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Abstract 

With the increasing popularity of Fog computing to provide computation, analysis and storage 

of data at the edge of IoT networks, the fulfilment of data privacy requirements over fog 

networks can be seen as one of the biggest security challenges. Data aggregation is considered 

an essential privacy requirement as it combines data from different IoT devices to protect the 

data leakage of an individual IoT device. It also reduces data redundancy while improving data 

analysis speed in Fog-enabled IoT networks. For preserving the privacy of data aggregation, the 

heavyweight cryptosystems are considered, which faces issues related to performance overhead 

and single point of failure risks due to data aggregation at a single fog node. In addition, no 

secure data replicas exist for data recovery and reliability in case of a data breach in Fog-enabled 

IoT applications. This thesis proposes an efficient privacy-preserving scheme for data 

aggregation to overcome the limitations of Fog-enabled IoT applications. This thesis also 

proposes an efficient privacy-preserving data replication scheme for data reliability and 

recovery.  

The proposed data aggregation scheme is based on lightweight data encryption and 

data division method. This method effectively divides data according to Level of Privacy (LoP) 

and distributes the data among participating fog nodes for aggregation and storage processing, 

and reduces computational and memory overhead in the processing simultaneously. The 

proposed data aggregation scheme is further extended to optimize the time and energy 

consumption of the data division method. The multi-objective optimization method is defined 

for the data aggregation scheme based on the NSGA-III (non-dominated sorting genetic 

Algorithm III) to find optimal solutions concerning time consumption and energy consumption. 

A data replica creation scheme and a data replica placement scheme are proposed to 

preserve the privacy of data replicas. The data replica creation scheme is based on a Level of 

Privacy (LoP) defined by data-owners and the service capacity of fog nodes. The proposed data 

replica placement scheme is based on the priority level of fog nodes. 

Moreover, comprehensive simulations and systematic experiments are conducted to 

demonstrate and evaluate the effectiveness and efficiency of the proposed schemes compared 

with the state-of-the-art schemes. The results demonstrate that the proposed schemes can 

efficiently achieve data privacy in the fog computing paradigm and outperform other schemes 

in terms of performance efficiency.   
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1 | P a g e  
 

‘Solve the problem or leave the problem. Do not live with the problem.’ 

          ---A Motivator  

 

Chapter 1  

The area of research and factors that motivated to conduct the proposed research are 

introduced in this Chapter. Also, the Chapter identifies the gaps in the existing area of research 

and then present contributions to bridge those gaps. Finally, the research methodology and 

structure of the thesis is provided at the end of this Chapter. 
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Introduction 

Fog computing is becoming popular as it provides computing, security, networking, and storage 

capabilities to the Internet of Things (IoT) applications at the edge of the IoT network. The focus 

of this thesis is on data privacy in fog-enabled IoT networks. The key idea is to develop a 

framework for lightweight privacy-preserving data aggregation and replication with high-

performance efficiency. At present, data aggregation and replication considering privacy 

concerns over fog networks have not been explored to establish an efficient and lightweight 

privacy-preserving framework. This thesis uses distributive computation and storage in the fog 

computing paradigm to optimize performance efficiency. Also, a data-owner-defined level of 

privacy is considered to strengthen the data privacy for data aggregation and replication of fog-

enabled IoT networks.  

Section 1 in this Chapter begins with the background of the factors that led to this 

research work. Section 2 addresses the research problems and introduces research questions in 

Section 3. The research contributions are discussed in Section 4, followed by research 

publication and research methodology in Section 5 and Section 6, respectively. Finally, the 

structure of the thesis is presented in Section 7. 

1. Background

With the advancement in wireless communications and ubiquitous computing, a paradigm 

known as the Internet of Things (IoT) is gaining mainstream acceptance and research interest. 

IoT is a collection of physical devices, aka 'things' embedded with actuators, sensors, software, 

and electronics, to collect and exchange data with other devices using an internet connection 

[1]. The things can be personal, industry, and enterprise objects such as smartphones, smart 

appliances, wearable, digital cameras, tablets, vehicles, smart security, and smart lighting. These 

things are connected to the internet for data transmission, processing, and analysis, and hence 

things could be managed and controlled remotely [2].  

The interconnectivity of smart things has resulted in the wide deployment of IoT 

networks worldwide. The IoT connects smart things for the interaction of human to machine 

(H2M), human to human (H2H), machine to machine (M2M) while providing ease of control, 

management, analysis, communication, and identification among the IoT devices [3]. The 

interconnectivity has significantly improved everyday life [4], such as home security, household 

activities, smart supply chain, infrastructure support, pervasive health care (smart hospitals), 

assisted living, smart meters for balancing bills, air quality management [5]. It is estimated that 

IoT devices connected to the Internet will reach 41.6 billion by the year 2025 [6]. Also, the 

amount of data generated by IoT devices is increasing in size [4]. This rapid growth in IoT devices 
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connectivity and data size has substantially increased the performance overhead of IoT devices 

to process, analyze and transmit data [7]. 

The computation power of IoT devices to process and analyze data is limited as a key 

purpose of IoT devices is to supply data about things while remaining autonomous [8]. IoT 

devices have sufficient processing power to supply data via the internet to a server. This 

processing power is, however, insufficient to fulfil requirements for heavy data processing and 

analyzing. Due to the IoT devices' limited battery and processing resources, the generated data 

is offloaded to cloud computing for computation, analysis, and long-term storage. Cloud 

computing allows data scalability to be scaled vertically and horizontally to meet heavy data 

processing and analysis requirements.  

The Internet is neither sufficiently scalable nor efficient to deal with IoT data offloading. 

The IoT network requires an enormous amount of energy, time, and bandwidth for data 

offloading to a cloud server that is located remotely [9]. In addition, for heavy processing and 

analysis, IoT networks' overall energy and bandwidth overhead increase to offload data to cloud 

computing. CISCO researchers Bonomi et al. [10] proposed the fog computing concept in 2012 

as an alternative paradigm to mitigate the limitations mentioned above for IoT data offloading 

to the cloud paradigm. 

1.1. Fog Computing 

Fog computing is an architecture that uses edge devices of a network to perform data 

communication, computation, and storage locally that are routed over the internet [11]. The 

Figure 1 Fog Computing Architecture 
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word 'fog' is used for cloud periphery as it is distributed computing for peripheral devices 

connecting to a cloud. The fog computing paradigm partly shifts the cloud's processing and 

storage tasks to the edge of an IoT network. It can provide computing, networking, and storage 

capabilities to IoT devices with each fog node located near the IoT device [12]. Fog computing 

can be viewed as an extension of cloud computing, as shown in Figure 1. It reduces the amount 

of data transfer and processing to the cloud paradigm thus, alleviating much of the burden to 

fog servers themselves and improving the performance efficiency of IoT networks [13].  

In cloud computing, data servers/centers are the main centralized components to 

process and store data. Due to this, cloud computing has high energy consumption, processing, 

and operational cost [14]. On the other hand, fog computing architecture consists of fog clusters 

in which fog devices cooperate to compute, communicate, network, and store tasks that 

consume low energy, processing, and operational cost. Also, the distance between cloud and 

IoT devices is the multi-hop distance [15]. In contrast, the distance between fog nodes and IoT 

devices is one or a few hops as fog nodes are located near the edge of the IoT network. Because 

of this distance, the fog paradigm's network and communication latency are always low 

compared to the cloud paradigm. A real-time application handling in the fog paradigm is 

achievable due to its low network and communication latency, whereas real-time interaction in 

cloud paradigm is difficult due to high latency. 

As the concept of fog computing is introduced for IoT applications, the terminology fog-

enabled IoT is used interchangeably [16]. The fog-enabled IoT paradigm allocates the processing 

of IoT data in a distributive manner to optimize the performance efficiency and bandwidth 

bottleneck of the IoT network.  

1.2. Data Privacy  

Data privacy is a branch of data security that governs how data is gathered, shared, and used in 

compliance with regulatory obligations and data consents. It is the right of a data-owner to have 

awareness and control of their personal data use [17]. However, data privacy is not limited to 

control and awareness. It also considers procedures compliance with data protection laws to 

collect, process, and share data securely [18]. When data that should be kept private gets 

exposed or breached by an adversary, damaging consequences may occur, including operational 

downtime, loss of sensitive data, financial loss, legal action, and reputational damage [19]. For 

example, a data breach of top-secret information at a government agency or proprietary data 

at a corporation put in the hands of a competitor can cause tremendous reputational damage 

and financial loss.  
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In IoT applications, data privacy is not negligible as the data-owners surrender their 

privacy in the form of data [20], bit by bit, without realization/awareness of what data content 

is being collected, exposed, and used. Data content not only contains general data fields of a 

data-owner, for example (name, telephone number, or address) but may also contain very 

sensitive information, including readings of habitual behavior and medical health reports [21]. 

For example, collecting data from hundreds of smart meters in a smart grid system can raise 

electricity consumers' privacy issues such as exposure to daily activity patterns and location 

tracking [22].  

It is essential to preserve the data privacy of IoT devices before transmission to data 

receivers so that the data receiver cannot trace back to the source of data generation and misuse 

it. Strong privacy algorithms (e.g., public and private cryptography, privacy compliances) are 

required to preserve data privacy. Many kinds of IoT devices have limited memory storage, 

energy budget for power batteries, and constrained processing resources [23, 24]. Therefore, 

implementing efficient privacy algorithms on those IoT devices is critical. The cloud computing 

paradigm [25-31] has been considered for processing privacy algorithms to preserve the data 

privacy of IoT devices. However, transmitting data to the cloud paradigm increases the potential 

risks of data leakage. Also, the offloading of privacy tasks to the cloud increases the IoT network 

bottleneck. 

In contrast, fog computing provides a promising medium for preserving the data privacy 

of IoT devices. The processing of privacy algorithms can be transmitted to fog nodes instead of 

remote cloud to reduce the network bottleneck. While fog nodes reside near IoT devices, a fog 

computing paradigm mitigates IoT devices' risk of data privacy leakage [13]. 

1.3. Data Aggregation  

Data is constantly expanding and evolving with technology advancements, and to better 

understand data, the extraction and organization of key data trends are important. The data 

aggregation process helps in organizing, summarizing, and analyzing trends of data. It is a 

process of gathering data from multiple data sources and combining data sources into a 

comprehensive and consumable data set for further use. For example, an organization often 

collects and aggregates its online customer data to market the product [32]. The aggregated 

data includes the statistical analysis of online product purchases and demographics such as the 

number of purchases and average customer age. These statistics assist the marketing team to 

learn about the customer's digital experience and product purchase success. Different 

mathematical operations such as maximum, minimum, sum, percentile, ratio, and average [33] 

are performed for data aggregation. Maximum, minimum, and sum operations are categorized 
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as additive aggregation operations, and ratio, average, and percentile are non-additive 

operations. 

Data aggregation is one of the requirements for data privacy in IoT applications. It 

combines data from different IoT sources, such as IoT devices, using aggregation operations to 

protect the data leakage of individual IoT devices [33]. It also significantly reduces the energy, 

computational and communication overhead to process data of IoT devices. Furthermore, it 

eliminates data redundancy and improves data analysis speed and efficiency [13]. For example, 

energy companies collect power consumption data from smart meters installed at customer 

sites and aggregate data to improve the overall efficiency and reliability of smart grid 

infrastructure [34]. Similarly, health data is aggregated for medical research in healthcare [35]. 

In the transport management system, aggregated traffic data is used to analyze the route 

network to improve transportation services [36].  

Different public and private cryptography algorithms [37-40] have been used to 

preserve the privacy of aggregated data. In private cryptography algorithms [37, 38], IoT devices 

encrypt data and forward encrypted data to an aggregator. The aggregator aggregates the 

encrypted data and sends the resultant data file to a cloud for decryption/decoding. Although 

the performance efficiency is high using symmetric keys for encoding/ encryption compared to 

asymmetric keys, symmetric keys still result in a key-compromise attack. Asymmetric key 

algorithms [39, 40] overcomes key-compromise issues for preserving data aggregation privacy. 

However, in these algorithms [37-40], either data aggregation is performed at a single 

aggregator or performed at a remote cloud. A single aggregator/ cloud utilization increases IoT 

network bandwidth, performance overhead, data collision, and single point of failure risk. 

Fog-enabled IoT can overcome such limitations using distributive aggregation and 

lightweight cryptosystems. Research [9, 13, 16, 41, 42] considered fog-enabled IoT solutions for 

aggregating and encrypting data. The solutions save the IoT network bandwidth, computational, 

and memory overhead using data aggregation at fog computing network and forwarding only 

aggregated results to the cloud. 

1.4. Data Replication 

Data is one of the most critical resources of any organization, and yet, in many organizations, 

data protection gets less priority as compared to data management and analysis. Data should 

be effectively protected from any loss and modification and secured for data availability [43]. 

Malware attacks, accidental deletion of data, or system hardware failures can lead to data loss. 

Creating copies of the data and storing it in multiple storage mediums can provide data 

protection. The process of creating copies and replicating them is known as data replication. It 
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ensures that the data backup exists for data recovery in case of a system or data breach, system 

hardware failure, or a catastrophe. Data replication improves network performance, data 

availability, accessibility, and reliability by making data replicas available at multiple storage 

mediums [44]. If any malware attack or system hardware fault destroys the data at one storage 

medium, the accurate data can be accessed from another storage medium.  

Generally, data replication includes replica creation, placement, selection, and 

replacement processes [45]. First, the number of replicas to be created is determined in a replica 

creation process. Second, the best possible location for replica storage is determined in the 

replica placement and selection process. Finally, in the case of storage limitations, the replica 

replacement process can change the replica locality with a new replica [46]. For these processes, 

static and dynamic methods are used [47]. In the static method, data replicas are created during 

the data processing setup, and these replicas are unaffected by any changes in replica selection 

and placement [45]. However, the static method does not comply with any changes due to 

replica deletion and access patterns of data users [48]. On the other hand, the dynamic method 

creates replicas affected by the replica's creation/deletion and access pattern changes.  

An adversary can either modify/delete data replicas to make data unavailable to end-

users or acquire replicas to monitor data-owners patterns and sensor locations in wireless 

networks. Therefore, the privacy of replicas needs to be preserved as the original data. Data 

replication privacy has been considered in cloud-based schemes [48, 49]. These schemes 

consider non-cryptographic measures to replicate data without data encryption. An adversary 

exposing a few replicated data fragments (unencrypted) would be able to analyze and discover 

the data patterns and their meanings. Further, performing data replication on a 

cloud/centralized system increases the computational and storage burden at the computing 

end, which results in degraded data reliability, scalability, and high bandwidth overhead. Fog-

enabled IoT schemes [50-53] have been considered to overcome the cloud/ centralized system 

issues for data replication.  

2. Research Problems

An appropriate architecture to efficiently preserve data aggregation and replication privacy is 

required due to the significance of data aggregation and replication for IoT applications. Cloud-

based schemes [37-40] have not been convenient because of the high network performance 

overhead, whereas fog-enabled IoT can provide a promising solution for efficient data 

aggregation and replication privacy. 

The solutions [9, 12, 13, 54-56] in fog computing preserves data aggregation privacy for 

IoT applications. These schemes perform data aggregation on a fog node and then forward the 
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aggregation results to the cloud. Although these schemes reduce computation, communication, 

and latency overhead of an overall IoT network compared to cloud-based schemes, the 

utilization of multiple fog nodes for workload distribution of data aggregation has not been 

considered. Therefore, these schemes [9, 12, 13, 54-56] are vulnerable to the single point of 

failure risk and Denial of Service (DoS) attack. In addition, no other fog node is integrated into a 

network to minimize the fog node's failure probability during the data aggregation process. 

Furthermore, the schemes [9, 56] are based on heavyweight cryptosystems for preserving data 

privacy, such as pairing-based cryptography with third party consideration to generate private/ 

public keys, which increases the performance overhead of fog computing network. Data 

replication [50-53] has also been considered in fog-enabled IoT to improve the data's 

performance efficiency and reduce IoT network latency and turnaround time to cloud 

computing. However, these schemes have not considered preserving data privacy during the 

data replication process [50-53]. This thesis aims to provide a framework for efficient privacy-

preserving data aggregation and replication to bridge the identified limitations in [9, 12, 13, 50-

56].  

3. Research Questions

The main objective of this thesis is to design a framework for efficient data aggregation and 

replication to preserve data privacy for fog-enabled IoT applications. Research Question (RQ) 1 

focuses on the design approach and factors for measuring the efficiency and effectiveness of the 

proposed framework to provide data privacy during data aggregation. RQ2 aims to optimize the 

performance efficiency of the proposed data aggregation scheme in RQ1 using an optimization 

method. Finally, RQ3 focuses on the efficiency and effectiveness of a proposed framework for 

preserving the privacy of data replicas. The following research questions are addressed to design 

the schemes of the framework. 

RQ 1: What design approach and factors can be used for creating a scheme to achieve effective 

and efficient privacy-preserving data aggregation for fog-enabled IoT? 

Sub-questions: 

1a. How to model the performance efficient privacy-preserving data aggregation scheme? 

1b. Is the proposed privacy-preserving data aggregation scheme efficient to optimize the 

performance overhead with distributive data aggregation compared to traditional schemes? 

1c. Is the proposed privacy-preserving data aggregation scheme effective to preserve the data-

owner-defined level of privacy for data aggregation? 
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RQ 2: What design method can be used to optimize the performance efficiency of the proposed 

data aggregation scheme for fog-enabled IoT? 

2a. How to model time and energy-efficient multi-objective optimization method for data 

aggregation? 

2b. Is the proposed multi-objective optimization method efficient to optimize time and energy 

consumption compared to the traditional optimization methods? 

RQ 3: What design approach and factors can be used for creating a scheme to achieve effective 

and efficient privacy-preserving data replication for fog-enabled IoT?  

Sub-questions: 

3a. How to model the performance efficient privacy-preserving data replication scheme using 

the proposed data aggregation scheme?  

3b. Is the proposed privacy-preserving data replication scheme effective and efficient to 

preserve data replicas' privacy compared to traditional schemes? 

4. Research Contributions 

This thesis proposes a framework to achieve efficient data aggregation and replication while 

preserving a higher level of data privacy for fog-enabled IoT. The contributions of this thesis are 

outlined below:  

Contribution 1: An in-depth analysis and classification of privacy requirements are presented 

for fog-enabled IoT applications. The mapping of the existing works to privacy classification is 

also provided to distinguish the benefits and improvements that fog-enabled IoT introduces for 

IoT applications. Finally, the state-of-the-art schemes' analysis is discussed to highlight the 

research challenges in preserving data privacy of IoT applications in fog computing with mapping 

to IoT solutions. This contribution is reported in Chapter 2.  

Contribution 2: In this contribution, a lightweight Divide-and-Conquer scheme is proposed. The 

data aggregation scheme considers data processing distribution among fog nodes to preserve 

data aggregation privacy. A Data division strategy for the Divide-and-Conquer scheme is 

proposed based on the Level of Privacy (LoP) defined by a data-owner. The authority is provided 

to the data-owner to define LoP for their data privacy in fog-enabled IoT.   

The performance efficiency of the proposed scheme is evaluated in terms of 

computational, memory, and communication overhead, considering different security 

parameters and comparison with the state-of-the-art schemes. Ouafi et al. & Gope et al. privacy 



10 

models [57, 58] are also considered to analyse the proposed scheme's effectiveness formally. 

This contribution is presented in Chapter 3. 

Contribution 3: This contribution is for RQ2 to optimize the time and energy consumption of the 

data aggregation scheme. First, a multi-objective optimization problem is formulated with a joint 

objective to optimize time consumption and energy consumption for fog-enabled IoT. Inspired 

by Xu et al.'s task offloading formulation [59], time and energy consumption for data aggregation 

is then formulated. Second, the multi-objective optimization method is defined based on NSGA-

III (non-dominated sorting genetic algorithm III) to develop optimal solutions for data 

aggregation. In the NSGA III method, the consideration of reference point methods: Simple 

Additive Weighting (SAW) [60] and Multi-Criteria Decision Method (MCDM) [61] selects the 

optimal solution for time and energy consumption of each fog node in a fog-enabled IoT 

network. 

Comprehensive simulations and systematic experiments are conducted to demonstrate 

and evaluate the performance efficiency of the proposed scheme in terms of evaluation metrics, 

including the degree of workload imbalance and standard deviation. In this contribution, the 

performance efficiency of the proposed method is also evaluated with state-of-the-art methods. 

This contribution is reported in Chapter 4.   

Contribution 4: A data replication scheme is proposed to efficiently process data replicas and 

effectively preserve the privacy of data replicas. This contribution is for RQ3, which is based on 

the proposed system model of the data aggregation scheme. First, a data replica creation 

scheme efficiently selects fog nodes for data replica creation. The replicas creation in the 

proposed scheme considers a basic replica creation model in [62], and the model is extended 

according to the requirements of the system model. The proposed scheme then generates data 

replicas based on the data-owner's Level of Privacy (LoP). Second, a data replica placement 

scheme is proposed to store data replicas in a distributive manner. The replica placement 

scheme considers a priority level based on the LoP and service capacity of fog nodes. 

Third, the time complexity, privacy, and time series analysis are conducted for the 

proposed schemes. For privacy analysis, Shacham and Chen et al.'s privacy models [63, 64] is 

considered to perform the formal privacy analysis of the proposed schemes. For the time series 

analysis, the Autoregressive Integrated Moving Average (ARIMA) model [65] is adopted to verify 

the accuracy of the proposed replica creation and replica placement schemes. In this 

contribution, the performance efficiency evaluation of the proposed schemes is presented in 

terms of influential parameters, computational, memory, and communication overhead 

compared with the existing schemes. This contribution is presented in Chapter 5.  
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These four contributions of the thesis address all the RQs outlined in Section 3. In 

addition, the thesis methodology adopted for developing the RQs is presented in Section 6. 

5. Publications 

Journal Publication 

• Sarwar, Kinza, et al. "Lightweight, Divide-and-Conquer privacy-preserving data aggregation 

in fog computing." Future Generation Computer Systems 119 (2021): 188-199. 

• Sarwar, Kinza, Sira Yongchareon, Jian Yu, and Saeed ur Rehman. " A Survey on Privacy 

Preservation in Fog-Enabled Internet of Things". ACM Computing Surveys. (Accepted) 

Conference Publication 

• Sarwar, Kinza, Sira Yongchareon, and Jian Yu. "A brief survey on IoT privacy: taxonomy, 

issues and future trends." International Conference on Service-Oriented Computing. 

Springer, Cham, 2018. 

• Sarwar, Kinza, Sira Yongchareon, and Jian Yu. "Lightweight ECC with Fragile Zero-

Watermarking for Internet of Things Security." 2018 17th IEEE International Conference On 

Trust, Security And Privacy In Computing And Communications/12th IEEE International 

Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE, 2018. 

Under Review Articles 

• Sarwar, Kinza, Sira Yongchareon, Jian Yu, and Saeed ur Rehman. " Joint Optimization of Time 

Consumption and Energy Consumption for Data Aggregation in Fog-enabled IoT 

networks". IEEE Internet of Things Journal. (Submitted) 

• Sarwar, Kinza, Sira Yongchareon, Jian Yu, and Saeed ur Rehman. " Efficient Privacy-

Preserving Data Replication in Fog-enabled IoT ". Future Generation Computer Systems. 

(Submitted) 

6. Research Methodology 

This thesis adopts simulation and analytical modelling to achieve the objectives of the proposed 

framework. Figure 2 illustrates the research methodology. 
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 Considering the in-depth analytical observations from the literature, Chapter 2 first 

explores the potential of privacy preservation for fog-enabled IoT in terms of performance 

efficiency and privacy effectiveness. Then Chapter 3 proposes a privacy-preserving data 

aggregation scheme based on analytical observations from the literature. Chapter 4 provides 

the time and energy consumption of the proposed data aggregation scheme and apply 

optimization algorithms to reduce the computational, memory, and communication 

Chapter 5 
Efficient Privacy 
Preserving Data 

Replication 
Scheme 

Chapter 3 
Lightweight 

Privacy Preserving 
Data Aggregation 

Scheme 

Efficient Privacy-Preserving Data Aggregation and Replication Schemes for 
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MATLAB and Pareto Fronts  
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Comparative Analysis
using MATLAB

Figure 2 Research Methodology 
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consumptions. Finally, Chapter 5 provides a design of a data replication scheme for the proposed 

data aggregation scheme considering the privacy of data replicas during data aggregation. 

For implementing and evaluating the performance efficiency and effectiveness of the 

proposed schemes, this thesis adopts computer-based simulation, mathematical and privacy 

modelling, and statistical analysis. Different network scenarios are considered in Network 

Simulator to generated results for statistical analysis (Chapter 3 to 5). Mathematical modelling 

is also carried out in Network Simulator (Chapter 4 and 5). The genetic model is integrated with 

Network Simulator for mathematical modelling of data aggregation optimization (Chapter 4). 

Further, the MATLAB tool is used to evaluate the performance of the proposed schemes 

(Chapter 3 to 5). Correlation between sensitive parameters influencing the time and energy 

consumption is evaluated using Pareto fronts and box plots in MATLAB (Chapter 4). Box plots 

are also used to analyze the correlation between sensitive parameters influencing the data 

replication scheme (Chapter 5). In addition, Autoregressive Integrated Moving Average (ARIMA) 

model [65] is considered to verify the accuracy of the data replication scheme.     

7. Thesis Structure

The thesis is communicated in six Chapters, and Figure 3 illustrates the overall structure of this 

thesis. Chapter 1 gives an overview of the research work. Chapter 2 presents a review of 

literature, which begins with an introduction of privacy requirements for IoT applications with 

the evolution of privacy-based schemes. The following sections in this Chapter provide the 

classification of privacy-based schemes in IoT and the mapping of schemes to fog-enabled IoT 

models. Finally, the open research challenges motivate the identification of the research gaps in 

preserving the privacy of IoT applications in fog-enabled IoT networks. 

Chapter 3 presents the scheme for preserving the privacy of data aggregation. It 

provides an in-depth analysis of the proposed scheme with system and adversary models. The 

Chapter also gives the security analysis and performance evaluation comparison with the 

existing schemes. Chapter 4 presents the optimization scheme for the proposed data 

aggregation scheme. The Chapter outlines the system and problem formulation followed by the 

multi-objective optimization method. The performance evaluation considering statistical 

analysis and comparative analysis with state-of-the-art schemes is also presented in this 

Chapter.  

Chapter 5 presents the data replication scheme with system and adversary models and 

time complexity analysis. It also provides experimental results, privacy, and performance 

analysis to evaluate the efficiency of the proposed scheme. Then Chapter 6 concludes the 
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research by summarizing the contributions and limitations of the proposed framework with 

recommendations for future research. 

  

 

 

  

Figure 3 Thesis Structure 
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‘We are all now connected by the Internet, like neurons in a giant brain’. 

  ---Stephen Hawking 

Chapter 2: A Survey on Privacy Preservation for Fog-Enabled IoT 

Abstract 

The Internet of Things (IoT) is a ubiquitous network that connects various kinds of network and 

mobile devices, sensors, data processing devices, and software platforms and applications to 

the Internet, such as vehicles, home appliances, and medical apparatuses. Despite the rapid 

growth and advancement in the IoT, there are critical challenges that need to be addressed 

before the full adoption of the IoT. Individual privacy is one of the hurdles towards the adoption 

of IoT. Individuals have concerns over the potential misuse of their data and identity in IoT 

applications. Several researchers have proposed different approaches to reduce or eliminate 

privacy risks. However, most of the existing solutions still suffer from various drawbacks, such 

as huge bandwidth utilization and network latency, heavyweight cryptosystems, and policies 

that are applied on sensor devices and in the cloud. To alleviate such drawbacks, recently, a 

concept of Fog-enabled IoT has been introduced, which extends cloud computing to the IoT 

network edge providing low latency, scalability, computation, and storage services. In this 

survey, we first aim to comprehensively review and classify the privacy requirements for a better 

understanding of privacy implications in IoT applications. Based on our classification, we 

highlight ongoing research efforts and limitations of the existing privacy-preservation 

techniques for the IoT applications and map the existing IoT schemes with fog-enabled IoT 

schemes to elaborate on the benefits and improvements that fog-enabled IoT brings to preserve 

privacy in IoT applications. Furthermore, based on our study, we enumerate research challenges 

in fog-enabled IoT and reveal future directions for fully preserving the privacy of IoT applications. 

This Contribution has been accepted for publication in ACM Computing Surveys Journal 
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1. Introduction

The wide deployment of the Internet of Things (IoT) has resulted in the interconnectivity of 

smart things on a worldwide scale [4]. It is estimated that IoT devices connected to the Internet 

will reach 41.6 billion by the year 2025 [6]. Also, the amount of data generated by IoT devices is 

increasing in size [4]. Due to the device's limited battery, processing, and memory resources, the 

generated data is offloaded to cloud computing for computation, analysis, and long-term 

storage. Offloading IoT data to cloud computing increases network overhead, including latency 

and bandwidth. Compared with cloud computing, fog computing reduces the network overhead 

and congestion by alleviating the workload from a cloud to the edge of a network close to the 

IoT devices [66].  

Fog computing is a distributed computing paradigm where IoT devices’ computation and 

analysis are performed at the network edge [10], as shown in Figure 4. As the concept of fog 

computing is introduced for IoT applications, the terminology fog-enabled IoT is used 

interchangeably [16]. Along with the IoT resources distribution, fog-enabled IoT also considers 

the user access controls’ and data policies’ management, data ownership, and security 

credentials [67]. Further, collecting data from thousands of smart devices can be aggregated 

using multiple aggregators in fog-enabled IoT. Data aggregation upgrades the usability and 

performance of IoT applications.  

Besides this, the fog-enabled IoT plays an essential role in mitigating the privacy issues of 

IoT applications. The concerns of data owners over the misuse of their data and identity place 

privacy as one of the critical challenges in IoT applications. IoT devices not only collect the data 

owner’s identity data (name, telephone, number, or address) but monitors their activities, 

behaviors, health, genome, and social interactions [68]. For preserving such data collected by 

IoT devices, robust privacy algorithms (e.g., public and private cryptography) are required. Due 

to the limited IoT resources [23, 24], the implementation of efficient privacy algorithms on such 

IoT devices is critical. Keeping the IoT devices' limitations in mind, researchers in [25-31] 

considered remote service providers or Cloud to process privacy algorithms. The consideration 

of remote service providers or the Cloud increases the potential risks of IoT applications’ 

information leakage and IoT network bottleneck. 

In contrast, fog-enabled IoT provides a promising medium for preserving the privacy of data 

collected from IoT devices. While fog nodes reside nearby end devices, fog-enabled IoT mitigates 

the chances of eavesdropping on IoT data [13]. The processing workload and data storage of IoT 

devices with heavyweight security measures can be transmitted to fog nodes to reduce the 

performance and network overhead. 
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Several surveys have highlighted the security and privacy concerns of IoT applications in 

cloud-based IoT solutions [69-73]. Systematic literature reviews have addressed the awareness 

of generic security and privacy issues in IoT [69, 70]. These reviews analyzed the existing 

solutions and provided recommendations to involve security policies and standards. The reviews 

also addressed the Identity and location privacy in cloud-based IoT solutions for the Electronic 

Health Record (EHR) system's robustness.  

Due to the advancement of technology, surveys [71-73] considered the additional security 

challenges of IoT applications in cloud-based IoT solutions. The authors discussed programming 

analysis techniques and security communities to best fit in for additional challenges. They claim 

that the focus of the programming analysis techniques is mostly on smart homes, and there is a 

lack of diverse IoT applications that need to be addressed in the future. Although this review is 

an in-depth Application Programming Interface (API’s) analysis for privacy, the APIs limitations 

for IoT systems have not been considered. The limitations are the high-performance overhead 

without optimization strategies.  

The studies [69-71, 74, 75] only focused on addressing overall security issues and 

countermeasures in cloud-based IoT applications, ignoring the in-depth analysis of privacy 

regarding issues and countermeasures. Recommendations from [69-71, 74, 75] emphasize that 

robust privacy-preserving algorithms, including lightweight attribute-based encryption and fully 

homomorphic techniques, should be applied to IoT application data in cloud. As discussed 

before, applying strong privacy algorithms in cloud computing results in high network latency, 

an increase in processing burden, and network communication vulnerabilities. Due to this, cloud 

computing may result in a weak privacy system for IoT applications. In all of the afore-discussed 

Figure 4. Fog Computing Environment 
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literature reviews [69-75], there have been no discussions and recommendations on mitigating 

cloud-related concerns, for example, network vulnerabilities, high latency, processing burden, 

third-party involvement for providing strong data privacy.  

Introduction to fog computing for IoT applications as a middleware can overcome the cloud-

based IoT concerns as discussed in [76]. The study focused on solutions that fog computing has 

introduced for data security. No in-depth privacy analysis to mitigate the cloud-based IoT privacy 

issues in fog computing has been provided. Similarly, a review provided a discussion on security 

and privacy challenges in fog computing [77]. Another review highlighted potential security risks 

in microservices-based fog applications [78]. The reviews only focused on security-based risks, 

whereas the discussion on user's data privacy protection has not been highlighted. The reviews 

[79, 80]  provided a security-based solution for IoT applications in fog computing. There is no 

detailed discussion on preserving privacy challenges and future trends to enhance privacy in fog-

enabled IoT. Also, a review [81] provided encryption security technologies in cloud and fog-

enabled IoT systems. This review summarizes the security systems by highlighting the future 

aspects of the user’s privacy protection. The review is a generic introduction to architecture and 

layers in fog-enabled IoT. The exhaustive research to highlight the pros and cons of fog-enabled 

IoT security and privacy systems is missing.  

The surveys [76-78, 81] either considered generic privacy issues and solutions in fog-enabled 

IoT or no in-depth classification and up-to-date summarization of privacy in fog-enabled IoT. 

Furthermore, the full utilization of privacy-based IoT platforms not only depends on addressing 

the generic privacy requirements with challenges, countermeasures, and concerns but also on 

analyzing in-depth privacy problems and solutions with an enhancement to IoT application 

domains. In our study, we comprehensively reviewed and analyzed literature related to IoT 

privacy preservation issues and solutions with a focus on fog-enabled IoT.  

We summarize our main contributions as follows. 

1. We present an in-depth analysis and classification of privacy requirements in fog-enabled 

IoT applications. 

2. We identify the state-of-the-art solutions and research challenges in preserving privacy in 

IoT. 

3. We map the existing works to our privacy classification for distinguishing the benefits and 

improvements that fog-enabled IoT introduces in IoT applications.  

4. We highlight open research challenges and potential future directions.  

The remainder of this paper is organized as follows. Section 2 introduces privacy 

requirements in IoT along with the evolution of privacy-based schemes in IoT and fog-enabled 

IoT.  Section 3 provides an in-depth analysis and classification of privacy-based schemes in IoT 
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and the mapping of the state-of-the-art IoT-based models and fog-enabled IoT models. Section 

4 identifies and discusses open research challenges, and the paper is concluded in Section 5. 

2. Privacy requirement In Fog-enabled IoT

This section provides the classification of privacy-preserving requirements in fog-enabled IoT. 

The section also highlights the number of solutions proposed for each privacy-preserving 

requirement to give an overview of research contributions over a decade. In sub-section 2.1, we 

provide an overview of privacy preservation evolution regarding IoT and fog-enabled IoT. Then, 

we discuss a comprehensive review related to privacy requirements as well as threats, 

vulnerabilities, and attacks associated with these requirements in sub-section 2.2.  

2.1. Evolution of Privacy in IoT and Fog-enabled IoT 

Research in the privacy preservation of IoT data has gained significant attention in this era. 

Figure 5 depicts the research contributions of related scientific communities towards the 

evolution of privacy preservation in the IoT and fog-enabled IoT from 2010 to 2020. Before 2010, 

initial research has been carried out to identify and analyze the importance of security and 

privacy in the IoT application. The full realization of privacy for IoT applications has been 

considered after 2010.  2015 was a significant year for considering all privacy requirements in 

IoT applications. Before then, the main focus was on designing privacy standards and policies of 

IoT data.  

In  2010, symmetric techniques for identity privacy of customer data has been proposed for 

IoT applications [82]. Only 0.1% of the proposed models discussed the privacy policies associated 

with IoT user’s behaviors and actions, and location privacy. The enhancement in privacy policies 
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with legal obligations for IoT users' identity, location, and state of body and mind privacy has 

been deployed in 2011 [83-85]. In 2012, identity risk management with data aggregation, media, 

and social interaction privacy was introduced [37, 86, 87]. Approaching 2013 is when there were 

opening diversifying privacy ways in IoT with enhancements in privacy policies and methods for 

identity and location privacy, for example, oblivious methods and attributes signer techniques 

[88-92]. 

In 2014, a collaboration among cryptographic techniques has been carried out to achieve a 

state of body and mind, media, and social interaction privacy with high-performance computing 

efficiency [93-95]. Advanced levels of privacy measures with semantic ontologies for behavior 

and action, media, and query privacy have been introduced in 2015 [25, 26, 39, 96-101]. In 2016, 

there was a noticeable increase in the number of publications [33, 102-105] for identity, 

location, and behavioral and action privacy. These publications aimed to preserve the privacy of 

IoT data using fog computing for IoT applications. 2017 can be considered a technology 

advancement year, focusing on privacy considerations in IoT applications, including temporal 

media and identity privacy [56, 106-119]. Moreover, query and location privacy concepts have 

been applied in the fog-enabled IoT platforms [67, 120, 121].  

Blockchain has been adapted for identity privacy in IoT applications in 2018 as the 

technology overcomes major limitations of centralized data processing and secret sharing [41]. 

Further, the range of research expanded for fog computing with the introduction of data 

ownership, forward secrecy, and enhancement in data query, data aggregation, state of body 

and mind, location privacy, and data owners' access control [7, 40, 113, 122-138]. In 2019, new 

studies [139-141] introduced related to strengthening the state of body and mind privacy for 

the healthcare sector. Also, the techniques for data transparency with the Health Insurance 

Portability and Accountability Act (HIPPA) and General Data Protection Regulations (GDPR) [139-

141]. Social interaction, data aggregation, and identity privacy for IoT applications such as smart 

devices have been considered in fog computing [7, 139, 140, 142-145]. Data query and identity 

privacy using the blockchain concept had also been highlighted in other researches [7, 141, 142, 

144-146]. The number of research for each privacy requirement has shown a tremendous

increase in 2019 [147-171]. In early 2020, more focus has been on blockchain for preserving 

behavior and action, identity, and location privacy [148, 149, 154, 155, 159, 164-166, 169-171]. 

We can also depict from Figure 5 that in 2020 there is an increasing number of publications 

related to temporal, location and policies, and access control privacy [147, 150, 154, 155, 158, 

159, 161, 165, 167-171]. From 2017 onwards, the number of publications considered platforms 

to deal with privacy requirements such as media, social interactions, data aggregation, data 

query, and temporal in both IoT and Fog-enabled IoT. The focus was not only on basic privacy 
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preservation (i.e. Identity, location, and behavioral and action privacy).  

2.2. Classification of Privacy Requirements in Fog-enabled IoT 

To understand the privacy issues and countermeasures of fog-enabled IoT in detail, the analysis 

of the privacy requirements is presented first, which serve as the building blocks of preserving 

privacy in IoT applications. Figure 6 depicts the privacy requirements based on the existing 

literature under our study and we group the requirements into two main categories: Content 

privacy and Context privacy. Discussions on each of the content privacy requirements with 

related concerns are elaborated in sub-sections 2.2.1. In sub-section 2.2.2, we discuss the 

requirements of content privacy in detail. 

 

2.2.1. Content Privacy 

In wireless communication, the terminology ‘content’ refers to the set of data that is used to 

deliver a particular message to the recipient. The data set may include particular actions, habits, 

health, behavior, or social conversations of an individual or group of individuals, or 

organizations’ infrastructure [72]. The protection of such content from eavesdroppers and 

attackers enables content privacy. Content privacy needs to be protected from apparently two 

types of adversaries. One is an external adversary, which eavesdrops on data communication 

between sensor nodes [71]. Another one is an internal adversary as a node participating in the 

communication, manipulated and captured by an adversary [71]. Although a typical approach 

to content protection can be achieved using authentication and encryption mechanisms. These 

mechanisms alone cannot guarantee content privacy. Also, the adversary may have the 

potential access to a private set of data, including thought and emotion, body and state of mind, 

Figure 6 Privacy Requirements in Fog-enabled IoT 
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and social interactions [172]. Therefore, it is of utmost importance to understand all the aspects 

of content privacy requirements at the early stage of fog-enabled IoT design, as follows: 

• Behavior and Action: Content relevant to individuals' actions, habits, hobbies, and purchase 

patterns are aspects of behaviors and actions. The exploitation of such content may result 

in threatening data user’s lifestyles [173-175]. For example, the data users’ credit/debit 

cards or online shopping details may be shared with retailers to identify users’ interests and 

profiles. The retailers can also use profile information to forward related advertisements to 

the users [87, 175, 176]. Introducing solutions that can mislead attackers from disclosing 

information about an individual’s behaviors and actions is one of the prior requirements. 

• State of Body and Mind: Privacy of state of body and mind is equally important as that of 

behavior & action. State of body and mind encompasses an individual’s mental states, 

health, biometric, emotions, genome, and opinions protection from attackers [177, 178]. 

Violation of such privacy may lead to prosecutions by authoritarian regimes, discrimination 

by insurance companies and employers [172].  

• Media: The scope of content privacy is not only limited to personal actions, health, and 

patterns but also image, video, and audio of individuals, businesses, and assets. Media 

includes camera footage, CCTV, and video uploads to the Internet [179, 180]. The 

distribution or creation of user-related media without users' consent can result in a privacy 

violation [172]. Consequently, users may not consider the network reliable for media sharing 

and be reluctant to upload and forward images, videos, or audios from smart devices to the 

Internet. 

• Social Interactions: Individuals or group’s conversations on a social media platform may 

expose a person’s identity, interactions metadata, health, opinions, and conversation time 

durations [94, 175, 181]. In short, social interaction is the Florilegium of above mentioned 

three privacy requirements as it combines all of them. Therefore, achieving social 

interaction privacy is a challenging task in the IoT and Fog-enabled IoT network. 

The following two situations are where content privacy is not sufficiently covered with these 

basic but still necessary requirements.  

• Data Aggregation: A process of combining information from different data sources (which 

may belong to any of the requirements mentioned above) into a condensed message. The 

additive and non-additive aggregation methods consist of sum, average, maximum, and 

minimum [182, 183]. An example of a data-aggregation operation is shown in Figure 7, 

which consists of aggregators for collecting data from different sensors and aggregating data 

altogether. Data aggregation significantly reduces the performance overhead of sensor 

nodes for processing data. Data aggregation is an essential process for maintaining or 

increasing the durability and efficiency of sensor networks [33, 72, 160, 184-186]. Thus, 
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preserving the privacy of data during data aggregation is a considerable privacy 

requirement.  

• Data Query: A data-driven query is a process that a user requests on a data source/

processing node for their wanted data while ensuring that the data of sensor nodes is kept

confidential and intact [72, 145, 146, 187]. Data users have concerns about their data

queries, whether they are kept private or not. Attaining data query privacy has become an

essential task in content privacy. Since the performance overhead grows exponentially with

the widespread adoption of IoT sensor devices, achieving data query privacy has been more

technically challenging [71, 145].

