
 

 

A Study of Penetration Testing Tools 

 and Approaches 

 

CHIEM TRIEU PHONG 

 

A thesis submitted to Auckland University of Technology 

in partial fulfillment of the requirements for the degree of 

Master of Computer and Information Sciences (MCIS) 

 

 

 

2014 

School of Computing and Mathematical Sciences 

 

 



I 
 

Declaration 

I hereby declare that this submission is my own work and that, to be the 

best of my knowledge and belief, it contains no material previously 

published or written by another person (except where explicitly defined in 

the acknowledgements), nor material which to a substantial extent has 

been submitted for the award of any other degree or diploma of a 

university or other institution of higher learning. 

 

Signature:  _______________ Date: 29 Oct, 2014 

  



II 
 

Acknowledgements 

First of all, I would like to take this opportunity to express my profound gratitude 

to my dear family for their constant support and encouragement without which 

this study would be impossible. 

I would like to express my deepest appreciation to my supervisors, Dr. WeiQi 

Yan and Dr. Stephen Thorpe for their exemplary guidance and encouragement 

throughout the research.  I am also obliged to staff members of AUT University, 

for valuable academic information and resources provided to conduct my thesis. 

Lastly, I would like to thank my MCIS peers, especially the senior MFIT student 

– Rahul Chandran, for their helpful advice and suggestions. 

Chiem Trieu Phong 

Auckland, New Zealand 

Oct, 2014 

 

 

  



III 
 

Abstract 

As one of the most common techniques to assess information system 

security, penetration testing legally attempts to break into the target 

system by utilizing tools and techniques similar to those used by real 

hackers.  The main objective of such technique is to effectively call to 

light potential vulnerabilities existing in the system, and then come up 

with pragmatic solutions to address such weaknesses; thus, enhancing the 

security of the system as a whole. 

Similar to every profession, penetration testing processes are 

efficiently aided by collections of automated tools.  Nevertheless, due to 

the large number of tools available, penetration testing practitioners might 

encounter difficulties in choosing the most suitable tools for the task.  As a 

result, this thesis firstly aims to provide the security community more 

reliable references regarding the effectiveness of penetration testing tools.  

Groups of service fingerprinting tools including Nmap, Dmitry, 

Unicornscan, and vulnerability scanning tools including Nessus, 

OpenVAS, and GFI Languard, were selected for performance evaluation.  

Results of the study suggest that Nmap and Nessus are more powerful than 

others owing to their quick response time and fair coverage. 

In parallel, the research introduces an unorthodox use of attack tree 

model for post-attack analysis activities.  Attacks demonstrated on the 

experimental system were gathered and organized into various attack tree 

diagrams.  By analyzing the diagrams, most effective attack surfaces can 

be easily outlined.  The outcomes of the research have confirmed that 

outdated operating systems and un-patched services might contain the 

most critical vulnerabilities that allow attackers to seize a system’s 

administrative access without spending too much time and effort.  It is 

also pointed out that weak passwords and user’s gullibility can be taken 



IV 
 

advantage of to gain initial access to the system, followed by further 

malicious activities for privilege escalation. 

Key words: Information Security, Penetration Testing, Vulnerability 

Assessment. 

  



V 
 

Table of Contents 

Declaration ........................................................................................................................... I 

Acknowledgements ............................................................................................................. II 

Abstract ............................................................................................................................. III 

Table of Contents ............................................................................................................... V 

List of Figures .................................................................................................................. VII 

List of Tables .................................................................................................................... IX 

Chapter 1   Introduction ...................................................................................................... 1 

1.1   Background and Motivation ........................................................................... 1 

1.2   Objectives of the Thesis .................................................................................. 2 

1.3   Structure of the Thesis .................................................................................... 3 

Chapter 2   Literature Review ............................................................................................. 4 

2.1   Introduction ..................................................................................................... 4 

2.2   Concepts and Definitions of Penetration Testing ........................................... 5 

2.2.1   Penetration testing definitions and related concepts. ....................... 5 

2.2.2   Goals of penetration testing. ............................................................ 6 

2.2.3   Benefits and drawbacks of penetration testing. ............................... 7 

2.2.4   Types of penetration testing. ............................................................ 9 

2.2.5   Vulnerability Assessment versus Penetration Testing. .................. 11 

2.2.6   Web application penetration testing............................................... 14 

2.3   Penetration Testing Models and Methodologies ........................................... 15 

2.3.1   Penetration testing models. ............................................................ 15 

2.3.2   Penetration testing methodologies. ................................................ 19 

2.4   Penetration Testing Tools ............................................................................. 28 

2.4.1   Google – A hacking tool? .............................................................. 28 

2.4.2   Metasploit. ..................................................................................... 29 

2.4.3   SAINT. ........................................................................................... 30 

2.4.4   Core Impact. ................................................................................... 31 

2.4.5   And many other penetration testing tools. ..................................... 33 

2.4.6   Penetration testing distributions. .................................................... 36 

2.5   The Use of Penetration Testing..................................................................... 37 



VI 
 

2.6   Conclusions ................................................................................................... 39 

Chapter 3   Research Methodology ................................................................................... 41 

3.1   Related Studies.............................................................................................. 41 

3.2   Research Questions ....................................................................................... 43 

3.3   Research Design and Data Requirements ..................................................... 44 

3.3.1   Research design. ............................................................................ 44 

3.3.2   Data requirements. ......................................................................... 45 

3.4   Limitations of the Research .......................................................................... 45 

3.5   Expected Outcomes and Conclusion ............................................................ 46 

Chapter 4   Research Findings .......................................................................................... 47 

4.1   Approach ....................................................................................................... 47 

4.2   The Experimental Test-bed ........................................................................... 47 

4.3   Experiments .................................................................................................. 52 

4.3.1   Stage 1 – Penetration testing tools’ performance observation. ...... 52 

4.3.2   Stage 2 – Hosts penetration. ........................................................... 57 

Chapter 5   Discussions ..................................................................................................... 79 

5.1   Effectiveness of the Selected Penetration Testing Tools .............................. 79 

5.1.1   Research question 1. ...................................................................... 79 

5.1.1   Research question 2. ...................................................................... 80 

5.2   Effective Attacks on Experimental Hosts ..................................................... 81 

5.3   Implications and Recommendations ............................................................. 82 

Chapter 6   Conclusions and Future Works ...................................................................... 85 

APPENDIX A ................................................................................................................... 87 

APPENDIX B ................................................................................................................... 95 

APPENDIX C ................................................................................................................... 97 

References ....................................................................................................................... 105 

 

  



VII 
 

List of Figures 

Figure 2.1     Example of an attack tree .................................................................16 

Figure 2.2     A simple penetration testing methodology .......................................20 

Figure 2.3     A formal penetration testing methodology .......................................21 

Figure 4.1     The experimental test-bed ................................................................48 

Figure 4.2     Vulnerability scanning results from each tool ..................................56 

Figure 4.3     Attack tree diagram of Metasploitable host......................................58 

Figure 4.4     Exploiting Samba sbmd service with usermap_script ......................60 

Figure 4.5     Exploiting Unreal IRCd backdoor ....................................................61 

Figure 4.6     Exploiting the mis-configured NFS share ........................................62 

Figure 4.7     Exploiting Java_rmi service .............................................................63 

Figure 4.8     Exploiting vsftpd v2.3.4’s backdoor ................................................63 

Figure 4.9     Brute-forcing FTP login with Hydra ................................................64 

Figure 4.10   Brute-forcing FTP login with Metaploit Framework’s auxiliary .....64 

Figure 4.11   Exploiting Distcc service ..................................................................65 

Figure 4.12   Executing privileged escalation exploit via meterpreter connection 

................................................................................................................................66 

Figure 4.13   Executing privileged escalation exploit via SSH connection ...........66 

Figure 4.14   Brute-forcing mysql login with Metasploit’s auxiliary ....................67 

Figure 4.15   Displaying ‘passwd’ and ‘shadow’ files’ contents using LOADFILE 

function ..................................................................................................................68 

Figure 4.16   Password cracking with John the Ripper..........................................68 

Figure 4.17   Displaying ‘user’ table from ‘mysql’ database ................................69 

Figure 4.18   Displaying web login credentials .....................................................70 

Figure 4.19   Attack tree diagram of Windows XP workstation host ....................71 



VIII 
 

Figure 4.20   Gaining meterpreter connection using smb08_067_netapi exploit 

................................................................................................................................73 

Figure 4.21   Gaining a meterpreter connection with a malicious payload ...........73 

Figure 4.22   Creating and adding a user to administrator’s group on Windows XP  

................................................................................................................................74 

Figure 4.23   Gaining remote desktop connection on Windows XP ......................75 

Figure 4.24   Attack tree of MSSQL database server host.....................................76 

Figure 4.25   Brute-forcing mssql login with Hydra ..............................................77 

Figure 4.26   Brute-forcing mssql login with Metasploit’s auxiliary ....................77 

Figure 4.27   Using mssql_payload exploit to establish a meterpreter connection 

................................................................................................................................78 

  



IX 
 

List of Tables 

Table 4.1   The simulation network peripherals and associated functions ............48 

Table 4.2   List of penetration testing tools to be evaluated ..................................50 

Table 4.3   Service foot-printing results.................................................................53 

Table 4.4   Vulnerability scanners’ response time results .....................................54 

Table 4.5   Vulnerability scanning results .............................................................55 

Table 4.6   Attack’s descriptions on Metasploitable host ......................................58 

Table 4.7   Attack’s descriptions on Windows XP workstation host.....................72 

Table 4.8   Attacks’ descriptions on MSSQL database server host .......................77 

 

 

 

 

 

 

 



1 
 

Chapter 1   Introduction 

1.1   Background and Motivation 

In today’s business environment, IT systems have become an inseparable part of many 

modern firms.  An effectively implemented system may not only enable smooth 

operations, but also significantly improve management processes.  Unfortunately, despite 

the remarkable benefits brought by IT systems, companies might suffer devastating 

consequences and losses if the systems were taken down by cyber criminals.  As a result, 

a large variety of defensive mechanisms are essentially needed in order to prevent 

intruders. 

Once the security measures are in place, a question regarding how effective they 

actually are is eventually arisen.  This is where penetration testing makes its appearance.  

As one of the most common approaches to assess system security, penetration testing can 

be considered as the simulation of actions performed by hackers in order to infiltrate an 

IT system.  However, differentiating from hacking activities which ultimately aims to 

cause harm and loss; the primary objective of penetration testing is calling to light 

potential security loopholes existing in the system.  This process afterward allows the 

testing teams to come up with pragmatic solutions to tackle such weaknesses; hence, 

enhance the organization’s security as a whole. 

Similar to many professions, penetration testing process is efficiently supported by a 

wide range of automated tools.  Different sets of tools are specifically useful in every 

distinct stage of a penetration test.  For instance, information gathering tools such as 

Nmap or Wireshark are particularly helpful to capture relevant information about the 

targets, while password cracking tools like Hydra or John the Ripper are amazingly 

powerful in exploitation stage.  In fact, there is a large number of penetration testing tools 

available including free, open source and commercial ones.  Due to this, the effectiveness 

of a particular tool when compared to others with the similar functions is worth 

questioning. 



2 
 

In a typical penetration test, with the data collected by the information gathering 

tools, a list of potential vulnerabilities on the testing subjects will be drawn.  This is then 

followed by a wide range of attack combinations that attempts to break into the target 

system.  As the attacking stage is finished, the outcomes will be gathered and analyzed.  

At this point, a useful approach capable of organizing all the attack instances into 

comprehensive diagrams can be helpful, in order to provide a whole view of the 

penetrating context. 

1.2   Objectives of the Thesis 

As mentioned above, with so many tools available to penetration testing professionals, 

choosing the most effective ones to include in their software arsenal becomes quite a 

challenge.  Other than inflated vendor claims, there is little empirical comparison 

research to inform practitioners as to which tools may be the most effective for their 

needs.  Hence, the very first objective of this thesis is to investigate a range of tools’ 

performance in terms of response time and coverage which are well known performance 

needs of professionals.  Response time refers to the amount of time needed for a tool to 

complete a specific task, while coverage indicates the number of items (such as opening 

ports or vulnerabilities) detected by the respective tools.  Additional characteristics like 

user-interface and report formats generated are also put into consideration.  Collected 

data will be put together and compared in order to find out the most effective ones.  Since 

the number of tools is too large, only some available tools in the categories of service 

fingerprinting and vulnerability scanning are selected to be examined in this thesis. 

In parallel, the study also demonstrates various basic penetration testing activities, as 

well as introduces an unorthodox use of attack tree model to outline the most effective 

attacks amongst those deployed on the target machines.  Normally, attack tree model is 

used for attack brainstorming activities.  Yet, in this study, attack tree model is applied to 

organize attack instances performed on the victims so as to offer a more general view of 

the attacking context.  More details about the attack tree model can be found in chapter 2 

of this report. 



3 
 

Ultimately, the research aims to contribute practical values to the security community 

by providing reliable references regarding the performance of penetration testing tools 

and a useful approach for post-exploitation analysis. 

1.3   Structure of the Thesis 

In order to assure comfortable reading, the report flows according to the following 

structure.  Chapter 2 introduces the topic of penetration testing involving relevant 

information ranging from fundamental concepts and definitions, to extended knowledge 

such as goals, benefits, as well as drawbacks of penetration testing.  The chapter also 

covers different types of penetration tests in detail.  Furthermore, a variety of penetration 

testing models and associated methodologies are clearly described.  The attack tree model 

adapted in this study is mentioned in this section as well.  Finally, the chapter ends with 

the introduction of supporting tools and the state-of-the-arts that effectively assist the 

penetration testing processes. 

Chapter 3 interpretively explains the research methodology adopted.  Research 

questions which the study seeks answers for are also introduced.  In addition, the 

experiment’s design and the required dataset are stated.  Limitations of the thesis are 

clearly addressed in this chapter as well. 

Chapter 4 moves into deeper details of the experiment by describing the experimental 

test-bed and related components.  The experiment’s outcomes are presented with various 

supporting facts, figures, and diagrams. 

In chapter 5, the research findings are discussed and analyzed so as to reveal solutions 

for the research questions.  Besides, practical recommendations are considerably 

suggested to enhance the security as a whole. 

Lastly, chapter 6 concludes the thesis and proposes a number of directions for further 

studies on the respective topic of penetration testing.  Extended information regarding the 

research findings is also attached in the Appendix sections. 

  



4 
 

Chapter 2   Literature Review 

This chapter principally surveys the discipline area of penetration testing by introducing 

information and related studies relevant to the research questions presented in chapter 3.  

The literature review provides a solid foundation for the research by presenting important 

concepts and definitions regarding penetration testing, coupled with addition knowledge 

such as objectives, benefits and drawbacks of penetration testing.  This is later followed 

by a comprehensive introduction of different models and methodologies for conducting 

penetration tests including the attack tree model, which is applied in this thesis.  A large 

collection of penetration testing tools and the-state-of-the-art are also mentioned in detail.  

Finally, the chapter is concluded with key problems and a number of proposed solutions. 

2.1   Introduction 

As pointed out by Fahmida (2011), despite the fact that cyber attacks and malware have 

been rocketing in this century of information, many companies and organizations today 

are still not proactively testing their infrastructure to identity security vulnerabilities.  

Once connected to the Internet, companies’ systems can be probed, scanned, and even 

attacked constantly with a proliferation of free hacking tools and inexpensive devices like 

key loggers and Radio Frequency scanners (Chan & Schaeffer, 2008, pp. 44-46).  As a 

result, every organization needs to seriously protect their systems against unauthorized 

access. 

According to most security professionals, companies should defend themselves 

against the threat environment with layers of security strategies, for instance, periodic 

audit to assess risks, and proactive penetration testing.  Instead of waiting for attacks to 

occur, which is obviously unsafe, uncontrolled, and inefficient, entrepreneurs should 

examine their systems regularly to reveal any flaw existing in the network or website that 

can be taken advantage of to compromise the whole system. 

Similar to the well-known saying, “the best defense is a good offense”, “the best 

method to test security implementation is to try it out”, said Hare (2001, p. 591).  In other 

words, the best way to determine how secure a system is to attempt to break into it legally 

– known as penetration testing.  The following sub-section 2.2 of this chapter introduce 

several definitions as well as concepts related to penetration testing, while sub-section 2.3 



5 
 

covers different methodologies to perform a penetration test, together with various 

penetration testing models.  Sub-section 2.4 presents a wide range of penetration testing 

tools that are available (either free, open source or commercial) for further reference.  

Finally, issues related to penetration testing are concluded in the last sub-section 2.5. 

2.2   Concepts and Definitions of Penetration Testing 

2.2.1   Penetration testing definitions and related concepts. 

With regard to penetration testing, there is a wide range of definitions.  As defined by 

Bacudio et al. (2011) and Ke et al. (2009), penetration testing is a series of 

undertaken activities to identify and exploit security weaknesses.  It is security testing 

which attempts to circumvent security features of a system (Wack et al., 2003).  The 

system being tested is not necessarily a computer system consisting of applications, 

hosts, and networks (Shewmaker, 2008).  It could also be a secure building, or more 

likely, a combination of users, an office, and a computer system (Bishop, 2007).  

Additionally, penetration testing can be defined as “an effort to penetrate a system in 

order to demonstrate that protection has weaknesses” (Cohen, 1997, p. 13). 

To be more specific, Osborne (2006) defines a penetration test as “a test to ensure 

that gateways, firewalls, and systems are appropriately designed and configured to 

protect against unauthorized access or attempts to disrupt services” (p. 257).  A 

penetration test is an analysis of IT environment and search for exploitable 

vulnerabilities (Nicola, n.d.).  The test emphasizes on how deep one can get into the 

system. 

Another interesting perspective to look at penetration testing is to reckon it as 

simulation of hacker’s behaviors.  According to Tran and Dang (2010), “penetration 

testing is properly defined as the simulation of attacks like real hacker against target 

systems to identify security vulnerabilities without false positive results” (p. 73).  

Agreeing with this point of view, Turpe and Eichler (2009) define penetration testing 

as “a controlled attempt at penetrating a computer system or network from ‘outside’ 

in order to detect vulnerabilities.  It deploys the same or similar techniques to those 

used in a genuine attack” (p.1).  To aid this, Hardy (1997) claims that penetration 



6 
 

tests, in some cases, “are similar to emulating the activities of a hacker, by probing 

and searching for ways to circumvent or bypass controls, and searching for weak 

points in the target organization’s electronic communication parameter” (p. 80). 

To be more detailed, the term “hacker” refers to any person who illegally accesses 

an IT system of an organization without authorization (Naik et al., 2009, pp. 187-

190).  Hackers are usually regarded as intelligent programmers trying to exploit 

security loopholes in IT systems for some reasons.  Besides hackers, there exist 

“crackers” and “script kiddies”.  Similar to hackers, crackers are people with an 

intention to take advantage of weaknesses of an IT system to acquire illegal benefits, 

social attention, or just respect from a particular community, a hacker group, for 

example.  On the other hand, script-kiddies are usually intruders lacking of in-depth 

background knowledge and often driven by curiosity to attack easy targets they can 

find with available tools obtained from the Internet.   

Professional penetration testers, as opposed to hackers, sometimes referred to as 

“white-hat” or ethical hackers perform penetration tests by utilizing the same tools 

and techniques as real hackers might do, but in a controlled manner with permission 

of the target organization (Yeo, 2013).  The only thing that separates a penetration 

tester and a hacker is permission (Northcutt et al., 2006).  Permission is granted to the 

tester to conduct a penetration test on the client’s systems; whereas, the hacker does 

not need any form of permission to launch attacks on the victim’s system. 

2.2.2   Goals of penetration testing. 

As there is no system which is 100% secure neither now nor in the future (SANS 

Institute, 2002), one of the main goals of penetration testing is to inspect how secure a 

system is, or in other words, how insecure it is from the perspective of a hacker.  To 

be more detailed, penetration testing is used to identify gaps in security posture, use 

exploits to get into the target network, and then gain access to sensitive data (Yeo, 

2013).   

