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ABSTRACT 

 

The capacity to objectively track, predict and evaluate changes in competitive performance 

is a critical component of an effective athlete development programme. This thesis focused on 

developing objective analytical tools for monitoring and assessing performance progression in 

swimmers using the mixed modelling procedures in the Statistical Analysis System (SAS) 

software. 

In the first study, a systematic review of estimates of age of peak competitive performance 

of elite athletes from a variety of sports established the need to generate progression-

monitoring tools specific to the sport of swimming. Four original-research studies focused on 

different aspects of athlete development are then presented: benchmarking, talent identification, 

career training and performance-enhancing strategies and interventions. First, I developed 

quadratic trajectories to track the career development of Olympic top-16 swimmers using their 

annual best performances. These trajectories provided event-specific progression benchmarks 

that can be used to monitor and assess performance changes of developing swimmers. 

Secondly, a comparison of the accuracy of four methods for predicting future performance 

provided some evidence that this trajectories method may be useful for identification and early 

selection of swimmers tracking towards Olympic-qualification standards. Thirdly, I used a novel 

application of mixed modelling to quantify the relationships between swim-specific and non-

specific career training hours and performance in competitive swimmers. The focus of the final 

investigation was the development of a method to assess the effects of strategies and 

interventions on swim performance progression. By quantifying the deviation of top swimmer’s 

performances from their individual trajectories after they joined the centralised elite squad, we 

showed that Swimming New Zealand’s centralisation strategy took several years to produce 

substantial performance effects. This method also produced annual performance estimates for 

New Zealand swimming as a whole, and for each New Zealand swimming club, creating a tool 

that can be used to evaluate performance progression at both the national level and the club 

level.  

In this thesis, I have demonstrated that mixed modelling can be used to provide objective 

solutions appropriate for monitoring and assessing the performance progression of swimmers. 

Prospective longitudinal studies are required to improve our understanding of the multiple 

factors affecting career progression of swimmers, while further research is also needed to adapt 

the models presented here for other sports. 
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CHAPTER 1 

 
INTRODUCTION 

 
1.1. Rationale 

The sport of swimming is unique in that large amounts of repeated-measures competition 

performance data are readily accessible online, and the effects of environmental conditions on 

performance are generally negligible. The primary focus of this PhD was to investigate how 

statistical modelling of some of these data could help provide solutions to effectively monitor 

and assess the performance progression of swimmers.  

Developing solutions to objectively track and evaluate progression of sport performance is 

a strategy prioritised by High Performance Sport New Zealand as part of their mission to “create 

a world leading, sustainable high performance sport system” by 2020 (HPSNZ, 2012). Such 

solutions provide HPSNZ with a rationale for evidence-based investment decisions, an 

improved understanding of athlete development pathways, and a means for quantifying the 

impact of factors affecting sport performance. Given the nation’s small population (~4.5 million 

people) and finite supply of finances for elite sport, solutions that improve talent identification 

and the effectiveness of available funding are critical for New Zealand’s sporting success.  

In the first project of the PhD, I was interested in investigating the age-related performance 

changes of Olympic top-16 swimmers, for the purpose of establishing performance progression 

benchmarks for New Zealand swimmers. This project was aligned with Swimming New 

Zealand’s key strategic priority of determining elite-level benchmarks to “design a clear athlete 

pathway… towards Olympic podium results”, as outlined in their 2013-2020 High Performance 

Strategy (SNZ, 2012). 

Interest in previous similar research presented by Professor Will Hopkins at the 11th 

Symposium of Biomechanics and Medicine in Swimming in Oslo in 2010 led to the exciting 

opportunity for collaboration with Swimming Australia for the second PhD project. Collaborating 

with one of the most successful swimming nations over the past decade allowed us to access 

career performance data from substantially greater numbers of high calibre swimmers than 

would have otherwise been possible. Consequently, I was able to generate career performance 

trajectories for all Australian swimmers and then use my second PhD study to estimate the 

uncertainty involved in using this method as a tool for predicting future Olympic-level swimmers. 

Quantifying the likelihood of developing swimmers achieving future performance criteria was of 

interest to both Swimming Australia and Swimming New Zealand, in terms of providing objective 

information to help guide strategic administrative decisions regarding squad selection and 

funding allocation.  

Feedback from several top New Zealand swim coaches and sport-science practitioners in 

response to a seminar outlining the individual performance trajectories approach to monitoring 

age-related progression of swimmers that I presented at an internal workshop in 2013 was the 

inspiration for the third study of this PhD. As a group we discussed some of the reasons that we 

believe have underpinned the progressions of both successful and unsuccessful swimmers, but 
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there was much interest in objectively assessing factors critical for the development of top 

swimmers within the cultural context of New Zealand. The discussions helped design 

questionnaires that were completed by hundreds of national-level New Zealand swimmers. I 

analysed the responses alongside each swimmer’s performance trajectory to investigate the 

relationships between career training and competition performance. 

The fourth PhD project was concerned with assessing the effects of interventions on 

performance progression by quantifying deviations from swimmers’ expected trajectories. 

Specifically, Swimming New Zealand administrators and coaches were interested in assessing 

the performance effect of centralisation of the elite swimming programme in 2002. As part of the 

approach that I used to investigate this question, I was also able to devise a method to track the 

annual performance progression of groups of swimmers (e.g., squads or clubs), and of all 

swimmers within a nation.  

In the fifth and final PhD project, I conducted a systematic literature review of estimates of 

age of peak competitive performance of elite athletes. The differences detected between 

swimming and other sports provided important rationale for the need to establish solutions to 

monitor and assess individual performance progression that are specific to the sport of 

swimming. Therefore, although this study was the last PhD project completed, it is presented 

before the original-research studies within this thesis.  

 

1.2. Theoretical Framework and Research Objectives 

The theoretical framework that informed the research objectives of this thesis was the Long 

Term Athlete Development (LTAD) model, which was created by Canadian sports scientist 

Istvan Balyi (1990). The LTAD framework features five developmental stages that define a 

general pathway of athlete progression from childhood through to international performance 

success. Swimming-specific versions of the LTAD have since been devised by Australia 

(Australian Swimming Inc., 1996) and Great Britain (Amateur Swimming Association, 2003). 

These nations have built on the generic LTAD framework by specifying the weekly frequency 

and volume of swim training sessions in each phase of development within their models. Both 

models have received criticism from a number of different fields; academia (Rushall, 2011a), 

coaching (Greyson, Kelly, Peyrebrune, & Furniss, 2010; Lang & Light, 2010), and applied sports 

science (Arellano, 2010; Holt, 2010; Treffene, 2010). 

 In a synthesis of the extant literature, Rushall (2011a) highlighted two main weaknesses of 

the current swimming-specific LTAD models. First, these models have been constructed from a 

combination of research, beliefs, dogma, and non-refereed theories, and thus they have a 

questionable evidence base. Secondly, using such generalised models to define the 

performance progression pathway of individual athletes who have unique time courses of 

maturation is contrary to the Principle of Individuality (Rushall & Pyke, 1991), which states that 

decisions concerning the nature of training should be made on an individualised basis. 

Therefore, in order to help address some of the limitations of current swimming-specific athlete 

development models, the aim of my PhD has been to use statistical modelling to develop 



14 
 

objective methods that can be used to monitor and evaluate the age-related longitudinal 

performance progression of individual swimmers. The research problem and specific research 

question addressed in this thesis are presented below: 

 

 

 

 

 

 

1.3. Literature Review and Methodological Approach 

In order to assess the long term development and performance progression of swimmers, 

a valid and reliable method for monitoring changes in the ability of such athletes must be 

developed. Within the sport of swimming most of the available original research on this topic 

has focused on either mean performance changes of groups of athletes, or monitoring 

progression of surrogate measures of performance, such as physiological or biomechanical 

variables. Although competition results are the most easily accessible large-scale repeated-

measures data available in swimming, only a few researchers have chosen to use these data to 

investigate performance changes in individual swimmers. This gap in the literature is likely due 

to the level of sophisticated statistical analysis required to properly model such repeated-

measures data. Here I outline the various analysis methodologies that have been used by 

different research groups to date. I then discuss their advantages and limitations as they relate 

to the aims of this PhD: to enhance existing swimming-specific LTAD models by adding an 

objective evidence base and an individualisation component. 

Repeated-measures analysis of variance (ANOVA) is the most commonly used statistical 

test for analysing differences (or changes) in means of a group of athletes. ANOVA works by 

calculating the ratio (F statistic) of the observed difference between the participants’ mean 

values and the error variance (the variation due to sampling). The larger this ratio is, the more 

meaningful the difference in means between the different conditions or time-points is believed to 

be. However, this principle is based on the sphericity assumption of ANOVA, that the variances 

of the repeated measures are all equal, or that there are no individual differences in responses 

to different conditions or between different time-points. Unfortunately, this scenario is unlikely 

when using elite athletes as subjects, and therefore the sphericity assumption is regularly 

violated in sports science research (Hopkins, 2003).  

One research group from Portugal recently used repeated-measures ANOVA to assess the 

longitudinal performance stability of groups of elite (Costa et al., 2010) and sub-elite junior 

swimmers (Costa, Marinho, Bragada, Silva, & Barbosa, 2011) across multiple successive 

seasons of competition. Substantial mean improvements in performance between each 

consecutive season were found in both groups of swimmers, but the different rates of 

progression of individual swimmers could not be tracked or quantified using the ANOVA 

Thesis problem: Current swim-specific models of athlete development lack an objective 
evidence base and do not adequately account for differences between individuals. 

Thesis question: Can mixed modelling provide objective solutions to appropriately 
monitor and assess performance progression in swimmers? 
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procedures employed in these studies. Further to this issue, ANOVA is also unable to deal with 

missing values in datasets, which typically results in a loss of statistical power as data from 

subjects with any missing values have to be deleted entirely from the analysis (Hopkins, 2003). 

ANOVA was therefore deemed an unsuitable methodology for the aims of this thesis.  

Another common method of modelling the relationship between the change in a dependent 

variable, (e.g., performance of an athlete) and the change in an explanatory variable (e.g., age) 

is to fit a regression equation to observed data and then extrapolate this equation to yield a 

prediction. Regression models can be linear, whereby their output values are a sum of their 

input values. They can also be non-linear, such that simple changes in input produce more 

complex changes in output. For example, linear regression (a first order polynomial) has been 

employed by an Israeli research group to quantify the contribution of various explanatory factors 

(distance, stroke, rank, age, final stage preparation days) to the percent performance 

progression of 301 swimmers from 24 nations between their Olympic selection performance and 

the 2004 Olympic Games (Issurin, Kaufman, Lustig, & Tenenbaum, 2008). When the 

relationship between the dependent variables and the explanatory variables does not fit a 

straight line, more sophisticated curvilinear regression equations (second order and higher 

polynomials) are often utilised by researchers. Indeed, quadratic regression models provide a 

good fit to the age-related performance progression apparent in a number of sports, including 

athletics (Hollings, Hopkins, & Hume, 2014), rowing (Mikulic, 2011), skeleton (Bullock & 

Hopkins, 2009), swimming (Pike, Hopkins, & Nottle, 2010), and triathlon (Malcata, Hopkins, & 

Pearson, 2014). 

One criticism of such regression models is that since most physical systems and their 

adaptive processes are inherently complex and non-linear in nature, linear and curvilinear 

modelling may be able to only approximate adaptive behaviour and thus progression across a 

small range of the modelled performance output (Edelmann-Nusser, Hohmann, & Henneberg, 

2002; Maszczyk et al., 2012). This limitation combined with modern advances in both the 

availability and the level of sophistication of statistical software packages has likely contributed 

to the recent trend for more widespread use of non-linear regression modelling within sport 

performance analysis. For example, a research group from France recently developed a non-

linear regression model with two exponential components that tracks the biphasic processes of 

performance progression and decline in elite performers from track-and-field athletics and 

freestyle swimming across the human lifespan (Berthelot et al., 2012). Their double exponential 

model demonstrated extremely high goodness of fit, accounting for 99.7%, and 99.8%, of the 

variance in the individual performance development with age of 646 track-and-field athletes, 

and 512 swimmers, respectively. However, such high mean coefficients of determination (R2  

values) may equally be indicative of overfitting. This phenomenon can occur with complex 

models that contain too many parameters relative to the number of observations. Given the 

fairly low mean (± standard deviation) number of performances per athlete (6.2 ± 1.4 for track-

and-field; 6.6 ± 0.4 for swimming) contributing to the double exponential model in this study, 

overfitting remains a distinct possibility and a significant drawback of non-linear regression 

modelling without large datasets. From a performance-progression perspective, another 

limitation of Berthelot et al.’s (2012) use of one complex equation to model two antagonistic 
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biological processes (performance progression and decline) is that their rate of progression and 

age of peak performance findings are inevitably and unavoidably defined to some extent by the 

rate of decline in performance.  

The accuracy of using linear and non-linear regression models to predict freestyle 

swimming performance at various Olympic Games has been addressed in two studies 

(Heazlewood, 2006; Stanula et al., 2012) with interesting results. First, Heazlewood (2006) 

assessed the discrepancies between predictions made of mean performance of freestyle 

swimming finalists at the 2000 and 2004 Olympics, and actual performance (Lackey & 

Heazlewood, 1998). In the same study, the author also included a comparison of predictions of 

mean performance of track-and-field finalists in selected events at the same Olympics, and their 

actual performance (Heazlewood & Lackey, 1996). In the original prediction studies, eleven 

different regression models were individually applied in order to identify the model with the best 

fit for each event. The models ranged from a cubic function (curvilinear, third order polynomial) 

for some events (men’s and women’s 400-m freestyle) to a variety of non-linear functions for 

other events (e.g., inverse function, men’s and women’s 50-m freestyle; sigmoidal function, 

men’s and women’s 200-m freestyle). While there was little difference in the discrepancies 

between predictions and actual performances for the different types of regression models 

employed, greater discrepancies did occur in swimming as the race distance increased. 

Specifically, the models used substantially overestimated the rate of progression in events 

longer than 200 m.  

Secondly, Stanula et al. (2012) used three approaches – time series forecasting using a 

moving average, and linear and non-linear regression modelling – to predict the performance 

time range for all eight finalists in every freestyle event at the 2012 Olympics. While similar 

predictions were obtained from all three models, greater discrepancies between predictions and 

actual performance times occurred as race distance increased, with each model again 

predicting substantially faster times in events longer than 200 m. One confounding variable 

inherent within the historical performance data used to construct the models in both of these 

studies is the technological advancements made to swimsuits over the last fifteen years. 

Indeed, Berthelot, Len, Hellard, Tafflet, and Toussaint (2010) identified three years (2000, 2008, 

2009) where marked improvements in swimming performances (mean performance gains of 

0.3-1.2%) occurred as a direct result of swimsuit innovations. Another confounding variable that 

may have enhanced the rate of performance progression at certain points during the timeframe 

analysed in these studies and thus contributed to their overly fast predictions is the 

improvement in performance typically observed in Olympic years (mean performance gains of 

~1%; Pyne, Trewin, & Hopkins, 2004). It is therefore apparent that a further limitation of the 

standard linear and non-linear regression methods employed in the majority of studies is a lack 

of functionality to account for and estimate the magnitude of such confounding variables.  

A relatively new method that is rapidly gaining popularity as a non-linear tool for modelling 

and predicting competitive sporting performance is artificial neural-network analysis (Lees, 

2002). Artificial neural-networks are self-learning models that use a non-linear weighting system 

to find patterns in data or to model complex relationships between input (explanatory) and 

output (dependent) variables. While standard regression models assume the dependent 
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variable to be equal to the additive effects of the predictor variables, neural networks are not 

constrained by any assumptions about the relationship between the predictor and dependent 

variables, and might therefore be expected to more realistically relate the complex non-linear 

processes of development and training adaptation to performance (Silva et al., 2007).  

Neural-network modelling has also been shown to yield more precise predictions of 

competitive swimming performance compared to standard linear (Edelmann-Nusser et al., 

2002) and non-linear (Maszczyk et al., 2012) regression models. Edelmann-Nusser et al. (2002) 

used input data of 19 competitive 200-m backstroke performances and four weeks of training-

load data prior to each competition from one swimmer to predict her performance in this event 

at the 2000 Olympic Games. The mean error in prediction of the neural-network model across 

the 19 competitive performances was much lower (12 FINA points) than that of the comparison 

multiple linear regression model (34 FINA points). Maszczyk et al. (2012) used input data 

derived from testing 249 competitive swimmers on 20 physiological, anthropometric, technical 

and swimming specific measures before and after a full season of training. These data were 

used to build one neural-network model and one non-linear regression model to identify the 

explanatory variables offering the best prediction of results over 50 m and 800 m from a smaller 

group of 60 swimmers (n=30 per distance). Once more, the mean error in prediction of the 

neural-network model was much lower for both 50-m performance (0.7 vs 1.2 s) and 800-m 

performance (8.4 vs 11.6 s) in comparison to the non-linear regression model.  

However, both of the above studies also provide good examples of a major limitation of 

neural-network modelling. Large volumes of data are typically required initially to ‘pre-train’ 

neural models, but in order to increase their predictive precision further, even larger volumes of 

data are needed. As a guide, the minimum number of datasets required is approximately double 

the number of connections between neurons in the model. Due to a lack of available data for 

their Olympic 200-m backstroke participant, Edelmann-Nusser et al. (2002) were forced to use 

28 additional datasets from a similar athlete in order to pre-train their neural-network model. 

This process obviously relies heavily on the assumptions that the documented training loads 

and adaptive behaviours of both athletes are similar, and therefore it cannot be considered a 

viable solution. Another issue that has also delayed progress of the application of neural-

network modelling to sports performance research has been the complexity associated with 

executing the method (Lees, 2002). 

The methodology of mixed linear modelling addresses many of the limitations of the 

abovementioned approaches. Mixed linear models include both fixed and random effects. In 

basic terms, the fixed effects are summarised by parameters that represent the differences or 

changes in means, and the random effects provide parameters summarising variability within or 

between subjects or groups. Mixed modelling therefore allows us to adjust for and estimate the 

magnitude of explanatory and/or confounding variables known to impact performance (e.g., new 

generation swimsuits) through the specification of fixed effects and the magnitude of other 

random sources of variability (e.g., individual differences in performance progression with age). 

This capacity also permits another application of the mixed model: monitoring and quantifying 

the effects of interventions on performance (Vandenbogaerde & Hopkins, 2010). Furthermore, 

analysis by mixed modelling uses a likelihood-based method of estimation that adjusts for 
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missing values in datasets, thus avoiding the loss of data that occurs with ANOVA (Hopkins, 

2003). 

Another advantage of mixed modelling is that this method allows individual trends to be 

modelled as polynomials when data show curvilinear patterns (Vandenbogaerde & Hopkins, 

2010). Although it is somewhat intuitive that non-linear models more closely approximate the 

non-linear adaptive behaviour of athletes than polynomial models, quadratic trajectories 

produced by mixed modelling appear to provide appropriate fits for the age-related performance 

progression patterns observed in sports such as athletics (Hollings et al., 2014), skeleton 

(Bullock & Hopkins, 2009), swimming (Pike et al., 2010), and triathlon (Malcata et al., 2014). As 

discussed above, some of the more complex non-linear regression models have been found to 

substantially overestimate rates of progression in performance, whereas others may have been 

susceptible to overfitting. It would therefore seem prudent to adhere to the law of parsimony 

(Occam’s Razor) when deciding which methodology is suitable to address the research 

questions of this PhD. This philosophical and scientific principle states that assumptions used to 

explain a process should not be complicated beyond necessity, and that when there are 

competing theories making similar predictions, the simplest approach should be selected.  

In summary, mixed linear modelling appears to have an advantage over alternative 

methodologies such as ANOVA and standard linear and non-linear regression analyses for the 

purposes of modelling large amounts of repeated-measures data in order to develop tools and 

strategies for monitoring and enhancing athletic performance. Neural-network modelling is an 

interesting and promising methodology, but both the volume of data required to construct 

models with reasonable predictive power, and the complexities involved in the modelling 

process, mean it does not constitute a viable option for the majority of the projects of this PhD. 

 

1.4. Thesis Structure 

An overview of the thesis structure and brief descriptions of each of the seven chapters are 

presented in Figure 1. This figure details how each of the chapters of the thesis link to form a 

cohesive whole. The references for each chapter are collated at the end of the thesis in APA 6th 

edition format. 

The first and present chapter aims to set the scene for the reader by outlining the thesis 

flow, rationale, theoretical framework, research objectives and methodological approach. The 

subsequent chapters consist of a systematic review (Chapter 2) and four original investigations 

(Chapters 3-6). In keeping with the overarching objective of the thesis, each original-research 

project of the PhD aims to investigate a different aspect of athlete development: benchmarking 

(Chapter 3), talent identification (Chapter 4), career training (Chapter 5) and performance-

enhancing strategies and interventions (Chapter 6). 

Three of the original-research studies employed retrospective cohort designs and involved 

analysing data that were already available online; the exception was Chapter 5, which involved 

collection of questionnaire data. The rationale behind this selection of study designs for the PhD 

was twofold. Firstly, we considered it unethical to submit our target population to the rigorous 

procedures of a prospective intervention study, when the information that was required to 
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answer the main questions of this PhD was already available to us online. Secondly, 

prospective intervention studies were impractical, as an intervention lasting at least several 

years would have been needed to address factors affecting career progression, which was 

outside the scope of this three-year PhD project. 

Presented in Chapter 2 is a systematic review of the age of peak competitive performance 

of elite athletes, which has been submitted to Sports Medicine. Chapter 3 presents age-related 

performance progression benchmarks for elite-level swimmers and has been published in the 

European Journal of Sport Science. In Chapter 4, I have compared the accuracy of four 

methods of predicting a nation’s Olympic qualifying swimmers. This study was performed in 

collaboration with Swimming Australia. In Chapter 5, relationships between career training 

hours and progression of competitive performance in New Zealand swimmers have been 

investigated. In Chapter 6, I have produced a method for assessing the performance 

progression of a New Zealand’s swim squads and have used the method to evaluate the effects 

of centralisation of New Zealand’s elite swim programme. The manuscripts for chapters 4 and 6 

have been published in the International Journal of Sports Physiology and Performance, while 

the manuscript for chapter 5 has been submitted to the European Journal of Sport Science for 

publication. Finally, Chapter 7 draws together the conclusions of each study to answer the 

overarching research question of the thesis and present suggestions for future research 

directions. 

In the appendices I have first presented samples of the SAS datasets and coding used to 

run each of the mixed models within the thesis. Next, copies of conference presentations for 

three of the original-research studies are presented. Appendix B shows the poster of “Career 

Performance Trajectories of Olympic Swimmers” (Chapter 3), presented at the 17th meeting of 

the European Congress of Sport Science in Bruges, Belgium, in July 2012. Appendix C contains 

the PowerPoint slides for “Predicting a Nation’s Olympic-Qualifying Swimmers” (Chapter 4) that 

I presented at the 11th International Symposium of Biomechanics and Medicine in Swimming in 

Canberra, Australia, in May 2014. Appendix D shows the mini-oral PowerPoint slides for “The 

Performance Effect of Centralising a Nation’s Elite Swim Programme”, which won second place 

in the Young Investigator Award at the 19th meeting of the European Congress of Sport Science 

in Amsterdam, The Netherlands, in July 2014. In Appendices E and F, copies of the PowerPoint 

slides for two conference presentations given by colleague and research collaborator Dr Pat 

Lipinska are displayed. Through my PhD, I assisted with data collection and analysis, 

interpretation of research findings, and manuscript review for these two studies, which 

investigated relationships between pacing and performance in distance swimmers. The 

remaining appendices contain examples of the practical applications of the findings of this 

thesis. In Appendix G, I have included a sample of the performance report provided to 

Swimming NZ and the High Performance Sport NZ board in October 2012. This report allows 

the individual performance trends of members of the New Zealand  2012 Olympic swim team to 

be compared against the trajectories of the 2012 Olympic medallists, developed as part of 

Chapter 2. Appendix H contains an example of an Excel-based application designed to allow 

Swimming NZ to assess the performance progression of any individual swimmer against the 

performance progression benchmarks of Olympic top-16 swimmers from Beijing and London, 
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developed in Chapter 2. Finally, in Appendix I, I present an example of an Excel-based 

application designed to allow Swimming NZ to assess the performance progression of all New 

Zealand swimming clubs since 2002, and to compare progressions between clubs. The data 

contained within the application was generated as part of the 6th Chapter of this thesis. 
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• Theoretical rationale: Importance of objectively monitoring individual               
performance progression for swimmer development 

• Methodological approach: Mixed linear modelling  
• Thesis question: Can mixed modelling provide objective solutions to 

appropriately monitor and assess performance progression in swimmers? 

 Chapter 1 ‐ Introduction 

• Age of peak competitive performance of elite athletes: A systematic review 
(submitted to Sports Medicine) 

 Chapter 2 – Systematic Literature Review 

• Career performance trajectories of Olympic swimmers: Benchmarks for talent 
development (European Journal of Sport Science, 14, 643‐651) 

 Chapter 3 – Benchmarking 

• Predicting a nation’s Olympic‐qualifying swimmers (International Journal of 
Sports Physiology and Performance, 10, 431‐435) 

 Chapter 4 – Talent identification 

• Relationships between career training and performance in competitive 

swimmers (submitted to European Journal of Sport Science) 

 Chapter 5 – Career training 

• The performance effect of centralising a nation’s elite swim programme 
(International Journal of Sports Physiology and Performance, 10, 198‐203) 

 Chapter 6 – Interventions 

• Theoretical contributions: Statistical methods and models for assessing the 
performance progression of swimmers 

• Practical contributions: Tools and applications for coaches, scientists and 
national sporting organisations to track and improve swimmer development 

 Chapter 7 – Discussion and Conclusion 

Figure 1. Overview of the structure of the thesis. 