2.2.2. Context Privacy 

Context privacy focuses on features of the communication that may be exploited to infer 

contents within the communication. The contextual features of the communications include the 

size and number of transmitted messages, the time and rate at which messages are being sent, 

the frequency spectrum used by the nodes, the source, and the destination of transmissions [71, 

72, 145, 146]. IoT applications focus mainly on protecting the data set using encryption 

techniques during the data content transmission and ignoring identity and location privacy. The 

ignorance of such privacy results in revealing the transmission data’s patterns, which can be 

traceback to the original data set [72, 122, 141, 188]. Due to the limited IoT resources, protecting 

context privacy is challenging. In order to understand context privacy in more detail, we divide 

context privacy requirements into four categories: 

• Identity Privacy: Users wish that their identity remains anonymous during data transmission

and processing in wireless sensor networks [75, 189]. A pseudonymity concept has been

introduced to provide identity anonymity to users. The concept is based on a persistent

Figure 7 Example of Data-aggregation 
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identifier to ensure that a service can be offered from initiation to completion without 

revealing any user’s identity and location [70, 190]. Pseudonym generation and periodic 

updating can increase an intolerable computational cost for resource-constrained IoT nodes. 

Also, pseudonyms cannot resist physically dynamic tracing attacks for location 

identification. Fog-enabled IoT can be used as a paradigm to overcome pseudonyms location 

identification and computational constraints challenge for operating in a standardized 

manner across multiple IoT applications [70]. 

• Temporal Privacy: The packets transmitted to report a data generation or processing event 

have associated contextual spatial-information such as packet creation time and location 

with them  [191]. An attacker can eavesdrop on the transmission of packets to gain a rough 

estimate of contextual Spatio-temporal information through traffic analysis even though the 

event data in the packet is encrypted [72, 181, 191, 192]. An attacker can use this Spatio-

temporal information to disrupt the IoT network's proper functioning [124, 191]. Spatio-

temporal information also estimates a correlation between the successive events in a series 

[193]. Initially, an attacker is unaware of the event creation time. However, eventually, by 

monitoring traffic patterns near the event’s sink node, an attacker can deduce the temporal 

information related to an event [191, 194].  

Temporal privacy requires to prevent an attacker from analyzing the traffic traces 

reporting events to infer the exact Spatio-temporal information about the occurrence of an 

event [174, 192]. The concept of anonymity has been adopted to preserve temporal privacy. 

In this concept, data packets delay the information messages instead of batching all 

information together in packets transmitted over the network [192]. Packet delay using the 

buffering technique at the intermediate nodes has been considered in sensor networks 

[195]. The reason for buffering at the intermediate node is to obfuscate the temporal 

information from an attacker. Random delays reduced the correlation time between packet 

generation and transmission to sink nodes [191, 196]. In these techniques, protocol-aware 

attacker and node indistinguishability to preserve temporal privacy have not been 

considered. An additional protocol for maintaining buffer and delays has added more 

computational overhead to the network. Therefore, sustaining Spatio-temporal privacy with 

high-performance efficiency in a vast IoT paradigm is a critical task. 

• Location Privacy:  In IoT applications such as for Healthcare, Military, Assets, and Radiation, 

it is important to keep information private about the location of sensor nodes, which 

generates or transmits the data of the data-owner [105, 122, 197, 198]. If the source 

information is exposed to an attacker, it will allow an attacker to backtrace entire packet 

routes and locate source data usage in the network. The source location problem was first 

identified in the panda hunter game [199]. The location and activities of pandas were 
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continuously monitored using wireless sensor networks [198, 199]. Using wireless sensors 

antennas’, an attacker could analyze the broadcast patterns between the sensor nodes. 

From this broadcast information, an attacker could trace back packet routes leading to the 

source node location and thus the pandas [106, 198].  

Another approach for source location problems was introduced in military 

environments [199]. In this approach, soldiers were wearing sensor nodes to relay 

information packets to the sink node, such relay of information packet can be compromised 

by an attacker. To identify the location of soldiers, an attacker may use a spectrum analyzer 

to trace packets in the network. Shortest path routing [155] and phantom single-path 

routing [156] schemes have been introduced to tackle such issues. Packet routes between 

source and sink nodes are short, which can be easily traced back by an attacker [199].  

Source node located near the sink node and using a single fixed routing path causes poor 

location privacy [200]. Using randomly selected routes and multiple sink nodes [108] 

introduces additional communication and packet delivery overhead. The concept of 

pseudonyms can also be used to hide source node locations [70]. The location cannot be 

directly hidden using pseudonyms as the traceback of packet routes can lead an attacker to 

observe the location and identify the real identity of the source [72, 201]. 

• Privacy Policy and Access Control: Full privacy protection cannot be achieved without

identifying and specifying privacy policies, procedures, and individual access to protected

data. Policies and procedures provide guidelines to understand the appropriate access, use,

rights, and disclosure of protected information [202, 203]. Privacy policies may include

descriptions or rules regarding individuals’ access to protected data, amendment of data,

requests for restrictions of data use, and disclosure of data [70, 204, 205].

Setting up privacy policies and procedures for IoT devices with limited computational 

and memory resource availability is challenging. Because setting most of the policies and 

procedures in IoT applications are based on heavyweight-driven ontologies, rules, and 

behavioral modeling. Further, approaches for designing and implementing policy-driven 

rules, ontologies, and behavioral modeling for IoT devices are at infant stages. The nature 

of the IoT devices varies with the applications of use [205]. For example, some IoT devices 

act as mediators serving only data transmission tasks [204], whereas a few devices are used 

for data capturing and processing purposes. The context in which IoT devices align with 

policies and procedures regulation differs [137]. For example, an IoT device initially designed 

for lifestyle monitoring is only subjected to lifestyle policy regulations and constraints [206]. 

The device cannot incorporate with medical appliances policies.  

The policies and procedures regulation enforcement mechanism is unlikely to be 

possible to deploy across different IoT applications. For example, a front-end application may 
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provide access control to individuals for privacy setting modification. In contrast, cloud 

storage may only provide access guarantees per application, not to individual users of the 

application [137]. Therefore, setting up policies and access control for each IoT device and 

application in different domains with optimized performance efficiency is an essential task 

[70].  

Based on the above discussion, we can understand that achieving privacy in fog-enabled IoT 

platforms successfully relies on the above-discussed privacy requirements. Keeping in mind 

resource allocation, storage, and memory capabilities while designing an IoT platform or 

application with full consideration of all the requirements is crucial. Furthermore, assuring that 

the design is invulnerable to security and privacy threats and attacks adds more complexity. 

Therefore, the following Section aims to analyze the state-of-the-art privacy-based schemes and 

provides an in-depth analysis of various considerations in designing effective privacy schemes 

for IoT applications in IoT and fog computing platforms. 

3. Review of Privacy Preservation in IoT and Fog-enabled IoT

This section highlights the challenges that traditional IoT solutions face in preserving privacy and 

how fog computing can overcome those challenges of IoT applications. In this section, the 

literature review of state-of-the-art IoT and fog-enabled IoT schemes for preserving privacy is 

provided. The state-of-the-art schemes are discussed according to the classification of privacy 

requirements. The section consists of three subsections. In sub-section 3.1, we provide a 

comprehensive review of privacy-based schemes in IoT applications based on the privacy 

requirements classification discussed in Section 2, which summarizes research work being 

carried out without fog computing utilization. The second sub-section 3.2, then reviews fog-

enabled IoT schemes. Lastly, sub-section 3.3 discusses the limitations of fulfilling privacy 

requirements in IoT and a systematic mapping between the existing works in IoT and fog-

enabled IoT, and improvements that fog computing introduces to the IoT paradigm.  

3.1. Review of Privacy Preservation in IoT 

Preserving content and context privacy at IoT’s four main axes such as embedded devices, real-

time operating systems (RTOS), network protocols and the Internet, and offload storage or 

processing center is challenging [207]. The distribution of wireless sensor data between main 

axes makes it even harder for data owners, who can be an organization, an individual, or a group 

of individuals to retain their data privacy. The data is transmitted, processed, and stored in IoT 

using a different set of protocols and procedures, which may be vulnerable to a certain type of 

attack and may expose an individual’s private data to an attacker. Therefore, we identify, 

discuss, and suggest privacy principles from the end-to-end view for IoT applications. Table 1 
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categorizes various application domains of privacy-based IoT schemes for the privacy 

requirements discussed in content and context privacy sub-sections 3.1.1 and 3.1.2, 

respectively. 

 

3.1.1. Content Privacy 

Researchers and practitioners have used different approaches to achieve content privacy in IoT 

applications. We discuss here possible solutions adopted for each of the content privacy 

requirements classified in Section 2. Table 2 presents an overview of the schemes providing 

requirements of content privacy with features including privacy techniques, privacy level, 

performance levels including communication, computational and memory overheads. This table 

is discussed in detail in subsequent requirements of content privacy. 

•  Behavior and Action: For protecting the behavior and actions of individuals, anonymization 

and obfuscation solutions on IoT platforms have been provided [96, 103, 114, 116, 117]. For 

example, in a smart city, a security-aware automatic fare collection system has been 

introduced by anonymizing smart card unique identifications to conceal linkages with 

cardholder's tagging and location patterns [96]. The smart card and RFID readers are nearby, 

which reduces the communication and computational overhead of smart card 

Table 1 Privacy-based IoT Application Domains 
Category Sub-Category Application Domain 

Content 

Privacy 

Behavior and Action Smart city [56, 96, 118, 123, 208], Healthcare system [209],  

Authority management system [102, 125], Smart homes: [116] 

State of Mind and 

Body 

Healthcare system: [85, 126, 209], Authority management system 

[125] , Video storage system: [127] , Smart city: [128, 139], Smart 

home: [138] 

Media Smart parking system: [95], Smart city: [95, 180], Content-centric 

networks: [111],  Smart home:[110, 112-114], Video storage 

system: [127] 

Social Interaction Augmented reality devices: [94, 210, 211] 

Data Aggregation Wireless sensor network: [93], Healthcare system: [103], Smart 

grid: [40] 

Data Query Smart city: [212, 213], Smart home: [126] 

Context 

Privacy 

Identity  Smart city: [123, 128, 136, 208, 214, 215] , Smart home: [112-114], 

Wireless sensor network: [93, 104], Healthcare system: [216],  

Content centric networks:[111] 

Temporal  Smart city: [123] 

Location- Smart city: [123], Wireless sensor network: [93], Smart homes: 

[112, 114, 116] 

Privacy Policy and 

access control 

Smart home: [138], Smart city: [101, 119, 204, 217]  
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anonymization. Although the proposed solution has preserved the privacy of the location 

patterns between the smart card and RFID reader, data content between a public transport 

system and RFID readers is transmitted in raw format. No encryption Algorithm has been 

applied to keep RFID readings secure and private, which results in a low privacy preservation 

level, as pointed out in Table 2. The memory load on the back-end system increases for 

periodically generating keys to keep the communication link between the smart card and 

RFID reader secure.  

 In a smart city, a one-way hashing solution to preserve the privacy of RFID readers for 

anonymous authentication has been proposed [117]. The solution ensures that the data of 

individuals, which leads to habitual patterns, are kept private. The anonymous 

authentication solution is efficient in terms of performance, including computation, 

communication, and memory. The method used in the solution is that one-way hashing is a 

lightweight operation, which only generates authentication requests and IDs while reducing 
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unnecessary modular and hash operations. Lightweight one-way operations may 

compromise data privacy, e.g., an attacker can launch a birthday attack for the hash 

collisions and gain habitual patterns of an individual.  

Instead of a one-way basic hashing solution, a lightweight AES and SHA1 based scheme 

has been utilized to design a framework for achieving content privacy in smart homes. 

Sensor devices and home gateway perform AES encryption operations to preserve the 

identity of home appliances and the sensor device's presence [114]. Due to the AES 

operations applied on sensor devices, the computation and memory overhead is high. A 

centralized service provider is also utilized to generate AES encryption keys, authentication 

keys, and data storage. An attacker can compromise the communication link between smart 

home devices and a service provider. Also, the involvement of a centralized unit makes the 

privacy level of the scheme medium. The scheme is also vulnerable to a single point of failure 

threat.  

 A decentralized privacy-preserving scheme to overcome a single point of failure threat 

of centralized processing and storage has been proposed [116]. In the scheme, Diffie 

Hellman key exchange and hashing instead of AES is used to achieve decentralized 

individuals’ behavior and actions privacy in smart homes. For preserving privacy, sensor 

devices create their data blockchains and communicate with other sensor devices, smart 

home miners, and local storage to handle data chain transactions. Miners are responsible 

for transaction handling, and miners are interconnected to smart devices, local and cloud 

storage in a distributive manner. The blockchain transactions are encrypted and processed 

in a shared manner. Thus, miners reduce the computation and memory burden on a single 

smart device by sharing the workload. Although the concept of blockchain can achieve a 

high level of privacy with low computational and memory overhead in smart homes. 

Nevertheless, the distribution of transactions increases communication overhead. Also, 

Diffie Hellman's key exchange protocol gives weak security guarantees considering basic 

hashing for a distributed system in [116]. 

 For preserving behavior and action privacy in a healthcare system, a multi-agent 

architecture concept with a pseudonyms method has been proposed [103]. The method 

provides authority to patients to select their data privacy level so that only selected private 

information is transmitted to medical servers [103]. Despite giving the authority to patients, 

the method cannot be fully utilized since patient data need to be transmitted to a central 

medical server for long-term storage. The central server increases DDOS attack vulnerability 

and leads to data loss caused by a single point of failure. The centralized authority has been 

considered for users’ attribute’s signature generation, leading to a single point of failure 

threat. A decentralized or distributed platform should be required to overcome such 
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limitations. It also incurs high communication overhead due to patient data monitoring, 

policy creation, data collection, and transmission to cloud/local storage based on patients' 

provided level of data privacy. Computational and memory overhead also increases at policy 

agent nodes due to the generation of rule-based XACML (eXtensible Access Control Markup 

Language) to define a patient’s preferred policies. 

In IoT applications, behavior and actions’ data is replicated to various locations in the 

Cloud environment for data reliability, survivability and backup [48, 49].The replication of 

sensitive data network is vulnerable to many attacks, for example, an adversary can modify 

or delete replicas to make data unavailable to end-users. Therefore, preserving replicated 

data privacy at various locations is essential for maintaining the data reliability, 

authentication, and survivability. 

Mansouri & Sharma et al. highlighted data protection concerns in a cloud environment 

[48, 49]. Sharma et al. proposed a scheme for data protection using data division into small 

fragments that can then be replicated to different locations in cloud using a fragment 

placement algorithm [49]. The scheme did not rely on cryptographic measures to encrypt 

data. Sharma et al. claimed that the non-cryptographic nature of the scheme makes it faster 

to perform replica placement operations in the cloud.  

Similarly, Jayasaree and Saravanan considered a data security scheme [48] for data 

replicas. In the scheme, a particle swarm division algorithm has been adopted for optimizing 

the placement of the replicas in cloud computing. The scheme divides replicas into 

fragments and then distributes and stores them using the T-colouring concept [48]. Since 

the data fragments are not encoded, and they are distributed to different locations in the 

cloud, an adversary exposing few fragments would be able to analyze and discover data 

patterns and their meaning. Also, the privacy and reliability of the data are not guaranteed. 

The schemes [48, 49] are also vulnerable to DoS and authentication attacks. 

• State of Body and Mind: Solutions for preserving the individual’s state of body and mind

privacy include data perturbation and distribution with Shamir’s secret sharing techniques,

additive homomorphic encryption, Arnold’s scrambling, and logistic scrambling, and

distributive role-based access controls [218-220, 223]. A data perturbation solution based

on the AES algorithm has been adopted for preserving data privacy at sensors. The data is

distributed among sensors using data fragmentation, and cloud aggregates fragments from

single/multiple sensors [218]. The cloud is utilized to store the aggregated fragments of

data, which incurs low memory overhead for computation and storage. However,

aggregating fragments from multiple sensors incur high data transmission and

communication overhead. The sensors are also vulnerable to jamming and DoS attacks due

to the limited resources of sensors available for computation.
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A solution [219] to improve privacy preservation and reduce communication overhead 

due to distributive computation has been proposed. In this solution, physiological 

parameters of the state of the body are preserved using compressive sensing with Arnold’s 

and logistic scrambling. On the one hand, the solution preserves the privacy of physiological 

parameters by compressing the semi-tensor image parameters and then encrypting the 

parameters at the sender node, i.e. sensor. At the receiver node, the receiver deciphers the 

physiological image using scrambling, decompressing and, hash key. 

On the other hand, computational and memory overhead is low due to the smaller 

measurement matrix for semi tensor images. Communication overhead is less because of 

only two entities, i.e. sender and receiver communication required for data transmission 

and decryption [219]. The limitation of the solution is that the original data can be altered 

without the receiver knowing the actual data in case of the sender node being compromised. 

A data compression solution based on data compression at the sensor node has been 

discussed in [220]. A distributive computation like [218] has also been considered in the 

solution. The proposed solution provided role-based access control to distributive sensors 

in a cluster. A cluster head is responsible for compressing the sensor’s data, and then the 

base station aggregates all data from sensors and decompresses it for long-term storage 

[220].  

Although the scheme reduces computational and memory overhead at cluster heads 

and base-station, compressed data is transmitted in a plain format making data privacy low 

and vulnerable to eavesdropping. For example, in a smart city, individuals using a running 

application may compromise their health data to eavesdropper by measuring the count of 

runs. Therefore, the count of runs can be made secured using encryption techniques, which 

stopped tracking and counting individual runs [223]. Also, medical regulations’ in Health 

Insurance Portability and Accountability (HIPAA) have set up requirements for privacy 

policies that can be extended and implemented by service/ software vendors according to 

the need of data owners. 

• Media: In the past, crowdsourcing, data minimization, obfuscation, media compression, and 

anonymization solutions have been proposed to keep media content as private as possible 

[98, 179, 180, 221, 222]. A crowdsourcing and data minimization scheme has been proposed 

in [221]. The scheme is based on the isolation of sensors from other systems to prevent the 

combination and correlation of personally identifiable data. Isolation partly allows systems 

to acquire sensor data, which is meant for that system to use further or store it. For example, 

in the case of identity verification, the entire video face data is not required to be stored in 

a system. Only vectors of face features are extracted, quantized, encrypted, and used for 

collateralizing and comparison with the previously stored feature vectors [221]. Facial 
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vectors are encrypted using a quasi-fully homomorphic method, which preserves the privacy 

of facial vectors. The performance efficiency of the scheme is high in terms of 

communication and memory, as only extended face vectors are outsourced to a database 

for verification and storage. The drawback of the scheme is that the computational 

overhead medium to low due to heavyweight polynomial computation of quasi-fully 

homomorphic method.  

An obfuscation and anonymization method has also been introduced for facial vectors 

privacy, for example, in multiparty video caching via Content-Centric Networks (CCN), the 

facial identity of an individual request for accessing video content is kept private [222]. The 

method aims to obfuscate individual requests by dispersing the requests across several 

networks with distinct paths.  

A similar obfuscation method for a secure media-based surveillance system has also 

been introduced for smart city platforms [179, 180]. Obfuscation is introduced using packet 

routing and video encoding to preserve the privacy of media data with high computational 

and communication performance efficiency [179, 180]. The obfuscation and anonymization 

methods proposed for media privacy can protect an individual’s privacy, obfuscated or 

anonymized data is still stored on the central unit/cloud. The centralized storage system 

makes these methods vulnerable to a single point of failure threat leading to a DDoS attack, 

which increases the network bandwidth, communication overhead, and data recovery 

issues.  

A distributive cooperated framework to mitigate the centralization issue of media 

privacy has been introduced for smart objects in a smart space [98]. Privacy is deployed using 

distributive cooperation between systems. The systems use a heavyweight Rivest-Shamir- 

Adleman (RSA) algorithm to implement privacy, which is not well suited for resource-

constrained IoT devices. The distributive cooperated framework’s real-world experiments, 

implementation, and comparative analysis are not provided [98]. 

• Social Interaction: Solutions have been proposed for protecting digitally capture images and

live-streamed videos in social gatherings and lifelogging [99, 210, 211, 224]. For social

interactions, the private details of a live video are preserved using a clip art image [211]. An

automatic algorithm transforms the video into a clip art image using image processing. For

transforming a video, the algorithm abstracts the visual details of a video and then detects

a certain object. After detection, an algorithm replaces the object with a clip art image. The

Algorithm preserves the private object of a video from the viewers. The algorithm is only

able to preserve the privacy of a single object at a time.

Further, the aesthetic quality of a clip art image as a replacement is low. A solution based 

on a privacy mediator has been introduced to preserve the privacy of multi-object in live 
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video analytics [210]. In the privacy mediator virtual machine at cloudlet, objects of a video 

stream are decoded and denatured according to the privacy policies. After denaturing, 

including modification of object with clip art image, the obscured bits of video are encrypted 

using AES-128 cryptosystem to preserve the privacy of video analytics. Due to the public-key 

cryptosystem and cloudlet centralized computation and storage, the network overhead 

increases, which incurs low performance efficiency of privacy mediator at the cloudlet. 

A distributed secure computation ensures that individuals’ privacy choices and visual 

features are kept protected publicly for social gatherings [99]. Image captured in a social 

gathering is encrypted using a pallier cryptosystem at a photo capturing sensor device. The 

capture agent and bystander agent are involved in enforcing privacy policies on sensor 

devices securely. Computation of Paillier cryptosystem and enforcement of privacy policies 

require efficient capture agent devices to perform computation with high-performance 

efficiency. However, due to the resource-constrained nature of IoT sensors, the efficiency 

and accuracy of privacy enforcement are not fully achieved in multiparty computation 

distribution. 

• Data Aggregation: Symmetric key and asymmetric key homomorphism methods have been

used for performing operations over encrypted data and then aggregating data securely in

sensor nodes [37-40]. Sensors encrypt data using a symmetric cryptosystem, forwards

encrypted data to an aggregator that encodes it, and then sends the resultant data file to a

base station for decoding/decryption and long-term storage [37, 38].

Although the homomorphic mechanism used by symmetric key optimizes the 

performance overhead with fast operations compared to the public key method, encrypting 

and decrypting data with the same key may result in a key-compromise attack. To overcome 

such an issue, a technique for data division and distribution to different aggregators has been 

proposed [39]. The elliptic curve cryptography method for encrypting data has been utilized, 

which provides the same level of performance efficiency as symmetric cryptosystems. 

However, aggregated data is forwarded to the base station, which causes network overhead 

and an increasing number of data collisions. The memory overhead of a centralized base 

station also increases to store aggregated data. 

Methods to mitigate data collision and centralize data processing were proposed with 

multi-party computation. For example, in a smart grid system, data privacy and reliability of 

smart meter readings have been tackled using homomorphism [40]. Although the scheme 

provides data privacy with scalability and performance efficiency in multi-party 

computation, it does not deal with users’ privacy with lightweight cryptographic methods, 

limiting the use of the scheme in memory constraint IoT. 
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• Data Query: With data aggregation facilities, preserving the privacy of fine-grained search

queries cannot be negligible. A few solutions have been discussed to preserve the privacy of

fine-grained query data in IoT applications [126, 212, 213]. A protocol based on garbled

circuits, partial homomorphic encryption, and secret sharing methods has been adopted to

preserve the privacy of multi-user queries in smart homes [126]. In the protocol, the multi-

users send a query to two cloud servers for access to certain genomic data of data-owner

stored in cloud servers. The query generated by multi-users is encrypted using homomorphic

encryption and is forward to two non-colluding servers. The servers communicate with the

data-owner regarding the query and, on data-owner’s approval, process the query with the

secret sharing method. Both servers corporate with each other to answer a query securely.

The server’s cooperation and heavyweight cryptosystem, including homomorphic

encryption and secret sharing in a protocol incurs high-performance overhead with network

bottleneck.

A protocol based on differential privacy technique preserves the privacy of data query in 

the IoT application domain of smart city [212]. A perturbation noise using a machine learning 

technique is added in a query to guarantee differential privacy. In machine learning, 

distributed training and testing is carried out for generating query responses. The distributed 

computing results in high communication overhead like cooperative computing in [126]. 

Another protocol for preserving the data query in smart city applications has been proposed  

[213]. The protocol is based on attribute-based encryption (ABE) has been used, which 

provides authority to data owners for attributes policy setting. Data-owners define the policy 

for preserving the privacy of data queries using ABE, which increases the privacy of data-

owners identity and content of data query. However, the burden on resource constraint IoT 

devices to perform ABE complex operations, creates a performance bottleneck, delay in 

query responses, and vulnerability to a DDOS attack. Due to these limitations, computational 

and memory overhead on the network increases. 

3.1.2. Context Privacy 

In this section, we discuss the possible solutions proposed for the context privacy of IoT 

applications. Table 3 presents an overview of the context privacy requirements with features 

including privacy techniques, privacy, and performance levels (low, medium, and high), which 

schemes are providing for preserving privacy. 
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Identity 

[117] 
[214] 
[136] 
[225] 
[215] 
[226]  

Forward secrecy, hash  
Elliptic curve 
Elliptic curve 
Hash function 
Bitwise operation 
Elliptic curve, granulation 
computing 

Temporal 

[100]  
[107] 

Perturbation Laplacian 
Priority queue 

Location 

[92] 
[227] 
[84] 
[228] 

Fake packet injection 
MAC 
Fake bits injection 
Hash 

Policy and Access Control 

[204] 

[229] 

Rivest Shamir Adleman (RSA) 
encryption 
Attribute-based digital 
signatures 

• Identity Privacy: Anonymous authentication methods have been proposed to preserve the

identity of sensor devices, data users, and data owners [117, 214, 215, 226]. An

authentication method based on a non-collision hashing function has been applied to sensor

nodes for preserving the identity of nodes [117]. Gateway node uses a one-way hash

function to hash the identity. It verifies sensor nodes and users' legitimacy using HMAC, thus

providing a remedy against DoS or de-synchronization attacks. The method could be

incorporated with the existing anonymous authentication protocols to significantly reduce

computational and communication overhead and increase the identity privacy of sensor

nodes. However, data of sensor nodes is stored on a base-station with no data recovery

mechanism, which makes it vulnerable to a single point of failure attack.

A method [215] based on bit operation has also been put forward for anonymous 

authentication of IoT devices such as RFID tags. The bitwise operation uses only two 

operations, i.e. XOR and left rotation to secure the identity of RFID tags. These operations 

are ultra-lightweight, which incurs low-performance overhead on limited resources RFID 

tags. However, XOR operation does not provide a high level of privacy of RFID tags as XOR is 

vulnerable to known-plaintext attack and identity traceability. A method based on Elliptic 

Curve Cryptography (ECC) to overcome the known-plaintext attack and improve the un-

traceability of user’s identity in RFID tags has been proposed [214]. In this method, a gateway 

node acts as a cluster head to verify the one-time alias identity of RFID tags and users 

Table 3 Techniques for Context Privacy Preservation in IoT 
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participating in the network. After successful verification, users’ identity encoded in smart 

cards is encrypted to enhance users' anonymity and unlinkability. 

The method is also able to provide the forward and backward identity secrecy with 

elliptic curve multiplication and addition. Further, the lightweight ECC encryption method 

can reduce the computational and memory cost of limited resource IoT devices. Although 

the lightweight method [214] provides anonymity using only symmetric key hashing, which 

is considered a lightweight solution. However, user identity is at stake if a symmetric key gets 

compromised. Further, a backend server may monitor the communications among RFID tags, 

which may lead to a single point of failure attack. The method is also vulnerable to DoS and 

collusion attacks leading to a loss of anonymity property. To overcome a single point of 

failure, DoS and collusion attacks, a distributive key management method is proposed in 

[136]. Similar to the [214] method, the ECC encryption method is used in [136]. The method 

effectively employs with anonymity and privacy of customers using distributive key 

management and authentication security practices. The use of high-level protocol and 

multiplication and addition of elliptic curve point for authentication and distributive key 

management makes the method performance, including computational, memory, and 

communication middleweight thus unsuitable for resource constrained IoT devices.  

A smart cart solution in the shopping system mitigates performance overhead issues, 

including computational and memory [226]. The solution is based on the anonymity model 

using an elliptic curve and granulation computing for RFID data. Also, individuals can set their 

data privacy preferences for data usability with minimum computational and memory 

overhead. The authors also claim the solution as the first anonymity model considering the 

anonymity of quasi-identifier attributes of a smart cart. However, the solution does not 

reduce the communication overhead due to interaction between RFID reader, smart cart, 

server, and checkout points of sale. Also, the solution does not deal with any other security 

property, including data integrity and confidentiality.  

For authentication of RFID anonymously, another lightweight authentication solution 

has been proposed [225]. The solution preserves identity and location privacy, forward 

secrecy, data availability, and high scalability. The solution is based on a hash function for 

anonymous RFID authentication in a distributive IoT environment. A backend unexhaustive 

query server performs a search to identify the RFID tags anonymously quickly. The scheme 

can compute position information for authentication only if data packets have been sent 

through legal RFID tags. Therefore, compromise of position computation message may result 

in tag privacy, forward and backward traceability problems. A fully secure design for wireless 

sensors network is needed to mitigate a single point of failure, performance overhead, third-

party involvement, and backward traceability problems. 
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• Temporal Privacy: Researchers propose few solutions to deal with sensor nodes' temporal

privacy, the trivial one is to use a time-driven model [124, 191]. In this model, the packet

time-to-live is defined. If an interval is set short, it reduces the lifetime of a packet; on the

other hand, if it is too long, then real-time processing and holding packet capabilities of the

network are affected. The limitations affiliated with time-driven models have been

highlighted with solutions to tackle them in wireless sensor networks [107, 195, 225]. The

time-driven solution [195, 225] is based on random packet delays during packet transmission

to the central station. The utilization of random data overloads buffer size at the

intermediate nodes between the source and sink node, which delays the packet on-time

delivery [195, 225].

A temporal perturbation solution based on the concept of Laplacian in a real-time 

monitoring system to mitigate the use of random delays for preserving temporal privacy has 

been discussed in [100]. The Laplacian distribution enables a receiving node to aggregate 

data from multiple smart meter sources, due to which an attacker cannot infer sensor nodes' 

correct timestamp. The solution can preserve the privacy of timestamps with a minimum 

performance overhead. However, an attacker can still traceback to an original sending time 

of the sensor’s sent data, which may result in monitoring data patterns [100]. A priority 

queue-based solution has been proposed for temporal privacy preservation to overcome 

Laplacian, random delays, and time-driven model limitations [107]. Healthcare data 

generated by sensor nodes such as EEG, ECG, blood pressure and heartbeat, etc., are 

priorities in the sink node and the highest priority data is sent to the server to guarantee on-

time data delivery [107]. With on-time delivery, data forward is not kept secure during 

transmission, which may lead to a man-in-the-middle attack.  

From the state-of-the-art research in privacy-based IoT applications, we find that most 

attackers mainly focus on targeting time-dependent transitions to capture the data 

transmission patterns, which may lead to identity and content exposure. Therefore, 

researchers should consider a diversity of temporal-based vulnerabilities for preserving 

content and context privacy. 

• Location Privacy: There have been few efforts made to hide the location of a sensor, for

example, a concept of randomizing routing paths for the source and destination [195, 230]

to prevent location-traceback attacks. A concept of injecting bogus traffic bits to misled an

attacker [84, 92] from identifying source node location has been provided. Similarly, a source

node encloses locations in an innocuous message to hide data transmissions between source

and destination nodes [227]. The source node encodes location into a beacon frame and

then applies MAC layer encryption mode on that location and data. These schemes [84, 92,

195, 227, 230] misled an attacker from location identification and provided low-performance
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overhead. Due to an increase in network traffic, the data collision and DDoS attack at the 

destination node may expose source location. Therefore, privacy preservation of location of 

source node is low, which makes these schemes not suitable for preserving the location 

privacy of IoT devices.  

Another solution based on authentication of vehicle locations in VANETs has been 

proposed [228]. The solution mitigated man-in-the-middle, and data compromise attacks for 

VANETs. An authentication method, including a cooperative message of sensor nodes with 

unlinkability to a sensor location, has been introduced to tackle these attacks. Third-party 

authority is involved in providing authentication using an evidence-token approach to all 

sensor nodes in the VANET network. After token creation, each sensor node communicates 

to other sensor nodes with a hash of a token. This communication is considered as a 

cooperative message directly between sensor nodes and not directly through the third-party 

authority. The third-party authority is only responsible for generating a token, not carrying 

out cooperative messaging between sensor nodes. Token-based authentication of vehicles 

through third-party authority increases the communication overhead of VANETs. Hence the 

solution is exposed to DoS and single point failure attacks.  

Most of these aforementioned solutions were designed to protect either data source 

locations or destination locations or a particular type of attacker (passive). A platform that 

can simultaneously secure the location privacy of source and destination nodes and all 

possible active and passive attacks is of paramount importance. Further, as the IoT network 

density increases, a solution aiming to inject fake network traffic becomes disruptive with 

frequent packet retransmission and collision.  

• Privacy Policy and Access Control: Policies and access control-driven interfaces have been 

designed to preserve users’ privacy  [101, 204, 229]. For example, a heavyweight method for 

policy creation has been proposed [204]. The method introduces adaptability and user 

transparency in assisting living healthcare for configuring privacy requirements. Policy rules 

in this method are based on behavior and matching relations based on the activity patterns 

of users. RSA and AES methods are proposed to focus on privacy-preserving of users’ 

behavior and activity patterns with policy standards. The use of RSA makes the method 

heavyweight, and it is considered to be costly, not suitable for resource-constrained IoT 

sensor devices. 

Another solution is based on ciphertext-policy attribute-based encryption [229]. The 

solution defines multiple policies with users’ attributes for encryption and then outsources 

data to cloud storage. The solution has also been able to mitigate collision attacks by defining 

multiple policies. Although the solution provides a high level of privacy using attribute-based 

encryption, the use of attribute-based signatures and defining policies makes it 
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heavyweight. Due to the heavyweight policy method, the solution incurs a high 

computational overhead like the RSA method proposed [229]. Therefore, the solution is not 

able to support the scaling needs of IoT devices.  

Similarly, a heavyweight policy solution based on semantic ontologies has been 

introduced [101]. A concept of semantic ontologies has been introduced for policy 

behavioral modelling, policy decision-based language, policy rule evaluation, and 

enforcement rule monitoring. Likewise, the attribute-based encryption method, designing 

ontologies for policies requires much energy, which cannot be done in resources-constrained 

IoT devices. 

3.2. Review of Privacy Preservation in Fog-enabled IoT 

Based on our privacy classification, here we discuss the contributions of existing solutions in Fog-

enabled IoT according to the application domains of IoT. Sections 3.2.1 discusses content privacy 

models, and Section 3.2.2 discusses context privacy models. The application domains in which 

fog-enabled IoT solutions are provided are illustrated in Figure 8. 

 

3.2.1. Content Privacy 

Here we provide the analysis of existing solutions adopted to preserve content privacy 

requirements in fog-enabled IoT platforms. Existing solutions are organized according to the 

application domains of IoT. Figure 9 gives an overview of content privacy models used in fog-

enabled IoT, which are discussed in detail in subsequent sections. 

• Behavior and Action: Recently, solutions [41, 67, 120, 133, 231] to preserve privacy in a 

manner that keeps individuals’ behaviors or actions private and secure have been proposed. 

Mainly, the proposed solutions have attempted to mitigate traditional IoT-based schemes 

problems w.r.t high computational, storage cost, and transmission delays to cloud. For smart 

city applications, system models using user-level key management, differential privacy, and 

blockchain has been proposed in fog-enabled IoT [41, 67, 120, 133]. A differential privacy-
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Figure 8 Fog-enabled IoT Applications 
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based query model preserves the privacy of user’s actions stored in fog computing 

supported data center [120]. Information of user’s actions includes datasets obtained from 

vehicle activities performed by users. In this scheme, the query model extracts the 

information structure from the fog computing supported data centers. Then the extracted 

information is preserved using the Laplacian mechanism in differential privacy. The scheme 

efficiently extracts datasets and executes query models with privacy preservation of 

datasets. Due to the Laplacian mechanism applied on a query model, the scheme resists fog 

node and network edge recognition attacks. 

Another scheme for a smart city system has been proposed to provide distributive data 

storage among fog nodes using the blockchain technique [41]. The scheme is adopted to 

minimize the centralized storage limitations of IoT applications. In the scheme, each user 

manages its security keys, and data is encrypted using security keys. The encrypted data is 

distributed among fog nodes, and each fog node stores only an encrypted fragment of data. 

Thus, the scheme achieves complete data privacy without any third-party involvement for 

security keys generation and control of the data.  

An efficient and secure deduplication scheme [133] to provide data ownership in fog 

storage has been proposed. In the scheme Merkle (hash) tree mechanism has been adopted 
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for data deduplication. Merkle tree authenticates proof-of-ownership (PoW) of data, and 

then according to the security keys of data-owners, deduplication is applied on encrypted 

data. Data owners are provided access control for defining user-level key management to 

deduplicate and manage data. The privacy of individual actions using deduplication without 

the trusted third-party requirement has alleviated the computational and memory burden 

from the cloud and minimized the communication cost between IoT sensors and cloud. Also, 

forward secrecy is maintained in the scheme by prohibiting data owners from accessing their 

previously outsourced data content to fog nodes. 

Another scheme based on secure access control in fog-enabled IoT has been proposed 

[67]. The encryption of data using an attribute signature is done at fog nodes. The data 

owner can define data policies and perform encryption, and end-users can decrypt data with 

editing and re-encryption properties. The scheme provides access control to data owners 

and considers access control of data users to amend data for further processing. The scheme 

is secure against known attacks. Like scheme [133], the proposed scheme incurs less 

computational and communication overhead as it alleviates the burden from cloud to fog 

nodes. Further, the scheme does not consider the third party for key generations. 

The behavior privacy of IoT devices in the smart city has been preserved using ontologies 

[232]. The ontology model preserves the privacy of IoT devices by changing the privacy 

behavior of data devices in smart cities dynamically. First, the privacy rules are defined in 

the ontology model. Then the server defines and applies privacy rules for each IoT device. 

Applied privacy rules on data are forward to the ontology server for further refinement. 

Cloud storage is utilized for the long-term storage of processed data from the edge of the 

network. 

The users' behavior using fog computing in smart transport systems has been considered 

in [231]. A road surface monitoring based on crowdsensing behavior of vehicles. The vehicles 

are monitored using fog computing as fog provides services close to roadside units (RSU) of 

vehicles. The scheme has also been useful to detect anomaly behavior of a vehicle by 

keeping the detected data private and the vehicle’s identity anonymous. The scheme is also 

based on an efficient data aggregation method, which is a certificateless signcryption 

method. This method is used to aggregate vehicle data securely at fog nodes with minimum 

communication and computational overhead. Aggregated data is further forward to cloud 

for long-term storage.      

• State of Body and Mind: The schemes to preserve the privacy of state of body and mind for

healthcare systems have been proposed in fog-enabled IoT [129, 140, 233]. For example, in

the clinical decision-making system, the privacy issues of personal information leakage while

monitoring a patient's health status [129]. Furthermore, clinical decision-making systems
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have been considered as the first step towards integrating health and genome data. 

According to cloud privacy policies and standards in improving patients' trust and reliability 

in Healthcare, a decision-making system is designed in fog computing. The proposed system 

preserves healthcare privacy, adhering to standards as defined for cloud computing to fully 

achieve the trustworthiness of fog clusters. 

Another scheme [233] to preserve the privacy of health diagnoses in the healthcare 

system has been provided. The health diagnosis is encrypted at the edge of the IoT network 

using homomorphic encryption and two trapdoor cryptosystems. The mobile user submits 

an encrypted request for a result of health diagnosis to the edge of a network. After checking 

the authenticity of a mobile user, the result of the corresponding diagnosis is sent to a 

mobile user. The scheme is effective in terms of providing accurate diagnosis results to 

mobile users. Computation at the edge of a network reduces the network bottleneck of the 

healthcare system. 

An E-healthcare framework to record a patient’s state of body privacy in the healthcare 

system has also been presented [140]. For preserving the privacy of patient data, ECC and 

pseudo-identity have been adopted. The ECC ensures the undetectability of patients’ health 

concerns, and pseudo-identity kept the identity of the message showing health conditions 

private. Not only medical records are kept private, but also reliability of the data requester 

to view health data is ensured. 

• Media: For an application domain of a smart city, face identification privacy and video 

storage privacy have been proposed [109, 143]. Face identification and resolution include 

the facial features of an individual for obtaining identity information [109]. In the scheme, 

ECC, Diffie Hellman (DH) key exchange, and AES has been applied to preserve the privacy of 

facial features. DH is adopted to generate a session key for a session between fog nodes and 

the management server. To keep the session information secure, the ECC mechanism is used 

at fog nodes. After the generation of session keys, the face identification is encrypted using 

the AES cryptosystem. The encrypted face identification is verified by the management 

server using the SHA-1 algorithm. By applying a strong cryptosystem, the scheme can 

provide resilience against forgery and man-in-the-middle attacks. The scheme provides 

resilience while having less performance overhead on data transmission when compared to 

cloud-based systems [26]. 

Another scheme for an application domain of smart city has been proposed in a fog layer 

to enhance video surveillance with high-performance efficiency [143]. In the scheme, video 

denoising has been provided in which the noise added to the data generated at sensors is 

removed by applying noise filters and signal-to-noise ratios. Video denoising is performed 

in a distributive manner at fog nodes. Thus, reducing the performance overhead on a single 
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fog node or resource-constrained sensors. fog nodes consist of embedded systems, which 

provide the required processes of denoising video generated from sensors, encryption of 

denoised video, and then compression of denoised video. After these processes, encrypted 

video is sent to cloud for decryption, decompression, and post-denoising. These schemes 

provide an opportunity for researchers to explore fog computing for media privacy at the 

edge of the sensors transmitting media data. 

• Social Interaction: In the application domain of smart homes, a scheme to preserve the

location of the user’s social interaction from a poisoning attack has been introduced [234,

235]. At the edge of the IoT network, the scheme first utilizes the learning model to infer

the social relationship of a user. Then constructs a social graph, which helps to identify the

poisoning location and secure the social network from that location. The scheme efficiently

secures the social network of users at the edge of the network without the need for a remote

cloud for computation. The privacy preservation of social interaction for application

domains of IoT in fog computing is at an infant stage. To strengthen content privacy

including the mental health of data-owners, it is important to consider the privacy of users’

social networks and relationships.

• Data Aggregation: Preserving the identity of individuals during data aggregation for

different IoT application domains has also been considered in fog computing [9, 13, 16, 41,

42]. For example, in a smart city design, a fog node aggregates data from smart meters and

forwards the aggregated data to the cloud for long-term storage [9]. The solution is based

on Castagnos-Laguillaumie, short-signature, and bilinear pairing cryptosystem that can

provide secure aggregation. Using data aggregation, the proposed solution saves the

bandwidth overhead between fog nodes and cloud server as an only aggregated reading of

smart meters is forward to cloud for storage. The solution also provides anonymous

authentication of sensor nodes, fog nodes, and cloud using pseudonyms.