 In addition, Wack et al. (2003) states that the aim of penetration testing is to 

determine possible points of entry to a system, by utilizing common techniques and 



7 
 

tools adopted by real hackers.  Nevertheless, many security experts claim that 

penetration testing is far more than the simulation of hacker’s activities.  Hence, the 

main aim of penetration testing is not about hacking or breaking the IT system of a 

company (Midian, 2002a, pp. 15-17), as well as not to carry out some kind of ‘crime-

watch’ style reconstruction of real hacking attempts (Midian, 2002b, pp. 10-12); but 

to provide countermeasures for found vulnerabilities, and meaningful advices to 

harden the security Ke et al. (2009). 

As clarified above, hackers and ex-hackers may seemingly be the most suitable 

candidates to perform a penetration test since they certainly know what they are doing 

in terms of breaking into a system.  However, it is strongly pointed out by Schultz 

(1997) that hiring hackers or ex-hackers to conduct a penetration test is definitely not 

wise decision for companies because they lack the most essential characteristics of a 

typical penetration tester which are integrity and reliability.  Their attitudes and 

professional ethics necessary to protect client’s interests have been shown to be 

incompatible.  Hence, hacking and penetration testing can never be mixed.  A typical 

penetration test which is usually driven by risk analysis, is always far more superior 

to a “random” approach adopted by cyber criminals (McGraw, 2005). 

2.2.3   Benefits and drawbacks of penetration testing. 

2.2.3.1   Benefits of penetration testing. 

Penetration testing allows the testers to view the client’s system through the eyes 

of malicious hackers (Engebretson, 2011).  Such process can call to light a wide 

range of surprising discoveries and provide the client the time needed to 

remediate their systems before real attackers strike.  Additionally, penetration 

testing may help organizations confirm the effectiveness – or ineffectiveness of 

the security measures that have been implemented by explicitly demonstrating 

security weaknesses in the system (Budiarto et al., 2004).  More importantly, 

penetration testing provides evidences to alert the management to the need of 

taking information security more seriously (Hardy, 1997); hence, it indirectly 

raises security awareness of not only the management, but also the staff within a 

company.   



8 
 

As information security has gradually become everyone’s problem (Chan & 

Schaeffer, 2008, pp. 44-46), the need to educate and elevate the average security 

awareness amongst users has been considered more and more desirable.  Security 

experts should come up with more realistic practices in order to achieve such 

objective.  One typical demonstration for this respective practice is a particularly 

practical assignment presented by Dimkov et al. (2011) that allows the students to 

deploy various social engineering techniques to retrieve a required laptop and use 

information obtained from the laptop to attack a system.  Survey amongst students 

and staff participated in the assignment indicates that the assignment significantly 

increase awareness of both physical and social aspect of security.  The exercise is 

strongly recommended for other universities to introduce security to graduate 

students.  Hopefully, more security practices similar to this program will be 

developed to raise security awareness in not only education, but also in actual 

working environment. 

2.2.3.1   Drawbacks of penetration testing. 

Despite a great number of advantages mentioned above, the effectiveness of 

penetration testing is questionable due to several negative effects (Cohen, 1997, 

pp. 12-15).  One hazardous issue is that penetration testing may cause information 

disruption, denial of services, and information leakage since the individuals 

performing penetration tests are usually granted with access to substantial amount 

of company’s sensitive information.  Another problem is the state of the system 

under test which is somehow different from how it is before the test begins.  

These changes, in most cases, may have minor or no effect at all; however, in 

some particular situations, they may introduce the system to new vulnerabilities.  

Furthermore, penetration testing may be potentially dangerous in a way that it 

may cause big waste of time and even critical damage to the organization, for 

instance, bringing the whole network down (Hardy, 1997, pp. 80-86). 

In addition, as pointed out by Tibble (2011), automated vulnerability scanning 

tools (referred to as ‘autoscanners’), find products and services on a target IP 

address by obtaining banner information, and then correlate the discoveries 



9 
 

service names against an internal database of vulnerability testing modules against 

those services.  This is more like mere guesses at vulnerability, rather than an 

actual test as no vulnerability probing/testing is performed.  The vast majority of 

autoscanners usually generate a great number of false positives that may cost a 

large amount of time for a conscientious and lacking of industry experience 

analyst to process the report.  In another story, false negative (the failure to detect 

real vulnerability) rating of autoscanners is put at 50% by some magazines and 

media; however, it is way below 50%, according to the author (Tibble, 2011).  

Autoscanners are not designed to intelligently probe a target in-depth in the same 

way as a real hacker would do with manual penetration test.  Tibble claims that 

fully automated approach to vulnerability assessment is a very bad idea in highly 

sensitive information e.g. database server hosting intellectual property or credit 

card numbers; thus, fully automated approach should be avoided at all costs. 

As penetration testing is so specialized, penetration testing activities should 

considerably be conducted by knowledgeable and highly-trained security 

professionals with befitting planning and strict disciples.  Therefore, choosing a 

competent team is strategically crucial to guarantee successful results of a 

penetration test.  Some typical criteria for companies to consider before deciding 

to go with a penetration team, are knowledge (e.g. knowledge of application and 

network penetration testing tools and exploits), skills (e.g. report writing skill, 

customer relationship management skill), and experience (e.g. years of work in 

the respective field) (Bhattacharyya & Alisherov, 2009).  Moreover, background 

professional certifications and professional experience of the team are other 

factors worth concerning about. 

2.2.4   Types of penetration testing. 

In general, there are a number of distinct types of penetration testing including 

network penetration testing, application penetration testing, periodic network 

vulnerability assessment, and physical penetration testing (Osborne, 2006).  Network 

penetration test inspects the entire network, particularly some critical network 

infrastructure like firewalls, database servers, web servers, or workstations.  



10 
 

Techniques used for this kind of test are somehow similar to those used in a real 

network-based attack that include port scanning, IP spoofing, session hijacking, DoS 

attack, and buffer overflow (Naik et al., 2009, pp. 187-190).   

Application penetration testing, on the other hand, involves a targeted assessment 

of an individual, usually a web-based application (Yeo, 2013).  Periodic network 

vulnerability assessment is not fully intrusive and usually used to augment a complete 

penetration test (Osborne, 2006).  This activity is a little more than scanning IP ranges 

on a quarterly or monthly basis, and reporting any changes or new exposures.   

Finally, physical penetration testing examines the security of the organization on 

physical level.  It is a method to demonstrate vulnerability in physical security of 

client premises (Allsopp, 2009).  A wide range of approaches such as intelligence 

gathering, general deception, social engineering, night-time intrusion, and defeating 

locks can be deployed to perform a physical penetration test.  Regarding social 

engineering, there are a large number of tactical approaches, for instance acting 

impatiently, employing politeness, inducing fear, faking supplication, invoking the 

power of authority, or even sex manipulation, are usually used to exploit human trust, 

ignorance, greed, gullibility, desire to help, and desire to be liked.  The ultimate 

objective of social engineering technique is to acquire as much information from the 

employees as possible to attack the company’s systems or facilities. 

Explicitly, the distinct difference between those types of penetration testing 

mentioned above is the objects that they aim to examine.  Physical penetration testing 

primarily focuses on the security of company’s premises or facilities such as fences, 

doors, locks, or theft alarm systems; while network penetration testing and periodic 

vulnerability assessment are more IT-oriented in a manner that they specifically 

inspect the company’s IT systems.  Network penetration testing ethically attempts to 

infiltrate the IT infrastructure.  Whereas, periodic vulnerability assessment is more 

like network monitoring activity, usually carried out on a regular basis.  Application 

penetration testing, on the other hand, ultimately looks for security weaknesses in 

application built by software developers. 



11 
 

Physical penetration testing is obviously as important as technical penetration 

testing. Once physical security is compromised, technical protections will be rendered 

powerless.  Physical penetration testing can help the company enhance its security by 

identifying “holes” in the defense, and then appropriate solutions can be made to 

remediate those weaknesses.  Therefore, physical penetration testing should be 

conducted in tandem with technical penetration testing to provide solid defense 

mechanisms. 

With regard to network penetration testing, there are three commonly used types of 

test: black-box testing, white-box testing, and grey-box testing (CPNI, 2006).  The 

testers are provided with no information at all in black-box testing, whereas complete 

information is given to the testers in white-box testing.  In grey-box testing, some but 

not all information (for example, username and password of a normal user in the 

system) is provided.  Black-box testing is practically useful to understand what is 

possible for an unknown attacker to achieve.  White-box testing, on the other hand, is 

useful for more targeted tests on a system to reveal as many vulnerabilities and attack 

vectors as possible.  Grey-box testing tries to understand the degree of access that an 

authorized user of a system may acquire. 

Apparently, choosing a suitable type to conduct a penetration test is problematic 

for companies sometimes.  Which method, black or white-box testing, is more 

appropriate for the purpose of evaluating network security?  The answer to this 

question usually depends on the requirements of the organization.  If the goal is to 

discover what a malicious hacker can do to their system, a black-box test appears to 

be the best decision.  Instead, a white-box test/full knowledge assessment and 

analysis work will make more sense if the company desires to improve their security 

infrastructure as a whole. 

2.2.5   Vulnerability Assessment versus Penetration Testing. 

Vulnerabilities are defined as potential security weaknesses, or design flaws, bugs, or 

mis-configurations that could result in security policy breaches (Vacca, 2010).  In 

other words, they are ‘holes’ in a system that may introduce the system to malicious 



12 
 

exploitations, therefore posing threats against network resource and information 

(Corothers, 2002). 

Vulnerability can be categorized into two primary types: logical vulnerability and 

physical vulnerability (Vacca, 2010).  Physical vulnerabilities include those having to 

do with either actual physical security of the company, or sensitive information which 

accidentally ends up in the dumpsters, or information exploited from employees 

through various social engineering approaches.  Logical vulnerabilities, on the other 

hand, are commonly associated with company’s computers, infrastructure devices, 

software, and applications. 

The confusion surrounding penetration testing is probably understandable as 

different service providers offer various levels of services and usually refer to them 

by different terms (Cook, 2009).  In general, there are three common levels of service, 

namely port scanning, vulnerability assessment, and penetration testing.  Port 

scanning usually involves using a software application to scan Internet-facing 

appliance at the IP address given by the client, and then reporting back any port it 

finds open.  Further than this level of service, vulnerability assessment aims to reveal 

potential threats to the network or system, following a particular methodology with 

pre-defined goals and assisting tools. 

Unlike vulnerability assessment which mostly relies on automated tools, 

penetration testing uses tools to facilitate the testing process, and then attempt to 

exploit the system (Boteanu, 2011, pp. 10-11).  The most common way to conduct a 

penetration test is to attempt to infiltrate the external exposure of the company’s 

systems, networks, or web applications via Internet.  Internal penetration testing, in 

contrast, provides information on what a hacker could do to the system once the 

external countermeasures are successfully breached.  Penetration testing 

differentiates from vulnerability assessment in way that penetration testing uses 

manual techniques supplemented by automated tools to attack the system; whereas, 

vulnerability assessment mostly depends on automated tools to reveal potential 

security weaknesses (CPNI, 2006). 



13 
 

So, which security technology, vulnerability assessment or penetration testing, is 

more effective to evaluate information security?  Paul Paget – CEO of Core Security 

Technologies, and Ron Gula – CEO of Tenable Network Security, both share their 

views upon such matter (Paget & Gula, 2005).  Despite being a good initial step, 

Paget claims that vulnerability assessment does not address the implication of an 

intrusion, thus network administrator must determine whether a particular 

vulnerability is a real threat or just simply a false positive, as well as what risk it 

poses to the network if such vulnerability is successfully exploited.  Unlike 

vulnerability assessment, penetration testing attempts to infiltrate the security 

defenses of a system by utilizing techniques of a real hacker.  Penetration testing 

enables the testers to exploit vulnerabilities in the network and try to replicate the 

kinds of access a hacker could achieve, and identify which resources are exposed as 

well.  Moreover, the results of a penetration test go far beyond the data yielded by a 

vulnerability assessment in way that it helps the administrators quickly identify and 

prioritize actual vulnerabilities, and gain insights into the effectiveness of security 

measures in place. 

Nevertheless, Gula argues that vulnerability assessment is more suitable for 

effective vulnerability management as, firstly, vulnerability scanning can be 

automated as opposed to penetration testing which is best performed by an expert 

team.  Secondly, vulnerability assessment tests a broader number of vulnerabilities on 

more platforms than typical penetration testing tools.  The next advantage of 

vulnerability assessment is that vulnerability scanning with continuous network 

monitoring or host-based patch auditing can easily identifies vulnerabilities in client 

application across a network.  Lastly, vulnerability assessment provides more fidelity 

of information, thus giving security team more data to make informed decisions. 

Although both sides have their points justified, the answer for the previous 

question primarily depends on the requirements of the client.  If the company would 

like to call to light the number of potential security weaknesses existing in their 

system, a vulnerability assessment is apparently a suitable choice.  However, if the 



14 
 

goal is to inspect how vulnerable the company’s system is, a well-planned penetration 

test is obviously a rational decision. 

2.2.6   Web application penetration testing. 

“Essentially, the problems with web server start with the fact that anyone running a 

web server is effectively giving access of their system to a completely uncontrolled 

userbase” (Midian, 2002c).  Web applications technically expose themselves to 

attackers due to their very nature of being publicly accessed and processing data 

elements from within HTTP requests (Melbourne & Jorm, 2010a).  Therefore, web 

server seriously need effective protections to defend against plenty of well-known 

exploits, especially on port 80/TCP where it resides.  Patching the web server up-to-

date is a must as most vulnerabilities are generated by default, un-patched operating 

systems, or application installation. 

Besides input validation which is considered the root cause of web application 

vulnerability, poor authentication mechanisms, logic flaws, unintentional disclosure 

of content and environment information, and traditional binary application flaws 

(such as buffer overflow) are common vulnerabilities that can introduce a web 

application to various attacks (Melbourne & Jorm, 2010a).  Especially, SQL injection 

and Cross-site Scripting (XSS) are on the top of the most common vulnerabilities 

rated by OWASP (Antunes & Vieira, 2013).  SQL injection – one of the most 

prevalent vulnerability of web application, allows attacker to alter SQL queries with 

“nasty” characters as inputs while interacting with the application in order to 

manipulate the underlying database (Melbourne & Jorm, 2010b).  On the other hand, 

XSS in an application sends user-supplied data to a web browser without firstly 

validating or encoding the content.  Additionally, extended stored procedure, PHP 

and MySQL injection, code and content injection, miscellaneous injection, bypassing 

client-side controls, exploiting path traversal, attacking application logic, and 

attacking other users, are some other popular threats to web applications (Stuttard & 

Pinto, 2007).  Cookies are another source of web application vulnerability 

(Melbourne & Jorm, 2010c).  There have been numerous browser vulnerabilities in 



15 
 

the past allowing hackers to steal known cookies that can be used to impersonate a 

user. 

With regard to web services, security can be examined with either penetration 

testing, or static code analysis approach (Antunes & Vieira, 2009).  Black-box 

penetration testing – the most common way to test a web application (Melbourne & 

Jorm, 2010b), inspects the application from the perspective of a hacker and tried to 

compromise it by analyzing the program execution in the presence of malicious 

inputs (Antunes, 2011).  Any abnormal behavior in response to malicious inputs is 

certainly worth investigating.  Despite the fact that the analysis of vulnerability in 

web application is best accomplished by hands, most parts of black-box penetration 

testing can be scripted and automated with a wide range of penetration testing tools 

(Melbourne & Jorm, 2010c).   

Similar to white-box penetration testing approach, static code analysis looks into 

the source code of the application (instead of information, for instance network 

designs or configurations in network penetration testing) to identify potential 

vulnerabilities without executing the program (Antunes, 2011).   

Both techniques are suitable to assess security of a particular web application.  

However, in fact, black-box penetration testing is the mostly used approach for web 

developers to inspect a web application. 

2.3   Penetration Testing Models and Methodologies 

2.3.1   Penetration testing models. 

A wide range of different models are adopted for penetration testing.  Traditionally, 

there are two commonly used approaches, namely flaw hypothesis and attack tree. 

As a proprietary testing for the System Development Lifecycle, flaw hypothesis 

model “is now in general use and remains the best current approach to penetration 

testing of new products at the end of development” (Weissman, 1973).  Basic flaw 

hypothesis approach consists of six activities: define penetration testing goals, 

perform background study, generate hypothetical flaws, confirm hypotheses, 



16 
 

generalize discovered flaws, and eliminate discovered flaws.  At the beginning of a 

penetration test following this approach, the test is initially planned by setting the 

scope, establishing ground rules and objectives, as well as defining the purpose.  

Then, a background study is conducted using all available resources such as system 

design documentation, source code, user documentation, and results of unit and 

integration testing.  As the study is completed, the team commences brain-storming 

sessions to generate hypothetical flaws.  These hypothetical flaws are eventually 

analyzed, filtered, ordered, and then confirmed or refused by tests or source code 

analysis.  Next, the confirmed flaws are analyzed for patterns to determine whether 

the flaw exists elsewhere in the system. Finally, practical solutions to remediate the 

flaws are recommended. 

On the other hand, the attack tree approach developed by Sparta (Salter et al., 

1998), is intended for penetration testing where there is less background information 

about the system-under-test.  The basic idea of this model is to combine the work 

breakdown structure from project management and the familiar tree representation of 

a logical proposition.  The root and other nodes in the tree are disjunctive nodes.  An 

attack on a node is considered accomplished if any of the actions described by its 

children nodes are successfully carried out. 

 

Figure 2.1   Example of an attack tree 

Figure 2.1 illustrates a simple attack tree consisting of one ultimate goal (root 

node) and several sub-goals (leaf nodes).  The ultimate goal is accomplished as long 

as any of its sub-goals is successfully carried out.  In this case, for instance, an 



17 
 

attacker might want to install a key logger application on the target’s machine in 

order to acquire his/her password, and then use it to login to the victim’s machine. 

Taking advantage of the two mentioned approaches, McDermott (2000) proposes 

the attack-net-based penetration testing model that includes similar activities as the 

flaw hypothesis approach, except the process of generating hypothetical flaws are 

constructed using attack nets.  According to the author, such model which is based on 

Petri-net, retains the key advantages of the flaw hypothesis and attack tree approaches 

while providing new benefits.  It brings more discipline to brain storming activity 

without limiting the free rang of ideas in any way.  It also provides the alternative and 

refinement of the attack tree approach.  Additionally, attack net provides a graphical 

means of showing how a collection of flaws may be combined to achieve an attack, as 

attack net can make full use of hypothetical flaws.  This means attack net can model 

more sophisticated attacks which may combine several flaws.  Moreover, the 

descriptive power of such approach is strengthened with the separation of penetration 

test commands or events from attack states or objects.  Furthermore, attack net can 

model choices by using disjunctive transitions allowing vulnerabilities to be exploited 

in several ways or alternative attacks on a single goal.  However, it is not clear if 

attack net model is better than traditional attack tree for top-down testing of poorly 

documented operating systems. 

Another model aiming to improve the accuracy of vulnerability testing based on 

the traditional Model-Based Testing (MBT) is proposed by Lebeau et al. (2012).  The 

MBT (Utting & Legeard, 2006), which has been widely used from academic to 

industrial domains in recent years, is a particular method of software testing 

techniques in which both test cases and expected results are automatically derived 

from a high-level model of the System Under Test (SUT).  This high-level model 

defines the input of MBT process and specifies the behaviors of the functions 

provided by the SUT, as well as how these functions have been implemented.  Test 

cases generated from these models enable validation of the behavioral aspects of the 

SUT by comparing back-to-back the results observed on the SUT with those specified 

by the model.   



18 
 

By applying MBT technique into vulnerability testing, called Model-Based 

Vulnerability Testing (MBVT), negative test cases have to be generated in place of 

positive test cases.  A positive test case checks if a sequence of stimuli causes 

expected effects with regards to the specifications; whereas, a negative test case 

targets an unexpected use to the SUT.  To give an analogy, a negative test can be an 

attack scenario to obtain data from the SUT in an unauthorized manner.  The success 

of a negative test case indicates that the vulnerability actually exists in the system. 

