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Abstract 

This study experimentally determines the relationship between the heat and mass 

transfer, in a crossflow configuration in which a ducted airflow passes through a planar water 

jet. An initial exploration using the Chilton-Colburn analogy resulted in a coefficient of 

determination of 0.72. On this basis, a re-examination of the heat and mass transfer processes 

by Buckingham’s-π theorem and a least square analysis led to the proposal of a new 

dimensionless number referred to as the Lewis Number of Evaporation. A modified version of 

the Chilton-Colburn analogy incorporating the Lewis Number of Evaporation was developed 

leading to a coefficient of determination of 0.96. 

1. Introduction 

Heat and mass transfer devices involving a liquid interacting with a gas flow have a wide 

range of applications including distillation plants, cooling towers and aeration processes and 

desiccant drying [1-5]. Many studies have gone through characterising the heat and mass 

transfer in such configurations [6-9]. The mechanisms of heat and mass transfer are similar and 

analogical. Therefore, in some special cases where, either the heat or mass transfer data are not 

reliable or may not be available, the heat and mass transfer analogy can be used to determine 

the missing or unreliable set of data. In this regards, the Reynolds analogy is the simplest 

correlation and is applicable only for the special case where the Prandtl and Schmidt numbers 

are both equal to unity. Chilton and Colburn in 1934 [10] introduced a correlation to predict 

the coefficient of mass transfer from the experimental data of heat transfer and fluid friction, 

which is applicable for fully developed flow inside the tubes or between parallel plates with; 

0.6 < Prandtl <60 and 0.6 < Schmidt <3000.  

However, both of these analogies characterise the “convectional” transport phenomena 

and may not be applicable for some special cases and geometries. Therefore a number of studies 

have examined the applicability of these analogies to other configurations [11-13]. Steeman et 

al. [12] employed CFD to investigate the validity of the heat and mass transfer analogy for a 

particular case of indoor airflows and when the analogy conditions are not met. Similarly, 

Tsilingiris [14] experimentally developed a heat and mass transfer analogy model in solar 

distillation systems based on the Chilton-Colburn analogy. 

This study investigates the analogy between the intensities of heat and mass transfer in 

low temperature evaporation processes with crossflow configuration, in which a ducted stream 

of air passes through a falling sheet of water. The interaction in such a configuration has the 

potential to significantly improve the transfer phenomenon.  
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2. Experimental Setup 

In this experiment, a planar jet of water was directed perpendicular to a ducted air 

crossflow, as shown in Figure 1. A water tank with adjustable height was used to provide a 

constant pressure head to drive the water flow at different flow rates and a variable speed axial 

flow fan with a maximum capacity of 280 m3/hr was employed to drive airflow at various 

steady flow rates. The flow rates of water were determined by measuring the time taken for a 

known volume of water to pass through the nozzle, and the exact airflow rate was determined 

from measurements made using a pitot static probe traversed across the duct and differential 

manometer. 

 

Figure 1. Experimental apparatus 

In order to measure the humidity and temperature, a set of three humidity/temperature 

sensors, (Sensirion SHT71) with an accuracy of ±3% for humidity and ±0.3K temperature at 

standard room condition were used. Sensors were placed on either side of the side the sheet to 

measure the change in humidity and temperature of the air stream as it crossed the water sheet, 

as seen in Figure 1. A third sensor was placed outside the experiment to monitor the room 

conditions. A set of two thermocouples (type T) with an accuracy of ±0.3 K were used to record 

the water temperature before and after contact with the air stream. An auxiliary water heater 

was used to maintain the inlet water temperature at a constant temperature and thereby reduce 

the relative error of measurements.  

3. Testing the Chilton-Colburn Analogy 

In considering the heat transfer, the total rate of heat transfer (Q̇t) is the sum of 

convective, evaporative and radiative rates of heat transfer. Assuming that the radiation heat 

transfer is negligible this can be determined from Equation 1. 

 𝑄̇𝑡 = 𝑄̇𝑐𝑣 + 𝑄̇𝑒𝑣 = 𝑚̇𝑎(ℏ𝑎,𝑜 − ℏ𝑎,𝑖) (1) 

Where Q̇cv is the convective rate of heat transfer and Q̇ev is the rate of heat transfer through 

evaporation. ṁa is the mass flow rate of air and ℏa,i and ℏa,o are the enthalpies of the air at the 

inlet and outlet conditions, respectively. The rate of evaporation can be determined from 

Equation 2. 