To minimize the storage limitations of smart city applications, distributive storage of 

data among fog nodes using blockchain technology has been proposed [41]. In the scheme, 

data generated by IoT devices are aggregated at multi-interfaced base stations at the edge 

of the IoT network. The base stations act as a forwarding controller of aggregated data to 

fog nodes. The aggregated data is encrypted and distributed among fog nodes. Each fog 

node stores only an encrypted fragment of data. The authors claim that their technique is 

better in reducing response time delays, increasing throughput, and detecting real-time 

attacks as compared to existing models. One of the aims of using blockchain technology in 

their model is to provide complete data privacy in fog computing. 

For minimizing the storage and computational limitations of smart city applications, a 

divide-and-conquer scheme has been proposed for data aggregation in fog computing [42]. 
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The scheme preserves the privacy of data using encryption, division, and distribution of data. 

The encryption is performed using a lightweight AES cryptosystem. Encrypted data is divided 

into blocks and distributed to fog nodes in different fog clusters. On end-user device 

requests to access aggregated sensors’ data, fog nodes act as an aggregator and aggregate 

the data blocks in the proximity of their cluster. The blocks are aggregated using the 

blockchain concept. The aggregators then forward aggregated data to the end-user device. 

The end-user device performs the final aggregation of data coming from all aggregators and 

decrypts the data. The scheme can reduce computational and memory costs using 

distributive computation. 

A machine learning approach has also been introduced to achieve data privacy during 

data aggregation in a smart city [13]. The approach provides additive and non-additive 

aggregation on sensor data, and the aggregated results from fog nodes are sent to the cloud. 

In the machine learning technique, the learning model is trained, which predicts the results 

of aggregation query and supports aggregation functions, including additive and non-

additive. Authors claimed that using their machine learning technique at fog nodes 

minimizes performance overhead compared to cryptographic heavyweight technique, such 

as Paillier homomorphic encryption. 

In the application domain of smart grid, readings of smart meters are aggregated using 

the chinese remainder theorem [16]. The theorem provides false data injection resistance 

with efficient data aggregation supporting fault tolerance. The proposed solution can 

mitigate the heterogeneity and hybrid data type limitations of data aggregation solutions’ 

[236-238] by combining heterogeneity and hybrid data into one ciphertext. The solution also 

preserves the privacy of aggregated data at fog nodes using Paillier encryption. The 

aggregated data is secure against external attacks as Paillier encryption is IND-CPA 

(indistinguishable under the chosen plaintext attack). Also, the authenticity of smart meters 

and fog nodes is provided using one-way hash chains. 

• Data Query: For application domains of IoT, fog nodes can be utilized to provide a solution 

for owner-enforced keyword searches [120, 134, 144, 239]. In a smart city application, 

keyword searching is done by a data user who wants to access and check a data file kept at 

the fog node. The data user interacts with the fog node by sending a query for a keyword 

search in a dataset. Only authorized users with satisfying the access policy of the data file 

can obtain a matching query result. The query result is encrypted at the fog node using 

ElGamal-ciphertext and sent to the data user. To obtain data plaintext, the user performs 

decryption using exponentiation and multiplication operations on the ciphertext. Due to 

query encryption and authorization of data users, the solution can resist swapping and 

chosen keyword attacks. The solution also provides trapdoor unlikability to data plaintext 
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and generator of data query. 

Another solution provides unlinkability to the data owner and query generator [120]. 

The solution uses the query model to capture the structural information of fog nodes 

containing data and provides datasets, which can be mapped to real data vectors. Also, the 

query model satisfies the differential privacy of queries using Laplacian noise. The solution 

guarantees query protection and efficient query model computation. 

A function query solution in fog computing-based smart grid has been proposed for 

efficient and secure communication and availability of data aggregation simultaneously 

[144]. Function queries on data usage can be launched securely by the service provider and 

data-users. Data is encrypted using a double trapdoor cryptosystem and forwarded to cloud 

for further billing queries while letting a data owner and users control their data usage. The 

proposed scheme is preserving the privacy of function queries against probabilistic 

polynomial-time (PPT) adversaries.  

Similar to function queries, the XRQuery solution has been proposed for efficient 

retrieval of privacy information using query service [134]. This solution is proposed for the 

application domain of the healthcare system. The query generated by the doctor/ staff is 

kept private using homomorphic encryption and XOR operations in the XQuery model. The 

model can resist an external attack on a data query since the private key is shared between 

the fog node and IoT device in encrypted form. In the XQuery model, the query is encrypted 

and then shared with fog devices.  

3.2.2. Context Privacy 

Contextual privacy-based solutions in the fog-enabled IoT that can overcome vulnerabilities of 

existing IoT-based and cloud-based solutions are discussed in this Section. The discussion is 

grouped based on the following context privacy requirements: Identity, location, and privacy 

policies. Figure 10 gives an overview of context privacy models proposed in fog computing for 

IoT applications. 

• Identity Privacy: For a smart transport system, the identity privacy of vehicles has been

provided in schemes [67, 231]. A scheme based on certificateless sign-encryption technique

provides identification privacy of vehicles [231]. The scheme protects the identity using low

computational cost as compared to the existing traditional IoT schemes. The scheme can

mitigate the limitations of IoT-based vehicular mobile sensors, which collect data and detect

anomaly behavior of vehicles [240]. The scheme stores data in a cloud server thus leading

to data transmission delays and extensive bandwidth requirements. Using the scheme in

fog-enabled IoT network, data transmission delays can be decreased and the need for a
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cloud or trusted third authority to generate certificates can be removed. Furthermore, 

vehicular devices' identities can be kept anonymous with resilience to key escrow attacks  

[231]. 

Another scheme based on anonymous user authentication to preserve the identity of 

users has been proposed for smart transport systems [67]. The scheme is based on CP-ABE 

and ABS techniques for data encryption and identity privacy. Due to these techniques, data 

users can sign data messages with a claim policy and attributes without revealing his/her 

identity. The data generated from vehicular mobile sensors are encrypted and outsourced 

to cloud through a nearby fog node. The authorized user can access and decrypt data if 

his/her attributes satisfy the access policy defined for CP-ABE. Also, the scheme provides 

authority to authorized users to edit decrypted data and re-outsource it with his/her ABS. 

Therefore, the scheme provides access control and privacy policies editing to data users. 

The scheme also alleviates the computational burden to authenticate signatures and 

encryption from cloud to fog nodes, nearby mobile sensors. 

For the application domain of the healthcare system, the scheme [142] for detecting and 

protecting the identity leakage of patients, doctors, and staff has been proposed in fog 

computing. The scheme provides privacy-related API functions to deal with the detection of 

identity leakage. In monitoring and detecting identity leakage, the proportion of privacy 

leakage through logs, network transmission, and SMS messages has been considered. Based 

on the leakage results, the protection mechanism, including API functions is applied to data. 

The scheme can improve the context privacy for telehealth and telemedicine 

infrastructures. 

Also, the fog computing has been introduced to protect face identification compared to 

biometric identification in a cloud server [28-30, 109]. Cloud server-based schemes are 
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vulnerable to identity forgery and man-in-the-middle attacks and response time to identify 

faces from databases is high. Whereas in a fog-enabled IoT scheme, an AES mechanism is 

used for the privacy of facial identity, which incurs less computational and communication 

overhead for response time from databases [109]. The scheme has also applied ECC to 

encrypt session keys and DH key exchange to generate session keys. By applying a strong 

cryptosystem, the scheme can provide resilience against forgery and man-in-the-middle 

attacks.  

• Location privacy: For preserving the privacy of data source and sink location, few schemes 

have been carried out in fog computing [13, 67, 101]. For a smart transport system, 

trajectory privacy in the fog and a location-based server have been proposed [67]. The 

scheme can preserve the privacy of data source location and provide unlinkability between 

the source and sink devices and their data owners. The scheme is based on ABS for 

generating a signature for authentication to keep unlinkability between source and sink 

devices. Further data is encrypted using ABE, and cloud centralized unit has been considered 

for only secure data collaboration with ABE encryption.  

Another protocol for location privacy in transport systems has been proposed [121]. A 

protocol provides location-based proximity detection using the decision tree theory and 

Paillier encryption to protect the location privacy of individual users. The protocol can 

achieve the privacy preservation of data sharing among users using Paillier encryption. 

Decision tree theory is used for protecting the location of data users from service providers. 

Another protocol [241] for preserving the location privacy of smart transport systems at the 

edge of the vehicular network has been proposed. A lightweight ECC and homomorphic 

encryption are used to provide location privacy of vehicles. The vehicles are selected for 

collaborative downloading of map data from Roadside units (RSU) using a fuzzy logic 

strategy. Further, the location of the vehicle is kept secure from other vehicles and third-

party using pseudo-identity, only trusted authority (TA) can calculate the identity of the 

vehicle.  

Similarly, a solution for protecting the location of vehicles has been proposed [242]. In 

this solution, the cloud server divides the map location of vehicles using the Voronoi 

diagram. Each user of the vehicle sends its region in the Voronoi map to the edge node. Then 

the edge nodes divide users into a group for the same Voronoi region. Further, users' exact 

location is embedded with Laplacian noise to preserve the location from edge nodes. The 

edge node knows the Voronoi grid of each user but unaware of the users’ accurate location. 

Thus, the proposed solution preserves the privacy of the location of vehicle users using the 

Voronoi diagram. 
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A location-based on multi-party computation [17] with a public key infrastructure using 

fog computing has been proposed for a smart city. A machine learning approach is 

introduced in solution to achieve location privacy using multi-party computation. The 

learning model is trained for datasets, which predicts the results of datasets to preserve the 

context privacy of users. A solution also overcomes the centralized storage limitation to 

preserve the data sender position by guaranteeing the authentication prover location's 

privacy in a fog network [243]. 

• Privacy Policy and Access control: Fine-grained data access control solution with cloud 

defined policies have been proposed for fog-enabled IoT [67]. This solution is based on 

methods including Attribute-based Signature and Ciphertext Attribute-based Encryption. 

The methods provide data encryption with the data owner’s access control and privacy 

policies. Furthermore, the solution provides a signature authentication in a fog node, thus 

alleviating the computational overhead from the cloud in computing digital signature at the 

edge of the IoT sensor devices. Due to the use of the fog node for processing the 

authentication, policies, and access control, the proposed solution also mitigates the 

transmission delays caused [244]. 

Centralized access control solution reduces computational overhead in encryption and 

decryption phases, which caused high complexity in a centralized healthcare monitoring 

system [244]. The policies and access control regulation defined for cloud deployment to 

the fog-enabled IoT is unlikely to be suitable. For example, a cloud storage purpose is to 

provide users’ access guarantees and privacy setting modification, whereas a fog node aims 

to authenticate all network nodes [137]. Therefore, different sets of policies and access 

controls should be applied to serve fog-enabled IoT purposes rather than deployed for cloud 

computing [244].  

3.3. Privacy Preservation of IoT Application in Fog Computing 

This section summarizes the main challenges based on our in-depth analysis discussed in the 

previous section. First of all, we discuss the limitations of IoT-based schemes and then present 

the mapping between the IoT-based schemes and the fog-enabled IoT schemes. The mapping 

provides information regarding improvements that the fog-enabled IoT schemes can provide 

over the IoT-based schemes. The demand for preserving content and context privacy grows 

sharply due to an individual’s awareness of protecting personal information. Several promising 

solutions have been proposed for smart IoT devices integrated with cloud computing as 

discussed in previous subsections. However, some limitations restrict the full usability of IoT 

platforms to enhance end-user services and reliability. We review and discuss key challenges 

and limitations found in the existing IoT solutions for preserving content privacy and then 
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elaborate on the countermeasures provided in fog-enabled IoT in sub-section 3.3.1. Similarly, 

sub-section 3.3.2 discusses the limitations of the existing IoT models for preserving context 

privacy, and then the sub-section elaborates the countermeasures provided in fog-enabled IoT. 

3.3.1. Content Privacy 

For preserving the content privacy in application domains of IoT, the limitations of the IoT-based 

privacy models and countermeasures in fog computing, as indicated in Table 4, are summarized 

as follows: 

• Centralized and Third-Party Involvement: A centralized unit (e.g., a server, control center,

Cloud or single aggregator) to store or process data, which leads to a single point of failure

threats and DOS attacks has been considered in most of the schemes [25, 226, 240, 245-

254]. An attacker may gain access to a centralized unit to delete, insert or update its stored

or processed data. Also, the attacker can disrupt network traffic making centralized unit’s

resources unavailable to the network. Data privacy and integrity may be compromised by

involving a third party. The responsibilities of the third party in IoT applications are to

generate security keys, authentications’ agreement, and monitor and managing IoT

devices/cloud. An eavesdropper may invade communication links between a third party and

cloud/ IoT devices to capture transmitted security keys.

On contrary, the schemes [129, 133, 231] in fog-enabled IoT overcomes this limitation 

of IoT-based privacy models. The crowdsensing concept for fog nodes is introduced to 

mitigate the need of the third party and reduces the transmission delays to cloud. Also, data 

computation and storage are carried out in a distributed manner at fog nodes, which provide 

resilience to single point of failure threat, DoS and man-in-the-middle attacks. 

• Computationally Expensive Cryptosystem: Most of the existing work [9, 25, 56, 103, 204,

213, 236-238, 247, 255] relies on public key infrastructure. The public key infrastructure

consists of generally heavyweight methods, for example, RSA, ElGamal, Paillier

cryptosystem and homomorphic, attribute-based signature, and encryption. These methods

require larger memory capacity and high computation consumption for heavyweight

mathematical operations and storage. Thus, heavyweight methods result in communication

overhead and degrade the data accuracy.

Fog computing provides lightweight methods [56, 129, 133, 239] to compute IoT data, 

for example, ECC, AES, machine learning, bit-wise encryption, hashing and Chinese 

remainder theorem. These methods overcome the performance overhead issues and 

provide a high level of data accuracy. 

• Heterogenous Data: Few of the IoT-based schemes [236-238] are not suitable for computing
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heterogeneous data. These schemes considered the homogenous data sources, for 

example, schemes only consumed electricity readings data from smart meters. In the 

schemes, the diversity of IoT application domains with heterogeneous data, including blood 

pressure, heart rate, noise level, humidity, temperature, acceleration, voltage, and sound 

measures has not been adopted. The aggregation of hybrid data into one ciphertext due to 

the homogenous nature of data computation has not been provided in schemes [236-238]. 

Fog-enabled IoT considers the diversity of IoT applications and provides solutions [56, 256] 

suitable for heterogeneous data sources. These solutions also consider the aggregation of 

hybrid data into one ciphertext to improve the efficiency of data computation. 

 
Privacy 

Model 

Basic IoT System Model Limitations in basic IoT 

model 

Fog System model Countermeasures using 

Fog computing 

Behavior and 

Action 

Preserving data privacy 

using data duplication 

[245] 

● Do not update 

outsourced data in an 

efficient manner 

● Trusted authority is 

required for key update 

● Incurs significant-high 

communication and 

computational cost 

Fog used for 

Storage 

mechanism, while 

preserving the 

privacy of using 

deduplication a 

dynamic ownership 

management [133] 

● Update mechanism and 

key management authority 

at the user level 

● Fog Storage architecture 

introduced for alleviating 

the burden from the Cloud 

● Computational and 

communication cost low 

Mobile sensors collect 

data and detect anomaly 

behavior of vehicles 

[240] 

● Data storage on a Cloud 

server 

● Transmission delays to 

centralized Cloud 

Crowdsensing 

concept using Fog 

computing [231] 

● Anonymity provided 

● Less Computational and 

communication overhead 

 

State of Body 

and Mind 

Trustworthy big data 

processing with full 

access control to 

individual patients to set 

policies for health data 

[25] 

● Centralized unit involved 

in storing data 

● Data prediction accuracy 

low due to high 

computation bottleneck 

Fog computing-

based multiple-

layer neural 

network for a 

clinical decision 

support system 

[129] 

● Patient health status 

monitoring without 

personal health 

information leakage 

● High accurate health 

prediction 

Media Cloud computing-based 

and cross-enterprise 

biometric identification 

system (CloudID) with 

privacy-preservation. 

[26] 

● Cloud computing 

bandwidth overhead 

Fog computing-

based face and 

resolution 

identification [109] 

● Data transmission 

overhead less   

● Resilient against Man-in-

the-middle and forgery 

attack 

● Introduced 

authentication and session 

key agreement 

Data 

Aggregation 

Differential privacy-

preserving data 

aggregation for smart 

grid [236-238] 

● Not suitable for 

heterogeneous data, 

unable to aggregate hybrid 

data into one ciphertext 

 

Chinese remainder 

theorem used to 

aggregate IoT data 

securely in Fog with 

lightweight 

● Resist against false data 

injection 

● Fault tolerance 

●Lightweight privacy-

preserving scheme 

Table 4 Mapping of Content Privacy models between IoT and Fog-enabled IoT 
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differential privacy 

[56] 

● Suitable for 

heterogeneous data 

aggregation 

Mobile sensors collect 

data and detect anomaly 

behavior of vehicles. 

Data is stored in the 

Cloud server [240] 

● Transmission delays to 

centralized Cloud 

● Extensive bandwidth 

required 

Crowdsensing 

concept using Fog 

computing and 

encryption 

aggregation 

without the need 

for certificates 

[231] 

● Resilient to key escrow 

attack 

● Less Computational and 

communication overhead 

● No need of a trusted 

third authority for 

aggregation certificates  

Data Query Attribute-based 

encryption for preserving 

the privacy of fine-

grained search data [213] 

● The burden on resource 

constraint IoT devices to 

perform ABE complex 

operation, creating a 

performance bottleneck 

 

Fog-based secure 

index and 

keywords 

generation and 

transmission. Also, 

communication 

between four 

entities carried out; 

end-users, data 

owner, for nodes 

and Cloud [239] 

● Perfect forward and 

backward secrecy 

● Computational efficiency  

● Alleviating performance 

overhead on IoT devices   

● Chosen keyword and 

swapping attack resistance 

Preserve the differential 

privacy of IoT devices 

data [212] 

● High energy 

consumption for IoT 

devices for differential 

privacy  

Four renewable 

Fog nodes used to 

efficiently preserve 

differential privacy 

with the executable 

query function 

[120] 

● Preserving the privacy of 

edge and Fog nodes 

● Efficient data utility 

consumption 

● Validity and Reliability of 

privacy protection 

● Quantify the level of 

privacy protection 

3.3.2. Context Privacy  

For preserving the context privacy in application domains of IoT, the limitations of the IoT-based 

privacy models as indicated in Table 5 are similar to content privacy limitations including 

centralized and third-party involvement and heavyweight cryptosystem. Heavyweight 

cryptosystem also has an impact on data authorization for policy and access control. Several 

schemes have been proposed for providing data access control to a data owner [67, 97, 101, 

135]. The access control and policy-driven techniques used in these schemes are heavyweight, 

for example, attribute-based encryption and ontologies incur high computational and memory 

costs. In [97, 135], multiple authoritative nodes with different resource availability, energy 

consumption, and geographical location are involved in regulating heavyweight attribute-based 

access control and data-owner-based policies. Due to the incompatibility of resources and 

heavyweight access control and policies, the performance overhead of these schemes increases. 

On the contrary, fog-enabled IoT delegates the computation of authentication and attribute 

signature to fog nodes in a distributive manner  [67]. The distribution of access control and 
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policies creation at fog nodes optimizes the performance efficiency of computing heavyweight 

cryptosystems such as CP-ABE.  

 

Privacy Model Basic IoT System Model Limitations in basic IoT 

model 

Fog System model Countermeasures 

using Fog computing 

Identity Privacy Biometric identification 

with privacy preservation 

in Cloud servers [28-30] 

●Bandwidth problem 

exists while ensuring 

privacy 

●Response time high from 

face identification 

databases 

●Vulnerable to identity 

forgery and man-in-the-

middle attack 

Introduced Fog 

computing for 

resolution 

applications and 

face identification 

privacy [109]  

● AES mechanism 

used for identity 

privacy  

● Resilient against 

identity forgery and 

man-in-the-middle 

attack 

● Response time 

decreased from 

different face 

identification 

databases 

● Communication 

bottleneck decreased 

 Identity privacy 

considering Cloud 

centralized unit for IoT 

devices [31] 

 

● The trusted third party 

introduced as an 

intermediate between 

end-users and Location-

based servers.  

Enhance privacy 

preservation using 

Fog computing [67] 

● No need for trusted 

third party  

● Important 

information preserves 

in the Fog to enhance 

better management 

and security 

Cloud-based fine-grained 

access control framework 

for healthcare monitoring 

smart system [244] 

●ABE method high 

computational cost in 

encryption and decryption 

phases with the high 

complexity of policies 

● Transmission delays to 

centralized Cloud 

Anonymous user 

authentication in 

ciphertext and 

authentication 

signature updating 

delegated to Fog 

nodes [67] 

● Secure against know 

attacks 

● Signature 

authentication 

computational burden 

alleviating from Cloud 

to Fog nodes 

 

Cloud Radio Access 

Networks (C-RAN) and 

Heterogeneous Cloud 

Radio Access Networks (H-

CRANS) for incorporating 

radio access networks with 

Cloud computing to 

improve energy efficiency 

and system capacity to 

store and process data 

[257, 258] 

● Communication 

bottleneck  

Vulnerable to DoS and 

replay attack 

Preserving privacy 

authentication and 

key agreement in 

Fog Radio Access 

Networks (F-RAN) 

[256] 

● Distributed 

substantial amount of 

storage 

● Adaptive to the 

dynamic traffic and 

radio environment 

with affordable scaling  

● Overcomes DoS, 

man-in-the-middle 

and reply attacks 

Table 5 Mapping of Context Privacy Models between IoT and Fog-enhanced IoT  
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Location 

Privacy 

Aggregate vehicle real-

time speed and position 

information using vehicular 

ad hoc networks [27, 28] 

● The malicious vehicle 

may control traffic lights. 

● Pavement loop 

detectors used which are 

centrally controlled (Cloud 

or server). 

● Increase in controllers 

communication resulted in 

high latency 

Vehicular ad hoc 

networks in a Fog 

for a secure 

intelligent traffic 

light [259] 

● Communication 

latency decreased by 

only broadcasting and 

performing 

lightweight operations 

● Resists Denial of 

service attack 

● Detectors not 

centrally controlled 

Preserve sender 

positioning privacy [243] 

● Cannot guarantee the 

privacy of prover location, 

which is highly sensitive 

 

Fog based location 

position key 

exchange and Fog 

nodes (multiparty) 

computation [260]   

● Guarantee the 

privacy of prover 

positioning  

● No additional 

computational 

overhead introduced 

 

Trajectory privacy 

considering Cloud 

centralized unit for IoT 

devices [31] 

 

● The trusted third party 

introduced as an 

intermediate between 

end-users and Location-

based servers.  

Enhance privacy 

preservation using 

Fog computing [67] 

● No need for trusted 

third party  

● Important 

information preserves 

in the Fog to enhance 

better management 

and security 

Privacy Policy 

and Access 

Control 

Cloud-based fine-grained 

access control framework 

for healthcare monitoring 

smart system [244] 

● High computational cost 

due to complexity of 

Attribute-Based 

Encryption (ABE) 

Anonymous user 

authentication 

signature updating 

delegated to Fog 

nodes [67] 

● Based on ABS and 

CP-ABE providing 

secure data access 

control in Fog 

computing   

 

4. Open Issues and Challenges 

Fog-enabled IoT opens opportunities to provide content and context privacy both for the IoT 

and cloud network. Extending existing privacy solutions to fog-enabled IoT remains challenging 

due to the dynamic nature of fog computing devices, distributive computation, certificate 

managements, privacy privilege escalation, and insider rogue nodes. This section aims to outline 

these open issues/ challenges and provides deep into promising future direction for effective 

privacy protection in fog computing. Table 6 presents an overview of the privacy solutions facing 

issues and challenges in fog-enabled IoT. Each issue and challenge is extensively explained in 

subsequent sub-sections. 

4.1. Privacy Privilege Escalation 

Most of the schemes proposed in fog-enabled IoT suffers from privilege escalation issue [16, 42, 

67, 109, 120, 121, 129, 134, 140, 143, 144, 231-233, 239, 241, 242]. In these schemes, privilege 
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escalation arises when a malicious user exploits a configuration error, bug, or design flaw in a 

model [261]. This exploitation leads to a challenge, as follows: 

 

• Fog Resources Unauthorized Gain 

The malicious user gains access to preserved resources of fog nodes. The resources of fog 

nodes are preserved for computation and storage operations, typically the malicious user 

would be restricted to gain such fog resources. After gaining unauthorized privileges, the 

malicious user can also access the private data stored at that fog node or request other fog 

nodes to forward data. The malicious user would also be capable of deploying malware, 

running commands, and potentially damaging the fog node’s cluster. 

• Mitigation for Privilege Escalation 

Table 6 Issues/Challenges of Privacy solutions in Fog-enabled IoT 

References Issues/ Challenges 
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The proposed schemes do not consider the systematic vulnerabilities in the software design 

of their models [16, 42, 67, 109, 120, 121, 129, 134, 140, 143, 144, 231-233, 239, 241, 242]. 

Innovative approaches are required to preserve the resources' privacy in fog-enabled IoT 

fully. The approaches, including software-defined segmentation and pre-assessment, can 

mitigate the escalation issues. In software-defined segmentation, the segmenting of fog 

nodes’ resources can decrease the attack surface, and pre-assessment of model 

vulnerabilities can reduce the design flaws. 

4.2. Tracking Data Accuracy 

Few of the schemes in fog-enabled IoT have employed the mechanisms of data accuracy in their 

models to track the reliability of data [41, 120, 133, 134, 143, 144, 239]. The mechanisms include 

keyword and fine-grained search, and blockchain are summarized as: 

• Keyword Search

A keyword and fine-grained search are carried out by the data-owner or end-user devices in

fog-enabled IoT models to generate a query for data accuracy proof [120, 134, 144, 239].

The query contains a randomly sampled keyword or hash ID, which is generated from the

original data. To track data accuracy, a query sample is matched with a query result provided

by fog nodes. If a query result does not match with the query sample, then the data-owner

or end-user device reports to the authentic cluster head about the inconsistency of data

processed by the fog node. The keyword and fine-grained query mechanisms are vulnerable

to jamming attacks. An internal or external adversary can prevent data-owner or end-user

from communicating with fog nodes by occupying the communication channel.

• Blockchain

In the blockchain mechanism, proof of work (PoW) is a consensus method, which provides

the reliability of data blocks stored at each fog node [41]. Using PoW, end-user device, and

data-owner tracks the contribution of each fog node in the processing data block is accurate.

The PoW demands enormous power to execute a complex tracking transaction. Thus, most

of the fog nodes’ resources are allocated to execute the consensus of PoW.

A lightweight consensus method with resilience to jamming and DoS attacks is required to fully 

track the accuracy of data processing/ storing at fog nodes.  

4.3. Data-owner’s usage pattern privacy 

Fog-enabled IoT comes with another critical issue: the pattern’s privacy of data-owner’s utility 

usage. The usage patterns in IoT applications and the schemes providing patterns privacy are 

discussed as: 

• Consumption Data Patterns
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In IoT applications such as smart cities, smart homes, and smart grids, the sensors collect 

the data of electricity consumed by data-owners on a daily basis. The consumption data 

refers to the habitual activities of the data-owners, such as at what time data-owner 

switched on/off certain electric appliances, available or unavailable at home, the electricity 

consumption patterns, etc. Due to the resource’s limitation of sensors, the usage pattern of 

data generated at sensors cannot be preserved using heavyweight operations such as 

obfuscation and public-key cryptography. Distributed computational resources can be 

utilized to ensure the pattern’s obfuscation at the edge of the IoT network. 

• Unlinkability 

Most of the proposed schemes in fog-enabled IoT have not considered the usage pattern 

privacy [13, 16, 41, 42, 109, 120, 129, 134, 140, 142-144, 231-233, 239]. More focus of these 

schemes has been on preserving the privacy of data-owner’s data generated at sensors. Few 

schemes in fog-enabled IoT have considered the unlinkability of data-owner’s pattern to 

their identity and location [121, 241, 242]. These schemes used the mechanism of machine 

learning, Voronoi grid, and ECC to provide unlinkability and tracing back to the source node 

(i.e. sensor and data-owner). Due to unlinkability, the usage patterns cannot be traced back 

to the data-owner, which makes usage patterns not very useful for malicious users. Although 

the likelihood of a malicious user successfully sabotaging the IoT network for tracing usage 

patterns to data-owner is low, it is still essential to have adequate privacy for usage patterns 

in place. 

4.4. Rogue Fog node 

The presence of a rogue fog node is a potential threat to fog-enabled IoT network in the context 

of privacy. The rogue fog node is a type of fog node representing itself to end-users as a 

legitimate fog node [261]. It is challenging to identify rogue fog nodes due to several reasons. 

On the one hand, fog computing has a distributed computing, which brings about complex trust 

situations among fog nodes. On the other hand, fog computing considers numerous devices with 

creating, deleting, adding, and revoking devices concurrently. For these reasons, it is difficult to 

detect and manage rogue nodes. The approaches adopted in fog computing to avoid IoT data 

misuse are: 

• Deduplication Approach 

The deduplication approach is put forward to avoid data misuse by rogue fog nodes [133]. 

Deduplication is applied to encrypted data and then deduplicated data is forward to the cloud. 

The encrypted data is further processed at fog nodes. Assuming that the data is exposed at the 

rogue fog node. The rogue fog node decrypts the data to make changes to it. Due to the 
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deduplication of data, the changes made will be detected as soon as the rogue node connects 

with cloud or end-user device. 

• Divide-and-conquer Approach 

The divide-and-conquer approach also mitigates the misuse of data at the rogue fog node [42]. 

In this approach, the trusted miner encrypts data with a secret key and divides data into blocks. 

The secret key is hashed and forward to the end-user device. The data blocks are distributed 

among fog nodes for storage and aggregation processes. Only partial aggregation is performed 

at fog nodes, remaining aggregation and decryption of data are performed at end-user devices. 

The rogue fog node has access to the only block of data that is encrypted. The block of data does 

not provide much information to the rogue Fog node about the entire data packet. For the rogue 

fog node, the block is useless without a chain of blocks aggregated together. Secondly, the chain 

of blocks can only be aggregated and decrypted by the end-user device.  

Although these approaches avoid data misuse at a rogue fog node, it is still challenging to 

detect a rogue fog node before data is accessed.  

4.5. Certificate Management 

Certificate management authority is required to support encryption standards and policies for 

preserving-privacy of fog-enabled IoT models. The responsibilities of the certificate authority 

and challenges of certificate management are discussed as follow: 

• Certificate Authority Responsibility 

The responsibility of the certificate authority should be to ensure that the standards and policies 

are correctly installed and utilized by fog nodes and application domains. Certificate authority 

should also be responsible for monitoring that the fog policies are correctly defined for the 

restriction of fog nodes from data access, which may regulate the release of the data owner's 

locations to third-party [262]. Due to fog computing providing cloud services at the edge of the 

IoT network, it has a high frequency of data throughput and relatively limited storage for the 

data backup and recovery process [263]. Therefore, certificate management authority to 

develop policies and standards for data selection, accessibility roles, mapping, and testing 

should be considered during backup and recovery processes. 

• Cloud-based Policies for Fog-enabled IoT Network 

Solutions based on fine-grained access control with cloud defined policies have been proposed 

for IoT applications in fog computing [67, 133, 231, 241]. The methods used in these solutions 

are based on Attribute-based Signature and Ciphertext Attribute-based Encryption. These 

methods considered the data owner’s access control and privacy policies defined for cloud for 

data processing. The mapping of cloud defined policies and standards to fog-enabled IoT is 

unlikely to be suitable. A cloud purpose is to provide users’ access guarantees and privacy setting 
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modification, whereas a fog node's purpose is to authenticate entire network nodes and provide 

lightweight processing. Due to fog nodes' dynamic and mobile nature, federated and distributive 

role and attribute-based access control architecture is needed. New fog nodes join the fog 

network after authentication and develop trustworthiness with other fog nodes in a network. 

To ensure trustworthiness, certificate authority handling policies are needed. Further, there 

must be a compatible standard for each data-owner’s employing different fog devices.     

4.6. Communication Overhead 

Fog-enabled IoT comes with another important issue: communication overhead for privacy-

preserving of data in a distributive manner. The distributive solutions [41, 42, 134, 231, 232, 

242] in fog-enabled IoT are based on the following methods:  

• Distributed processing and Storage Methods 

In the blockchain, divide-and-conquer, and crowdsensing methods, the data processing, and 

storage is distributed among fog nodes. For data transmission, several fog nodes and clusters of 

fog nodes authenticate themselves to other fog nodes, clusters, sensors, and end-user devices. 

Instead of a single fog node to perform data processing and storage, several fog nodes are 

involved during the processing in these methods. Due to distributive interconnectivity and 

computation, these methods incur high communication overhead.  

• Voronoi Mapping and Ontologies Methods 

The solutions based on Voronoi mapping and ontologies methods also provide low-performance 

efficiency in terms of communication cost. The distributed communication includes the 

transmission of data maps and policies, generation and transmission of rule-based languages, 

and region mapping, data collection, and transmission to fog nodes. The fog devices also make 

a repeated launch to different fog nodes for communication, thus creating communication 

overhead and finding a vulnerable point of entry into the network [76]. 

Although the aforementioned methods provide strong privacy in a distributive manner, an 

increase in communication cost hinders the full adoption of the schemes in fog-enabled IoT 

network. Optimization methods based on meta-heuristics approaches such as Ant Colony 

Optimization (ACO) and Genetic Algorithm (GA) should be introduced to minimize the 

communication overhead. 

Lastly, we believe that the awareness of privacy challenges goes along with the diversified 

use of a fog network in different IoT application domains. We summarize the challenges based 

on the analysis of solutions being provided in fog-enabled IoT together with possible future 

directions. Furthermore, we can see that smart healthcare and smart military system application 

domains, where information privacy is of utmost importance, need to envision possibilities of 

fog-enabled IoT to improve their privacy measures and policies.  
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5. Conclusion 

In this paper, we review research work in the area of privacy perseveration in IoT and fog-

enabled IoT. We classify and analyze the publications based on the privacy requirements for IoT-

based applications followed by the identification and discussions of the state-of-the-art privacy-

preserving solutions. Our classification consists of two majors categories of privacy: Content and 

Context. On one hand, content privacy is further divided into six subcategories: behavior and 

action, state of body and mind, media, social interaction, data aggregation, and data query. On 

the other hand, context privacy contains four subcategories: identity, location, temporal, and 

privacy policy and access control. Then, we discuss the mapping between the existing IoT 

applications and the fog-enabled IoT applications and identify the key benefits and 

improvements provided by fog computing. Based on our comprehensive analysis, we summarize 

key fog computing research challenges for privacy-based IoT designs and future research 

directions to motivate practitioners and researchers to effectively and efficiently develop 

privacy-preserving fog computing designs that support more sophisticated IoT applications in 

the future. 
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‘Data is the pollution problem of the information age, and protecting privacy is the environmental 
challenge.’        ---Bruce Schneier 

 

Chapter 3: Lightweight, Divide-and-Conquer Privacy-Preserving 

Data Aggregation in Fog Computing 

 

Abstract 

With the increasing popularity of the Internet of Things (IoT) and fog computing paradigm, 

aggregating IoT data considering privacy concerns over fog networks can be seen as one of the 

biggest security challenges. Numerous schemes address this problem. However, most of the 

existing schemes and their associated methods are heavyweight facing issues related to 

performance overhead. Furthermore, performing data aggregation at a single aggregator fog 

node causes an overly computational burden on the node, which results in high latency, 

degraded reliability, and scalability leading to a single point of failure risks. To fill these gaps, this 

paper presents a lightweight, Divide-and-Conquer privacy-preserving data aggregation scheme 

in fog computing to improve data privacy, data processing, and storage capabilities. Particularly, 

we design a data division strategy based on the Level of Privacy (LoP) defined by data owners. 

The data division strategy not only effectively divides data according to LoP and distributes it 

among participating fog nodes for aggregation and storage processing, but also reduces 

computational and memory overhead in the processing simultaneously. Moreover, we perform 

a privacy analysis of our scheme and perform comprehensive experiments to compare it with 

other traditional schemes to evaluate performance efficiency. The results demonstrate that our 

scheme can efficiently achieve data privacy in fog computing and outperforms the other 

schemes in computational and memory costs.  
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1. Introduction 

In recent years, the interconnectivity of smart things has significantly improved every day’s life 

including home security, pervasive health care (smart hospitals), infrastructure support, 

household activities, smart supply chain, smart meters for balancing bills, air quality 

management, and so on [5]. By the year 2020, Smart devices and sensors connected to the 

Internet are predicted to reach 34 billion approximately [20]. This rapid development in the 

Internet of Things (IoT) has increased substantial overhead on data processing to the IoT system 

[7]. Intuitively, aggregating data to reduce the energy consumption of IoT sensors, data storage 

costs, data redundancy while improving data analysis speed and computing efficiency has been 

considered [13]. Utility data of energy companies are aggregated from installed smart meters at 

customer sites to improve the overall efficiency and reliability of their grid infrastructure [34]. 

Similarly, various kinds of wearable devices collect aggregated data of the health sector that is 

needed for medical research [35]. Also, aggregated data collected from vastly installed street 

and environment sensors analyze a road network to improve transportation services for drivers 

[36]. 

Despite the utilization of data aggregation in the IoT system for innovative services, several 

concerns undermine the full adoption of IoT applications. One of the main concerns is the users’ 

identity and data privacy. Most data owners worry about the potential use of their sensitive or 

private data collected from different IoT devices and then forwarded to the Cloud to process or 

store [264]. Such kind of data not only contains general data fields of a user, for example (name, 

telephone, number, or address). But may also have very sensitive information, including medical 

health reports and readings of habitual patient behavior that can be accessed by an 

unauthorized person [18]. Furthermore, in a smart grid, collecting data from hundreds of smart 

meters and aggregating metering information can also raise issues of consumer privacy such as 

exposure of activities patterns of consumers and location tracking of consumers [22].  

Numerous schemes [56, 265-270] have been adopted to aggregate data while 

preserving data privacy from entities inside a network, operators, and external eavesdroppers. 

However, most of the state-of-the-art schemes are computationally expensive and only suitable 

for homogeneous data [265-269]. Further, performing data aggregation at a Cloud server/single 

aggregator [131, 271] increases the computational burden on the Cloud server/single 

aggregator, which results in high latency, degraded reliability, and scalability. Also, the use of a 

single aggregator may lead to Denial of Service (DoS) and single point of failure risks [56, 131, 

265-271]. 
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CISCO’s researchers proposed a Fog computing concept in 2012 as an alternative 

paradigm to solve the aforementioned issues found in many IoT applications [10]. The main idea 

is based on partly shifting Cloud computing and storage from Cloud data centres to the edge of 

terminal devices a.k.a. Edge nodes. Fog computing can be viewed as an extension of the Cloud 

computing paradigm at a network edge [10]. Fog computing is becoming popular as it provides 

computing, networking, and storage capabilities to IoT’s end-users, where each fog node is 

located closer to IoT devices [12]. Furthermore, the architecture of fog computing can reduce 

the amount of data transfer and processing to the Cloud. Thus, alleviating much of the burden 

to fog servers itself and improving performance efficiency [13]. 

Recently, numerous work [9, 12, 13, 54-56] have proposed schemes for data aggregation 

in fog computing, and only aggregation results are forwarded to the Cloud. The performance 

results of these schemes [9, 12, 13, 54-56] show a significant improvement in computation, 

communication efficiency, and latency as compared to state-of-the-art schemes [56, 131, 265-

271]. However, within a fog layer, the utilization of multiple nodes to distribute the workload of 

data aggregation has not been considered. Thus, making their schemes [9, 12, 13, 54-56] 

vulnerable to DoS attack and single point of failure risks. Also, there has been no other fog node 

integrated into a network to minimize a failure probability of a fog node during data aggregation. 

Most of the schemes [9, 56] are based on heavyweight cryptosystems (for example, 

pairing-based cryptosystems), which increase computational and storage costs within the fog 

layer. Cryptosystems also involve a third-party authority to generate public/private keys, which 

may increase communication overhead and eavesdrop attacks on third-party authority or a 

communication link. Further, the fog layer has not provided authority to data owners for 

defining the level of privacy of their generated data.  

Recently, Sharma et al. [12] proposed a scheme based on blockchain for secure data 

distribution among fog nodes and to mitigate a single point of failure risk, and optimize fog 

resources for data processing. Although the scheme can optimize performance efficiency during 

data distribution, however, aggregating data to reduce redundancy has not been considered in 

a scheme. Their scope is only limited to distribute data securely among fog nodes for data 

storage.  

Despite the numerous benefits that fog computing provides regarding preserving 

privacy during data aggregation, the utilization of heavyweight cryptosystem, single processing 

node, third-party involvement, and no consideration of data owners for data authority still 

hinder the full utilization of fog computing. Therefore, we propose a lightweight, Divide-and-
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Conquer framework to achieve efficient data aggregation while preserving a higher level of data 

privacy in fog computing. The main contributions of this paper are summarized as follows: 

1. We propose a lightweight Divide-and-Conquer approach to preserve the data privacy for 

data aggregation in fog computing together with a scheme for the distribution of data 

processing among fog nodes to mitigate a single point of failure risks. 

2. We propose a data division strategy based on the Level of Privacy (LoP) defined by a data 

owner. This strategy provides authority to the data owner to define LoP for the privacy of 

their sensor-generated data in fog computing.  

3. We evaluate the performance efficiency, and the results show that our scheme can 

efficiently preserve the privacy of data in fog computing as compared with state-of-the-art 

schemes. 

The remainder of the paper is organized as follows: In Section 2, we review related work, 

and we present our scheme with an in-depth analysis in Section 3. Section 4 provides the security 

analysis and performance evaluation of our proposed scheme compared with existing ones. 

Finally, Section 5 concludes the paper with future work. 

 

2. Related Work 

Recently, several research works [9, 12, 13, 54-56], have been carried out to perform data 

aggregation and storage processing in fog computing. With their approach, Fog nodes only 

forward the aggregation results to the Cloud, which has improved communication efficiency and 

latency delays. A secure and anonymous data aggregation scheme using fog computing has been 

proposed by Wang et al. [9]. In the proposed scheme, a fog node aggregates data from sensor 

devices and forwards the aggregated data to the cloud for long-term storage [9]. The scheme is 

based on Castagnos-Laguillaumie, short-signature, and bilinear pairing cryptosystem to provide 

secure aggregation and identity privacy at fog edges [9]. However, the scheme provides data 

aggregation using a single fog device, which can be vulnerable to DoS attack and a single point 

of failure risk. The adversary model of the scheme is also limited, considering only the possible 

internal attacks. Furthermore, in the case of fog device failure, there has been no other fog node 

integrated into the network to recover the aggregated data. 

Camillo et al. have also proposed a lightweight data aggregation scheme using a fog device, 

which provides resistance to false data injection with efficient data aggregation and supporting 

fault tolerance [56]. However, data is kept at a centralized unit ‘Control Centre’ which may lead 

to a single point of failure risk. Also, the scheme considers the Paillier cryptosystem for data 

encryption, which is a computationally expensive public-key cryptosystem [255]. Therefore, 

there is a need for distributed data storage with a computationally inexpensive cryptosystem. 
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Also, the workload of a single fog device should be distributed to decrease the network 

bottleneck. Furthermore, third-party authority is used for the generation of public and private 

keys. Involving third authority to perform key generation may also increase communication 

overhead and eavesdrop attacks on third party authority or communication link. 