Monitoring and Modelling Swim Performance 
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1.5. Research Publications and Conference Presentations 

The research studies from this doctoral thesis (Chapters 2-6) have resulted in conferences 

presentations and in either journal publications or articles that have been submitted for 

publication and are currently under peer review (Table 1).  

 

Table 1. Research publications and conference presentations originating from Chapters 2-6 of 
this PhD thesis. 
 

Chapter Conference Presentation or Publication 

Chapter 2 Allen, S. V., & Hopkins, W. G. (submitted). Age of peak competitive 
performance of elite athletes: A systematic review. Sports Medicine. 

Chapter 3 Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W. G. (2014). Career 
performance trajectories of Olympic swimmers: Benchmarks for talent 
development. European Journal of Sport Science, 14, 643-651. 
 

Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W. G. (2012). Career 
performance trajectories of Olympic swimmers. Presented at the 17th meeting 
of the European College of Sport Science, Bruges, Belgium. 

Chapter 4 Allen, S. V., Vandenbogaerde, T. J., Pyne, D. B., & Hopkins, W. G. (2015). 
Predicting a nation’s Olympic-qualifying swimmers. International Journal of 
Sports Physiology and Performance, 10, 431-435. 
 

Allen, S. V., Vandenbogaerde, T. J., Pyne, D. B., & Hopkins, W. G. (2014). 
Predicting a nation’s Olympic-qualifying swimmers. Presented at the 11th 
International Symposium of Biomechanics and Medicine in Swimming, 
Canberra, Australia. 

Chapter 5 Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W. G. (submitted). 
Relationships between career training and performance in competitive 
swimmers. European Journal of Sport Science.  

Chapter 6 Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W. G. (2015). The performance 
effect of centralising a nation’s elite swim programme. International Journal of 
Sports Physiology and Performance, 10, 198-203. 
 

Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W. G. (2014). The performance 
effect of centralising a nation’s elite swim programme. Presented at the 19th 
meeting of the European College of Sport Science, Amsterdam, Netherlands. 
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CHAPTER 2 

 
AGE OF PEAK COMPETITIVE PERFORMANCE OF ELITE ATHLETES 

 
This chapter comprises the following paper submitted to Sports Medicine: 

Allen, S. V., & Hopkins, W. G. (submitted). Age of peak competitive performance of elite 

athletes: A systematic review. Sports Medicine. 

 

Overview 

Knowledge of the age at which top athletes achieve peak performance could provide important 

information for long-term athlete development programmes, for event selection, and for strategic 

decisions regarding resource allocation. Purpose: To systematically review estimates of age of 

peak performance of elite athletes in various sports and events. Methods: We searched 

SPORTDiscus, PubMed and Google Scholar for studies providing estimates of age of peak 

performance. Here we report estimates as means only for top athletes. Estimates were 

assigned to three event-type categories on the basis of the predominant attributes required for 

success in the given event (explosive power/sprint, endurance, mixed/skill) and then plotted by 

event duration for analysis of trends. Results: For both sexes, linear trends reasonably 

approximated the relationships between event duration and estimates of age of peak 

performance for explosive power/sprint events and for endurance events. In explosive 

power/sprint events, estimates decreased with increasing event duration, ranging from ~27 y 

(athletics throws, ~1 to 5 s) to ~20 y (swimming, ~21 to 245 s), likely reflecting the need for 

greater experience to achieve mastery of the complex skills required for successful performance 

in single-effort explosive events. Conversely, estimates for endurance events increased with 

increasing event duration, ranging from ~20 y (swimming, ~2 to 15 min) to ~39 y (ultra-distance 

cycling, ~27-29 h). In longer duration events of a lower absolute intensity, in which factors such 

as pacing strategies and mental resilience contribute to performance, accumulation of cognitive 

and/or experiential skills presumably offsets the decline in physical ability that typically occurs 

beyond mid-20s. There was little difference in estimates of peak age for these event types 

between men and women. Estimations of the age of peak performance for athletes specialising 

in specific events, and of event durations that may best suit talent identification athletes can be 

obtained from the equations of the linear trends. There were insufficient data to investigate 

trends for mixed/skill events. Conclusion: Understanding the relationships between age of 

peak competitive performance and event duration should be useful for tracking athlete 

progression and talent identification.  
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2.1. Introduction 

The aging process is a key driver of an athlete’s physical and mental development, which 

in turn plays a critical role in determining their competitive performance (Schulz & Curnow, 

1988). Knowledge of age of peak performance in elite sport could provide coaches and 

scientists with valuable information to guide long-term training plans and to help gauge an 

athlete’s progression towards their performance targets (Rüst, Knechtle, Knechtle, Rosemann, 

& Lepers, 2012a; Sokolovas, 2006a). Such information could also be beneficial for 

administrators making athlete-selection decisions for major competitions, and for national 

sporting organisations tasked with allocating funding and resources based on an athlete’s 

chances of achieving future medal-winning success (Allen, Vandenbogaerde, & Hopkins, 2014; 

Hollings et al., 2014). 

Research into the age-related development of the human species indicates that various 

biological capacities typically reach their peak at different stages of an individual’s life (Schulz, 

Musa, Staszewski, & Siegle, 1994; Simonton, 1988). For example, exercise-physiology 

literature suggests that peak physiological function occurs just prior to age 30 (Gabbard, 2004), 

whereas our ability to accumulate, integrate and apply cognitive skills has been shown to 

increase until at least age 60 (Salthouse, 2012). It therefore follows that the age of peak 

competitive performance is likely to vary between athletes from different sports and events, 

depending on the specific skills and attributes required for success in a particular event. 

Understanding the differences in the age-performance relationship between different event 

types could be useful for mature-age talent identification and transfer campaigns, similar to 

those recently undertaken by UK Sport and the Australian Institute of Sport (Vaeyens, Güllich, 

Warr, & Philippaerts, 2009). These campaigns aim to systematically “recycle” athletes with 

transferable talent characteristics developed from participating in popular sports with strong 

competitive fields, placing them into less popular sports with weaker fields in which athletic 

performance typically peaks at late enough ages to allow these athletes to develop the sport-

specific skills required for success.  

Since the first comprehensive study of age of peak performance of top athletes was 

published in 1988 (Schulz & Curnow, 1988), this topic has become the focus of considerable 

research interest across a large number of sports. Researchers have employed typically one of 

three methods: identifying the age at which top athletes achieved their best performance, 

calculating the age of top-ranked athletes competing at pinnacle events such as the Olympics, 

or modelling the age of peak performance of top athletes using their age-related career 

performance data. One aim of such research has been to quantify the changes observed in age 

of peak performance of elite athletes over time. Studies of several different types of sports, 

including baseball (Fair, 2008), cycling (Shoak et al., 2013), running (Knechtle, Rüst, 

Rosemann, & Lepers, 2012), tennis (Kovalchik, 2014), and triathlon (Rüst, Knechtle, 

Rosemann, & Lepers, 2012b), have consistently observed a marked increase in the age of peak 

performance of elite athletes between the end of the 20th century and the beginning of the 21st 

century, presumably owing to factors such as recent advances in technology and greater 

opportunities for athletes to establish careers through their sporting success. Given this 
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evidence, there is a clear need to investigate estimates of age of peak competitive performance 

in elite athletes of the 21st century, in order to establish findings relevant to the modern-day 

sporting environment. 

The present study is the first systematic review on the topic of age of peak competitive 

performance of elite athletes. Here, we have documented the different methods used by 

researchers to quantify estimates of age of peak performance. We have also investigated 

differences in age of peak performance between different types of competitive events and 

presented estimates of age of peak performance relevant to modern-day athletes. 

 

2.2. Methods  

The methods used for this systematic review follow the structure outlined in the guidelines 

given by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

statement (Moher, Liberati, Tetzlaff, & Altman, 2009).  

Data Search and Study Selection 

In October 2014 we undertook a Web-based literature search for estimates of the age of 

peak performance of elite athletes in different sports. We searched the SPORTDiscus and 

PubMed databases for the following terms: (sport or athlete*) and performance and (age or 

longitudinal) and (peak or progress* or change* or effect). A search was also performed in 

Google Scholar for the key words age peak performance sport, and additional studies were 

selected using the option of searching related articles for relevant citations (this option was 

limited to 101 citations). One investigator (SVA) then screened all titles obtained through these 

searches and extracted only studies with appropriate abstracts for full review.  

To be included in the literature review, the full-text article had to be written in English, 

contain a substantial proportion of data from after the year 1999, and report either modelled 

estimates of the age of peak performance in a sport, or data showing the age at which top 

athletes achieved their best performance in a sport. Studies reporting the age of top-ranked 

competitors in a sport or event were also included, provided they contained at least 3 y of data 

from ≥50 athletes competing at pinnacle events in the sport. We excluded eleven studies in 

which ages of peak performance were presented for sub-elite athletes, seven studies which 

reported estimates of age of peak performance over a range of five or more years, seven 

studies with data predominantly from pre-2000, and six studies with insufficient data. No studies 

were excluded for reasons of poor quality. Figure 2 summarises our data search and study 

selection process.  

Data Extraction and Analysis 

Estimates of age of peak performance for top athletes of each sex in each sport and event 

are shown as means and standard deviations, with uncertainty expressed as 90% confidence 

intervals. For three studies in which categorical age and performance was investigated 

(Brander, Egan, & Yeung, 2014; Fried & Tauer, 2011; Wolfrum, Knechtle, Rüst, Rosemann, & 
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Lepers, 2013), estimates of the age-range of peak performance are presented, but SDs and 

confidence intervals were not available. Between-subject SDs are shown for studies in which 

individual age-related career performance trends were developed (Allen et al., 2014; Brander et 

al., 2014; Hollings et al., 2014; Malcata et al., 2014) and for one study in which the age of best 

career performance of top athletes was calculated (Sokolovas, 2006a). In studies where annual 

data on the age of top-ranked performers at pinnacle events over a number of years were 

presented (Cejka, Knechtle, Rüst, Rosemann, & Lepers, 2014; Hunter, Stevens, Magennis, 

Skelton, & Fauth, 2011; Kovalchik, 2014; Rüst et al., 2012b; Rüst, Knechtle, Rosemann, & 

Lepers, 2013), we chose to calculate means and standard deviations for the age of peak 

performance using data from the year 2000 onwards, in order to generate estimates relevant to 

modern-day sport. To negate any confounding effects of secular trends, the presented SDs for 

these studies are the means of the between-subject SD for each year. Between-subject SDs 

could not be obtained for a number of studies in which fixed-effects models produced mean 

estimates of age of peak performance (Anderson, 2014; Berthelot et al., 2012; Brander et al., 

2014; Fried & Tauer, 2011; Tilinger, Kovář, & Hlavatá, 2005), but most authors provided 

standard errors for their models, which we used to compute confidence limits for these 

estimates. Attempts to contact authors of eight studies in which standard deviations and/or 

standard errors were not reported (Anderson, 2014; Berthelot et al., 2012; Cejka et al., 2014; 

Fried & Tauer, 2011; Guillame et al., 2011; Kovalchik, 2014; Tilinger et al., 2005; Tiruneh, 

2010), resulted in only one successful outcome (Kovalchik, 2014). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of study search and selection. 

Initial database search: 
PubMed, 4158 studies 
SPORTDiscus, 1024 studies 

Additional articles identified: 
Google Scholar, 14 studies  

Articles selected based 
on title: 
106 studies 

Articles selected based 
on abstract: 
49 studies 

57 studies excluded based 
on abstract 

Full-text articles included 
in systematic review: 
18 studies 

31 studies excluded: 
11 with sub-elite athletes 
7 with imprecise estimates 

of age of peak 
performance 

7 with mainly pre-2000 data 
6 with insufficient data 
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To investigate differences in the age of peak performance between different kinds of 

events, estimates were split into three event-type categories on the basis of the predominant 

attributes required for success in the given event (explosive power/sprint, endurance, and 

mixed/skill), and then plotted by event duration. For each event type with estimates across a 

sufficient range of event durations, we then added best-fit linear regression lines to create 

graphs that can be used for talent identification and event selection. By working through the 

data we found that the linear regression lines for both explosive power/sprint events and 

endurance events were a good fit for the estimates of peak age for middle-distance swimming 

(200-m to 400-m events), presumably owing to the need for speed and endurance for 

successful performance in these events. We therefore chose to assign these estimates to both 

categories. Uncertainty in the accuracy of predictions made with these regression lines was 

expressed as standard errors of the estimate.  

All 18 studies produced estimates of age of peak performance for male athletes, while 

corresponding estimates for their female counterparts were presented only by 13 of these 

studies. For studies where data were provided for both sexes, paired t-tests were performed for 

each event type with a sufficient number of estimates (>5) using a published spreadsheet 

(Hopkins, 2006a) to investigate the mean differences in age of peak performance between 

sexes. We used non-clinical magnitude-based inferences to assess these differences (Hopkins, 

Marshall, Batterham, & Hanin, 2009), whereby the smallest important difference was 0.64 y (0.2 

of the combined between-subject SD for age of peak performance for all studies with available 

data, 3.2 y). Thresholds for moderate, large and very large differences were 1.9 y, 3.8 y, and 

6.4 y, respectively (0.6, 1.2, and 2.0 of 3.2 y; Hopkins et al., 2009). Standard errors of the 

estimate for each of the regression lines were doubled for interpretation of their magnitude 

using this scale (Smith & Hopkins, 2011). Uncertainty in mean differences was expressed as 

90% confidence limits and as likelihoods that the true value of the effect represents a 

substantial difference between sexes (Batterham & Hopkins, 2006). 

 

2.3. Results 

The retrieved estimates of the age of peak performance of top athletes of each sex in each 

sport and event are summarised in Table 2 and plotted for analysis of trends in Figure 3. In 

Figure 3, mean estimates of the age of peak performance for each of the three event types are 

shown by event duration. For both sexes, clear and opposite trends were evident for 

explosive/sprint events and for endurance events. In explosive/sprint events, estimates showed 

a similar decrease with increasing event duration for males and females, ranging from a peak 

age of ~27 y for throwing events in athletics (~1 to 5 s) to ~20 y for swimming events (~21 to 

245 s). In endurance events, estimates of peak age increased markedly with increasing event 

duration in both sexes, ranging from ~20 y for swimming events (~2 to 15 min) to ~39 y for ultra-

distance cycling (~27 to 29 h). Patterns for mixed/skill events could not be discerned, owing to 

the smaller number of estimates retrieved for this event type.  
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Equations for the best-fit linear regression lines and corresponding standard errors of the 

estimate for each sex and event-type combination are also shown in Figure 3. The magnitude of 

these standard errors was large for female endurance events, and moderate for all other sex 

and event-type combinations. By using simple algebra, we were able to solve the simultaneous 

equations for explosive/sprint and endurance events for each sex to reveal the points of 

intersection of the regression lines: event durations of ~4 min (279 s for males, 241 s for 

females).  

For studies where estimates of age of peak performance were presented for both sexes, 

male explosive/sprint athletes displayed a higher peak-performance age than their female 

counterparts by a borderline trivial-small mean amount of 0.6 y (90% confidence limits ±0.7 y, 

possibly substantial). In endurance events, the mean difference in age of peak performance 

between males and females was trivial in magnitude but unclear (0.1 y, ±1.0 y).  

 

2.4. Discussion 

In this systematic review we have reported estimates of age of peak performance of elite 

athletes for different sports and events from 18 studies. By plotting mean estimates by event 

duration, we have shown that clear and opposite linear trends closely approximate the 

relationships between event duration and age of peak performance for explosive power/sprint 

events and for endurance events. The equations of these linear trends have provided a tool that 

can be used either to help assess the future prospects of an athlete specialising in a particular 

event based on their predicted age of peak performance, or to help direct event selection for 

mature-age talent identification and transfer athletes. Given that the points of intersection of 

these linear trends occurred at event durations of approximately 4 min for both sexes, athletes 

typically competing in events shorter than this duration should use the explosive/sprint 

equations to estimate their age of peak performance, whereas the endurance equations are 

more appropriate for those specialising in longer events.  

Our findings that age of peak performance tended to decrease with increasing event 

duration for events in which performance is determined mainly by explosive power output and 

sprint ability may reflect the differing contributions of skill and technique to performance in these 

events. Athletics throws events (~1-5 s) involve co-ordination of a sequence of complex motor 

patterns within a rapidly executed single effort in order to efficiently transfer explosive power to 

the thrown implement (Bartlett, 2007), which inevitably requires many years of training and 

experience to master (Hollings et al., 2014). In athletics track sprint events (~10-55 s), gross 

motor patterns are repeated over a number of stride cycles, so performance in these events is 

likely more dependent on expression of raw power than on acquisition and application of skill 

(Hollings et al., 2014). Although technique is also a critical determinant of performance in sprint 

and middle-distance swimming (~21-245 s; Barbosa, Costa, & Marinho, 2013; Figueiredo, 

Pendergast, Vilas-Boas, & Fernandes, 2013), the younger age of peak performance observed 

for athletes in these events may relate to differences in the typical age of specialisation in a 

certain sport between swimmers and athletes from most other sports. For example, among the 

Olympians of 2004, the mean age of specialisation reported by swimmers was 8 y, compared 
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Table 2. Estimates of age of peak performance of elite athletes separately by event, event type, sport, and sex. Information regarding event duration, method of 
estimation of peak age and subjects and data included in the analysis is also shown. 

     Menb Womenb 

Event type 
and study 

Sport and event 
Event 
durationa Method Subjects and data 

Age of 
peak  

90
% 
CL 

Age of 
peak 

90
% 
CL 

Explosive/  (s)       
Sprint Athletics        
Berthelot et 

al. (2012) 
Sprintsc 
 

10-50  Mean exponential growth and 
decay curve 

Best annual career performances of 
world-ranked top-10 (1980-2009) 

25.8  
 

? 
 

25.7  
 

? 
 

Hollings et 
al. (2014) 

 

Sprints, hurdlesd 
Jumpse 

Throwsf 

10-55  
5  
1-5  

Individual quadratic curves via 
mixed modelling 

All competition performances of 
world-ranked top-12 (field) or top-
16 (track) (2000-2009) 

25.2 ± 2.3 
25.8 ± 2.1 
28.0 ± 2.5 

0.3 
0.3 
0.4 

25.7 ± 2.4 
25.6 ± 2.7 
26.7 ± 3.3 

0.3 
0.4 
0.6 

Tilinger et 
al. (2005) 

 

Sprintsg 
Jumpsh 

Throwsi 

10-20 
5  
1  

Mean quadratic curve via 
regression 

 

16 world-prominent sprinters 
55 world-prominent jumpers 
31 world-prominent throwers 

24.5 
24 
26.5 

? 
? 
? 

- 
- 
- 

- 
- 
- 

 Swimming        
Allen et al. 

(2014) 
50 to 100-m all 

Olympic events 
21-65 Individual quadratic curves via 

mixed modelling 
Best annual career performances of 

Olympic top-16 (2008, 2012) 
25.0 ± 1.9 
 

0.3 
 

23.3 ± 2.8 
 

0.6 
 

Berthelot et 
al. (2012) 

50 to 100-m free 
 

21-54 Mean exponential growth and 
decay curve 

Best annual career performances of 
world-ranked top-10 (1980-2009) 

22.4  
 

? 
 

22.8  
 

? 
 

Sokolovas 
(2006a) 

50 to 100-m all 
Olympic events 

21-65 Age at best career 
performance 

 

Top-10 best swimmers in history 
 

23.1 ± 2.6 
 

0.6 
 

21.3 ± 4.1 
 

1.0 
 

Wolfrum et 
al. (2013) 

50 to 100-m 
breast 

   free 

27-65 
21-54 

Age-group of top-ranked 
performers at pinnacle 
events 

Top-8 World Championships 
finishers between 2003 and 2011 

26-27  
28-29  

 
 

22-23  
24-27  

 
 

Endurance  (h)       
 Athletics        
Hollings et 

al. (2014) 
Middle-distancej 0.03-0.5 Individual quadratic curves via 

mixed modelling 
All competition performances of 

world-ranked top-12 (2000-2009) 
24.9 ± 2.4 
 

0.3 
 

26.7 ± 3.0 
 

0.5 
 

Berthelot et 
al. (2012) 

Middle-distancek 0.03-0.5 Mean exponential growth and 
decay curve 

Best annual career performances of 
world-ranked top-10 (1980-2009) 

25.0  
 

? 
 

25.3  
 

? 
 

Berthelot et 
al. (2012) 

Marathon 2.1-2.3 Mean exponential growth and 
decay curve 

Best annual career performances of 
world-ranked top-10 (1980-2009) 

31 .6  ? 27.1  ? 

Hunter et  2.1-2.3 Age of top-ranked performers Top-5 World Marathon Majors 28.8 ± 3.7 0.4 29.8 ± 3.8 0.4 
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al. (2011) at pinnacle events finishers (2000-2009) 
Cejka et al. 

(2014) 
100-km ultra-

marathon 
6.5-7.5 Age of top-ranked performers 

at pinnacle events 
Annual top-10 fastest athletes from 

all top races (1960-2012) 
34.5 ± ? 0.2 

 
34.9 ± ? 
 

0.2 

Rüst et al. 
(2013) 

100-mile ultra-
marathon 

12-14 Age of top-ranked performers 
at pinnacle events 

Top-10 finishers from all top races 
(2000-2011) 

37.3 ± 6.3 
 

0.3 
 

38.6 ± 5.6 
 

0.2 
 

 Cycling        
Anderson 

(2014) 
Cyclo-cross 

 
1 Mean quadratic curve 

estimated from race 
rankings 

103 cyclo-cross riders across 8 
World Cup races (2012-2013) 

30.2 
 

? 
 

- 
 

- 
 

Shoak et al. 
(2013) 

Ultra-distance 27-29 Age of top-ranked performers 
at pinnacle events 

Furnace Creek 508 and Swiss 
Cycling Marathon winners (2000-
2011) 

38  1.8 
 

39  
 

2.5 
 

 Swimming        
Allen et al. 

(2014) 
200 to 1500-m all 

Olympic events 
0.03-

0.25 
Individual quadratic curves via 

mixed modelling 
Best annual career performances of 

Olympic top-16 (2008, 2012) 
23.6 ± 1.9 
 

0.3 
 

22.1 ± 2.0 
 

0.3 
 

Berthelot et 
al. (2012) 

200 to 1500-m 
free 

0.03-
0.25 

Mean exponential growth and 
decay curve 

Best annual career performances of 
world-ranked top-10 (1980-2009) 

20.4  
 

? 
 

20.0  
 

? 
 

Sokolovas 
(2006a) 

200 to 1500-m all 
Olympic events 

0.03-
0.25 

Age at best career 
performance 

 

Top-10 best swimmers in history 
 

21.7 ± 2.5 
 

0.5 
 

19.8 ± 3.1 
 

0.6 
 

Wolfrum et 
al. (2013) 

200-m breast 
           free 

0.04 
0.03 

Age-group of top-ranked 
performers at pinnacle 
events 

Top-8 World Championships 
finishers between 2003 and 2011 

20-21 
22-23 

 
 

22-23  
22-23 

? 
? 

 Triathlon        
Malcata et 

al. (2014) 
Olympic-distance 1.8-2.1 Individual quadratic curves via 

mixed modelling 
All competition performances of top-

30 triathletes (2000-2012) 
27.6 ± 2.1 
 

0.6 
 

27.1 ± 3.6 
 

1.1 
 

Rüst et al. 
(2012b) 

Ironman 8-9 Age of top-ranked performers 
at pinnacle events 

Top-10 at World Championships 
every year (2000-2012) 

32 ± 3 0.4 34 ± 4 0.5 

Mixed  (h)       
Brander et 

al. (2014) 
Ice hockey 1 1. Age-group of top-ranked 

performers  
Scoring index for Top-10 NHL 

forwards (1997-2012) 
27-29 
 

 
 

- 
 

- 
 

   2. Age-group (1-y categories) 
with best mean performance 

Scoring index for all NHL forwards 
(1997-2012) 

28  
 

 
 

- 
 

- 
 

   3. Mean cubic curve via 
regression 

 27.6  
 

0.4 
 

- 
 

- 
 

   4. Individual quadratic curves   27.7 ± 3.3 0.2 - - 
   1. Age-group of top-ranked Plus-minus index for Top-10 NHL 23-33   - - 
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performers  defencemen (1997-2012)     
   2. Age-group (1-y categories) 

with best mean performance 
Plus-minus index for all NHL 

defencemen (1997-2012) 
27  
 

 
 

- 
 

- 
 

   3. Mean quadratic curve via 
regression 

 27.8  
 

3.0 
 

- 
 

- 
 

   4. Individual quadratic curves   28.2 ± 3.9 0.4 - - 
Guillaume 

et al. 
(2011) 

Tennis 2-3.5 Individual exponential growth 
and decay curves 

Top-10 world-ranked players (1985-
2009) 

23.3 ± ? 
 

? 
 

21.5 ± ? 
 

? 

Kovalchik 
(2014) 

 
 

 Age of top-ranked performers Top-30 world-ranked players (2000-
2012) 

25.8 ± 3.1 
 

1.0 - 
 

- 

Skill  (h)       
Fried & 

Tauer 
(2011) 

Golf 5 1. Rolling mean (1-y 
categories) 

Earnings index of PGA tour golfers 
(2004-2006) 

36  
 

? 
 

- 
 

- 
 

   2. Mean quadratic curve via 
regression  

 35 ? 
 

- 
 

- 
 

Tiruneh 
(2010) 

 5 Age of top-ranked performers 
at pinnacle events 

PGA tour winners (2003-2007), 
LPGA tour winners (2002-2006) 

35.1 ± 6.2 0.7 29.9 ± ? ? 