 𝑄̇𝑒𝑣 = 𝑚̇𝑒𝑣ℏ𝑓𝑔 (2) 



Where ℏfg is the enthalpy of vaporization and ṁev is the rate of evaporation, which can be 

calculated by measuring the specific humidity (ω) of air at inlet and outlet conditions and the 

mass flow rate of the air stream as given in Equation 3. 

 𝑚̇𝑒𝑣 = 𝑚̇𝑎(𝜔𝑎,𝑜𝑢𝑡 − 𝜔𝑎,𝑖𝑛) (3) 

On the mass transfer side the experimental value of the coefficient of mass transfer can 

be determined from Equation 4. 

 𝑗 =
𝑚̇𝑒𝑣

𝐴𝑐,𝑎(𝜌𝑣,𝑓 − 𝜌𝑣,𝑏)
 (4) 

Where, ρv,∞ is the density of vapour at the free stream conditions and ρv,f is the vapour 

density at film condition, which is considered to be saturated air at the average temperature of 

the two phases. 

The experimental value of the coefficient of convective heat transfer can be calculated 

from Equation 5. 

 ℎ =  
𝑄̇𝑐𝑣

𝐴𝑐,𝑎(𝑇𝑓 − 𝑇∞)
 (5) 

Where Ac,a is the cross sectional area of air stream, T∞ is the bulk stream temperature and 

Tf  is the film temperature. The convective heat transfer rate can be determined from Equation 

1. 

The existence of an analogy was first assessed by examining the relationship between the 

heat transfer coefficient determined from Equation 5 and the mass transfer coefficient 

calculated by Equation 4, as shown in Figure 2.  



 

Figure 2. The experimental values of convective heat transfer coefficient versus experimental values of mass transfer 

coefficient 

As seen in Figure 2, the experimental values of the heat and mass transfer coefficients 

are correlated with a reasonable accuracy, with a coefficient of determination (R2) of 0.72. 

The heat and mass transfer are analogues, in circumstances where the thermal and 

concentration boundary layers are of the same type [15]. For the conditions tested by Chilton 

and Colburn, the empirical correlations of Nusselt and Sherwood numbers were determined 

as given in Equations 6 and 7 [16]. 

 𝑁𝑢 = 𝑎 𝑅𝑒𝑚 𝑃𝑟1/3 (6) 

 𝑆ℎ = 𝑎 𝑅𝑒𝑚 𝑆𝑐1/3 (7) 

Based on the Reynolds analogy the heat transfer Stanton number is equivalent to the 

mass transfer Stanton number. Where the heat transfer Stanton number is the ratio of the 

Nusselt number to the product of the Reynolds and Prandtl numbers, and the mass transfer 

Stanton number is the ratio of the Sherwood number to the product of the Reynolds and 

Schmidt numbers, as given in Equations 8 and 9 [15]. 

 𝑆𝑡ℎ𝑒𝑎𝑡 =
ℎ

𝜌𝑉𝑐𝑝
=

𝑁𝑢

𝑅𝑒 𝑃𝑟
 (8) 

 𝑆𝑡𝑚𝑎𝑠𝑠 =
𝑗

𝑉
=

𝑁𝑢

𝑅𝑒 𝑃𝑟
 (9) 

Now, substituting the empirical correlation for the Nusselt and Sherwood numbers, 

results in Equations 10 and 11. 
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      𝑆𝑡ℎ𝑒𝑎𝑡 =
ℎ

𝜌𝑉𝑐𝑝
=

𝑎 𝑅𝑒𝑚 𝑃𝑟1/3

𝑅𝑒 𝑃𝑟
 (10) 

      𝑆𝑡𝑚𝑎𝑠𝑠 =
𝑗

𝑉
=

𝑎 𝑅𝑒𝑚 𝑆𝑐1/3

𝑅𝑒 𝑆𝑐
 (11) 

From these, Chilton and Colburn had derived a “J” factor for heat and mass transfer as 

given in Equations 12 and 13 [10]. 