To overcome DoS attacks, Sharma et al. proposed a technique based on blockchain for 

secure data distribution among fog nodes with optimization of the performance efficiency and 

fog resources [12]. The authors claim that their technique is better in reducing response time 

delays, increasing throughput, and detecting real-time attacks as compared to existing 

techniques. One of the aims of using blockchain technology in the Sharma et al. technique is to 

provide complete data privacy in fog computing [12]. However, the scope of this blockchain 

technique is only limited to distribute data among fog nodes for storage securely. Also, there is 

no data processing, for example, the aggregation process on data. Also, the proposed technique 

lacks to provide energy-efficient communication methods between fog nodes themselves, 

which results in limitation to workload balance and resource allocation in fog environment.  

Basundan et al. adopted the concept of crowdsensing for data aggregation using fog 

computing and encryption without the need for data verification certificates [231]. The concept 

provides resilience to key escrow attacks with less computational and communication overhead. 

In this concept, third-party authority is not needed for generating aggregation certificates. 

Another scheme based on the Paillier cryptosystem and online/offline signature method for data 

aggregation using fog computing has been proposed [272]. The scheme achieved data privacy 

preservation, authentication, and confidentiality during data aggregation. However, the scheme 

is based on an asymmetric cryptosystem, which results in higher computational overhead. Guan 

et al. [7] also proposed a scheme based on the Paillier cryptosystem for preserving privacy during 

data aggregation in fog-enhanced IoT. Data aggregation in both the Paillier based schemes [7, 

272] is carried out on a single aggregator node, and third-party authority is involved for key 

generation. Therefore, both schemes are vulnerable to a single point of failure attack.   

In another scheme, Yang et al. [13] have applied a machine learning approach to achieve 

data privacy in fog computing, data is distributed among two fog nodes, and data training is 

carried out on raw data. Additive and non-additive aggregation of raw data is also provided on 

fog nodes. Then only the aggregated results from fog nodes are sent to the Cloud. Authors have 

also claimed that using a machine learning technique to preserve data privacy during 

aggregation improves performance efficiency as compared to cryptographic heavyweight 

technique, for example (Paillier homomorphic encryption). Whereas, we contradict their claim 

as lightweight cryptographic functions can provide the same level of performance efficiency with 

a high level of security as compared to machine learning training and testing techniques. Also, 

an enormous amount of data is produced by IoT devices, and performing machine learning 
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techniques on that data will be time-consuming. Furthermore, sensor data has been not kept 

private from fog nodes during the data training procedure in the proposed machine learning 

approach, which may lead to data exposure in the case of a malicious fog node in a network. 

3. The Divide-and-Conquer Scheme 

In this section, we provide an overview of our proposed system model and the adversary model. 

We also present the outline of our proposed system model in Figure 11. In this section, we also 

present our privacy-preserving scheme based on the system and the adversary model. The visual 

summary of the proposed scheme’s phases is shown in Figure 12 and discussed in subsequent 

sections/sub-sections. 

3.1. System and Adversary Model 

The system model as shown in Figure 11, comprises three layers and a data owner. The first 

layer consists of sensor nodes to transmit generated data of data owners to a second layer. The 

second layer is the fog layer, which consists of two sub-layers (Miner layer and Cluster layer). 

The second layer is responsible for performing most of the processing and storage tasks. Only 

the aggregated result is forwarded to the third layer, which consists of the end-user/cloud 

device. All the entities in each layer of the system are discussed as follow: 

• The sensor devices (𝑆𝑒𝑛𝑠𝑜𝑟0 −−−, 𝑆𝑒𝑛𝑠𝑜𝑟𝑘, where k represents the total number of sensor 

devices in a network) record the raw data and sends data in established JSON format to the fog 

layer for processing.  

Figure 11 An overview system model of the proposed scheme 
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• In our model, the fog layer is a critical component for providing services, including fetching,

analyzing, and processing sensor devices generated data. For providing these services, the

fog layer is subdivided into two layers, the miner layer, and the cluster layer.

• The miner layer consists of miner nodes (𝑀𝑖𝑛𝑒𝑟0 −−−,𝑀𝑖𝑛𝑒𝑟𝑛, where n represents the

total number of miner nodes in a network). The miner nodes are deployed at the sensor

network edge. Miner nodes serve as an access point for sensor devices to fog nodes of the

cluster layer. In particular, miner nodes (𝑀𝑖𝑛𝑒𝑟𝑛) fetch data from sensor devices and update

the privacy table with data packet Id. Further, process the data of sensor devices according

to the defined Level-of-Privacy (LoP) by a data owner.

• In our model, a data owner is considered as an individual or a device, which owns the data

generated by sensor devices. The data owner has the authority to define the Level of Privacy

(LoP) for each data sets generated on different sensors. According to the LoP settings, miner

nodes can process data and forward it to the cluster layer.

• In a cluster layer, different clusters of fog nodes (𝐹𝑁0 −−−,𝐹𝑁𝑘, where k represents the

total number of fog nodes in the network) receive processed data from miner nodes

(𝑀𝑖𝑛𝑒𝑟𝑛). The fog nodes store the processed data coming from the miner nodes. Further on

a  request of end-user/cloud device (𝑈𝑠𝑒𝑟𝑑𝑒𝑣𝑖𝑐𝑒) for the stored data, the fog nodes in a

Figure 12 Sequence Diagram (SSD) for Divide-and-Conquer privacy-preserving data aggregation 

scheme 
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cluster act as aggregators and perform the data aggregation on stored data. This aggregation 

process is distributed among the fog nodes. Then the end-user/cloud device (𝑈𝑠𝑒𝑟𝑑𝑒𝑣𝑖𝑐𝑒) 

receives the aggregated data from the fog layer, which can be decrypted by the end-

user/cloud device for generating results. 

In the adversary model, we consider the cases which are important for preserving the privacy 

of data during aggregation in fog computing. Miners in the fog layer are considered fully trusted, 

as they only process sensor data at the network edge close to sensors and are not involved in 

the aggregation process. Also, each miner node is unaware of data packets from other miner 

nodes. 

Fog nodes in the cluster layer are honest-but-curious because they may be affected by 

undetected malware which may compromise data privacy. The scope of our current work is 

limited to the privacy preservation of data within the fog layer only. Therefore, IoT and user 

devices are not compromised. Furthermore, any adversary can be strong enough to perform 

actions as an internal attack and external attack. In an internal attack, an adversary can 

compromise the fog node in a cluster layer and gain access to data kept at that node. Whereas 

in the external attack, an adversary impersonates as one or a group of fog nodes and sends false 

data on behalf of data coming from miners to the aggregator. Also, it can mount Denial of Service 

(DoS) attacks on fog nodes. 

3.2. Network Design and Setup 

Before defining our scheme, it is important to understand how the network can be designed. 

Both layers in the fog layer have their dedicated roles and tasks to perform. The layer division 

helps to balance the load and increases performance efficiency to provide privacy. Generally, all 

the fog and miner nodes are interconnected in the fog layer with each other, and the fog nodes 

are assigned with memory and computational power. The network formation between sensor 

nodes and miner nodes in the miner layer depends upon the following possibilities: 

• The shortest distance between the sensor and the miner node. 

• In the case, there exists more than one miner node at the same shortest distance from the 

sensor node then the miner node with the highest memory and computational resources 

available will be selected. 

• In the case, there exists more than one miner node, and all the miner nodes have the same 

resources available. Then on a first come first serve basis, the miner node which 

authenticates itself first to the sensor node will be considered for data transmission. 

In the cluster layer, clusters can be formed based on KHOPCA: k-hop clustering [273] concept 

and distance factors between nodes. Each fog node 𝐹𝑘 in the cluster layer is continuously 

involved in cluster formation. Fog node in the cluster layer is assigned with dynamic weights, 
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which are randomly selected from the maximum (Max) and minimum (Min) weights range. In 

the start configuration, Max weight is the maximum weight, which is assigned to the assumed 

cluster fog head and Min weight is the smallest possible weight for a fog node in a network. We 

assume that the fog nodes awareness available to the fog node 𝐹𝑘−1 is only the nearest located 

neighbor fog node 𝐹𝑘 with weight 𝑊𝑘. Clusters are created by following the k-hop clustering 

state transition rules in [273]. The first rule deals with the top-to-down hierarchical structure by 

setting-up the fog node 𝐹𝑘−1 weight to the closely located neighbour node’s 𝐹𝑘 with the highest 

weight subtracted by 1 (i.e. 𝑊𝑘 -1). The second rule deals with declaring the isolated fog node 

as a fog-head. An isolated fog-node is a node which has minimum weights and is fog-head-less. 

The third rule deals with the situation where a higher weighted fog node, which is not a fog-

head attracts the surrounding less weighted fog node towards itself. According to the rule, the 

higher weighted fog node decreases its weight to join an existing nearby cluster. The fourth rule 

resolves the very close proximity fog-heads conflicting situations. In such a situation, one fog-

head survives, while others must die [273].  

The miner nodes authenticate each fog node in a cluster for nodes' awareness and 

communication with miner nodes. Each miner node creates a policy table of each fog node of a 

cluster with available resources and distance from the miner node. According to the policy table, 

the miner node sends data blocks to the closest available fog nodes.    

3.3. Level of Privacy (LoP) and Distribution Setup 

In our proposed scheme, data distribution is based on the Level of Privacy (LoP) settings defined 

by a data owner who is authorized to select the LoP for their sensors data. LoP consists of five 

levels. Level 5 represents the highest privacy level, whereas level 1 represents the lowest privacy 

level. The higher the privacy level, the requirement of privacy is greater, which indicates that 

during processing and storage in fog computing, the data should be kept more secure and 

private as compared to a low level of privacy settings. For each LoP, the data distribution (i.e. 

linear and tabular) type varies. The following Equations identify the type of distribution and 

division factor to be used for LoP. 

𝑻𝒚𝒑𝒆𝟏 = 𝑳𝒊𝒏𝒆𝒂𝒓, 𝑳𝒐𝑷 ≤ ((𝑀𝑎𝑥𝐿𝑜𝑃 +𝑀𝑎𝑥𝐿𝑜𝑃 𝑚𝑜𝑑2)/2) eq 3.1 

 

𝑻𝒚𝒑𝒆𝟐 = 𝑻𝒂𝒃𝒖𝒍𝒂𝒓, 𝑳𝒐𝑷 > (𝑀𝑎𝑥𝐿𝑜𝑃 +𝑀𝑎𝑥𝐿𝑜𝑃 𝑚𝑜𝑑2)/2 

 

eq 3.2 

 

𝑭𝒐𝒓 𝑻𝒚𝒑𝒆𝟏, 𝑫. 𝑭 = 2 ∗ 𝐿𝑜𝑃 

 

 

eq 3.3 

𝑭𝒐𝒓 𝑻𝒚𝒑𝒆𝟐, 𝑫. 𝑭 = 2𝐿𝑜𝑃 

 

    eq 3.4 
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Where MaxLoP represents the maximum level of privacy that is considered as 5. Type1 

represents linear distribution type, whereas Type2 represents tabular distribution type, and DF 

is for division factor. According to the Equations mentioned above, Table 7 shows the LoP and 

distribution setup for the proposed scheme. 

 

 

 

 

 

 

 

In linear distribution, data is divided into a number of columns based on the division 

factor (DF). For example, from Table 1 above, if LoP is 2, then DF is 4 and type is linear, which 

means that basic privacy should be applied with linear data division by dividing a data packet 

into four numbers of data blocks. Let 𝑆 represents the total size of the encrypted data. For linear 

distribution, the size of each block becomes: 

 

𝑭𝒐𝒓 𝑳𝒊𝒏𝒆𝒂𝒓,𝑩 = ⌈𝐒/𝐃. 𝐅⌉ 

 

 

eq 3.5 

 For tabular distribution, data is first divided into rows and then into columns as discuss as 

follow:  

Step 1: For dividing data into rows, first, we identify a total number of rows 𝑫 as: 

 

𝑭𝒐𝒓 𝑹𝒐𝒘𝒔,𝑫 = ⌈√𝑫.𝑭⌉ 

 

 

eq 3.6 

Now the length 𝒓 of each row will be the division of the size of each block to a total number of 

rows: 

 

𝒓 = ⌈S/D⌉ 

 

 

eq 3.7 

Step 2: After row division for column distribution, rows from Equation 3.7 will be divided into 

columns as: 

 

For Tabular, T= ⌈r/D. F⌉ 

 

eq 3.8 

 

Table 7 Distribution setup 

LoP Type DF 

1 Linear 2 

2 Linear 4 

3 Linear 6 

4 Tabular 16 

5 Tabular 32 
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From Equations 3.6, 3.7, and 3.8, it can be deduced that for the tabular distribution, i.e. 

LoP levels 4 and 5, the data is first divided into a number of rows. Then further each row is 

divided into a number of columns. 

3.4. Nodes Authentication 

Before sensor nodes transmit data for processing and storage to the fog layer, each node in the 

network proves its legitimate identity and authorization using a token-based authentication 

mechanism. Each node generates the packet fields including secret, type of token, hashing 

algorithm, and node ID in the header and payload. Also, algorithmically signs the packet to 

produce a token. Nodes send token to other nodes with whom they wish to have data 

communication. Using header-claim-signature with Auth0, nodes can verify generated secrets 

for authorization and legitimacy of each other. In the case of an incorrect secret inside a packet 

transmitted, an invalid signature in a token will be computed and will differ from the original 

token. Thus, the data communication request will be denied with an ‘unauthorized node’ status. 

3.5.  Data Encryption 

Miner nodes are responsible for performing sensor data encryption. After proving the 

authentication, miner nodes receive JSON format data 𝑀 from sensor nodes and apply 

lightweight Advanced Encryption Standards (AES) symmetric technique to encrypt data 𝑀 , as 

shown in Algorithm 1. The symbols used in Algorithms are in Table 8. First of all, at the miner 

node, each packet’s id is hashed for future use and is kept in a packet Id 𝑃𝑘𝑡𝑖 table. Then AES, 

Rijndael block cipher technique is applied on data 𝑀. The first step is the derivation of a new 

round of keys 𝑘𝑖 with 128, 192, and 256 bits using Rijndael's key schedule. Then data 𝑀 is divided 

into column blocks, for example, if an AES block size is 128 bits then four by four-columns of 16 

Table 8 Symbols used in Algorithms 

Symbols Definition 

𝑴 Data packet from the sensor node 

𝒌 security key 

𝒔 Randomly generated number 

𝐩𝐤𝐭𝐢𝐝 Packet Identification bits 

𝑳𝒐𝑷𝒔𝒊  Level of privacy defined by data owner for the sensor at 𝑖𝑡ℎ position.  

𝐃𝐅 Division factor 

𝑺 The total size of the encrypted data 

B Size of a block 

𝑹𝒊 Unique number for a block of encrypted data 

D Integral number randomly selected 

𝒄𝒊 length of the ith column 



71 
 

bytes will be created. After division into column blocks, round keys are added to the blocks using 

an additive encryption Algorithm. The next step is to substitute each data byte 𝑴[𝒊] into  

𝒔𝒕𝒂𝒕𝒆[𝒊]  according to the Rijndael pre-determined table in S-Box.  

Algorithm 1 Data Encryption  

Procedure 𝑨𝑬𝑺𝒌(𝑴) 

Input (𝑴,𝒌, 𝒔,) 

For each data packet at Miner node from a sensor 

Hash packet Id 

1. 𝑷𝒌𝒕𝒊 ← 𝑯𝒂𝒔𝒉𝒔(𝐩𝐤𝐭𝐢𝐝)  

For each 𝒌𝒆𝒚 𝒌 length at Miner nodes  

Initialize initial round  

𝑹𝒐𝒖𝒏𝒅𝒔 ←  𝟏  

2.  If 𝑲𝒍𝒆𝒏 ← 𝟏𝟐𝟖  bits 

    Then 𝑹𝒐𝒖𝒏𝒅𝒔 ← 𝟏𝟎 times 

 Else if 𝑲𝒍𝒆𝒏 ← 𝟏𝟗𝟐  bits  

    Then 𝑹𝒐𝒖𝒏𝒅𝒔 ← 𝟏𝟐  times 

 Else if 𝑲𝒍𝒆𝒏 ← 𝟐𝟓𝟔  bits  

    Then 𝑹𝒐𝒖𝒏𝒅𝒔 ← 𝟏𝟒 times 

For each M, perform Sub Bytes, Shift Rows, Mix columns, Add round key 

    Assign state for each 𝑴 

3.  𝒔𝒕𝒂𝒕𝒆[𝒊] ← 𝑴[𝒊]  

4. SubByte← (𝐬𝐭𝐚𝐭𝐞[𝐢]) 

Set Rijndael's S-Box for n= 128, 192 and 256  

5. 𝑺 − 𝒃𝒐𝒙[𝒏]  ←  (𝟎𝐗𝟔𝟑, . . . . . . . . . . , 𝟎𝐗𝟏𝟔) 

6. 𝒔𝒕𝒂𝒕𝒆[𝒊] ← 𝐒 − 𝐛𝐨𝐱[𝒔𝒕𝒂𝒕𝒆[𝒊]] 

7. ShiftRows← (𝐬𝐭𝐚𝐭𝐞[𝐢]) 

For shifting rows, assign a temp number to the state 

8.  𝒕𝒆𝒎𝒑[𝟎] ← (𝐬𝐭𝐚𝐭𝐞[𝟎]), 𝒕𝒆𝒎𝒑[𝟏] ← (𝐬𝐭𝐚𝐭𝐞[𝟓]), − −     −−, 𝒕𝒆𝒎𝒑[𝟏𝟓]  ←  𝐬𝐭𝐚𝐭𝐞[𝟏𝟏]  

9.   𝒔𝒕𝒂𝒕𝒆[𝒊] ← 𝐭𝐦𝐩[𝐢] 

10.   MixColumn← (𝐬𝐭𝐚𝐭𝐞) 

Fetch multiples from Rijndael mix columns 

11. 𝒕𝒆𝒎𝒑[𝟎] ← (𝐦𝐮𝐥𝟐[𝐬𝐭𝐚𝐭𝐞[𝟎]]^𝒎𝒖𝒍𝟑[𝐬𝐭𝐚𝐭𝐞[𝟏]]^𝒔𝒕𝒂𝒕𝒆[𝟐]^𝒔𝒕𝒂𝒕𝒆[𝟑]), − − −, 𝒕𝒆𝒎𝒑[𝟏𝟓]  ←

(𝐦𝐮𝟏𝟑[𝐬𝐭𝐚𝐭𝐞[𝟏𝟐]]^𝐬𝐭𝐚𝐭𝐞[𝟏𝟑]^𝒔𝒕𝒂𝒕𝒆[𝟏𝟒]^𝒎𝒖𝟏𝟐[𝒔𝒕𝒂𝒕𝒆[𝟏𝟓]) 

12.   𝒔𝒕𝒂𝒕𝒆[𝒊] ← 𝐭𝐦𝐩[𝐢]     

13.  𝑨𝒅𝒅𝑹𝒐𝒖𝒏𝒅 ←  (𝐬𝐭𝐚𝐭𝐞, 𝐤)          ∵ repeat rounds 

14.  𝒔𝒕𝒂𝒕𝒆[𝒊] ≠  𝐤𝐞𝐲[𝐢] 

15.   𝑬𝒏𝑴 ← 𝐒𝐮𝐛𝐁𝐲𝐭𝐞, 𝐒𝐡𝐢𝐟𝐭𝐑𝐨𝐰𝐬,𝐌𝐢𝐱𝐂𝐨𝐥𝐮𝐦𝐧𝐬, 𝐀𝐝𝐝𝐑𝐨𝐮𝐧𝐝(𝐌) 

Append hashed packet id with 𝑬𝒏𝑴       

16.   E← 𝑬𝒏𝑴 +𝑷𝒌𝒕𝒊       

Applies Divide-and-Conquer method on E as shown in Algorithm 2 

End Procedure (E) 
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After this step, each block 𝒔𝒕𝒂𝒕𝒆[𝒊] row is shifted, and columns are mixed to further 

diffuse the block. Then the keys 𝑘𝑖  which are derived by the miner node in the first step are 

added to the final 𝒔𝒕𝒂𝒕𝒆[𝒊]. The steps will be repeated for each round (i.e. for 128 bits 10 rounds, 

192 bits 12 rounds, and 256 bits 14 rounds) and 𝒔𝒕𝒂𝒕𝒆[𝒊] is altered at every stage. Finally, after 

the completion of rounds, encrypted data is derived. Encrypted data is appended with packet id 

𝑃𝑘𝑡𝑖. The appended result is then inserted into the data division and distribution method, as 

shown in Algorithm 2 for further processing.  

3.6. Divide-and-Conquer Scheme 

Based on the LoP defined for each sensor node by a data owner, the tabular and linear 

distribution table is created, as mentioned in sub-section 3.3. According to the Table, each 

encrypted data packet from Algorithm 1 is divided into blocks, as shown in Algorithm 2. At first, 

miner nodes check the 𝑳𝒐𝑷𝒔𝒊 defined by the data owner for each sensor data. In the case of 

𝑳𝒐𝑷𝒔𝒊 = 𝟏, 𝟐 𝒐𝒓 𝟑, the miner nodes apply linear distribution to the encrypted data by dividing 

data into a number of blocks, as discussed in sub-section 3.3. Also, the miner node generates a 

unique number 𝑹𝒊 and block hash 𝑩𝒊 for each block and keeps generated 𝑹𝒊 and 𝑩𝒊 in 

𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚. Then the miner nodes append blocks with the previous block hash 𝑩𝒊−𝟏 as 𝑬𝒊𝒊 =

𝑬𝒊+ 𝑩𝒊−𝟏.  

In the case of 𝑳𝒐𝑷𝒔𝒊 = 𝟒 𝒐𝒓 𝟓, the miner nodes apply tabular distribution as mentioned 

in sub-section 3.3. Based on Equations 3.6, 3.7, and 3.8, all blocks are first divided into rows and 

then divided into columns. The blocks are also appended with the previous block hash 𝑩𝒊−𝟏. 

Only the resultant blocks 𝑬𝒊𝒊  are distributed among the fog nodes (𝐹𝑁𝑘) in the cluster layer.

In our proposed scheme, we perform data 𝑀 encryption before data 𝑀 tabular and 

linear division. The reason for data 𝑀 encryption first is to reduce the complexity and generation 

of Rijndael's rounds for each block (𝐸0 +⋯+ 𝐸𝑖) of data 𝑀 separately. If we first divide data 𝑀 

into blocks according to the LoP. Then separately apply encryption on each block (i.e. AES 

(𝐸0), … , 𝐴𝐸𝑆(𝐸𝑖)) requires higher key derivations and rounds of Rijndael’s block ciphers 

simultaneously for each block. In contrast, encrypting data 𝑀 requires a single Rijndael’s block 

cipher process. After the blocks 𝑬𝒊𝒊  generation, 𝑬𝒊𝒊  are stored at fog nodes, and on end-

user/cloud requests for aggregated data, the stored blocks at fog nodes are sent to aggregator 

nodes for aggregation. 

Algorithm 2 Divide and Conquer 

Procedure 𝑫(𝐄) 

Input (𝑬) 
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3.7. Data Aggregation and Decryption 

In our proposed scheme, we perform an additive aggregation process to compute the sum 

aggregate of all sensor node’s data for end-user/cloud usage. Firstly, the data blocks stored at 

the fog nodes are aggregated together by aggregator nodes. For aggregation, the miner node 

selects the fog nodes, which has computing resources available for data aggregation to act as an 

aggregator node (𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟). The fog node selection as an aggregator node is only 

After data encryption, Miner nodes check the 𝑳𝒐𝑷 for each sensor 

1. 𝑳𝒐𝑷𝒔𝒊 ←  𝐃𝐚𝐭𝐚_𝐨𝐰𝐧𝐞𝐫 (𝟏, 𝟐, 𝟑, 𝟒, 𝟓)  

2. if  𝑳𝒐𝑷𝒔𝒊  == 𝟏, 𝟐 𝒐𝒓 𝟑           ∵ 𝐅𝐫𝐨𝐦  𝐓𝐚𝐛𝐥𝐞 𝟐   

3.    Then type ← 𝐋𝐢𝐧𝐞𝐚𝐫 && 

4.    𝑫. 𝑭 = 𝟐 ∗ 𝑳𝒐𝑷𝒔𝒊         ∵  𝐅𝐫𝐨𝐦 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑. 𝟑 

5.    𝑩 ← ⌈𝑺/𝑫. 𝑭⌉           ∵  𝐅𝐫𝐨𝐦 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑. 𝟓       

           According to block length 𝑩, divide E  ∵ 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 

6.    (𝑬𝟎 +⋯+𝑬𝒊)
𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏
←       𝑬𝒏 

𝑹𝒊 is generated for each data block and kept in a table  𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚      

7.     𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚    
𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒔
←        𝑹𝒊  ∈  𝑬𝒊   

Each block hash (𝑩𝒊) is generated and associated  𝒘𝒊𝒕𝒉  𝑹𝒊 in 𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚       

8.    𝑩𝒊 = 𝑯𝒂𝒔𝒉(𝑬𝒊) 

9.    𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚    
𝒄𝒐𝒏𝒕𝒂𝒊𝒏𝒔
←        𝑩𝒊 𝒘. 𝒓. 𝒕 𝑹𝒊 

Each block is appended with a hash of the previous block 

10.    𝑬𝒊𝒊 = 𝑬𝒊+ 𝑩𝒊−𝟏  

11. Else 𝑳𝒐𝑷𝒔𝒊 == 𝟒 𝒐𝒓 𝟓 

12.      Then type← 𝐓𝐚𝐛𝐮𝐥𝐚𝐫 && 

13.      𝑫. 𝑭 = 𝟐𝑳𝒐𝑷                  ∵  𝐅𝐫𝐨𝐦 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑. 𝟒 

Divide data into rows  

14.       𝑫 = ⌈√𝐃. 𝐅⌉                                  ∵  𝐅𝐫𝐨𝐦 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑. 𝟔 

15.       𝒓𝒊 = ⌈𝐒/𝐃⌉                                   ∵  𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧 𝟑. 𝟕  

             According to 𝒓𝒊, divide E              ∵ 𝐄 𝐟𝐫𝐨𝐦 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏 

16.  (𝑬𝟎 + 𝑬𝟏 + 𝑬𝟐 +⋯+ 𝑬𝒊)
𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏
←      𝑬𝒏   ∵  𝑳𝒐𝑷𝒔𝒊 =  𝟒 𝒐𝒓 𝟓     

17.       Repeat step 7, 8, 9 and 10  

              Divide rows into columns 

18.        𝐓 = ⌈𝐫/𝐃. 𝐅⌉                     ∵  𝐅𝐫𝐨𝐦 𝐞𝐪𝐮𝐚𝐭𝐢𝐨𝐧   𝟖 

 According to the T divide (𝑬𝟎 + 𝑬𝟏 + 𝑬𝟐 +⋯+ 𝑬𝒊) 

19.        (𝑬𝟎𝟎+. .+𝑬𝟎𝒊)+…+ (𝑬𝒌𝟎 +⋯+ 𝑬𝒌𝒊)
𝒅𝒊𝒗𝒊𝒔𝒊𝒐𝒏
←      (𝑬𝟎+. . +𝑬𝒊) 

20.       Repeat step 7, 8, 9 and 10  

𝑴𝒊𝒏𝒆𝒓𝒏 holds 𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚 of 𝑹𝒊 with a hash of each block 𝑩𝒊 

 

𝑴𝒊𝒏𝒆𝒓𝒏 sends data blocks to 𝑭𝑵𝒌  

21. 𝑭𝑵𝒌

𝒔𝒆𝒏𝒅
←   (𝑬𝟎𝟎+. . +𝑬𝟎𝒊)+…+ (𝑬𝒌𝟎 +⋯+ 𝑬𝒌𝒊) 

End Procedure (𝑬𝟎𝟎+. . +𝑬𝟎𝒊)+…+ (𝑬𝒌𝟎 +⋯+ 𝑬𝒌𝒊) 
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done when the end-user/cloud requests a miner node for the aggregated data. After selection, 

the aggregator node requests the clusters to send the data blocks stored at fog nodes. The 

aggregation process is not performed at a single aggregator, and aggregation is distributed 

among aggregator nodes to speed up the process and minimize a single point of failure risk. The 

fog nodes (𝑭𝑁𝑘) forward data blocks to the closet available 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 . After receiving 

data blocks, aggregators request miner nodes to send 𝑡𝑎𝑏𝑙𝑒𝑝𝑜𝑙𝑖𝑐𝑦. 

The purpose of requesting 𝑡𝑎𝑏𝑙𝑒𝑝𝑜𝑙𝑖𝑐𝑦 is to check 𝑩𝒊 and corresponding 𝑹𝒊 for summing 

up blocks together. Once 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 receivers table 𝑡𝑎𝑏𝑙𝑒𝑝𝑜𝑙𝑖𝑐𝑦, then aggregator node 

checks 𝑩𝒊−𝟏, which is appended with blocks received from 𝐹𝑁𝒌. If the appended hash of the 

previous block 𝑩𝒊−𝟏 with a block match with the one in the 𝑡𝑎𝑏𝑙𝑒𝑝𝑜𝑙𝑖𝑐𝑦 then 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 

aggregates blocks together. Else 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 checks a previous hash 𝑩𝒊−𝟏 to be null, 

then 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟finds out the next hash value 𝑩𝒊+𝟏 of a block and compare it with 𝑩𝒊+𝟏 

in 𝑡𝑎𝑏𝑙𝑒𝑝𝑜𝑙𝑖𝑐𝑦 , if both the hash values are equal then 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 aggregates blocks. 

Otherwise 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 forwards data block to another 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟, as 

shown in Algorithm 3 to find out hashes of the block and aggregate blocks chain. After the 

summation of data blocks, all the aggregator nodes 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 send blocks chain to 

end-user/cloud device to perform the additive aggregation on data.  

First, the end-user/cloud 𝑈𝑖  device aggregates all data blocks chain (𝑬𝒇𝟎 +⋯+ 𝑬𝒇𝒊) 

together to generate one file 𝑬𝒍. Then 𝑈𝑖  requests 𝑴𝒊𝒏𝒆𝒓𝒏 nodes to send hashed 𝑃𝑘𝑡𝑖 and 

corresponding keys 𝑘 for decrypting data packets in 𝑬𝒍. Using AES decryption method for each 

data packet (𝑬𝟎 −−− 𝑬𝒏) kept in 𝑬𝒍, the end-user/cloud device decrypts each data packet. 

Also, sums up the data packets (𝑬𝟎 +−−+𝑬𝒏) in 𝑬𝒍 to only provide the summation of data to 

end-user/cloud for further processing or usage. 

Algorithm 3 Data Aggregation & Decryption 

Procedure 𝑨𝒈𝒈𝒑𝒌(𝑬) 

Input (𝑬𝒏, 𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚 ) 

 

𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒔𝒆𝒏𝒅𝒆𝒓 forwards data blocks to 𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒐𝒓   

1. 𝑬𝒊𝒊
𝑺𝒆𝒏𝒅𝒔
←   𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒔𝒆𝒏𝒅𝒆𝒓 

2. 𝑬𝒊+ 𝑩𝒊−𝟏

𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒔
←        𝑬𝒊𝒊 

𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒐𝒓 requests 𝑴𝒊𝒏𝒆𝒓𝒏 to send 𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚  

3. Checks 𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚 for 𝑹𝒊 and 𝑩𝒊, 𝑩𝒊−𝟏 𝒂𝒏𝒅 𝑩𝒊+𝟏 

4. If    𝑩𝒊−𝟏 ∈  𝑬𝒊𝒊 ==  𝑩𝒊−𝟏  ∈  𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚  

5.   Then  𝑬𝒇𝒊
𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆
←         𝑬𝒊+𝑬𝒊−𝟏  

6.    𝒕𝒂𝒃[𝑩𝒊] − −               ∴ keep finding previous hashes 

7. 𝒆lse 𝑰𝒇 𝑩𝒊−𝟏← Null 
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4. Privacy and Performance Analysis

In this section, we perform the privacy and performance analysis of our scheme and evaluate 

our scheme as compared to other schemes. 

4.1. Experiment Setup 

A set of AES-based Algorithms with security parameters 128, 192, and 256 are implemented in 

C++ using Network Simulator based on a 500 MHz Linux based-system. Crypto++ library is used 

for the implementation of AES with hashing algorithms. Using the network simulator, we 

considered 10 KB to 1000 KB varying data sizes for analyzing and comparing schemes. The 

variation of data size is based on different case scenarios: 

1. Simple Level: In the simple level of network complexity, we consider data sizes vary between

10 KB to 200 KB with 3-10 sensor nodes, 2-5 miner nodes, and 5 -15 fog nodes in 2-5 of

clusters and an end-user device.

2. Medium Level: In the medium level of network complexity, we consider data sizes varying

200 KB – 500 KB with 10-40 sensor nodes, 5-15 miner nodes, 10-50 fog nodes in 5- 20

clusters, and an end-user device.

3. High Level: In the high level of network complexity, we consider data sizes varying 500 KB –

1000 KB with 40-100 sensor nodes, 15- 30 miner nodes, 50-80 fog nodes in 15- 40 clusters,

and an end-user device.

We present our results in the form of graphs. The graph illustrates the computational,

memory, and communication overhead for our scheme compared with the ECBDA [22],

Masker [131], APPA [7], and LVPDA [272] schemes.

4.2. Formal Security Analysis 

We consider Ouafi et al. & Gope et al. privacy models [57, 58] to formally analyze the privacy of 

our scheme. In the privacy model of our scheme, an adversary 𝐴 can eavesdrop fog nodes and 

8. 𝒕𝒉𝒆𝒏 𝒇𝒊𝒏𝒅 𝑩𝒊 𝒂𝒏𝒅 𝑩𝒊+𝟏

9.  If    𝑩𝒊+𝟏 ∈  𝑬𝒊+𝟐𝒊+𝟐 ==  𝑩𝒊+𝟏  ∈  𝒕𝒂𝒃𝒍𝒆𝒑𝒐𝒍𝒊𝒄𝒚

10. Then  𝑬𝒇𝒊
𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆
←  𝑬𝒊+𝑬𝒊+𝟏 + 𝑬𝒊+𝟐

11. 𝒕𝒂𝒃[𝑩𝒊]++  ∴ keep finding next hashes 

12. 𝑬𝒍𝒔𝒆 𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒐𝒓+𝟏  
𝒔𝒆𝒏𝒅
←   𝑬𝒊𝒊

13. 𝑹𝒆𝒑𝒆𝒂𝒕𝒆 𝒔𝒕𝒆𝒑𝒔 (𝟐 − 𝟏𝟏)

Each Aggregator node sends 𝑬𝒇𝒊  to an end-user device to compute final aggregation and decryption.

14. 𝑬𝒍 = 𝑬𝟎 − − − 𝑬𝒏 
𝒂𝒈𝒈𝒓𝒆𝒈𝒂𝒕𝒆
← 𝑬𝒇𝟎 +⋯+ 𝑬𝒇𝒊

15. 𝑷𝒌𝒕𝒊, 𝒌
𝒓𝒆𝒒𝒖𝒆𝒔𝒕𝒔
←  𝑼𝒊

16. 𝑬𝒍 = 𝑫𝒆𝒄𝒓𝒚𝒑𝒕𝑷𝒌𝒕𝟎,𝒌(𝑬𝟎) +⋯+  𝑫𝒆𝒄𝒓𝒚𝒑𝒕𝑷𝒌𝒕𝒏,𝒌(𝑬𝒏)

End Procedure (𝑬𝒍)
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communication channels between miner nodes and end-user device to gain data block 𝐸𝑘𝑖, 

𝐸𝑓𝑖 
 or to target a fog node. An adversary can also try to decrypt (𝐸𝑘𝑖𝑜𝑟 𝐸𝑓𝑖 

), and forward 

amended 𝐸𝑖𝑖′ to fog nodes or 𝐸𝑓𝑖 ′
 to end-user device. An adversary 𝐴 can also perform any active 

or passive attacks and be allowed to run the following queries. 

1. Execute (𝑀𝑖𝑛𝑒𝑟𝑛, 𝐹𝑁𝑘 , 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 , 𝑚): This query depicts the passive attack for an 

adversary 𝐴. In this query, 𝐴 can eavesdrop on the transmitted data block 𝐸𝑘𝑖 between the 

𝑀𝑖𝑛𝑒𝑟𝑛 and  𝐹𝑁𝑘  or between 𝐹𝑁𝑘  and 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 in the 𝑚𝑡ℎ session where 

(0 <m<Total (execute)). 𝐴 can also eavesdrop on the aggregated data blocks 𝐸𝑓𝑖 , which is 

transmitted from 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 to 𝑈𝑖.  

2. Send (𝐹𝑁𝑘 , 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟, 𝐸𝑘𝑖 , 𝐸𝑓𝑖 
, 𝑚): For 𝐴, this query represents the active attack 

in the fog network. In this query, 𝐴 has permission to impersonate a fog node 𝐹𝑁𝑘  or an 

aggregator node 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 in the mth session. An adversary 𝐴 also has permission 

to forward amended 𝐸𝑘𝑖′ to 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 and 𝐸𝑓𝑖′ to 𝑈𝑖. Besides, 𝐴 can block the 

exchanged 𝐸𝑘𝑖  or 𝐸𝑓𝑖 between 𝐹𝑁𝑘  and 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟.  

3. Corrupt(𝐹𝑁𝑘 , 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟𝑠, 𝐸𝑘𝑖 , 𝐸𝑓𝑖 
): 𝐴 has permission to access a data block 𝐸𝑘𝑖  

stored at fog node 𝐹𝑁𝑘  or aggregated data blocks 𝐸𝑓𝑖 at 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟. 𝐴 can corrupt 

𝐸𝑘𝑖  or 𝐸𝑓𝑖 as 𝐸𝑘𝑖
′ 𝑜𝑟𝐸𝑓𝑖′. 

4. Test (𝐹𝑁0, 𝐹𝑁1,𝑚): This query defines the indistinguishability-based notion of untraceable 

privacy. The test is the only query, which does not correspond to 𝐴’s abilities to perform 

active or passive attacks as this query only defines the notion of untraceable privacy. An 

adversary 𝐴 is given 𝐹𝑁𝑏 from the set {𝐹𝑁0, 𝐹𝑁1} depending on the randomly chosen bit 𝑏 

{0, 1} by a fog node in the mth session. Then 𝐴 decrypts the block 𝐸𝑘𝑖
𝐹𝑁𝑏 or aggregates and 

decrypts  𝐸𝑓𝑖
𝐹𝑁𝑏 . Informally, an adversary 𝐴 succeed if it correctly guesses the bit 𝑏, and 

correctly aggregates and decrypts 𝐸𝑘𝑖 or 𝐸𝑓𝑖 in the mth session. For untraceable privacy 

notions to be meaningful, a Test session 𝑚 must be fresh according to a freshness in 

Definition 2.  

Definition 1 (Partnership and session completion of Fog nodes: 𝐹𝑁𝑘, 𝑀𝑖𝑛𝑒𝑟𝑛 and 

𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟): A miner node instance 𝑀𝑖𝑛𝑒𝑟𝑛 and fog node instance 𝐹𝑁𝑘  in layer 2 are 

partners if, and only if, both have mutually authenticated each other with output Accept 

(𝑀𝑖𝑛𝑒𝑟𝑛) and Accept (𝐹𝑁𝑘), respectively. Similarly, an instance of a fog node 𝐹𝑁𝑘  and aggregator 

node 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 will do the same procedure for mutual authentication of partnership. 

The Instances of 𝐹𝑁𝑘, 𝑀𝑖𝑛𝑒𝑟𝑛 and 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 nodes then signify the completion of a 

partnership and mth session protocol to perform data block 𝐸𝑘𝑖  transmission, storage, and 

aggregation. 
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Definition 2 (Session Freshness): An instance of a fog node 𝐹𝑁𝑘, miner node 𝑀𝑖𝑛𝑒𝑟𝑛 and 

aggregator node 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 is fresh at the end of mth session execution if, and only if 

(i) The 𝐹𝑁𝑘  or 𝑀𝑖𝑛𝑒𝑟𝑛 or 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 node has output Accept with or without a partner 

node instance and (ii) both the instances including partner instance (if partner node exists) have 

not been sent a Corrupt query.  

Definition 3 (Indistinguishability-based untraceable Privacy (INDPriv)): It is defined by a game 𝐺 

played between fog nodes instance (𝐹𝑁𝑘, 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟) and an adversary 𝐴. 𝐴 runs the 

𝐺 with the setting as follows: 

• Learning phase: For accessing 𝐸𝑘𝑖  or 𝐸𝑓𝑖 
, an adversary 𝐴 runs Execute and Send queries to 

interact with randomly chosen 𝐹𝑁0 and 𝐹𝑁1 from 𝐹𝑁𝑘  or 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟. 

• Challenge phase: 𝐴 selects two fog nodes (𝐹𝑁0 and 𝐹𝑁1) and then forwards a Test query 

(𝐹𝑁0, 𝐹𝑁1, 𝑚) to a challenger 𝐶𝑟. A 𝐶𝑟 selects bit 𝑏 {0, 1} for 𝐴 and then using Execute and 

Send queries, 𝐴 determines the fog node 𝐹𝑁𝑏 ∈ (𝐹𝑁0 and 𝐹𝑁1) which holds 𝐸𝑘𝑖 or 𝐸𝑓𝑖 
. After 

determining 𝐹𝑁𝑏, 𝐴 runs reverse decryption to obtain blocks 𝐸𝑓𝑖 
 or 𝐸𝑘𝑖  and forward blocks 

using the execute query. 

• Guess phase: An adversary 𝐴 finishes the 𝐺 and provides 𝑏′ to be a guess of 𝑏 ∈ {0, 1} and 

𝐸𝑘𝑖′ or 𝐸𝑓𝑖 
′  ∈ 𝐹𝑁𝑏′.  For 𝐴, the security breach of INDPriv and success in a game is evaluated 

based on an 𝐴 advantage to decrypt correctly 𝐸𝑘𝑖 or decrypt and 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐸𝑓𝑖 
 correctly 

from 𝐹𝑁0 or 𝐹𝑁1, which is denoted by  

𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝐴
𝐼𝑁𝐷𝑃𝑟𝑖𝑣(𝑑) = |Pr [b = 𝑏′] −

1

2
| or we can say the advantage is 

𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝐴
𝐼𝑁𝐷𝑃𝑟𝑖𝑣(𝑑) = |Pr [𝐸𝑘𝑖 = 𝐸𝑘𝑖

′ ] −
1

2
|  𝑜𝑟 𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝐴

𝐼𝑁𝐷𝑃𝑟𝑖𝑣(𝑑) = |Pr [𝐸f =

𝐸𝑓𝑖 
′ ] −

1

2
| , 𝑤ℎ𝑒𝑟𝑒 𝑑 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑎 𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 

 

Proposition: Divide and Conquer scheme satisfies INDPriv. 