The MBVT process composes of four different activities, namely Test Purposes, 

Modeling, Test Generation and Adaption, and Concretization, Test Execution and 

Observation.  The Test Purpose activity formalizes test purposes from vulnerability 

test patterns that the generated test cases have to cover.  A model capturing the 

behavioral aspects of the SUT to generate consistent sequences of stimuli is defined 

in the Modeling activity.  The Test Generation and Adaption automatically produces 

abstract test cases from the artefacts created during the two previous phases.  And 

finally, the Concretization, Test Execution and Observation activity translates the 

generated abstract test cases into executable scripts, executes the scripts on the SUT, 

observe the SUT responses, and compare them to the expected results to assign the 

test verdict and automate the detection of vulnerability.  Despite the capability to 

avoid both false positive and false negative, MBVT still suffers the main drawback of 

the traditional MBT which is the significant effort needed to design test purposes, 

models, and adapters. 

Last but not least, a powerful approach called Topological Vulnerability Analysis 

(TVA) for global network vulnerability analysis is proposed by Jajodia et al. (2005, 

pp. 247-266).  TVA analyzes dependencies among modeled attacker exploits in terms 

of attack paths to specific network target.  The tool automates the labor-intensive 

analysis typically performed by penetration testing experts and provides thorough 

understanding of vulnerabilities of critical network resources.  TVA employs a 

comprehensive database of known vulnerabilities including a comprehensive rule 

base of exploits, coupled with vulnerabilities and other network security conditions 

serving as exploit preconditions and post-conditions.  In the stage of network 



19 
 

discovery, network vulnerability information is collected and correlated with exploit 

rules provided by Nessus scanner.  TVA then models network attack behavior based 

on the exploit rules and build a graph of pre-conditions/post-conditions dependencies.  

The graph provides attack paths leading from the initial network state to a specified 

goal state.  As claimed, TVA not only provides powerful new capabilities for network 

vulnerability analysis, it may also potentially aid to other areas of network security 

such as identifying possible attack responses or tuning intrusion detection systems. 

2.3.2   Penetration testing methodologies. 

A framework is a collection of measureable tasks.  It provides a hierarchy steps, 

taking into consideration the relationship that can be formed when executing a task 

given a specific method.  A framework aims to explain the steps together with their 

relation to other points within the performance of test, and to expose the impact on 

value when excluding various methods within each (Stiller, 2005).  This sub-section 

introduces a wide range of different methodologies and frameworks that have been 

developed for different types of penetration testing including network/system 

penetration testing, firewall penetration testing, software penetration testing, and 

social engineering penetration testing. 

2.3.2.1   Network penetration testing methodologies. 

“Conventionally, a penetration test is performed using a multitude of ad hoc 

methods and tools, rather than according to a formalized standard or procedure” 

(Core SDI Inc., 2013).  Since the situation of each company is somehow different 

from each other, there is no ‘standard approach’ for penetration testing (Hardy, 

1997, pp. 80-86).  Fortunately, as most network/system penetration tests share 

several key phases, many security professionals have introduced different 

methodologies to conduct a penetration test ranging from simple ones to more 

sophisticated and formal processes. 

In general, penetration testing encompasses three primary phases mimicking 

the steps that would be used by real hackers to carry out an attack (Vacca, 2010).  

The three respective phases are pre-attack, attack, and post-attack.  The pre-attack 



20 
 

phase attempts to investigate or explore the target.  The attack phase involves the 

actual compromise of the target.  Lastly, the post-attack phase which is unique to 

the penetration testing team, attempts to return any modified system(s) to the 

previous stage before the tests begin. 

A simple penetration testing methodology primarily consists of the three 

following steps: reconnaissance, enumeration, and exploitation.   

 

Figure 2.2   A simple penetration testing methodology 

Reconnaissance, or Recon, occasionally referred to as Information Gathering 

step, is the process of searching for available information used in a penetration 

test (Tiller, 2011).  Depending on the scope of a penetration test, reconnaissance 

activities can be ranged from ping sweeps to discover IP addresses on a network, 

obtaining useful information from employees, rummaging through company’s 

dumpsters to find receipts of telecommunication services; to thieving, lying to 

people, tapping phones and networks.  The search for information is only limited 

by the will to go and ethical behaviors agreed between the client and the testing 

team.  Passive research technique can also be used to gather as much information 

as possible about the organization, for instance DNS records, name registries, IPS 

looking-glass servers, and Usenet newsgroups (Osborne, 2006). 

In the next step – enumeration, information is acquired directly from target’s 

systems, applications, and networks with the help of available tools and 

techniques in order to build a picture of a company’s environment. Network 

enumeration creates a picture of the configuration of the network being tested, 

while host enumeration identifies services available on various devices like 

firewalls, routers, and web server, and reveals their functions together with 

opening ports that can be used to infiltrate the system.  Via this process, potential 

vulnerabilities are also identified and listed (Shewmaker, 2008). 



21 
 

Finally, with the information obtained from the previous stage, the exploitation 

phase uses different automated tools, techniques, and fine-tuned manual steps 

executed in a specific way to compromise the system through identified 

vulnerabilities or other channels that were found open (Tiller, 2011).  The 

ultimate objective of such process is to acquire administrative access to the 

system (Engebretson, 2011). 

On the other hand, as illustrated in figure 2.3, a formal penetration test built 

around the three mentioned core steps, usually includes more sub-activities.   

 

Figure 2.3   A formal penetration testing methodology 

It normally starts with the initial step of planning and preparing which 

significantly impacts the result of a penetration test (Tiller, 2011).  This step 

describes various details such as security policies, programs, postures, and 

ultimately, risks; coupled with their roles to formulate a controlled attack.  Also, 

some related issues like how the test is supported and controlled; who does what, 

when, where, and how; how information is shared and to what depth each 

characteristic will be performed to achieve the desired results, are clearly 

addressed. 

After the exploitation stage, unlike a simple approach, a formal penetration test 

continues with more steps, namely bootstrap the penetration, maintaining access, 

reporting, and cleaning-up.  The bootstrap the penetration activity starts the 

process over again from new vantage point in order to identify new vulnerabilities 

(Shewmaker, 2008), while the maintaining access step is taken to enable easier 



22 
 

access in the future by installing permanent backdoors to the system 

(Engebretson, 2011). 

Especially, reporting is the most important output of penetration testing 

process.  A good report should consist of clear descriptions of the issues together 

with their potential impacts, security level rating of the issues, together with a 

number of practical recommendations for the clients to mitigate such weaknesses 

(Osborne, 2006).  In addition, the report should be readable and comprehendible 

by both technical and non-technical personnel.  Last but not the least, the 

cleaning-up (Tran & Dang, 2010, pp. 72-85) phase aims to restore the system 

under test to its fresh/previous stage before the penetration test begins so that it 

can go back to normal operation. 

Another methodology for penetration testing incorporating three steps, namely, 

identifying sensitive objects, determining points of vulnerability for those objects, 

and testing vulnerabilities to determine the adequacy of controls, is presented by 

Pfleeger et al. (1989, pp. 613-620).  Sensitive objects include all data items and 

modules that pertain to the security of the system, for instance, file of user 

passwords and the list of those users who can access particular files.  Which 

sensitive objects should be included in penetration test are determined by using 

controls incorporated in the system.  Controls are measures or devices that 

prevent exploitation of vulnerabilities in security systems.  Sensitive objects are 

then grouped in a logical manner and organized in lattice structure.  Test plans are 

developed using the lattice as a catalog of sensitive objects and the functions that 

affect them.  The test plan must specify what to test, how to perform the test, what 

data to use, and how to document the result.  As the planning is completed, tests 

are performed by security analysts according to the test plan.  Each step of testing 

is recorded, and the results are analyzed.  When all steps in the plan have been 

carried out, the final results are scrutinized for completeness and correctness. 



23 
 

As there is no ‘best’ methodology to follow, each company needs to form their 

own approach, certainly with assistance from the penetration testing team, in 

order to effectively meet their business needs and requirements. 

2.3.2.2   Firewall penetration testing methodologies. 

Firewall penetration testing uses techniques designed to defeat and bypass 

protective mechanisms on the firewall to evaluate the effectiveness of such 

mechanisms on the network (Liu & Lau, 2000).  There are several related 

methodologies to perform such tests.  One particular methodology introduced by 

Haeni (1997) consists of four steps: indirect information collection, direct 

information collection, attack from the outside, and attack from the inside.   

Indirect information collection obtains information of the target in a way that 

cannot be detected by any alarming or logging system using publicly available 

information from sources outside the network.  Tools like nslookup or whois can 

be utilized to get an idea of the structure of the targeted network.  The Internet, 

target anonymous FTP and WWW servers, as well as newsgroups for postings 

made by the employees of the target company, are other decent sources of 

information to achieve such task.  In direct information collection, looking for 

additional information that the company’s name server could have been stored on 

the network topology is the beginning sub-step.  Bounced email header can be 

useful to gather valuable information, for instance, main email gateway.  

Furthermore, tool like SATAN is used to launch a scan of the entire address space 

of the targeted network.  In parallel, stealth scanning is applied to determine 

which ports of the firewall are open; hence, identify potential point of entry of the 

network.   

Regarding attack from the outside, two different approaches for penetration 

testing on packet filtering firewall and application layer firewall (proxy) can be 

applied.  Blind IP Spoofing attack and Non-blind IP Spoofing attack can be used 

to infiltrate packet filtering firewall, while attacks on proxy firewall can be 

executed by taking advantage of wrong configuration or poor security 



24 
 

implementation.  Firewall attack from the inside, on the other hand, is 

significantly useful to prevent internal misuse of network resource, or security 

policy alteration. 

Likewise, Moyer and Schultz (1996, pp. 11-18) present a different 

methodology for firewall penetration consisting of three sets of activities.  The 

first part, penetration test, involves attacks on the firewall and hosts behind the 

firewall.  The second part is the review of firewall design as well as network 

infrastructure.  The third part is firewall policy review.  There are four distinct 

stages sequentially carried out in the penetration testing part, namely preliminary 

information gathering, proximate information gathering, attack and penetration, 

and compromise from internal sources.   

To be more specific, the preliminary information gathering phase attempts to 

obtain information from sources outside the target network so that the probing 

activities cannot be detected.  Unlike this stage, the proximate information 

gathering activities can or should be detected by the target organization, for 

example, scanning hosts, ports, and running services on the target.  In penetration 

and attack phase, various attacks are launched on the target firewall and hosts 

behind it.  The final step involves firewall penetrating from an internal host within 

the client’s network.  

With regard to the second part of the methodology, the system design review 

looks at the firewall design documents and network infrastructure diagrams to 

spot security exposures that cannot be found in the previous stage of activity.  

Finally, the review of the corporate security policy compares organization’s 

access and use policy with actual observed behaviors in the systems so as to 

improve and maintain security as a whole. 

2.3.2.3   Software penetration testing methodologies. 

Software security vulnerability typically falls into two categories – bugs at the 

implementation level and flaws at the design level (Potter & McGraw, 2004, pp. 

81-85).  Design-level vulnerabilities are the most difficult to handle as they 



25 
 

require great expertise and are hard to automate.  In order to manage software 

security risks, software security practitioners perform many different tasks such as 

creating security abuse/misuse cases, listing normative security requirements, 

performing architectural risk analysis, building risk-based security test plans, 

wielding static analysis tools, performing security tests, performing final 

penetration testing in the final environment, and cleaning up after security 

breaches. 

Many software vendors have now pushed quality assurance checks earlier in 

the software development lifecycle rather than just at the end.  Largest companies 

such as Microsoft or IBM began pushing security into all stages of the 

development lifecycle (Thompson, 2005, pp. 66-69).  A typical model for 

application penetration testing usually consists of four steps, namely building a 

threat model, building a test plan, executing test cases, and problem reporting. 

A threat model is a detailed, written description of key risks to the application.  

There are several useful techniques to create meaningful threat models.  One of 

them is the STRIDE method for general classes of threats including spoofing 

identity, tampering with data, repudiation, information disclosure, denial of 

service, and elevation of privilege.  A test plan is a roadmap for security testing 

effort.  A good test plan must address issues such as logistics, deliverable and 

timeline, as well as test cases and tools. As the most important part of many test 

plans, test cases are tied directly to application risks.  In order to execute the test 

cases, a particular technique can be used to find obscure symptoms of security 

into four groups including dependency, user interface, design, and 

implementation. 

Finally, problem report is critical output of any testing process.  Despite being 

situational, a penetration testing report should at least include reproduction steps, 

severity, and exploitation scenarios.  A security bug should be clearly and 

unambiguously described in specific steps for other developer/tester to reproduce 

the failure.  Security failure rating is based on its potential result.  The rating is 



26 
 

crucial as it directly impacts vendor’s decisions regarding remediation steps.  On 

the other hand, exploit scenarios which are what an attacker could do to take 

advantage of a security flaw, plays important role in describing flaw’s impact to 

decision makers. 

Another useful approach presented by Arkin et al. (2005, pp. 84-87) aims to 

improve software penetration testing based on testing activities on the security 

findings discovered and tracked from the beginning of the software lifecycle.  In 

such approach, tools should be part of penetration testing, in which static analysis 

tools can vet software code to identify common implementation bugs, while 

dynamic analysis tools can observe a system to uncover faults.  The tools then 

report the faults to the tester for further analysis.  Furthermore, penetration test 

should be performed more than once, starting from the feature, component, or unit 

level to system level to improve the greater system’s security posture.  

Additionally, root-cause analysis of identified vulnerabilities should be carried out 

rather than simply fixing surface issues.  The last step is to use the test result 

information to measure progress against a goal.  If the vulnerability reappears in 

the future, measures taken should be revisited and improved. 

Especially, the Trustworthy Computing Security Development Lifecycle (or 

simply the SDL) is a process adopted by Microsoft for development of software 

that needs to withstand malicious attack (Lipner, 2004).  The SDL encompasses a 

series of security focused activities and deliverables in each phase of the 

development lifecycle.   

The SDL consists of many phases, namely requirements, design, 

implementation, verification, release, and response.  The requirements phase 

concerns about how security will be integrated into the development process, 

identify key security objectives, maximize software security while minimizing 

disruption to plan and schedules.  The design phase covers the overall 

requirements and structure of the software with key elements including defining 

security architecture and design guidelines, documenting element of the software 



27 
 

attack surface, conducting threat modeling, and defining supplemental ship 

criteria.   

The development team codes, tests, and integrates the software during the 

implementation phase.  Steps taken to remove security flaws or prevent their 

initial insertion significantly reduce the likelihood of vulnerabilities appear in the 

final version of the software.  In verification phase, while the functionally 

completed software is undergoing beta test, the development team conducts 

“security push” reviewing codes beyond the implementation phase, as well as 

focusing on security testing.   

In release phase, the software is subject to a Final Security Review (FSR) to 

check if the software is ready to deliver to the customer.  Rather than finding 

remaining security vulnerabilities in the software, the FSR provides an overall 

picture of the security posture of the software coupled with the likelihood that it 

will be able to withstand attacks when released to the customers.  Finally, in the 

response phase, the product team must prepare to response to newly discovered 

security weaknesses in the software that is shipping to the customers. 

2.3.2.4   A social engineering methodology. 

Social engineering or “head hacking” attempts to gain access to a person, not a 

computer, follows three steps: identifying and location potential targets, getting to 

know the targets and their weaknesses, and exploiting these weaknesses (Barrett, 

2003, pp. 65-64).  In the first phase, the tester attempts to seek out contact 

information within the target organization starting from names, jobs, and 

communication mechanisms, to more specific details such as sex, age, and 

interests.   

With this information in hands, it is ready to move to the next stage – getting 

to know the target.  The tester obtains information about the department in which 

the potential targets are working, simply by a process of cold-calling and non-

threaten discussions.  The tester can also use “neuro-linguistic programming” – a 

tool for counseling and helping people, to quickly understand the targets, appear 



28 
 

sympathetic to them, and then move to a position where the tester can have 

influence over them.  From the trust gained, the tester can start to extract valuable 

information about the organization from the targets in the final phase. 

2.4   Penetration Testing Tools 

Like weapons to soldiers, automated tools play an essentially important role in the 

perspective of penetration testing.  Penetration testing tools are usually used to take care 

of labor-intensive works; thus, provide the testers more time to focus on more 

sophisticated task, for instance, modeling new attack signature, identifying new attack 

vector, or performing an attack manually.  This section especially covers a large number 

of penetration testing tools ranging from free open source software to commercial ones. 

2.4.1   Google – A hacking tool? 

When mentioning Google, most people would reckon it as the most effective search 

engine to look for information; yet, not many of those reckon that Google can be used 

as an efficient tool for penetration testing.  Google today allows its users to search for 

not only just publicly available Internet resources, but also some information that 

should never have been disclosed (Piotrowski, 2005).   

By utilizing basic operators like AND, OR, NOT, and advanced operators such as 

site, filetype, intitle, inurl, allintitle, related, together with advanced functions like 

cached links, file type search, and directory listing, attackers may track down web 

servers and gain access sensitive materials, for example, login portals, network 

hardware, username and password on a system, or even a credit card database 

(Chevalier, 2002).  Google is also useful to seek statistics and other valuable 

information e.g. disk space usage, or even system logs generated by system/network 

monitoring applications.  Not just that, Google is capable of looking for HTTP error 

messages that can provide extremely valuable information about the system, database 

structure and configuration; prowling for passwords as well as personal information 

and confidential documents. 

In order for companies to avoid exposing their sensitive documents on Google is 

to ask Google to take them down, or use the Google automatic URL removal system 



29 
 

available at http://services.google.com/urlconsole/controller.  Moreover, tools like 

Gooscan, Athena, Wikto, or Google Rower should be used to search and stop site’s 

information leaks (Long, 2011). 

Besides the mighty search engine – Google, available tools like centralops.net, 

digitalpoint.com, domaintools.com, and Robtex - a Swiss army knife Internet tool, can 

be used in conjunction to gather information of the target available on the Internet 

(Hoppe, n.d.).  Using these tools, information like server operating system, internal 

server IP address, and document path is passively collected without firing up any port 

scanner or alerting any intrusion detection system that may be in place. 

2.4.2   Metasploit. 

Developed by Metasploit LLC, Metasploit Framework initially created in Perl 

programming language, but lately was entirely re-written in Ruby programming 

language (Shetty, n.d.).  Metasploit can be used for exploit development, penetration 

testing, creating malicious payloads for client-side attacks, active exploitation, 

fuzzing, and almost anything that a pen-tester might need (Prowell et al., 2010). 

In order to exploit a system, Metasploit Framework follows several key steps 

including selecting and configuring the exploit to be targeted, validating whether the 

selected system is susceptible to the exploit, selecting and configuring a payload to be 

used, selecting and configuring the encoding schema to be used to make sure that the 

payload can avoid Intrusion Detection System with ease, and finally executing the 

exploit.   

On the other hand, Metasploit is useful to validate reports generated by other 

vulnerability assessment tools to prove that the identified vulnerabilities are not false 

positives.  Metasploit can be also used to test new exploits that come up nearly every 

day in locally hosted test servers to understand the effectiveness of the exploit.  

Furthermore, Metasploit is a great tool for assessing the effectiveness of Intrusion 

Detection System by applying the exploit used to bypass it. 

http://services.google.com/urlconsole/controller


30 
 

As an open source software solution, Metasploit is flexible in a way that it allows 

users to develop their own exploits and payloads owing to obvious advantage of code 

reuse and quick development (Maynor et al., 2007). 