CL confidence limits 
aApproximate range of event durations are shown for top performers in each event. 
bData are mean ± SD, apart from for methods estimating an age-group (range) of peak mean performance. Between-subject SDs are shown for methods with 
individual age-performance trends and for methods investigating age at best performance. For methods investigating age of top-ranked performers at pinnacle 
events over a number of years, a mean of the between-subject SD for each year is presented. SDs are missing where between-subject SDs could not be obtained 
owing to the nature of the method utilised. The ? symbol denotes that information required to calculate between-subject SDs or 90% CL was not provided. The – 
symbol denotes that estimates were not generated for women.  
c100-m and 400-m runs 
d100-m, 200-m and 400-m runs; 100-m (women), 110-m (men) and 400-m hurdles 
eHigh jump, long jump, pole vault, triple jump 
fDiscus throw, hammer throw, javelin throw, shot put 
g100-m and 200-m runs 
hLong jump, pole vault 
iDiscus throw, shot put 
j800-m, 1500-m, 3000-m steeple, 5000-m and 10000-m runs 
k800-m, 1500-m, 5000-m (men), 10000-m runs 
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Figure 3. Age of peak competitive sporting performance (mean ± 90% confidence limits) of elite male and female athletes, shown by event duration 
(logarithmic scale). Where a grouped estimate is presented for multiple events of different durations, the duration shown is a mean for those events. 
Data are presented separately for three different event types; explosive/sprint events, endurance events, and mixed/skill events. 
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with 14 y for athletics competitors (Vaeyens et al., 2009). While the kinesthetic learning and 

reinforcement needed to develop and maintain the efficient aquatic motion necessary for 

successful swim performance is thought to require greater time investment than that for 

successful performance in most land-based sports (Balyi, 2010), it is likely that early 

specialisation at least partially contributes to the early peaking phenomenon observed in 

swimmers. 

The trend of increasing age of peak performance with increasing event duration for events 

in which performance is primarily contingent upon endurance has been documented previously 

within studies of age of peak performance across multiple events (Lepers, Sultana, Bernard, 

Hausswirth, & Brisswalter, 2010; Schulz & Curnow, 1988). One explanation for this trend may 

be that physical attributes important for success in ultra-endurance events, such as aerobic 

capacity and movement economy, generally increase progressively with increasing training 

histories and thus age (Zaryski & Smith, 2005). However, research into the age-related 

development of the human species shows that most physical capacities tend to peak around the 

age of 30 (Gabbard, 2004), implying that factors other than physiology must contribute to the 

older estimates observed for events such as marathon running, ironman triathlon, ultra-

endurance cycling and cyclo-cross (e.g., pacing and nutritional strategies, anticipating and 

dealing with environmental conditions, and mental resilience). In some events it may therefore 

be possible for older athletes to continue progressing by accumulating improvements in 

cognitive and/or experiential capacities that offset the inevitable plateau in physical ability. This 

explanation aligns well with evidence that increased age is often associated with improved job 

performance. Despite well-established declines in indicators of fluid intelligence (e.g., problem-

solving, speed of information processing) from age ~27 onwards, corresponding impairments in 

job performance beyond this age are rarely observed, owing to the human capacity to continue 

accumulating crystallised intelligence (e.g., knowledge, experience) until the age of at least 60 

(Salthouse, 2012). 

Overall, it seems possible to reach peak performance at much older ages in endurance 

events than in explosive/sprint events. This difference may be explained by the fact that the 

shorter duration and higher absolute intensity of explosive/sprint events mean it is much harder 

for athletes in these events to offset declines in their physical ability with any gains in 

knowledge, experience, skill and/or cognitive ability. Indeed, one proposed explanation for the 

lack of observable declines in job performance of older adults is that human physical and 

cognitive capacities are often assessed at their maximal level of functioning, but very seldom 

used at that level (Salthouse, 2012).     

While our literature search did not yield a sufficient number of estimates for trends to be 

quantitatively investigated for sports in the mixed/skill category (ice hockey, tennis, golf), 

observation of the available estimates reveals that peak performance in these events can be 

achieved at a wide range of ages, presumably depending on the contribution of physical, 

technical and tactical capacities to performance in each event. For example, the low physical 

demands of golf combined with the high importance of skill and mental fortitude for performance 

would seem to fit with the relatively high age of peak performance (~35 y). Perhaps surprisingly, 

given the apparent importance of accumulating physical fitness, skill and tactical knowledge for 
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success in racquet sports, ages of peak performance for tennis players were reasonably young 

(~24 y). However, data from one study did show a progressive yearly increase in the annual 

average age of top-30 ranked tennis players, with estimates of peak age rising from ~25 y in 

2006 to ~27 y in 2012 (Kovalchik, 2014). While these data led the author to speculate that this 

shift in the age of the world’s top tennis players was reflective of evolution in the factors critical 

for performance success in the sport (e.g., greater endurance), these factors may have always 

been critical for successful tennis performance, but with recent advances in science, technology 

and funding/resource provision for athlete development, more players have begun to develop 

them. Similar to that in swimmers, early specialisation has typically been common in tennis 

players (Balyi, 2010), potentially leading to artificially early ages of peak performance. With the 

improved long-term athlete development plans of modern-day national sporting organisations, 

the observed ages of peak performance of athletes in these sports may start to more closely 

reflect the ages at which the physical, mental, technical and strategic capacities required for 

successful performance typically peak within humans. If so, we would also expect to observe 

corresponding improvements in the standard of performance of these sports in the coming 

years as the capacity of their top athletes evolves.  

Of the studies that investigated changes in age of peak performance of top athletes over a 

number of years, five contained evidence of trends showing annual increases in age of peak 

performance since the year 2000 (Cejka et al., 2014; Guillaume et al., 2011; Kovalchik, 2014; 

Rüst et al., 2012b; Shoak et al., 2013). Five studies also included a substantial proportion of 

data from athletes prior to the year 2000 (Berthelot et al., 2012; Cejka et al., 2014; Guillaume et 

al., 2011; Sokolovas, 2006a; Tilinger et al., 2005), which we were unable to exclude from our 

results, owing to either the analysis method of the study, or the manner in which authors 

presented their estimates. Given this evidence, it is likely that differences in datasets were at 

least partly responsible for the between-study differences in estimates of peak age for similar 

events.  

Another factor that probably contributed to the variation observed between peak age 

estimates for similar events was differences in the methods used to quantify age of peak 

performance. Indeed, one study quantified age of peak performance of ice hockey players using 

four different methods, producing estimates that varied by ~1 to 2 y (Brander et al., 2014). For 

studies in which the age of top-ranked performers in an event was investigated, peak age 

estimates may be slightly elevated, owing to the fact that older athletes are likely to be higher 

ranked than their younger counterparts. Additionally, studies that employed either this method 

or the method of identifying the age at which top athletes achieved their best performance may 

have misestimated the timing of an athlete’s true performance peak, if it happened not to 

coincide with a major competition. While studies that used statistical modelling to quantify age 

of peak performance were not subject to these limitations, estimates produced by fixed-effects 

modelling of mean age-performance relationships do not appropriately account for the individual 

differences in these relationships that inevitably exist. Studies that modelled unique age and 

performance trends for each individual athlete may therefore have produced the most robust 

age of peak performance estimates; however, these estimates may also have been affected by 

differences in the availability of each athlete’s career performance data, given that a minimum 
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number of observations (typically 3 to 5) are required to produce a peak age estimate for an 

individual. 

On the whole, between-study differences (standard errors of the estimate) in estimates of 

peak age for similar events were moderate to large but our regression equations for each sex 

and event-type combination should still be useful to predict the age of peak performance in a 

given event. If more authors had provided standard deviations and standard errors or 

confidence limits for their peak-age estimates, it would have been possible to weight and meta-

analyse the study estimates, which would probably have improved the precision of our 

prediction equations. Additionally, with a greater number of peak-age estimates for female 

athletes, we would have been able to meta-analyse the differences between sexes. As it was, 

males were possibly older at their peak performance than females in explosive/sprint events, 

which can presumably be explained by the earlier onset of puberty in females (Baxter-Jones & 

Sherar, 2006). A similar pattern may also exist for endurance events, but more studies are 

required.  

Given the ongoing evolution of age of peak performance in many sports, as noted above, 

future research should continue to track these trends in order to provide peak-age estimates 

valid for current athletes. There is also a need for further research into the age of peak 

performance in more mixed/skill-based sports, as the majority of published articles were for 

sports with a predominant explosive power/sprint or endurance component. This imbalance 

likely reflects the difficulty of operationalising performance in sports without objective 

measurement of an individual’s performance (time, distance or score), such as most team 

sports and judgement-based sports, including combat sports, diving, and gymnastics.  

 

2.5. Conclusion 

The age of peak competitive performance of elite athletes ranges widely between different 

events, likely owing to differences in the attributes required for success between events and 

differences in the points at which these attributes typically reach their peak capacity within an 

athlete’s career. In explosive power/sprint events and endurance events, linear trends 

reasonably describe the relationships between age of peak performance and event duration. By 

estimating the equations of these trends, we have created a tool that should be useful for 

predicting the age of peak performance of athletes specialising in specific events, and for 

helping identify events that may best suit mature-age talent identification and transfer athletes.  
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CHAPTER 3 

 
CAREER PERFORMANCE TRAJECTORIES OF OLYMPIC SWIMMERS 

 
This chapter comprises the following paper published in the European Journal of Sport Science: 

Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W. G. (2014). Career performance trajectories 

of Olympic swimmers: Benchmarks for talent development. European Journal of Sport Science, 

14, 643-651. 

Overview 

The age-related progression of elite athletes to their career-best performances can provide 

benchmarks for talent development. Purpose: The purpose of this study was to model career 

performance trajectories of Olympic swimmers to develop these benchmarks. Methods: We 

searched the Web for annual best times of swimmers that were top 16 in pool events at the 

2008 or 2012 Olympics, from each swimmer’s earliest available competitive performance 

through to 2012. There were 6959 times in the 13 events for each sex, for 683 swimmers, with 

10 ± 3 performances per swimmer (mean ± SD). Progression to peak performance was tracked 

with individual quadratic trajectories derived using a mixed linear model that included 

adjustments for better performance in Olympic years and for the use of full-body polyurethane 

swimsuits in 2009. Analysis of residuals revealed appropriate fit of quadratic trends to the data. 

Results: The trajectories provided estimates of age of peak performance and the duration of 

the age window of trivial improvement and decline around the peak. Men achieved peak 

performance later than women (24.2 ± 2.1 vs 22.5 ± 2.4 y), while peak performance occurred at 

later ages for the shorter distances for both sexes (~1.5-2.0 y between sprint and distance event 

groups). Men and women had a similar duration in the peak performance window (2.6 ± 1.5 y) 

and similar progressions to peak performance over four years (2.4 ± 1.2 %) and eight years (9.5 

± 4.8 %). Conclusion: These data provide performance targets for swimmers aiming to achieve 

elite-level performance. 
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3.1. Introduction 

A clearly defined pathway of progression to elite-level sporting performance is a key 

component of a comprehensive talent development programme. By benchmarking the age-

related performance progression of their athletes against that of Olympic athletes, national 

sporting organisations could systematically identify those who are tracking towards future 

success and allocate funding and resources accordingly. The career progression profiles of top 

athletes could also be used to assist coaches with planning towards the long-term goal of 

winning an Olympic medal by allowing them to establish realistic short-term performance targets 

for younger athletes. 

While estimates of the progression required for an elite swimmer to maintain and/or 

increase their chances of medalling at an Olympics have already been established (Pyne et al., 

2004), information about performance changes of top swimmers during their early competition 

years is needed to extend the pathway to elite performance. Performance changes at any stage 

of a swimmer’s career are likely due to complex interactions between a myriad of genetic and 

environmental variables (Barbosa et al., 2013). However, during their development years, 

athletes are also likely to vary substantially in factors contributing to performance such as 

aerobic and anaerobic capacities, muscle mass and power, motor control and skill acquisition, 

and psychological development, owing to the non-linear processes of growth and maturation 

(Malina, 1994). Indeed, previous research investigating the progression of young swimmers has 

established relationships between the development of various physical, physiological and 

biomechanical parameters and changes in swim performance (Lätt et al., 2009a; Lätt et al., 

2009b), although estimates of such variation in the early competition years of top swimmers are 

currently lacking. 

Given the multitude of factors that are involved in determining the performance of young 

swimmers, developing an appropriate method for tracking the career progression of top 

swimmers’ performances is a challenging process that clearly warrants research attention. A 

method of using quadratic trajectories to model the performance progression of individual 

athletes’ official competition times was first introduced for the winter Olympic sport of skeleton 

(Bullock & Hopkins, 2009). This method has since been adapted and applied to swimming (Pike 

et al., 2010), track-and-field athletics (Hollings et al., 2014) and triathlon (Malcata et al., 2014). 

The swimming study and other previous longitudinal studies of annual changes in performance 

of individual swimmers have been limited to sub-elite swimmers (Costa et al., 2011), or 

performances in freestyle events (Costa et. al., 2010; Berthelot et al., 2012). In the present 

study, we have produced quadratic trajectories for career performances of top swimmers in all 

Olympic pool events. The aim of the study was to produce estimates of age-related progression 

that can serve as benchmarks for talent development and age-related competition investment. 

 

3.2. Methods 

The swimmers we selected for this study were the top 16 in all pool events at the 2008 or 

2012 Olympic Games. We searched recognised data sources (Swimnews, swimnews.com; 
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Swimrankings, swimrankings.net; Infostrada, infostradasports.com; National Swimming 

Federations’ official databases) for each swimmer’s annual best times between 2012 and their 

earliest available competitive performance, and their date of birth. This search resulted in 6959 

times for 683 swimmers in the 13 stroke and distance combinations for each sex (23-29 

swimmers per event). Number of performances per swimmer was similar for all events (9-12 ± 

~3; range in event means ± SD). Between each swimmer’s earliest and latest competitive 

performances, 317 times for 172 swimmers were missing, presumably owing to factors such as 

swimmers taking breaks from the sport, focusing more on different events or experiencing 

illness or injury in particular years. 

Performance times were log-transformed for analysis of percent changes using the mixed 

linear model procedure (Proc Mixed) in the Statistical Analysis System (Version 9.2, SAS 

Institute, Cary, NC). The model included fixed effects to estimate a mean quadratic trend for 

chronological age, to estimate and account for a single mean improvement in performance for 

Olympic year swims, and to estimate and account for a single mean improvement for 2009 (the 

year where results were most affected by the full-body polyurethane swimsuits; from 2010 

onwards these suits were banned). Random effects were included for the unique effect of age 

on each swimmer’s performance times modelled as individual quadratic trajectories. The 

residual random effect in the model represented differences between observed and modelled 

performance times; a different residual variance was specified for three age-ranges (<17, 17-19, 

>19 years). A few performances (0 to 4 per event) with a standardised residual of >4.5 were 

classified as outliers (Hopkins et al., 2009) and were deleted from the data set for the final 

analysis. No clear pattern was evident as to when the outliers occurred.   

To create benchmarks for talent development, we calculated the percent performance time 

difference between the predicted performance time of each swimmer at each integer age from 

12 to 30 y and the gold medal time at the 2012 Olympics for each event. The individual athletes’ 

time differences were averaged with a meta-analytic mixed model (using Proc Mixed in SAS) in 

which the inverse of the square of the standard error of the estimate was a weighting factor. By 

working through the data we found that middle-distance swimmers generally reached peak 

performance one year earlier than sprinters, and one year later than distance swimmers. To 

account for these differences, we adjusted the estimates of sprint (50-100 m) and distance 

swimmers (400-1500 m) to the profile of middle-distance swimmers (200 m) by subtracting one 

year from each integer age for sprinters and adding one year to each integer age for distance 

swimmers before including them in the meta-analysis. The model provided estimates of the 

adjusted mean (fixed effect) and the between-swimmer standard deviation (random effect) of 

the percent performance time difference. A reference range for each integer age was calculated 

by assuming a t distribution given by the modelled mean and a standard deviation equal to the 

square root of the sum of the squares of the between-swimmer standard deviation, the standard 

error of the estimate of the mean, and the residual variance (from the analysis of the quadratic 

trends). We then plotted the adjusted mean percent performance time difference (± 90% 

reference range) against age for each event to create graphs that can be used to track the 

performance of any swimmer against elite-level benchmarks.  
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The modelled trajectories were used to estimate age of peak performance and the duration 

of the age window of trivial improvement and decline around the peak for each swimmer (peak 

performance window), using methods described previously (Hollings et al., 2014). In brief, the 

duration of the window was 2(√∆/a), where ∆ = the smallest worthwhile change in performance, 

and a = the quadratic coefficient of each swimmer’s trajectory. The smallest worthwhile change 

in performance used to define the duration of the peak performance window was calculated as 

0.3 of the within-swimmer variability in performance between international competitions 

(Hopkins et al., 2009). This variation has been established as 0.7% for ≤400-m events, and 

1.0% for >400-m events (Pyne et al., 2004), resulting in smallest worthwhile effects of 0.21% 

and 0.30% respectively. Progression of performance in the years leading to the peak was 

derived from each athlete’s individual quadratic trajectory. Swimmers who hadn’t reached their 

peak by the 2012 Olympics were excluded from these analyses, owing to the uncertainty 

involved in forecasting when their peak will occur.   

We examined the residuals from the mixed model to assess the suitability of using 

quadratic trends to model elite swim performance. We rescaled each swimmer’s age of peak 

performance to zero and plotted the mean value of the residuals against age for each event. 

Quadratics were considered to be an appropriate fit to our data, as we observed no systematic 

deviation of the residuals above or below the smallest worthwhile effects for each event. 

The magnitude of differences in age of peak performance, the duration of the peak 

performance window, and progression of performance in the years leading to the peak were 

calculated as standardised differences and assessed using a scale with thresholds of 0.2, 0.6, 

1.2, and 2.0 for small, moderate, large and very large respectively (Hopkins et al., 2009). 

Inferences about differences between events, event-groups, sexes, and between medallists and 

non-medallists by sex were based on uncertainty in magnitude using these values and were 

realised using a spreadsheet (Hopkins, 2006a). Uncertainty in effects was expressed as 90% 

confidence limits.   

 

3.3. Results 

Mean age-related performance time difference (±90% reference range) from the 2012 

Olympic gold medal time for each event is shown by sex in Figure 4. Each plot includes the best 

annual times and modelled career performance trajectory of one Olympic medallist swimmer. 

These trajectories were chosen to exemplify the suitability of quadratic trends for modelling the 

best annual performance times of individual swimmers, individual differences in the quadratic 

curves contributing to the shape of the mean progression band, and individual differences in the 

performance pathways of top swimmers.  

Estimates of the age of peak performance, duration of the peak-performance window, and 

progression to peak performance are presented for each individual event in Table 3, and for 

each sex, distance-group and stroke in Table 4. All substantial differences were clear for any 

comparison of sex, distance-group or stroke means, but some trivial differences were unclear. 
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Table 3. Age (y) of peak performance, number of years in the peak performance window and progressions to peak performance for each event. 
 

Event 

Men  Women 

n 
Age of peak 

performance 

Window of 
peak 

performance 

Four-year 
progression 
to peak (%) 

Eight-year 
progression 
to peak (%) 

 n 
Age of peak 
performance 

Window of 
peak 

performance 

Four-year 
progression 
to peak (%) 

Eight-year 
progression 
to peak (%) 

            
100-m Backstroke 18 24.5 ± 1.4  2.1 ± 0.6 2.3 ± 0.7 9.4 ± 2.7  17 22.6 ± 2.7 2.6 ± 1.8 2.7 ± 1.8 10.7 ± 7.4 

200-m Backstroke 15 25.2 ± 1.8 3.2 ± 1.0 1.6 ± 0.8 6.5 ± 3.1  15 21.9 ± 2.3 2.4 ± 1.5 2.7 ± 1.4 10.6 ± 5.7 

100-m Breaststroke 21 25.2 ± 1.8 2.7 ± 1.6 2.3 ± 1.2 9.3 ± 4.8  13 22.2 ± 1.7 2.9 ± 2.1 2.1 ± 0.9 8.5 ± 3.7 

200-m Breaststroke 19 24.1 ± 1.9 2.2 ± 1.3 2.7 ± 1.3 10.7 ± 5.4  12 23.7 ± 2.4 3.5 ± 1.0 1.4 ± 0.4 5.7 ± 1.5 

100-m Butterfly 25 24.0 ± 1.9 2.4 ± 1.8 2.9 ± 1.6 11.5 ± 6.4  17 23.1 ± 2.5 2.2 ± 1.0 2.6 ± 1.2 10.5 ± 5.0 

200-m Butterfly 17 24.3 ± 1.6 3.3 ± 2.6 2.2 ± 1.3 8.8 ± 5.4  16 22.0 ± 2.3 2.4 ± 1.7 2.9 ± 1.6 11.5 ± 6.5 

50-m Freestyle 20 25.9 ± 1.9 3.1 ± 1.8 1.9 ± 0.9 7.6 ± 3.5  6 26.1 ± 4.0 4.8 ± 2.9 1.3 ± 0.9 5.4 ± 3.4 

100-m Freestyle 20 25.3 ± 2.0 2.6 ± 1.3 2.1 ± 0.8 8.3 ± 3.1  15 24.2 ± 2.6 2.9 ± 1.2 1.9 ± 0.8 7.5 ± 3.1 

200-m Freestyle 18 23.6 ± 2.4 2.1 ± 1.0 2.4 ± 1.0 9.7 ± 4.0  17 22.3 ± 1.4 2.5 ± 1.6 2.4 ± 0.9 9.5 ± 3.7 

400-m Freestyle 21 22.9 ± 2.0 2.3 ± 1.3 2.7 ± 1.4 10.7 ± 5.7  20 22.3 ± 1.9 2.1 ± 1.1 2.5 ± 1.1 9.8 ± 4.4 

800-m Freestyle - - - - -  12 21.9 ± 1.5 2.8 ± 1.3 2.3 ± 0.9 9.3 ± 3.4 

1500-m Freestyle 17 22.9 ± 2.2 2.9 ± 1.5 2.4 ± 1.1 9.5 ± 4.3  - - -  - - 

200-m IM 14 24.8 ± 1.4 3.0 ± 1.1 1.7 ± 0.4 6.7 ± 1.7  18 21.7 ± 1.9 2.1 ± 1.2 2.8 ± 1.3 11.2 ± 5.2 

400-m IM 19 22.7 ± 1.5 2.2 ± 1.1 2.7 ± 1.5 10.9 ± 5.9  16 21.4 ± 2.0 2.3 ± 1.3 2.5 ± 1.0 10.0 ± 4.1 

Note: Data are mean ± SD. IM = Individual Medley. 
Uncertainties (±90% confidence limits) for pairwise comparisons are ~±1.3 y, ~±1.0 y, ~±0.7 %, and ~±2.6 % for age of peak performance, window of peak 

performance, four-year progression to peak, and eight-year progression to peak, respectively.   
Differences of  > ~0.8 y, > ~0.7 y, > ~0.4 %, and > ~1.7 % are clear at the 90% level for pairwise comparisons for each respective variable (e.g., clear difference in 

age of peak performance for men 100-m backstroke vs men 400-m freestyle). Increase these thresholds by a factor of 1.6 for clarity at the 99% level 
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Table 4. Age of peak performance, duration of the peak-performance window, and progressions to peak performance by sex, distance-group, and 
stroke.  

 
n 

Age (y) of peak 

performance 
Window of peak 
performance (y) 

Four-year  
progression to 

peak (%) 

Eight-year  
progression to 

peak (%) 

Uncertainty in group 
means (proportion of 

s)a 

       
Male swimmers 244 24.2 ± 2.1 2.6 ± 1.5 2.3 ± 1.2 9.4 ± 4.8 0.10 

Sprint  104 25.0 ± 1.9 2.6 ± 1.5 2.3 ± 1.1 9.3 ± 4.6 0.16 

Middle-distance  83 24.4 ± 1.9 2.8 ± 1.6 2.2 ± 1.1 8.7 ± 4.5 0.17 

Distance  
 

57 22.8 ± 1.9 2.5 ± 1.3 2.4 ± 1.3 10.4 ± 5.3 0.22 

Backstroke 33 24.8 ± 1.5 2.6 ± 1.0 2.0 ± 0.8 8.1 ± 3.2 0.29 

Breaststroke 40 24.6 ± 1.9 2.5 ± 1.4 2.5 ± 1.3 10.0 ± 5.1 0.27 

Butterfly 42 24.1 ± 1.8 2.8 ± 2.2 2.6 ± 1.5 10.4 ± 6.1 0.26 

Freestyle 96 24.2 ± 2.4 2.6 ± 1.4 2.3 ± 1.1 9.2 ± 4.3 0.17 

IM 
 

33 23.6 ± 1.8 2.5 ± 1.1 2.3 ± 1.3 9.1 ± 5.0 0.29 

Female swimmers 194 22.5 ± 2.4 2.6 ± 1.6 2.4 ± 1.2 9.6 ± 4.9 0.12 

Sprint  68 23.3 ± 2.8 2.8 ± 1.8 2.3 ± 1.3 9.1 ± 5.2 0.21 

Middle-distance  78 22.3 ± 2.1 2.5 ± 1.5 2.5 ± 1.3 9.9 ± 5.2 0.19 

Distance 
 

48 21.9 ± 1.9 2.4 ± 1.2 2.4 ± 1.0 9.8 ± 4.0 0.25 

Backstroke 32 22.3 ± 2.5 2.5 ± 1.6 2.7 ± 1.6 10.7 ± 6.5 0.30 
Breaststroke 25 22.9 ± 2.2 3.2 ± 1.7 1.8 ± 0.8 7.2 ± 3.1 0.34 
Butterfly 33 22.6 ± 2.4 2.3 ± 1.4 2.8 ± 1.4 11.0 ± 5.7 0.29 
Freestyle 70 23.0 ± 2.5 2.7 ± 1.6 2.2 ± 1.0 8.8 ± 3.9 0.20 
IM 34 21.6 ± 2.0 2.2 ± 1.2 2.7 ± 1.2 10.6 ± 4.7 0.29 

 
Note: Data are mean ± SD. Sprint events are 50-100 m; middle-distance events are 200 m; distance events are 400-1500 m. IM = Individual Medley. 
aUncertainty (±90% confidence limits; CL) for each group mean is given by the product of each mean’s s and this factor.  
Uncertainties (±90% CL) for pairwise comparisons of distance-group means are ~0.6 y, ~0.4 y, ~0.3 %, and ~ 1.4 % for each respective variable.  
Differences of  >~0.1 y, >~0.1 y,  >~0.1 %, and >~0.4 % are clear at the 90% level in comparing distance-group means for each respective variable. 
Uncertainties (±90% CL) for pairwise comparisons of stroke means are ~0.8 y, ~0.6 y, 0.5 %, and ~ 1.8 % for each respective variable. 
Differences of  >~0.3 y, >~0.3 y,  >~0.2 %, and  ~0.9 % are clear at the 90% level in comparing stroke means for each respective variable. 
Increase the difference-thresholds by a factor of 1.6 for clarity at the 99% level. 
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Figure 4. Mean performance time difference (%) and 90% reference range between age-
related predicted performance time and 2012 Olympic gold medal time for female and male 
middle-distance (200 m) swimmers. Examples of annual best performance times and 
career trajectories (adjusted for event, see Methods) are shown for one Olympic medal-
winning swimmer of each sex: the female swimmer is Katie Ledecky, gold medallist at the 
2012 Olympics; the male swimmer is Ryan Lochte, eleven-time Olympic medallist across 
three Olympic Games (2004, 2008, 2012).   
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Male Olympic top-16 swimmers were around two years older than their female 

counterparts (a moderate difference) when they achieved their peak performance. Both sexes 

reached their performance peak at later ages for the shorter distances, with moderate 

differences of ~2 y between the sprint (≤100-m) and distance (≥400-m) groups for the men, and 

~1.5 y for the women. The duration of the peak-performance window was similar for men and 

women, and for most distance-groups (~2.5 y), although female sprint swimmers had a wider 

window of peak performance than female distance swimmers (a small difference). Men and 

women displayed similar rates of progression over four and eight years leading to peak 

performance (~2.5% and ~9.5%), but male distance swimmers showed greater progression 

than male sprint and middle-distance swimmers, with small differences for both distance-group 

comparisons. Individual medley (IM) swimmers reached peak performance at earlier ages than 

swimmers in all single-stroke events for both sexes (small to moderate differences). Female 

breaststrokers experienced a shorter duration in the peak-performance window, and smaller 

rates of progression to peak performance than swimmers of all other strokes, with small to 

moderate differences for each between-stroke comparison. All other differences between 

strokes were trivial to small with no discernible trends.   