Proof: In the divide and conquer scheme, data 𝑀 received from sensor nodes at 𝑀𝑖𝑛𝑒𝑟𝑛 is 

encrypted using AES, and then encrypted data is divided into blocks using tabular and linear 

distribution. The blocks are distributed to 𝐹𝑁𝑘  and the knowledge of previous and next block 

hashes is not known to 𝐹𝑁𝑘.  Further, the keys and unique identification numbers for 𝑀 

decryption are also not provided to 𝐹𝑁𝑘  and 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟. Besides this, tokenID for 𝐹𝑁𝑘  

node authentication is updated in each session. Therefore, performing a traceability attack for 

an 𝐴 using the following phases is difficult: 

• Learning phase: 𝐴 runs an Execute query (𝑀𝑖𝑛𝑒𝑟𝑛, 𝐹𝑁0, 𝑠) in s-round during mth session and 
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obtains data block {𝐸𝑘𝑖,𝑠
𝐹𝑁0} at 𝐹𝑁𝑜,𝑠 node. Or 𝐴 runs an Execute query

(𝐹𝑁0, 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟, 𝑠) in s-round and obtains data block {𝐸𝑓𝑖,𝑠
𝐹𝑁0} at

{𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 , 𝑠} node. 

• Challenge phase: 𝐴 selects two fog nodes (𝐹𝑁0 and 𝐹𝑁1)  and send a Test query (𝐹𝑁0, 𝐹𝑁1,

𝑠 + 1). Then according to a randomly chosen bit 𝑏 {0, 1}, 𝐴 is given a fog node 𝐹𝑁𝑏 ∈ (𝐹𝑁0

and 𝐹𝑁1). Next, 𝑒𝑖𝑡ℎ𝑒𝑟 𝐴 sends an Execute query (𝑀𝑖𝑛𝑒𝑟𝑛, 𝐹𝑁𝑏 , 𝑠 + 1) and obtains data

block {𝐸𝑘𝑖,𝑠+1
𝐹𝑁𝑏}. Or 𝐴 sends an Execute query (𝐹𝑁𝑘 , 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟(𝑏), 𝑠 + 1) and

obtains data block  {𝐸𝑓𝑖,𝑠+1 

𝐹𝑁𝑏}. Then 𝐴 runs reverse hash decryption to identify the

message inside block {𝐸𝑘𝑖,𝑠+1
𝐹𝑁𝑏}. Similarly, for aggregation and decryption of block

{𝐸𝑓𝑖,𝑠+1 

𝐹𝑁𝑏}, 𝐴 executes hash decryption to identify aggregated previous block 𝐵𝑖−1. Based

on the pseudorandom key generator, 𝐴 applies decryption of AES to 𝐷𝑒𝑐𝑟𝑦𝑝𝑡{𝐸𝑓𝑖,𝑠+1 
}.

• Guess phase: In a learning phase, the fog node (𝐹𝑁0) does not know the hash of the previous

block 𝐵𝑖−1 as 𝐵𝑖−1 = ℎ𝑎𝑠ℎ(𝐸𝑘) and the security keys (𝑘) to decipher {𝐸𝑘𝑖 or 𝐸𝑓𝑖 
}. As the

private values including security keys (𝑘), a unique ID of a data packet 𝐸𝑛 and previous block

hash 𝐵𝑖−1 are kept at 𝑀𝑖𝑛𝑒𝑟𝑛 and not provided to fog node (𝐹𝑁0). Only the hash of these

private values 𝐻𝑎𝑠ℎ𝑝(𝑘, 𝐼𝐷, 𝐻), where 𝑝 is the security key of the end-user device, is

forward to the end-user device. In the case of fog node (𝐹𝑁0) acting as an aggregator node

holding {𝐸𝑓𝑖} then 𝑀𝑖𝑛𝑒𝑟𝑛 only sends (𝐵𝑖−1) to 𝐹𝑁0, where 𝑙 is a security key of

𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟  Therefore, in two subsequent rounds of learning and challenge phase

𝑠 𝑎𝑛𝑑 𝑠 + 1 of 𝑚𝑡ℎ session, 𝐵𝑖−1 and 𝑘 are calculated as 𝑏𝑖−1,𝑠
𝐹𝑁0 = ℎ𝑎𝑠ℎ(𝐸𝑘𝑖−1,𝑠

𝐹𝑁0) and

𝑏𝑖−1,𝑠+1
𝐹𝑁𝑏 = ℎ𝑎𝑠ℎ(𝐸𝑘𝑖−1,𝑠+1

𝐹𝑁𝑏), 𝑘 𝑠
𝐹𝑁0  𝑎𝑛𝑑 𝑘 𝑠+1

𝐹𝑁𝑏   using the Rijndael key schedule. Then 

𝐸𝑘𝑖,𝑠
𝐹𝑁0 is computed as 𝐸𝑘𝑖,𝑠

𝐹𝑁0 = (𝐸𝑖,𝑠) + 𝑏𝑖−1,𝑠
𝐹𝑁0 , 𝐸𝑘𝑖,𝑠+1

𝐹𝑁𝑏 = (𝐸𝑖,𝑠+1) + 𝑏𝑖−1,𝑠+1
𝐹𝑁𝑏 .

𝐸𝑓𝑖,𝑠
𝐹𝑁0 is computed as 𝐸𝑓𝑖,𝑠

𝐹𝑁0  = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡
𝑘 𝑠
𝐹𝑁0(𝐴𝐸𝑆(𝐸𝑓𝑖,𝑠

𝐹𝑁0)). And

𝐸𝑓𝑖,𝑠+1
𝐹𝑁𝑏=𝐷𝑒𝑐𝑟𝑦𝑝𝑡

𝑘 𝑠+1
𝐹𝑁𝑏(𝐴𝐸𝑆(𝐸𝑓𝑖,𝑠+1

𝐹𝑁𝑏)) 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. Since 𝑏𝑖−1,𝑠
𝐹𝑁0 ≠ 𝑏𝑖−1,𝑠+1

𝐹𝑁𝑏 ,𝑘 𝑠
𝐹𝑁0 ≠

𝑘 𝑠+1
𝐹𝑁𝑏 , 𝐸𝑘𝑖,𝑠

𝐹𝑁0 ≠ 𝐸𝑘𝑖,𝑠+1
𝐹𝑁𝑏, 𝐸𝑓𝑖,𝑠

𝐹𝑁0 ≠ 𝐸𝑓𝑖,𝑠+1
𝐹𝑁𝑏 and ℎ𝑎𝑠ℎ(. ) is an ε secure

pseudorandom function, and 𝐴𝐸𝑆 is a secure block cipher. Thus 𝐴 needs to make a random 

guess. Therefore, the advantage of 𝐴 at correctly guessing 𝐸𝑘𝑖  or 𝐸𝑓𝑖 
 at

𝐹𝑁0 𝑜𝑟𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 can be represented by: 

𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝐴
𝐼𝑁𝐷𝑃𝑟𝑖𝑣(𝑑) = |𝑃𝑟 [𝐸𝑘𝑖 = 𝐸𝑘𝑖

′ ] −
1

2
≤ ε| 

𝑜𝑟 𝐴𝑑𝑣𝑎𝑛𝑡𝑎𝑔𝑒𝐴
𝐼𝑁𝐷𝑃𝑟𝑖𝑣(𝑑) = |𝑃𝑟 [𝐸𝑓𝑖 = 𝐸𝑓𝑖 

′ ] −
1

2
≤ ε| 
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Also, an adversary 𝐴  has to eavesdrop on maximum fog nodes in networks to find out 

maximum subsets of 𝐸𝑛 as (𝐸00 +⋯𝐸𝑘𝑖 +⋯+ 𝐸𝑖𝑖) = 𝐸𝑛 and aggregate them in the right 

manner to acquire 𝐸𝑛. Further, without the knowledge of previous block hashes 𝐵𝑖−1  kept in 

𝑡𝑎𝑏𝑙𝑒𝑝𝑜𝑙𝑖𝑐𝑦 at 𝑀𝑖𝑛𝑒𝑟𝑛, 𝐴 cannot aggregate data blocks correctly together. Thus, 𝐴 cannot 

process, aggregate, or decrypt 𝐸𝑘𝑖 without acquiring the rest of the blocks kept at different fog 

nodes 𝐹𝑁𝑘. Also, the probability of compromised block 𝐸𝑘𝑖 leading to prefix and suffix of the 

whole encrypted message 𝐸𝑛 blocks are close to zero as block 𝐸𝑘𝑖  only contains a subset data of 

𝐸𝑛 and previous block hash value 𝐵𝑖−1, which cannot reveal the whole 𝐸𝑛. Furthermore, the 

higher the LoP settings, as shown in Table 7, the chances of data privacy violations are low. 

Moreover, aggregating blocks 𝐸𝑓𝑖  is not possible without the knowledge of the previous block 

hash value 𝑩𝒊−𝟏, the hash keys, and unique identification number ID. 

Additionally, all the blocks are only aggregated (𝐸00 +⋯𝐸𝑘𝑖 +⋯+𝐸𝑖𝑖) = 𝐸𝑛 and decrypted 

at the end-user/cloud device. No single fog node aggregator 𝐹𝑜𝑔𝑛𝑜𝑑𝑒𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟 is aggregating 

the whole sensor data alone in a fog layer. Distributive aggregation processing is carried out to 

minimize the single point of failure risks. In the case of a single aggregator node being 

compromised or being exposed to a Denial of Service (DoS) attack, then another fog node in a 

k-hop cluster with computational resources availability will act as an aggregator and requests 

fog nodes to forward data blocks for aggregation.   

4.3. Performance Analysis 

We evaluate the performance of our scheme in terms of computational, memory, and 

communication overhead in different security parameters with the ECBDA [22], Masker [131], 

APPA [7], and LVPDA [272] schemes. ECBDA, Masker, APPA, and LVPDA are implemented based 

on the proposed architectures to analyze the computational, memory, and communication costs 

during data processing and storage. In the ECBDA [22] scheme, the sensor data is secured at 

miner nodes (acting as a gateway for the scheme) using elliptic curve-based ElGamal encryption 

with bilinear homomorphic mapping. Trusted Third Party (TTP) is also involved in the generation 

and distribution of keying material to miner nodes for encryption and end-user device for 

decryption. TTP is online during key initialization and set offline during the aggregation process. 

Encrypted data from different miner nodes are aggregated on a single aggregator and forwarded 

to the end-user device.  

For the Masker [131] scheme, masking values are generated at the miner node for each 

data set received from sensor nodes. Masking values are implemented using a symmetric 

encryption algorithm with a sequence number for each data set. Further, the sequence number 

is incremented after an iteration of each masking value. In the data packet, masking values are 
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appended with sensor data reading and a digital signature of the miner node. A resultant packet 

is forwarded to aggregators which sum-up packets and then end-user device sum-up reading by 

removing masked values from data packets. 

 In the APPA scheme [7], sensor nodes authenticate and register themselves to fog 

nodes using Local Certification Authority (LCA) and Trusted Certification Authority (TCA). Each 

fog cluster owns LCA for authenticating new sensor nodes using pseudonyms certificates. TCA is 

involved in the generation and distribution of security keys and registration management. The 

identity of the sensor node is anonymized using Rivest, Shamir & Adleman's (RSA) zero-

knowledge signature. Then sensor nodes are authenticated to miner nodes in the fog layer using 

pseudonym certificates. Data received from an authentic sensor node is encrypted at the miner 

node using Paillier public-key cryptosystem. Encrypted data from different miner nodes are 

aggregated at a single fog node with pseudonym certificates. The fog node computes the final 

aggregation using its own pseudonym certificates, and then end-user/cloud device decrypts 

aggregated data using a private key with Paillier decryption.  

The LVPDA scheme [272] is based on online/offline signature, bilinear pairing, and 

Paillier homomorphic cryptosystem. TTP generates and distributes private and public keys using 

homomorphic cryptosystem and bilinear settings. Sensor nodes authenticate themselves to 

miner nodes by performing an offline-signature authentication process. Miner node encrypts 

the sensor node's data with the Paillier encryption. Furthermore, transmit the encrypted data 

to the aggregator fog node using online-signature verification. The aggregator node aggregates 

data and generates an aggregation signature for verification of authenticity to the end-user 

device. Aggregated data with aggregation signature is forward to the end-user device. 

Aggregated data is verified and decrypted with a key provided by TTP. 

4.3.1. Computational Cost 

Figure 13 and Table 9 show the computational overhead comparison of the five schemes. From 

Figure and Table, we can learn the facts as follows.  

 Table 9 Average Computational overhead (in milliseconds) based on security parameters 

Security 
Parameter 

Masker 
[19] 

ECBDA [10] APPA [7] LVPDA 
[272] 

Divide-and-
Conquer scheme 

128 2.16 3.2 4.4 4.48 1.5 

192 5.0 7.8 8.56 8.68 3.2 

256 9.5 11 12.5 13 6.2 
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1. First, computation overhead for processing data during encryption and aggregation is

reasonably low in our scheme as compared to the ECBDA, APPA, and LVPDA schemes. Our

scheme encryption mechanism is based on the symmetric cipher AES Algorithm, which

requires less time and is faster than the ECBDA, APPA, and LVPDA schemes. In the ECBDA,

Elliptic Curve Cryptography (ECC) asymmetric cipher is used, which is based on shared secret

and signature generation protocols (private and public keys). The use of asymmetric cipher

slower the processing speeds and introduces the network complexity. Similarly, the APPA

and LVPDA schemes are also based on the public-key cryptosystem. The schemes require

addition and multiplication of asymmetric ciphertext with great common, least common

divisors and modular multiplicative inverse. The use of the asymmetric Paillier cryptosystem

slows encryption processing and increases network complexity. In the LVPDA scheme, online

signature verification and generation at the aggregator node increase the overall

computational cost compared to the APPA scheme.

2. Further, aggregation in the ECBDA, APPA, and LVPDA schemes are performed at a single

aggregator node, which increases the computational burden of aggregation on a single

aggregator node as compared to our scheme. In the case of the Masker scheme, the AES

Algorithm is also used in the Counter mode Deterministic random byte generator

(CTR_DRGB) with a sequence number and non-secret value. Further, masking is applied for

data generation, which increases more computational overhead as compared to the basic

AES Algorithm. With the data size increase, the computational overhead is becoming notably

high as compared to our scheme, as shown in Figure 13.

3. Varying security parameters, i.e. 128 bits, 192 bits, and 256 bits to encrypt data also impact

Figure 13 Computational overhead of scheme vs. Masker, ECBDA, APPA & LVPDA 

schemes 
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the computational overhead, as shown in Table 9. The Table also clearly indicates that our 

scheme outperforms ECBDA, APPA, LVPDA, and Masker scheme. Based on security 

parameter 128, the miner nodes of the ECBDA scheme spend approximately 3.28 

milliseconds on average for performing encryption, about 4.4 milliseconds for APPA, 4.43 

milliseconds for LVPDA, and 2.16 milliseconds for Masker. However, the miner nodes in our 

scheme perform data encryption using less than 1.5 milliseconds. 

Consequently, for the security parameter 192, APPA and LVPDA utilize more than 8.5 

milliseconds for data encryption as compared to ECBDA using more than 7 milliseconds and 

5 milliseconds for Masker. Whereas our scheme is utilizing approximately 3 milliseconds for 

encryption and the rest of the time is utilized for aggregation processing. Similarly, for 

security parameter 256, our scheme requires less than 7 milliseconds to perform encryption. 

However, APPA, LVPDA, ECBDA, and Masker require 12.5 milliseconds, 13 milliseconds, 11 

milliseconds, and 9.5 milliseconds remotely. Due to increasing computation overhead in the 

APPA and LVPDA schemes, all the incoming data packets from the sensor nodes have to wait 

in a queue to get allocated to processing in a fog layer for approximately 3 seconds every 5 

minutes. For ECBDA, a delay is around 2.5 seconds every 5 minutes. And about 1.5 seconds 

delay every 5 minutes for the Masker scheme, whereas our scheme delay is less than one 

second for every 5 minutes.   

4.3.2. Memory Cost 

A memory overhead comparison of our scheme with ECBDA, Masker, APPA, and LVPDA, as 

shown in Figure 14. Memory cost is the overhead due to the increase in the data size after data 

processing. From Figure 14, it can be deduced that LVPDA incurs high memory overhead 

followed closely by APPA. Both the schemes are based on Paillier Cryptosystems and require 

signature/ certificate verification for data aggregation, which incurs high memory space as 

compared to ECBDA, Masker, and our schemes.  

The variation in the data size of our scheme, Masker, ECBDA, APPA, and LVPDA schemes based 

on Figure 14 is shown in Table 10. In our scheme, the data size increase is moderate throughout 

the processing due to lightweight encryption, distributed storage, and aggregation. An increase 

in total data size after the processing of original data ranging from 100 KBs to 500 KBs is 

approximately between 20 KBs to 100 KBs. Whereas, the increase in the ECBDA, Masker, APPA, 

and LVPDA schemes is around 40 KBs to 500KBs, respectively. For data ranging from 600 KBs to 

1000 KBs, the increase in data size after processing in our scheme is approximately between 100 

KBs to 300 KBs. However, for the ECBDA scheme increase is roughly between 210 KBs to 1000 

KBs, for the Masker scheme around 170 KBs to 700 KBs, data size increase in the APPA scheme 

is around 600 KBs to 2400 KBs and for LVPDA it is between 700 KBs and 2600 KBs. 
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Overall, the LVPDA scheme incurs a larger memory overhead as compared with the APPA, 

ECBDA, Masker, and our scheme. An increase in data size is not only because of the heavyweight 

cryptosystem for encryption, but the increase is also due to the generation of aggregated data 

signature for verification and then appending signature with the aggregated data for end-user 

devices to verify and decrypt aggregated data. Thus, signature addition to aggregated data 

increases the overall data size. Further, memory overhead introduced by asymmetric APPA and 

ECBDA is also larger than the proposed scheme. Also, the notable memory overhead introduced 

by the Masker scheme as compared to our scheme is due to the masking generation and 

signature bits. In our scheme, no single aggregator is used to aggregate data, a minimum of two 

aggregator nodes are utilized for 1KB to 5 KBs of data.  

Table 10 Data size variation results from Figure. 14 

Original Packet 

data size (KBs) 

Data size 

(K.B.s) in 

Masker 

scheme 

Data size (KBs) 

in the ECBDA 

scheme 

Data size (KBs) 

in the Divide-

and-Conquer 

scheme 

Data size (KBs) 

in the APPA 

scheme 

Data size (KBs) 

in the LVPDA 

scheme 

100 140 167 120 208.5 230 

200 269 288 237 329.5 369 

300 478 510 395 551.8 558 

400 655 698 493 739.5 755 

500 810 865 598 1017 1033 

700 1267 1345 834 1571 1627 

1000 1715 1988 1198 2417 2689 

Figure 14 Memory size of scheme vs the ECBDA, Masker, APPA & LVPDA Schemes 



84 
 

With an increasing number of sensor nodes and data size, aggregator nodes in fog layer 

2 vary as discussed in section 3. All the aggregator nodes send the resultant data to the end-

user/cloud device which sum up all the nodes' data together. Whereas, the data summation is 

carried out at a single aggregator node in the LVPDA, APPA, ECBDA, and Masker schemes. Due 

to a single aggregator node performing aggregation processing, memory overhead increases, 

and the probability of being exposed to DoS attacks is higher as compared to our scheme.  

It can be deduced that the LVPDA, APPA, ECBDA, and Masker schemes overhead during 

data processing at fog node and aggregation at a single node is significantly higher than the 

distributed aggregation in our scheme. Because of the distributed aggregation workload, all the 

aggregator nodes aggregate data simultaneously, which minimizes the overall processing and 

memory overhead on a single node.  

Consider 100 KBs of data from three sensor devices are transmitted after processing to 

an aggregator. In the case of the LVPDA scheme, data is encrypted using Paillier encryption and 

appended with a signature, so the data size becomes 230 KBs, as shown in Figure 14. Therefore 

approximately 230 KBs of data aggregated from three different sensor devices at a single 

aggregator will result in 690 KBs memory consumption. In the APPA scheme, data is also 

encrypted using the Paillier encryption, and the total memory consumption at an aggregator 

node becomes 624 KBs. Data is encrypted using ECC in ECBDA, and data size becomes 

approximately 500 KBs at a single aggregator node. The Masker scheme consumes memory of 

400 KBs at an aggregator node. In contrast, our scheme consumes about 180 KBs of memory at 

a minimum of two aggregator nodes. All aggregator nodes separately send sum-up data to the 

end-user device for summation of all aggregator nodes data and then decryption.  

4.3.3. Communication Cost 

The communication overhead of our scheme is significantly higher than the LVPDA, APPA, 

ECBDA, and Masker schemes, as shown in Figure 15. It is due to the distributive data processing, 

storage, and aggregation, which involves communication between a miner and fog nodes. 

Distribution of data between fog nodes and then aggregating data at multiple aggregator nodes. 

Before applying the proposed encryption, Divide-and-Conquer, and aggregation Algorithms, 

network decomposition also adds up communication overhead. However, the Masker, ECBDA, 

APPA, and LVPDA schemes only add up communication overhead during authentication and key 

exchange from a TTP, data aggregation on single nodes, and data transmission process. Due to 

the addition of local certified authority for authentication along with TTP, the communication 

overhead of the APPA scheme is slightly higher than Masker, ECBDA, and LVPDA.  
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Figure 15 shows communication overhead for all schemes. The communication overhead 

increases with an increase in data size. In our scheme, miner nodes and end-user devices 

communicate with each other to request, process, store, or distribute data. Whereas for the 

LVPDA, ECBDA, and Masker schemes, sensor nodes communicate with only a miner node, a 

trusted authority, and a single aggregator node. Our scheme avoids a single point of failure at 

the cost of a slight increase in communication overhead but reduces the computation and 

memory cost. 

Although the communication overhead of our scheme is greater as compared to the APPA, 

LVPDA, ECBDA, and Masker schemes, still our scheme markedly reduces the performance 

overhead in terms of computational and memory cost. The reduction in computational and 

memory cost is due to the distributive processing of data at miner nodes, storing at fog nodes, 

and aggregating at multiple aggregator nodes. Also, our scheme provides high data privacy with 

distributive computation and aggregation as compared to single node computation and 

aggregation in the APPA, LVPDA, ECBDA, and Masker schemes. 

 

5. Conclusion 

This paper presents a lightweight privacy-preserving aggregation scheme in fog computing. The 

scheme is based on a Divide-and-Conquer approach to improve data privacy during data 

aggregation as compared to the traditional schemes. First, we presented a system model and an 

adversary model for preserving privacy in the fog layer. Then we proposed a Divide-and-Conquer 

privacy-preserving data aggregation scheme with data-owner defined level of privacy settings. 

Figure 15 Communication overhead of our scheme vs. the ECBDA, Masker, 

APPA, LVPDA schemes 
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The proposed privacy scheme requires data encryption, which mainly is lightweight symmetric 

cryptographic operations, and encrypted data division is based on the data-owner predefined 

LoPs’ settings. Regarding our privacy analysis, we proved that for an attacker, it is not possible 

to be successful in internal and external attacks. Also, the performance evaluation showed that 

our scheme minimizes the computational and memory overhead in comparison with traditional 

schemes. 

For future work, we will improve our scheme’s performance efficiency in terms of 

communication overhead. Further, enhance the data distribution Algorithm to make it suitable 

for the larger data size. The main purpose of our scheme is to preserve the privacy within the 

fog layer, the privacy preservation at sensors and end-user/cloud is out of the scope. Therefore, 

in the future, we also aim to improve our scheme to preserve end-to-end privacy. 
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‘True optimization is the revolutionary contribution of modern research to decision processes’. 

--- George Dantzig 

Chapter 4: Joint Optimization of Time and Energy Consumption 

for Data Aggregation in Fog-enabled IoT Networks 

Abstract 

Fog computing is an emerging concept for providing networking, computing, and storage 

capabilities that can support the Internet of Things (IoT). IoT devices can offload computational 

tasks to fog nodes within their proximity instead of a remote cloud. Offloading tasks including 

data aggregation can reduce data redundancy while improving data analysis’s speed and data 

storage at the edge of an IoT network and data aggregation tasks can be performed in a 

distributive manner. Although by offloading aggregation tasks to fog, network overhead and 

energy consumption of IoT devices can be reduced, it may incur a large time consumption 

including execution, transmission, and waiting time to aggregate data at fog nodes. Therefore, 

fog computing poses a challenge to optimize the time consumption with the energy 

consumption of data aggregation. To address this challenge, first, we formulate a multi-objective 

optimization problem with a joint objective to optimize time consumption and energy 

consumption for data aggregation in fog computing. Second, we define the multi-objective 

optimization method based on the NSGA-III (non-dominated sorting genetic algorithm III) to find 

optimal solutions concerning both time consumption and energy consumption. Finally, we 

conduct comprehensive simulations and systematic experiments to demonstrate and evaluate 

the efficiency of our method compared with the state-of-the-art methods. 

This contribution has been submitted to IEEE Internet of Things Journal 
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1. Introduction 

The Internet of Things (IoT) has merged the interconnectivity of smart things and objects, such 

as wearable devices and mobile devices [7, 274]. Mobile devices can be connected to IoT using 

wireless networks, which integrate IoT with mobile sensing and computing capabilities [59] and 

IoT devices can sense mobile users in the surroundings and generate real-time data for 

processing [275]. Further, IoT devices may take some responsibility in the aggregation and 

analysis on generated data. This responsibility includes the coordination of aggregated data and 

analysis actions to make a decision on the utilization of data during these actions [276]. 

Due to the limitation of IoT devices' battery and computational resources, cloud computing 

provides enormous data processing, including aggregation, analysis, and storage capabilities 

[277]. The data generated by IoT devices can be transmitted to the cloud for processing, which 

is known as task offloading [278]. 

Task offloading to the cloud can increase IoT network bandwidth and latency overhead, 

therefore, the concept of fog computing has been introduced to provide processing and storage 

capabilities closer to IoT devices [279]. Instead of using cloud, task offloading on fog nodes can 

avoid an increase in latency time and network congestion.  

In addition, the process of data aggregation in fog computing reduces the data redundancy 

while improving data analysis speed and data storage [280]. The offloading tasks including data 

aggregation and storage can be performed in a distributive manner in fog computing [42, 184, 

281] which requires extensive time and energy consumption. Hence, arbitrarily offloading tasks 

to fog nodes hardly reduce computation time used by the nodes and it is essential to efficiently 

compute distributed tasks while minimizing the time consumption and energy consumption 

required. However, this problem is an NP-hard problem as the difficulty of reducing time 

consumption and energy consumption increases exponentially with the increase in the number 

of offloading tasks, sensor nodes, and fog nodes. 

It remains a challenge to optimize the multi-objective including time and energy consumption 

in fog computing for IoT applications. To address this challenge, we propose a multi-objective 

optimization method based on a non-dominated sorting genetic algorithm (NSGA-III). The main 

contributions of this paper are summarized as follows. 

1. We analyze and formulate time consumption and energy consumption for data aggregation 

in fog-enabled IoT. 

2. We propose a multi-objective optimization method (MUOM) based on NSGA-III (non-

dominated sorting genetic algorithm III) to reduce time consumption and energy 

consumption on each fog node.  

3. We comprehensively evaluate the efficiency of our method compared with state-of-the-art 

optimization methods.  
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The remainder of the paper is organized as follows. We discuss related work in Section 2. 

Section 3 outlines our proposed system model and problem formulation. In Section 4, we 

present our multi-objective optimization method for fog-enabled IoT followed by the evaluation 

of the proposed method in Section 5. Finally, Section 6 concludes the paper. 

2. Related Work 

Computation tasks in IoT devices can be offloaded to remote cloud/servers for processing due 

to low computational and power capacity of the devices [282, 283], however by doing so there 

are challenges in managing network overhead, increased communication and computational 

energy and cost. Compared with the cloud, fog computing can reduce the network overhead 

and congestion by alleviating the workload from a remote cloud to the edge of a network close 

to IoT devices [66]. 

Several works have proposed different approaches to offloading tasks from IoT devices 

to fog nodes [284-292]. In [284], Yousefpour et al. proposed a framework for task offloading to 

reduce the service delay of IoT-cloud applications in fog computing. The framework provides a 

minimizing policy for the service delay and the policy considers the service delay based on the 

load of each fog node. If the service delay is greater than the threshold value, then the offloading 

task is transmitted to the best neighboring fog node. Otherwise, the task is accepted at the same 

fog node for processing. In their framework, fog nodes are interconnected in a distributive 

manner, which leads to the data transmission overhead. Therefore, the minimizing policy is not 

able to optimize transmission overhead that may incur. Also, the optimization of energy 

consumption for service delay is not considered in the proposed framework. Similarly, 

Yousefpour et al. in [285, 286] do not consider the transmission and energy overhead of fog 

nodes for service delay optimization in fog computing. 

Another study focused on the computation of the IoT tasks partially at fog computing 

[287]. For a further computation of tasks, IoT data can be forwarded from fog nodes to the cloud 

and offloading tasks to the cloud can reduce the workload and power consumption of the fog 

nodes that are needed to compute heavyweight tasks. However, the transmission of tasks to 

the cloud increases network overhead and computational and communication costs. Further, 

the study assumed that the cloud is connected to fog nodes using a single communication point. 

In this context, the communication network between fog nodes and the cloud are vulnerable to 

a single point of failure threat. 

In [289], Jiang et al. proposed a meta-heuristic method, which investigates the 

placement of tasks offloaded to the fog nodes. Based on the meta-heuristic method's cost 

function, the study considered communication cost, computation cost, and power consumption 
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of fog nodes. In this method, a technique for priority mapping is used to schedule the placement 

of tasks to help reduce the power consumption, communication, and computational cost of fog 

nodes during the placement. However, the optimal solutions for optimizing the energy and 

power consumption of fog nodes for the tasks, including data processing and data storage are 

not provided. 

Liu et al. proposed a method [288] for optimizing energy consumption, execution time 

delay, and payment cost in fog computing. Their method transforms a multi-objective problem 

into a single-objective problem using scalarization and interior point techniques. These 

techniques are intuitively not satisfying as they do not visit vertices of a problem but only cover 

the interior region of the problem. The techniques can find an optimal solution from an interior 

region without considering a problem's vertices.  

Naqvi et al. [290] proposed a meta-heuristic method based on the ant colony 

optimization (ACO) method  to optimize response times of smart grid applications in fog 

computing. This study did not consider the optimization of transmission time and transmission 

energy. Further, the ACO method depends on profiling offloaded tasks, which incurs high 

transmission overhead. Hussein et al. in [292] further enhanced the ACO method to optimize 

the transmission time of offloaded tasks at fog nodes. Still, the new ACO method is based on a 

single-objective optimization on the transmission time. Also, the proposed method offloads the 

aggregation tasks to the cloud for further processing and storage, which results in more network 

overhead. 

In [291], Binh et al.  proposed a method based on a genetic algorithm (GA) for offloading tasks 

and scheduling tasks at fog nodes. The main objective of the method is to achieve a trade-off 

between offloading tasks, scheduling tasks and monetary cost to efficiently complete tasks in 

fog and cloud system. The proposed GA achieved high cost and performance efficiency for 

offloading tasks to fog nodes.   

However, none of these methods [284-292] considered multi-objective problems concerning 

time consumption and energy consumption for computing tasks such as data aggregation in fog 

computing. In conclusion, there is still key challenge in finding optimal solutions concerning time 

consumption (including transmission, execution, and waiting) and energy consumption for 

efficient task offloading in fog computing. To address this challenge in this paper, we propose a 

new multi-objective optimization method (MUOM) in a fog computing for IoT applications. 
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3. System Model and Problem Formulation

In this section, we discuss our proposed system model and problem formulation of the 

optimization time consumption and energy consumption for data aggregation in fog computing. 

Data aggregation formulation regarding time and energy consumption are based on the divide-

and-conquer scheme for data aggregation proposed in [42]. Our notations used in this paper 

with their descriptions are listed in Table 11. 

3.1.  System Model 

Our system model is illustrated in Figure 16, which is based on the model presented in [42]. 

Figure 16 consists of fog nodes, data-owner, sensor nodes, and end-user devices. In this model, 

a fog computing layer is divided into two sub-layers: Fog layer 1 and Fog layer 2. Fog layer 1 

comprises fog nodes for computation and analysis of IoT tasks. In fog layer 2, fog nodes are 

organized in a cluster and they are responsible for aggregation and storage tasks. 

IoT devices, i.e. sensor nodes, can be connected to fog layer 1 through a local area network 

(LAN) connection and both layers (fog layer 1 and fog layer 2) are interconnected through a LAN 

connection. End-user devices and the data-owner are connected to fog layer 2 and fog layer 1, 

respectively, through a wide area network (WAN) connection.  

Let 𝑆𝑁𝑘 = {𝑠𝑒𝑛𝑠𝑜𝑟1, … . , 𝑠𝑒𝑛𝑠𝑜𝑟𝑘} (1 ≤ 𝑘 ≤ 𝑚𝑎𝑥(𝑠𝑒𝑛𝑠𝑜𝑟))  represents a set of sensor nodes for 

generating IoT data and a data-owner can be denoted as 𝐷𝑇 = {𝑡1, … , 𝑡𝑖}(1 ≤ 𝑖 ≤ 𝑚𝑎𝑥(𝑑𝑎𝑡𝑎𝑜𝑤𝑛𝑒𝑟)). 

A data-owner defines the data utilization and privacy policies for their generated data at sensor 

nodes. 

Notation  Description 

𝐟𝐧𝐥,𝐣 The computing task of 𝑙𝑡ℎ fog node 

𝐓(𝐟𝐧𝐥,𝐣) The total time consumption of lthfog node 

𝐒𝐍𝐤 Kth sensor node 

𝐅𝐍 Fog Node 

𝒕𝒊 Ith data-owner 

𝐓𝐞𝐱𝐞 The execution time 

𝐓𝐭𝐫𝐚𝐧𝐬 The transmission time 

𝐓𝐰𝐚𝐢𝐭 The waiting time 

𝐰𝐥,𝐣 Workload of lthfog node 

𝐓(𝐟𝐧𝐥,𝐣
𝟏 ) The total time consumption of the lth miner node in fog layer 1 

𝐓(𝐟𝐧𝐥,𝐣
𝟐 ) The total time consumption of the lth fog node in fog layer 2 

𝐄(𝐟𝐧𝐥,𝐣) The total energy consumption of lthfog node 

𝐄𝐭𝐫𝐚𝐧𝐬 The energy consumption of transmission 

𝐄𝐞𝐱𝐞 The energy consumption of execution 

𝐄𝐰𝐚𝐢𝐭 The energy consumption of waiting for execution of the precursor executing task 

𝐄(𝐟𝐧𝐥,𝐣
𝟏 ) The total energy consumption of the lth miner node in fog layer 1 

𝐄(𝐟𝐧𝐥,𝐣
𝟐 ) The total energy consumption of the lth fog node in fog layer 2 

Table 11 Key notations and description 
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We also use 𝐹𝑁 to represent a set of for fog nodes in both layers and it can be denoted as 

𝐹𝑁 = {𝑓𝑛1, 𝑓𝑛2, … . , 𝑓𝑛𝑙}(1 ≤ 𝑙 ≤ 𝑁), where 𝐹𝑁𝑙 = {𝑓𝑛𝑙,𝑗 |1 ≤  𝑗 ≤ 𝐹𝑁𝑙|} represents a set of 

computing tasks in the 𝑙𝑡ℎ fog node. Let 𝑤𝑙,𝑗 be a workload of the 𝑙𝑡ℎ fog node. Also, 

𝑝𝑟𝑒 (𝑓𝑛𝑙,𝑗) indicates the precursory computing task, which is waiting in a queue for 𝑓𝑛𝑙,𝑗.  

Based on the network design and setup presented in [42], we consider a scenario where 𝑆𝑁𝑘 

sends data to 𝐹𝑁 in fog layer 1. 𝐹𝑁 has to perform 𝐹𝑁𝑙 which is a set of computation tasks 

including data authentication, data analysis, data encryption, scheduling transmission of 

channel and 𝑓𝑛𝑙,𝑗  allocation to 𝐹𝑁 in fog layer 2. According to the 𝑡𝑖  policies, 𝐹𝑁𝑙 is processed, 

such as encrypted, analyzed, and authenticated at fog layer 1. Fog layer 2 receives processed 

𝑓𝑛𝑙,𝑗 from Fog layer 1. Then 𝐹𝑁 in fog layer 2, stores and aggregates processed 𝑓𝑛𝑙,𝑗. On a 

request of the end-user device, 𝐹𝑁 in fog layer 2 sends aggregated data in 𝑓𝑛𝑙,𝑗 to the end-user 

device.  

3.2. Time Consumption Model 

In our proposed model, time consumption 𝑇(𝑓𝑛𝑙,𝑗) is an amount of time consumed by fog nodes 

to perform computing tasks 𝑓𝑛𝑙,𝑗 for data aggregation. 𝑇(𝑓𝑛𝑙,𝑗) consists of the transmission 

time 𝑇𝑡𝑟𝑎𝑛𝑠, the execution time 𝑇𝑒𝑥𝑒 and the waiting time of the precursor executing task 𝑇𝑤𝑎𝑖𝑡. 

The transmission time 𝑇𝑡𝑟𝑎𝑛𝑠 is an amount of time that each fog node in both fog layers takes to 

communicate with the nodes in fog layers, sensors, data-owner, and end-user devices. 𝑇𝑡𝑟𝑎𝑛𝑠 

involves the communication time for 𝑓𝑛𝑙,𝑗 according to the tasks defined in [42], including data 

Figure 16 System Model 
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request, data transmission, cluster formation, data authentication, public and private key, and 

table distribution.  

The execution time 𝑇𝑒𝑥𝑒 is time taken by 𝐹𝑁 to executes the 𝑓𝑛𝑙,𝑗. 𝑇𝑒𝑥𝑒 involves 𝑓𝑛𝑙,𝑗 

for executing data encryption, data authentication, creation of the public and private key, 

creation of the policy table, aggregation, and cluster formation. The precursor executing task 

𝑇𝑤𝑎𝑖𝑡 is the waiting time that each computing task 𝑓𝑛𝑙,𝑗 must wait in a queue to be executed by 

𝐹𝑁. The total 𝑇(𝑓𝑛𝑙,𝑗) based on [59, 293] becomes: 

𝑇(𝑓𝑛𝑙,𝑗) = ∑ (𝑇𝑡𝑟𝑎𝑛𝑠 + 𝑇𝑒𝑥𝑒 + 𝑇𝑤𝑎𝑖𝑡)

𝐹𝑁𝑙∈ 𝐹𝑁

 (4.1) 

The time consumption of both fog layers depends on the computing tasks 𝑓𝑛𝑙,𝑗, which are 

performed uniquely by each fog layer. Therefore, first, we compute the 𝑇𝑡𝑟𝑎𝑛𝑠, 𝑇𝑒𝑥𝑒 𝑎𝑛𝑑 𝑇𝑤𝑎𝑖𝑡 

for both layers separately and then combine them to get the total time consumption 𝑇(𝑓𝑛𝑙,𝑗), 

respectively.  

For fog layer 1, the transmission time 𝑇𝑡𝑟𝑎𝑛𝑠  can be calculated by 

𝑇𝑡𝑟𝑎𝑛𝑠
1 = ( ∑ (𝑓𝑛𝑗)

𝑓𝑛𝑗∈𝑓𝑛𝑙

) , 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙 , 𝑁𝑢𝑚 (𝐹𝑁) 
(4.2) 

In fog layer 1, the transmission time 𝑇𝑡𝑟𝑎𝑛𝑠
1  of our proposed model depends on the

transmission tasks 𝑓𝑛𝑗, the total number of fog nodes and network bandwidth of fog computing. 

The transmission tasks 𝑓𝑛𝑗 are the tasks for fog nodes' authentication, request for data policies, 

sending hash keys, requesting data, allocation of tasks, and scheduling channel. Each of these 

𝑓𝑛𝑗 is discussed as follows. 

In an authentication task 𝐴𝑢𝑡ℎ𝑖, the fog nodes send an authentication token to the other 

fog nodes in both layers with whom they wish to communicate. Authentication token is for 

checking the fog node's authenticity within a network. For policy 𝑓𝑛𝑗, the fog nodes request the 

data-owner 𝑡𝑖 for data policies 𝑃𝐿𝑜𝑃. 

Also, fog nodes processing data tasks such as data encryption and division in fog layer 1 send 

a hash of a private keys 𝑃𝑘 to the end-user device for decryption of processed data. In the 

requested 𝑓𝑛𝑗, fog node requests data 𝑀 from sensor nodes 𝑆𝑁𝑘 in close proximity and fog node 

receive data 𝑀 from a sensor node 𝑆𝑁𝑘 . The 𝑓𝑛𝑗 for allocation, allocates the computing tasks to 

chosen fog nodes in fog layer 1. Another 𝑓𝑛𝑗 is the scheduling of transmission channels for fog 

computing network. 
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The transmission time 𝑇𝑡𝑟𝑎𝑛𝑠1  also depends on the network bandwidth 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙. The 

bandwidth between fog nodes in both layers, sensor nodes, and data-owner can be computed 

by 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙 =

{
 

 
∞,                                                                               𝐹𝑁 = 0 
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙,𝐿,                                   𝐹𝑁𝑙 = 1, 2,… , 𝑁

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿,                𝑆𝑁𝑘 = 1,2,…max (𝑠𝑒𝑛𝑠𝑜𝑟) 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙,𝑊, 𝐷𝑇 = 1, 2, …max(𝑑𝑎𝑡𝑎 − 𝑜𝑤𝑛𝑒𝑟)

 

Let 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙,𝐿 be the bandwidth of a LAN network for the 𝑙𝑡ℎ fog node to the other fog nodes 

in both fog layers. 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝐿 represents the bandwidth of a LAN network for the 𝑙𝑡ℎ fog nodes 

and sensor nodes 𝑆𝑁𝑘, and 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙,𝑊 is WAN for the 𝑙𝑡ℎ fog node and the data-owner 𝐷𝑇. 

In the execution of a computing task in fog layer 1, the execution time 𝑇𝑒𝑥𝑒 
1 of the 𝑙𝑡ℎ fog node 

is determined by the workload of the fog node and the computational capacity of the 𝑙𝑡ℎ fog 

node. Based on the formula [59],  𝑇𝑒𝑥𝑒
1  can be computed by 

𝑇𝑒𝑥𝑒
1 = 

∑ (𝑤𝑗)𝑤𝑗∈𝑓𝑛𝑙

𝐶𝑐𝑎𝑝𝑙
 

(4.3) 

The workload 𝑤𝑗 at the 𝑙𝑡ℎ fog node consists of the following workloads for the computing 

task 𝑓𝑛𝑗.  

The 𝑤𝑗 for encrypting data 𝑀 at the fog node for processing data. Then the 𝑤𝑗 for a division 

of encrypted 𝑀 at the fog node. Also, the 𝑤𝑗 is for generating and checking token-based 

authentication 𝑎𝑢𝑡ℎ𝑖.  

Further, the workload 𝑤𝑗 for creating a hash of a private key 𝑝𝑘. The execution time 𝑇𝑒𝑥𝑒
1  also 

depends on the workload for creating a table with data-owner defined policies. 