Particularly, Metasploit Pro™ (Anonymous, 2010a) - the commercial version of 

Metasploit, is introduced by Rapid 7®, the leading provider of unified vulnerability 

management and penetration testing solutions.  Metasploit Pro™ enhances the 

efficiency of penetration testing by offering unrestricted remote network access and 

enabling teams to collaborate efficiently.  Metasploit Pro™ is capable of scanning 

and exploiting web applications, running social engineering campaigns, achieving 

unprecedented network access, and enabling unique team collaboration.  Metasploit 

Pro™ is available for $15,000 per named user, per year including support with 

dedicated SLAs provided by Rapid7 staff. 

Excellent reference for penetration testing practitioners to work with Metasploit 

can be found in the cookbook of Singh (2012).  The book provides remarkably 

comprehensive guidelines of how to install, configure, as well as operate Metasploit 

on both Window and Linux platforms.  Descriptive instruction to conduct a 

penetration test on a virtual lab is additionally provided. 

2.4.3   SAINT. 

In 1999, one of the most useful tools for testing the security of Solaris systems was 

SATAN (Security Analysis Tool for Auditing Networks) (Watters, 1999, pp. 9-11).   At 

that time, SATAN managed to point out how vulnerable many systems are to attack.  

SATAN works by using several programs to systematically detect (as well as exploit) 

vulnerabilities in the target system.  In spite of some security flaws which have been 

highlighted, SATAN is very useful for determining the nature of specific 

vulnerabilities in a single machine, or a network of systems. 

Later, Security Administrator’s Integrated Network Tool (SAINT), a product of 

SAINT Corporation - a global leader in network vulnerability assessment, was born 

out of the old tool SATAN (Anonymous, 2010b).  SAINT costs from $8,500 per year 

for 256 IPs.  SAINT is updated frequently and scans for almost all remotely detectable 



31 
 

vulnerabilities (Herzog, 2003).  SAINT effectively integrates both vulnerability 

assessment and penetration testing.  Furthermore, SAINT focuses on heterogeneous 

targets and agent-less technology, as well as handles activities that take place pre- and 

post-exploitation.  Currently, SAINT supports Linux, yet it is assumed to be able to 

run on MAC in the future. 

SAINT Corporation also introduces SAINTexploit (“SAINTexploit Provides 

Means…,” 2006) – a penetration testing tool enabling administrators to easily and 

quickly evaluate the security of a network by running controlled exploits on targeted 

machines.  This fully-automated product examines potentially vulnerable services, 

and then exploits those vulnerabilities to prove their existences with undeniable 

evidences.   

SAINTexploit can demonstrate the way a real hacker might use to compromise a 

system, quantifies risks to the system, and allows administrators to effectively 

manage resource for better defense of information assets.  The features of 

SAINTexploit include seamless integration with the SAINT graphical user interface, a 

multi-platform exploit library with continuous updates, as well as the ease of use to 

manage in-house penetration testing.  Additional tools are also offered by the 

software to check client vulnerabilities like web browser and media players. 

2.4.4   Core Impact. 

Today penetration testing professional has more requirements than just infiltrating the 

target.  Penetration tester now needs the ability to plan, execute, and report on the 

vulnerabilities in target network.  One big challenge is that the tests must be 

repeatable, thorough, and reliable.  Bearing this in mind, the Core Security Company 

goes to the market by getting and staying close to the penetration testing community, 

and provides automated script tool addressing both the enterprise directly and the 

clients of the enterprise with client-side web attacks.  A major goal of Core Security 

is to advance the profession of professional penetration testing, and become more 

scalable for use on huge enterprise while providing more ways for testers to automate 

(Anonymous, 2009a). 



32 
 

As a result, Core Security Technologies presents Core Impact – a penetration 

testing product (Greer & Dyer, 2006).  With simple and easy to use interface, Core 

Impact automates the testing to the point that the testers do not need a highly trained 

security professional to operate it.  Different types of scans, in the information 

gathering phase, are provided to serve various purposes, for example, avoiding 

intrusion detection/prevention systems.  In order to proves that vulnerabilities exist on 

the target computer, Impact performs an actual penetration by injecting foreign code 

into a vulnerable file, normally a Data Link Library or service file.  Furthermore, 

Impact can generate executive report with nice format and colorful charts, activity 

report documenting what were done, and host report listing all vulnerabilities on each 

host and which ones were exploited, together with recommendations to remediate 

these weaknesses. 

In 2009, Core Security Technologies announced the development of Core Impact 

Pro v10 (Anonymous, 2009b).  This version of Impact Pro provides security 

managers the ability to replicate real-world cyber attacks that reveal critical exposures 

on a system.  Some significant additions of Impact Pro v10 are the addition of 

integrated wireless penetration testing, coverage of OWASP top web application 

risks, inclusion of community product usage data, and support for use on and testing 

of Window 7.  Automated web application penetration testing in Impact Pro v10 

helps organizations address six of the top ten web applications flaws ranked by the 

Open Web Application Security Project (OWASP).  With Impact Pro v10, companies 

can now assess their vulnerability to wireless intrusions leveraging new features that 

are integrated with the product’s existing network, end point and web application 

assessment capabilities. 

Continue to be improved from the previous version, Core Impact Pro v11 now 

enables organizations to assess their exposures to attack carried out against network 

devices (Anonymous, 2010c).  In the Information Gathering and Fingerprinting 

processes, Core Impact Pro v11 scans a range of IP addresses and return a list of 

discovered devices together with any identifying attributes such as OS, manufacturer, 

model, etc.  For configuration vulnerabilities detection and exploitation, the tool 



33 
 

offers some non-aggressive techniques to verify access, including configuration 

retrieval, device renaming, interface monitoring, access list piercing, and password 

cracking.   

In addition to existing Reflective XSS attack capacities, Impact Pro v11 enables 

exploitation of Persistent (or Stored) XSS vulnerabilities – insidious forms of attack 

implanting vulnerable web application with malicious code that subsequently run 

against end user web browser that run the application.  The product is also included 

with enhanced web page crawling, addition web application firewall evasion and 

scheduling of web application tests.  Core Impact Pro v11 addresses seven of the 

OWASP top ten application risks (A1, A2, A3, A4, A6, A8 and A9). 

2.4.5   And many other penetration testing tools. 

Together with the most popular tools mentioned above, there are still plenty of 

penetration testing tools worth concerning. One of those should be named is Nessus.  

Nessus is a vulnerability scanner tool allowing network security professional and 

administrators to audit their networks by scanning ranges of Internet Protocol (IP) 

addresses and identifying vulnerabilities with a series of plug-ins (Prowell et al., 

2010).  Nessus works effectively on multiple operating systems including Windows, 

Linux, FreeBSD, MAC OS X, and Solaris.  The Nessus system is comprised of a 

server and a client.  The server performs the actual scanning, whereas the client is 

used to configure, run scans, and view scanning results.  As a feature-rich application, 

Nessus can execute more than 10,000 types of checks via downloadable plug-ins.  

The “Nessus” project provides the Internet community a free, powerful, up-to-date, 

easy-to-use, and remote security scanner. 

Nmap is also a well-known tool amongst penetration testers for general purpose 

network scanning (Alder et al., n.d.).  This is a network and host scanner which can 

reveal open, filtered or closed ports, coupled with the ability to make OS assumptions 

based on packet signatures.  Similar to Nessus, Nmap is compatible with various 

operating systems like Windows, Linux, Mac OS X, Sun Solaris, and several other 

platforms.  Furthermore, it can scan for open ports using a wide range of standardized 

TCP packet options, with a large number of command-line options.  Plus, Nmap 



34 
 

documentation and support on the Internet are both significant.  One more noteworthy 

point is that Nmap performs much faster on Linux than Windows, especially in a 

large network with a great number of hosts or ports (Herzog, 2003). 

In addition, there exists Codenomicon, a toolkit for automated penetration testing 

released by Codenomicon Ltd. - a leading vendor of software security testing solution 

(Anonymous, 2010d).  This toolkit revolutionizes penetration testing processes by 

eliminating unnecessary ad-hoc manual testing; thus, proving more effective 

penetration testing with required expertise built in.  Not only being easy-to-use, 

Codenomicon also allows security specialists to focus on vulnerabilities that are 

harder to find, as it can quickly identify approximately 95% of common flaws.  

Codenomicon solution utilizes a unique fuzz testing technique which learns the tested 

system automatically enabling the testers to enter new domain or to start testing 

industrial automation solutions and wireless technologies.  Particularly, Codenomicon 

Network Analyzer, one of the key components of the penetration testing solution, 

enables the testers to map real network traffic and to determine what really needs to 

be tested.  The work-flow for threat analysis and attack surface analysis are also 

automated; hence, reducing test run time without compromising test coverage.  Plus, 

the test suite package includes Defensics Traffic Capture and XML Fuzzers for any 

protocol or XML application testing. 

Furthermore, Hydra (Prowell et al., 2010) is one of the best login cracking tools 

available to pen-testers and attackers owing to the number of protocols it supports and 

the reliability it provides.  Currently, Hydra supports more than 30 protocols and 

applications including Post Office Protocol 3 (POP3), Simple Mail Transfer Protocol 

(SMTP), Hypertext Transfer Protocol (HTTP), Microsoft Structured Query Language 

(MSSQL), and MySQL.   

With regard to wireless security testing, Netstumbler (Hurley et al., 2007) is 

commonly used to detect vulnerabilities in wireless network using 802.11a, 802.11b, 

and 802.11g standards. Not only listening for indications of wireless devices, 

Netstumbler can also send out different types of traffic to solicit additional 

information from the device.  Other noteworthy wifi stumblers and sniffers are 



35 
 

Vistumbler, Kismet, and Wifi Analyzer (Anonymous, 2012).  Particularly, for wifi 

encryption e.g. WEP, WPA/WPA2-Personal (PSK) cracking, tools like Aircrack-ng, 

CoWPatty, or CloudCracker (a commercial online password cracking service) might 

come in handy (Villegas, 2008).  Airsnarf-Rogue Squadron (Asadoorian & Pesce, 

2011) is another useful penetration testing tool which can be used to build a wifi 

hotspot capable of capturing users’ passwords as they pass through it. 

Wireshark (Anonymous, n.d.), dsniff (Herzog, 2003), and snort (Shewmaker, 

2008) are some useful tools for monitoring network traffic, whereas HackSim (Kwon 

et al., 2005, p. 652-661) is useful to remotely exploit known buffer-overflow 

vulnerabilities, for Solaris and Window systems.  HackSim can be extended to 

support exploit codes for newly found remote buffer overflow vulnerabilities as it 

supports remote buffer overflow vulnerabilities used in most recent worms, and the 

ability to include a sanitized shellcode. 

Moving to web application vulnerability assessment, various tools can be used to 

perform such task.  One of the most typical tools is w3af (Web Application Attack 

and Audit Framework) Ke et al. (2009).  This is complete environment for auditing 

and attacking web applications.  W3af is easy to use and extend with more than 130 

plug-ins including SQL injection test and Cross Site Scripting (XSS) test.  With its 

core and plug-ins written in Python, w3af can work in all system platforms with 

Python installed.  As automated penetration testing menu is selected, w3af will be 

started with windows interface to prompt the users.  Once the target URL is entered, a 

complete penetration test is proceeded automatically in order to analyze web 

vulnerability.  After that, details of vulnerabilities are revised to improve the security 

of the web site. 

Some other useful tools for web application penetration testing are Burp Suite, 

Paros, and WebScarab (Stuttard & Pinto, 2007).  With intuitive and user-friendly 

interface, Burp implements a fully functional web application spider which parses 

forms and Javascript.  It allows automated and user-guided submissions of form 

parameters.  Moreover, Burp has Intruder tool, which is a versatile tool for 

automating all kinds of custom attacks including resource enumeration, data 



36 
 

extraction, and fuzzing for common vulnerabilities.  On the other hand, there is Paros 

- a functional intercepting proxy.  Paros has a built-in vulnerability scanner which is 

very basic, yet can be useful for identifying common vulnerabilities that have obvious 

signatures, for instance, basic reflected cross-site scripting vulnerabilities, some SQL 

injection flaws, forms with auto-complete enabled, and old version of files.  Similar 

to Burp, WebScarab can effectively do passive site spidering by parsing URLs from 

all of the responses processed via the proxy.  Containing a rudimentary fuzzer, 

WebScarab allows some parameter manipulation based on user-provided fuzz strings.  

Also, WebScarab provides the ability to save and load test sessions, as well as import 

client SSL certificates for accessing web applications that use these. Besides, Virtual 

Box, or Kioptrix (Allen, 2012) are significantly useful to establish a virtual 

penetration testing environment where novice testers. 

Furthermore, a wide range of commercial web application vulnerability testing 

tools is widely available on the market.  Some typical products are Web Vulnerability 

Scanner (WVS) of Acunetix, WebInspect of HP, Rational AppScan of IBM (Vieira et 

al., 2009), HailStorm Pro of Cenzic, McAfee SECURE of McAfee, QA Edition of N-

Stalker, QualysGuard PCI of Qualys, and NeXpose of Rapid 7 (Bau, n.d.). 

2.4.6   Penetration testing distributions. 

Interestingly, there are various available live DVD distributions encompassing a large 

number of penetration testing tools that a penetration tester might need in order to 

effectively conduct a penetration test.  One of the most popular products is Backtrack 

(Ramachandran, 2011), a bootable Linux distribution for penetration testing.  

Backtrack is purposely built to aid all audiences ranging from most savvy security 

professionals to early newcomers to the field of information security.  Backtrack 

provides its users the ability to perform security assessments dedicated to hacking 

techniques.  The latest version of Backtrack – the Backtrack 5, offers more than 320 

preinstalled penetration testing tools for its users to play around with networks, web 

servers, and much more.  The next generation of the infamous Backtrack 5 called Kali 

Linux is used as the primary tool to perform attacks in this thesis. 



37 
 

Several similar distributions are the Live Hacking CD, the Samurai Web Testing 

Framework, and the Katana (Faircloth, 2011).  The Live Hacking CD is Ubuntu-

based and easy to use with a number of useful utilities.  Differentiating from other 

penetration testing toolkits, the Live Hacking CD focuses on a few main areas and 

makes sure that tools are available for conducting various penetration tests of those 

particular areas.   

When it comes to web application penetration testing, one of the most popular 

distribution worth-mentioning is the Samurai Web Testing Framework which is 

specifically designed for website testing and includes all utilities necessary to perform 

this kind of test.  This is a typical example of a toolkit that intensively focuses on one 

particular area of penetration testing.  Another best free toolkit that should not be 

missed is the Katana – a portable multi-boot security suite.  The uniqueness of the 

Katana is not because it is another distribution with a collection of great tools, but 

because it is a collection of other toolkits e.g. Backtrack, Ultimate Boot CD for 

Window, Puppy Linux, Trinity Rescue Kit, put together into an easy-to-use package. 

The toolkits mentioned above are some typical collections of different tools put 

together to serve the purpose of penetration testing.  Some other similar toolkits in the 

list should be named include the Organizational Systems Wireless Auditor Assistant 

(OWSA-Assistant), the Network Security Toolkit (NST), the Arudius, and the 

Operator. 

2.5   The Use of Penetration Testing 

Since penetration testing is critically significant to security of organizations, it is widely 

applied in different levels and situations in order to fortify companies’ defense lines.   

Looking at the company from the outside, facilities and premises of the organization 

are top priorities that need to be protected.  Once the border protections are breached, 

remain inner safeguards will be rendered powerless.  For instance, as thieves successfully 

bypass building’s securities by breaking windows or lock-picking doors, then take away 

all electronic devices and equipments, all measurements implemented on those will 

become meaningless. To give an analogy, a firewall is obviously useless when it is 



38 
 

completely unplugged and taken away from the system.  Thus, the need to deploy 

protections upon physical resources is absolutely obligatory, and the evaluation of those 

defense mechanisms is no less important.  In such cases, physical penetration testing is 

one of the most helpful techniques to analyze and assess the effectiveness of the deployed 

safeguards.  Physical penetration testing reveals most potential loopholes in the premise 

and provides practical solutions to remediate existing security weaknesses in the system. 

Once the border lines are secured, the next thing for enterprises to concern about, is 

their IT systems which frequently attract a great deal of attention of cyber criminals.  

Regardless size and scale, IT systems are mostly considered backbones of any business in 

most modern organizations.  Consequently, they are usually kept safe from the hands of 

both outside attackers and malicious insiders.  Unfortunately, despite a wide range of 

different defense mechanisms implemented to do such task, security vulnerabilities still 

exist on those walls of protection.  The vulnerabilities may come from very different 

sources, for example, firewall/router/server mis-configurations, known/unknown critical 

operating systems (e.g. Windows, Linux, Unix, Mac OS, Ubuntu, FreeBSD) bugs, or 

logical application errors which can be abused to compromise parts, or the whole system.  

Network penetration testing and application penetration testing ensure that issues 

mentioned above would less likely to occur by pinpointing as many security weaknesses 

as possible; hence, provide the companies more time needed to fix them before real 

hackers score. 

Together with the surge of today highly developed technology, mobile devices have 

become more and more popular.  This means the number of mobile devices like smart-

phones, tablets have increased drastically, especially in work environment.  As more and 

more apps are built for these devices, one of the consequences of this tendency is that 

companies have to face the risk of information leaking via such devices.  As a result, 

security experts might now be required to conduct penetration tests on mobile devices as 

well. 

Moreover, with particular regard to the human aspect in work environment, enterprise 

owners might be interested in how vulnerable their employees are, in terms of how they 

handle company’s confidential information.  With various social engineering techniques, 



39 
 

a penetration testing team attempts to exploit as much information as possible from the 

employees, and then uses the obtained information to break into the system.  Such effort 

not only identifies potential threats to the organization but also increases security 

awareness of the employees under test.  However, during and after the test, the 

participants might feel being offended at some degree.  Therefore, this kind of test should 

be planned and designed with extra cautions as well as serious considerations. 

2.6   Conclusions 

Obviously, with the enormous number of available penetration testing tools, a list of 

criteria to evaluate the effectiveness of a particular tool is clearly necessary.  Several 

suggested merits should be considered are practicality, test coverage, accuracy, breadth of 

testing, ease of use, and cost.   

Practicality indicates the time and resource needed to carry out an attack (Halfond et al., 

2011, pp. 195-214).  The test coverage refers to the ability to test all known kinds of 

vulnerabilities related to the product that has been developed.  Accuracy answers the 

question of how large is the number of false positives, as well as unidentified 

vulnerabilities.  Breadth of testing involves the ability to use the tool on non-Microsoft 

platforms like Unix, Linux, Mac, FreeBSD, the ability to test common website 

vulnerabilities, and support standard web protocols for fuzzing and testing.  The ease of 

use refers to various perspectives of the tool, for example, the interface must be intuitive 

and easy to use, the installation must not be difficult, tasks should be accomplished 

quickly, automated tests should be easy to maintain.  The last point to be considered is 

cost which should be consistent with estimated price range and comparable vendor 

products (Michael et al., 2005). 

Up to now, there has been several studies focusing on this issue, for example, Austin 

et al. (2013, pp. 1279-1288) presents a study to compare the efficiency and effectiveness 

of different penetration techniques, namely exploratory manual penetration testing, 

systematic manual penetration testing, automated penetration testing, and automated 

static analysis.  Another study evaluating several commercial products including HP 

WebInspect, IBM Rational AppScan, and Acunetix Web Vulnerability Scanner, in terms 

of false positive rate, is presented by Vieira et al. (2009).  As a result, it can be clearly 



40 
 

seen that more researches on this matter should be conducted, especially with free open 

source tools, in order to provide the community more reliable references when opting 

suitable penetration testing products. 

Summing up, penetration testing is essentially significant for organizations to fortify 

their system security.  With an appropriate approach coupled with appropriate tools, 

penetration testing is able to reveal potential vulnerabilities, as well as determine whether 

those possibly dangerous flaws are actual threats to the system.  Depending on particular 

requirements of each company, a penetration testing can be conducted in various manners 

including black-box testing, white-box testing, or grey-box testing; full knowledge or 

zero knowledge testing.  Also relying on the requirement of the client, scope of a 

penetration test is decided, which will later lead to the best-suited methodology/approach 

to perform the test.  Some models of penetration testing are additionally introduced in the 

report for wider references. 