Medallists showed slightly (trivial) higher age of peak performance compared with non-

medallists for men (difference in means of 0.2 y, 90% confidence interval -0.3 to 0.8 y) and 

women (0.4, -0.3 to 1.0 y). Compared with female non-medallists, female medallists displayed 

greater progression over four years (0.5, 0.2 to 0.8 %) and eight years (1.9, 0.6 to 3.2 %) 

leading to peak performance, and a narrower window of peak performance (-0.5, -0.2 to -0.8 y); 

all of these differences were clear and small in magnitude.  

Age of peak performance as predicted by the trajectories and age of actual best 

performance (data not shown) were similar for all between sex, stroke and distance-group 

pairwise comparisons. Residual variance between observed and modelled swim times 

averaged over all events for both sexes was 3.0%, 1.3%, and 1.0% for the <17 y, 17-19 y and 

>19 y age-groups respectively.  

Olympic years and the polyurethane swimsuit year (2009) accounted for additional 

performance enhancements in all events of 1.0 ± 0.3 % and 1.0 ± 0.5 % respectively (mean ± 

between-event SD). Most of the differences were clear for each event. The Olympic effect was 

similar for men and women, whereas the swimsuits provided greater performance 

enhancements for the men than the women (difference in means of 0.32%, 90% confidence 

interval 0.28 to 0.36 %).  

 

3.4. Discussion 

In the present study we have modelled the career performances of Olympic top-16 

swimmers using individual quadratic trajectories to produce benchmarks that should be valuable 

for talent development. By plotting the age-related performance progression of elite-level 

swimmers towards the 2012 Olympic gold medal winning time (Figure 4), we have created a 

tool that can be used to clearly and easily evaluate the progress of any swimmer between the 

ages of 12 and 30 years. The estimates of age of peak performance for different distance-
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groups can be used to add another level of specificity to this tool. As swimmers specialising in 

sprint events typically peak approximately one year later than the adjusted mean for each sex 

(Table 4), sprint-event swimmers should subtract one year from their age when plotting each of 

their performances. Following the same logic, distance-event swimmers should add one year. 

To evaluate progress towards pinnacle events in future years, secular trends in performance 

times of the best swimmers need to be taken into account. When plotting performances against 

age, swim times can be adjusted to future years by adding the product of the percent annual 

change in top swimmers’ performances since 2012 and the number of years after 2012 to their 

percent performance time difference at each age. 

Analysis of the residuals from the mixed model revealed appropriate fit of quadratic 

curvature for tracking the individual age-related progression of top swimmers’ performances. 

Paradoxically, the plots for mean age-related performance in Figure 4 show progression to a 

plateau, rather than a quadratic trend. The two individual trajectories help elucidate the origin of 

this plateau; when individual trajectories with such substantial between-swimmer variation in 

quadratic curvature and points of truncation are combined, the result is a mean performance 

progression band with a lengthy plateau beyond the adolescent years of substantial 

progression. The variation in the quadratic trajectories between swimmers probably results from 

factors such as individual differences in physical maturation, training adaptation, skill 

acquisition, and racing experience (Lätt et al., 2009a; Lätt et al., 2009b; Mikulic, 2011; 

Simonton, 1988). If any of these factors were to result in a plateau in performance for a 

substantial proportion of individual swimmers, then on average the residuals beyond the 

modelled age of peak performance would be negative, which we did not observe. In fact, 

performance declines were evident for swimmers who continued competing beyond their peak 

(data not shown), further supporting our use of quadratic modelling. 

Previous models of changes in individuals’ swimming performances (Berthelot et al., 2012, 

Costa et al., 2010) have not focused on including adjustments for factors such as level of 

competition and the introduction of major technological innovations. Our use of mixed modelling 

allows specification of fixed effects to account for and estimate the impact of Olympic years and 

of the polyurethane swimsuit year on the individual performance trajectories of top swimmers. 

The similarity of our estimates (both ~1% enhancements) to those of previous researchers 

provides additional evidence to support the suitability of our modelling. In a study of the 

progression and variability of competitive performance of Olympic swimmers, Pyne et al. (2004) 

found that mean performance improved by ~1% over the year leading up to the Olympics. 

Across 2008 and 2009, polyurethane swimsuits were estimated to provide top swimmers with 

mean performance gains of 0.3-1.2% on top of their expected progression (Berthelot et al., 

2010). Our estimate falls within this range, although we chose to include a fixed effect in our 

model only for 2009, the year in which polyurethane swimsuits became universally prevalent at 

top swimming competitions. It is likely that swimsuits also contributed to extra performance 

enhancements off their trends that many swimmers showed in 2008, in addition to the Olympic 

year effect.  

The mixed model has also allowed us to account for and quantify changes in variability of 

the performance of top swimmers from year-to-year by specification of different residual random 
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effects across three age ranges. Previous researchers in this area have estimated between-

competition variability in within-swimmer performance only in two distinct career phases, not 

over the course of individual swimmers’ entire careers. Pyne et al. (2004) estimated that 

between-competition performance for Olympic swimmers typically varied by 0.8%, which aligns 

well with our model’s estimated residual of 1% for the >19 age-group. Costa et al. (2011) 

presented the means and standard deviations for the year-to-year performance changes of 

Portuguese male freestyle swimmers between the ages of 12 and 18. Dividing these standard 

deviations by √2 (Hopkins, 2000) gives a typical error of ~1.7%, which is somewhat less than 

the 3% residual variance that we estimated for the <17 age-group. The considerable difference 

between these estimates can be explained presumably by the greater random deviation from 

quadratic trends in annual best performances that occurs at earlier ages. This deviation likely 

results from the greater variability in physical and psychological maturation, skill acquisition, 

racing experience and competition preparation that is inevitably present in younger swimmers. 

Investigating different residual variances within the 12-16 age-bracket would have allowed more 

detailed assessment of the variability in developing swimmers, but the size of our dataset 

prevented us from specifying different residuals for more than three age-groups. Younger 

swimmers (12-13 y) have been shown to display greater variability than those closer to 16 y 

(Costa et al., 2011), and readers should be mindful of this caveat when interpreting the 90% 

reference range of the mean progression band shown in Figure 4 across these age-ranges. 

The trajectories predicted mean age of peak performance in top swimmers of ~24 y for 

men and ~22 y for women. Whilst these predictions aligned well with the age at which top 

swimmers achieved their best performance, both are greater than previous published estimates. 

Schulz and Curnow (1988) found that Olympic freestyle gold medallists between 1948 and 1980 

achieved their winning performances at ~20 y for men and ~18 y for women. Estimates may 

have been greater in the present study because of recent increases in funding and resources 

that have allowed top swimmers to forge a career in the sport and thereby continue training and 

competing to ages closer to their true performance peak than previously possible. Indeed, 

Berthelot et al. (2012) found peak performance in all freestyle swimmers ranked in the annual 

world top 10 between 1980 and 2009 occurred around 21 y, consistent with an upward secular 

trend in age of peak performance.  

Our findings that top male swimmers achieved peak performance ~2 y later than their 

female counterparts and that peak performance occurred at later ages for the shorter distances 

for both sexes are consistent with previous research (Berthelot et al., 2012; Schulz & Curnow, 

1988). Given that progressions to peak performance were similar for both sexes (Table 4), the 

difference in age of peak performance between sexes appears to be explained almost entirely 

by the ~2-year earlier onset of puberty in females compared with males (Baxter-Jones & Sherar, 

2006). Reasons for the differences in age of peak performance between distance-groups and 

between IM swimmers and single-stroke swimmers are less apparent, but may relate to the 

greater external training loads typically undertaken by swimmers specialising in longer 

distances or in all four strokes. As distance and IM swimmers get older they may become 

unwilling to, or physiologically unable to, sustain the training loads required to achieve top 

performances in their events. Alternatively, these swimmers may sustain the training loads but 
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the training stress takes its toll in the form of injury (Gaunt & Maffulli, 2012) or staleness 

(Morgan, Brown, Raglin, O’Connor, & Ellickson, 1987). Either scenario could result in a 

premature peak in performance and/or premature drop-out. For example, when explaining her 

decision to retire from competitive swimming at age 23, multiple Olympic distance freestyle 

medallist Rebecca Adlington stated in an article published in The Daily Telegraph (2013), “I’ve 

noticed over the years that I can’t do the same level of work as I used to be able to do and I 

need a lot more rest and recovery.”  

Another factor that could contribute to later peaking in the shorter distances is a tendency 

for distance swimmers to switch to shorter events as they get older in order to remain 

competitive. Research from other sports (e.g., in athletics) has found conflicting evidence about 

differences in ages of peak performance between shorter and longer distance events (Hollings 

et al., 2014; Schulz & Curnow, 1988). A comprehensive review of research into differences in 

ages of peak performance between and within sports is needed in order to better understand 

the complex relationships between athlete development, training and sport performance.  

We found that top swimmers hold their performance peak for ~2.5 y (±1.5 y), irrespective of 

event. This duration seems quite short considering that several top swimmers have achieved 

success across multiple Olympic Games (e.g., Michael Phelps, Ryan Lochte). The explanation 

for this apparent paradox may be that supremely talented swimmers are able to win medals 

whilst not at peak-performance, owing to their substantially greater performance levels in 

comparison to their competitors. For example, Katie Ledecky won the gold medal in the 800-m 

freestyle at the 2012 Olympics, but subsequently substantially improved her performance time 

in 2013, indicating she has not yet reached her performance-peak (Figure 4). 

Our study is the first to quantify the longitudinal age-related progression to peak 

performance for top swimmers. Costa et al. (2010) found that male top-150 world-ranked 

freestyle swimmers improved by approximately 3-4% over five seasons, but these 

improvements were effectively averages over a wide age-range. Whilst they are similar to the 

~2.5% four-year progression to age of peak performance found in the present study, our age-

related and stroke-specific estimates should be more useful for talent development. Swimmers 

and coaches can also use these estimates for short-term performance goal-setting. 

The slower rates of progression to peak performance, and wider windows of peak 

performance of female breaststrokers compared to female swimmers of other strokes might be 

explained by between-stroke differences in technical demands. Our findings concur with 

anecdotal observations that breaststroke is the hardest stroke for developing swimmers to learn 

owing to complexities in mastering the timing and co-ordination required to effectively execute 

the stroke.  

As also stated in the results, the four and eight-year progressions for female medallists are 

a little greater than those of their non-medallist counterparts. Explanations for these differences 

in progression between female, but not male swimmers, are unclear but may be related to 

differences in maturation between the sexes. For example, neuromuscular spurts within one 

year of peak height velocity have been detected in adolescent boys, but not in girls (Hewett, 

Myer, & Ford, 2002), implying that males may have a greater capacity for performance 

progression through technical improvements during maturation (Rushall, 2011b). However, as 
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recent research found no substantial differences in several physical, physiological and 

biomechanical variables known to affect performance between young male and female 

swimmers (Morais et al., 2013), reasons for the differences in performance progression 

between genders requires further research. Any enhanced capacity for skill acquisition and 

technique development is probably best utilised by male distance swimmers, as shorter 

distance swimmers may require full maturity to generate enough power to allow them to perfect 

their technique at swimming speeds close to race-pace. Such complex interactions between 

technical and maturational factors may account for the greater rates of progression to peak 

performance of male distance swimmers compared with male sprint and middle-distance 

swimmers, and also contribute to the later ages of peak performance in shorter distance 

swimmers.  

The uncertainty in our estimates of progression increased with increasing years prior to 

peak performance. Beyond eight years prior to the peak age (~16 y for men, ~14 y for women), 

there may be too much uncertainty for our estimates to be considered sensitive benchmarks for 

talent development. Costa et al. (2011) also found evidence to suggest that the performance of 

sub-elite male freestyle swimmers does not become sufficiently stable to yield meaningful 

predictions of adult performance until age 16. More research on this aspect of talent 

development is needed.   

 

3.5. Conclusion 

We have developed a method for producing quadratic trajectories to track the career 

development of Olympic swimmers using their annual best performances. This method has 

provided event-specific performance-progression benchmarks and estimates of age of peak 

performance that should be useful for coaches, scientists and national sporting organisations 

interested in tracking the development of their swimmers. Practical applications of our method 

for talent development could be extended by modelling age-related trajectories for swimmers of 

any standard using their competition and/or time-trial performances.  
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CHAPTER 4 

 
PREDICTING A NATION’S OLYMPIC-QUALIFYING SWIMMERS 

 
This chapter comprises the following paper published in the International Journal of Sports 

Physiology and Performance: 

Allen, S. V., Vandenbogaerde, T. J., Pyne, D. B., & Hopkins, W. G. (2015). Predicting a nation’s 

Olympic-qualifying swimmers. International Journal of Sports Physiology and Performance, 10, 

431-435. 

 

Overview 

Talent identification and development typically involve allocation of resources towards athletes 

selected on the basis of early career performance. Purpose: To compare four methods for early 

career selection of Australia’s 2012 Olympic-qualifying swimmers. Methods: Performance times 

from 5738 Australian swimmers in individual Olympic events at 101 competitions between 2000 

and 2012 were analysed as percentages of World Record times using four methods that 

retrospectively simulated early selection of swimmers into a talent-development squad. For all 

methods, squad-selection thresholds were set to include 90% of Olympic qualifiers. One 

method used each swimmer’s given-year performance for selection, while the others predicted 

each swimmer’s 2012 performance. The predictive methods were regression and neural-

network modelling using given-year performance and age, and quadratic trajectories derived 

using mixed modelling of each swimmer’s annual best career performances up to the given 

year. All methods were applied to swimmers in 2007 and repeated for each subsequent year 

through 2011. Results: The regression model produced squad sizes of 562, 552, 188, 140, and 

93 for the years 2007 through 2011. Corresponding proportions of the squads consisting of 

Olympic qualifiers were 11%, 11%, 32%, 43%, and 66%. Neural-network modelling produced 

similar outcomes, but the other methods were less effective. Swimming Australia’s actual 

squads ranged from 91 to 67 swimmers but included only 50-74% of Olympic qualifiers. 

Conclusion: Large talent-development squads are required to include most eventual Olympic 

qualifiers. Criteria additional to age and performance are needed to improve early selection of 

swimmers to talent-development squads. 

  



49 
 

4.1. Introduction 

The primary aim of talent identification programmes is to systematically identify athletes 

with high potential for success in senior elite sport. The increasing competition between nations 

for medals at major international events such as the Olympic Games and World Championships 

in recent years (de Bosscher, de Knop, van Bottenburg, & Shibli, 2006) has driven many 

national sporting organisations to attempt to focus their available resources more effectively by 

identifying talented athletes well in advance of these events (Vaeyens, Lenoir, Williams, & 

Philippaerts, 2008). 

The typical approach to talent identification of most national sporting organisations has 

been early recruitment of athletes into talent-development programmes based primarily on their 

age-related competition performance (Güllich & Emrich, 2012). This approach relies upon the 

assumption that early sporting success is a pre-requisite for senior elite success (Güllich & 

Emrich, 2006). However, given the generally low conversion rates of elite junior athletes into 

elite senior athletes in swimming (Barreiros, Côté, & Fonseca, 2014) and similar sports (cycling, 

Schumacher, Mroz, Mueller, Schmid, & Ruecker, 2006; running, Hollings & Hume, 2010), this 

assumption appears contentious. Furthermore, research into the progressions of athletes within 

a national sporting system has found that the higher their age of selection to any national 

squad, the higher the squad level that an athlete ultimately reached (Güllich & Emrich, 2012). 

Several researchers have consequently questioned the utility of talent identification on the basis 

of performance at early ages (Gulbin, Weissensteiner, Oldenziel, & Gagné, 2013; Régnier, 

Salmela, & Russell, 1993; Vaeyens et al., 2008) but this approach has rarely been evaluated 

quantitatively.  

In the present study we compared four methods for early selection of Australia’s 2012 

Olympic-qualifying swimmers using age-related competition performance data. First, we 

established the accuracy of selecting swimmers to a talent-development squad based solely on 

their competitive performance in a given year. Secondly, we used regression analysis to assess 

the validity of the assumption that successful junior athletes progress consistently through to 

senior elite success. Thirdly, we extrapolated each swimmer’s quadratic age-related career 

performance trajectory (Allen et al., 2014) to evaluate the predictive relationship between past 

and future performance. Finally, we used the non-linear method of neural-network modelling to 

attempt to relate the complex development of swimmers to performance. Previous comparisons 

of the accuracy of statistical methods for predicting swim performance have shown neural-

network modelling to produce more precise predictions than standard linear (Edelmann-Nusser 

et al., 2002) and non-linear (Maszczyk et al., 2012) regression models, and the linear method of 

discriminant function analysis (Hohmann & Seidel, 2010), although no such research has been 

conducted in the context of nationwide talent identification.   

 

4.2. Methods 

Official long-course performance times from all Australian swimmers in individual Olympic 

events from 101 age-group and open domestic and international competitions between 2000 
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and 2012 were provided by Swimming Australia. Each swimmer’s best annual times in a given 

event were converted into percentages of given-year World Record times for analysis. Overall, 

there were 84,868 times from 5,738 swimmers, 70 of whom recorded at least one performance 

time faster than an individual FINA A Olympic-qualifying standard in 2012. Throughout this 

research we have referred to these 70 swimmers as “Olympic-qualifying swimmers”, although 

only 45 swimmers were ultimately selected to represent Australia at the 2012 Olympics.   

Four methods were used to retrospectively simulate early selection of Australia’s 2012 

Olympic-qualifying swimmers to a talent-development squad. All methods were applied to 

swimmers in 2007 and then repeated for each subsequent year through 2011. One method 

ranked swimmers in order of their given-year performances, while the other three methods used 

each swimmer’s performance and age data to predict their 2012 performance. 

The first predictive method was regression of given-year performance (linear) and age 

(linear and quadratic), which were specified as fixed effects using the mixed linear model 

procedure (Proc Mixed) in the Statistical Analysis System (Version 9.2, SAS Institute, Cary, 

NC). The second predictive method also used Proc Mixed in SAS 9.2 to model each swimmer’s 

best annual career performances in a given event, together with the best annual career 

performances of Olympic top-16 swimmers in the given event (Allen et al., 2014), to produce 

quadratic performance trajectories for each Australian swimmer with at least three years of 

performance data. These trajectories were then extrapolated forwards to 2012 to generate 

predicted times for each swimmer, as demonstrated by the example shown in Figure 5. The 

fixed and random effects specified within this model were the same as those included in the 

individual-trajectories mixed model outlined previously by Allen et al. (2014).  

The final predictive method was a multilayer feed-forward neural-network model with the 

structure 3-3-1, with three input variables (given-year performance, age and event), three 

neurons in the hidden layer, and one output variable (predicted 2012 performance time). We 

conducted this modelling in SAS Enterprise Miner (Version 12.3, SAS Institute, Cary, NC), using 

95% of our given-year dataset for model training, the remaining 5% for validation, and the 

default iterative Levenberg-Marquardt algorithm to optimise model learning.  

For a given predictive method in a given year each swimmer’s top predicted performance 

from all events was retained for the squad selection process. For all methods, thresholds for 

squad selection were set to ensure 90% of Olympic qualifiers with data for a given year would 

be included, on the basis that the threshold for the smallest substantial proportion is 10% 

(Hopkins et al., 2009). Final squad sizes therefore also included all non-qualifying swimmers 

with actual (first method) or predicted times faster than the set thresholds.  

We determined the effectiveness of our methods by evaluating the proportions of the 

talent-development squads consisting of Olympic qualifiers. These proportions served as a 

proxy measure for the sizes of the squads, allowing us to assess differences between methods 

regardless of the number of swimmers with available performance data for each method. 

Proportion ratios representing year-to-year differences within methods and within-year 

differences between methods were evaluated using a scale with thresholds of 1.11, 1.43, 2.0, 

3.3, and 10 for small to extremely large increases, respectively, and their corresponding 

inverses for decreases (Hopkins et al., 2009). Qualitative mechanistic inferences about the true 
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value of a difference were based on uncertainty in the magnitude of the ratio (expressed as 

90% confidence limits): if the confidence interval overlapped values for a substantial increase 

and decrease, the ratio was deemed unclear; otherwise, the ratio was deemed clear and 

reported as the magnitude of the observed value (Batterham & Hopkins, 2006). 

 

Figure 5. Best annual performance times, career performance trajectory and future trajectory 
(both plus 90% confidence interval) for an Australian male 100-m freestyle swimmer predicted in 
2008 to go on to achieve the FINA A Olympic-qualifying standard in 2012. 

 

 

 

4.3. Results 

Numbers of swimmers selected into the talent-development squads and the corresponding 

proportions of the squads consisting of Olympic-qualifying swimmers for each of the four 

selection methods are shown in Table 5. These proportions increased substantially with each 

year after 2008, with clear small to large year-to-year increases (1.3-2.9; range of proportion 

ratios) observed for all methods and year-to-year comparisons. Confidence limits for all of these 

pairwise comparisons were ~×/÷1.2. 

Neural-network modelling and regression of swim time and age produced the highest 

proportions of Olympic qualifiers in the squads over the selection period. The neural-net method 

generally performed marginally better than the regression method by trivial to small but mostly 

unclear amounts (0.8-1.2). Both methods typically outperformed the selection of swimmers on 

the basis of their given-year swim time by clear small to moderate amounts (1.2-1.5). In 2007 
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Table 5. Talent-development squad sizes required to ensure inclusion of 90% of 2012 Olympic qualifiers for each of four methods in each year (2007-
2011). Proportions (%) of the squads consisting of eventual Olympic qualifiers are also shown. 

  2007 2008 2009 2010 2011 

Squad selection method 

 
Squad 

size 
Olympic 
qualifiers 

 
Squad 

size 
Olympic 
qualifiers 

Squad 
size 

Olympic 
qualifiers 

Squad 
size 

Olympic 
qualifiers 

Squad 
size 

Olympic 
qualifiers 

Swim time as % of World 
Record 

 
685 9% 511 12% 272 22% 128 48% 112 55% 

Regression of swim time 
and age 

 
562 11% 552 11% 188 32% 140 43% 93 66% 

Quadratic performance 
trajectoriesa 

 
413 12% 329 17% 262 22% 201 30% 168 38% 

Neural-network modelling 
 

475 13% 498 12% 226 27% 129 47% 92 66% 

The number of swimmers with available performance data in each year was 2690 ± 240 (mean ± SD). The number of 2012 Olympic qualifiers with 
available performance data in each year was 67 ± 1.  

aAt least three years of performance data in a given event were required to create individual quadratic trajectories. The number of swimmers with 
available performance data for this method in each year was 1690 ± 150. The number of 2012 Olympic qualifiers with available performance data for 
this method in each year was 64 ± 6. 
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Table 6. Swimming Australia’s actual squad sizes, proportions (%) of the squads consisting of 
2012 Olympic qualifiers, and proportions (%) of eventual Olympic qualifiers who were included 
in the squads in each year (2007-2011). 