For fog layer 1, the precursor 𝑇𝑤𝑎𝑖𝑡
1  is a waiting time in a queue for the execution of 𝑓𝑛𝑗 at 𝑙𝑡ℎ 

fog node. The 𝑙𝑡ℎ fog node is represented as a tuple (𝑡𝑜𝑡𝑎𝑙 (𝑤𝑗), 𝑁𝑢𝑚(𝐹𝑁𝑙)), where 

𝑡𝑜𝑡𝑎𝑙 (𝑤𝑗) represents the total workload at the 𝑙
𝑡ℎ fog node and 𝑁𝑢𝑚(𝐹𝑁𝑙) represents the 

number of computing tasks that are scheduled to the 𝑙𝑡ℎ fog node. 

𝑇𝑤𝑎𝑖𝑡
1 = ∑ 𝑝𝑟𝑒(𝑇𝑒𝑥𝑒,𝑗

1 )

𝑡𝑜𝑡𝑎𝑙 (𝑤𝑗)

𝑗=1

 
(4.4) 

By combining (4.2), (4.3), and (4.4), (4.1) becomes: 

𝑇(𝑓𝑛𝑙,𝑗
1 ) =

(

 
 
 
 ( ∑ (𝑓𝑛𝑗)

𝑓𝑛𝑗∈𝑓𝑛𝑙

)+ (
∑ (𝑤𝑗)𝑤𝑗∈𝑓𝑛𝑙

𝐶𝑐𝑎𝑝𝑙
)

+( ∑ 𝑝𝑟𝑒(𝑇𝑒𝑥𝑒,𝑗
1 )

𝑡𝑜𝑡𝑎𝑙 (𝑤𝑗)

𝑗=1

)

)

 
 
 
 

,𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙 , 𝑁𝑢𝑚 (𝐹𝑁)  

(4.5) 
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Now for fog layer 2, the transmission time 𝑇𝑡𝑟𝑎𝑛𝑠
2  taken by the 𝑙𝑡ℎ fog node is defined 

as: 

𝑇𝑡𝑟𝑎𝑛𝑠
2 =  (∑ (𝑓𝑛𝑗)𝑓𝑛𝑗∈𝑓𝑛𝑙 ),𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙  𝑁𝑢𝑚 (𝐹𝑁), 𝑁𝑢𝑚 (𝐶(𝐹𝑁)) (4.6) 

Similar to 𝑇𝑡𝑟𝑎𝑛𝑠1 , the 𝑇𝑡𝑟𝑎𝑛𝑠2  also depends on the transmission tasks 𝑓𝑛𝑗, the network bandwidth 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙, the total number of fog nodes 𝑁𝑢𝑚 (𝐹𝑁) in fog layer 2, and the number of fog nodes 

in a cluster 𝑁𝑢𝑚 (𝐶(𝐹𝑁)).  

The 𝑓𝑛𝑗   for 𝑇𝑡𝑟𝑎𝑛𝑠2   includes authentication, sending aggregated data, receiving data blocks, 

cluster formation, and channel scheduling. Each of the 𝑓𝑛𝑗  is discussed in detail below. 

For the token-based authentication 𝑓𝑛𝑗, fog nodes send a token 𝐴𝑢𝑡ℎ𝑖 to other fog nodes in 

both fog layers and end-user devices, with whom they wish to have data communication. 

Afterward, fog nodes communicate with neighboring fog nodes for cluster formation and 

scheduling of the transmission channel. Then fog nodes request and receive data blocks 𝑏𝑙𝑜𝑐𝑘𝑖 

from fog layer 1. Fog nodes also request the table policy. Another 𝑓𝑛𝑗 is for the communication 

with the end-user device for sending aggregated data 𝐸. Further, the fog node requests the fog 

nodes in the same layer to send blocks 𝑏𝑙𝑜𝑐𝑘𝑖  for aggregation. Besides 𝑓𝑛𝑗 , the transmission time 

𝑇𝑡𝑟𝑎𝑛𝑠
2  also depends on 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙. The bandwidth between fog nodes in both layers and end-

user devices. The 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙 is measured as 

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙 = {

∞,        𝐹𝑁 = 0 
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙,𝐿 ,    𝐹𝑁𝑙 = 1, 2,… , 𝑁

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙,𝑊 , 𝑢𝑠𝑒𝑟𝑖 = 1, 2, …max (𝑒𝑛𝑑 − 𝑢𝑠𝑒𝑟 𝑑𝑒𝑣𝑖𝑐𝑒)

where 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙,𝐿  represents the bandwidth of a LAN for the 𝑙𝑡ℎ fog node in both fog layers.

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙,𝑊 represents the bandwidth of WAN for the 𝑙𝑡ℎ fog node and the end-user device. 

Similar to fog layer 1, the execution time 𝑇𝑒𝑥𝑒
2  of the 𝑙𝑡ℎ fog node in fog layer 2 is determined

by the workload of the 𝑙𝑡ℎ  fog node and the computational capacity of the 𝑙𝑡ℎ fog node. 

𝑇𝑒𝑥𝑒
2 =

∑ (𝑤𝑗)𝑤𝑗∈𝑓𝑛𝑙

𝐶𝑐𝑎𝑝𝑙

(4.7) 

The workload 𝑤𝑗 at the 𝑙𝑡ℎ fog node consists of the following workloads for computing

tasks 𝑓𝑛𝑗 in fog layer 2. 

• One of the 𝑤𝑗 is for generating and checking token-based authentication, like fog layer

1.

• Also, 𝑤𝑗 is for processing the request of the data 𝑏𝑙𝑜𝑐𝑘𝑖.
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• Further 𝑤𝑗 involves the aggregation of encrypted 𝑀.  

Similar to  𝑇𝑤𝑎𝑖𝑡
1 , the precursor waiting time 𝑇𝑤𝑎𝑖𝑡

2  is computed for fog layer 2. Thus, the total 

time consumption 𝑇(𝑓𝑛𝑙,𝑗
2 ) for fog layer 2 becomes: 

𝑇(𝑓𝑛𝑙,𝑗
2 ) =

(

 
 
 
 
 ( ∑ (𝑓𝑛𝑗)

𝑓𝑛𝑗∈𝑓𝑛𝑙

)+ (
∑ (𝑤𝑗)𝑤𝑗∈𝑓𝑛𝑙

𝐶𝑐𝑎𝑝𝑙
)

+( ∑ 𝑝𝑟𝑒(𝑇𝑒𝑥𝑒,𝑗
2 )

𝑡𝑜𝑡𝑎𝑙 (𝑤𝑗)

𝑗=1

)

)

 
 
 
 
 

,𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑙𝑁𝑢𝑚 (𝐶(𝐹𝑁)), 𝑁𝑢𝑚 (𝐹𝑁) 

   

(4.8) 

From (5) and (8), the total time consumption 𝑇(𝑓𝑛𝑙,𝑗) becomes:   

𝑇(𝑓𝑛𝑙,𝑗) = ∑ (𝑇(𝑓𝑛𝑙,𝑗
1 )

𝐹𝑁𝑙∈ 𝐹𝑁

+ 𝑇(𝑓𝑛𝑙,𝑗
2 )) (4.9) 

3.3. Energy Consumption Model 

Energy consumption 𝐸(𝑓𝑛𝑙,𝑗) of 𝐹𝑁 is the consumption of energy in the transmission 𝐸𝑡𝑟𝑎𝑛𝑠, the 

execution 𝐸𝑒𝑥𝑒 and the waiting for execution 𝐸𝑤𝑎𝑖𝑡 of the precursor computing task 𝑓𝑛𝑙,𝑗 based 

on [59, 293]. 

Let 𝐸𝑡𝑟𝑎𝑛𝑠 be an energy consumption for transmission, which is a power consumed by each 

fog node in both fog layers to transmit data to the nodes in fog layers, sensors, data-owner, and 

end-user devices.  

The energy consumption for execution 𝐸𝑒𝑥𝑒 represents a power consumed by each fog node 

to execute the computing tasks 𝑓𝑛𝑙,𝑗. The energy consumption for precursor execution 𝐸𝑤𝑎𝑖𝑡 is 

the energy consumption that each computing task 𝑓𝑛𝑙,𝑗 requires to wait in a queue to be 

executed by 𝐹𝑁. Based on the time consumption in subsection 3.2, energy for fog layer 1 and fog 

layer 2 can be computed as 

 

𝐸(𝑓𝑛𝑙,𝑗
1 ) = (

(𝑇𝑡𝑟𝑎𝑛𝑠
1 ∗ 𝑝𝑡𝑟𝑎𝑛𝑠) + (𝑇𝑒𝑥𝑒

1 ∗ (𝑝𝑎 + 𝑝𝑖))

+(𝑝𝑟𝑒(𝑇𝑒𝑥𝑒
1 ∗ (𝑝𝑎 + 𝑝𝑖)))

) 
(4.10) 

 

 

𝐸(𝑓𝑛𝑙,𝑗
2 ) = (

(𝑇𝑡𝑟𝑎𝑛𝑠
2 ∗ 𝑝𝑡𝑟𝑎𝑛𝑠) + (𝑇𝑒𝑥𝑒

2 ∗ (𝑝𝑎 + 𝑝𝑖))

+(𝑝𝑟𝑒(𝑇𝑒𝑥𝑒
2 ∗ (𝑝𝑎 + 𝑝𝑖)))

) 
(4.11) 

 

where 𝑝𝑡𝑟𝑎𝑛𝑠 represents the power consumption during 𝑓𝑛𝑙,𝑗 transmission in both fog layers, 

and 𝑝𝑎  𝑎𝑛𝑑 𝑝𝑖 represents the active and idle power consumption of a 𝑓𝑛𝑙 as represented in [61]. 

By combining (4.10) and (4.11), the total energy consumption 𝐸(𝑓𝑛𝑙,𝑗) for both fog layers 

becomes 
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𝐸(𝑓𝑛𝑙,𝑗) = ∑ (𝐸(𝑓𝑛𝑙,𝑗
1 )

𝐹𝑁𝑙∈ 𝐹𝑁

+ 𝐸(𝑓𝑛𝑙,𝑗
2 )) (4.12) 

3.4. Problem formulation and Constraints 

In this paper, we focus on the two-objective (2M) fitness function to optimize the time 

consumption 𝑇(𝑓𝑛𝑙,𝑗) and energy consumption 𝐸(𝑓𝑛𝑙,𝑗) of fog nodes 𝐹𝑁 in both fog layers. The 

problem can be formally defined in (4.13), and the constraint of problem is shown in (4.14). The 

constraint guarantees that the gene values that are greater than the number of fog nodes 𝐹𝑁 

will not be created by a chromosome.   

min 𝑇(𝑓𝑛𝑙,𝑗), 𝐸(𝑓𝑛𝑙,𝑗) , ∀ 𝑙 ∈ {1, 2,… , 𝑁} 𝑎𝑛𝑑 𝑗 ∈ {1, 2, . . , 𝐹𝑁𝑙} (4.13) 

𝑠. 𝑡.  ∑ 𝑓𝑛𝑙 ≤ 𝑁𝑛
𝑙=1  and ∑ 𝑓𝑛𝑙,𝑗 ≤ 𝐹𝑁𝑙

𝑛
(𝑙,𝑗)=1  (4.14) 

where 𝑁 represents the maximum number of fog nodes, 𝐹𝑁𝑙 represents the maximum set of 

computing task 𝑓𝑛𝑙,𝑗  and 𝑓𝑛𝑙 represents the fog node participating in computing task 𝑓𝑛𝑙,𝑗 . 

4. Multi-objective optimization method (MUOM) in fog computing

In this section, we propose MUOM based on NSGA-III, which is an accurate and efficient method 

for solving optimization problems with multiple objectives. In our proposed MUOM, the NSGA-

III is used to optimize the time consumption 𝑇(𝑓𝑛𝑙,𝑗) and energy consumption 𝐸(𝑓𝑛𝑙,𝑗) for data 

aggregation in fog computing as represented in (4.9) and (4.12), respectively. NSGA-III has high 

performance in search of an optimal solution and faster solution convergence. The NSGA-III 

introduces a selection method based on reference-point than the traditional NSGA-II method 

[294]. In the selection generation for NSGA-III, the reference-point guarantees the distribution's 

diversity for efficiently searching optimal solutions. First, we encode a strategy for optimal 

solutions, and then we initialize the fitness functions, constraints, and the first-generation of 

population. Afterward, we utilize the crossover and mutation operations for the new generation 

of solutions. The selection operations based on reference-point SAW [60], and MCDM [61] are 

chosen to select an optimal solution. 

4.1. Encoding 

We encode the optimal strategy for the time consumption 𝑇(𝑓𝑛𝑙,𝑗)  and energy consumption 

𝐸(𝑓𝑛𝑙,𝑗) problem. In GA, chromosomes are composed of several genes, which represents an 

optimal strategy for 𝐹𝑁. Figure 17 illustrates an example of an optimal strategy. In this example, 

a chromosome is an instance of the optimal strategy. The chromosome is encoded in an array 

of (0, 2, 3) integers. 
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𝑓𝑛1,1 𝑓𝑛1,2 𝑓𝑛1,4 …… 𝑓𝑛𝑙,𝑗 

3 2 0 …… 3 

Figure 17 Example of Encoding Chromosomes 

4.2. Fitness functions and Constraint 

In GA, fitness functions predict whether a possible strategy is optimal or not. The fitness 

functions include two categories: the time consumption 𝑇(𝑓𝑛𝑙,𝑗) and energy consumption 𝐸(𝑓𝑛𝑙,𝑗) 

for fog nodes 𝐹𝑁, as represented in (4.9) and (4.12). The goal of the proposed MUOM is to find 

an optimal strategy for minimizing the fitness function's two categories, as shown in (4.13). The 

constraint associated with the fitness function is given in (4.14). We use NSGA-III for a hybrid 

optimization of the time consumption and energy consumption in fog computing. Also, NSGA-

III addresses the multi-objective optimization problem (2M) with associated constraints.  

Time consumption 𝑇(𝑓𝑛𝑙,𝑗) is one of the fitness functions. Algorithm 4 presents the evaluation 

of time consumption 𝑇(𝑓𝑛𝑙,𝑗). In this Algorithm, we input an optimal strategy denoted as 

O(𝑓𝑛𝑙,𝑗). First, we calculate transmission time 𝑇𝑡𝑟𝑎𝑛𝑠, execution time 𝑇𝑒𝑥𝑒, and waiting time 

𝑇𝑤𝑎𝑖𝑡 for data aggregation (lines 3 to 8). Then, we compute the time consumption 𝑇(𝑓𝑛𝑙,𝑗) by fog 

nodes (lines 9 and 10). The time consumption of both fog layers together is the total time 

consumption in fog computing (line 12). Finally, the total time consumption is output in each 

task schedule.  

Algorithm 4 Time Consumption Evaluation 

Input: Optimal strategy O (𝒇𝒏𝒍,𝒋) 

Output: Time consumption 𝑻(𝒇𝒏𝒍,𝒋) 

1. for 𝒍 = 𝟏 𝒕𝒐 𝑵 do

2. for 𝒋 = 𝟏 𝒕𝒐 |𝑭𝑵𝒍| do

3. Calculate 𝑻𝒕𝒓𝒂𝒏𝒔
𝟏  by (4.2) 

4. Calculate 𝑻𝒕𝒓𝒂𝒏𝒔
𝟐 by (4.5) 

5. Calculate 𝑻𝒆𝒙𝒆
𝟏  by (4.3)

6. Calculate 𝑻𝒆𝒙𝒆
𝟐  by (4.6)

7. Calculate 𝑻𝒘𝒂𝒊𝒕
𝟏  by (4.4) 

8. Calculate 𝑻𝒘𝒂𝒊𝒕
𝟐  by (4.7) 

9. 𝑻(𝒇𝒏𝒍,𝒋
𝟏 ) = 𝑻𝒕𝒓𝒂𝒏𝒔

𝟏 + 𝑻𝒆𝒙𝒆
𝟏 + 𝑻𝒘𝒂𝒊𝒕

𝟏

10. 𝑻(𝒇𝒏𝒍,𝒋
𝟐 ) = 𝑻𝒕𝒓𝒂𝒏𝒔

𝟐 + 𝑻𝒆𝒙𝒆
𝟐 + 𝑻𝒘𝒂𝒊𝒕

𝟐

11. end for

12. 𝑻(𝒇𝒏𝒍,𝒋)= 𝑻(𝒇𝒏𝒍,𝒋
𝟏 ) + 𝑻(𝒇𝒏𝒍,𝒋

𝟐 ) 

13. end for

14. return  𝑻(𝒇𝒏𝒍,𝒋)
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Another fitness function is energy consumption 𝐸(𝑓𝑛𝑙,𝑗). The evaluation of the energy 

consumption is elaborated in Algorithm 5. We first calculate transmission energy 𝐸𝑡𝑟𝑎𝑛𝑠, 

execution energy 𝐸𝑒𝑥𝑒, and waiting energy 𝐸𝑤𝑎𝑖𝑡 for both fog layers (lines 3 to 10). Then the  

total energy consumption 𝐸(𝑓𝑛𝑙,𝑗) is an output. 

4.3. Initialization 

During the initial stages of GA, the parameters of GA needs to be determined and initialized. The 

parameters include the possibility of crossover 𝑃𝑂𝑃𝑐, mutation 𝑃𝑂𝑃𝑚, population size 𝑁𝑝𝑜𝑝 and 

maximum iterations 𝐺𝑒𝑛. In GA, the optimal strategy of the computing task 𝑓𝑛𝑖,𝑗 is indicated by 

each chromosome, 𝐶𝑟𝑚𝑙,𝑖 = { 𝑔𝑠,1,  𝑔𝑠,2, … ,  𝑔𝑠,𝐺}(𝑖 = 1, 2, … ,𝑁𝑝𝑜𝑝 , 𝐺 = 𝐺𝑒𝑛), which is 

denoted as an array of integers. The chromosome 𝐶𝑟𝑚𝑙,𝑖 consists of gene 𝑔𝑠,𝑙 and the gene  𝑔𝑠,𝑙 

be an optimal strategy of 𝑓𝑛𝑙,𝑗  in the 𝑠th schedule.  

4.4. Crossover and mutation 

In the crossover operation, two new chromosomes are generated from the combination of two-

parent chromosomes. This operation is performed to acquire the better chromosomes while 

exchanging part of the gene's fragments from parent chromosomes. Figure 18 shows an 

example of a crossover operation. In this example, the crossover points for two chromosomes 

in a first schedule are determined. Then genes are swapped around the crossover point to 

generate two new chromosomes. 

Algorithm 5 Energy Consumption Evaluation 

Input: Optimal strategy 𝑶(𝒇𝒏𝒍,𝒋) 

Output: Energy consumption E(𝒇𝒏𝒍,𝒋) 

1. for 𝒍 = 𝟏 𝒕𝒐 𝑵 do

2. for 𝒋 = 𝟏 𝒕𝒐 |𝑭𝑵𝒍| do

3. Calculate 𝑬𝒕𝒓𝒂𝒏𝒔
𝟏  by (4.10) 

4. Calculate 𝑬𝒕𝒓𝒂𝒏𝒔
𝟐 by (4.11) 

5. Calculate 𝑬𝒆𝒙𝒆
𝟏  by (4.10)

6. Calculate 𝑬𝒆𝒙𝒆
𝟐  by (4.11)

7. Calculate 𝑬𝒘𝒂𝒊𝒕
𝟏  by (4.10) 

8. Calculate 𝑬𝒘𝒂𝒊𝒕
𝟐  by (4.11) 

9. 𝑬(𝒇𝒏𝒍,𝒋
𝟏 ) = 𝑬𝒕𝒓𝒂𝒏𝒔

𝟏 + 𝑬𝒆𝒙𝒆
𝟏 + 𝑬𝒘𝒂𝒊𝒕

𝟏

10. 𝑬(𝒇𝒏𝒍,𝒋
𝟐 ) = 𝑬𝒕𝒓𝒂𝒏𝒔

𝟐 + 𝑬𝒆𝒙𝒆
𝟐 + 𝑬𝒘𝒂𝒊𝒕

𝟐

11. end for

12. E(𝒇𝒏𝒍,𝒋)= E(𝒇𝒏𝒍,𝒋
𝟏 ) + 𝑬(𝒇𝒏𝒍,𝒋

𝟐 )

13. end for

14. return  𝑬(𝒇𝒏𝒍,𝒋)
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𝑓𝑛1,1 𝑓𝑛1,2 𝑓𝑛1,3 … 𝑓𝑛𝑙,𝑗 𝑓𝑛1,1𝑓𝑛1,2 𝑓𝑛1,3 … 𝑓𝑛𝑙,𝑗 

𝐶𝑟𝑚1 2 3 3 … 0 𝐶𝑟𝑚1 2 3 3 … 2 

After the crossover operation, the mutation operation is performed to generate better 

chromosomes. In mutation operation, some part of the chromosome genes is modified with 

higher fitness value, as illustrated in Figure 19. 

𝐶𝑟𝑚1 2 3 2 … 0 

𝑓𝑛1,1 𝑓𝑛1,2 𝑓𝑛1,3 … 𝑓𝑛𝑙,𝑗 

4.5. Selection for the next generation 

We aim to select chromosomes to generate individuals with higher fitness values for the next 

population. As discussed above each chromosome represents an optimal strategy for 2M 

objective. After crossover and mutation operations on the chromosomes, the population size 

increases to 2𝑁𝑝𝑜𝑝. Algorithms 4 and 5 are used to evaluate the values of the 2M fitness 

function. For the next-generation population, optimal solutions' evaluating 2M fitness functions 

are sorted using a fast-non-dominated method. This procedure is carried out to generate non-

dominated fronts {𝑁𝐹1 +𝑁𝐹2 +⋯+𝑁𝐹𝑙} with higher fitness values. 

Then the generated fronts are randomly chosen to generate the next-generation population 

until the size of selected solutions are 𝑁𝑝𝑜𝑝. By adding up the generated fronts, if the size 

becomes 𝑁𝑝𝑜𝑝, then the procedure for selecting optimal solutions is finished, and the next 

generation is generated. Otherwise, optimal solutions need to be selected from the last 𝑙th non-

dominated front 𝑁𝐹𝑙  until the population size becomes 𝑁𝑝𝑜𝑝. 

After selecting optimal solutions, we adopt a normalization operation to normalize the 2M 

fitness function for all chromosomes in the population. In 2𝑁𝑝𝑜𝑝 population, we search for the 

minimum time consumption and energy consumption, denoted as 𝑇𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗) and

𝐸𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗). The 2M objective values are computed as

𝐶𝑟𝑚2 0 2 3 … 2 𝐶𝑟𝑚2  0 2 3 … 0 

𝑓𝑛1,1𝑓𝑛1,2 𝑓𝑛1,3 … 𝑓𝑛𝑙,𝑗 𝑓𝑛1,1𝑓𝑛1,2 𝑓𝑛1,3 … 𝑓𝑛𝑙,𝑗 

Figure 18 Example of crossover operation 

𝑓𝑛1,1 𝑓𝑛1,2 𝑓𝑛1,3 … 𝑓𝑛𝑙,𝑗 

𝐶𝑟𝑚1 2 3 3 … 0 

Figure 19 Example of mutation operation 
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𝑇′(𝑓𝑛𝑙,𝑗)=𝑇(𝑓𝑛𝑙,𝑗) − 𝑇𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗) (4.15) 

𝐸′(𝑓𝑛𝑙,𝑗)=𝐸(𝑓𝑛𝑙,𝑗) − 𝐸𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗) (4.16) 

Let 𝜑𝑇, 𝜑𝐸  be a maximum value of time consumption and energy consumption in each 

dimension, which can be calculated by 

𝜑𝑇 = max(𝑇′(𝑓𝑛𝑙,𝑗)/𝑤𝑡
𝑡) (4.17) 

𝜑𝐸 = max(𝐸′(𝑓𝑛𝑙,𝑗)/𝑤𝑡
𝑒) (4.18) 

where 𝑤𝑡𝑡  and 𝑤𝑡𝑒  represent a weight vector of the 2M fitness function. 

Also, optimal solutions are sorted and selected in a non-dominated the 𝑙th front 𝑁𝐹𝑙. This 

process is repeated until all the solutions are selected. The selection steps are elaborated in 

Algorithm 6. In this Algorithm, the 𝑢𝑡ℎ generation (parent) represented as 𝐺𝑒𝑛𝑢 is the input and

the output is (𝑢 + 1)𝑡ℎ generation (child) denoted as 𝐶𝐺𝑒𝑛𝑢+1. Before sorting and selecting a

solution for the next generation, we first compute each fog node's time consumption and energy 

consumption using Algorithm 4 and 5 (lines 2 and 3). 

Then the non-dominated sorting for individual chromosomes with the size population of 𝐺𝑒𝑛𝑢 

is carried out (line 5). This sorting results in non-dominated fronts. Besides this, the population 

is selected primarily. The selected population 𝑆𝑢 is constituted from fronts {𝑁𝐹1 +𝑁𝐹2 +⋯+

𝑁𝐹𝑙} until the size of  𝑆𝑢 becomes or exceeds 𝑁𝑝𝑜𝑝 (lines 6 and 7). Otherwise, a further selection 

is carried out (line 9). After selection, normalization is carried out, and the remaining optimal 

solutions are determined (lines 10-12). Finally, the next generation (child) population (𝐶𝐺𝑒𝑛𝑢+1) 

is generated entirely. 

4.6. Optimal selection using SAW and MCDM 
In each population, chromosome represents an optimal solution to minimize time consumption 

T(𝑓𝑛𝑙,𝑗) and energy consumption E(𝑓𝑛𝑙,𝑗). To select the optimal chromosome from the 

population size 𝑁𝑝𝑜𝑝, the reference-point-based SAW [60] and MCDM [61] are employed. 

T(𝑓𝑛𝑙,𝑗) and E(𝑓𝑛𝑙,𝑗) are negative criteria as the higher the values are, the worse the 

solution becomes. Therefore, we normalize T(𝑓𝑛𝑙,𝑗) and E(𝑓𝑛𝑙,𝑗) in the 𝑖𝑡ℎ optimal strategy, as

represented in (4.19) and (4.20). 
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𝑁 (𝑇(𝑓𝑛𝑙,𝑗)) = {

(𝑇𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗) − 𝑇(𝑓𝑛𝑙,𝑗))/𝑇𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗) − 𝑇𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗),

       𝑇𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗) − 𝑇𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗) ≠ 0

𝐼, 𝑇𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗) − 𝑇𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗) = 0

(4.19) 

𝑁 (𝐸(𝑓𝑛𝑙,𝑗)) = {

(𝐸𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗) − 𝐸(𝑓𝑛𝑙,𝑗))/𝐸𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗) − 𝐸𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗),

       𝐸𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗) − 𝐸𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗) ≠ 0

𝐼, 𝐸𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗) − 𝐸𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗) = 0

(4.20) 

where 𝑇𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗), 𝑇𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗) 𝑎𝑛𝑑 𝐸𝑚𝑎𝑥(𝑓𝑛𝑙,𝑗), 𝐸𝑚𝑖𝑛(𝑓𝑛𝑙,𝑗)  represents the maximum and 

minimum time consumption and energy consumption. To calculate the maximum values,  

𝑁 (𝑇(𝑓𝑛𝑙,𝑗)) and 𝑁(𝐸(𝑓𝑛𝑙,𝑗)) need to be combined with the associated weights 
1

2𝑁
  as shown

in (4.21).  

𝑁(𝐶𝑟𝑚𝑙,𝑖) =∑
1

2𝑁
.𝑁 (𝑇(𝑓𝑛𝑙,𝑗))

𝑁

𝑙=1

+∑
1

2𝑁
.𝑁 (𝐸(𝑓𝑛𝑙,𝑗))

𝑁

𝑙=1

(1 ≤ 𝑖 ≤ 𝑁𝑝𝑜𝑝)
(4.21) 

where 𝑁(𝐶𝑟𝑚𝑠,𝑖) represents the value of the 𝑖th chromosome. The optimal solution represented 

by chromosome 𝑁(𝐶𝑟𝑚𝑙,𝑖) can be computed as 

𝑁(𝐶𝑙) = 𝑚𝑎𝑥
𝑖=1

𝑁𝑝𝑜𝑝 𝑁(𝐶𝑟𝑚𝑙,𝑖)(1 ≤ 𝑙 ≤ 𝑁) (4.22) 

Algorithm 6 Selection for the next generation 

Input: Parent Generation 𝑮𝒆𝒏𝒖 

Output: Child Generation  𝑪𝑮𝒆𝒏𝒖+𝟏 

1. for 𝒍 = 𝟏 𝒕𝒐 𝑵 𝐝𝐨

2. Calculate 𝑻(𝒇𝒏𝒍,𝒋) by Algorithm 4

3. Calculate  𝑬(𝒇𝒏𝒍,𝒋) by Algorithm 5

4. end for

5. Non-dominant sorting ( 𝑮𝒆𝒏𝒖) the POP solutions

6. Constitute 𝑺𝒖 from fronts {𝑵𝑭𝟏 +𝑵𝑭𝟐 +⋯+𝑵𝑭𝒍}

7. Conduct Primary selection

8. if Size (𝑺𝒖) < 𝑵𝒑𝒐𝒑 then

9. Conduct further selection

10. Normalize solutions by (15- 18)

11. Select remaining 𝒛 solutions
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4.7. Proposed MUOM overview 

We aim at minimizing T(𝑓𝑛𝑙,𝑗) and E(𝑓𝑛𝑙,𝑗) for data aggregation in fog computing based on 

NSGA-III to obtain an optimal strategy for reducing T(𝑓𝑛𝑙,𝑗) and E(𝑓𝑛𝑙,𝑗). Algorithm 7 elaborates 

the overview of MUOM. In this Algorithm, we input the initialized population N and a maximum 

number of iterations 𝐺𝑒𝑛. The Algorithm outputs the optimal strategy for 𝑇(𝑓𝑛𝑙,𝑗) and  𝐸(𝑓𝑛𝑙,𝑗) 

in each schedule (1 ≤ 𝑙 ≤ 𝑁).  

Firstly, the first-generation population is initialized. Then the child population is generated 

using crossover and mutation operations (lines 2-5). The child population size becomes 2𝑁𝑝𝑜𝑝. 

This Algorithm also calculates the 2M fitness functions of 2𝑁𝑝𝑜𝑝 solutions (lines 6 and 7), then 

the Algorithm selects the optimal individuals for the next generation. Next, the Algorithm 

evaluates the fitness function to select an optimal strategy using SAW and MCDM methods (lines 

12 and 13). Finally, the optimal strategies are output (line 15).   

12. 𝑪𝑮𝒆𝒏𝒖+𝟏 = 𝑺𝒖 ∪ 𝑵𝑭𝒍

13. else

14. 𝑪𝑮𝒆𝒏𝒖+𝟏 = 𝑺𝒖

15. end if

16. return  𝑪𝑮𝒆𝒏𝒖+𝟏

Algorithm 7 Proposed MUOM in Fog computing 

Input: The population size N, Max Iteration 𝑮𝒆𝒏 

Output: The optimal method 𝑶( 𝒇𝒏𝒍,𝒋) 

 The optimal time consumption  𝑻(𝒇𝒏𝒍,𝒋) 

 The optimal energy consumption 𝑬(𝒇𝒏𝒍,𝒋) 

1. for 𝒍 = 𝟏 𝒕𝒐 𝑵 do

2. 𝒊 = 𝟏

3. while 𝒊 ≤ 𝑮𝒆𝒏 do

4. for individuals: current population do

5. Crossover and Mutation operation

6. Calculate time consumption by Algo (4)

7. Calculate energy consumption by Algo (5)

8. end for

9. Selection for the next generation by Algo (6)

10. i++
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5. Experimental Evaluation 

This section presents our comprehensive simulation and experiments conducted to evaluate the 

performance of the proposed MUOM. A simulation-based evaluation is adapted because it 

controls environmental parameters and considers different constraints and scenarios for 

experiments. First, we introduce the test case scenarios for simulation, followed by a simulation 

setup including simulation parameters. Then, we discuss the performance evaluation of the 

proposed MUOM and comparative analysis with state-of-the-art methods. 

5.1. Fog computing Test-case Architecture 
We design a test-case scenario to test the effectiveness of the proposed MUOM and our 

scenario consists of three layers. In the first layer, we have 5-1000 sensor nodes to sense the 

heterogeneous data and generates a range of 1-1000 Kbs of data. Sensor nodes are randomly 

distributed within a range of 50-400 meters of fog nodes. The second layer is divided into two 

layers: Fog layer 1 and Fog layer 2. The number of fog nodes in each fog layer is between 10-

1000. Fog layer 1 performs computing tasks 𝑓𝑛𝑙,𝑗 to process and analyze the data generated by 

sensor nodes. Whereas fog layer 2 performs computing tasks 𝑓𝑛𝑙,𝑗 for data storage and 

aggregation. Last, the third layer consists of data-owner and end-user devices, which are 

connected to the second layer through the internet. 

5.2. Simulation Setup 
A simulation is carried out via Network Simulator based on a Linux system with Intel (R) Core 

(i7), RAM 16.0 GB, and CPU 3.40 GHz. In the simulation, our present parameter values for the 

experiments conducted on the test-case scenario are presented in Table 12. We define a range 

of values of the corresponding parameters based on [294, 295].  

Table 12 Parameters Settings 

Parameter Value 

The Bandwidth of LAN 250 MB/s 

The Bandwidth of WAN 20 MB/s 

The Latency of LAN (0.2-20) ms 

The Latency of WAN 20 ms 

Number of Fog nodes 10-1000 

Number of Sensor nodes 5-1000 

11.      end while 

12.      Evaluate objective function by (4.19-4.21) 

13.      Select an optimal strategy by (4.22) 

14. end for 

15. return  𝑶(𝒇𝒏𝒍,𝒋),  𝑻(𝒇𝒏𝒍,𝒋),  𝑬(𝒇𝒏𝒍,𝒋) 
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The Idle Power of Fog nodes 50 mW 

The Active Power of Fog nodes (100-500) mW 

The Transmission Power (100-500) mW 

Computing capacity of Fog nodes (1-50) GHz 

The time consumption 𝑇(𝑓𝑛𝑙,𝑗) and energy consumption 𝐸(𝑓𝑛𝑙,𝑗) of the fog nodes in 

fog layers are used to evaluate the performance of MUOM. For the comparative analysis of the 

proposed MUOM, the comparative methods are elaborated as follows.  

1) Non-optimization Method (N-OPT) 

In this method, computing tasks 𝑓𝑛𝑙,𝑗 for data aggregation including data encryption, data 

distribution, data storage, and additive aggregation are carried out on fog layers without utilizing 

any optimization method to minimize 𝑇(𝑓𝑛𝑙,𝑗) and  𝐸(𝑓𝑛𝑙,𝑗) [42]. 

2) Fully Cloud Method (FCM) 

All the computing tasks 𝑓𝑛𝑙,𝑗 are fully offloaded from fog nodes to cloud to process, store, and 

aggregate data. NSGA-III method is considered for optimization of 𝑇(𝑓𝑛𝑙,𝑗) and  𝐸(𝑓𝑛𝑙,𝑗). 

3) Partial Cloud Method (PFCM) 

This method is a partial offloading of 𝑓𝑛𝑙,𝑗 from fog nodes to cloud using Ant-Colony 

Optimization (ACO) method [292]. The method based on ACO aims to find an optimal solution 

for 𝑇(𝑓𝑛𝑙,𝑗) for data aggregation at fog nodes, and cloud for partial processing and aggregation 

of data. 

These comparative methods are implemented under the same simulation setup of fog layers 

and sensor nodes, as discussed above. 

5.3. Evaluation Criteria 

We evaluate the performance of the proposed MUOM in terms of evaluation metrics including 

the number of fog nodes, the execution and transmission power, the computing capacity, the 

data size, the degree of workload imbalance, and the standard deviation of the workload 

imbalance.  

The degree of workload imbalance shows the imbalance of workload among fog nodes. 

The imbalance can be calculated by considering the formula from [292] as shown in (4.23). 

 

𝑊𝐿 =
(𝑀𝑎𝑥(𝑅𝑙) − 𝑀𝑖𝑛(𝑅𝑙))

𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒
 , 𝑙 = 1, 2, … .𝑁 

 

 

(4.23) 
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where 𝑅𝑙 = 𝑇(𝑓𝑛𝑙,𝑗). The workload imbalance 𝑊𝐿 is the difference of 𝑇(𝑓𝑛𝑙,𝑗) of fog nodes to 

the average 𝑇(𝑓𝑛𝑙,𝑗) of fog nodes.  

The standard deviation evaluates the workload distribution among the fog nodes. The 

smaller the value of deviation, the higher the workload balanced between the fog nodes. The 

standard deviation can be calculated from [292] as 

𝑆. 𝐷 = √∑ (𝑅𝑙 − 𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
2

𝑙

𝑁
  

(4.24) 

 

5.4. Performance Evaluation of Proposed MUOM 

This section evaluates MUOM to analyze the impact of the number of fog nodes, the execution 

and transmission power, and the computing capacity of fog nodes.  

5.4.1. Impact of the Number of Fog nodes 

We consider the impact of the number of fog nodes on 𝑇(𝑓𝑛𝑙,𝑗) and  𝐸(𝑓𝑛𝑙,𝑗) of our MUOM 

method. In the simulated network, fog nodes are responsible for performing computing task 

𝑓𝑛𝑙,𝑗 including data encryption, data division, distribution, storage, and additive aggregation. 

The number of fog nodes that can perform computing tasks is ranging between 10-1000, as 

listed in Table 12. The results are illustrated in Figure 20 (a), (b), and (c).  

 According to the Pareto front chart in Figure 20 (a), we can observe that the MUOM 

method based on NSGA-III can get the optimal solutions 𝑂(𝑓𝑛𝑙,𝑗) balance between extreme 

values of V1 and V2 for time consumption 𝑇(𝑓𝑛𝑙,𝑗) and energy consumption 𝐸(𝑓𝑛𝑙,𝑗). With the 

number of fog nodes increasing, the range of Pareto also increases, corresponding to the higher 

number of optimal solutions. For 1000 fog nodes (FN-1000), the optimal solutions are notably 

higher than the 500 fog nodes or fewer fog nodes. The higher number of optimal solutions is 

because of the higher computation tasks 𝑓𝑛𝑙,𝑗 with the increase of fog network size. We can 

also notice that the optimal solutions have a high degree of overlaps for the number of fog nodes 

less than 250 at reaching certain time and energy levels.  

From our analysis, it can be concluded that the dimension of decision-making for optimal 

solutions becomes more extensive with a higher number of fog nodes rather than a fewer 

number of fog nodes. Figure 20 (b) and (c) depict the impact of the number of fog nodes on the 

time consumption 𝑇(𝑓𝑛𝑙,𝑗) and energy consumption 𝐸(𝑓𝑛𝑙,𝑗), respectively. The average time 

consumption 𝑇(𝑓𝑛𝑙,𝑗) and energy consumption 𝐸(𝑓𝑛𝑙,𝑗) show a positive correlation with the 

increase in the number of fog nodes. 
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Although the increase in the number of fog nodes minimizes the execution time 𝑇𝑒𝑥𝑒 by a 

division of computing tasks 𝑓𝑛𝑙,𝑗 among fog nodes. Still the transmission time 𝑇𝑡𝑟𝑎𝑛𝑠 for 

requesting, transmitting, and authenticating 𝑓𝑛𝑙,𝑗 requires a larger amount of time than 𝑇𝑒𝑥𝑒. 

Therefore, the overall time consumption 𝑇(𝑓𝑛𝑙,𝑗) increases with an increase in the number of 

fog nodes, as shown in Figure 20 (b). 

The relationship between energy consumption 𝐸(𝑓𝑛𝑙,𝑗) and the number of fog nodes is 

shown in Figure 20 (c). Similar to 𝑇𝑡𝑟𝑎𝑛𝑠, the transmission energy 𝐸𝑡𝑟𝑎𝑛𝑠 consumed by fog nodes 

for 𝑓𝑛𝑙,𝑗 including data transmission, data authentication, and data request becomes higher 

than the execution energy 𝐸𝑒𝑥𝑒. This increase impacts the overall increase in energy 

consumption 𝐸(𝑓𝑛𝑙,𝑗) for a higher number of fog nodes.   

5.4.2. Impact of the Execution and Transmission Power 

We focus on the influence of execution and transmission power on the time consumption 

𝑇(𝑓𝑛𝑙,𝑗) and energy consumption 𝐸(𝑓𝑛𝑙,𝑗) in this section. The range of power, including 

transmission 𝑝𝑡𝑟𝑎𝑛𝑠 and execution power 𝑝𝑎 , 𝑝𝑖 (idle and active power), varies from 100 to 1000 

mW as listed in Table 12. Figure 21(a) depicts multiple optimal solutions in a Pareto chart with 

varying power values. From the Figure, we can observe that the proposed MUOM method based 

on NSGA-III can always find multiple optimal solutions between extreme V1 and V2 values. In 

addition, the optimal solutions for transmission and execution power greater than 500 have a 

high degree of overlapping. It can be concluded from the overlapping that the dimension of 

decision-making for optimal solutions becomes very small when the transmission and execution 

power reaches 500 mW.  

The relationship between time consumption 𝑇(𝑓𝑛𝑙,𝑗) and power is negatively correlated, as 

shown in Figure 21 (b). The processing and transmission speed of computing tasks 𝑓𝑛𝑙,𝑗 becomes 

faster with the more considerable power, which results in smaller 𝑇𝑡𝑟𝑎𝑛𝑠 and 𝑇𝑒𝑥𝑒 at fog nodes. 

In contrast, energy consumption 𝐸(𝑓𝑛𝑙,𝑗) shows a positive correlation with power, as illustrated 

in Figure 21 (c). With an increase in 𝑝𝑡𝑟𝑎𝑛𝑠, 𝑝𝑎 and 𝑝𝑖, the higher energy consumption 𝐸(𝑓𝑛𝑙,𝑗) 

is required to process 𝑓𝑛𝑙,𝑗 within a network.  

Overall, we have noticed a slowdown in trend for 𝐸(𝑓𝑛𝑙,𝑗) increase and 𝑇(𝑓𝑛𝑙,𝑗) decrease. 

Although the power is increasing evenly, still the degree of 𝑇(𝑓𝑛𝑙,𝑗) and 𝐸(𝑓𝑛𝑙,𝑗) is shrinking  
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(a) 

(b) 

(c) 

Figure 20 Impact of the number of fog nodes. (a) Pareto front for optimal solutions. (b) Box plots of the time 

consumption in a varying number of fog nodes. (c) Box plots of the energy consumption in a varying number of fog 

nodes. 
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gradually. Therefore, the effect of transmission and execution power on the network is not 

higher than the other variables' impact, including the number and computing capacity of fog 

nodes. 

5.4.3. Impact of Computing Capacity of Fog nodes 

This section discusses the relationship between the computing capacity 𝐶𝑐𝑎𝑝 of fog nodes and 

the network performance. In our experiment, the range of computing capacity 𝐶𝑐𝑎𝑝 varies from 

1 to 50 GHz as listed in Table 12 and the results are depicted in Figure 22. 

