.
[20] S. Hardiman, "REDEST-14 best practice SME experiments with

innovative requirements gathering techniques," in Requirements

Engineering, 2002. Proceedings. IEEE Joint International
Conference on, 2002, p. 191.

[21] F. J. Pino, F. García, and M. Piattini, "Software process

improvement in small and medium software enterprises: a
systematic review," Software Quality Journal, vol. 16, pp. 237-

261, 2008.

[22] I. Sommerville, R. Lock, and T. Storer, "Information requirements
for enterprise systems," in Large-Scale Complex IT Systems.

Development, Operation and Management, ed: Springer, 2012,

pp. 266-282.
[23] Y. Dittrich, S. Vaucouleur, and S. Giff, "ERP customization as

software engineering: knowledge sharing and cooperation,"

Software, IEEE, vol. 26, pp. 41-47, 2009.
[24] B. Snider, G. J. da Silveira, and J. Balakrishnan, "ERP

implementation at SMEs: analysis of five Canadian cases,"

International Journal of Operations & Production Management,
vol. 29, pp. 4-29, 2009.

[25] M. Haddara and O. Zach, "ERP systems in SMEs: A literature

review," in System Sciences (HICSS), 2011 44th Hawaii
International Conference on, 2011, pp. 1-10.

[26] H. K. Klein and M. D. Myers, "A classification scheme for

interpretive research in information systems," Qualitative
Research in IS: Issues and Trends, pp. 218-239, 2001.

[27] M. Hammersley and P. Atkinson, "Ethnography: principles in

practice," 2007.

[28] E. Fossey, M. Epstein, R. Findlay, G. Plant, and C. Harvey,

"Creating a positive experience of research for people with

psychiatric disabilities by sharing feedback," Psychiatric

rehabilitation journal, vol. 25, p. 369, 2002.

[29] M. B. Miles and A. M. Huberman, Qualitative data analysis: An

expanded sourcebook: Sage Publications, Incorporated, 1994.
[30] T. S. Yen, R. Idrus, and U. Yusof, "A Framework for classifying

misfits between enterprise resource planning (ERP) systems and

business strategies," Asian Academy of Management Journal,

vol. 16, pp. 53-75, 2011.

[31] S. K. Sia and C. Soh, "An assessment of package–organisation

misalignment: institutional and ontological structures," European

Journal of Information Systems, vol. 16, 2007.

[32] H. R. Hartson and D. Hix, "Human-computer interface
development: concepts and systems for its management," ACM

Computing Surveys (CSUR), vol. 21, pp. 5-92, 1989.