 2007 2008 2009 2010 2011 

Squad size 88 91 90 69 67 

Proportion of squad consisting of 
Olympic qualifiers  

40% 47% 57% 65% 78% 

Proportion of Olympic qualifiers 
included in the squad 

50% 61% 73% 64% 74% 

 

 
and 2008, the trajectories method performed better than most other methods by clear small to 

moderate amounts (1.1-1.5), but from 2009 onwards it was outperformed by all other methods 

by clear small to moderate amounts (1.2-1.8). Confidence limits for all of these pairwise 

comparisons were ~×/÷1.3.  

Table 6 shows the actual number of swimmers who received Olympic-preparation funding 

and resources from Swimming Australia in the five-year period prior to the 2012 Olympics, the 

proportions of these squads consisting of Olympic qualifiers, and the proportions of the 70 

Olympic qualifiers who were selected to the squads in each year. Proportions of eventual 

qualifiers correctly selected by Swimming Australia were less than the 90% estimated in our 

analysis by clear moderate amounts in 2007 and 2008 (1.5-1.8, ~×/÷1.1; range of proportion 

ratios, ×/÷90% confidence limits) and by clear small amounts in 2009 through to 2011 (1.2-1.4, 

~×/÷1.1). Proportions of the Swimming Australia squads consisting of Olympic qualifiers were 

greater than those estimated in our analysis by clear large to very large amounts in 2007 and 

2008 (2.8-4.5, ~×/÷1.2), moderate to large amounts in 2009 (1.8-2.6 ~×/÷1.2), and small to 

moderate amounts in 2010 and 2011 (1.2-1.5, ~×/÷1.1).  

 

4.4. Discussion 

In the present study we have compared the predictive accuracy of four methods for early 

selection of Australia’s 2012 Olympic-qualifying swimmers using a retrospective simulation 

approach. By analysing the age-related competition performance data of all Australian 

swimmers in the five years prior to 2012, we have been able to quantitatively evaluate the 

efficacy of conducting a theoretical national talent-identification programme on the basis of early 

performance.  

The neural-network modelling and regression of swim time and age methods generally 

produced the highest proportions of Olympic qualifiers in the talent-development squads. The 

superior predictive accuracy of both methods compared with the selection of swimmers based 

solely on their given-year performance was unsurprising, owing to the well-established effects of 

age on swim performance (Allen et al., 2014; Berthelot et al., 2012; Costa et al., 2011). 
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However, the similar predictive accuracy of the regression method to the neural-network 

analysis was somewhat unexpected, given that previous research has found neural-network 

modelling to produce more precise predictions of swim performance than standard linear 

(Edelmann-Nusser et al., 2002) and non-linear (Maszczyk et al., 2012) regression models. 

While standard regression models assume the dependent variable to be equal to the additive 

effects of the predictor variables, neural networks are not constrained by any assumptions 

about the relationship between the predictor and dependent variables, and might therefore be 

expected to more realistically relate the complex non-linear processes of maturation and 

training adaptation to performance in developing swimmers (Silva et al., 2007). One explanation 

for neural-network modelling failing to outperform regression in the analysis could be that our 

regression model appropriately represented the underlying relationship between early and 

future performance. Therefore, the neural net might have been unable to produce more 

accurate performance predictions without the inclusion of input variables additional to the three 

(age, performance and event) specified in our analysis. Indeed, a neural-network analysis 

predicting the senior talent grouping of over 700 junior German swimmers from 21 physical and 

technical variables achieved substantially more success than a linear discriminant-function 

model (Hohmann & Seidel, 2010). 

An insufficient amount of input information might also explain why all of our performance 

and age-based methods produced substantial proportions (≥10%; Hopkins et al., 2009) of 

squad members who were incorrectly identified as Olympic qualifiers in any given year. 

Consistent with this assertion, previous research has shown that performances of developing 

swimmers do not become sufficiently stable to yield meaningful predictions of adult performance 

until around age 16 (Costa et al., 2011). Another study also found that the majority of swimmers 

selected to national squads as juniors did not progress consistently through their developmental 

years to become senior national squad members (Güllich & Emrich, 2006). Consequences of 

such erroneous early classification include inefficient use of the finite supply of Olympic-

preparation funding and resources available to most national sporting organisations. Therefore, 

to improve the predictive accuracy of early selection of swimmers into talent-development 

squads and enhance the efficiency of funding and resource allocation, it would seem prudent to 

consider variables additional to age and performance as part of the talent-identification process.  

The challenge to national swimming federations will undoubtedly be how best to 

systematically capture and track the myriad variables important for swim performance (Barbosa 

et al., 2013) from enough swimmers to provide useful information for talent identification 

alongside the more readily available age and performance data. The general consensus 

between recent research into the relative contributions of many such variables to performance 

(Figueiredo et al., 2013) and coaching knowledge and experience (Sweetenham, 2001) seems 

to be that biomechanical and technical factors form the primary determinants of successful 

development of swimming performance. Therefore, a useful starting point for the process of 

widespread monitoring  of variables other than age and performance may be assessment of 

stroke mechanics and efficiency parameters plus anthropometrical measurement at regular 

talent-development squad camps using well-established and practically viable testing 

procedures (Savage & Pyne, 2013). 
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Our trajectories method involved analysing more information than the other methods; each 

swimmer’s age-related career performance history was modelled together with the best annual 

career performances of Olympic top-16 swimmers in a particular event. The lowest predictive 

accuracy demonstrated by this method after 2008 was presumably due to the over-optimistic 

assumption that all Australian swimmers would fit the age-related performance progression 

profiles of Olympic top-16 swimmers, which likely resulted in over-prediction of many swimmers’ 

2012 performance times. However, the trajectories method did manage to outperform most of 

our other methods in 2007 and 2008, indicating that it may still offer a useful tool for national 

talent-identification programmes. For example, one advantage of the trajectories method may 

be its potential as an initial screening tool to recruit all swimmers tracking towards achieving 

Olympic-qualification standards into a talent-development squad, if some of these swimmers 

were missed by our other methods. For this strategy to allow screening of as many swimmers 

as the other methods, modelling of larger amounts of performance data (i.e., more regional 

competitions) than those included in our analysis would be required. A limitation of the present 

study was that in a given year we were unable to consider many swimmers for selection to the 

talent-development squads using the trajectories method, owing to the fact that at least three 

years of performance data in a given event were necessary to model individual trajectories.   

Compared to Swimming Australia’s squads, our analysis methods produced talent-

development squads consisting of substantially smaller proportions of Olympic qualifiers, along 

with larger corresponding squad sizes. However, the proportions of eventual qualifiers who 

were not selected by Swimming Australia for funding and resource allocation were also 

substantially greater than the smallest important proportion (10%; Hopkins et al., 2009) used as 

the threshold for selection in our analysis. Indeed, the Independent Review of Swimming 

(Australian Sports Commission, 2013, p. 48) conducted by the Australian Sports Commission 

after the 2012 Olympics stated that, by focusing primarily on age-related performances in their 

talent-identification strategy, Swimming Australia had been relying on “talent rising to the top in 

an almost ad-hoc fashion”. By targeting resources towards larger groups of swimmers several 

years out from an Olympics, Swimming Australia and other national swimming federations might 

further improve the performance‒and thus the medal prospects‒of those swimmers who would 

eventually achieve Olympic-qualification times without the benefit of early access to resources. 

While this strategy appears logical, contradictory evidence from the German elite sport system 

showed that athletes recruited to talent-development squads at young ages exited the system 

earliest, and that use of athlete support services was not substantially related to greater 

attainment of senior success (Güllich & Emrich, 2012). The applicability of these findings to 

other national sporting systems, and to sports such as swimming in which athletes typically 

specialise at early ages (Vaeyens et al., 2009), is uncertain and clearly warrants the attention of 

future research.  

 

4.5. Practical Applications and Conclusions 
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 We have presented a quantitative analysis of the efficacy of conducting a national talent-

identification programme on the basis of current swim performance and age. Our analysis has 

demonstrated that Australian talent-development squads selected on this basis would need to 

contain hundreds of swimmers several years out from an Olympics to ensure 90% of eventual 

qualifiers were included in the squads. Identifying swimmers with performances tracking 

towards Olympic-qualification standards on an annual basis using our individual trajectories 

screening tool, and then inviting swimmers to regular camps to capture and monitor identified 

variables additional to age and performance, should improve the predictive accuracy of early 

selection of swimmers into talent-development squads. Targeting Olympic-preparation funding 

and resources towards larger groups of swimmers might further improve the prospects of those 

who achieve Olympic-qualification times without the benefit of early selection to talent-

development squads. Such a strategy would give appropriate early recognition of talent, while 

also producing more swimmers capable of meeting Olympic-qualification times.  
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CHAPTER 5 

 
RELATIONSHIPS BETWEEN CAREER TRAINING AND PERFORMANCE IN 

COMPETITIVE SWIMMERS 
 

This chapter comprises the following paper submitted to European Journal of Sport Science: 

Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W. G. (submitted). Relationships between 

career training and performance in competitive swimmers. European Journal of Sport Science. 

 

Overview 

Understanding the career training that leads to successful performance is important for athlete 

development. Purpose: To quantify the relationships between career training durations and 

performance in competitive swimmers. Methods: Retrospective questionnaires obtained the 

weekly hours of pool, dryland and other-sports training completed by 324 national-level 

swimmers (age-range 13.3-28.7 y) at each chronological age of their careers. Each swimmer’s 

best two annual long-course competition performances in each event between 2002 and mid-

2014 were downloaded from takeyourmarks.com (~43,600 performances), and career 

(cumulative) training hours leading up to each performance were calculated. Performance 

differences between tertiles of career swim-specific training (pool+dryland hours), and the 

modifying effects associated with tertiles of career non-specific training (other-sports hours) 

were estimated for sex and distance groups (sprint, ≤100-m; middle-distance, 200-m; distance, 

≥400-m) for five age-groups using mixed linear models that adjusted for individual quadratic 

effects of age. Results: More swim-specific training was related to better performance in the 

younger age-groups (sprint and middle-distance, <13 y; distance, <15 y). In the oldest age-

group (≥19 y), the upper tertile of swim-specific training (>~10,500 h) was associated with clear 

performance advantages for females, which increased with event distance from small for 

sprinters (0.7%, ±0.5%; mean, ±90% confidence limits) to very large for distance swimmers 

(2.3%, ±0.6%), while no one tertile was clearly superior for males. Other-sports training hours 

showed little association with performance, except for the oldest female ≤200-m swimmers, for 

whom the middle tertile (~2000 h) was typically best. Conclusion: Cumulative training hours 

are important for talent development at an early age in swimmers, but at the most senior level 

only females may continue to benefit from a history of more swim-specific training. 
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5.1. Introduction 

The career training of athletes plays a key role in determining their competitive 

performance (Tucker & Collins, 2013). Knowledge of the relationships between specific and 

non-specific career training durations and performance could provide coaches, scientists and 

national sporting organisations with valuable information to guide training programmes and 

improve long-term athlete development.  

Research into the acquisition of expert performance has produced two contrasting theories 

of the contribution of training history to elite sporting success. Ericsson, Krampe and Tesch-

Römer’s (1993) deliberate-practice model states that ~10,000 hours of domain-specific training 

is both necessary and sufficient to produce expert performance. Conversely, Côté, Baker and 

Abernethy’s (2007) developmental model of sport participation proposes that early 

diversification of training followed by late specialisation is the optimal path to athletic expertise. 

At present the strengths and weaknesses of both theories remain a subject of much debate in 

the sport-science literature, owing to inconsistent research findings within and between sports 

(Güllich & Emrich, 2014).  

Within the sport of swimming, the typical approach to athlete development has been early 

specialisation, with high durations of training often being performed at early ages (Lang & Light, 

2010). This approach has received criticism for overtraining swimmers (Rushall, 2011a) and for 

detracting from technique development (Arellano, 2010), leading to impaired long-term 

performance. Previous studies of training history and swim performance have generally 

observed weak relationships between swim-specific training hours and <200-m performance 

(Hodges, Kerr, Starkes, Weir, & Nananidou, 2004; Johnson, Tenenbaum, & Edmonds, 2006), 

although large positive correlations have been found for longer-distance events (Hodges et al., 

2004). However, quantitative assessments of the relationships between training duration and 

performance were made only by Hodges et al. (2004), who investigated linear relationships 

using regression analysis. The more probable scenario is a non-linear relationship with an 

optimum duration, given the fine balance of training time and recovery time required for 

successful performance (Halson & Jeukendrup, 2004). Therefore, a different method is needed 

to quantify the relationships between different durations of career swim-specific training and 

competitive performance in a non-linear manner.  

In the present study we used mixed modelling to estimate the differences in swim 

performance between lower, middle and upper tertile groups of career swim-specific training 

hours. For the best tertile at each age, we also quantified the modifying effects associated with 

tertiles of career other-sports training hours, in an attempt to investigate the pathway to high-

level swim performance. Although previous research has found some evidence of greater 

career engagement in other-sports training in elite versus sub-elite swimmers (Johnson et al., 

2006), no studies have yet quantified the relationships between performance and career 

durations of other-sports training for swimmers with different swim-specific training 

backgrounds. 

 



59 
 

5.2. Methods 

Swimming New Zealand provided contact details for all 76 New Zealand clubs with 

swimmers who competed at either the national age-group or national open championships in 

2013. Retrospective training background questionnaires were administered to 535 national-level 

swimmers (245 female, 290 male) from 72 of these clubs. Completed questionnaires were 

returned by 153 females (age 17.0 ± 2.5 y; mean ± SD) and 171 males (age 17.5 ± 2.6 y)  from 

65 clubs, which equated to a 61% response rate. All swimmers provided informed consent as 

required by the AUT University Ethics Committee, which approved the study.  

We developed the questionnaire with the aid of several national-level swim coaches and 

the High Performance Sport New Zealand athlete-development team. The questionnaire was 

trialled on several club-level and retired national-level swimmers a month before the start of the 

study. The first section of the questionnaire ascertained each swimmer’s full name and 

birthdate, allowing us to match their responses with their competitive performance data. The 

second section obtained information about the swimmer’s training history in sports other than 

swimming. For each sport swimmers were asked to report their age when they began 

participating, their years of participation, and their average weekly participation hours. In the 

third section swimmers provided their pool-training history, reporting their average weekly 

training hours at each chronological age of their careers. The final section of the questionnaire 

required swimmers to document their average weekly hours spent engaging in dryland activities 

designed to enhance their swimming performance at each age. Throughout the final two 

sections swimmers were asked for additional details about their pool and dryland training to 

stimulate more accurate recollection of training time; these questions obtained information on 

session frequency, types of training engaged in, and details of their coach, swim club, and 

squad. Analyses of these data are not presented here. 

All official long-course competition performance times between 2002 and mid-2014 were 

downloaded for all swimmers from the official database of competitive swimming results in New 

Zealand, takeyourmarks.com. Each swimmer’s questionnaire responses were matched to their 

best two annual performances in each event with at least three years of data. Overall, there 

were 20,437 female performances and 23,155 male performances, with a similar number of 

performances per swimmer per event for both sexes (13.2 ± 4.8). We then calculated the career 

hours of swim-specific training (pool plus dryland hours) and other-sports training associated 

with each performance by summing swimmer-reported annual hours for each career year up to 

the performance date and multiplying by 48, the approximate number of coach-reported training 

weeks per year for New Zealand swimmers (Stewart & Hopkins, 2000a).  

To allow for non-linearity in the relationships between career training durations and swim 

performance, we decided to investigate differences in performance between groups of low, 

medium and high training durations at different ages. Performances were first split into five age-

groups (Table 7) and then split into lower, middle and upper tertiles of career swim-specific 

training hours for each age-group. All performance times were log-transformed for analysis of 

percent effects using the mixed linear model procedure (Proc Mixed) in the Statistical Analysis 

System (Version 9.2, SAS Institute, Cary, NC). The first model included a fixed effect to 
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estimate the mean performance effect associated with each tertile of career swim-specific 

training for each age-group (age-group*swim-train tertile), and a fixed effect to account for the 

mean difference between each swimmer’s annual best and second-best performance for each 

age-group (age-group*swim rank). Fixed and random effects for age accounted for the mean 

and individual quadratic effects of age on each swimmer’s performance times, respectively. A 

within-swimmer random nominal effect for year adjusted for consistent deviation from each 

swimmer’s quadratic trend in a particular year (due to injury, illness, etc.), such that the residual 

random effect in the model represented within-swimmer race-to-race variability in performance. 

A different residual variance was specified for each age-group to account for the greater stability 

of swim performance with increasing age (Costa et al., 2011). We applied the model separately 

to each of the 17 stroke and distance event combinations for each sex, but female 

performances in the 1500-m freestyle and male performances in the 800-m freestyle were 

subsequently excluded from the analysis, owing to insufficient data for model convergence 

(<150 performances per event). Given previous verification of the appropriateness of quadratic 

trends for modelling swim performance (Allen et al., 2014), we considered this model to be a 

suitable option for quantifying the relationships between career training and performance of 

competitive swimmers. 

To investigate the modifying effects associated with career non-specific training for 

swimmers with different swim-specific training backgrounds, performances in each of the three 

swim-specific training tertiles for each age-group were split again into tertiles of career other-

sports training. We then added a fixed effect for the interaction between tertile of career other-

sports training, tertile of career swim-specific training and age-group to our original model and 

repeated the analysis for each of the 32 sex and event combinations. This fixed effect provided 

estimates of the mean modifying effect of career non-specific training associated with the 

performance of swimmers with low, medium and high career durations of career swim-specific 

training. 

Percent differences in swim performance time between tertiles of career training and their 

associated uncertainties (90% confidence limits) for each event were combined into three 

event-distance groups (≤100 m, sprint events; 200 m, middle-distance events; ≥400 m, distance 

events) for each sex using a spreadsheet (Hopkins, 2006a). The resulting performance 

differences were evaluated using non-clinical magnitude-based inferences (Hopkins et al., 

2009). Thresholds for assessing these differences were set separately for each age-group 

within each event-distance group for each sex, with the smallest important differences being 0.3 

of the within-swimmer standard deviation in race-to-race performance (Hopkins et al., 2009), as 

specified by the residual random effect from the mixed model. Thresholds for moderate, large, 

very large and extremely large effects were 0.9, 1.6, 2.5, and 4.0 times the within-swimmer 

variability for each age-group and sex and event-distance groups, respectively (Hopkins et al., 

2009). Uncertainty in estimates of all effects is expressed as 90% confidence limits and as 

likelihoods that the true value of the effect represents a substantial performance difference 

between tertiles (Batterham & Hopkins, 2006). To account for inflation of error owing to the 

large number of relationships investigated in this study, we have focused only on the effects that 

are clear with 99% confidence intervals in our results.  
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Table 7. Age (y) of each age group, number of performances in each age group for each sex and event-distance combination, and total number of 
swimmers contributing performances to each sex and event-distance combination. 

Age group Age 

Females   Males 

Sprint Middle-distance Distance 
 

Sprint Middle-distance Distance 

         
<13 y 11.3 ± 1.1 5827 2102 440  5583 2122 555 

13-14 y 14.0 ± 0.6 3350 1620 725  3725 1879 830 

15-16 y 15.9 ± 0.6 2247 1161 557  2839 1499 749 

17-18 y 17.8 ± 0.6 883 444 223  1290 729 364 

≥19 y 20.8 ± 1.8 492 229 137  548 293 150 

Total number of swimmers 149        148        108   168 164 126 

Age data are mean ± SD.  
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Differences in career training durations between event-distance groups, between sexes, 

and between age-groups were assessed via standardisation using thresholds of 0.2, 0.6, 1.2, 

and 2.0 for small, moderate, large and very large, respectively (Hopkins et al., 2009). Given that 

only moderate effects would be clear at the 99% confidence level with a sample size of ~85 in 

each of two compared groups (Hopkins, 2006b), we have highlighted only moderate or larger 

differences in our results. 

Durations of career training are presented as mean ± SD for each age-group within each 

sex and event-distance combination. (The upper and lower tertile boundaries occur at ~0.5 SD 

above and below the mean.) Differences in swim performance time between tertiles of career 

training are shown for the middle tertile minus the lower tertile and the middle tertile minus the 

upper tertile. The modifying effects associated with career other-sports training are presented 

only for the tertile of career swim-specific training with the greatest performance benefits. Where 

the most beneficial tertile of career swim-specific training is not clear, effects are presented for 

the swim-specific training tertile with the greatest performance benefits associated with career 

other-sports training.  

 

5.3. Results 

The number of career hours of swim-specific and other-sports training leading up to 

performances for each age-group within each sex and event-distance group are displayed in 

Figure 6. Each sex and event-distance combination showed large to very large increases in 

swim-specific training hours between consecutive age-groups. Within the youngest age-group, 

female distance swimmers had performed moderately more swim-specific training than female 

sprinters, and by the oldest age-group, male sprint and middle-distance swimmers had 

accumulated moderately more other-sports training hours than their female counterparts. All 

other differences in career training durations between event-distance groups, between sexes, 

and between age-groups were trivial to small in magnitude.  

The mean performance differences between tertiles of career swim-specific training for 

each age-group within each sex and event-distance combination are presented in Figure 7. In 

the youngest age-group (<13 y), more swim-specific training was related to better performance 

(likelihoods, possibly to most likely), with clear small performance benefits (0.7% to 1.7%, 

~±0.3%; range in means, ±90% confidence limits) evident for the upper tertile of most sex and 

event-distance groups. These benefits continued into the second age-group (13-14 y) for 

distance swimmers, with the upper tertile of swim-specific training being associated with clear 

small performance advantages (0.4% to 0.6%, ~±0.3%; possibly to likely) for both sexes. 

However, for most sex and event-distance combinations, there was little performance benefit 

associated with the upper tertile of swim-specific training between the ages of 13 and 18. 

Indeed, male middle-distance and distance swimmers in the top tertile of swim-specific training 

experienced clear small performance impairments (-0.4% to -0.9%, ~±0.2%; likely to most likely) 

between the ages of 15 and 18. 
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In the oldest age-groups (sprint and middle-distance, ≥19 y; distance, ≥17 y and ≥19 y), the 

upper tertile of swim-specific training (>~10,500 h) was associated with clear performance 

advantages (likely to most likely) for females. These advantages increased in magnitude with 

increasing event distance, ranging from small for sprinters (0.7%, ±0.5%; mean, ±90% 

confidence limits), through to large for middle-distance swimmers (1.5%, ±0.7%), and very large 

for distance swimmers (2.3%, ±0.6%). The upper tertile of swim-specific training (>~9250 h) was 

also related to clear small performance benefits (0.7%, ±0.4%; likely) in the oldest age-group of 

male distance swimmers, but for the oldest male middle-distance swimmers the lowest tertile of 

swim-specific training (<~6500 h) was associated with best performance by clear large amounts 

(1.5%, ±0.6%; most likely). While no one tertile was clearly superior for male sprint swimmers in 

the oldest age-group, the middle tertile of swim-specific training (~6000-9000 h) was associated 

with clear small performance advantages (0.5%, ± 0.4%; likely) over the lower tertile (<~6000 

h).  

  

 

 
Figure 6. Career hours of swim-specific training (pool plus dryland hours) and other-sports 
training leading up to female and male swim performances in each age-group for the three 
event-distance groups. Data are means; error bars are SD. 
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Figure 7. Differences in swim performance time (mean, ±90% confidence limits) between 
tertiles of career specific training (pool plus dryland hours) for each age-group. Differences are 
shown for the middle tertile minus the lower tertile (grey bars) and the middle tertile minus the 
upper tertile (black bars). Thresholds for the smallest important differences in swim time are 
represented by the dashed lines. 
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Figure 8. Differences in swim performance time (mean, ±90% confidence limits) between 
tertiles of career non-specific training (other-sports hours) for the best tertiles of career swim 
training (L, lower; M, middle; U, upper), for each age-group. Differences are shown for the 
middle tertile minus the lower tertile (grey bars) and the middle tertile minus the upper tertile 
(black bars). Thresholds for the smallest important differences in swim time are represented by 
the dashed lines. 
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Figure 8 shows the mean performance differences between tertiles of career other-sports 

training, for the tertiles of career swim-specific training with the greatest performance benefits 

for each age-group within each sex and event-distance group. For the youngest age-group (<13 

y) of male middle-distance swimmers and distance swimmers of both sexes, the lower tertile of 

other-sports training (<~500 h) was associated with possibly to likely performance benefits, 

which were clear and small to moderate in magnitude (0.8% to 1.8%, ~±0.6%). Thereafter, most 

differences between tertiles of other-sports training were either trivial in magnitude or unclear at 

the 99% confidence level, with the exception of female performances in the oldest age-group. 

For these swimmers in all event-distance groups, the greatest performance effects tended to be 

associated with the middle tertile of other-sports training (~2750 h), which typically displayed 

clear large to very large benefits over the upper tertile of other-sports training (2.2% to 2.3%, 

~±1.5%; likely). 

The within-swimmer standard deviation of race-to-race performance typically decreased 

progressively with increasing age for all sex and event-distance groups. Male sprint swimmers 

generally displayed the greatest race-to-race variability for each age-group (2.9%, 1.7%, 1.3%, 

1.1%, and 0.9%, youngest to oldest age-groups), while female distance swimmers showed the 

least variability (2.0%, 1.1%, 0.8%, 0.6%, 0.8%, youngest to oldest age-groups). Multiplied by 

0.3, the standard deviations for these and the other event-distance groups appear in Figures 7 

and 8 as thresholds for the smallest important performance effects for each age-group (Hopkins 

et al., 2009).  