The optimal solutions in the Pareto chart with a variation of fog nodes' computing capacity 

are shown in Figure 22 (a). We can observe that the multiple optimal solutions fall between 

extreme V1 and V2 values. The extreme value at the top left of Figure 22 (a) has the maximum 

time consumption 𝑇(𝑓𝑛𝑙,𝑗) of 2.55s and the minimum energy consumption 𝐸(𝑓𝑛𝑙,𝑗)  of 10J. For 

the maximum time consumption 𝑇(𝑓𝑛𝑙,𝑗) and the minimum energy consumption 𝐸(𝑓𝑛𝑙,𝑗), each 

optimal set of Pareto has almost the same value as the extreme value at the top left. In addition 

to the obvious relationship, we also notice that the lower computing capacity 𝐶𝑐𝑎𝑝 values, i.e. C-

1 and C-20, make the scope of the optimal solutions denser and smaller as compared to values 

greater than 20 GHz.  

Figure 22 (b) and (c) show the box plot relationship of time consumption 𝑇(𝑓𝑛𝑙,𝑗) and energy 

consumption 𝐸(𝑓𝑛𝑙,𝑗) with computing capacity 𝐶𝑐𝑎𝑝. The time consumption 𝑇(𝑓𝑛𝑙,𝑗) shows a 

negative correlation with computing capacity 𝐶𝑐𝑎𝑝. As the computing capacity 𝐶𝑐𝑎𝑝 of fog nodes 

increase the execution time 𝑇𝑒𝑥𝑒, and the transmission time 𝑇𝑡𝑟𝑎𝑛𝑠 for 𝑇(𝑓𝑛𝑙,𝑗) becomes smaller. 

In contrast, the energy consumption 𝐸(𝑓𝑛𝑙,𝑗) is positively correlated with computing 

capacity 𝐶𝑐𝑎𝑝. The higher the computing capacity 𝐶𝑐𝑎𝑝, the more the energy is consumed by fog 

nodes for processing data. 

From Figure 22 (b) and (c), it can be concluded that the time consumption 𝑇(𝑓𝑛𝑙,𝑗) decreases 

moderately with the computing capacity 𝐶𝑐𝑎𝑝 increasing evenly. Similarly, the energy 

consumption 𝐸(𝑓𝑛𝑙,𝑗) increases moderately with the computing capacity increase. 

5.5. Comparison Analysis 

In this section, we evaluate the performance of the MUOM method with the N-opt, FCM, and 

PFCM methods. The time consumption and energy consumption with the data size and power 

consumption are metrics to assess MUOM and the other comparative methods' performance. 

Also, we evaluate the standard deviation and the degree of imbalance of MUOM is compared 

with PFCM. 
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(c) 

Figure 21 Impact of execution and transmission power. (a) Pareto front for optimal solutions. (b) Box plots of the 

time consumption in varying power values. (c) Box plots of the energy consumption in varying power values. 
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(c) 

Figure 22 Impact of the computing capacity of fog nodes. (a) Pareto front for optimal solutions. (b) Box plots of the 

time consumption in varying computing capacity values. (c) Box plots of the energy consumption in varying 

computing capacity values. 
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5.5.1. Comparison of data sizes for time consumption and energy consumption 

Figure 23 and Figure 24 present the time consumption and energy consumption in terms of data 

size from 1 to 1000 Kbs in processing the MUOM, N-opt, FCM, and PCFM methods. As discussed 

in Section 3, all the computing tasks 𝑓𝑛𝑙,𝑗 in the N-opt methods are executed and transmitted 

without applying the fog layers' optimization algorithm. Due to the lack of time consumption 

and energy consumption optimization, the transmission time and energy incurs high overhead 

for transmission of data including encryption, authentication, and key distribution. With a larger 

data size, the transmission time and energy increase abruptly, which results in an overall 

increase in time consumption and energy consumption.  

The reasons for the FCM and PCFM results variation with data sizes for time and energy 

consumption are summarized in detail as follows.  

On the one hand, the time consumption of FCM is a little higher than in PFCM, as shown in 

Figure 23. The fog nodes in FCM are connected to the cloud through WAN with lower bandwidth 

and higher latency than the fog nodes interconnected in PFCM through LAN. In FCM, the 

execution of computing tasks and data storage is carried out on the cloud. In contrast, PFCM 

executes computing tasks on fog layers and partially performs further execution on a cloud. 

Hence less time is consumed when the computing task is executed on fog layers in PFCM than 

entirely on the cloud in FCM.  

Further, resources available for higher data size execution are limited and finite in fog layers. 

In the case of all fog nodes instantiated for computing tasks, then the execution requests for the 

remaining tasks in the queue have to wait until the fog node's resources become available. In 

PFCM, only partial computing tasks wait for resource availability in fog layers is required. 

Moreover, partial computing tasks are offloaded to the cloud. Also, the ACO algorithm is used 

to optimize the time consumption for tasks offloading in fog layers.  

On the other hand, the energy consumption in PFCM for computing tasks without optimizing 

energy in fog layers is a bit higher than FCM, as shown in Figure 24. In PFCM, most of the 

computing tasks are executed at fog nodes, which requires higher energy consumption than all 

the computing tasks offloaded to the cloud in FCM. Further, ACO optimizes only a single-

objective, i.e. time consumption in PCFM. Thus, energy consumption in PFCM is not optimized, 

and higher energy is consumed when the computing tasks are executed on fog layers than on 

the cloud as in FCM.      

Compared to MUOM, partial tasks offloading to the cloud increases the time consumption 

and energy consumption of PCFM, as shown in Figure 23 and Figure 24. In MUOM, computing 

tasks are performed at fog layers, and no task is offloaded to the cloud. Further, optimal 
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solutions provided in PCFM are based on an ACO algorithm with single-objective optimization, 

i.e. time consumption, which incurs higher computational time and energy than MUOM. MUOM

is based on NSGA-III, which provides a hybrid strategy for multi-objective optimization, i.e. time 

consumption and energy consumption.  

5.5.2. Comparison of power consumption 

Figure 25 and Figure 26 illustrate the time consumption and energy consumption in terms of 

power consumed by each of the four methods. Figure 25 depicts that the increase in power 

consumption decreases the overall time consumed by each method to execute and transmit the 

computing tasks. The proposed MUOM method incurs significantly less time as compared to the 

N-opt, FCM, and PFCM methods. Due to the lack of an optimization algorithm, the time

consumed by fog nodes with varying power consumption in the N-opt method is remarkably 

high than the other three methods. In FCM, the tasks offloading to the cloud require a little 
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higher power and time consumption than PFCM. The power consumption has a high impact on 

the energy consumed by methods to execute and transmit the computing tasks, as shown in 

Figure 26. We consider power as one of the parameters to measure the energy consumption of 

fog nodes. 

We can conclude from Figure 26 that the increase in power consumption results in higher 

energy consumption for executing and transmitting tasks. Besides, the average power 

consumption of MUOM is a little lower than FCM and PFCM. At the same time, the power 

consumption of MUOM is remarkably lower than the N-opt method. The reason for the lower 

power consumption of MUOM is the optimization of energy consumption and performance of 

computing tasks within a fog layer.  

5.5.3. Comparison of workload imbalance 

Figure 27 depicts the degree of workload imbalance at the fog layers for the MUOM and PFCM 

methods with increasing fog nodes. The workload imbalance is evaluated according to (4.23). 

Figure 27 shows that the degree of imbalance for MUOM is significantly lesser than PCFM, which 

means that MUOM balances computing workload at fog nodes effectively. With the optimal 
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solutions, the workload is balanced among fog nodes to execute and transmit computing tasks.  

In contrast, PFCM utilizes the ACO Algorithm for only optimizing time, not considering energy 

optimization. Due to high execution and transmission energy, the workload imbalance in PFCM 

is remarkably high than MUOM.  

Similarly, Figure 28 shows the standard deviation of the workload distribution among fog 

nodes with an increasing number of fog nodes. The Figure depicts that the MUOM enhanced 

the standard deviation compared to PFCM, which means smaller standard deviation values, the 

higher the workload balance and distribution among fog nodes.   

 

 

6. Conclusion 

In this paper, we investigated the problem of time consumption and energy consumption for 

data aggregation in fog computing.  We provide two models for time consumption and energy 

consumption in fog computing and to optimize both models, we proposed MUOM based on the 
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NSGA-III Algorithm. Furthermore, comprehensive experiments and evaluations are carried out 

to analyse and compare the performance of the proposed MUOM with the other methods. Our 

experiment results showed that our MUOM can always obtain the Pareto optimal solutions 

within the extreme values and it outperforms the state-of-the-art methods in solving the 

optimization problem. 

For future work, we will extend the proposed strategies in real-world scenarios of IoT. In 

addition, we will apply the proposed strategies for optimization of data replication in Fog-

enabled IoT. 
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‘Teach one girl how to code, she’ll teach four. The replication effect is so powerful’. 

--- Reshma Savjani 

Chapter 5: Efficient Privacy-Preserving Data Replication for Fog-

enabled IoT 

Abstract 

Internet of Things (IoT) devices continuously generate a high volume of data that is processed 

and stored in traditional cloud computing. The processing including data replication in 

traditional cloud computing often results in excessive resource utilization, performance 

overhead, and long response time. Fog computing has been proposed to overcome the 

shortcomings of cloud computing. Fog computing alleviates the processing and storage burden 

during data replication from cloud to the network edge closer to sensor devices. Numerous data 

replica schemes in fog computing have been proposed to improve the performance efficiency 

of the data, reduce the turnaround delays of data access, and minimize network latency. 

However, these schemes do not consider data replication privacy, which is essential for data 

protection, reliability, and authentication. Therefore, this paper proposes a data replica creation 

scheme and a data replica placement scheme for preserving the privacy of data in fog 

computing. Our proposed replica creation scheme is based on a Level of Privacy (LoP) defined 

by data-owners and service capacity of fog nodes. Our proposed replica placement scheme is 

based on the priority level of fog nodes. We have conducted a comprehensive experimental 

analysis to compare the performance of our scheme and the existing schemes. Our results 

demonstrate that the proposed scheme can achieve significant efficiency for replicas privacy, 

prediction accuracy, as well as outperform the existing state-of-the-art schemes in terms of 

computational and memory costs.  

This contribution has been submitted to Future Generation Computer Systems Journal (Elsevier) 
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1. Introduction

According to research, 41.6 billion Internet of Things (IoT) devices will be generating 79.4 

zettabytes of data by the year 2025  [6]. A high volume of data generated by IoT devices is 

processed and stored in cloud computing. The cloud computing has a strong dependency on 

network performance, bandwidth, and response time for IoT devices’ data processing and 

storage. Data access and processing can be a bottleneck due to long turnaround delays and high 

demand for network bandwidth in remote cloud systems [52]. Fog computing brings cloud 

services to the edge of the IoT network, so it has many advantages, such as low-performance 

overhead, faster response time, and high network bandwidth for local computation [13, 62, 

296]. In this context, fog computing can be referred to fog-enabled IoT.  

The fog-enabled IoT network provides a promising way for data replication management of 

IoT devices generated data. Data replication is one of the most efficient and commonly used 

methods for data reliability in wireless sensor networks [297]. Data replication significantly 

improves data processing efficiency, data access, and reduces data transmission delays. 

Generally, data replication technique [47] consist of static and dynamic methods for replica 

creation, placement, and selection. Static methods create several data replicas at the time of 

processing system setup [45]. The main drawback of static methods is that a data replica 

creation and placement process is unaffected by the changes in storing/deleting replicas and 

user’s data access patterns. Therefore, the method does not provide an accurate replicas 

creation which affects the replicas selection and placement [48]. Dynamic methods consider the 

dynamic nature of user’s access patterns and store/delete replicas for data availability [45]. Also, 

dynamic methods take advantage of data mining approaches for data relationship management. 

The dynamic and static methods for data replication consist of replica creation, placement, 

selection, and replacement processes [45]. A replica creation process determines the number of 

replicas of a data object. A replica placement process first determines the best possible location 

for replica creation and then decides replica placement based on network protocols. A replica 

selection process determines an appropriate replica location for job execution. The job 

execution includes replica creation, replica processing, and storage. In the case of storage 

limitations, a replica replacement process can change the replica locality with the new replica 

[46].  

In recent years, several data replication schemes in fog computing have been proposed to 

reduce network latency, improve the performance efficiency of the data, and reduce the 

turnaround delays of data access [50-53]. However, these schemes do not consider the privacy 

of data replicas, which is essential for data protection, reliability, and authentication during 
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different data replication processes in an insecure computing environment. Data replication 

processing on various fog nodes in a network makes data replicas vulnerable to attacks like 

Denial of Service (DoS), authentication, and MAC spoofing attacks [48, 298]. An adversary can 

either modify/delete data replicas to make data unavailable to end-users or acquire replicas to 

monitor data-owner patterns and sensitive locations. Therefore, preserving the privacy of data 

replicas at fog nodes is vital to guarantee data protection, reliability, authentication, and 

survivability. Although there are existing works [50-53] for data replication in fog computing, the 

preservation of data replication privacy is not considered.  

To address the shortcoming mentioned above, our research aims to provide efficient privacy-

preserving data replica creation and placement schemes. Our proposed data replica creation 

schemes consider important factors, including service capacity and data owner's defined Level 

of Privacy (LoP) of fog nodes. The replica placement scheme utilizes privacy-preserving priority 

levels and service capacity of fog nodes. We design these two schemes to ensure adequate data 

replica privacy with low computational and storage costs. The main contributions of this paper 

are summarized as follows. 

1. We propose data replication schemes in fog-enabled IoT to efficiently process replicas and 

preserve the privacy of replicas. 

2. We propose a data replica creation scheme that can efficiently select fog nodes with the 

highest service capacity for replica creation. Also, the scheme can efficiently generate 

replicas based on the LoP defined by data-owners. 

3. We consider a priority level based on the LoP and service capacity for a data replica 

placement scheme.  

4. We provide an experimental and comparative analysis of both schemes. The analysis shows 

that the performance efficiency in terms of computational and memory cost of the proposed 

schemes is better than the state-of-the-art schemes. 

The remainder of the paper is organized as follows: In Section 2, we review and discuss 

related work. In section 3, we present our proposed schemes along with our system and 

adversary models and time complexity analysis. Section 4 provides experimental results, privacy, 

and performance analysis. Finally, Section 5 concludes the paper with future work. 

2. Related Work 

2.1. Data Replica Creation and Placement   

One of the most challenging issues in a real-time networking environment is data management. 

Recently, researchers have investigated this issue and provided data replication-based solutions 
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to mitigate and enhance data performance and reliability [299]. In this section, we present a 

review of data replication research for data management in cloud computing. 

In hybrid cloud computing, Zhao et al. proposed a dynamic replica creation scheme based on 

file-access heat and node load methods [300]. In the scheme, the Markov chain model is used 

for file-access heat and node load methods to adjust the number of data replicas per node. The 

performance analysis results proved that the dynamic replica creation scheme reduces the 

response time and improves load balancing during the adjustment of several replicas in 

comparison to the HDFS (Hadoop Distributed File System). Also, due to a hybrid cloud, storage 

usage is reduced while achieving increased data reliability as compared to the HDFS. Although 

the replica creation scheme can minimize the response time and storage usage in hybrid cloud, 

the use of the replica replacement method increases processing overhead and data response 

delay. The replacement method is based on a hierarchical tree structure for the replica’s 

deletion and update. The replica replacement method incurs high storage and computing 

overhead in a hybrid cloud.  

Another replica placement policy (RPP) scheme based on HDFS for the data replica placement 

has been proposed by Dai et al. in [301]. The proposed RPP provides two advantages, firstly the 

scheme eliminates the need for load balancing utility for managing the data replica load. 

Secondly, RPP considers the heterogeneous environment as compared to HDFS for each data 

processing site. The comparative analysis presented in the scheme is based on the requirements 

of HDFS, which can balance and store replicas at appropriate network locations. The utilization 

of HDFS balancing requirements incurs high network and processing overhead for balancing and 

storing replicas.  

For the HDFS, the concept of a Markov chain model for dynamic data replication has also 

been proposed in the scheme [302]. In this scheme, the number of replicas varies with the 

change in data due to cold and hot temperatures. For data replicas creation,  the maximum 

availability/accessibility of data in the cloud data-center based on fuzzy logic has been 

considered in another scheme [303]. In both schemes [302, 303], data file popularity and 

computing node load are considered crucial factors for data replicas creation. Instead of 

distributed cloud resources, these schemes [302, 303] rely on centralized resources which 

significantly increase the average response time delay of nodes for replica processing and 

placement. A scheme based on multi-objective optimization for improving data response time, 

availability and load balancing has been proposed in [304]. In the scheme, the data availability 

has been monitored to balance the increase in data replication cost using load balancing 

method. The concept of knapsack and multi-tier hierarchical methods to provide efficient data-

sharing management has been presented in a prefetching-aware data replication scheme [47]. 
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A service provider is responsible for determining the total replication computational and storage 

cost required at the data center [48]. The scheme balances different objectives, such as load 

balancing, availability, and replication cost. An extensive experimental analysis using cloudsim 

proved that the proposed replica management scheme is energy efficient. However, the file 

popularity/ heat factor was not used in computing the replica management process. File 

popularity/ heat provides file usage and access patterns, which significantly improves response 

time in replica management.  

Mansouri et al. presented a dynamic file popularity-aware replica scheme [305] to determine 

data replica creation. In the scheme, first, data file popularity is computed based on the user’s 

access behavior. Then the most frequently access data is stored at the best possible location, 

which is identified based on the centrality, service capacity, and the number of file requests [46, 

47]. Also, the scheme applies a parallel downloading approach for assembling replication of data 

files. Although the scheme can enhance replica creation using the proposed file popularity 

mechanism, it neglects the impact of file access patterns in decision making for replica selection. 

A data replica placement scheme based on a bidding concept is proposed in [306]. In this 

scheme, factors of bidding are combined with characteristics of self-replication to initiate an 

activity for replica creation. When the availability of a file does not meet the given requirements 

for replica creation activity, then the bidding activity of replica placement takes place. In the 

scheme, replica placement considers service capacity and access probability criteria of each 

node for file availability. To enhance the data replica placement in cloud, Lizhen et al. 

constructed an approach based on a genetic algorithm using a three-layer graph [307]. In this 

approach, a genetic algorithm reduces the data transmission overhead in the cloud. Permutation 

in a genetic algorithm requires a high computational cost. Therefore, the computational 

overhead of the scheme for replica placement is high as compared to [306].       

Most of the schemes [47, 300-307] discussed above depend on cloud or centralized/ 

database systems for computation and storage. Performing data replication on 

cloud/centralized system increases the computational and storage burden at the computing 

end, which results in degraded data reliability, scalability, and high bandwidth overhead. Overall 

response time of end-user requests to access data is also delayed due to the server’s far away 

locality [300, 302, 303]. Synchronization issue during data replication is also one of the problems 

w.r.t. the response time delay. Further, most of the existing schemes are only suitable for

homogenous data replication [47, 300, 302, 303]. 
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2.2. Data Replica Creation and Placement in Fog-enabled IoT 

Recently, researchers have begun to pay attention to fog computing for data replication [50-53]. 

Huang et al. proposed a latency-aware data replica placement scheme based on a greedy 

algorithm [50]. The scheme reduces the overall latency of the network using a pruning method. 

The performance analysis of the scheme proved that the pruning method can efficiently cope 

with real-time data scheduling. For decentralized replica placement, Aral et al. proposed a  

dynamic replica scheme  [51]. The scheme relies on data request monitoring to create, replace, 

and delete replicas dynamically.  

In [52] Shao et al. Introduced a collaborative computing environment for replica placement 

in the scheme. The scheme is based on integer programming and a swarm optimization 

algorithm to optimize the number of replica’s placement in a decentralized network Naas et al. 

also investigated integer programming with a heuristic approach using geographical zoning in 

iFogStor for replica’s placement in fog computing [53]. However, all of the above-mentioned 

schemes [50-53] did not take into account the data protection for replicated sensitive data to 

various locations. Sensitive data is replicated in plain format across fog nodes, which may expose 

data to unauthorized fog nodes/end-users for misuse.   

2.3. Privacy in Data Replication  

Data privacy is a deep concern for any wireless sensor network, including IoT and fog/ cloud 

computing due to invulnerability from different kinds of attacks such as DoS, authentication, 

MAC spoofing attacks [48]. Data-owner’s sensitive data replication on various locations in the 

network is vulnerable to such types of attacks. For example, an adversary can modify or delete 

replicas to make data unavailable to end-users. Therefore, preserving replicated data privacy at 

various locations is essential for data reliability, authentication, and survivability. 

Mansouri & Sharma et al. highlighted data protection concerns in a cloud environment [48, 

49]. Sharma et al. proposed a scheme for data protection using data division into small 

fragments that can then be replicated to different locations in cloud using a fragment placement 

algorithm [49]. The scheme did not rely on cryptographic measures to encrypt data. Sharma et 

al. claimed that the non-cryptographic nature of the scheme makes it faster to perform replica 

placement operations in the cloud.  

Similarly, Jayasaree and Saravanan considered a data security scheme [48] for data replicas. 

In the scheme, a particle swarm division algorithm has been adopted for optimizing the 

placement of the replicas in cloud computing. The scheme divides replicas into fragments and 

then distributes and stores them using the T-colouring concept [48]. Since the data fragments 

are not encoded, and they are distributed to different locations in the cloud, an adversary 
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exposing few fragments would be able to analyze and discover data patterns and their 

meaning. Also, the privacy and reliability of the data are not guaranteed. The schemes [48, 49] 

are also vulnerable to DoS and authentication attacks. 

In the above-mentioned schemes [47-53, 300-307] fog/edge computing to optimize 

performance efficiency for data replica privacy has not been considered. Therefore, our study 

aims to design a data replication scheme that can preserve the privacy of data replicas while 

satisfying data reliability and performance efficiency in fog-enabled IoT.   

3. Data Replica Creation and Placement Schemes: Model and Solution 

In this section, we describe the data replica creation and placement schemes based on the 

system and adversary models. First, we discuss our proposed system model. Then we present 

our adversary model. Based on the system and the adversary model, we then discuss our 

schemes with Algorithms and formulas. We also present a time complexity analysis of the 

Algorithms. Different symbols used in this paper are given in Table 13.  

 

3.1. System Model 

Figure 29 shows an overview of the fog-enabled IoT network architecture, which is based on the 

system model presented in [42]. Fog nodes in the architecture are critical components for 

fetching, analyzing, and processing the data coming from sensor devices. In Figure 29, the fog-

enabled IoT architecture consists of two fog layers: 

Table 13 Summary of Symbols and Abbreviations 

Symbol Explanation 

𝒎𝑺𝒄𝒊 Service capacity of the 𝑖𝑡ℎ node 

𝑳𝒐𝑷𝒍 Level of Privacy defined for 𝑙𝑡ℎ file 

D.F Division Factor 

𝑩𝒊 Total number of blocks at fog node 

𝒇𝒑𝒓𝒊 Priority level of a fog node 

𝒇𝒊𝒍𝒆𝒍 𝑙𝑡ℎ data file  

𝒃𝒌 𝑘𝑡ℎ data block of 𝑙𝑡ℎdata file 

𝒎𝒍𝒊 Load condition of the 𝑖𝑡ℎ node 

𝒎𝒕𝒊𝒋 Response time required by the 𝑖𝑡ℎ node 𝑡𝑜 transfer or receive the 𝑗𝑡ℎ  node 

𝒕𝒍𝒊 Total load of the 𝑖𝑡ℎ miner node 

𝒍𝒂𝒗𝒈 Average load of miners in fog layer 1 
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• Fog layer 1 is responsible for processing and monitoring the computation services in fog 

layers architecture. The computation services include Level of Privacy (LoP) table for data, 

encryption, division, and replica creation. The fog layer 1 consists of multiple fog nodes 

represented as miner nodes, which are deployed at the edge of the IoT sensors. Miner nodes 

perform the computation services as well as authenticates and communicates with data-

owner and fog nodes in fog layer 2.  

A data-owner communicates with a miner node in fog layer 1 to define LoP. The data-

owner can be an individual or a device, which owns sensors’ generated data to be 

transmitted to miner nodes. The data owner has the authority to define the LoP for data 

generated on different sensors. LoP is considered in creating data replicas at miner nodes.  

• The data replicas created at miner nodes are transmitted to fog nodes in fog layer 2. The fog 

layer 2 represents the cluster of fog nodes that provides the services including storage and 

availability of data replicas to end-user/ cloud devices.  

3.2. Adversary Model 

Following previous work [42], we consider the miner nodes in the fog layer 1 as Services Provider 

(SP) and fully trusted entities, similar to Liu et al. [144] provided threat model for SP. We also 

assume that miner nodes will not collude with fog nodes in fog layer 2. We consider fog nodes 

in fog layer 2 as honest-but-curious nodes, which means that they will store the data replicas 

and strictly conform to the replica placement protocol. Still, fog nodes may try to infer the 

privacy of replica based on the information of the data block that fog node is holding. Security 

Figure 29 Fog-enabled IoT Network 
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threats that occur in two aspects to compromise the privacy of data are internal and external 

threats. 

Specifically, internal threats could be from any fog node that is curious to know the 

information inside a block of data. The information may include personal data or the location of 

a sensor node (e.g, sensor id, health status, source, destination, data-owner id). We also assume 

that in fog layers 1 and 2, there is no node collision among fog nodes, which is an assumption 

used in cryptographic threat models [308]. On the other hand, external threats may occur when 

an adversary eavesdrop on a communication link between miner and fog nodes to intercept 

data. Furthermore, an adversary may disguise as an authorized or legitimate fog node to modify 

the data. 

3.3.  Data Replica Creation Scheme based on Level of Privacy and Service 

Capacity 

In this subsection, we describe a replica creation scheme for data blocks in fog layer 1. The 

scheme is based on the data owner's defined LoP and service capacity of miner nodes. Figure 30 

shows the architecture of the proposed scheme. 

Based on the divide-and-conquer Algorithm [42], each data packet coming from a sensor is 

processed at miners before data replica creation. The processing at miners includes data 

encryption and data division. Data is encrypted using AES (Advanced Encryption Standards) 

Figure 30 The Architecture of Replica Creation Scheme 
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technique. After the encryption, the data file is divided into blocks based on the Division Factor 

(D.F) derived from LoP in [42]. Then the replica creation scheme for each data block is carried 

out as shown in Figure 30. 

In replica creation architecture, the miner head node is responsible to monitor, authenticate 

and select miner nodes for replica creation. The selection of miner nodes for replica creation is 

based on a service capacity factor. For decision making, the miner head checks the service 

capacity of each miner node and then selects an appropriate miner node for replica creation. 

The selection process is discussed in detail in sub-section 1. The selected miner node then 

computes the total number of replicas for a data block using a formula that includes LoP and 

other factors. The replica creation process is discussed in subsection 2. In short, the replica 

creation scheme selects an appropriate miner node for replica creation and creates replicas 

dynamically considering the computing factors. An Algorithm for replica node selection and 

creation is represented in Algorithm 8. 

Algorithm 8: Replica Creation  

Input: 𝑳𝒐𝑷𝒎𝒂𝒙, 𝑳𝒐𝑷, 𝒃𝒍, 𝑵𝒖𝒎𝑴𝒊𝒏𝒆𝒓 // maximum privacy value, data blocks’ Level of privacy, data blocks 

and number of total miner nodes 

Output: 𝑵𝒓, 𝒃𝒍𝒊 // number of replicas for data blocks and replica blocks 

Initialize 𝒎𝒓𝒂𝒕𝒆: response request rate of each miner node 

Initialize 𝑺𝑩𝒊𝒋: 𝐒𝐢𝐳𝐞 𝐨𝐟 𝐛𝐥𝐨𝐜𝐤 𝐭𝐫𝐚𝐧𝐬𝐦𝐢𝐭𝐭𝐞𝐝 𝐛𝐭𝐰 𝐦𝐢𝐧𝐞𝐫𝐬 𝐨𝐫 𝐦𝐢𝐧𝐞𝐫 𝐚𝐧𝐝  

𝐬𝐞𝐧𝐬𝐨𝐫 𝐧𝐨𝐝𝐞 

//𝑺𝒆𝒏𝒔𝒐𝒓𝒏𝒐𝒅𝒆 Represents a sensor node 

// 𝑴𝒊𝒏𝒆𝒓𝒏𝒐𝒅𝒆  Represents a miner node 

1. 𝑪𝒐𝒎𝒑𝒖𝒕𝒆(𝑴𝒊𝒏𝒆𝒓𝒏𝒐𝒅𝒆,𝒎𝑺𝒄);  //compute the service capacity for each miner node  

2. for 𝒊 ← 𝟏 𝒕𝒐 𝒍𝒆𝒏 (𝑴𝒊𝒏𝒆𝒓𝒏𝒐𝒅𝒆) 𝒅𝒐 

3.    for j← 𝟏 𝒕𝒐 𝒍𝒆𝒏 (𝑺𝒆𝒏𝒔𝒐𝒓𝒏𝒐𝒅𝒆) 𝒅𝒐 

4.      if 𝒊 ≠ 𝒋 then 

5.       𝒎𝑺𝒄𝒊 =
𝟏

𝒎𝒕𝒊𝒋
×𝒎𝒍𝒊

;  // from Equation 3.1 

6.        𝒎𝒕𝒊𝒋 =
𝑺𝑩𝒊𝒋

𝑵𝑩𝒊𝒋
  & 𝒎𝒍𝒊 =

𝑵𝑹𝒊

𝑪𝒊
;     

7.        𝒎𝑺𝒄𝒊 = 
𝑪𝒊× 𝑵𝑩𝒊𝒋

𝑺𝑩𝒊𝒋×𝑵𝑹𝒊
; 

8.        𝒎𝑺𝒄[𝒊] = 𝒎𝑺𝒄𝒊; 

9.       else 𝒎𝒔𝒄𝒊 = 𝟎; 

10.     end for 

11.   end for 

12.   Return 𝒎𝑺𝒄; 

13. Sort (𝑴𝒊𝒏𝒆𝒓𝒏𝒐𝒅𝒆,𝒎𝑺𝒄); //sort miner nodes by service capacity 

14. Select the miner node with the highest 𝒎𝑺𝒄  

15. Access (𝑳𝒐𝑷, 𝒃);  // Level of privacy and data blocks request by selected miner node 
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3.3.1. Miner Nodes Selection for Data Replica Creation 

In this part, we discuss a preliminary selection of a miner node for the replica creation scheme. 

Firstly, the miner head is selected for monitoring the service capacity of miner nodes. Then the 

service capacity of a miner node is computed by the miner head. The service capacity is based 

on the processing load and response time. Then, the miner head considers a target miner node 

with the highest service capacity for a higher number of replica creation. 

We assume that the miner head selection is based on the previous data processing load on 

the miner node. The processing includes the encryption of data files and the division of data files 

into blocks. The miner node with fewer data processing loads as compared to other miner nodes 

is considered as a miner head node. 

The miner head checks the service capacity of miner nodes. The Service capacity 𝒎𝑺𝒄𝒊

indicates the serviceability of the 𝑖𝑡ℎ miner node (1 ≤ 𝑖 ≤ 𝑛), where 𝑛 is the total number of 

miner nodes in a network. The serviceability includes the load 𝒎𝒍𝒊 of the node and response

time 𝒎𝒕𝒊𝒋 . The load 𝒎𝒍𝒊represents the load condition of the 𝑖𝑡ℎ miner node and the response

time 𝒎𝒕𝒊𝒋  represents the time required by the 𝑖𝑡ℎ  miner node 𝑡𝑜 transfer or receive the 𝑗𝑡ℎ

sensor/ miner node (1 ≤ 𝑗 ≤ 𝑚) data, where 𝑚 is the total number of sensor nodes or another 

miner 𝑗𝑡ℎ node (1 ≤ 𝑗 ≤ 𝑛) for 𝑖 ≠ 𝑗 . Then the service capacity 𝒎𝑺𝒄𝒊 of the 𝑖𝑡ℎ  miner node (1 ≤

𝑖 ≤ 𝑛) based on formulas defined in [62, 309] becomes 

𝒎𝑺𝒄𝒊 =
𝟏

𝒎𝒍𝒊
× 𝒎𝒕𝒊𝒋

  (5.1) 

The load condition 𝒎𝒍𝒊 of miner nodes is measured by the number of node requests 𝑵𝑹𝒊

processed by the miner node at a current time divided by the number of cells 𝑪𝒊 present in the 

miner node for processing requests. 

The transmission time 𝒎𝒕𝒊𝒋  of a miner node is the transmission time consumed for data and

authentication process between the 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ nodes. The 𝒎𝒕𝒊𝒋  is lower if the distance between

16. Compute (b, 𝑵𝒓);  //Compute the number of replicas for data blocks

17. for k← 𝟏 𝒕𝒐 𝒍𝒆𝒏 (𝒃) 𝒅𝒐

18.  𝑵𝒓𝒌 = (𝜶 × 𝑳𝒐𝑷𝒌/𝟐 × 𝑳𝒐𝑷𝒌)/𝑳𝒐𝑷𝒎𝒂𝒙 + 
𝜷 × 

𝒅𝒊
𝒕𝒅𝒊
∗𝑳𝒊

∑ 𝑳𝒊
𝒏
𝒊=𝟏

𝑵𝒖𝒎𝑴𝒊𝒏𝒆𝒓

 ;  

19. for 𝒍 ← 𝟏 𝒕𝒐 (𝑵𝒓𝒌) 𝒅𝒐

20. Create ((𝒃𝒌𝟎, … , 𝒃𝒌𝒍−𝟏), 𝑵𝒓𝒌); // create block’s replicas based on the number of replicas 𝑵𝒓𝒌

21. end for

22. end for

23. Return (𝒃𝒌𝟎, … , 𝒃𝒌𝒑−𝟏); 



128 

the miner nodes or the miner and sensor nodes is less as compared to other nodes' distance. 

Then the 𝒎𝑺𝒄𝒊 becomes

𝒎𝑺𝒄𝒊 = 
𝑪𝒊× 𝑵𝑩𝒊𝒋

𝑵𝑹𝒊× 𝑺𝑩𝒊𝒋
 where  𝑖 ≠ 𝑗     (5.2) 

The miner head node checks the 𝒎𝑺𝒄𝒊 of each miner node and selects a target miner node.

The target node with the highest 𝒎𝑺𝒄𝒊value is selected for a higher number of replica creations.

For each iteration of replica creation, the 𝒎𝑺𝒄𝒊 of each miner node is computed to check the

current service capacity of a miner node to participate in the next round of replica creation. The 

computation of the 𝒎𝑺𝒄𝒊 is completed once the total number of replicas of a block is created at

the target miner node. 

3.3.2. Data Replica Creation at Target Miner Node 

In this part, we discuss the creation of data block replicas at the target miner node. First, the 

minimum number of replicas based on the LoP is computed. Then, considering a minimum 

number of replicas, LoP, load, and influencing factors, the total number of replicas is calculated. 

Finally, data replica creation is performed based on the computed total number of replicas. 

We assume that 𝑳𝒐𝑷𝒍 represents the level of privacy defined by a data-owner for a sensor-

generated data 𝒇𝒊𝒍𝒆𝒍 (1 ≤ 𝑙 ≤ d), where d is the total number of data generated at the sensor. 

Then, the level of privacy of the encrypted data block 𝒃𝒌 belonging to 𝒇𝒊𝒍𝒆𝒍 becomes 𝑳𝒐𝑷𝒌. For 

replica creation, the miner head node forwards the encrypted data block 𝒃𝒌 and 𝑳𝒐𝑷𝒌 to 

targeted miner node.  

Using 𝑳𝒐𝑷𝒌, the targeted miner node calculates the minimum number of replicas as 

𝒏𝒓𝒎𝒊𝒏𝒌 =
𝑳𝒐𝑷𝒌

𝟐
. The computed number of replicas 𝒏𝒓𝒎𝒊𝒏𝒌 of data block 𝒃𝒌  are the minimum

replicas required for the reliability of data block 𝒃𝒌 belonging to file 𝒇𝒊𝒍𝒆𝒍    

The minimum number of replicas is then further used in calculating the total number of 

replicas for the data block 𝒃𝒌, as shown in Equation 5.3. 𝑵𝒓𝒌 represents the maximum number 

of replicas required for the reliability of data block 𝒃𝒌.   

𝑵𝒓𝒌 = ⌈
𝜶∗𝒏𝒓𝒎𝒊𝒏𝒌

∗𝑳𝒐𝑷𝒌

𝑳𝒐𝑷𝒎𝒂𝒙
+

𝜷∗𝒕𝒍𝒊

𝒍𝒂𝒗𝒈
⌉,    (5.3) 

where 𝜶 𝑎𝑛𝑑 𝜷 are influencing factors, 𝒕𝒍𝒊 is the total load of the 𝑖𝑡ℎ miner node and  𝒍𝒂𝒗𝒈 is the

average load of miners in fog layer 1.   
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The total number of replicas 𝑵𝒓𝒌 is directly affected by the influencing factors 𝜶 𝑎𝑛𝑑 𝜷 , 

which are correlation coefficients set according to the network connectivity and communication 

of miners and fog nodes in a network for experimental analysis [62, 309]. The influencing factor 

𝜶 represents the total ratio of nodes communicating in the network with the 𝑖𝑡ℎ miner node. 

The influencing factor 𝜷 is the type of connectivity connection for 𝑖𝑡ℎ miner node.  

The total load 𝒕𝒍𝒊 is derived from the formula proposed in [62, 309], which considers disk 

utilization denoted as 𝒅𝒔𝒊 and service load is 𝑳𝒊 of the 𝑖𝑡ℎ miner node. Then the total load is 

𝒕𝒍𝒊 = 𝒅𝒔𝒊 ∗ 𝑳𝒊. The disk utilization 𝒅𝒔𝒊 in the formula is the ratio of disk size of the 𝑖𝑡ℎ miner 

node to the total disk space of the 𝑖𝑡ℎ miner node, and the calculation method is 𝒅𝒔𝒊 =
𝒅𝒊

𝒕𝒅𝒊
.   

The average load 𝒍𝒂𝒗𝒈 of the miner nodes in the fog layer 1 is the sum of loads of all miners 

to the total number of miners, represented as 𝒍𝒂𝒗𝒈 =
∑ 𝑳𝒊
𝒏
𝒊=𝟏

𝑵𝒖𝒎 𝒐𝒇 𝑵𝒐𝒅𝒆𝒔
.   

In the data replica creation scheme, we consider data-owner defined LoP for each 𝒇𝒊𝒍𝒆𝒍 data 

replica creation instead of file popularity and access heat used in [62, 309, 310]. The reason for 

using LoP is to provide authority to data-owners to define a privacy level for their data files. 

Based on the LoP, data files are divided into blocks as the calculation in [42] and then data blocks 

are replicated. In other words, LoP’s is used to identify the popularity of 𝒇𝒊𝒍𝒆𝒍 in terms of privacy 

instead of access heat. 

Equation 5.3 becomes: 

𝑵𝒓𝒌 = ⌈
𝜶∗𝒏𝒓𝒎𝒊𝒏𝒌

∗𝑳𝒐𝑷𝒌

𝑳𝒐𝑷𝒎𝒂𝒙
+

𝜷∗ 
𝒅𝒊
𝒕𝒅𝒊

∗𝑳𝒊

∑ 𝑳𝒊
𝒏
𝒊=𝟏

𝑵𝒖𝒎 𝒐𝒇 𝑵𝒐𝒅𝒆𝒔

⌉                                  (5.4) 

After calculating the total number of replicas for a block 𝒃𝒌 belonging to 𝒇𝒊𝒍𝒆𝒍 at a targeted 

miner node, the replicas for a block 𝒃𝒌 can be created based on 𝑵𝒓𝒌, as  𝒃𝒌 =

(𝒃𝒌𝟎 , … , 𝒃𝑘𝑝−1) where (1 ≤ 𝑝 ≤ 𝑵𝒓𝒌)                          

3.4. Data Replica Placement Scheme Based on Level of Priority 

In this subsection, we propose a replica placement scheme based on a level of priority of fog 

nodes in fog layer 2. The division factors based on the number of blocks and service capacity of 

fog nodes are used to measure the priority level of fog nodes. A fog node with the highest 

priority is selected as a suitable node for the placement of a replica. The level of priority for each 

fog node is represented in a priority table, which includes a comparison of service capacity 𝒎𝑺𝒄𝒊 

and data blocks among all fog nodes. Figure 31 shows the architecture of our replica placement 

scheme and the Algorithm for replica placement is shown in Algorithm 9. 
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Algorithm 9: Replica Placement 

Input: 𝑳𝒐𝑷,𝑫. 𝑭, 𝒇, 𝒃𝒍, 𝒃𝒍𝒌𝟎, . . , 𝒃𝒍𝒌𝒍−𝟏, 𝑭𝒐𝒈𝑵𝒐𝒅𝒆𝒔 // data blocks’ Level of privacy, division factor, data file, data 

blocks, replicas of data blocks, and number of total fog nodes 

Output: 𝒅𝒆𝒔𝒕𝒇𝒐𝒈𝒏𝒐𝒅𝒆  

Initialize 𝒇𝒑𝒓𝒊: 𝐅𝐨𝐠 𝐧𝐨𝐝𝐞
′𝐬 𝐩𝐫𝐢𝐨𝐫𝐢𝐭𝐲 𝐢𝐧𝐢𝐭𝐢𝐚𝐥𝐢𝐬𝐞 

Initialize 𝑺𝑩𝒊𝒋: 𝐒𝐢𝐳𝐞 𝐨𝐟 𝐛𝐥𝐨𝐜𝐤 𝐭𝐫𝐚𝐧𝐬𝐦𝐢𝐭𝐭𝐞𝐝 𝐛𝐞𝐭𝐰𝐞𝐞𝐧 𝐦𝐢𝐧𝐞𝐫 𝐧𝐨𝐝𝐞 𝐚𝐧𝐝 𝐟𝐨𝐠 𝐧𝐨𝐝𝐞 

// 𝑭𝒐𝒈𝒏𝒐𝒅𝒆 Represents a fog node 

// 𝑴𝒊𝒏𝒆𝒓𝒏𝒐𝒅𝒆  Represents a miner node 

1. 𝑪𝒐𝒎𝒑𝒖𝒕𝒆(𝑭𝒐𝒈𝒏𝒐𝒅𝒆,𝒎𝑺𝒄);  //similar to Algorithm 8, //compute the service capacity 

2. for 𝒊 ← 𝟏 𝒕𝒐 𝒍𝒆𝒏 (𝑭𝒐𝒈𝒏𝒐𝒅𝒆) 𝒅𝒐 

3.    for j← 𝟏 𝒕𝒐 𝒍𝒆𝒏 (𝑴𝒊𝒏𝒆𝒓𝒏𝒐𝒅𝒆) 𝒅𝒐 

4.      if 𝒊 ≠ 𝒋 then 

5.    Repeat steps 5 to 11 of Algorithm 8 

6.     end for 

7.   Return 𝒎𝑺𝒄; 

8.   Compute (𝑭𝒐𝒈𝒏𝒐𝒅𝒆, 𝑩𝒊, 𝑫. 𝑭);  // For each fog nodes, the miner node computes the division factor 

based on the number of blocks 

9.      for k← 𝟏 𝒕𝒐 𝒍𝒆𝒏 (𝒇𝒊𝒍𝒆) 𝒅𝒐 

10.        𝑩𝒊 = 𝑺𝒆𝒂𝒓𝒄𝒉 (𝑵𝒖𝒎 (∑ 𝑩𝒌
𝒍𝒆𝒏(𝒇𝒊𝒍𝒆)

𝒌=𝟏 )); //  calculates the total number of blocks of the kth file at each 

fog node  

11.          for 𝑳𝒐𝑷 ≥ 𝟒 do 

12.         if √𝑫𝑭𝒍 > 𝑩𝒊 then // checks the lth file blocks at ith fog nodes is less than the Division factor for the 

lth file   

13.            𝒇𝒑𝒓𝒊  ← 𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒊  // keep the ith fog node in the priority table  

14.           else 𝒇𝒑𝒓𝒊  ← 𝟎 

15.        Sort (𝒇𝒑𝒓𝒊,𝒎𝑺𝒄);  //sort the priority fog nodes by service capacity  

16.         Select Priority fog node with highest 𝒎𝑺𝒄 for replica placement 

17.       𝒅𝒆𝒔𝒕_𝒇𝒐𝒈_𝒏𝒐𝒅𝒆 ← 𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒊  

18.        end for 

19.          for 𝑳𝒐𝑷 = 𝟑 do  

20.           if 
𝑫𝑭𝒍

𝟐
> 𝑩𝒊 then // checks the lth file blocks at ith fog nodes is less than the Division factor for the lth 

file   

21.                𝒇𝒑𝒓𝒊  ← 𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒊  // keep the ith fog node in the priority table  

22.                Repeat step 18 to 21 

23.            end for 

24.           for 𝑳𝒐𝑷 < 𝟑 do  

25.           if 𝑫𝑭𝒍 > 𝑩𝒊 then // checks the lth file blocks at ith fog nodes is less than the Division factor for the 

lth file   

26.                𝒇𝒑𝒓𝒊  ← 𝑭𝒐𝒈𝒏𝒐𝒅𝒆𝒊  // keep the ith fog node in priority table  

27.                Repeat step 18 to 21 
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3.4.1.  Data Replica Placement at Fog nodes 

 After the creation of replicas of data blocks in fog layer 1, the data replica placement scheme 

considers the placement of replicas in a distributive manner in fog layer 2. For replica placement, 

first, the miner head monitors the service capacity 𝒎𝑺𝒄𝒊 and the total number of blocks 𝐵𝑖  of a 

file 𝒇𝒊𝒍𝒆𝒍 residing at fog nodes in fog layer 2. Then, the miner head compares the 𝐵𝑖  with D.F of 

LoP for a 𝒇𝒊𝒍𝒆𝒍. Based on the comparison, the priority of each fog node is set by a miner head 

for replica placement. The flow of the processes at the miner head for replica placement is 

illustrated in Figure 32 and discussed in detail below. 