      𝐽ℎ𝑒𝑎𝑡 = 𝑎 𝑅𝑒𝑚−1 =
ℎ

𝜌𝑉𝑐𝑝
 𝑃𝑟2/3 (12) 

      𝐽𝑚𝑎𝑠𝑠 = 𝑎 𝑅𝑒𝑚−1 =
𝑗

𝑉
 𝑆𝑐2/3 (13) 

Since the “J” factor is equal for both heat and mass transfer, the Chilton-Colburn 

analogy was determined as given in Equation 14 [10]. 
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(14) 

As mentioned earlier the Chilton-Colburn analogy, seen in Equation 14, is valid for a 

fully developed flow inside a pipe, and for flow parallel to plane surfaces, when 0.6 < Prandtl 

<60 and 0.6 < Schmidt <3000.  

The applicability of the Chilton-Colburn analogy to other configurations and conditions 

may be validated for the particular geometry and conditions of the experiment.  

Figure 3 shows the experimental values of the convection heat transfer coefficient from 

Equation 5 compared to the calculated value from the Chilton-Colburn analogy, given in 

Equation 14 using the experimental mass transfer data. This figure shows some correlation 

for predicting the heat transfer coefficient from the mass transfer data, but with quite a large 

scatter.  



 

Figure 3. Comparison of experimental heat transfer coefficient with the calculated values from the Chilton-Colburn 

analogy 

From this, it could be considered that, the Chilton-Colburn analogy is reasonably valid 

for these geometries and conditions. However, considering that in low temperature evaporation 

processes a considerable fraction of the supplied energy will be consumed to overcome the 

latent heat of vaporization, it is reasonable to expect that the relationship between heat and 

mass transfer should account for this. Therefore, this work aims to find an analogy between the 

overall heat transfer coefficient and mass transfer coefficient, in that it accounts for both 

convection and evaporation. 

4. Dimensional analysis 

In an attempt to describe the analogy between heat and mass transfer, for this complex 

flow interaction, Buckingham’s-π theorem was employed to define the dimensionless 

parameters. In doing so it was considered that the variables describing  the heat and mass 

transfer were: air velocity, characteristic length, enthalpy of evaporation, thermal conductivity 

of air, density of air, viscosity of air, specific heat of air, rate of diffusion, the enthalpy content 

of the air stream at film conditions and the temperature difference between two phases. As such 

a general relation as shown in Equation 15 can be formed.  

 𝑓(𝜌𝑎 , 𝑘𝑎,𝑉𝑎, 𝐿𝑎 , ℎℎ, , 𝜇𝑎, 𝑐𝑝𝑎, ∆𝑇, 𝐷𝐴𝐵 , ℎ𝑚, ℎ𝑓𝑔, 𝑇𝑓) = 0 (15) 

where f is an unknown function. The dimensions of these variable are based on four basic 

physical units of mass (M), temperature (T), time (t) and length (L). 

As there are twelve quantities and four basic units, according to Buckingham’s-π theorem 

[17], eight dimensionless groups can be developed, as shown in Equation 16. 
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 𝑓′(𝜋1, 𝜋2, 𝜋3, 𝜋4, 𝜋5, 𝜋6, 𝜋7, 𝜋8) = 0 (16) 

Where f′ is also an unknown function. Choosing ρa, ka, Va and La as the repeating 

parameters, the seven independent dimensionless group can be determined as given in Table 1.  

Table 1. Independent dimensionless groups 

 

Where, π1 is the Nusselt number (Nu) and product of π6 and π5
-1 forms the Sherwood 

number (Sh), π2
-1 is the Reynolds number (Re), π3 is the Peclet number (Pe) and π7

-1 is the 

Evaporation number (Nev). Grouping π2 and π3 delivers the Prandtl number (Pr) and 

combination of π2 and π5 gives the Schmidt number (Sc). The Lewis number (Le) can also be 

determined as the ratio of Prandtl to Schmidt number, which is the ratio of thermal to mass 

diffusivity. 

5. Analogy between the Coefficient of Total Heat Transfer and Mass Transfer 

Coefficient  

As mentioned earlier, the Chilton-Colburn analogy characterises only the convectional 

transfer phenomenon and since in low temperature evaporation processes a significant fraction 

of the entire heat transfer is through evaporation, it is logical to present a correlation to predict 

the overall heat transfer coefficient from the mass transfer data. In this respect, the experimental 

value of the overall heat transfer coefficient can be calculated by substituting Q̇cv in Equation 

5 with Q̇t as shown in Equation 17. 

 ℎ𝑡 =  
𝑄̇𝑡

𝐴𝑐,𝑎(𝑇𝑓 − 𝑇∞)
 (17) 

In order to assess the existence of any similarity between the coefficient of total heat 

transfer and the mass transfer coefficient, the calculated values from Equation 17 were plotted 

against the experimental values of mass transfer coefficient from Equation 4, as shown in 

Figure 4.  