 

5.4. Discussion 

In the present study we have quantified the relationships between career durations of 

training and swim performance using a novel application of mixed linear modelling. By 

estimating the performance differences between lower, middle and upper tertile groups of 

career swim-specific training hours, we have shown that the relationships between cumulative 

training durations and swim performance appear to be non-linear. In fact, our analysis revealed 

that  accumulating more career swim-specific training by senior level may be of benefit only to 

female swimmers (Figure 7).  

For the oldest age-group of female swimmers in our study (≥ 19 y), the career durations of 

swim-specific training associated with the best performance effects were above the 10,000 

hours proposed by Ericsson et al.’s (1993) deliberate-practice model to be necessary and 

sufficient for development of expert athletic performance. While this finding contrasts with much 

evidence showing that top athletes from other sports often accumulate far less than 10,000 

hours of domain-specific training (Bullock & Hopkins, 2009; Helsen, Starkes, & Hodges, 1998; 

Oldenziel & Gagne, 2004), comparable research with high-level swimmers has found large to 

very large positive correlations between career swim-specific training hours and performance 

(Hodges et al., 2004). Explanations for this discrepancy between swimming and most other 

sports may relate to differences in the medium of locomotion. The kinesthetic learning and 

reinforcement needed to develop and maintain the efficient aquatic motion necessary for 
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successful swim performance is thought to require greater time investment than that for 

successful performance in most land-based sports. Consequently, swimming has typically been 

considered an early specialisation sport, or a sport in which engaging in high practice volumes 

from early ages is beneficial for long-term performance (Balyi, 2010). Given that greater career 

domain-specific training hours have been shown to differentiate world-class performers from 

their national-level counterparts in another early specialisation sport, rhythmic gymnastics (Law, 

Cöté, & Ericsson, 2008), it may be that long-term performance in certain sports can benefit from 

early specialisation, as proposed within deliberate-practice theory.  

In contrast, our findings that senior-level male swimmers of most event distances seem to 

perform best with lower or moderate amounts of cumulative swim-specific training are 

inconsistent with the 10,000-hour rule of deliberate-practice theory. Previous similar research 

has also shown that swimmers at both the elite and sub-elite level manage to accumulate 

~10,000 hours of career swim-specific training (Johnson et al., 2006). On the basis of this 

evidence, 10,000 hours of career domain-specific training appears to be neither necessary nor 

sufficient for the acquisition of optimal performance. Therefore, even within an early 

specialisation sport like swimming, key elements of Ericsson et al.’s (1993) model look to be too 

restrictive to provide a comprehensive explanation for the complex development of high-level 

sporting performance. 

Reasons for greater career training hours generally being associated with better 

performance in senior-level female but not male swimmers may relate to differences in recovery 

between genders. Current evidence shows that oestrogen may play a role in reducing the 

inflammatory response to exercise-induced muscle damage (Kendall & Eston, 2002), lending 

support to the anecdotal belief of many swim coaches that females are able to recover faster 

than males because they have less muscle damage to repair (Maglischo, 2003). If females were 

to recover more quickly than males, then over the course of their careers they could 

theoretically accumulate more high-intensity training, stimulating more race-specific 

physiological and neurological adaptation, resulting in greater long-term improvements in 

performance. By the same logic, inadequate recovery owing to high career training hours may 

reduce the training quality of male swimmers, consequently impairing their long-term 

performance, particularly in shorter-distance events (Rushall, 2013). Additionally, female 

athletes are thought to be more susceptible to adding more size than strength through 

maturation, thus increasing their resistive drag profile without a concurrent increase in their 

ability to overcome this drag by applying more propulsive force, resulting in restricted post-

pubertal performance progression (Maglischo, 2003). By maintaining high training durations at 

early ages, females may be able to better regulate their energy balance through their 

development, consequently minimising the detrimental increases in body mass typically 

triggered by puberty and facilitating better performance at senior-level (Vorontsov, 2005).  

Our study found evidence of female distance swimmers accumulating more career swim-

specific training hours at early ages compared with female sprinters. Improved regulation of 

energy balance owing to the effects associated with these greater training durations may again 

help to explain why senior-level females in the present study experienced increasing 

performance benefits with increasing event distance. Another likely explanation is that more 
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career swim-specific training typically helps develop the aerobic efficiency that is more critical 

for performance in distance swimming than in shorter-distance events (Maglischo, 2003). The 

same rationale may also account for the performance advantages observed in the present study 

for senior male distance swimmers with greater training histories. 

Better performance in developing swimmers is typically considered to result primarily from 

the effects of early maturation and greater career training durations (Sokolovas, 2006b). By 

including age as a quadratic random effect in our mixed modelling we have effectively adjusted 

for the unique effects of growth on each individual swimmer, such that our results reflect only 

the performance effects associated with training. In general, more career training appeared to 

help swimmers under the age of 13, but given that we found little performance benefit 

associated with greater training history in the adolescent years thereafter, improvements in 

performance over this period can presumably be ascribed mainly to the ongoing effects of 

individual variation in maturation and talent.  

Our study is the first to quantify within-swimmer race-to-race variability in performance at 

all career stages for national-level swimmers in all sex, stroke and distance event combinations. 

Variations within swimmers in each of the four youngest age-groups were of a similar 

magnitude to those derived from estimates of year-to-year performance stability of developing 

male freestyle swimmers produced by Costa et al. (2011), while the race-to-race variability of 

our senior swimmers was also consistent with previous estimates (Pyne et al., 2004). The 

smaller variability that we observed between performances of female distance swimmers 

compared with those of male sprint swimmers possibly relates again to the greater recovery 

capacity of females, allowing them to produce more consistent performances even within heavy 

training phases. Additionally, swimmers are presumably less likely to enter longer-distance 

races without adequate preparation, potentially resulting in greater reliability of performances in 

these events. 

Cöté et al.’s (2007) theory that early diversification followed by late specialisation provides 

the optimal pathway to sporting expertise was the basis for investigating the modifying effects 

on performance associated with other-sports training durations in the present study. According 

to this theory, other-sports participation during development benefits long-term performance by 

reducing the risk of motivational weariness from single-sport training, and by stimulating 

development of a broad range of transferable physiological and neurological capacities. Our 

finding that senior female swimmers experienced clear performance advantages associated 

with the middle tertile of career other-sports training was concordant with this theory. However, 

in general there were few other clear associations between career other-sports training 

durations and swim performance, which is consistent with previous similar research (Hodges et 

al., 2004). One explanation for these findings might relate to the fact that there is typically 

limited transferability of motor skills and energetic capacities from land-based training into 

swimming (Rushall, 2013), but moderate amounts of career other-sports training may have 

benefitted the long-term performance of our oldest females by reducing their risk of staleness. 

There were several limitations to the present study. First, the use of retrospective methods 

may have resulted in inaccurate recall of career training amongst our swimmers, despite our  

attempts to trigger improved recollection using additional questioning. Secondly, our results 
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reflect only associations between performance and career training durations, not cause and 

effect relationships. It may be that the better-performing senior female swimmers possessed 

more innate talent and therefore engaged in greater amounts of career training as a 

consequence of being selected to top squads on the basis of their talent. From our data we 

were unable to investigate the influence of genetics on performance, but given evidence from 

genomic studies that substantial inter-individual variation exists in response to standardised 

training programmes (Bouchard et al., 2011), it seems likely that better performance results 

from interactions between both training and talent (Tucker & Collins, 2013). The time and 

computational power required to run further analyses in the present study prevented us from 

investigating any additional random effects that would account for individual responses, which 

undoubtedly exist. Future research quantifying individual responses to both acute and 

cumulative training loads would provide valuable programming recommendations to help 

coaches and national sporting organisations individualise their swimmer-development 

pathways. Finally, our data were unable to account for differences in training intensity or 

frequency, and the quality of training due to factors such as coaching experience, and access to 

facilities and resources. Considering the well-documented importance of technique in 

determining elite swimming performance (Arrelano, 2010), future research on the long-term 

performance effects of career training durations should also be prospective to properly quantify 

training quality. 

 

5.5. Conclusion 

Using the career performances and training histories of national-level swimmers and a 

novel application of mixed linear modelling for analysis, we have demonstrated that the 

relationships between cumulative training hours and swim performance are non-linear in nature 

and differ between sexes. At early ages, cumulative training hours appear to be important for 

swim performance, but at the most senior level beneficial associations between career training 

and performance were apparent only for females, specifically those with histories of high swim-

specific training hours and moderate other-sports training hours. With respect to theories of the 

acquisition of expert sporting performance, our results provide some support for elements of 

both deliberate-practice theory and early-diversification theory, but on the whole, neither theory 

appears to offer a framework fully applicable to the sport of swimming. Elite swim performance 

more likely results from optimising each swimmer’s adaptation to training; future research in this 

area should therefore aim to prospectively quantify individual responses to both acute and 

cumulative training loads in order to generate practical recommendations for individualising 

swimmer development.  
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CHAPTER 6 

 
THE PERFORMANCE EFFECT OF CENTRALISING A NATION’S ELITE SWIM 

PROGRAMME 
 

This chapter comprises the following paper published in the International Journal of Sports 

Physiology and Performance: 

Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W. G. (2015). The performance effect of 

centralising a nation’s elite swim programme. International Journal of Sports Physiology and 

Performance, 10, 198-203. 

 

Overview 

Many national sporting organisations recruit talented athletes to well-resourced centralised 

training squads to improve their performance. Purpose: To develop a method to monitor 

performance progression of swimming squads, and to use this method to assess the 

progression of New Zealand’s centralised elite swimming squad. Methods: Best annual long-

course competition times of all New Zealand swimmers with at least three years of 

performances in an event between 2002 and 2013 were downloaded from takeyourmarks.com 

(~281,000 times from ~8500 swimmers). A mixed linear model accounting for event, age, club, 

year, and elite-squad membership produced estimates of mean annual performance for 175 

swim clubs and mean estimates of the deviation of swimmers’ performances from their 

individual quadratic trajectories after they joined the elite squad. Effects were evaluated using 

magnitude-based inferences with a smallest important improvement in swim time of -0.24%. 

Results: Before 2009, effects of elite-squad membership were mostly unclear and trivial to 

small in magnitude. Thereafter, both sexes showed clear additional performance 

enhancements, increasing from large in 2009 (males -1.4%, ±0.8%; females -1.5%, ±0.8%; 

mean, ±90% confidence limits) through to extremely large in 2013 (males -6.8%, ±1.7%; 

females -9.8%, ±2.9%). Some clubs also showed clear performance trends during the 11-year 

period. Conclusions: Our method of quantifying deviations from individual trends in competition 

performance with a mixed model showed that Swimming New Zealand’s centralisation strategy 

took several years to produce substantial performance effects. The method may also be useful 

for evaluating performance-enhancement strategies introduced at national or club level in other 

sports. 
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6.1. Introduction 

Tracking the performance progression of a nation’s elite sporting squads is important for 

evaluating the impact of national strategies introduced to improve athletes’ medal-winning 

prospects. Such strategic interventions have become common over recent years, owing to 

increasing competition between nations for medals at major international events such as the 

Olympic Games and World Championships (de Bosscher, Bingham, Shibli, van Bottenburg, & 

de Knop, 2008). 

While ~50% of a nation’s international sporting success is accounted for by largely 

immutable macro-level factors, such as population size, economic welfare and geographical 

resources (Storm & Nielsen, 2010), it can also be substantially influenced by more controllable 

meso-level factors, such as strategic policies aimed at improving the systems around elite 

athletes (de Bosscher et al., 2008). Six critical policy factors determine the quality of these elite 

sport systems: funding, talent identification and development, clarity and simplicity of 

administration, international competition opportunities, facilities, and sport-science and sports-

medicine service provision (Houlihan & Green, 2008). Of these factors, funding appears to be 

the strongest predictor of international sporting success (de Bosscher et al., 2008; UK Sport, 

2006). 

Given the finite supply of finances for elite sport in many nations, several national sporting 

organisations have attempted to maximise the effectiveness of their available funding by 

“centralising” their elite sporting programme. The centralisation process usually involves a 

nation’s top athletes leaving home training programmes to join better resourced elite squads. 

Although this process has been widely credited for much of the recent Olympic medal-winning 

success of teams such as British Cycling (based at the National Cycling Centre in Manchester, 

UK), British Sailing (Weymouth, UK) and Rowing New Zealand (Lake Karapiro, New Zealand), 

the success of centralisation strategies in elite sport has rarely been evaluated objectively.  

Within the swimming community, current opinion on the efficacy of centralisation policies 

for elite swim performance appears divided. Some proponents within British Swimming believe 

swimmers can fully progress only by leaving home clubs for well-resourced programmes that 

can provide more for them in the long-term (Greyson et al., 2010), while critics argue that elite 

programmes are too results-focused and may not produce a sustainable and lasting 

performance impact (Lang & Light, 2010). Observational evidence from Swimming Australia 

also appears equivocal (Rushall, 2011a), given both the long-term success of swimmers who 

remained with their original coaches and programs (e.g., Grant Hackett) and swimmers who 

have joined dedicated elite training centres (e.g., Alicia Coutts, Australian Institute of Sport).  

In the present study we have developed a method for analysing the performance 

progression of a nation’s swim squads. We have then used this method to assess the 

progression of New Zealand’s centralised elite swimming squad since its inception in 2002. This 

research is the first quantitative evaluation of the performance impact of a centralised swim 

training programme. 
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6.2. Methods 

All official long-course performance times from all 1030 competitions for New Zealand 

swimmers between 2002 and 2013 were downloaded from takeyourmarks.com. Club affiliations 

associated with each performance were obtained from the same website. Best annual times of 

all swimmers with at least three performances in an event were retained for analysis (49.2% of 

the nation’s swimmers). Overall, there were 153,199 times from 4809 female swimmers, and 

127,626 times from 3690 male swimmers, with a similar number of performances per swimmer 

per event for females (4.5 ± 1.6; mean ± SD) and males (4.6 ± 1.8). Swimmers of both sexes 

also had a similar number of club affiliations (1.3 ± 0.5) over their careers. 

Start and end dates of membership for the 20 female and 24 male swimmers who were 

part of the centralised elite squad (highest FINA points score 859 ± 57) between 2002 and 2013 

were provided by Swimming New Zealand. For all performances a dummy variable was then 

coded as either 0 or 1 to represent membership or non-membership of the elite squad, 

respectively. Duration of elite-squad membership was similar for females (4.3 ± 2.1 y) and 

males (4.2 ± 2.2 y), with 595 female performances and 619 male performances being coded 1. 

Performance times were log-transformed for analysis of percent changes using the high-

performance mixed linear model procedure (Proc Hpmixed) in the Statistical Analysis System 

(Version 9.4, SAS Institute, Cary, NC). Separate analyses were performed for males and 

females. The model included fixed effects accounting for the mean effects of event (34 levels of 

stroke and distance), age (numeric linear and quadratic), year (12 levels), and the interaction 

between elite-squad membership (dummy variable) and year. Random effects for swimmer and 

age within-swimmer (numeric linear and quadratic) were included to derive individual trends for 

each swimmer, and random effects for club affiliation (175 levels of New Zealand swimming 

clubs) and the interaction between club affiliation and year were included to produce estimates 

of mean annual performance for each of the clubs. In this model the elite-squad interaction with 

year provided estimates of the mean deviation of swimmers’ performances from their individual 

quadratic trajectories after they left their home club and joined the elite squad. The fixed effect 

for year provided estimates of annual mean performance of all New Zealand swimmers. Given 

that the mean of a random effect in a mixed model is equal to zero, the sum of the value of the 

random effect for a given club and the value of its interaction with a given year provided an 

estimate of the mean percent performance difference of that club’s swimmers from the mean 

performance of all New Zealand swimmers in that year.  

The suitability of using quadratic trends to model swim performance has been established 

previously (Allen et al., 2014; Malcata et al., 2014), so this model was deemed a plausible 

option to quantify performance changes arising from the effect of an intervention, such as 

swimmers becoming members of an elite squad. Means and standard deviations of residuals for 

each age decile were examined to evaluate the goodness of fit of the model for each sex. To 

investigate the performance effects of different durations of elite-squad membership, we added 

a fixed effect for the interaction between year and years of elite-squad membership (numeric 

linear) to our original model and repeated the analysis for both sexes. This fixed effect provided 
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estimates of the initial performance effect of elite squad membership and the ongoing simple 

additive effect per year of elite-squad membership thereafter.  

Elite-squad and club effects were evaluated using non-conservative clinical magnitude-

based inferences, while year effects were evaluated mechanistically (Hopkins et al., 2009). For 

elite-squad effects, the smallest important improvement in swim time was -0.24% (0.3 of the 

race-to-race variability in performance of top swimmers of 0.8%; Pyne et al., 2004). Thresholds 

for moderate, large, very large and extremely large effects were -0.72%, -1.3%, -2.0%, and -

3.2%, respectively (0.9, 1.6, 2.5, and 4.0 of 0.8%; Hopkins et al., 2009). Thresholds for club and 

year effects were -0.42%, -1.3%, -2.2%, -3.5%, and -5.6%, (small to extremely large, 

respectively), which were derived in a similar manner using race-to-race variability in 

performance of sub-elite swimmers of 1.4% (Stewart & Hopkins, 2000b). Between-club standard 

deviations in performance derived from the mixed model were doubled for interpretation of their 

magnitude using this scale (Smith & Hopkins, 2011). Uncertainty in estimates of effects was 

expressed as 90% confidence limits (provided by Proc Hpmixed) and as likelihoods that the true 

value of the effect represents substantial change (improvements or impairments in 

performance; Batterham & Hopkins, 2006). Hpmixed in SAS 9.4 did not provide confidence 

limits for the random-effect variances. 

 

6.3. Results 

Mean performance effects due to membership of the centralised elite squad between 2002 

and 2013 are presented for each sex in Figure 9. Females showed additional performance 

benefits from 2009 onwards (likelihoods, very likely to most likely), increasing from large in 2009 

(-1.5%, ±0.8%; mean, ±90% confidence limits) to very large in 2010 (-2.7%, ±0.9%), to 

extremely large in the years 2011 (-4.3%, ±1.1%), 2012 (-5.1%, ±1.2%), and 2013 (-9.8%, 

±2.9%). The observed effects of elite-squad membership for females were mostly trivial to 

moderate in magnitude before 2009 and the true effects were unclear, with the exception of 

2002 (-1.5%, ±1.5%; a likely beneficial moderate effect). Male elite-squad members 

experienced large extra performance benefits in 2003 (-1.5%, ±1.3%; very likely beneficial), but 

likely harmful moderate performance impairments in 2005 (0.7%, ±1.1%), 2006 (1.2%, ±1.1%), 

and 2007 (0.7%, ±1.0%). All other effects prior to 2009 for males were unclear and small to 

moderate in magnitude. With the exception of 2010 (an unclear trivial effect), males then also 

showed clear very likely to most likely additional performance benefits, increasing from large in 

2009 (-1.4%, ±0.8%), to very large in 2011 (-2.5%, ±1.0%), through to extremely large in 2012 (-

4.4%, ±1.2%) and 2013 (-6.8%, ±1.7%). 

In the analysis in which the elite-squad effect was partitioned into separate membership 

and years-of-membership effects, both effects were mostly trivial to small and unclear before 

2009 for females. Thereafter, membership effects were clearly beneficial and ranged from 

moderate (-0.7%, ±1.2%) to extremely large (-3.6%, ±2.5%), while each year of membership 

contributed a generally clear and small additional performance enhancement (~-0.6%, ~±0.6%). 
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Figure 9. Mean annual deviation (%, ±90% confidence limits) of top New Zealand female and 
male swimmers’ performance times from their individual quadratic trajectories due to 
membership of the centralised elite squad. Thresholds for the smallest important improvement (-
0.24%) and impairment (0.24%) in swim time define the trivial-effect range (shaded area). 
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Figure 10. Mean annual performance (%, ±90% confidence limits) of all New Zealand 
swimmers’ shown as changes since 2002. Thresholds for the smallest important improvement (-
0.42%) and impairment (0.42%) in swim time define the trivial-effect range (shaded area). 
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Figure 11. Mean annual deviation (%, ±90% confidence limits) of one New Zealand club’s 
female swimmers’ performance times from the mean annual performance times of all New 
Zealand female swimmers. From mid-2007 to end-2008, a new head coach initiated a 
performance-enhancing intervention: a major restructuring of the club’s squad system and 
management team. Thresholds for the smallest important improvement (-0.42%) and 
impairment (0.42%) in swim time define the trivial-effect range (shaded area).  
 

 

For males, membership effects were mostly also clearly beneficial from 2009 onwards and 

ranged from large (-1.5%, ±1.0%) to extremely large (-5.5%, ±3.6%), but years-of-membership 

effects were generally trivial and unclear, with the exception of a clear potentially harmful small 

per-year effect in 2012 (0.3%, ±0.4%). There was a clear moderate per-year effect for the 

females compared with the males (-0.9%, ±0.7%; likely beneficial). 

Calendar-year trends in mean performance of all New Zealand swimmers are presented in 

Figure 10. Both sexes showed gradual annual improvements in performance, with clear large 

changes for females (-3.0%, ±0.4%; most likely substantial) and clear very large changes for 

males (-3.6%, ±1.0%; most likely substantial) between 2002 and 2013.  

Over the 11-year period, 157 clubs had at least three years of performance estimates for 

both sexes. The random effects for club and for the interaction of club and year were combined 

to give a standard deviation representing typical differences between clubs in the mean ability of 

their swimmers in any given year (the average standard deviation over the 11-year period). The 

values were ±4.0% for female swimmers and ±4.3% for male swimmers, both extremely large. 

Confidence limits for these values could not be computed.  
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The individual estimates comprising the club random effects were used to produce plots of 

progression of mean performance of the swimmers in each club. Figure 11 shows a plot for the 

female swimmers of one club chosen to illustrate a sustained substantial change in 

performance. Prior to 2009, differences between the club’s female swimmers and the average 

New Zealand female swimmer were trivial to small in magnitude but unclear. In mid-2007, the 

club appointed a new head coach with many years of coaching experience both overseas and 

within New Zealand. The new coach immediately initiated major restructuring of the club’s 

squad system and management team, which was completed at the end of 2008. From 2009 

onwards, the club’s female swimmers then performed better than the average New Zealand 

female swimmer by clear likely to most likely substantial amounts, increasing from moderate in 

2009 (-1.4%, ±1.3%) to large in 2013 (-2.8%, ±1.5%). The club’s male swimmers also 

experienced extra performance benefits beyond 2008, with their performance estimates 

increasing from moderate in 2007 and 2008 (-1.8%, ±1.5%; likely beneficial), to large in 2009 (-

2.3%, ±1.4%; very likely beneficial) through to 2013 (-3.2%, ±1.6%; most likely beneficial).  

Overall residual variance between observed and modelled performance times was 2.9% for 

female swimmers and 3.1% for male swimmers. Analysis of residuals by age deciles produced 

borderline trivial-small negative mean residuals (-0.25% to -0.27%) for elite female swimmers 

above the age of 18. We observed no other systematic deviation of the mean residuals across 

each age decile above or below the smallest worthwhile effects for elite or sub-elite swimmers. 

The standard deviations of the residuals were largest for the youngest age deciles and showed 

a progressive reduction through the age-range, with values for the oldest age deciles being 

~50% of those of the youngest deciles. 

 

6.4. Discussion 

In the present study we have developed a model to assess the performance progression of 

a nation’s swim squads based on the individual performance trajectories of all of the nation’s 

competitive swimmers. By quantifying the deviation of top swimmers’ performances from their 

trajectories after they joined the centralised elite squad, we have shown that Swimming New 

Zealand’s centralisation strategy took several years to produce substantial performance effects 

(Figure 9). Our method also produced performance estimates for each New Zealand swimming 

club between 2002 and 2013, creating trends that can be used to objectively evaluate factors 

that could affect performance at club level (e.g., Figure 11). 

Over the 11-year period, the standard of all New Zealand performances improved gradually 

year-on-year by a magnitude similar to that of all of the top-150 world ranked performances 

between 1990 and 2010 (mean ~0.3% improvement per year, equivalent to ~3.3% over 11 

years; O’Connor & Vozenilek, 2011). Our model therefore allows direct evaluation of the overall 

annual progression of a nation’s sporting performance, which should be useful for national 

sporting organisations and for guiding national funding decisions. 

Our analysis produced mostly clear beneficial performance effects for elite-squad members 

between 2009 and 2013 for both sexes. The nature of the mixed model is such that these 
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effects were adjusted for all other effects in the model; that is, our analysis produced estimates 

of the elite-squad effects as if all swimmers were the same age, from the same club, swimming 

the same event, in the same year. Established performance effects of full-body polyurethane 

swimsuits in 2008 and 2009 (Berthelot et al., 2010) were also adjusted for, as swimmers across 

all ages and clubs wore them over these two years. Accordingly, the increasing performance 

benefits for top swimmers from 2009 onwards can be attributed to elite-squad membership, 

rather than to the potential confounding effects of age, calendar-year, swimsuits, or changes in 

the proportions of swimmers in different events. Although our study does not directly address 

the aspects of elite-squad membership responsible for the enhancement in performance in the 

last few years, by reviewing the history of the squad we have been able to identify some of the 

likely factors responsible, many of which appear closely aligned with the six critical sport policy 

factors for successful elite sport systems (Houlihan & Green, 2008). First, government funding 

of national sporting organisations in New Zealand has been increasing annually since 2002, 

with swimming having been identified as a priority sport since 2006 (Collins, 2008). Secondly, 

the inception of the centralised elite-squad coincided with the opening of a dedicated training 

facility (including a 50-m pool, gym, recovery area and a physiotherapy/rehabilitation centre) in 

Auckland, which has since been upgraded on an ongoing basis. This training facility also 

houses sport-science and sports-medicine practitioners, who began to provide continuous 

support to the elite squad from late-2006. Critically, from this time there was also a succession 

of appointments of four established coaches with previous international success. At the 2013 

World Championships, a female elite-squad member achieved three medals (the first medals for 

New Zealand at a World Championships since 1994). Although we observed substantial 

performance effects arising from elite-squad membership for females in 2013, these medals 

must have resulted from this swimmer improving at a greater rate than other top swimmers in 

those events. In order for a nation to systematically equate performance improvements of their 

swimmers to improved medal-winning prospects, improvement rates of rival swimmers (Allen et 

al., 2014) also need to be accounted for. 