The miner head checks the total number of blocks 𝐵𝑖  at each fog node by counting the 

number of blocks 𝐵𝑘, represent as 𝐵𝑖 = 𝑁𝑢𝑚 (∑ 𝐵𝑘
𝑙𝑒𝑛(𝑓𝑖𝑙𝑒)
𝑘=1 ). Then the miner head node 

compares the blocks 𝐵𝑖  for each fog node with the D.F based on the LoP setting for a file 𝒇𝒊𝒍𝒆𝒍. 

For each LoP levels, the comparison of 𝐵𝑖  with D.F varies, as discussed below.   

28.            end for 

29.        Update (𝒇𝒑𝒓𝒊,𝒎𝑺𝒄); //updates the values after each replica placement fog node searched 

30.         For 𝒍 ← 𝟏 𝒕𝒐 𝒍𝒆𝒏 (𝒃𝒍𝒌) 𝒅𝒐 

31.        𝒅𝒆𝒔𝒕𝒇𝒐𝒈𝒏𝒐𝒅𝒆 ← 𝒇𝒑𝒓𝒊; 

32.           Get (𝒃𝒍𝒌𝟎, . . , 𝒃𝒍𝒌𝒍−𝟏); //get the block replicas 

33.             Insert ( 𝒅𝒆𝒔𝒕𝒇𝒐𝒈𝒏𝒐𝒅𝒆 , 𝒃𝒍𝒌𝒍−𝟏); //sending replica blocks to selected fog nodes 𝒅𝒆𝒔𝒕𝒇𝒐𝒈𝒏𝒐𝒅𝒆 

34.        Repeat steps 13 to 33 unless all replicas placed in 𝒅𝒆𝒔𝒕𝒇𝒐𝒈𝒏𝒐𝒅𝒆    

35.  end for 

36. end for 

 

Figure 31 Architecture of Replica Placement 
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1. For  𝑳𝒐𝑷𝒍= high, i.e. LoP is 4 or 5, the miner head checks whether the 𝐵𝑖  on the 𝑘𝑡ℎ fog node

is less than the squared root of D.F or not, such as ⌊√𝐷𝐹𝑘 > 𝐵𝑖 .  

2. For 𝑳𝒐𝑷𝒍= medium, i.e. LoP is 3; the miner head checks whether the 𝐵𝑖  on the 𝑘𝑡ℎ fog node

is less than half of D.F or not, such as 
𝐷𝐹𝑘

2
> 𝐵𝑖 .

3. For  𝑳𝒐𝑷𝒍=low, i.e. LoP is 1 or 2; the miner head checks whether the 𝐵𝑖  on 𝑘𝑡ℎ fog node is

less than the D.F or not, such as 𝐷𝐹𝑘 > 𝐵𝑖 .

In the first-round, the miner head node set the priority of each fog node based on the 𝐵𝑖  

comparison with D.F. If a value of 𝐵𝑖  is less than the D.F then the priority of a fog node is set as 

an initial highest priority node, i.e. 𝑘=1. The fog node also qualifies for the next round. 

Figure 32 Flowchart for Data Placement Processes at Miner head 
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Otherwise, the fog node is assigned a medium or low priority. For the medium priority, i.e. 

1< 𝑘<len (fog node), 𝐵𝑖  value in comparison with D.F is nominally high, whereas for the low 

priority, i.e. 𝑘=len (fog node), 𝐵𝑖  value is significantly high. For low priority, there is a significantly 

high difference between 𝐵𝑖  and D.F.    

In a second round, the miner head considers the 𝒎𝑺𝒄𝒊 of each fog node and adds 𝒎𝑺𝒄𝒊 to the 

priority table. Miner head also sorts the priority level with 𝒎𝑺𝒄𝒊 and 𝐵𝑖  in ascending order for 

each fog node. The highest priority number assigned to the fog node is due to higher service 

capacity and a smaller number of 𝒇𝒊𝒍𝒆𝒍 blocks 𝐵𝑖  as compared with D.F.  

After setting up the priorities of each fog node, the miner head requests miner nodes 

containing replicas of 𝐵𝑘to send the number of replicas of a block 𝒃𝒌 to targeted fog node. Once 

a successful replica placement to a targeted fog node is completed, the 𝒎𝑺𝒄𝒊 of the targeted fog 

node is calculated again and updated with the newest priority into the priority table. To preserve 

the privacy of replica blocks at fog layer 2, the miner head also considers the following 

placement procedures according to LoP defined for 𝒃𝒌. 

1. For 𝑳𝒐𝑷𝒉𝒊𝒈𝒉 defined for the data block 𝒃𝒌, the miner head checks the fog node that has the 

highest priority in the priority table and requests the miner node containing a replica of 𝐵𝑘 

to send a replica to the targeted fog node. This procedure repeats until all replicas of a block 

𝒃𝒌 are placed at all targeted fog nodes with the highest priority.  

2. For 𝑳𝒐𝑷𝒎𝒆𝒅 defined for the data block 𝒃𝒌, the miner head searches and selects the fog 

nodes as the targeted fog nodes that have the highest priority in a table for replicas 

placement. In the case of the fog nodes with the highest priority are not available for 

placement of the remaining replicas of a block 𝒃𝒌, the miner head then continues the search 

and selects the fog nodes with medium priority. The miners are requested to place the 

remaining replicas on the fog nodes with medium priority. 

3. This procedure repeats itself until all replicas of a block 𝒃𝒌 are placed at targeted fog nodes 

with highest to medium priority. 

4. For 𝑳𝒐𝑷𝒍𝒐𝒘 defined for a data block 𝒃𝒌, the miner head selects the fog nodes that have 

medium priority in the priority table. If the number of replicas exceeds the number of fog 

nodes with medium priority for replica placement, then the priority table is searched for the 

lowest priority nodes. This procedure repeats itself until all replicas of a block 𝒃𝒌 are placed 

at targeted highest to medium priority fog nodes. 

3.5. Time Complexity Analysis of the Proposed Schemes 

This Section provides the time complexity analysis of our proposed schemes in detail as 

follows.   
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3.5.1. Time complexity Analysis of Data Replica Creation Scheme 

Initialization and computation are two main operations involved in Algorithm 8 for the data 

replica creation scheme. In the initialization operation, the time complexity of the response 

request rate 𝑚𝑟𝑎𝑡𝑒 and size of the blocks 𝑆𝐵𝑖𝑗 is constant O (1). The time complexity of 

computation operations is analyzed for service capacity, the number of replicas, sorting, and 

replica creation. The complexity analysis of these computation operations is given below. 

1. For the service capacity 𝑚𝑠𝑐𝑖  operation as mentioned in Section 3.3, computation of the load 

𝑚𝑙𝑖 is for 𝑛 number of miner nodes and computation of the response time 𝑚𝑡𝑖𝑗  is for 𝑛 

number of miner nodes and 𝑚 number of other miner nodes and sensor nodes. Given 

𝑛 𝑎𝑛𝑑 𝑚 nodes, the complexity to compute the service capacity 𝑚𝑠𝑐𝑖becomes O (𝑛 ×  𝑚).  

2. From Equation 5.3, we can deduce that the time analysis of the number of replicas 𝑁𝑟𝑘 is 

constant O (1) for the execution of predefined LoP and value of α and O (𝑛) is for computing 

load of 𝑛 miners. Considering the fastest-growing term 𝑛, the total time complexity becomes 

O (𝑛).  

3. The time taken to sort miner nodes based on the service capacity 𝑚𝑠𝑐𝑖 is O (1). The 

complexity of replica creation is also constant as there is only one execution plan for the 

replica creation based on computed 𝑁𝑟𝑘. 

Thus, the overall time complexity of the proposed data replica creation scheme is summarized 

as O (𝑛 ×  𝑚). 

3.5.2. Time complexity Analysis of Data Replica Placement Scheme 

Similar to Algorithm 8, the operations considered in Algorithm 9 for data replica placement are 

initialization and computation. The time complexity of initialization of fog node’s priority 

𝑓𝑝𝑟𝑖 and size of the blocks 𝑆𝐵𝑖𝑗 is constant O (1).  The time complexity for computation operation 

involves the time taken for computing service capacity 𝑚𝑠𝑐𝑖, the total number of blocks 𝐵𝑖  , 

sorting, update, and insertion. For the computation of service capacity msci, the time complexity 

is the same as Algorithm 8 i.e. O (𝑛 ×  𝑚). The time taken for computation of the total number 

of blocks 𝐵𝑖  depends on the summation of 𝑘 blocks of a file 𝑓𝑖𝑙𝑒𝑙. Given 𝑘 blocks, the time 

complexity for 𝐵𝑖  becomes O (𝑘).  

Likewise sorting operation of Algorithm 8, sorting in Algorithm 9 also takes O (1) time to sort 

𝑓𝑝𝑟𝑖 and 𝑚𝑠𝑐𝑖. The time taken to compute the update and insert operation is also O (1) as there 

is a constant execution for updating the priority table and inserting replica blocks. Considering 

fastest-growing term 𝑛,𝑚 and 𝑘 from operations, the time complexity of data replica placement 

is summarized as O ((𝑛 ×  𝑚) + 𝑘).          
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4. Simulation and Evaluation 

In this section, we first introduce our simulation setup and then provide different network 

scenarios that are used to evaluate our proposed schemes. The aspects of data replica 

utilization, storage usage, and the correlation between LoP and the number of replicas, and 

between the number of replicas and the service capacity are used for evaluation. Second, we 

provide a privacy analysis of our proposed schemes. Third, we provide a time series analysis of 

our replica creation and replica placement schemes. Then we discuss a performance analysis 

based on storage, computational and replica utilization of the proposed strategies vs other 

existing schemes.  

4.1. Simulation Setup 

Our simulations are conducted with Linux based system on a P.C. with Intel (R) core (i7), RAM 

16.0 GB, and CPU 3.40 GHz. We develop Algorithms of our replica creation and placement 

schemes using Network Simulator (NS3) in C++ and Python languages. We perform extensive 

simulations to analyze and evaluate the performance of our Algorithms. The number of sensor 

devices, miner nodes, and fog nodes varies from 2 to 100. Each sensor contains a file with a data 

size ranging from 1KB to 100MB. We consider different scenarios with varying data sizes and the 

number of nodes. In a basic scenario, we have five sensor devices (𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5), one data-

owner node and ten fog nodes. Out of ten fog nodes, three of them are miner nodes (𝑚0, − −

−,𝑚3) for replica creation and one node is a miner head node. Miner nodes are close to sensors, 

and six of fog nodes (𝑓0, − − −, 𝑓5) are considered for data replica placement. 

4.2. Experimental Results and Analysis 

To evaluate our proposed Algorithms of replica creation and replica placement strategies, we 

analyze how the performance of Algorithms is affected by varying the parameters that influence 

the simulation results. Parameters that exert influence on the replica creation and replica 

placement Algorithms are provided in Table 14. 

Table 14 Sensitive Parameters 

 

Parameter Definition Parameter Definition 

𝒎𝑺𝒄 Service Capacity of each node   

𝑳𝒐𝑷 Level of Privacy of each data 

block 

𝑓𝑝𝑟𝑖 fog node priority 

𝜶  the ratio of nodes 

communicating in the network 

with the miner node 

  

mailto:CPU@3.40
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4.2.1. Privacy Analysis of the Proposed Schemes 

We consider Shacham and Chen et al. privacy models [63, 64] to perform the formal privacy 

analysis of the proposed strategies. The privacy analysis is based on the following definitions 

and proofs to fulfill the privacy preservation of the proposed strategies.  

Definition 1. The proposed models achieve data privacy preservation in the following cases. 

1) The data replica placed at fog nodes do not leak any private information about the original 

data. 

2)  For a probabilistic polynomial time (PPT), it is computationally hard for an adversary who 

acts like a fog node to extract private information about data blocks from other fog nodes 

in a fog layer 2. 

Theorem 1. In the random oracle model, if data is CPA-secure, the privacy preservation of data 

is achieved as defined in Definition 1. 

Proof. Before data replica creation, the data coming from sensor nodes is encrypted using the 

Advanced Encryption Algorithm (AES). The encrypted data is also divided into blocks based on 

the LoP setting. Then the block’s replicas are created using the LoP setting and replicas are 

placed on fog nodes in a distributive manner. Replica’s placement in a distributive manner is 

carried out using the priority level of a fog node, which is also based on LoP. The participating 

fog nodes in replicas placement cannot learn the private information of the data block as long 

as they do not have blocks hash and symmetric keys information. To preserve data in blocks as 

private as possible, the symmetric keys for the decryption of data blocks are not distributed by 

a miner head node to fog nodes in fog layer 2. The fog nodes only store replicas of blocks that 

do not reveal any information as blocks and their replicas are an encrypted division of data.   

To prove privacy preservation of data block’s replicas at fog nodes, we assume that an 

adversary 𝐴 acts like a fog node 𝐹𝑁𝑘 in a random oracle ℎ(𝑇). 𝐴 holds a replica of data block 

𝒃𝒌. For revealing information inside a replica of 𝒃𝒌, 𝐴 has to provide an output of correct hashes 

𝐻 for next and previous blocks (i.e. 𝒃𝒌 𝑎𝑛𝑑 𝒃𝒌−𝟏) to complete blocks chain such as  𝑓𝑖𝑙𝑒𝑙 =

(𝑏𝑘 + 𝑏𝑘−1). 𝐴 also has to output symmetric key 𝑘𝑦 to decrypt the blocks chain  𝑓𝑖𝑙𝑒𝑙. We 

assume that a PPT 𝐴 randomly computes 𝐻′ and 𝑘𝑦′ for revealing blocks chain  𝑓𝑖𝑙𝑒𝑙′  in ℎ(𝑇). 

The probability that an 𝐴 computes are equal to original 𝐻 and 𝑘𝑦 for revealing  𝑓𝑖𝑙𝑒𝑙 is no more 

than negligible probability 𝜀  

𝑃𝑟 [𝐴 (𝐷𝑒𝑐𝑘𝑦′(𝑓𝑖𝑙𝑒𝑙
′ = 𝐻′(𝑏𝑘 + 𝑏𝑘−1 )) = (𝐷𝑒𝑐𝑘𝑦(𝑓𝑖𝑙𝑒𝑙 = 𝐻(𝑏𝑘 + 𝑏𝑘−1 ))] <  𝜀. 

Hence 𝐴 knows nothing about the miner head computed 𝐻 and 𝑘𝑦 for revealing information 

inside a replica of data block 𝒃𝒌. 𝐴 has to also eavesdrop on a high number of fog nodes for 
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compromising the maximum number of replicas of blocks 𝒃𝒌 and 𝒃𝒌−𝟏 in order to decrypt data 

inside blockchains 𝐸𝑘. Otherwise, compromise of any replica of 𝒃𝒌−𝟏 not all 𝒃𝒌 will not reveal

much information about the whole blocks chain 𝐸𝑘.   

Definition 2. The proposed models guarantee the replica reliability in which the original data 

block can be recovered from replica blocks placed at fog nodes. 

Proof. The number of replicas is created by miner nodes and distributed among fog nodes to 

keep the data blocks 𝒃𝒌 reliable in case of any fog node 𝐹𝑁𝑘 failure/compromise. The setting of 

priority level makes sure that the 𝐹𝑁𝑘  does not contain a high number of blocks 𝑏𝑘 of the  𝑓𝑖𝑙𝑒𝑙  

as compared to the D.F for each LoP. The reason behind this is to keep 𝒃𝒌 and the replicas secure 

and to reduce maximum subsets of 𝒃𝒌 belonging to 𝒇𝒊𝒍𝒆𝒍 at same fog node that may expose too 

much information inside 𝒇𝒊𝒍𝒆𝒍 .   

4.2.2. Performance Analysis for Data Replica Creation 

In our proposed replica creation scheme, the 𝒎𝒔𝒄, 𝑳𝒐𝑷, 𝜶, 𝑎𝑛𝑑  𝒇𝒑𝒓𝒊 are vital parameters 

influencing the performance of the scheme. In this subsection, we discuss the detailed analysis 

of each parameter. 

1) Service Capacity (𝑚𝑆𝑐):

The service capacity of a node has an impact on the creation of a replica for a data block. A miner 

head node selects a miner node for replica creation depending upon the load capabilities and 

transmission time of a miner node. In principle, a miner node with the lowest amount of load 

and transmission time would be the best suitable miner node for processing a higher number of 

replicas. To depict the number of replicas creation on each miner node, Figure 33 shows the box 

plot for a relationship between the number of replicas and service capacity (%). The service 

capacity has a positive correlation with the number of replicas. With the increase in service 
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capacity on average from 20 to 100%, the average number of replicas created on miner nodes 

becomes higher, i.e. from 2 to 45. Replica creation is directly impacted by the service capacity 

of a miner node, the higher the service capacity of a node, the high number of blocks’ replicas 

processed on a miner node. 

2) Level of Privacy (𝐿𝑜𝑃): 

 LoP has a higher impact on 𝑵𝒓𝒌 as compared to other parameters such as average load, total 

load, 𝜶 𝑎𝑛𝑑 𝜷 factors in Equation 5.3. The minimum level of replicas 𝒏𝒓𝒎𝒊𝒏𝒌 is also formulated 

based on LoP. The LoP identifies the level of data privacy, the higher the level, the higher number 

of block replicas are created to keep the data reliable for recovery in case of a fog node failure 

or malicious activity in fog layer 2. Based on the basic scenario as discussed in subsection 4.1, 

Table 15 presents a range of the total number of replicas 𝑵𝒓𝒌 for each block w.r.t LoP.  

It can be depicted from a Table that the LoP as 5 has the maximum number of replicas 

creation i.e. nine. The highest privacy level 5 is used for the most private data block 𝒃𝒌 , which 

means a block needs to be kept secure with more data reliability as compared to the other LoPs. 

The block 𝒃𝒌 with LoP 4 is considered as the second-highest private data blocks, creating on 

average seven replicas. On a contrary, LoPs as 1 and 2 are the lower privacy levels with a smaller 

number of replicas creation on average one, two, or three, which is less than other LoPs.   

Table 15 Level of Privacy Vs Total Number of Replicas 

3) Ratio of communicating nodes (𝛼):  

We evaluate the impact of influencing factor 𝜶 on 𝑵𝒓𝒌, which is the ratio of fog/miner nodes 

communicating with a targeted miner node. The value of 𝛼 varies as it depends upon the 

number of fog/miner nodes corresponding to a target miner node out of total miner nodes.  

For the basic scenario, 𝛼 varies from a minimum value of 0.25 to a maximum value of 2.25. 

In the network, the minimum and maximum values are the variations of a ratio of the total 

number of miner/fog nodes interacting with the targeted miner node to the total number of 

miner nodes. At least one miner head node communicates with a targeted miner node, the total 

number of miner nodes in the basic scenario is four, so the ratio becomes 1:4. Whereas, at most 

𝑳𝒐𝑷 𝑵𝒓𝒌 for each block 𝑩𝒌 

𝟏 1, 2 

𝟐 2, 3 

𝟑 2,−4 

𝟒 3,−−, 7 

𝟓 4,− − ,9 
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3 miner nodes and 6 fog nodes are interacting with the targeted miner node, so the ratio 

becomes 9:4.  

At the start of an execution cycle for replica creation, the 𝛼’s value is 0.25 as only the miner 

head node interacts with a targeted miner node to check its service capacity. Then, the value of 

𝛼 increases after the first replica creation 𝑵𝒓𝒌. The increase in 𝛼 value is due to an increase of 

interaction between fog and miner nodes. 𝛼 value causes a slight increase in 𝑵𝒓𝒌 value, but not 

much significant as compared to the impact of LoP and other parameters on replica creation.  

4.2.3. Performance Analysis for Data Replica Placement 

In our proposed Algorithm for replica placement scheme, 𝑓𝑝𝑟𝑖, is a crucial parameter 

influencing the experiments. In this subsection, we discuss the detailed analysis of this 

parameter.  

 

1) Fog Node Priority (𝑓𝑝𝑟𝑖):  

Total number of blocks 𝐵𝑖  and service capacity 𝑚𝑆𝑐 exerts the influence on fog nodes priority 

𝑓𝑝𝑟𝑖 for replica placement. We define priority as 1, ---, 𝐹𝑁𝑘  (where 𝐹𝑁𝑘  is a total number of fog 

nodes). The highest priority is 1, which is given to a node to place a replica of a block, whereas 

𝐹𝑁𝑘  represents the lowest priority given to a fog node for replica placement. The highest priority 

shows that the fog node contains the highest service capacity 𝑚𝑆𝑐 and a smaller number of 

blocks 𝐵𝑖  of the kth file as compared with the D.F Equations as mentioned in Section III. For 

example, from our basic scenarios, six fog nodes are participating in replica placement. Priority 

𝑓𝑝𝑟𝑖 of replica placement on the fog node varies from 1 to 6, one is the highest priority for replica 

placement consideration, whereas six is the lowest priority.  

The service capacity 𝑚𝑆𝑖  of each fog node remains within close range of 49.92 % to 50.04% 

for 𝑓𝑝𝑟𝑖 priority level, as shown in Figure 34.  It is due to the reason that the fog nodes considered 
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for data blocks and replica storage do not process the replica creation or distribution on fog 

nodes, which could affect the overall service capacity of a fog node. Hence the 𝑚𝑆𝑖  of all fog 

nodes remain almost the same with no noteworthy difference on priority levels.  

The number of blocks of the kth file present at the fog nodes has a significant impact on 

priority levels 𝑓𝑝𝑟𝑖 . For replica placement of a block 𝐵𝑘, the highest priority is assigned to the fog 

node with a few blocks of the kth file kept at the fog node. The priority level ensures the privacy 

of the kth file by minimizing the possibility of a high number of 𝐵𝑘 and replicas placed at the 

same node. Also, the priority level balances the storage usage among fog nodes.  

4.2.4. Time Series Analysis of the Proposed Replica Creation and Placement 

Schemes with Autoregressive Integrated Moving Average (ARIMA)  

We consider the Autoregressive Integrated Moving Average (ARIMA) model to help verify the 

accuracy of our proposed replica creation and replica placement strategies [65]. ARIMA is a 

statistical analysis model that uses time-series data to understand the trend of data better or 

predict the future trends of the data for any problem solution [311]. In our experiments, we 

perform ten predictions for each miner and fog node and obtain the AIC (Akaike Information 

Criterion) values to measure the fitness of data to the ARIMA model. 

We present, one of the results of the diagnostic in Figure 35, which indicates that there is no 

unusual pattern of data noticed in residual distribution. The diagnostic also suggests that the 

data residuals of proposed strategies into Arima models are normally distributed. In the top right 

histogram graph, the KDE red line follows the yellow line closely with a standard deviation of 1 

and an average mean of 0, which is represented as standard notation N (0,1). The KDE red line 

indicates that the residuals are near normally distributed with a yellow N (0,1) line. Also, the 

Figure 35 Diagnostic Result of the Replica creation model 
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bottom left q-q plot strongly suggests that the residuals’ normal distribution (blue dots) is close 

to N (0, 1) (red line). The data residuals in the top left plot do not display any evident seasonality 

over a time interval of 5 minutes (300 seconds). This plot is summarised by the correlation in the 

bottom right plot, which displays the correlogram with 1 to 10 lags.  

The plot shows that the ACF (Auto-correlation function) for the data residuals is flat, 

indicating that all the information is captured within the shaded blue area and showing no 

significance at different lags. Likewise, all the other miner and fog nodes’ model diagnostic 

observations also lead to the conclusion that the model indicates a normal distribution of 

residuals and the model is a satisfactory fit for validating and forecasting time series data. 

We compare models of predicted replica creation and replica placement strategies using 

dependant and independent variables. The duration of the models' forecast is set from 20 

seconds to the end of 300 seconds (5 minutes). Overall, the forecast of miner and fog nodes in 

both models aligns well with the actual values. We present a few of the forecasting results of 

miner and fog nodes in Figure 36 and Figure 37. Figure 36 shows an average forecast (actual 

data vs predicted data) of the total number of replicas at miner nodes. It is clear from Figure 36 

that the expected number of replicas being processed by miner nodes on average is close to the 

actual number of replicas processed by all the miner nodes. Figure 37 shows the average 

forecasts for the priority level of fog nodes in a model of replica placement scheme. The 

predicted priority level of the fog node on average is aligned very well to the actual priority 

value. 

Further, it is useful to analyze the forecasts’ accuracy in terms of MSE (Mean Squared Error) 

and RMSE (Root Mean Squared Error), which quantifies the average error of our forecasts. Table 

16 presents the summary statistics of both models’ MSE and RMSE’s minimum, maximum, 

Figure 36 On Average Actual Vs Predicted Forecast at Fog Layer 1 
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average, and standard deviation values. At fog layer 1 (miner nodes), the MSE forecast of the 

proposed replica creation model yields a value of approximately 65, whereas the RMSE’s value 

is almost 8. For fog layer 2 (fog nodes), the MSE and RMSE values of the replica placement model 

vary from 2 to 7 and 1 to 3, respectively.  These MSE and RMSE values yield that the distance of 

predicted values from the actual values is close enough to validate the time series models.  

4.3. Performance Analysis of the Proposed Replica Creation Scheme vs DRC-AH 

and DRCA schemes 

In this section, we compare the proposed replica creation scheme with the DRC-AH [62] and the 

DRCA schemes [312]. The DRC-AH replica creation scheme depends upon file access popularity. 

The Algorithm first analyses the access frequency of the data blocks then predicts the future 

access frequency according to the previously accessed rate. After that, it creates and adjusts the 

number of replicas based on data block access [62]. In the DRC-AH scheme, the Grey Markov 

chain model is used for data prediction and correction. Dynamic replicas are created based on 

the predicted values from the Grey Markov chain. For the DRCA Algorithm, data dynamic replica 

creation depends upon the file access popularity and node workload [312]. Further, three 

historical periods of file popularity and access frequency are utilized to predict the required 

replicas for replica creation. We compare our proposed replica creation scheme in terms of 

Table 16 Summary Statistics 

Node Min Max Average SD 

fog Layer 1 

MSE 65.06 65.32 65.25 0.2803 

RMSE 8.07 8.08 8.07 0.008 

fog Layer 2 

MSE 2.85 6.75 5.25 1.2622 

RMSE 1.69 2.6 2.27 0.2979 

Figure 37 On Average Actual Vs Predicted Forecast at Fog Layer 2 
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computational cost with DRC-AH and DRCA strategies, as shown in Figure 38. For the comparison 

analysis, we consider 300 seconds time interval, a data file of 1 M.B and 5 sensor nodes, 4 miner 

nodes, and 6 fog nodes as provided for the basic scenario layout. 

It is clear from Figure 38 that the average computational cost of our replica creation 

Algorithm is less than that of DRC-AH and DRCA. The reason behind this is that our replica 

creation scheme creates several replicas for each block based on the formula provided in 

Equation 5.4, which considers the LoP defined by data-owner, influencing factors (𝜶 𝑎𝑛𝑑 𝜷), 

total and average load. A miner node computes these parameters for each block replica 

creation. The computation required by each miner node is balanced as the service capacity of 

miner nodes is monitored by the miner’s head to balance a load of each miner node during 

replica creation. Therefore, the computational cost of each miner node on average varies 

between 0.05 to 0.9 (s). 

Whereas, for replica creation in the DRC-AH scheme, first of all, the frequency of data access 

is forecasted using a Markov chain. Then several replicas are created based on the forecast 

values. The prediction and accuracy of values for data access at each miner node requires a high 

computational cost. The computational cost varies from 0.4 to 1.6 (s). At 180 s, on average 

computational cost is around 1.9 (s) due to delay in data access prediction. Also, in the DRCA 

Algorithm, the file popularity and access frequency of blocks are predicted based on historical 

values that slow down the processing of replica creation. The condition of node load and access 

to data block frequency affect the overall replica creation performance, which varies from 0.5 

to 1.89 (s). On the contrary, our scheme requires an average of 0.8 (s) to compute replica 

creation. 

Figure 38 Computational Cost Comparison 
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The utilization of replica creation in terms of memory cost comparison is shown in Figure 39. 

We can see that the average memory cost of our replica creation Algorithm is significantly less 

than that of DRCA and DRC-AH. This is because of the balance of replica memory (in bytes) 

utilization at each miner node during the process of replica creation. On average, 42 bytes are 

used for each replica creation at each miner node. Whereas, the DRC-AH scheme for storage 

usage in replica creation requires on average 60 bytes using the Markov chain rule. DRCA 

requires higher storage usage than the DRC-AH and our proposed scheme. DRCA requires an 

average storage usage of 65 bytes to compute three periods of optimal replicas for dynamic 

replica creation.  

Overall, the communication costs of the DRC-AH and DRCA are less than our replica creation 

Algorithm, as shown in Figure 40. This is because the processing in our replica creation scheme 

includes multiple nodes, continuous communication between fog layer 1’s miner nodes, and 

sensor nodes. Our miner head node communicates with miner nodes to monitor service capacity 

and transmission of sensor data for replica creation. On the contrary, DRC-AH involves an 

application manager for predicting file access frequency. The node manager in the DRC-AH 

scheme is used to monitor the application manager’s activities based on the prediction that is 

used for replica creation. Then the resource manager receives replica data, which is a process 

using the Grey Markov chain to accurately predict the data popularity and create a dynamic 

number of replicas. DRCA utilizes slightly higher communication overhead than DRC-AH, 

because of hybrid cloud and edge communication during the computation for file popularity and 

Figure 39 Memory Cost Comparison 
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access frequency. Still, the communication cost of DRCA is slightly less than our replica creation 

Algorithm. 

5. Conclusion and Future Work 

Aiming at the problem of preserving the privacy of data replicas which is essential for replica’s 

data protection, reliability, and authentication, we propose privacy-preserving data replica 

creation and placement schemes in fog computing. In the data replica creation scheme, firstly, 

the service capacity of nodes is determined, and the node with the highest service capacity is 

selected to create a data replica. Then data replicas are generated based on the Level of Privacy 

(LoP) defined by data-owners. In the data placement scheme, the priority level based on the LoP 

and service capacity of each node is determined. We consider a node with the highest priority 

level and service capacity for replica placement. We discuss the experimental and comparative 

analysis of both schemes. Time-series analysis of each scheme verifies the accuracy of the 

proposed models. The comparative analysis of the proposed schemes shows that performance 

efficiency in terms of computational and memory costs is better than that of the state-of-the-

art schemes. 

In the future, we will improve the performance of our proposed schemes in terms of 

communication overhead. Also, consider a replica selection scheme for data requests by end-

users/cloud as the main aim of our current schemes is to preserve the privacy of replication 

within the fog layer, the privacy of replication at end-user/cloud is out of the scope. Therefore, 

we aim to improve our schemes to preserve end-to-end replication privacy. 

 

 

Figure 40 Communication Cost Comparison 
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‘One worthwhile task carried to a successful conclusion is better than 50 half-finished tasks.’ 

---B.C. Forbes 

Chapter 6 Conclusion and Future Work 

In this Chapter, the conclusion of the thesis along with limitations and future directions of the 

proposed framework are discussed. First, Section 6.1 presents the summary of the thesis 

contributions in detail. Then the limitations and recommended future research of this thesis 

work are presented in Section 6.2.  
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6.1. Summary 

Considering privacy concerns over fog networks for data aggregation and replication of IoT 

applications, this thesis presented a privacy-preserving framework in a fog-enabled IoT network. 

For this framework, lightweight data aggregation and replication schemes are proposed. 

Experimental evaluation and simulation studies are performed, which proves the effectiveness 

and efficiency of the proposed schemes. The schemes for preserving data privacy in the fog 

computing paradigm are investigated using analytical modelling in this thesis.  

The proposed data aggregation scheme utilizes a lightweight Divide-and-Conquer 

method that divides and distributes encrypted data to strengthen data privacy. In addition, the 

proposed data aggregation scheme is extended to optimize the time and energy consumption 

of the Divide-and-Conquer method. The optimization method used in the proposed scheme has 

significantly reduced the time and energy consumption of the data aggregation. This thesis is 

advanced further to preserve the privacy of data replication using the system model of the data 

aggregation scheme. Data replica creation scheme and data replica placement scheme are 

proposed for efficient and effective data replication in the fog computing paradigm. 

In this thesis, the results of all experiments and simulations have been thoroughly 

discussed and presented. Different network scenarios are considered to analyze the correlation 

between influencing factors used in the framework. The privacy vulnerabilities of the proposed 

schemes are also analyzed. The essential investigations performed for statistical and privacy 

evaluations give solid proof for the efficiency and effectiveness of the proposed framework. This 

thesis has discussed these contributions in detail in Chapters 2 to 5. A summary of the 

contributions is presented below. 

 An initial part of this thesis investigated the privacy requirements and analyzed the 

privacy-preserving schemes and challenges in Chapter 2. The analysis outlined the research 

gaps, which have motivated developing a framework for efficient and effective data privacy in 

the fog computing paradigm. Then a Divide-and-Conquer method is proposed for a data 

aggregation scheme based on the data division strategy in Chapter 3. The level of Privacy (LoP) 

defined by the data-owner is considered for the data division strategy. In this strategy, 

lightweight cryptographic operations are first used to secure the data, and then encrypted data 

is divided and distributed among fog nodes for data storage and aggregation processing. For 

encrypted data division and distribution, we applied linear and tabular divisions according to the 

LoPs. The data division strategy divides data according to LoP and distributes it among 

participating fog nodes for data aggregation processing and reduces computational and memory 
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overhead in the processing simultaneously compared to the other schemes. Also, an additive 

aggregation for the data aggregation is considered for computing the sum aggregate of data.  

The computational and memory overhead of the proposed scheme in terms of data 

encryption, division, and aggregation is reasonably low compared to state-of-the-art schemes. 

The proposed scheme is based on a symmetric cipher AES algorithm, which requires less 

computational time than other asymmetric ciphers based schemes. Further, data distribution 

among fog nodes for data aggregation reduces the computational overhead on a single fog node, 

speeds up the aggregation process, and minimizes a single point of failure risk.   

In this Chapter, the formal privacy analysis is also performed that considers active and 

passive attack scenarios that prove data privacy's effectiveness in a Fog-enabled IoT network. 

Propositions based on learning, challenge, and guess phases in the privacy analysis model 

proved that the proposed data aggregation scheme satisfies the Indistinguishability-based 

untraceable Privacy (INDPriv) of data. 

In Chapter 4, the data aggregation scheme is extended to optimize the time and energy 

consumption during data aggregation in the fog computing paradigm. In this Chapter, 

mathematically modelling of time and energy consumption in terms of execution, transmission, 

and precursor waiting time is carried out. NSGA III method is used to solve the optimization 

problem of the formulated time and energy consumption. In the NSGA III method, the reference-

point-based SAW and MCDM are employed to select an optimal solution to minimize the joint 

objective (i.e. time and energy consumption).  

In this chapter, the test-case scenarios to test the performance efficiency of the 

proposed scheme are also provided. The impact of evaluation factors including the number of 

fog nodes, the execution and transmission power, the computing capacity, the data size, the 

degree of workload imbalance, and the standard deviation of the workload imbalance on the 

time and energy consumptions are used to evaluate the performance efficiency of the proposed 

scheme. Further, the performance efficiency of the proposed scheme is evaluated in terms of 

data size and power consumption compared to state-of-the-art schemes. The experiment 

results showed that the proposed scheme can always obtain the Pareto optimal solutions within 

the extreme values. It outperforms the state-of-the-art schemes in solving the optimization 

problem. 

Chapter 5 further advanced the data aggregation scheme for data replication in the Fog 

computing paradigm. Data replica creation and placement schemes are considered for secure 

data replication. These schemes guaranteed data replica’s protection, reliability, and 

authentication. The mathematical modelling of these schemes is based on the level of privacy 
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defined by the data-owner, service capacity, and level of priority of each fog node in a network. 

In this Chapter, the time complexity analysis of the proposed schemes is also discussed, which 

shows that the time utilized for computation tasks is linear as the data replica creation, and data 

replica placement schemes require O (𝑛 ×  𝑚) and O ((𝑛 ×  𝑚) + 𝑘) time, respectively.  

Statistical analysis of the proposed schemes is also performed to evaluate the 

correlation between sensitive parameters, comparison, and time series analysis. Parameters 

considered for exerting impact on the data replica creation and replica placement schemes are 

service capacity, Level of Privacy (LoP), fog node priority, and the ratio of nodes communicating in 

the network. The correlation analysis showed that the service capacity and LoP exert a high 

impact on the data replica creation scheme as these parameters determine the load capacity 

and the total number of replicas to be created at a fog node. For the replica placement scheme, 

the number of blocks for the fog nodes priority has a significant impact compared to the service 

capacity. The fog nodes considered for data replica placement do not compute the replica 

creation or distribution, which could impact the overall service capacity of a fog node. In the 

comparative analysis, the performance efficiency of the proposed schemes in terms of 

computational and memory costs is better than that of the state-of-the-art schemes. 

Further, the accuracy of the proposed schemes is verified using Autoregressive Integrated 

Moving Average (ARIMA) model. In the experiments, ten data predictions for each node in the 

fog network are performed. The AIC (Akaike Information Criterion) values are obtained to 

measure the fitness of data to the ARIMA model. The results indicated that the data residuals 

are normally distributed with no unusual patterns, and the model is a satisfactory fit for the 

validation and forecasting of time series data. Furthermore, the forecast data aligned well with 

the actual data into both replica creation and placement models. Forecast accuracy is also 

analyzed using Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). The resultant 

values yield that the distance of forecast values from the actual values is close enough to validate 

the time series models. 

The formal analysis of privacy is also provided in this Chapter. The privacy analysis proved 

that the proposed schemes are CPA-secure. Since the computational complexity for an attacker 

to extract private information about a data replica block is high in probabilistic polynomial time, 

the replica privacy remains intact. Also, the privacy analysis emphasis on the data replica 

reliability in which the original data block can be recovered from replica blocks placed at fog 

nodes.  
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6.2. Thesis Limitations and Recommendations for Future Research 

This Section summarizes the limitations and future directions of the proposed framework. The 

limitations and future work discussed in this section do not in any way undermine the validity of 

the research contributions undertaken in this thesis. However, they suggest research work that 

can be carried out in the future to enhance the proposed framework and accommodate diverse 

fog-enabled IoT applications.  

The proposed framework is implemented and evaluated using a network simulator. In a 

simulation, the consideration of fog node’s fault tolerance due to failures including defective 

calibration, environmental interference, instability of transmission link, software problems, and 

physical damage cannot be measured accurately compared to real-time evaluation. In a real-

time implementation, the devices are deployed and interconnected in an open environment 

where these failures can be measured accurately. In addition, the data size considered for the 

evaluation of the proposed framework is between 1 KB to 100 MB. In a real-time simulation, the 

sensor devices generate more than 100 MB of data, which must be aggregated and replicated 

securely in a wireless network. Therefore, these limitations entail the real-time simulation of the 

proposed framework to consider the larger data-set and fault tolerance failures.   

Further, an additive aggregation operation for the summation of data is used in the 

proposed data aggregation scheme in Chapter 3. The operation sums all the data generated 

from IoT devices and provides a resultant summation to the end-user. A possible research 

direction is to apply both additives and non-additive aggregation operations, including 

percentile, maximum, minimum, ratio, average, and mean to the proposed data aggregation 

scheme. The consideration of these data aggregation operations increases the diversity of 

analyzing data trends for IoT applications.  

Another limitation of this thesis is that the communication overhead of the proposed 

data aggregation and replication scheme is significantly higher than the state-of-the-art 

schemes, as discussed in chapters 2 and 4. In both proposed schemes, processing of 

computation tasks, including data aggregation, replica creation, and storage, is performed on 

multiple fog nodes. For performing these computation tasks, continuous interaction of fog 

nodes for accessing, processing, storing data, and authenticating each other increases the 

overall communication overhead of the fog network. The optimization of communication 

overhead for the data aggregation scheme is considered in Chapter 4. The optimization method 

minimizes the fog network's communication cost (transmission time) using the NSGA III method. 

The optimization method to reduce the communication cost of the data replication scheme has 

not been considered in this thesis. Therefore, In the future, optimization algorithms for reducing 
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the communication overhead of data replication schemes will enhance the performance 

efficiency of the proposed framework. 

 This thesis demonstrated the effectiveness and efficiency of preserving data privacy 

within the fog network. The data privacy at the sensors and end-users or cloud is out of this 

thesis's scope. Therefore, a possible research direction is to provide end-to-end data privacy for 

efficient data aggregation and replication. This thesis only considered data replica creation and 

placement schemes for creating and placing data replicas securely in the Fog network. Data 

replicas selection for replicas placed at the fog layer requested by end-users is considered as 

one of the promising future works. For a secure end-to-end framework, the privacy of data 

replica for replica selection and transmission to end-user can be added to the proposed 

schemes. In a data replica selection scheme, decision-making methods can be utilized to search 

and select the best suitable replica for the end-user.        
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