Last but not least, automated tools play an amazingly important role in the process of 

penetration testing.  With the right tools in hands which can take care of most time-

consuming tasks, penetration testers would have more time to focus on more complicated 

works that require manual performance.  Therefore, the test could be sped up 

tremendously.  Unfortunately, choosing one cost-effective and suitable penetration 

testing tool is quite challenging sometimes, especially with a huge number of tools 

available on the market.  As mentioned before, studies on the effectiveness of penetration 

testing tools are relatively limited.  Obviously, more researches on this issue should be 

conducted to provide the community more reliable information and evidences so that 

penetration testers may come up with more informed decisions when looking for the most 

effective testing tools. 

  



41 
 

Chapter 3   Research Methodology 

The main objective of this chapter is to present the quantitative experimental 

methodology applied to this research.  The following section introduces several studies 

related to the respective field of penetration testing, while the next part outlines primary 

research questions.  The design of the research and data requirements, are described in 

deep details in section 3.4 followed by section 3.5 that points out some limitations of the 

research.  Finally, the chapter is concluded in section 3.6 together with expected 

outcomes of the thesis. 

3.1   Related Studies 

As mentioned in chapter 2 – the literature review, penetration testing is essentially 

necessary for companies to precisely assess their security on either physical level e.g. 

facilities, premises, IT networks, or application level e.g. web applications, core business 

applications.  A wide range of tools and techniques are born and constantly developed to 

serve such purpose.  As the tools grow bigger and bigger in number, a question of how 

effective these tools are, is posed amongst security professionals and community.  

Therefore, many studies and researches have been conducted to seek reliable answers. 

Amongst the relevant papers, Vieira et al. (2009) present an experiment using four 

widely used commercial vulnerability scanners to examine a set of 300 publicly web 

services.  The tools used in the test include HP WebInspect, IBM Rational AppScan, and 

Acunetix Web Vulnerability Scanner, and another version of one of these brands.  The 

scanners point out six different types of vulnerability, namely SQL injection, XPath 

injection, code execution, buffer overflow, username/password disclosure, and server 

path disclosure.  The results indicate that different tools can detect different types of 

vulnerabilities, and the number of false positives is relatively high.  Furthermore, the 

coverage in several cases is moderately low.  This means many vulnerabilities probably 

remain undetected.  Particularly, SQL injection vulnerabilities are the most prevalent in 

web services tested. 

Similarly, Antunes and Vieira (2009) compare the effectiveness of penetration testing 

technique and static code analysis technique for SQL injection vulnerabilities in web 



42 
 

services.  Penetration testing uses the black-box approach with specific malicious inputs 

to compromise the application, while static code analysis applies the white-box method to 

analyze the source code in order to look for potential vulnerabilities without executing 

the program.  The experiment focuses on two key measures of interest: coverage and 

false positives.  The coverage portrays the percentage of existing vulnerabilities whereas 

the false positives represent the number of indicated vulnerabilities that in fact do not 

exist.  The experiment involves eight web services that provide 25 operations, 

commercial penetration testing tools such as HP WebInspect, IBM Rational AppScan, 

and Acunetix Web Vulnerability Scanner; together with several static code analyzers, 

namely FindBugs, Yasca, and IntelliJ IDEA.  The results of the study indicate that static 

code analysis tools provide higher coverage as opposed to penetration testing tools, yet 

they generate more false positives compared to the latter.  One interesting finding is that 

different tools implementing the same approach frequently report different vulnerabilities 

in the same piece of code. 

Concerning about the efficiency and effectiveness of penetration testing techniques, 

Austin et al. (2013) conduct three case studies on three electronic health record systems, 

using four vulnerability discovery techniques, namely, exploratory manual penetration 

testing, systematic manual penetration testing, automated penetration testing, and 

automated static analysis.  Vulnerabilities are collected by each of the four techniques, 

and then classified to determine whether or not they are true positives.  Vulnerabilities 

are also analyzed to clarify whether a particular security weakness is found by more than 

one technique.  The result of the study aids to the empirical evidence in the way that there 

is no single technique capable of discovering every type of vulnerability.  As pointed out 

by the experiment, specific set of vulnerabilities discovered by one tool is orthogonal to 

that of other tools.  Additionally, systematic manual penetration testing and automated 

static analysis are strongly suggested to be performed in order to identify the vast 

majority of vulnerability types. 

On the other hand, with a particular regard to penetration testing model, attack tree 

provides a formal and methodological approach to describe the security of a system-

under-test (Schneier, 1999).  Technically, various activities performed on the system are 



43 
 

organized in a tree structure, with the ultimate goal as root node and many other different 

ways to complete that goal as leaf/sub nodes.  Attack tree model is typically applied for 

the brain-storming process which gathers as many ideas as possible to accomplish the 

ultimate objective.  Interestingly, in this research, attack tree is opted to model possible 

attacks in order to determine the most effective ones.  The main tool used to generate 

attack tree diagrams in this study, is the open source software named Seamonster 

(Sourceforge.net, 2010).  With attack tree diagrams created in hands, it is possible for the 

testers to view the attack context as a whole; thus, able to pinpoint the most effective 

attacks against the tested system. 

3.2   Research Questions 

The thesis was originally designed to seek answers for the main question of “How 

effective are penetration testing tools?”  Unfortunately, such objective appears to be 

ambiguous, as the number of tools serve the purpose of penetration testing is surprisingly 

enormous.  For every distinct phase in a penetration test, a large collection of tools can be 

utilized to achieve one specific task.  As an example, in the reconnaissance phase, in 

order to determine how many and what services are running on the victim machine, 

various fingerprinting/foot-printing tools with similar functions such as Nmap, 

Unicornscan are available for such task.  Likewise, there exist plenty of tools for 

vulnerability detections and analysis like Nessus, Nexpose, W3af, Burp Suite.  There also 

exist many other tools that are significantly useful for the testers to remotely exploit the 

target, as well as deploy post-exploitation activities. 

As a result, the scope of the research is narrowed down and more focused on 

assessing the effectiveness of several selected penetration testing tools (mostly open 

source) available in the security community.  The study now attempts to find solutions 

for the following research questions (RQ). 

RQ 1:   Which is the most effective service fingerprinting tool amongst selected ones? 

RQ 2:   Which is the most effective vulnerability scanning tool amongst selected ones? 



44 
 

In parallel, based on the information generated by the selected tools, different 

combinations of attacks are performed on the system-under-test and then, organized into 

attack tree diagrams in order to resolve the question of: 

RS 3:   What are the most effective attacks on the experimental host? 

So as to successfully find out accurate answers for the above questions, the research 

is designed as the following section. 

3.3   Research Design and Data Requirements 

3.3.1   Research design. 

So as to acquire rational solutions for the formed research questions, the quantitative 

experimental research methodology is opted.  The respective approach is apparently 

suitable for the purpose of the research, owing to the fact that it provides statistical 

information that can be used to evaluate the performance of selected penetration 

testing tools.  Furthermore, it is useful to draw cause-and-effect conclusions which 

precisely reflect the relationship between vulnerabilities and exploitations.  Based on 

this, reasonable recommendations can be made to address those security weaknesses.  

Nevertheless, such methodology suffers the drawback of not being able to generalize 

in real world environment due to a number of unaccounted variables. 

The experimental test-bed is a simple network comprising of attacker’s side and 

victim’s side built in a virtual simulation environment.  The research is carried out in 

two primary stages.  The first stage involves collecting statistical information of 

penetration testing tools’ performance such as response time, number of running 

services identified, number of vulnerabilities detected.  Later, this information will be 

analyzed and compared to evaluate the effectiveness of each tool.   

The second phase of the research makes use of such information to pinpoint 

potential attack surfaces and attempt to compromise the target on many different 

levels using the Metasploit Framework – a popular free open source penetration 

testing tool.  The research mostly focuses on network/host vulnerabilities, web 

application vulnerabilities or other related attack vectors are not in the scope of the 

study.  Successful breaches will be then gathered together and organized in attack 



45 
 

trees generated by the modeling tool - Seamonster.  By analyzing these attack tree 

diagrams, most effective attacks can be clearly revealed.  The less effort and stages 

required to accomplish the ultimate goal, the more effective the attack is.  In addition, 

practical recommendations to remediate such security weaknesses are provided. 

3.3.2   Data requirements. 

In the first stage of the experiment, within the virtual simulation environment, several 

fingerprinting tools are used to identify services running on the experimental hosts, 

and vulnerability scanners are used to search for potential weaknesses.  Expected data 

of the process is the statistics that reflects the performance of the respective tools.  

The required data at this stage includes tools’ response time, number of services 

identified, number and severity of vulnerabilities detected.  The main outputs of this 

process are graphs and tables which are based on to determine the effectiveness of the 

selected tools. 

The obtained data in stage one is significantly important to the second phase of 

the research.  It provides valuable information for the task of discovering potential 

vulnerabilities on the system.  Once possible attack surfaces on each particular host 

are clearly named, various combinations of attacks will be deployed in order to gain 

access to the system at certain levels.  Successful and latent attacks are noted and 

treated as inputs to generate attack tree diagrams which are carefully analyzed later to 

point out most efficient moves.  Attack tree diagrams of each particular host are 

primary products of this stage.  The effectiveness of each attack is determined by the 

required amount of effort and the number of steps/stages undertaken to reach the 

ultimate goal. 

3.4   Limitations of the Research 

Despite its significance, the research suffers several restraints.  One of the issues is the 

number of penetration testing tools adopted to conduct the experiment.  The number of 

tools is not wide enough to provide the community a more general look at the 

effectiveness of penetration testing tools.  Hence, further studies should be conducted 

with more tools involved in order to render more precise and reliable references to the 

security community.  Another limitation of the research is that some other characteristics 



46 
 

such as usability, cost, accuracy in terms of false positives/negatives rate, are not 

inspected.  These factors are also important for more accurate evaluation. 

Last but not least, the simulation test-bed is kept as simple as possible with one side 

of attacker and victims on another. Although the statistics collected from this virtual 

environment can be treated as baseline performance of selected tools, the figures might 

be drastically impacted in a more complicated environment, or in a real world system.  

Yet to be told, points of entry, which can be exploited to compromise the experimental 

system, might mostly be different from those on a fully functional network where various 

defense mechanisms like firewalls, intrusion detection systems, and security policies are 

properly installed. 

3.5   Expected Outcomes and Conclusion 

In spite of the limitations mentioned above, the study is still valuable in its own way.  

The expected outcomes are anticipated answers for the research questions described in 

section 3.2.  One of the required outcomes is quantitative graphs and tables that reflect 

the performance of selected penetration testing tools.  The figures are used as source to 

determine the effectiveness of the tools.  The other primary output of the study is attack 

tree diagrams generated from completed or possible attacks on experimental hosts.  The 

graphs are then analyzed to pinpoint most effective attacks. 

Summing up, this chapter has presented a comprehensive review of related works and 

researches in the respective field of penetration testing.  Questions, for which the research 

tries to seek answers, are clearly stated in section 3.2; while section 3.3 explicitly 

explains the adopted methodology in deep details in order to achieve announced goals.  

Some limitations of the study are also pointed out.  Ultimately, the research aims to 

contribute useful references to the community of information security regarding the 

penetration testing tools’ performance, plus an interesting approach to outline effective 

attacks carried out on the system-under-test. 

  



47 
 

Chapter 4   Research Findings 

Strictly follow the research design depicted in chapter 3, this chapter primarily portrays 

the whole view of the entire experimental environment together with the testing scenarios 

in richer details.  Main research findings are also presented to help determine the 

effectiveness of selected tools, as well as identify effective attacks on each particular 

host. 

4.1   Approach 

As described earlier, the experiment is conducted in two phases. The first phase involves 

observing the performance of pre-selected penetration testing tools.  The tools include 

service fingerprinting software and vulnerability scanners.  Performance metrics such as 

number of services identified, response time, and number of vulnerabilities detected are 

captured and organized into various quantitative graphs and tables in order to precisely 

reflect the tools’ effectiveness. 

In the second phase of the experiment, based on the attack surfaces provided by the 

first phase, various combination of attacks are deployed on the experimental hosts in 

order to acquire the highest privileges.  The ultimate aim of such process is to obtain 

root’s privilege on Linux-based machines, and administrator’s access on Windows-based 

hosts.  Successful penetration evidences are explicitly displayed, coupled with practical 

recommendations to remediate the weaknesses.  Completed attacks together with 

potential moves are gathered and put into various attack tree diagrams for analysis so as 

to find out the most effective attacks against each host. 

4.2   The Experimental Test-bed 

The experiment is conducted in a virtual simulation environment powered by VMWare 

Workstation v9.0.  The test-bed is a very simple network comprising of one side of 

attacker and victim’s side on another as illustrated in the figure 4.1 below. 



48 
 

 
Figure 4.1   The experimental test-bed 

Network peripherals together with characteristics and function of each are clearly 

depicted in the following table. 

Table 4.1  The simulation network peripherals and associated functions 

Network 

peripherals 

Operating 

systems 
Components Funtions 

Attacker Kali Linux 1.0.6 Metasploit Framework 

To attack other hosts 

on the victim’s side. 



49 
 

Deliberately 

vulnerable server 
Metasploitable 2.0 

Intentionally vulnerable 

services e.g. SSH, FTP, 

MYSQL 

To demonstrate 

various attacks by 

exploiting different 

services. 

E-mail server Ubuntu 13.10 Iredmail 

To demonstrate 

possible attacks on an 

e-mail server. 

Database server Windows XP SP3 MSSQL2008 Express 

To demonstrate 

possible attacks on a 

database server. 

Workstation Windows XP SP3 A normal workstation 

To demonstrate 

possible attacks on a 

workstation. 

Here are a few words regarding each respective host with associated operating system 

and software. 

 Kali Linux: also known as the next generation of the infamous free open source 

penetration testing distribution – the Backtrack 5, Kali Linux is a re-build completely 

adhering to Debian development with all tools reviewed and packaged (Kali.org, 

2013).  It contains more than 300 penetration testing tools, and most of all, it is free 

and always will be.  More information of Kali Linux’s features, as well as related 

knowledge can be easily found on Kali’s official site at www.kali.org.  The primary 

attacking tool used in the research is the community version of Metasploit Framework 

(available in Kali Linux) developed by Rapid7. 

 Metasploitable 2: this is a deliberately vulnerable Linux virtual machine especially 

designed for security training, security tools testing, common penetration testing 

techniques practice (Sourceforge.net, 2012).  In this research, Metasploitable is 

adopted to demonstrate different attacks on different services such as SSH, FTP, 

APACHE2, MYSQL. 



50 
 

 MSSQL2008 Express: a free edition of SQL server, an ideal data platform for 

learning and building desktop and small server applications, provided by Microsoft at 

www.microsoft.com.  This tool is deployed on a Windows XP SP3 as an MSSQL 

database server. 

 Iredmail: this is a free, open source, yet fully fledged and full-featured mail server 

solution.  Iredmail is fast to deploy, easy to use, and stable.  More info can be found 

at www.iredmail.org.  The software is installed on an Ubuntu machine to play the role 

of an e-mail server. 

Penetration tools under inspection are also introduced in the following table. 

Table 4.2   List of penetration testing tools to be evaluated 

Categories Tools Descriptions 

Service 

fingerprinting 

Nmap (Network mapper)  

A free and open source utility for network 

discovery and security auditing.  This tool 

is integrated in Kali Linux v1.0.6. 

Dmitry (Deepmagic 

Information Gathering 

Tool) 

A Linux command line application coded 

in C language capable of gathering as much 

information as possible about a host.  This 

tool is integrated in Kali Linux v.1.0.6. 

Unicornscan 

A new information gathering and 

correlation engine tool which is useful for 

introducing stimulus and measuring the 

response from a TCP/IP device.  This tool 

is integrated in Kali Linux v1.0.6 



51 
 

GFI Languard 2014 

This tool provides a comprehensive 

overview of network security status 

through patch management, vulnerability 

assessment and network and software 

auditing.  The tool can also be used to foot-

print services running on hosts. 

Vulnerability 

scanner 

Nessus 

A vulnerability scanner allows network 

security professional and administrators to 

audit their networks by scanning ranges of 

Internet Protocol (IP) addresses and 

identifying vulnerabilities with a series of 

plug-ins.  More info of Nessus can be 

found at www.tentable.com.  The 

evaluation version of this tool is opted for 

this research. 

OpenVAS (Open 

Vulnerability Assessment 

System) 

A free, comprehensive and powerful 

vulnerability scanner and vulnerability 

management solution available at 

www.openvas.org. The tool is included in 

Kali Linux 1.0.6. 

GFI Languard 2014 

As mentioned above, more info about the 

tool can be found at www.gfi.com. The 

tool used in this research is evaluation 

version. 

Originally, one more vulnerability scanner – the Nexpose, another product of Rapid7, 

is chosen to be evaluated.  Unfortunately, the tool requires more resource than the 

physical host can offer (minimum 4 GB of RAM, 8 GB of RAM is recommended, while 



52 
 

the physical host only has 4 GB of RAM installed).  Hence, the tool is pitifully put out of 

the pool. 

4.3   Experiments 

As designed in earlier chapter, the experiment was executed in two main stages.  In the 

first stage, the experimental hosts were scanned by different service fingerprinting tools 

and vulnerability scanners.  The obtained quantitative results were captured and presented 

in various tables and graphs.  Analysis would be carried out to determine how effective 

the tools are.  With the scanning results in hands, the experiment moved to the second 

phase in which different attack combinations would be deployed to infiltrate each 

respective host.  Attack results would be then gathered and treated as inputs to generate 

attack tree diagrams which were studied later to pinpoint most effective attacks on each 

particular host. 

4.3.1   Stage 1 – Penetration testing tools’ performance observation. 

With regard to service fingerprinting tools including Dmitry, Unicornscan, Nmap, 

and GFI Languard, a number of scans had been operated on each host in order to 

reveal opening TCP ports.  Judging from a perspective of a new user, most tools 

provide a command line user interface, except for GFI Languard which offers a 

professionally look.  With a command line user interface, a new tester has to spend a 

certain amount of time and effort to read the instructions and go through the provided 

parameters.  One the other hand, GFI Languard with a more intuitive interface is 

easier to operate.  GFI Languard offers a number of functions such as vulnerability 

scanning, security issue remediating, activity monitoring, and report generating.  

Service fingerprinting is part of the tool’s included tasks.  Initial pilot tests were 

repeatedly performed before the experiment is actually conducted. 

Since the amount of time needed for each tool to complete a scan was relatively 

short and equivalent (around three minutes or less), the response time was 

consequently excluded for inspection, and the number of opening services detected 

was focused on instead.  The table 4.3 displays the results of such process.  The 

average value was rounded up.  Screenshots of service fingerprinting results can be 

found at Appendix A. 



53 
 

Table 4.3   Service foot-printing results 

 
Hosts 

Tools 

Metasploit

-able 

MSSQL 

server 

E-mail 

server 

Windows 

XP 

Workstation 

Average 

number of 

detected 

services 

Dmitry 8 2 4 2 4 

Unicornscan 20 4 8 3 9 

Nmap 23 5 8 5 10 

GFI Languard 23 3 8 3 9 

As can be clearly seen in the above table, Nmap holds the highest score of the 

average number of services identified, while Unicornscan and GFI Languard produce 

similar results.  Surprisingly, the number of opening TCP ports discovered by Dmitry 

was drastically low.  The main reason for this is that Dmitry only scans the first 150 

TCP ports.  Despite this disadvantage, Dmitry still has its very own beauty which is 

the capability of gathering other useful information related to the target host including 

possible sub-domains, email addresses, uptime data, whois lookup, and more. 