The mostly unclear elite-squad effects for the first seven years of the centralisation 

intervention may be explained by all of the above factors requiring several years to begin 

operating effectively enough to result in improved athletic performance. Within this period, the 

beneficial performance effects of elite-squad membership for females in 2002 and males in 

2003 can presumably be ascribed to some sort of Hawthorne effect (Landsberger, 1958), 

whereby swimmers’ performances initially improved in response to the novelty of a new training 

environment, before returning to expected levels in subsequent years. One explanation for the 

likely harmful performance effects of centralisation that we observed for male swimmers 

between 2005 and 2007 is that relocation of swimmers from home squads to train under 

different coaches with new and often more intense training programmes may not have been 

appropriate or may have required too much adjustment for some individuals. Indeed, around 

this period, several male elite-squad members chose to either retire from swimming or to leave 

the centralised programme to join other squads. If this negative effect on some individuals is still 

continuing, it is now masked by the beneficial effects on performance of the majority of squad 

members. To mitigate the possibility of this negative effect, Swimming New Zealand has also 
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introduced trial periods for new squad members before they permanently relocate: a seemingly 

sensible policy for management of any centralised elite-squad.   

Reasons for the likely extra performance benefits per year of elite-squad membership for 

females but not males might relate to gender differences in attitudes towards training. Research 

into cultural personality traits found that New Zealand females tend to be more conscientious 

than their male counterparts (Schmitt, Realo, Voracek, & Allik, 2008). If mirrored in the elite-

squad members, this trend could have permitted females to gain greater long-term performance 

benefits through continually applying themselves to their training. Alternatively, female elite-

squad members may have continued to be pushed to improve by training alongside faster male 

swimmers, while their male counterparts may have struggled to improve without an equivalent 

daily challenge.   

The elite-squad effects were quantified as deviations from swimmers’ individual 

trajectories; as such these effects were not affected by a swimmer’s ability and were therefore 

not due to recruitment of the best swimmers to the elite squad. Club effects were estimated 

differently and therefore have an uncertain contribution from recruitment and from the clubs’ 

approaches to training and preparation of their swimmers. The contribution of recruitment would 

be negligible with sufficient transfer of swimmers between clubs, because the mixed model 

could then estimate swimmer ability independent of club effects. Some swimmers did switch 

clubs at least once throughout their careers, but simulations would be needed to establish how 

much transfer is required to eliminate the effect of recruitment from the club effects. If most of 

the changes in a club’s performance were due to the club’s approach to training and preparation 

of their swimmers‒which seems likely given the example shown in Figure 11‒then our analysis 

provides two valuable insights into the club performance. First, the analysis produces annual 

trends that can be used to objectively evaluate the effects of factors that could influence a club’s 

performance. Secondly, the extremely large differences between clubs along with the identities 

of the clubs can provide evidence for national sporting organisations to guide decisions about 

allocation of resources at the club or individual-swimmer level.   

Analysis of residuals from the mixed model revealed appropriate fit of quadratic trends to 

the performances of a nation’s competitive swimmers. There was some evidence of systematic 

non-fitting of the model for elite female swimmers above the age of 18, but the borderline trivial-

small magnitude of the mean residuals for these swimmers was negligible in comparison with 

the magnitude of the elite-squad performance effects that we observed. Furthermore, the 

confidence intervals for these effects are also likely to be wider than necessary. With more 

computing power we could have specified different error (residual) variances for the elite squad 

and other age groups; the error variance for the elite squad would undoubtedly have been 

smaller than that of any other group, resulting in narrower confidence intervals for the elite-

squad effects than those provided by the present analysis limited to only one error variance.  

Of the other methods that have been developed to assess the performance progression of 

sporting squads, neither would have been suitable for quantifying longitudinal performance 

changes of squads of athletes within a nation arising from the effects of an intervention. 

Malcata, Hopkins and Richardson (2012) modelled the performance progression of an 

academy’s soccer teams over five seasons using game scores as a single team performance 
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measure. We could have applied this model by computing mean annual performance times 

(expressed as percent of world record) of each squad before further analysis, but in the process 

we would have lost the identity of the athletes and would therefore have been unable to assess 

performance changes due to athletes joining the elite squad. Vandenbogaerde, Hopkins and 

Pyne (2012) presented a competition-based design to assess the effects of an intervention on a 

squad of elite athletes. The analysis required a reasonable number of athletes from different 

squads to be racing against each other on a regular basis which, if applied to the present data, 

would exclude most performances. The power of our method is due mainly to the inclusion of 

the best annual competition performances of all swimmers within a nation over an extended 

period. Although we have developed this method for a sport in which the effects of 

environmental conditions on performance are assumed to be negligible, the model could 

presumably be applied to certain other sports by adding clustering variables to adjust for and 

estimate the effects of environmental conditions on performance times (Malcata et al., 2014). 

  

6.5. Practical Applications and Conclusions 

We have presented a new method for analysing the performance progression of a nation’s 

swim squads. This method has provided annual estimates of the performance of all of a nation’s 

swim clubs, the performance effect of centralising a nation’s elite swim programme, and the 

change in performance of all of a nation’s swimmers. These estimates should be useful for 

coaches, scientists, national sporting organisations and funding bodies interested in objectively 

evaluating the success of interventions introduced to improve performance at club or national 

level. The method could be developed further within swimming to assess a squad’s strengths 

and weaknesses by investigating performance differences between strokes, distance groups, or 

age groups. Other sports in which athletes have individual performance scores and are grouped 

into squads, clubs or regions may also benefit from the application of this method.  
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CHAPTER 7 

 
DISCUSSION AND CONCLUSION 

 

The overall aim of this thesis was to use mixed modelling to develop objective analytical 

tools that can be used to monitor and assess the performance progression of swimmers. First, a 

systematic review of estimates of age of peak competitive performance of elite athletes from a 

variety of sports (Chapter 2) was presented to outline the need for progression-monitoring tools 

specific to the sport of swimming. Next, I presented four original-research projects, in which 

mixed modelling was used to investigate four different aspects of performance progression and 

athlete development: benchmarking (Chapter 3), talent identification (Chapter 4), career training 

history (Chapter 5), and performance-enhancing strategies and interventions (Chapter 6). This 

chapter binds the thesis as a cohesive whole by summarising the findings of the five PhD 

projects and highlighting their theoretical contributions and practical applications. Limitations 

and future research directions are also presented. An overview of the main outcomes of the 

thesis is shown in Figure 12. 

 

7.1. Contributions to Theory 

The theoretical framework that informed the research objectives of this thesis was the Long 

Term Athlete Development (LTAD) model (Balyi, 1990). Originally developed for all sports, the 

LTAD framework features five developmental stages that define a general pathway of athlete 

progression from childhood through to international performance success. This generic 

framework has since been adapted and applied to a number of different sports, including 

swimming (Australian Swimming Inc., 1996; Amateur Swimming Association, 2003), although 

not without criticism from academics, coaches and applied sports scientists embedded within 

the sport. Following interviews with eleven coaches on the topic of implementation of the LTAD 

within English swimming, Lang & Light (2010) identified two main problems with applying the 

LTAD approach to swimming: training prescriptions adapted from the generic LTAD model 

interfering with swim technique development, and coaches misinterpreting the LTAD principles. 

In a subsequent commentary on this swim-specific LTAD model, Rushall (2011a, p. 3) provided 

a stronger view, claiming “the proposal that ‘one model [the LTAD model] fits all’ sports, is 

preposterous”. Outlining his rationale for this claim, he stated “to think that chess, track and 

field, ballroom dancing, synchronised swimming, competitive rock-climbing, ice-hockey, and 

sport-parachuting have much in common that spans the lives of potential participants boggles 

the mind”. While much anecdotal evidence exists to substantiate the broad spectrum of typical 

career spans of different sports, Chapter 2 of this PhD is the first systematic review to present 

objective evidence showing that the age of peak competitive performance of elite athletes 

ranges widely between sports (from ~20 y to ~39 y). With the first PhD project, I have therefore 

provided a theoretical rationale to support the development of sport-specific models of long-term 

athlete development. In addition, in order to address the research objectives of this thesis, I  
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• Theoretical rationale: Importance of objectively monitoring individual                   
  performance progression for swimmer development 

• Methodological approach: Mixed linear modelling  
• Thesis question: Can statistical modelling provide solutions to appropriately 

  monitor and assess performance progression of swimmers? 

 Chapter 1 ‐ Introduction 

• Linear trends in age of peak performance of elite athletes by event duration 
• Equation tool for talent identification, to estimate peak age & guide event selection 

 Chapter 2 – Systematic Literature Review 

• Career performance trajectories tool, benchmarks from Olympic top‐16 swimmers 
• Mean age of peak performance and peak performance window duration 

 Chapter 3 – Benchmarking 

• Four methods for predicting Australia’s 2012 Olympic‐qualifying swimmers 
• Track variables other than age and performance to improve selection accuracy 

 Chapter 4 – Talent identification 

• Non‐linear relationships between career training and swim performance 
• Elite performance likely results from optimising individual adaptation to training 

 Chapter 5 – Career training 

• The performance effect of centralising New Zealand’s elite swim programme 
• Tool for monitoring performance progression of nations and clubs 

 Chapter 6 – Interventions 

• Theoretical contributions: Evidence‐based rationale to justify need for new swim‐
specific long‐term athlete development model. Objective data to inform content 
and structure of future models.  

• Practical contributions: Individual performance‐trajectories method provides a tool 
for coaches, scientists, administrators and national sporting organisations to: 

• assess progression of developing swimmers against elite benchmarks; 
• predict future performance; 
• evaluate relationships between training and performance; 
• assess performance effects of interventions. 

 Chapter 7 – Discussion and Conclusion 

Monitoring and Modelling Swim Performance

Figure 12. Overview of the main outcomes of the thesis. 
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established a clear need to develop new analytical methods for monitoring and assessing 

athletic performance that were specific to the typical progression pathways within the sport of 

swimming.  

In my second PhD study (Chapter 3), I used mixed modelling to develop individual career 

performance trajectories of Olympic top-16 swimmers. Analysis of these trajectories using a 

meta-analytical model produced age-related performance-progression benchmarks that should 

provide a useful evidence base to underpin new swim-specific frameworks of long-term athlete 

development. The mean age of peak performance and mean duration in the peak performance 

window for elite swimmers were also quantified in each of the 26 Olympic pool events. The 

estimates of mean peak-performance age for 2008 and 2012 Olympic top-16 swimmers were 

~2 y greater than estimates of peak performance of all freestyle swimmers ranked in the annual 

world top 10 between 1980 and 2009 (Berthelot et al., 2012). These data are consistent with an 

apparent upward secular trend in the age of peak swim performance, likely owing to recent 

increases in funding and resources that have allowed top swimmers to forge a career in the 

sport and thereby continue training and competing to older ages than previously possible. 

Considering evidence from Chapter 2, these older ages may be closer to the ages at which the 

physical, mental, technical and strategic capacities required for successful performance typically 

peak within humans. Therefore, as knowledge of long-term athlete development improves, it 

seems likely that we will observe continued improvements in the standard of swim 

performances in the coming years as the capacity of top swimmers evolves towards their true 

potential. Indeed, in 2014 there have been over 20 new world records in short-course and long-

course individual and relay swimming events, indicating that we are not yet close to reaching 

the limits of human swimming performance. Further research should continue to track secular 

trends in the age-performance relationship to allow benchmarks within swim-specific models of 

athlete development to be appropriately adjusted for future years. 

In Chapter 4, I extended the individual trajectories approach to develop career performance 

trends for all Australian swimmers with sufficient data. By including a random effect for age, the 

mixed model was able to effectively account for the unique effects of age on each individual’s 

performance progression, aligning well with the Principle of Individuality (Rushall & Pyke, 1991). 

Next, I compared the predictive accuracy of this approach for identifying future Olympic-

qualifying swimmers with that of three other methods, all of which also used age and 

performance as predictor variables. In any given year, all four methods produced substantial 

proportions (≥10%) of swimmers who were incorrectly identified as Olympic qualifiers. These 

findings have therefore provided a theoretical rationale for considering variables additional to 

age and performance as part of the talent identification process within new swim-specific 

models of long-term athlete development. While recent research into the relative contributions 

of many such variables to performance shows that biomechanical and technical factors form the 

primary determinants of successful development of swimming performance (Figueiredo et al., 

2013), prospective longitudinal research designs are required to properly quantify the 

contribution of these factors to career performance progression.  

In view of the three-year timeframe of this PhD, it was possible only to retrospectively 

investigate the contribution of variables other than age and prior performance to performance 



84 
 

progression. In particular, I used self-reported training histories of several hundred New Zealand 

competitive swimmers to investigate relationships between specific and non-specific career 

training hours and performance in the fourth study of the PhD (Chapter 5). Utilising a novel 

application of mixed modelling, this study was the first to empirically demonstrate that the 

relationships between career training hours and swim performance appear to be non-linear, and 

to differ widely between individuals. When developing new swim-specific models of long-term 

athlete development, researchers should therefore be mindful of the fact that elite swim 

performance is more likely to result from optimising each swimmer’s adaptation to training than 

from adhering to prescriptive training-load models. Future research in this area should aim to 

prospectively quantify individual responses to both acute and cumulative training loads in order 

to generate practical recommendations for individualising swimmer development. 

The fourth PhD study also provided evidence contributing to the ongoing theoretical debate 

regarding the optimal training pathway to athletic expertise. To date, research into the 

acquisition of expert performance has produced two contrasting theories about the contribution 

of training history to elite sporting success. Ericsson et al.’s (1993) deliberate-practice model 

states that ~10,000 hours of domain-specific training is both necessary and sufficient to produce 

expert performance, while Côté et al.’s (2007) developmental model of sport participation 

proposes that early diversification of training followed by late specialisation is best. Our findings 

that senior-level male swimmers of most event distances seemed to perform best with ≤~9,000 

h of career swim-specific training were inconsistent with the posited 10,000-hour rule of 

deliberate-practice theory. Additionally, we observed few clear associations between career 

training in other sports and swim performance, lending little support to the early-diversification 

theory. Therefore, neither theory appears to offer a framework adequately describing the 

optimal training background required for developing expert performance in swimming, 

supporting the conclusion in Chapter 2 for the need for a new long-term athlete development 

model specific to the sport of swimming.  

The final PhD project (Chapter 6) contained a novel extension of the individual 

performance-progression modelling used in the previous projects. Here, I developed a method 

to assess the performance effect of interventions by quantifying deviations from swimmers’ 

expected performance trends after implementation of the intervention. This study also provided 

annual performance estimates for New Zealand swimming as a whole, and for each New 

Zealand swimming club, creating a method that can be used to evaluate performance 

progression at both the national level and the club level. Therefore, this method should provide 

a useful tool to assess the performance effects of strategies implemented within swim-specific 

long-term athlete development models on a number of different levels: individual, club, and 

national. Within Chapter 6, I used the method to objectively quantify the annual performance 

effect of the centralisation strategy introduced by Swimming NZ in 2002. The findings that 

centralisation delivered substantial performance benefits provide evidence supporting the 

inclusion of this strategy within swim-specific long-term athlete development models. However, 

performance effects were apparent only several years after implementation, suggesting that 

fine-tuning is required before centralised programmes begin to operate effectively. 
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While the scope of this PhD thesis was not broad enough to permit construction of a new 

swim-specific model for long-term athlete development, the findings of the five projects provide 

considerable rationale for the need for further research in this area. Each PhD study has 

produced objective data to help inform the content of future models, and guide future research 

directions. 

 

7.2. Practical Applications 

Many of the projects of this PhD were created in collaboration with coaches, scientists, 

administrators and managers working primarily in an applied setting within high-performance 

swimming. In focusing on developing solutions to objectively track and evaluate performance 

progression, this PhD was also designed to align with High Performance Sport New Zealand’s 

mission to “create a world-leading, sustainable high performance sport system” by 2020 

(HPSNZ, 2012). Such solutions provide HPSNZ with a rationale for evidence-based investment 

decisions, an improved understanding of athlete development pathways, and a means for 

quantifying the impact of factors affecting sport performance. Given the nation’s small 

population (~4.5 million people) and finite supply of finances for elite sport, solutions that 

improve talent identification and the effectiveness of available funding are critical for New 

Zealand’s sporting success. Within the PhD, Chapters 3, 5 and 6 have produced practical 

outcomes for HPSNZ and Swimming NZ, while our collaboration with colleagues in Australia in 

Chapter 4 provided practical applications for Swimming Australia. 

In Chapter 2, my systematic review of estimates of age of peak performance of elite 

athletes produced an unexpected practical outcome with utility for all sports and athletes: a tool 

using predicted peak age for assessing the future prospects of an athlete specialising in a 

particular event, and for guiding event selection for talent identification and transfer athletes. In 

this project, we first split the mean peak-age estimates from each study into three event-type 

categories on the basis of the predominant attributes required for success in the given event 

(explosive power/sprint, endurance and mixed/skill), and then plotted the estimates by event 

duration. In explosive power/sprint and endurance events for both sexes, linear trends closely 

approximated the relationships between event duration and peak-performance age. The 

equations of these linear trends represent a tool that should be useful for coaches, scientists 

and national sporting organisations interested in tracking athlete progression and improving 

talent identification. Further research investigating age of peak performance for both sexes 

across a wider range of sports and events would likely improve the precision and utility of these 

prediction equations. 

The career performance trajectories of Olympic top-16 swimmers produced in Chapter 3 

provide an analytical tool that can be used to assess the age-related performance progression 

of a swimmer. For example, these data were included in a report compiled for Swimming NZ 

and the HPSNZ board, which aimed to provide an objective assessment of the performance of 

New Zealand’s swim team at the 2012 Olympic Games (Appendix G). By comparing the 

performance trajectories of New Zealand swimmers with those of Olympic medallists, this report 
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provided evidence to help guide HPSNZ’s resource allocation and funding decisions for the 

subsequent Olympic campaign.  

The plots of age-related performance progression of elite-level swimmers towards the 2012 

Olympic gold medal winning time in Chapter 3 represent a tool allowing clear visual evaluation 

of the progress of any swimmer between the ages of 12 and 30 years. I used the data from this 

study to develop an Excel-based application, designed to allow Swimming NZ to assess the 

performance progression of any individual swimmer against the performance progression 

benchmarks of Olympic top-16 swimmers from Beijing and London (Appendix H). This project 

has therefore helped Swimming NZ deliver on their key strategic priority of determining elite-

level benchmarks to “design a clear athlete pathway… towards Olympic podium results”, as 

outlined in their 2013-2020 High Performance Strategy (SNZ, 2012). 

In Chapter 4, I extended the performance-trajectories approach to produce a performance-

prediction tool for Swimming Australia. By extrapolating the trajectories of individual swimmers 

forward, it was possible to generate performance predictions and associated uncertainties for all 

Australian swimmers with sufficient data. Identifying swimmers with performances tracking 

towards Olympic-qualification standards on an annual basis should provide a valuable 

screening tool to help Swimming Australia improve the accuracy of early selection of swimmers 

into talent-development squads. Future research should aim to improve the predictive accuracy 

of this tool by including variables additional to age and performance in the model. 

The mixed model used for the analysis in Chapter 5 was itself an analytical tool that 

evaluated the relationships between career training hours and performance of New Zealand 

competitive swimmers. The findings that beneficial associations between career training and 

performance were apparent only for females should have practical utility for guiding the future 

development of New Zealand swimmers. Additionally, this study provided Swimming NZ with an 

overview of the specific and non-specific career training hours undertaken by current national-

level swimmers at different chronological stages of their development. This information should 

help Swimming NZ to identify gaps in their current athlete-development programme, although 

further prospective research is required to better understanding how to improve each swimmer’s 

performance progression by optimising their individual response to training. 

Chapter 6 resulted in a number of practical applications. First, our method of quantifying 

deviations from swimmer’s expected trends provided HPSNZ and Swimming NZ with a tool for 

quantifying the effect of strategies or interventions introduced at a national, regional, club, or 

individual level to enhance performance. Specifically, our findings that centralisation delivered 

substantial performance effects to New Zealand swimmers provides evidence supporting the 

maintenance of this strategy within future Swimming NZ high-performance plans. Secondly, our 

model was able to quantify the annual performance progression of all New Zealand swimmers. 

By comparing these data with the magnitude of progression of top swimmers (O’Connor & 

Vozenilek, 2011), Swimming NZ has therefore been able to assess the extent to which its 

programme has been improving over the last decade in relation to elite-level benchmarks. 

Thirdly, by including club as a random effect within our mixed model, we have also developed a 

tool that allows Swimming NZ to monitor and assess the performance progression of each of 

the 157 clubs within New Zealand. I used the data from this study to develop an Excel-based 
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application, designed to allow Swimming NZ to assess the performance progression of any New 

Zealand swimming club since 2002, and to compare progressions between clubs (Appendix I). 

As demonstrated with an example in Chapter 6, this tool also provides Swimming NZ with a 

means to objectively evaluate factors that could affect performance at club level, such as club 

restructuring or recruitment of new coaching staff.  

In summary, the projects of this PhD have resulted in many practical applications. I have 

developed tools that can be used to assess progression of developing swimmers against elite 

benchmarks, predict future performance, evaluate relationships between training and 

performance, and assess the performance effects of interventions. Many of these tools have 

been adopted by coaches, scientists, administrators and managers from organisations such as 

HPSNZ, Swimming NZ and Swimming Australia to help direct funding and resource allocation 

decisions, guide long-term training plans, and improve talent-identification processes. 

 

7.3. Limitations and Future Research Directions 

The projects of this PhD have been subject to several limitations, owing to factors such as 

time and resource constraints. Some of these limitations have helped guide the suggestions for 

future research directions that I have detailed below. 

In Chapter 2, the differences in estimates of peak age between studies for similar events 

were moderate to large in magnitude, limiting the accuracy of the regression equations to 

predict the age of peak performance in a given event. If more authors had provided standard 

deviations and standard errors or confidence limits for their peak-age estimates, it would have 

been possible to weight and meta-analyse the study estimates, which would probably have 

improved the precision of our prediction equations. Future research should aim to generate 

more peak-age estimates for female athletes, which would also allow differences between 

sexes for different types of events to be meta-analysed. Given the ongoing evolution of age of 

peak performance in many sports, as noted in Chapter 2, researchers should continue to track 

these trends in order to provide peak-age estimates valid for current athletes. There is also a 

need for further research into the age of peak performance in more mixed/skill-based sports, as 

the majority of published articles included in the review were for sports with a predominant 

explosive power/sprint or endurance component.  

Although we were able to quantify the rates of progression to peak performance shown by 

Olympic top-16 swimmers using a mixed modelling method in Chapter 3, the uncertainty in the 

estimates of progression increased with increasing years prior to peak performance. Beyond 

eight years prior to the peak age (~16 y for men, ~14 y for women), there may be too much 

uncertainty for the estimates to be considered useful benchmarks for talent development. Given 

that Costa et al. (2011) also found evidence to suggest that swim performance does not 

become sufficiently stable to yield meaningful predictions of adult performance until age 16, 

future research should aim to investigate the effect of including variables other than age and 

performance in the modelling process on the magnitude of these uncertainties. Support for this 

future research direction is also provided by the findings from Chapter 4, that talent-
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identification methods based only on age and performance resulted in substantial proportions 

(≥10%) of swimmers being incorrectly identified as Olympic qualifiers.  

Chapter 5 was the only study of this PhD that required data to be retrospectively collected 

from athletes; sufficient data were available online for all other studies. Consequently, this study 

had a number of unique limitations, including potential problems with swimmer recall of training 

information, and an uncertain cause-and-effect relationship between training and performance. 

The data were also unable to account for the contributions of training intensity, training 

frequency, access to facilities and resources, quality of training due to factors such as coaching 

experience, and the influence of genetics on training adaptation. We recommend that future 

research in this area is prospective and comprehensive in nature in order to properly assess the 

contribution of training to career performance progression.  

A limitation of primarily using pre-existing online data within the projects of the PhD is that 

understanding the context of the data is inevitably problematic. For example, in Chapter 6, I 

found that Swimming New Zealand’s centralisation strategy took several years to deliver 

substantial performance benefits, but the performance data were unable to reveal any insights 

into the reasons underpinning these effects. Using the anecdotal observations of swimmers, 

coaches, scientists and administrators involved within the Swimming NZ programme since the 

inception of the centralised elite training squad, I was able to provide several speculative 

explanations for these findings. With prospective and multi-disciplinary research designs for 

future investigations of this type, it should be possible to elucidate some of the reasons 

underpinning the performance progressions observed.  

In view of the three-year timeframe of this PhD, it was not possible to employ the 

prospective research designs required to properly assess more of the myriad factors affecting 

the career performance progression of swimmers. We encourage future researchers in this area 

to address this limitation. We also recommend that future researchers explore the application of 

the models and methods presented in this thesis for monitoring and assessing the progression 

of athletes in sports other than swimming.  

 

7.4. Conclusion 

In this thesis, I have demonstrated that mixed modelling can be used to develop objective 

solutions appropriate for monitoring and assessing the performance progression of swimmers. 