 

Figure 4. the coefficent total heat transfer versus the mass transfer coefficient 

In Figure 4, it can be seen that the mass transfer coefficient is analogous with the 

coefficient of total heat transfer with a coefficient of determination (R2) of 0.95.  

On this basis, the overall heat transfer coefficient can be expressed as a function of the 

density and the specific heat of the air stream as well as the dimensionless groups derived from 

Buckingham’s π theorem, as given in Equation 18. 

 ℎ𝑡 =  𝑗 𝜌 𝑐𝑝 × 𝑃𝑒𝑏𝐵𝑑𝑐 𝜋4
𝑑𝜋7

𝑒𝜋8
𝑓 (18) 

In order to define the exponent of the dimensionless groups in Equation 18, a least 

squares analysis results in Equation 19. 

 ℎ𝑡 =  𝑗 𝜌 𝑐𝑝 × 𝑃𝑒−0.575𝐵𝑑0.575 𝜋4
0.00012𝜋7

0.575𝜋8
−0.575 (19) 

The exponents of the Peclet and Bodenstein numbers are identical but with different signs 

and therefore, can be presented in a fractional form. As mentioned earlier the Bodenstein is the 

product of the Reynolds and Schmidt numbers and similarly, the Peclet number is the product 

of the Reynolds and Prandtl numbers. Therefore, the ratio of Bodenstein to Peclet numbers is 

in fact the ratio of Schmidt to Prandtl number, or the Lewis number (Le), as given in Equation 

20. 

 
𝐵𝑑0.575

𝑃𝑒0.575
=  (

𝐵𝑑

𝑃𝑒
)

0.575

= (
𝑆𝑐

𝑃𝑟
)

0.575

= 𝐿𝑒0.575 (20) 
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Similarly, the exponents of π7 and π8 are identical but with opposite signs and can be 

presented in a fractional form, as given in Equation 21.  

 
𝜋7

𝜋8
=

ℏ𝑓𝑔/𝑉𝑐ℎ
2

ℏ𝑓/𝑉𝑐ℎ
2 =

ℏ𝑓𝑔

ℏ𝑓
 (21) 

The ratio of π7 to π8 is in fact the ratio of enthalpy of vaporization to the enthalpy content 

of the air stream at the film conditions, which in this context referred to as the enthalpy ratio. 

The enthalpy ratio characterises the low temperature evaporation processes with respect to 

required heat of evaporation and the supplied energy by the bulk stream. 

It can be seen that the exponents of the Lewis number and the enthalpy ratio are equal 

and hence, Equation 19 can now be rewritten as Equation 22. 

 ℎ𝑡 = 𝑗𝜌𝑎𝑐𝑝𝑎 (𝐿𝑒
ℏ𝑓𝑔

ℏ𝑓
)

0.575

 (22) 

The product of Lewis number and the enthalpy ratio is therefore referred to as the Lewis 

Number of Evaporation (Leev) and Equation 22 can be rewritten as Equation 23. 

 ℎ𝑡 = 𝑗𝜌𝑎𝑐𝑝𝑎𝐿𝑒𝑒𝑣
0.575 (23) 

Shown in Figure 5 is the coefficient of total heat transfer calculated by Equation 23 versus 

the experimental values calculated from Equation 17. 

 

Figure 5. Corrected Chilton-Colburn Analogy for heat and mass transfer with phase change 
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This figure clearly shows a much stronger correlation, with a coefficient of determination 

(R2) of 0.98, when accounting for the phase change process and incorporating the Lewis 

Number of Evaporation.  

6. Conclusion 

An experimental study was performed in order to examine the relationship between heat 

and mass transfer coefficients in a low temperature crossflow evaporation process. In this 

regard, the Buckingham-π theorem as well as a least squares analysis were employed. Eight 

dimensionless group were determined from the Buckingham-π analysis. Performing the least 

squares analysis on these dimensionless parameters showed a strong correlation between the 

overall heat transfer coefficient and the enthalpy ratio. This led to the correlation of a modified 

Chilton-Colburn analogy that includes the enthalpy ratio to account for the low temperature 

evaporation processes (referred to as the Lewis Number of Evaporation). As a result of this 

work, the heat and mass transfer can now be quantified by the measurement and determination 

of only one of these parameters. 
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