Moving to vulnerability scanners’ performance, the three selected tools, namely, 

Nessus, OpenVAS, and GFI Languard were sequentially opted to perform scans on 

the experimental hosts.  Also from the view of a new user, the tools provide distinct 

user interfaces.  Interestingly, the user interface of Nessus is significantly simple and 

straightforward.  Nessus’s users solely need to create scanning policies which specify 

scanning requirements such as host discovery, network assessment, or web 

application vulnerability scanning.  With the chosen policy and a defined target, a 

scan is ready for action.  On the contrary, the user interfaces of GFI Languard and 

OpenVAS are relatively more sophisticated at some degree.  The problem of GFI 

Languard is the large number of functional tabs and icons which may confuse its user.  



54 
 

With OpenVAS, the tool is relatively difficult for new user to run as it requires targets 

to be defined, and scan jobs to be created.  Furthermore, OpenVAS does not provide 

any tutorial, and the wizard scanning is not so helpful due to the lack of scanning 

configuration it provides.  User interface screenshots of each particular tool are taken 

and displayed in Appendix B section. 

Apart from user interface, the required amount of time for each tool to finish a 

scan, the number of vulnerabilities detected, and the vulnerability severity categorized 

by each tool, were noted for further analysis.  On top of the list, table 4.4 presents the 

collected response time of each tool (measured in minutes).  The values were 

measured in minutes and rounded up. 

Table 4.4   Vulnerability scanners’ response time results 

 Hosts 

Tools 
MSSQL 

server 
Metasploitable 

E-Mail 

server 

Windows XP 

workstation 

Average 

response 

time 

Nessus 2 7 3 2 3 

OpenVAS 9 26 16 9 15 

GFI 

Languard 
2 3 10 2 4 

Table 4.4 clearly shows that Nessus and GFI Languard provide swifter 

performance with average response time of 3 minutes and 4 minutes, respectively.  

Particularly, OpenVAS requires more time to complete a scan with an average of 15 

minutes needed.  This amount of time is fivefold that of Nessus, and almost four 

times longer compared to that of GFI Languard. 

With special regard to scanner’s coverage that refers to the number of 

vulnerabilities identified by a tool, table 4.5 illustrates the scanning outcomes.  The 

presented average values were as well rounded up.  For the records, ‘Basic Network 



55 
 

Scan’ policy was opted for Nessus, ‘Full and Deep Scan’ configuration was chosen 

for OpenVAS, and finally, ‘Full Vulnerability Assessment’ scanning type was 

selected for GFI Languard. 

Table 4.5   Vulnerability scanning results 

 
Hosts 

Tools 
MSSQL 

server 
Metasploitable 

E-mail 

server 

Windows 

XP 

workstation 

Average 

number of 

vulnerabilities 

Nessus 12 32 18 13 19 

OpenVAS 9 81 8 14 28 

GFI  

Languard 
0 14 6 0 5 

From the table 4.5, it is safe to utter that different vulnerability scanners generate 

divergent results.  One typical example is that, on the Metasploitable host, while 

Nessus discovers 32 vulnerabilities, GFI Languard can only detects half of that, and 

OpenVAS amazingly points out a huge number of 81 vulnerabilities identified.  In a 

more general view, OpenVAS is on the first position with an average of 28 

vulnerabilities revealed.  Nessus comes second with 19 vulnerabilities in average and 

the last place belongs to GFI Languard with only 5 of those. 

For more details, scanning results are also presented in graphical charts in figure 

4.2, in order to demonstrate the number of vulnerabilities detected together with their 

associated severity.  The results were categorized by each respective tool.  As Nessus 

has four degrees of vulnerability severity, namely, critical, high, medium, and low; 

while OpenVAS and GFI Languard have three including high, medium, and low; 

henceforth, the ‘critical’ and ‘high’ severity in Nessus are combined into ‘high’ for 

easier comparison.  On the side notes, the three tools generate a large number of 



56 
 

‘info’ and ‘logs’ entries which are not included for assessment.  Vulnerabilities 

scanning screenshots are also attached in Appendix C. 

 

 

Nessus 

 

 

 

 

 

 

 
OpenVAS 

 

 
GFI Languard 

Figure 4.2   Vulnerability scanning results from each tool 

Figure 4.2 states a fact that Nessus and OpenVAS reveal more security 

weaknesses compared to that of GFI Languard.  Not only comes with the least 

number of vulnerabilities discovered, GFI Languard also pinpoint no high threats on 

the experimental hosts.  This is surprisingly different from the results generated by 

0

2

4

6

8

10

12

14

16

High

Medium

Low

0

5

10

15

20

25

30

35

40

45

50

High

Medium

Low

0

2

4

6

8

10

12

14

16

High

Medium

Low



57 
 

the others.  Nevertheless, the unusually high number of vulnerabilities found by 

OpenVAS, especially on the Meatasploitable host, inevitably poses questions 

regarding its accuracy.  The results found in this stage will be discussed later in 

chapter 5. 

4.3.2   Stage 2 – Hosts penetration. 

With the service fingerprinting and vulnerability scanning results in hands, the 

experiment moved to stage 2.  A wide range of attack combinations were promptly 

executed in order to compromise the experimental hosts.  Feasible attacks, yet to be 

demonstrated in the research, were also included and presented by dash-lines in the 

attack tree diagrams.  According to the proposed approach, after the attacks are 

accomplished, attack tree diagrams will be built for further analysis.  However, to 

avoid potential confusions and allow more understandable attack flows, attack tree 

diagrams of each host would be initially displayed and followed by attack’s 

explanations. 

The Metasploit Framework available in Kali Linux was mainly used to infiltrate 

the victims.  One additional point should be noticed in this section is that due to the 

inconvenience of putting attacks’ names in the attack tree diagrams, the attacks will 

be represented by numbers and explained in the following tables. 

4.3.2.1   Metasploitable. 

Attack tree diagram of Metasploitable together with the description table are 

displayed in figure 4.3 and table 4.6, collectively.  Independent attacks including 

attack 1, 2, 12, 13, and 14 are demonstrated first, followed by other multi-stage 

attacks. 



58 
 

 

Figure 4.3   Attack tree diagram of Metasploitable host 

 

Table 4.6   Attack’s descriptions on Metasploitable host 

Attack 

numbers 
Attack’s descriptions 

Attack 

number 
Attack’s descriptions 

1 

Exploit Samba service 

with User_map_script 

exploit. 

13 Exploit Java RMI service. 



59 
 

2 
Exploit Unreal_ircd 

backdoor. 
14 Exploit vsftpd_2.3.4 

3 

Create a reverse shell 

netcat session via 

meterpreter connection. 

15 
Acquire Linux login 

credentials. 

4 

Create a reverse shell 

netcat session via SSH 

connection. 

16 
Unshadow and crack 

password’s hashes. 

5 
Compile and execute the 

exploit. 
17 

Acquire ‘passwd’ and 

‘shadow’ files’ contents by 

using Mysql LOADFILE 

function. 

6 

Exploit Distcc service to 

gain user’s meterpreter 

session. 

18 Login to Mysql service. 

7 

Upload the privileged 

escalation to the target 

machine. 

19 
Brute-force login with 

Metasploit’s auxiliary. 

8 Login to FTP service. 20 Brute-force login with Hydra. 

9 Login to SSH service. 21 

Acquire Mysql 

root’credentials by listing 

mysql database. 

10 
Brute-force login with 

Hydra. 
22 

Use Mysql’s user-defined 

functions to escalate privilege. 



60 
 

11 
Brute-force login with 

Metasploit’s auxiliaries. 
23 Acquire web login credentials. 

12 
Exploit mis-configured 

NFS share. 
24 

Login to existing web 

applications for further 

exploit. 

 Attack 1:  aiming at Samba smbd service running on port 445, the attack took 

advantage of the MS-RPC functionality which allows remote attackers to 

execute arbitrary commands via shell metacharcters (CSS, n.d.).  The exploit 

invoked external scripts defined in smb.conf option of the ‘usermap_script’.  

Figure 4.4 shows the result of the attack with root’s privilege acquired. 

 

Figure 4.4   Exploiting Samba sbmd service with usermap_script 

 Attack 2: Unreal IRCd is an open source Internet Relay Chat daemon 

available on various Unix platforms and Windows (CSS, n.d.).  This attack 

exploited a malicious backdoor added to Unreal IRCd v3.2.8.1 downloadable 

archive.  Figure 4.5 presents attack’s result with root’s privilege acquired. 



61 
 

 

Figure 4.5   Exploiting Unreal IRCd backdoor 

 Attack 12: Network File System (NFS) is a distributed file system protocol 

allowing user on a client computer to access files over a network in a similar 

manner of how local files are accessed (CSS, n.d.).  In this demonstration, the 

‘/’ file system was mistakenly exported to the world.  After mounting this ‘/’ 

file system, the attack attempted to generate a public/private rsa key pair, and 

then appended it to the victim’s authorized_keys.  Finally, an ssh connection 

was established using the forged rsa keys.  Figure 4.6 shows the attack’s 

outcome. 



62 
 

 

Figure 4.6   Exploiting the mis-configured NFS share 

 Attack 13: Java Remote Method Invocation (Java RMI) enables the 

programmer to create distributed Java technology-based to Java technology-

based applications (Oracle.com, n.d.).  This attack exploited the Java RMI 

registry to establish a meterpreter connection at root level, as displayed in 

figure 4.7.  Meterpreter is an advanced and powerful environment that uses in-

memory DLL injection stagers and is extended over the network at runtime 

(Offensive-security.com, n.d.), provided by the infamous Metasploit 

Framework. 



63 
 

 

Figure 4.7   Exploiting Java_rmi service 

 Attack 14: Very Secure FTP Daemon (VSFTPD) is an FTP server for Unix-

like operating systems (CSS, n.d.).  This attack exploited the backdoor 

implanted in the compromised downloadable archive of the tool – vsftpd 

v2.3.4.  The result is shown in figure 4.8. 

 

Figure 4.8   Exploiting vsftpd v2.3.4’s backdoor 

 Attack 3 and 4 were accomplished by different combinations of sub-attacks.  

Starting from the bottom, the tester attempted to access the target via FPT 

connection (attack 8) and SSH connection (attack 9).  The tasks was 

completed using brute-force login method provided by Hydra – a powerful 

password cracking tool (attack 10), and Metasploit Framework’s auxiliary 

(attack 11).  Successful attempts on FTP service are demonstrated in figure 

4.9 and figure 4.10. 



64 
 

 

Figure 4.9   Brute-forcing FTP login with Hydra 

 

Figure 4.10   Brute-forcing FTP login with Metaploit Framework’s auxiliary 

 As attack 8 and attack 9 were successfully executed, the tester had now 

obtained the credentials to access the victim via FTP, as well as SSH services.  

Using FTP service, a privileged escalation exploit was uploaded to the target 

machine (attack 7).  From here, the exploit could be complied and executed 

(attack 5) to achieve root’s privilege.  According to the experiment process, 

there were two possibilities to accomplish such task including: 

o Compiled and executed the exploit via SSH access (via attack 9). 

o Gained a meterpreter connection by exploiting Distcc service.  Distcc is 

capable of speeding up the compilation by taking advantage of unused 

processing power from other machines with distccd daemon and a 



65 
 

compatible compiler installed (CSS, n.d.).  This exploit is shown in figure 

4.11. 

 

Figure 4.11   Exploiting Distcc service 

 Using a netcat connection, attack 3 gained root access by executing the 

privileged escalation exploit via the meterpreter connection established in 

attack 6, as shown in figure 4.12.  For the records, netcat is a networking 

utility which reads and writes data across the networks from the command line 

using TCP/IP protocol (netcat.sourceforge.net, 2006).  



66 
 

 

Figure 4.12   Executing privileged escalation exploit via meterpreter connection 

 Also using netcat connection, attack 4 gained root access, yet by executing the 

exploit via SSH connection.  The result is illustrated in figure 4.13. 

 

Figure 4.13   Executing privileged escalation exploit via SSH connection 



67 
 

Differentiating from the above attacks, attack 15, 22, and 24 focused on 

Mysql service. 

 Starting from attack 18 which attempted to login to mysql running on the host, 

the task was accomplished by brute-forcing method with the mysql_login 

auxiliary of Metasploit Framework (attack 19), and Hydra (attack 20).  Figure 

4.14 presents successful brute-forcing results. 

 

Figure 4.14   Brute-forcing mysql login with Metasploit’s auxiliary 

 Once successfully login to the mysql server, various attacks could be deployed 

for further escalation.  One of those was attack 17 which utilized the 

LOADFILE function of Mysql to display the contents of ‘passwd’ and 

‘shadow’ files, as presented in figure 4.15. 



68 
 

 

Figure 4.15   Displaying ‘passwd’ and ‘shadow’ files’ contents using LOADFILE function 

 With these two files in hands, the data was unshadowed to generate password 

hashes.  The hashes could be cracked (attack 16) by Hydra, or John the Ripper 

– another powerful password cracking tool included in Kali Linux.  Figure 

4.16 shows the password cracking results with John the Ripper.  The acquired 

credentials could be used to access the target machine (attack 15). 

 

Figure 4.16   Password cracking with John the Ripper 



69 
 

 Other attack involved listing existing databases e.g. mysql.  Surprisingly, 

Metasploitable is insecure enough to allow ‘guest’ user to view the contents of 

any database available.  For example, by displaying the ‘user’ table of mysql 

database, the credentials of mysql users, even root, could be revealed as 

shown in figure 4.17.  In this case, the passwords of root and guest user were 

left blank. 

 

Figure 4.17   Displaying ‘user’ table from ‘mysql’ database 

 With mysql’s root access, it is technically possible to escalate the privilege to 

obtain Linux’s root by using user-defined-functions provided by mysql (attack 

22).  Unfortunately, this attack is yet to be successfully performed in this 

study. 

 In addition, by listing the available databases, valuable data e.g. credit cards 

details or web applications’ login credentials could be found (attack 23).  

Figure 4.18 presents such outputs. 



70 
 

 

Figure 4.18   Displaying web login credentials 

 The web applications’ login credentials obtained from attack 23 were 

launching pads for further web-based attacks (24).  However, these types of 

attacks are out of the scope of this research. 

This concludes attacks on the Metasploitable host.  The results are discussed in 

chapter 5 of the report.  The next sub-section presents attacks performed on the 

Windows XP SP3 workstation. 

 

 



71 
 

4.3.2.2   Windows XP workstation. 

With an ultimate goal of being able to login remotely with the highest level of 

access, the attack tree on Windows XP client is presented in figure 4.19 together 

with attacks’ descriptions in table 4.7. 

 

Figure 4.19   Attack tree diagram of Windows XP workstation host 

 

 

 



72 
 

Table 4.7   Attack’s descriptions on Windows XP workstation host 

Attack 

numbers 
Attack’s descriptions 

Attack 

number 
Attack’s descriptions 

1 
Acquire administrator’s 

privilege. 
7 

Start reverse handler to listen 

to victim’s connection. 

2 
Crack the obtained 

hashes. 
8 

Create a user and add it to 

administrator’s group. 

3 
Dump hashes in SAM 

database. 
9 

Enable remote desktop service 

from the meterpreter 

connection. 

4 
Gain a meterpreter 

connection. 
10 

Enable the keyboard sniffer to 

capture any typed 

information. 

5 
Use smb08_068_netapi 

exploit. 
11 

Analyze sniffed data to 

capture administrator’s 

credentials. 

6 

Create and upload a 

malicious payload to 

the victim’s machine. 

  

As not many services were running on this machine, the attack surfaces were 

relatively limited in number compared to those on Metasploitable.  The attacks 

started from the bottom up with the primary aim of establishing a meterpreter 

connection to the victim (attack 4).  This could be done by 2 approaches i.e. attack 

5 and attack 6, according to the experiment’s results. 

 Attack 5 attempted to exploit the smb service running on port 445 with the 

smb08_067_netapi exploit as shown in figure 4.20. 



73 
 

 

Figure 4.20   Gaining meterpreter connection using smb08_067_netapi exploit 

 On the other hand, a malicious payload was created using the msfpayload 

function provided by the Metasploit Framework, and uploaded using any 

means available (Attack 7).  In this case, it was assumed that a social 

engineering was opted.  The payload was attached to an email sent to the user, 

and then the user unknowingly downloaded and executed the payload.  

Meanwhile, the tester with a handler running was ready to listen for the 

victim’s connection (Attack 6).  Once the user executed the payload, a 

meterpreter session was instantly set up.  Figure 4.21 displays the attack’s 

result with the file ‘funny.exe’ as the payload. 

 

Figure 4.21   Gaining a meterpreter connection with a malicious payload 



74 
 

 With the meterpreter connected, various attacks could be deployed for further 

escalation.  For example, a post-exploitation’s exploit called ‘hashdump’ 

could be used to gather password hashes from Windows SAM database 

(Attack 3) which would be then decrypted to obtain the login credentials 

(Attack 2) including those of the administrator’s account. 

 Possible attacks included activating the keyboard sniffer tool, offered by the 

meterpreter, to capture any data typed from the victim’s machine (Attack 11).  

The collected data would be later analyzed to search for valuable data or even 

login credentials (Attack 10). 

 Another form of attack was creating a user manually, and then, adding it to the 

administrator’s group (Attack 8) as displayed in figure 4.22. 

 

Figure 4.22   Creating and adding a user to administrator’s group on 

Windows XP 

 Attack 9 attempted to enable the remote desktop service on the victim.  With 

the administrator’s access obtained from the previous attacks, a remote 

connection was established between the attacker and the target machine, as 

shown in figure 4.23. 



75 
 

 

Figure 4.23   Gaining remote desktop connection on Windows XP 

This ends the penetration testing process on Windows XP SP3 workstation.  

The next sub-section describes attacks performed on the MSSQL database server. 

4.3.2.3   MSSQL database server. 

Due to the fact that the MSSQL database server shares the same operating system 

with the Windows XP workstation, all attacks on the workstation are also 

applicable to the database server.  As a result, the attack tree and the attack’s 

descriptions table of Windows XP workstation were re-used to build those of the 

MSSQL database server with attacks related to the mssql service were added. 



76 
 

 

Figure 4.24   Attack tree of MSSQL database server host 

 

 

 

 



77 
 

Table 4.8   Attacks’ descriptions on MSSQL database server host 

Attack 

numbers 
Attack’s descriptions 

Attack 

number 
Attack’s descriptions 

12 
Brute-force login with 

Hydra. 
15 

Gain a meterpreter connection 

using mssql_payload exploit. 

13 

Brute-force login with 

Metasploit’s 

mssql_login auxiliary. 

16 
Execute various commands 

using the mssql_exec exploit. 

14 Login to Mssql server.   

As mentioned above, for attack 1 to 11, please refer to the attacks on 

Windows XP workstation in section 4.3.2.2.  The continuing attacks focused on 

exploiting the mssql service.  Starting from attack 14 which attempted to login to 

the mssql server, there were two methods similar to the previous attacks which 

were brute-forcing with Hydra, and brute-forcing with Metasploit’s auxiliary.  

Figure 4.25 and 4.26 show the results of such process. 

 

Figure 4.25   Brute-forcing mssql login with Hydra 

 

Figure 4.26   Brute-forcing mssql login with Metasploit’s auxiliary 



78 
 

As can be clearly seen, the weak password for ‘sa’ user was easily revealed; 

thus, it provided the tester a powerful point of entry to infiltrate the server.  With 

the acquired credentials, a meterpreter connection could be built using the 

mssql_payload exploit provided by Metasploit as shown in fugure 4.27.  From 

here, similar attacks from the case of Windows XP workstation could be properly 

applied for further exploitation. 

 

Figure 4.27   Using mssql_payload exploit to establish a meterpreter connection 

Also with the ‘sa’ account, it was possible to use the ‘mssql_exec’ exploit 

from the Metasploit Framework to issue various system commands which were 

executed on the victim’s machine (Attack 16).  In this specific case, the tester 

attempted to set commands to create a user and add it to admin group (Attack 8).  

Yet, the effort resulted in a failure as the system denied user’s permission to 

perform such task.  Apparently, the MSSQL 2008 Express has patched this 

security loophole. 

This is the end of the testing process on MSSQL database server.  Naturally, 

the next part would be the penetration on the E-mail server.  Unfortunately, as the 

service is installed on Ubuntu 13.10 which is a pretty secure and up-to-date Linux 

version, and due to the limited capability of the tester, there is no practical exploit 

that can be used to infiltrate the respective host.  This also concludes the whole 

chapter, the discussion regarding the research findings will be carried out in the 

next chapter 5. 

  



79 
 

Chapter 5   Discussions 

This chapter principally focuses on the discussions of the significance of the research’s 

outcomes.  The initiated research questions are also answered with comprehensive 

justifications.  Finally, the implications of the research together with practical 

recommendations to improve security are drawn to conclude the chapter. 

5.1   Effectiveness of the Selected Penetration Testing Tools 

With the statistics of the tools’ performance acquired in chapter 4 – research findings, 

it can be clearly reckoned that Nmap and Nessus are the most effective tools amongst 

the pool of tools selected. 

5.1.1   Research question 1. 

Regarding the group of service foot-printing tools, Nmap obviously possesses more 

advantages than the others.  First of all, according to the research’s results, Nmap 

reveals the highest number of opening ports on the experimental hosts with an 

average number of 9 services detected.  Additionally, Nmap’s results provide more 

comprehensive and more accurate details.  One typical example of this is a fact that, 

while Dmitry and GFI Languard fail to identify the MSSQL service running on the 

database host, or Unicornscan discover the port, yet cannot exactly tell what service is 

running on it (the service’s name appears as ‘blackjack’); Nmap, especially, can not 

only detect the opening port, but also precisely point out the name and version of the 

service in details.  Another point worth mentioning is the ability of output generating.  

Unlike Unicornscan and Dmitry which can solely provide text outputs, Nmap offer its 

user more choices including normal text, grepable, and XML formats for easier 

analysis.  Although GFI Languard is able to present the results in a more user-friendly 

manner with it graphical feature, it is not free and open source as Nmap is. 

With a special regard to Dmitry – a tool appears to be the least useful according to 

the study’s results; as mentioned in chapter 4, despite the short range of TCP port 

scan, Dmitry has its very unique beauty which is the capability to gather additional 

information related to the target machine.  Coupled with other fingerprinting tools, 



80 
 

Dmitry can make an amazingly powerful partner in the task of pinpointing more 

attack vectors on the victims. 

As a result, the answer for the first research question of “Which is the most 

effective service fingerprinting tool amongst selected ones?”, is obviously Nmap.  

This is owing to the number of services together with the rich of details it reveals, the 

variety of report formats it generates, and the fact that it is free, open source. 

5.1.1   Research question 2. 

Moving to the perspective of vulnerability scanning, Nessus is evidently more 

effective than the other two candidates owing to its performance.  With the shortest 

average amount of time needed to finish a scan, Nessus reveals most vulnerabilities 

on the experimental hosts coupled with appropriated severity.  Compared to this, GFI 

Languard surprisingly not only comes up with the least number of vulnerabilities 

identified, but also neglects vulnerabilities at critical/high level.  This fact 

disadvantageously impacts the tool’s accuracy as it may results in drastically 

dangerous false negatives.  In contrast, OpenVAS exhibits the highest number of 

threats, especially on the Metasploitable host where the number is almost triple that of 

Nessus on the same target.  This eventually puts OpenVAS in the position where it’s 

accuracy in terms of false positive rate is worth questioning.  One additional point 

that makes Nessus more useful than the others is the straightforward and easy-to-use 

interface it provides, as described in chapter 4. 

According to the presented research’s results and the advantages mentioned 

above, Nessus is undeniably the solution for the second research question of “Which 

is the most effective vulnerability scanning tool amongst selected ones?”.  In short, 

Nessus is more powerful than other tools in various manners including swift 

performance time, more reliable scanning outcomes, and the user-friendly interface. 

 

 



81 
 

5.2   Effective Attacks on Experimental Hosts 

The second stage of the experiment attempts to compromise the experimental hosts with 

different attack combinations.  Successful attacks coupled with potential approaches are 

gathered and organized into attack tree diagrams in order to identify the most effective 

techniques.  This is the third research question that the study is seeking answers. 

In chapter 4 – Research findings, attack trees of each particular host are clearly drawn 

with attacks represented by the respective numbers.  The effectiveness of each attack is 

determined by the amount of effort and steps required to accomplish the ultimate goal of 

obtaining the highest level of access.  Hence, a single attack that can immediately acquire 

root/administrator’s privileges is obviously more effective than attacks which require 

multiple sub-attacks to be completed.  The attack trees’ analysis is carried out in light of 

this principle. 

From the attack tree diagrams created, it can be explicitly reckoned that attacks aim at 

un-patched services e.g. Samba service on port 445, or Java RMI service are drastically 

dangerous to the system’s security.  As can be seen from the demonstrations, these 

attacks simply exploit the weaknesses to acquire root’s access without spending too much 

time and effort.  Likewise, root’s access can be easily taken by attacks that take 

advantage of backdoors implemented in compromised services.  Unreal IRCd v3.2.8.1 

and Vsftpd v2.3.4 services are perfect examples to back this point up.  By utilizing the 

backdoors, attackers may constantly connect to the system with highest authorities at 

their disposal.  These vulnerabilities are usually detected at the highest level of threat by 

popular vulnerability scanner such as Nessus. 

More time-consuming than the attacks mentioned above, malicious activities that 

attempt to gain access to the system by brute-forcing login credentials, are also worth 

concerning.  Attacks like these focus on guessing the username and password with an 

extra large pool of credential’s combinations available, in order to connect to the system 

as a legitimate user.  Using this method, attackers may establish a connection to victim 

via various common services such as ftp, ssh, telnet, mysql, or mssql, as illustrated in the 

experiment.  Once appropriate credentials are successfully obtained, attackers are able to 



82 
 

login to the system under normal user’s privileges or even higher level of access, and 

then, use this as a launching pad to deploy further attacks for privilege escalation. 

Last but not least, a social engineering approach might be opted to access the target’s 

machine.  In this manner, a malicious payload is crafted and sent to the victim using any 

means possible.  One of the potential methods, which is previously assumed in the 

experiment, is utilizing the means of email.  An attractively composed email with the 

payload attached is sent to the user.  The purpose of such task is to induce the user to 

download and execute the payload, while the attacker is waiting patiently with a server 

ready for connections.  As the user inadvertently executes the payload, a reverse 

connection is immediately set up; thus, provides the attacker a point of entry to deploy 

further attacking activities. 

As presented by the attack tree diagrams, the answers to the third research question of 

“What are the most effective attacks on the experimental host?”, are apparently attacks 

aiming at exploiting un-patched or compromised services.  Attacks like these are 

essentially placed on top priorities to be countered due to their critical level of severity.  

On the other hand, systems with weak password authentication are also easy preys to 

cyber hunters.  In addition, user’s gullibility is another point of which can be taken 

advantage to infiltrate a system. 

5.3   Implications and Recommendations 

The study has explicitly illustrated a fact that, despite possessing similar functions, 

different penetration testing tools may result in comparatively varying outcomes.  The 

difference is surprisingly huge in some particular cases, as demonstrated in the results 

generated by the selected vulnerability scanners.  Thus, more researches are significantly 

necessary in order to precisely assess the tools’ reliability.  Hopefully, this study, to some 

degrees, may offer practical contributions to such respective mission. 

Furthermore, from the attack demonstrations performed on the simulation system, a 

distinct way of use of the attack tree model is introduced.  Differentiating from formal 

use which is for attack brainstorming activities, attacks on the experimental hosts are 

gathered and organized into separate diagrams.  The primary objective of such process is 



83 
 

to provide a more general view of the penetrating process; hence, able to pinpoint the 

most effective attack methods.  The approach is considerably significant for practical 

penetration test analysis. 

With special regard to attacks deployed on the experimental machines, a list of 

pragmatic countermeasures is strongly recommended.  On top of the list is the utmost 

need to update the operating systems together with the running services to the latest 

versions.  As illustrated in the experiment, outdated operating systems, or un-patched 

services might exist critical security loopholes that allow attackers to seize administrative 

access of the system without spending too much time and effort.  An up-to-date system 

will positively render certain exploits useless; thus, enhance the security as a whole. 

On the other hand, attacks aiming at weak passwords are also worth concerning.  A 

system protected by simple and common passwords can be easily breached by brute-

forcing method, as demonstrated in the experiment.  As a result, strong passwords are 

required to hinder the password brute-forcing process, or even make it impossible to 

succeed.  Together with proper security policies, strong passwords will remarkably help 

enhance the system’s security.  There are several principles for creating a powerful 

password.  According to Microsoft (Microsoft.com, n.d.), a strong password must satisfy 

the following requirements: 

 Having at least 8 characters. 

 Containing uppercase and lowercase letters, numbers, and symbols. 

 Not containing common info such as user name, real name, or company name. 

 Not containing a complete word. 

 Being different from the previous passwords. 

Finally, the last recommended safeguard mainly focuses on the human factor of an 

organization.  As mentioned earlier, user’s gullibility might be exploited with a variety of 

social engineering techniques, in order to inject malicious payloads into the system.  

Therefore, companies should pay close attention to training their employees regarding 

information security, at least at a very basic level.  A well-designed training program will 



84 
 

magnificently raise security awareness of the users.  Many studies on this topic, presented 

in chapter 2 – Literature Review, have had this point rationally proven. 

  



85 
 

Chapter 6   Conclusions and Future Works 

Technically, penetration testing is one of the most common approaches for security 

assessment processes.  Penetration testing can precisely examines the effectiveness of the 

safeguards implemented on the inspected system.  With a wide range of supporting tools 

available in both the community and the market, it is truthfully confusing for practitioners 

to make proper decisions when looking for suitable tools.  Therefore, the research, firstly, 

aims to provide the community more reliable references regarding the tools’ effectiveness 

by carrying out an evaluation on the performance of some particular tools.  The 

experiment results have indicated that Nmap and Nessus are more powerful than other 

selected ones owing to high response time, easy-to-use interface, and fairly broad 

coverage. 

Secondly, the study has introduced an unorthodox use of attack tree model for post-

attack analysis process.  Different attack combinations are interpretively demonstrated on 

the experimental machines.  Performed attacks, as well as possible attack vectors are 

organized into particular attack tree diagrams in order to pinpoint the most effective 

points of entry.  By analyzing the drawn diagrams, it can be explicitly reckoned that 

outdated operating systems, together with un-patched services severely expose the system 

to attackers.  Attackers may take advantage of such security weaknesses to gain 

administrative access to the system without spending too much time and effort.  In 

addition, weak passwords and user’s gullibility are other attack surfaces that allow 

intruders to deploy further malicious activities.  Consequently, it is strongly 

recommended that systems’ owners should strictly protect themselves by keeping the 

systems up-to-date, applying strong password policies, and attempting to raise the 

employees’ security awareness, at least at a very basic level. 

As mentioned previously, despite the significance, the research is undeniably 

restrained by a number of limitations stated in chapter 3.  Therefore, the study can be 

carried on further with a wide range of possible directions.  Firstly, future studies may 

continue the topic of penetration testing tools evaluation with more tools from different 

categories such as web application vulnerability scanning or password cracking involved.  

Additionally, more representative characteristics of the tools like accuracy of 



86 
 

vulnerability scanners in terms of false positive/negative rate, or usability, should be put 

under investigation.  This will increasingly support the empirical evidence, as well as 

provide the security community more reliable references regarding the performance of 

penetration testing tools. 

On the other hand, since the simulation test-bed used in this study is significantly 

simple and straightforward, the research’s results including the tools’ performance 

statistics (in first phase) and attack outcomes (in second phase) might be drastically 

varying when carried out in a more complex system.  Hence, similar studies should be 

conducted in fully functional systems where various defense mechanisms such as 

firewalls, intrusion detection systems, and security policies are in place, so as to cater 

more precise and reliable sources of reference for the community. 

  



87 
 

APPENDIX A 

Service fingerprinting results of each particular tool grouped by hosts 

Metasploitable 

 

Unicornscan’s scanning results on Metasploitable host 

 

Dmitry’s scanning results on Metasploitable host 



88 
 

 

GFI Languard’s scanning results on Metasploitable host 

 

 

Nmap’s scanning results on Metasploitable host 

 



89 
 

Windows XP SP3 workstation 

 

Unicornscan’s scanning results on Window XP host 

 

 

Dmitry’s scanning results on Window XP host 



90 
 

 

GFI Languard’s scanning results on Window XP host 

 

 

Nmap’s scanning results on Window XP host 

 



91 
 

MSSQL server 

 

Unicornscan’s scanning results on MSSQL server host 

 

 

Dmitry’s scanning results on MSSQL server host 



92 
 

 

GFI Languard’s scanning results on MSSQL server host 

 

 

Nmap’s scanning results on MSSQL server host 

 



93 
 

E-mail server 

 

Unicornscan’s scanning results on e-mail server host 

 

Dmitry’s scanning results on e-mail server host 



94 
 

 

GFI Languard’s scanning results on e-mail server host 

 

 

Nmap’s scanning results on e-mail server host 

  



95 
 

APPENDIX B 

User interfaces of selected vulnerability scanners 

 

GFI Languar’s user interface 

 

 

Nessus’s user interface 

 



96 
 

 

OpenVAS’s user interace 

  



97 
 

APPENDIX C 

Vulnerability scanning results 

Metasploitable 

 

GFI Languard’s vulnerability scanning results on Metasploitable host 

 

Nessus’s vulnerability scanning results on Metasploitable host 



98 
 

 

OpenVAS’s vulnerability scanning results on Metasploitable host 

  



99 
 

Windows XP SP3 workstation 

 

OpenVAS’s vulnerability scanning results on Windows XP workstation host 



100 
 

 

Nessus’s vulnerability scanning results on Windows XP workstation host 

  



101 
 

MSSQL server 

 

OpenVAS’s vulnerability scanning results on MSSQL server host 



102 
 

 

Nessus’s vulnerability scanning results on MSSQL server host 

  



103 
 

E-mail server 

 
GFI Languard’s vulnerability scanning results on e-mail server host 

 

Nessus’s vulnerability scanning results on e-mail server host 



104 
 

 
OpenVAS’s vulnerability scanning results on e-mail server host 

   



105 
 

References 

Alder, V., Burke, J., Keefer, C., Orebaugh, A., Pesce, L., & Seagren, E. S. (n.d.).  How to 

Cheat at Configuring Open Source Security Tools.   

Allen, L. (2012). Advanced Penetration Testing for Highly-Secured Environments The 

Ultimate Security Guide (1 ed.). Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=946941 

Allsopp , W. (2009). Unauthorised Access : Physical Penetration Testing For IT Security 

Teams (1 ed.). Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=470412 

Anonymous (n.d.).  Security Test Tools.  Retrieved  09 Oct, 2013, from 

http://www.opensourcetesting.org/security.php 

Anonymous. (2009a). Penetration testing: Core Security. SC Magazine, 20(12), 48. 

Anonymous. (2009b). Core Security Adds Wireless Capabilities to Automated 

Penetration Testing Solution. Wireless News. 

Anonymous. (2010a). Rapid7 Introduces Metasploit Pro - The World's First Penetration 

Testing Solution That Achieves Unrestricted Remote Network Access Through 

Firewalls. Business Wire. Retrieved from 

http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/759069295

?accountid=8440 

Anonymous. (2010b). Penetration testing: SAINT. SC Magazine, 21(12), 40. 

Anonymous. (2010c). Core Security Adds Network Device Assessment, Web App 

Scanner Integration to Automated Penetration Testing Solution. Wireless News. 

Anonymous. (2010d). Codenomicon Automates Penetration Testing. Business Wire. 

Retrieved from 

http://aut.eblib.com.au/patron/FullRecord.aspx?p=946941
http://aut.eblib.com.au/patron/FullRecord.aspx?p=470412
http://www.opensourcetesting.org/security.php
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/759069295?accountid=8440
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/759069295?accountid=8440


106 
 

http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/89211727?

accountid=8440 

Anonymous. (2012). How to hack your own Wi-Fi network.  Network World (Online). 

Antunes, N. (2011).  Penetration Testing in Web Services.   

Antunes, N., & Vieira, M. (2009).  Comparing the Effectiveness of Penetration Testing 

and Static Code Analysis on the Detection of SQL Injection vulnerabilities in Web 

Services.  15
th

 IEEE Pacific Rim International Symposium on Dependable 

Computing, 301-306. 

Antunes, N., & Vieira, M. (2013).  Defending against Web Application Vulnerabilities.  

Retrieved 09 Oct, 2013, from http://www.infoq.com/articles/defending-against-

web-application-vulnerabilities 

Arkin, B., Stender, S., & McGraw, G. (2005). Software penetration testing. Security & 

Privacy, IEEE, 3(1), 84-87. doi:10.1109/msp.2005.23 

Asadoorian, P., & Pesce, L. (2011). Linksys WRT54G Ultimate Hacking. Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=328626 

Austin, A., Holmgreen, C., & Williams, L. (2013). A comparison of the efficiency and 

effectiveness of vulnerability discovery techniques. Information and Software 

Technology, 55(7), 1279-1288. doi:http://dx.doi.org/10.1016/j.infsof.2012.11.007 

Bacudio, A. G., Yan, X., Chu, B. B., & Jones, M. (2011).  An Overview of Penetration 

Testing.  International Journal of Network Security & Its Applications, 3(6), 19. 

Barrett, N. (2003). Penetration testing and social engineering: Hacking the weakest link. 

Information Security Technical Report, 8(4), 56-64. 

doi:http://dx.doi.org/10.1016/S1363-4127(03)00007-4 

http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/89211727?accountid=8440
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/89211727?accountid=8440
http://www.infoq.com/articles/defending-against-web-application-vulnerabilities
http://www.infoq.com/articles/defending-against-web-application-vulnerabilities
http://aut.eblib.com.au/patron/FullRecord.aspx?p=328626


107 
 

Bau, J., Bursztein, E., Gupta, D., & Mitchell, J. (n.d.). State of the Art: Automated Black-

Box Web Application Vulnerability Testing.  Retrieved from 

http://theory.stanford.edu/people/jcm/papers/pci_oakland10.pdf 

Bhattacharyya, D., & Alisherov, F. A. (2009).  Penetration Testing for Hire.  

International Journal of Advanced Science and Technology, 8. 

Bishop, M. (2007). About Penetration Testing. Security & Privacy, IEEE, 5(6), 84-87. 

doi:10.1109/msp.2007.159 

Boteanu, D. (2011). Penetration Testing: Hacking Made Ethical to Test System Security. 

The Canadian Manager, 36(3), 10-11,12. 

Budiarto, R., Ramadass, S., Samsudin, A., & Noor, S. (2004).  Development of 

Penetration Testing Model for Increasing Network Security.  Retrieved from 

http://eprints.usm.my/6868/1/Development_of_Penetration_testing_model_for_in

creasing_network_security.pdf 

Centre for the Protection of National Infrastructure (CPNI) (2006).  Commercially 

available Penetration Testing.   

Chan, H., & Schaeffer, B. S. (2008). Penetration Testing: Why Franchise Systems Need 

Information Security. Franchising World, 40(8), 44-46. 

Chevalier, P. (2002).  Search engines as penetration testing tools.  Retrieved from 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.9443&rep=rep1&t

ype=pdf 

Cohen, F. (1997).  Managing Network Security – Part 9: Penetration Testing?.  Network 

Security, 8, 12-15. 

ComputerSecurityStudent (CSS). (n.d.).  Metasploitable Project.  Retrieved May 17, 

2014, from 

http://www.computersecuritystudent.com/SECURITY_TOOLS/METASPLOITA

BLE/EXPLOIT/ 

http://theory.stanford.edu/people/jcm/papers/pci_oakland10.pdf
http://eprints.usm.my/6868/1/Development_of_Penetration_testing_model_for_increasing_network_security.pdf
http://eprints.usm.my/6868/1/Development_of_Penetration_testing_model_for_increasing_network_security.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.9443&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.201.9443&rep=rep1&type=pdf
http://www.computersecuritystudent.com/SECURITY_TOOLS/METASPLOITABLE/EXPLOIT/
http://www.computersecuritystudent.com/SECURITY_TOOLS/METASPLOITABLE/EXPLOIT/


108 
 

Cook, B. (2009). Penetration Testing. Independent Banker, 59(10), 18. 

Core SDI, Incorporated. (2013). Patent Issued for System and Method for Providing 

Network Penetration Testing. Computer Weekly News, 981. 

Corothers, N. N. (2002).  Vulnerability assessments: Methodologies to Perform a Self-

Assessment.  Retrieved from http://www.giac.org/paper/gsec/2022/vulnerability-

assessments-methodologies-perform-self-assessment/103498 

Dimkov, T., Pieters, W., & Hartel, P. (2011). Training students to steal: a practical 

assignment in computer security education. presented at the meeting of the 

Proceedings of the 42nd ACM technical symposium on Computer science 

education, Dallas, TX, USA. doi:10.1145/1953163.1953175 

Engebretson, P. (2011). The Basics of Hacking and Penetration Testing : Ethical 

Hacking and Penetration Testing Made Easy. Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=730200 

Fahmida, Y. R. (2011).  Proactive, Aggressive Network Penetration Testing Lacking in 

Organization.  Retrieved Aug 14, 2013, from 

http://www.eweek.com/c/a/Security/Proactive-Aggressive-Network-Penetration-

Testing-Lacking-in-Organizations-390888/ 

Faircloth, J. (2011). Penetration Tester's Open Source Toolkit (3 ed.). Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=740483 

Greer, E., & Dyer, K. (2006). Put an end to manual penetration testing. Federal 

Computer Week, 20(15), 44-46. 

Haeni, R. E. (1997).  Firewall Penetration Testing.  Retrieved from 

http://66.14.166.45/whitepapers/netforensics/penetration/Firewall%20Penetration

%20Testing.pdf 

http://www.giac.org/paper/gsec/2022/vulnerability-assessments-methodologies-perform-self-assessment/103498
http://www.giac.org/paper/gsec/2022/vulnerability-assessments-methodologies-perform-self-assessment/103498
http://aut.eblib.com.au/patron/FullRecord.aspx?p=730200
http://www.eweek.com/c/a/Security/Proactive-Aggressive-Network-Penetration-Testing-Lacking-in-Organizations-390888/
http://www.eweek.com/c/a/Security/Proactive-Aggressive-Network-Penetration-Testing-Lacking-in-Organizations-390888/
http://aut.eblib.com.au/patron/FullRecord.aspx?p=740483
http://66.14.166.45/whitepapers/netforensics/penetration/Firewall%20Penetration%20Testing.pdf
http://66.14.166.45/whitepapers/netforensics/penetration/Firewall%20Penetration%20Testing.pdf


109 
 

Halfond, W. G. J., Choudhary, S. R., & Orso, A. (2011).  Improving penetration testing 

through static and dynamic analysis.  Software Testing, Verification and 

Reliability, 21, 195-214. 

Hardy, G. (1997).  The Relevance of Penetration Testing to Corporate Network Security.  

Information Security Technical Report, 2(3), 80-86. 

Hare, C. (2001).  Improving Network-Level Security through Real-time Monitoring and 

Intrusion Detection.  Information Security Management Handbook, 569-595. 

Herzog, P. (2003).  Open-source Security Testing Methodology Manual.  Retrieved from 

http://cdn.preterhuman.net/texts/other/osstmm.pdf 

Hoppe, J. (n.d.).  Passive Web Reconnaissance using Google and Other Tools.  Retrieved 

from http://php.uat.edu/~jefhoppe/doc/Passive_Recon.pdf 

Hurley, C., Rogers, R., Thornton, F., Connelly, D., & Baker, B. (2007).  WarDriving & 

Wireless Penetration Testing.  Syngress Publishing, Inc. 

Jajodia, S., Noel, S., & O’Berry, B. (2005).  Topological Analysis of Network Attack 

Vulnerability.  Managing Cyber Threats, 247-266. 

Kali.org. (Feb 25, 2013).  What is Kali Linux?  Retrieved May 11, 2013, from 

http://docs.kali.org/introduction/what-is-kali-linux 

Ke, J.-K., Yang, C.-H., & Ahn, T.-N. (2009). Using w3af to achieve automated 

penetration testing by live DVD/live USB. presented at the meeting of the 

Proceedings of the 2009 International Conference on Hybrid Information 

Technology, Daejeon, Korea. doi:10.1145/1644993.1645078 

Kwon, O. H., Lee, S., Lee, H., Kim, J., Kim, S., Nam, G., & Park, J. (2005). HackSim: 

An Automation of Penetration Testing for Remote Buffer Overflow 

Vulnerabilities. In C. Kim (Ed.), Information Networking. Convergence in 

Broadband and Mobile Networking (Vol. 3391, pp. 652-661): Springer Berlin 

http://cdn.preterhuman.net/texts/other/osstmm.pdf
http://php.uat.edu/~jefhoppe/doc/Passive_Recon.pdf
http://docs.kali.org/introduction/what-is-kali-linux


110 
 

Heidelberg. Retrieved from http://dx.doi.org/10.1007/978-3-540-30582-8_68. 

doi:10.1007/978-3-540-30582-8_68 

Lebeau, F., Legeard, B., Peureux, F., & Vernotte, A. (2012).  Model-Based Vulnerability 

Testing for Web Application.  Retrieved from 

http://www.spacios.eu/sectest2013/pdfs/sectest2013_submission_8.pdf 

Lipner, S. (2004).  The Trustworthy Computing Security Development Lifecycle.  

Retrieved from https://www.acsac.org/2004/papers/Lipner.pdf 

Liu, M. R., & Lau, K. Y. (2000).  Firewall Security:  Policies, Testing and Performance 

Evaluation.  Retrieved from 

http://pdf.aminer.org/000/112/436/firewall_security_policies_testing_and_perfor

mance_evaluation.pdf 

Long, J. (2011). Google Hacking for Penetration Testers. Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=344652 

Maynor, D., Mookhey, D. D., Cervini, J., Roslan, F., & Beaver, K. (2007).  Metasploit 

Toolkit for Penetration Tesing, Exploit Development, and Vulnerability Research.   

McDermott, J. P. (2000). Attack net penetration testing. presented at the meeting of the 

Proceedings of the 2000 workshop on New security paradigms, Ballycotton, 

County Cork, Ireland. doi:10.1145/366173.366183 

McGraw, G. (2005). Is Penetration Testing a Good Idea? Network Magazine, 20(7), 59. 

Melbourne, J., & Jorm, D. (2010a).  Penetration Testing for Web Application (Part One).  

Retrieved August 27, 2013, from 

http://www.symantec.com/connect/articles/penetration-testing-web-applications-

part-one 

Melbourne, J., & Jorm, D. (2010b).  Penetration Testing for Web Applications (Part 

Two).  Retrieved August 28, 2013, from 

http://www.spacios.eu/sectest2013/pdfs/sectest2013_submission_8.pdf
https://www.acsac.org/2004/papers/Lipner.pdf
http://pdf.aminer.org/000/112/436/firewall_security_policies_testing_and_performance_evaluation.pdf
http://pdf.aminer.org/000/112/436/firewall_security_policies_testing_and_performance_evaluation.pdf
http://aut.eblib.com.au/patron/FullRecord.aspx?p=344652
http://www.symantec.com/connect/articles/penetration-testing-web-applications-part-one
http://www.symantec.com/connect/articles/penetration-testing-web-applications-part-one


111 
 

http://www.symantec.com/connect/articles/penetration-testing-web-applications-

part-two 

Melbourne, J., & Jorm, D. (2010c).  Penetration Testing for Web Applications (Part 

Three).  Retrieved August 29, 2013, from 

http://www.symantec.com/connect/articles/penetration-testing-web-applications-

part-three 

Michael, C. C., Wyk, K. V., & Radosevich, W. (2005).  Black Box Security Testing.  

Retrieved 10 Oct, 2013, from https://buildsecurityin.us-

cert.gov/articles/tools/black-box-testing/black-box-security-testing-tools 

Microsoft.com. (n.d.).  Tips for creating a strong password.  Retrieved May 07, 2014, 

from http://windows.microsoft.com/en-us/windows-vista/tips-for-creating-a-

strong-password 

Midian, P. (2002a). Perspectives on Penetration Testing. Computer Fraud & Security, 

2002(6), 15-17. doi:http://dx.doi.org/10.1016/S1361-3723(02)00612-7 

Midian, P. (2002b). Perspectives on Penetration Testing — Black Box vs. White Box. 

Network Security, 2002(11), 10-12. doi:http://dx.doi.org/10.1016/S1353-

4858(02)11009-9 

Midian, P. (2002c).  Perspectives on Penetration Testing — What’s the Deal with Web 

Security? Network Security, 2002(8), 5-8. doi:http://dx.doi.org/10.1016/S1353-

4858(02)08008-X 

Moyer, P. R., & Schultz, E. E. (1996). A systematic methodology for firewall penetration 

testing. Network Security, 1996(3), 11-18. doi:http://dx.doi.org/10.1016/S1353-

4858(00)90006-0 

Naik, N. A., Kurundkar, G. D., Khamitkar, S. D., & Kalyankar, N. V. (2009).  

Penetration Testing: A Roadmap to Network Security.  Journal of Computing, 

1(1), 187-190. 

http://www.symantec.com/connect/articles/penetration-testing-web-applications-part-two
http://www.symantec.com/connect/articles/penetration-testing-web-applications-part-two
http://www.symantec.com/connect/articles/penetration-testing-web-applications-part-three
http://www.symantec.com/connect/articles/penetration-testing-web-applications-part-three
https://buildsecurityin.us-cert.gov/articles/tools/black-box-testing/black-box-security-testing-tools
https://buildsecurityin.us-cert.gov/articles/tools/black-box-testing/black-box-security-testing-tools
http://windows.microsoft.com/en-us/windows-vista/tips-for-creating-a-strong-password
http://windows.microsoft.com/en-us/windows-vista/tips-for-creating-a-strong-password


112 
 

Netcat.sourceforge.net. (November 1, 2006).  The GNU Netcat project.  Retrieved May 

17, 2014, from http://netcat.sourceforge.net/ 

Nicola, C. U. (n.d.).  Tools for Penetration Tests 1.   

Northcutt, S., Shenk, J., Shackleford, D., Rosenberg, T., Siles, R., & Mancini, S. (2006).  

Penetration Testing: Assessing Your Overall Security Before Attackers Do.  

Retrieved from http://www.sans.org/reading-room/analysts-

program/PenetrationTesting-June06 

Offensive-security.com. (n.d.).  About the Metasploit Meterpreter.  Retrieved May 17, 

2014, from http://www.offensive-security.com/metasploit-

unleashed/About_Meterpreter 

Oracle.com. (n.d.).  Remote Method Invocation Home.  Retrieved May 17, 2014, from 

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html 

Osborne, M. (2006).  How to cheat at managing information security.  Scitech Book 

News, 30(4). Retrieved from 

http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/200176483

?accountid=8440 

Paget, P., & Gula, R. (2005). FACE-OFF: Is penetration testing more effective than 

vulnerability scanning? Network World, 22(48), 44. 

Pfleeger, C. P., Pfleeger, S. L., & Theofanos, M. F. (1989).  A Methodology for 

Penetration Testing.  Computer & Security, 8(7), 613-620. 

Piotrowski, M. (2005).  Dangerous Google – Searching for Secrets.  Retrieved from 

http://hackbbs.org/article/book/DangerousGoogle-SearchingForSecrets.pdf 

Potter, B., & McGraw, G. (2004).  Software Security Testing.  Security & Privacy, IEEE, 

2(5), 81-85. 

http://netcat.sourceforge.net/
http://www.sans.org/reading-room/analysts-program/PenetrationTesting-June06
http://www.sans.org/reading-room/analysts-program/PenetrationTesting-June06
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/200176483?accountid=8440
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/200176483?accountid=8440
http://hackbbs.org/article/book/DangerousGoogle-SearchingForSecrets.pdf


113 
 

Prowell, S., Kraus, R., & Borkin, M. (2010). Seven Deadliest Network Attacks. Retrieved 

from http://AUT.eblib.com.au/patron/FullRecord.aspx?p=566706 

Ramachandran, V. (2011). BackTrack 5 Wireless Penetration Testing Beginner’s Guide 

(1 ed.). Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=948547 

SAINTexploit Provides Means to Verify Network Security; SAINT Introduces the First 

Integrated Vulnerability and Penetration Testing Tool. (2006, Feb 23). Business 

Wire, p. 1. Retrieved from 

http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/445278511

?accountid=8440 

Salter, C., Saydjari, O., Schneier, B., & Wallner, J. (1998).  Toward a Secure System 

Engineering Methodology.  In proceedings of New Security Paradigms 

Workshop, Charlottesville, Virginia. 

SANS Institute. (2002).  Penetration 101 – Introduction to becoming a Penetration 

Tester. 

Schneier, B.  (Dec 1999).  Attack Trees.  Retrieved May 07, 2014, from 

https://www.schneier.com/paper-attacktrees-ddj-ft.html 

Schultz, E. (1997). Hackers and penetration testing. Network Security, 1997(10), 10. 

doi:http://dx.doi.org/10.1016/S1353-4858(97)85736-4 

Shetty, D. (n.d.).  Penetration Testing with Metasploit Framework.  Retrieved from 

http://dl.packetstormsecurity.net/papers/general/pentesting-with-metasploit.pdf 

Shewmaker, J. 2008.  Introduction to Network Penetration Testing.  Retrieved from 

http://www.dts.ca.gov/pdf/news_events/SANS_Institute-

Introduction_to_Network_Penetration_Testing.pdf 

Singh, A. (2012). Metasploit Penetration Testing Cookbook (1 ed.). Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=952079 

http://aut.eblib.com.au/patron/FullRecord.aspx?p=566706
http://aut.eblib.com.au/patron/FullRecord.aspx?p=948547
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/445278511?accountid=8440
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/445278511?accountid=8440
https://www.schneier.com/paper-attacktrees-ddj-ft.html
http://dl.packetstormsecurity.net/papers/general/pentesting-with-metasploit.pdf
http://www.dts.ca.gov/pdf/news_events/SANS_Institute-Introduction_to_Network_Penetration_Testing.pdf
http://www.dts.ca.gov/pdf/news_events/SANS_Institute-Introduction_to_Network_Penetration_Testing.pdf
http://aut.eblib.com.au/patron/FullRecord.aspx?p=952079


114 
 

Sourceforge.net. (Aug, 2010).  Seamonster.  Retrieved May 07, 2014 from 

http://seamonster.wiki.sourceforge.net/ 

Sourceforge.net. (June 13, 2012).  Metasploitable.  Retrieved May 11, 2014 from 

http://sourceforge.net/projects/metasploitable/files/Metasploitable2/ 

Stiller, J. S. (2005).  The Ethical Hack: A Framework for Business Value Penetration 

Testing.   

Stuttard, D., & Pinto, M. (2007).  The Web Application Hacker’s Handbook:  

Discovering and Exploiting Security Flaws.  Wiley Publishing, Inc. 

Thompson, H. H. (2005). Application penetration testing. Security & Privacy, IEEE, 

3(1), 66-69. doi:10.1109/msp.2005.3 

Tibble, I. (2011). Security De-Engineering : Solving the Problems in Information Risk 

Management (1 ed.). Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=840396 

Tiller, J. S. (2011). CISO's Guide to Penetration Testing : A Framework to Plan, 

Manage, and Maximize Benefits (1 ed.). Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=826967 

Tran, Q. N. T., & Dang, T. K. (2010).  Towards Side-Effect-free Database Penetration 

Testing.  Journal of Wireless Mobile Networks, Ubiquitous Computing, and 

Dependable Applications, 1(1), 72-85. 

Turpe, S., & Eichler, J. (2009). Testing Production Systems Safely: Common Precautions 

in Penetration Testing Symposium conducted at the meeting of the Testing: 

Academic and Industrial Conference - Practice and Research Techniques, 2009. 

TAIC PART '09. doi:10.1109/taicpart.2009.17 

Utting, M., & Legeard, B. (2006).  Practical Model-Based Testing – A Tools approach.  

Elsevier Science, San Fancisco, CA, USA. 

http://seamonster.wiki.sourceforge.net/
http://sourceforge.net/projects/metasploitable/files/Metasploitable2/
http://aut.eblib.com.au/patron/FullRecord.aspx?p=840396
http://aut.eblib.com.au/patron/FullRecord.aspx?p=826967


115 
 

Vacca, J. R. (2010). Managing Information Security. Retrieved from 

http://AUT.eblib.com.au/patron/FullRecord.aspx?p=535284 

Vieira, M., Antunes, N., & Madeira, H. (2009).  Using Web Security Scanners to Detect 

Vulnerabilities in Web Services.  Retrieved from 

http://eden.dei.uc.pt/~mvieira/dsn_ws.pdf 

Villegas, G. (2008).  Analysis of tools for conducting Wireless Penetration Testing.  

Retrieved from http://sci.tamucc.edu/~cams/projects/311.pdf 

Wack, J., Tracy, M., & Souppaya, M. (2003).  Guideline on Network Security Testing.  

Nist special publication, 800, 42. 

Watters, P. A. (1999). Penetration testing and intrusion detection. Inside Solaris, 5(11), 9-

11. Retrieved from 

http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/191080065

?accountid=8440 

Weissman, C. (1973).  System Security Analysis/Certification Methodology and Results.  

System Development Corporation, Santa Monica, CA. 

Yeo, J. (2013). Using penetration testing to enhance your company's security. Computer 

Fraud & Security, 2013(4), 17-20. doi:http://dx.doi.org/10.1016/S1361-

3723(13)70039-3 

http://aut.eblib.com.au/patron/FullRecord.aspx?p=535284
http://eden.dei.uc.pt/~mvieira/dsn_ws.pdf
http://sci.tamucc.edu/~cams/projects/311.pdf
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/191080065?accountid=8440
http://ezproxy.aut.ac.nz/login?url=http://search.proquest.com/docview/191080065?accountid=8440

	Declaration
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1   Introduction
	1.1   Background and Motivation
	1.2   Objectives of the Thesis
	1.3   Structure of the Thesis

	Chapter 2   Literature Review
	2.1   Introduction
	2.2   Concepts and Definitions of Penetration Testing
	2.2.1   Penetration testing definitions and related concepts.
	2.2.2   Goals of penetration testing.
	2.2.3   Benefits and drawbacks of penetration testing.
	2.2.4   Types of penetration testing.
	2.2.5   Vulnerability Assessment versus Penetration Testing.
	2.2.6   Web application penetration testing.

	2.3   Penetration Testing Models and Methodologies
	2.3.1   Penetration testing models.
	2.3.2   Penetration testing methodologies.

	2.4   Penetration Testing Tools
	2.4.1   Google – A hacking tool?
	2.4.2   Metasploit.
	2.4.3   SAINT.
	2.4.4   Core Impact.
	2.4.5   And many other penetration testing tools.
	2.4.6   Penetration testing distributions.

	2.5   The Use of Penetration Testing
	2.6   Conclusions

	Chapter 3   Research Methodology
	3.1   Related Studies
	3.2   Research Questions
	3.3   Research Design and Data Requirements
	3.3.1   Research design.
	3.3.2   Data requirements.

	3.4   Limitations of the Research
	3.5   Expected Outcomes and Conclusion

	Chapter 4   Research Findings
	4.1   Approach
	4.2   The Experimental Test-bed
	4.3   Experiments
	4.3.1   Stage 1 – Penetration testing tools’ performance observation.
	4.3.2   Stage 2 – Hosts penetration.


	Chapter 5   Discussions
	5.1   Effectiveness of the Selected Penetration Testing Tools
	5.1.1   Research question 1.
	5.1.1   Research question 2.

	5.2   Effective Attacks on Experimental Hosts
	5.3   Implications and Recommendations

	Chapter 6   Conclusions and Future Works
	APPENDIX A
	APPENDIX B
	APPENDIX C
	References