The solutions comprise evidence-based tools that allow coaches, scientists, administrators and 

national sporting organisations to assess progression of developing swimmers against elite 

benchmarks, predict their future performance, evaluate relationships between training and 

performance, and assess the performance effects of interventions. The objective data obtained 

through the application of these tools should provide useful information to guide the content and 

structure of future swim-specific models of long-term athlete development. Prospective studies 

extending the methods and findings presented in this thesis should improve our understanding 

of the multiple factors affecting career progression of swimmers. 

  



89 
 

REFERENCES 

 

Allen, S. V., Vandenbogaerde, T. J., & Hopkins, W.G. (2014). Career performance trajectories 

of Olympic swimmers: Benchmarks for talent development. European Journal of Sport 

Science, 14(7), 643-651. 

Amateur Swimming Association (2003). The swimmer pathway: Long term athlete development. 

Loughborough, UK: Amateur Swimming Association. 

Anderson, A. (2014). Early identification of talent in cyclo-cross by estimating age-independent 

ability via probit regression. International Journal of Performance Analysis in Sport, 14(1), 

153-161. 

Australian Sports Commission. (2013). Independent review of swimming. Canberra, Australia: 

Australian Sports Commission. 

Australian Swimming Inc. (1996, June 1996). Australian swimming multi-year age-group 

development model. Retrieved from 

http://www.nwaswimaths.com/presentations/Development%20Model.pdf 

Arellano, R. (2010). Interpreting and implementing the long-term athlete development model: 

English swimming coaches’ views on the (swimming) LTAD in practice – A commentary. 

International Journal of Sports Science and Coaching, 5(3), 413-419. 

Balyi, I. (1990). Quadrennial and double quadrennial planning of athletic training. Victoria, 

Canada: Canadian Coaches Association.  

Balyi, I. (2010). Specialization in sport, a tricky business. Retrieved from 

http://canadiansportforlife.ca/sites/default/files/resources/ C1%20Specialization.pdf 

Barbosa, T. M., Costa, M. J., & Marinho, D. A. (2013). Proposal of a deterministic model to 

explain swimming performance. International Journal of Swimming Kinetics, 2(1), 1-54. 

Barreiros, A., Côté, J., & Fonseca, A. M. (2014). From early to adult sport success: Analysing 

athletes' progression in national squads. European Journal of Sport Science, 14(S1), S178-

182. 

Bartlett, R. (2007). Introduction to sports biomechanics: Analysing human movement patterns 

(2nd ed.). Oxford, UK: Routledge. 

Batterham, A. M., & Hopkins, W. G. (2006). Making meaningful inferences about magnitudes. 

International Journal of Sports Physiology and Performance, 1(1), 50-57. 

Baxter-Jones, A. D. G., & Sherar, L. B. (2006). Growth and maturation. In N. Armstrong (Ed.), 

Paediatric exercise physiology (pp. 1-30). Edinburgh, UK: Elsevier Limited.  

Berthelot, G., Hellard, P., Len, S., Tafflet, M., & Toussaint, J. F. (2010, 16-19 June 2010). 

Technology & swimming: 3 steps beyond physiology. Paper presented at the meeting of 

the XIth International Symposium on Biomechanics and Medicine in Swimming, Oslo, 

Norway. 

Berthelot, G., Len, S., Hellard, P., Tafflet, M., Guillaume, M., Vollmer, J. C., ... Toussaint, J. F. 

(2012). Exponential growth combined with exponential decline explains lifetime 

performance evolution in individual and human species. Age, 34(4), 1001-1009.  



90 
 

Bouchard, C., Sarzynski, M. A., Rice, T. K., Kraus, W. E., Church, T. S., Sung, Y. J., ... 

Rankinen, T. (2011). Genomic predictors of the maximal O2 uptake response to 

standardized exercise training programs. Journal of Applied Physiology, 110(5), 1160-

1170. 

Brander, J. A., Egan, E. J., & Yeung, L. (2014). Estimating the effects of age on NHL player 

performance. Journal of Quantitative Analysis in Sports, 10, 241-259. 

Bullock, N., & Hopkins, W. G. (2009). Methods for tracking athletes' competitive performance in 

skeleton. Journal of Sports Sciences, 27(9), 937-940.  

Cejka, N., Knechtle, B., Rüst, C. A., Rosemann, T., & Lepers, R. (2014). Performances and age 

of the fastest female and male 100-km ultra-marathoners worldwide from 1960 to 2012. 

Journal of Strength and Conditioning Research. doi: 10.1519/JSC.0000000000000370 

Collins, S. (2008). New Zealand. In B. Houlihan & M. Green (Eds.), Comparative elite sport 

development. Systems, structures and public policy (pp. 218-241). Oxford, UK: 

Butterworth-Heinemann. 

Costa, M. J., Marinho, D. A., Bragada, J. A., Silva, A. J., & Barbosa, T. M. (2011). Stability of 

elite freestyle performance from childhood to adulthood. Journal of Sports Sciences, 

29(11), 1183-1189.  

Costa, M. J., Marinho, D. A., Reis, V. M., Silva, A. J., Marques, M. C., Bragada, J. A., & 

Barbosa, T. M. (2010). Tracking the performance of world-ranked swimmers. Journal of 

Sports Science and Medicine, 9, 411-417. 

Côté, J., Baker, J., & Abernethy, B. (2007). Practice and play in the development of sport 

expertise. In R. Eklund & G. Tenebaum (Eds.), Handbook of sport psychology (3rd ed.) (pp. 

184-202). Hoboken, NJ: Wiley. 

de Bosscher, V., Bingham, J., Shibli, S., van Bottenburg, M., & de Knop, P. (2008). The global 

sporting arms race: An international comparative study on sports policy factors leading to 

international sporting success. Oxford, UK: Meyer and Meyer Sport. 

de Bosscher, V., de Knop, P., van Bottenburg, M., & Shibli, S. (2006). A conceptual framework 

for analysing sports policy factors leading to international sporting success. European 

Sport Management Quarterly, 6(2), 185-215. 

Edelmann-Nusser, J., Hohmann, A., & Henneberg, B. (2002). Modeling and prediction of 

competitive performance in swimming upon neural networks. European Journal of Sport 

Science, 2(2), 1-10. 

Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the 

acquisition of expert performance. Psychological Review, 100, 363-406. 

Fair, R. C. (2008). Estimated age effects in baseball. Journal of Quantitative Analysis in Sports, 

4(1). doi: 10.2202/1559-0410.1074 

Figueiredo, P., Pendergast, D. R., Vilas-Boas, J. P., & Fernandes, R. J. (2013). Interplay of 

biomechanical, energetic, coordinative, and muscular factors in a 200 m front crawl swim. 

BioMed Research International, 2013. http://dx.doi.org/10.1155/2013/897232 

Fried, H.O., & Tauer, L. W. (2011). The impact of age on the ability to perform under pressure: 

Golfers on the PGA tour. Journal of Productivity Analysis, 35(1), 75-84. 

Gabbard, C. (2004). Lifelong motor development. San Francisco, CA: Benjamin Cummings.  



91 
 

Gaunt, T., & Maffulli, N. (2012). Soothing suffering swimmers: a systematic review of the 

epidemiology, diagnosis, treatment and rehabilitation of musculoskeletal injuries in 

competitive swimmers. British Medical Bulletin, 103(1), 45-88. 

Greyson, I., Kelly, S., Peyrebrune, M., & Furniss, B. (2010). Interpreting and implementing the 

long-term athlete development model: English swimming coaches’ views on the 

(swimming) LTAD in practice – A commentary. International Journal of Sports Science and 

Coaching, 5(3), 403-406. 

Guillaume, M., Len, S., Tafflet, M., Quinquis, L., Montalvan, B., Schaal, K., ... Toussaint, J-F. 

(2011). Success and decline: Top 10 tennis players follow a biphasic course. Medicine and 

Science in Sports and Exercise, 43(11), 2148-2154. 

Gulbin, J., Weissensteiner, J., Oldenziel, K., & Gagné, F. (2013). Patterns of performance 

development in elite athletes. European Journal of Sport Science, 13(6), 605-614. 

Güllich, A., & Emrich, E. (2006). Evaluation of the support of young athletes in the elite sports 

system. European Journal for Sport and Society, 3(2), 85-108. 

Güllich, A., & Emrich, E. (2012). Individualistic and collectivistic approach in athlete support 

programmes in the German high-performance sport system. European Journal for Sport 

and Society, 9(4), 243-268. 

Güllich, A., & Emrich, E. (2014). Considering long-term sustainability in the development of 

world class success. European Journal of Sport Science, 14(sup1), S383-397. 

Halson, S. L., & Jeukendrup, A. E. (2004). Does overtraining exist? Sports Medicine, 34(14), 

967-981. 

Heazlewood, T. (2006). Prediction versus reality: The use of mathematical models to predict 

elite performance in swimming and athletics at the Olympic Games. Journal of Sports 

Science and Medicine, 5, 541-547. 

Heazlewood, T., & Lackey, G. (1996, 30 September – 2 October, 1996). The use of 

mathematical models to predict elite athletic performance at the Olympic Games. Paper 

presented at the meeting of the Third Conference on Mathematics and Computers in Sport, 

Bond University, Queensland.  

Helsen, W. F., Starkes, J. L., & Hodges, N. J. (1998). Team sports and the theory of deliberate 

practice. Journal of Sport and Exercise Psychology, 20, 12-34. 

Hewett, T. E., Myer, G. D., & Ford, K. R. (2002). The influence of growth and pubertal 

maturation on neuromuscular performance in high-risk female athletes. Medicine and 

Science in Sports and Exercise, 34(5), Supplement abstract 1384. 

Hodges, N. J., Kerr, T., Starkes, J. L., Weir, P. L., & Nananidou, A. (2004). Predicting 

performance times from deliberate practice hours for triathletes and swimmers: What, 

when, and where is practice important? Journal of Experimental Psychology Applied, 10(4), 

219-237. 

Hohmann, A., & Seidel, I. (2010). Talent prognosis in young swimmers. In P-J. Kjendlie, R. K. 

Stallman & J. Cabri (Eds.), Proceedings of the XIth international symposium for 

biomechanics and medicine in swimming (pp. 262-264). Oslo, Norway: Norwegian School 

of Sport Science. 



92 
 

Hollings, S. C., Hopkins, W. G., & Hume P. A. (2014). Age at peak performance of successful 

track & field athletes. International Journal of Sports Science and Coaching, 9(4), 651-662. 

Hollings, S., & Hume, P. (2010). Is success at the IAAF World Junior Athletics Championships a 

prerequisite for success at World Senior Championships or Olympic Games? New Studies 

in Athletics, 25(2), 65-77. 

Holt, N. L. (2010). Interpreting and implementing the long-term athlete development model: 

English swimming coaches’ views on the (swimming) LTAD in practice – A commentary. 

International Journal of Sports Science and Coaching, 5(3), 421-424. 

Hopkins, W. G. (2000). Measures of reliability in sports medicine and science. Sports Medicine, 

30(1), 1-15. 

Hopkins, W. G. (2003, May 2003). Analysis of repeated measures. Paper presented at the 

meeting of the Annual meeting of the American College of Sport Medicine, San Francisco, 

USA. 

Hopkins, W. G. (2006a). A spreadsheet for combining outcomes from several subject groups. 

Sportscience, 10, 50-53. 

Hopkins, W. G. (2006b). Estimating sample size for magnitude-based inferences. Sportscience, 

10, 63-70. 

Hopkins, W. G., Marshall, S. W., Batterham, A. M., & Hanin, J. (2009). Progressive statistics for 

studies in sports medicine and exercise science. Medicine and Science in Sports and 

Exercise, 41(1), 3-12.  

Houlihan, B., & Green, M. (2008). Comparative elite sport development. Systems, structures 

and public policy. Oxford, UK: Butterworth-Heinemann. 

HPSNZ. (2012). Strategic plan 2013-2020. Auckland, New Zealand: High Performance Sport 

New Zealand. 

Hunter, S. K., Stevens, A. A., Magennis, K., Skelton, K. W., & Fauth, M. (2011). Is there a sex 

difference in the age of elite marathon runners? Medicine and Science in Sports and 

Exercise, 43(4), 656-664. 

Issurin, V., Kaufman, L., Lustig, G., & Tenenbaum, G. (2008). Factors affecting peak 

performance in the swimming competition of the Athens Olympic Games. Journal of Sports 

Medicine and Physical Fitness, 48(1), 1-8.  

Johnson, M. B., Tenenbaum, G., & Edmonds, W. A. (2006). Adaptation to physically and 

emotionally demanding conditions: The role of deliberate practice. High Ability Studies, 

17(1), 117-136. 

Kendall, B., & Eston, R. (2002). Exercise-induced muscle damage and the potential protective 

role of estrogen. Sports Medicine, 32(2), 103-23. 

Knechtle, B., Rüst, C. A., Rosemann, T., & Lepers, R. (2012). Age-related changes in 100-km 

ultra-marathon running performance. Age, 34(4), 1033-1045. 

Kovalchik, S. A. (2014). The older they rise the younger they fall: Age and performance trends 

in men’s professional tennis from 1991 to 2012. Journal of Quantitative Analysis in Sports, 

10, 99-107. 



93 
 

Lackey, G., & Heazlewood, I. (1998, 9-12 July, 1998). The use of mathematical models to 

predict elite swimming performance. Paper presented at the meeting of the Fourth 

Conference on Mathematics and Computers in Sport, Bond University, Queensland. 

Landsberger, H. A. (1958). Hawthorne revisited. Ithaca, NY: Cornell University. 

Lang, M., & Light, R. (2010). Interpreting and implementing the long-term athlete development 

model: English swimming coaches’ views on the (swimming) LTAD in practice. 

International Journal of Sports Science and Coaching, 5(3), 389-402. 

Lätt, E., Jürimäe, J., Haljaste, K., Cicchella, A., Purge, P., & Jürimäe, T. (2009a). Longitudinal 

development of physical and performance parameters during biological maturation of 

young female swimmers. Collegium Antropologicum, 33, 117-122. 

Lätt, E., Jürimäe, J., Haljaste, K., Cicchella, A., Purge, P., & Jürimäe, T. (2009b). Longitudinal 

development of physical and performance parameters during biological maturation of 

young male swimmers. Perceptual and Motor Skills, 108, 297-307. 

Law, M. P., Cöté, J., & Ericsson, K. A. (2008). Characteristics of expert development in rhythmic 

gymnastics: A retrospective study. International Journal of Sport and Exercise Psychology, 

5(1), 82-103. 

Lees, A. (2002). Technique analysis in sports: a critical review. Journal of Sports Sciences, 20, 

813-828. 

Lepers, R., Sultana, F., Bernard, T., Hausswirth, C., & Brisswalter, J. (2010). Age-related 

changes in triathlon performances. International Journal of Sports Medicine, 31(4), 251-

256. 

Maglischo, E. W. (2003). Swimming fastest. Champaign (IL): Human Kinetics. 

Malcata, R. M., Hopkins W. G., & Richardson, S. (2012). Modelling the progression of 

competitive performance of an academy’s soccer teams. Journal of Sports Science and 

Medicine, 11(3), 533-536. 

Malcata, R. M., Hopkins, W. G., & Pearson, S. N. (2014). Tracking performance of successful 

triathletes. Medicine and Science in Sports and Exercise, 46(6), 1227-1234.  

Malina, R. M. (1994). Physical growth and biological maturation of young athletes. In J. O. 

Holloszy (Ed.), Exercise and Sport Sciences Review (Vol. 22, pp. 389-433). Baltimore, MD: 

Williams & Wilkins. 

Maszczyk, A., Roczniok, R., Waśkiewicz, Z., Czuba, M., Mikolajec, K., Zając, A., & Stanula, A. 

(2012). Application of regression and neural models to predict competitive swimming 

performance. Perceptual and Motor Skills, 114(2), 610-626.  

Mikulic, P. (2011). Maturation to elite status: A six-year physiological case study of a world 

champion rowing crew. European Journal of Applied Physiology, 111(9), 2363-2368.  

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for 

systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal 

Medicine, 151(4), 264-269.  

Morais, G. E., Garrido, N. D., Marques, M. C., Silva, A. J., Marinho, D. A., & Barbosa, T. M. 

(2013). The influence of anthropometric, kinematic and energetic variables and gender on 

swimming performance in youth athletes. Journal of Human Kinetics, 39, 203-211. 



94 
 

Morgan, W. P., Brown, D. R., Raglin, J. S., O’Connor, P. J., & Ellickson, K. A. (1987). 

Psychological monitoring of overtraining and staleness. British Journal of Sports Medicine, 

21(3), 107-114. 

O’Connor, L. M., & Vozenilek, J. A. (2011). Is it the athlete or the equipment? An analysis of the 

top swim performances from 1990 to 2010. Journal of Strength and Conditioning Research, 

25(12), 3239-3241. 

Oldenziel, K., & Gagne, F. (2004). Factors affecting the rate of athlete development from novice 

to senior elite: How applicable is the 10-year rule. In K. Vasilis, K. Spiros & M. Hioannis 

(Eds.), Pre-Olympic congress: Sports science through the ages. Challenges in the new 

millennium (pp. 235-236). Thessaloniki, Greece: Aristotle University of Thessaloniki. 

Pike, J., Hopkins, W. G., & Nottle, C. (2010, 16-19 June 2010). Overall trends and individual 

trajectories of swimming performances in a decade of New Zealand national 

championships. Paper presented at the meeting of the XIth International Symposium on 

Biomechanics and Medicine in Swimming, Oslo, Norway. 

Pyne, D., Trewin, C., & Hopkins, W. (2004). Progression and variability of competitive 

performance of Olympic swimmers. Journal of Sports Sciences, 22(7), 613-620.  

Rebecca Adlington announces retirement from swimming. (2013, February 5). The Daily 

Telegraph. Retrieved from http://www.telegraph.co.uk/sport/olympics/swimming/9849313 

/Rebecca-Adlington-announces-retirement-from-swimming.html 

Régnier, G., Salmela, J., & Russell, S. J. (1993). Talent detection and development in sport. In 

R. N. Singer, M. Murphy & L. K. Tennant (Eds.), Handbook on research on sport 

psychology (pp. 290-313). New York, NY: Macmillan. 

Rushall, B. S. (2011a). Commentary on the long term athlete development model for British 

Swimming and the misinformation it propagates. Swimming Science Bulletin, 38. Retrieved 

from http://coachsci.sdsu.edu/swimming/bullets/table.htm 

Rushall, B. S. (2011b). Swimming pedagogy and a curriculum for stroke development (2nd ed.). 

Spring Valley, CA: Sports Science Associates [Electronic book]. 

Rushall, B. S. (2013). Fatigue in swimming: The good, the bad, and the ugly. Swimming 

Science Bulletin, 46a. Retrieved from 

http://coachsci.sdsu.edu/swim/bullets/46aFATIGUE.pdf. 

Rushall, B. S., & Pyke, F. S. (1991). Training for sports and fitness. Melbourne, Australia: 

Macmillan of Australia. 

Rüst, C. A., Knechtle, B., Knechtle, P., Rosemann, T., & Lepers, R. (2012a). Age of peak 

performance in elite male and female Ironman triathletes competing in Ironman 

Switzerland, a qualifier for the Ironman world championship, Ironman Hawaii, from 1995 to 

2011. Open Access Journal of Sports Medicine, 2012(3), 175-182. 

Rüst, C. A., Knechtle, B., Rosemann, T., & Lepers, R. (2012b). Sex difference in race 

performance and age of peak performance in the Ironman triathlon world championship 

from 1983 to 2012. Extreme Physiology and Medicine, 1(15). doi: 10.1186/2046-7648-1-15 

Rüst, C. A., Knechtle, B., Rosemann, T., & Lepers, R. (2013). Analysis of performance and age 

of the fastest 100-mile ultra-marathoners worldwide. Clinics, 68(5), 605-611. 



95 
 

Salthouse, T. A. (2012). Consequences of age-related cognitive declines. Annual Review of 

Psychology, 63, 201-226. 

Savage, B., & Pyne, D. B. (2013). Physiological protocols for the assessment of athletes in 

specific sports: Swimmers. In R. K. Tanner & C. J Gore (Eds.), Physiological tests for elite 

athletes (2nd ed.) (pp. 435-448). Champaign, IL: Human Kinetics. 

Schmitt, D. P., Realo, A., Voracek, M., & Allik, J. (2008). Why can't a man be more like a 

woman? Sex differences in Big Five personality traits across 55 cultures. Journal of 

Personality and Social Psychology, 94(1), 168-182. 

Schulz, R., & Curnow, C. (1988). Peak performance and age among superathletes: Track & 

field, swimming, baseball, tennis, and golf. Journal of Gerontology, 43(5), 113-120. 

Schulz, R., Musa, D., Staszewski, J., & Siegle, R. S. (1994). The relationship between age and 

major league baseball performance: Implications for development. Psychology and Aging, 

9(2), 274-286. 

Schumacher, Y. O., Mroz, R., Mueller, P., Schmid, A., & Ruecker, G. (2006). Success in elite 

cycling: A prospective and retrospective analysis of race results. Journal of Sports 

Sciences, 24(11), 1149-1156. 

Shoak, M. A., Knechtle, B., Knechtle, P., Rüst, C. A., Rosemann, T., & Lepers, R. (2013). 

Participation and performance trends in ultracycling. Open Access Journal of Sports 

Medicine, 2013(4), 41-51. 

Silva, A. J., Costa, A. M., Oliveira, P. M., Reis, V. M., Saavedra, J., Perl, J., … Marinho, D.A. 

(2007). The use of neural network technology to model swimming performance. Journal of 

Sports Science and Medicine, 6, 117-125. 

Simonton, D. K. (1988). Age and outstanding achievement: What do we know after a century of 

research? Psychological Bulletin, 104(2), 251-267. 

Smith, T. B., & Hopkins, W. G. (2011). Variability and predictability of finals times of elite rowers. 

Medicine and Science in Sports and Exercise, 43(11), 2155-2160. 

SNZ. (2012). High Performance Strategy 2013 – 2020. Auckland, New Zealand: Swimming New 

Zealand. 

Sokolovas, G. (2006a, January 2006). When will you peak? Swimming World Magazine, 47, 37-

38. 

Sokolovas, G. (2006b) Analysis of USA swimming’s all-time top 100 times. In J. P. Vilas-Boas, 

F. Alves & A Marques (Eds.), Biomechanics and medicine in swimming X (pp. 315-317). 

Porto, Portugal: University of Porto. 

Stanula, A., Maszczyk, A., Roczniok, R., Pietraszewski, P., Ostrowski, A., Zajac, A., & Strzata, 

M. (2012). The development and prediction of athletic performance in freestyle swimming. 

Journal of Human Kinetics, 32, 97-107.  

Stewart, A. M., & Hopkins, W. G. (2000a). Seasonal training and performance of competitive 

swimmers. Journal of Sports Sciences, 18(11), 873-884. 

Stewart, A. M., & Hopkins, W. G. (2000b). Consistency of swimming performance within and 

between competitions. Medicine and Science in Sports and Exercise, 32(5), 997-1001. 

Storm, R., & Nielsen, K. (2010). In a peak fitness condition? The Danish elite sports model in an 

international perspective: managerial efficiency and best practice in achieving international 



96 
 

sporting success. International Journal of Sports Management and Marketing, 7(1/2), 104-

118. 

Sweetenham, B. (2001).  Maximising a swimmer’s talent development. In D. Hannula & N 

Thornton (Eds.), The swim coaching bible (pp. 71-95). Champaign, IL: Human Kinetics. 

Tilinger, P., Kovář, K., & Hlavatá, P. (2005). A study on the dynamic progress of performances 

of prominent world-class athletes in selected track-and-field events. Kinesiology, 37(1), 92-

98. 

Tiruneh, G. (2010). Age and winning professional golf tournaments. Journal of Quantitative 

Analysis in Sports, 6. doi: 10.2202/1559-0410.1209 

Treffene, B. (2010). Interpreting and implementing the long-term athlete development model: 

English swimming coaches’ views on the (swimming) LTAD in practice – A commentary. 

International Journal of Sports Science and Coaching, 5(3), 407-412. 

Tucker, R., & Collins, M. (2013). What makes champions? A review of the relative contribution 

of genes and training to sporting success. British Journal of Sports Medicine, 46(8), 555-

561. 

UK Sport. (2006). Sports policy factors leading to international sporting success. An 

international comparative study. London, UK: UK Sport. 

Vaeyens, R., Güllich, A., Warr, C. R., & Philippaerts, R. (2009). Talent identification and 

promotion programmes of Olympic athletes. Journal of Sports Sciences, 27, 1367-1380. 

Vaeyens, R., Lenoir, M., Williams, A. M., & Philippearts, R. M. (2008). Talent identification and 

development programmes in sport: Current models and future directions. Sports Medicine. 

38(9), 703-714.   

Vandenbogaerde, T. J., & Hopkins, W. G. (2010). Monitoring acute effects on athletic 

performance with mixed linear modeling. Medicine and Science in Sports and Exercise, 

42(7), 1339-1344.  

Vandenbogaerde, T. J., Hopkins, W. G., & Pyne, D. B. (2012). A competition-based design to 

assess performance of a squad of elite athletes. Medicine and Science in Sports and 

Exercise, 44(12), 2423-2427. 

Vorontsov, A. R. (2005). Periodisation of multi-year training (MYT/LTAD) of young swimmers 

[PowerPoint slides]. Retrieved from 

 http://images.one.co.il/images/egood/swim/doc/Periodisation%20of%20%20MYT.ppt 

Wolfrum, M., Knechtle, B., Rüst, C. A., Rosemann, T., & Lepers, R. (2013). Sex-related 

differences and age of peak performance in breaststroke versus freestyle swimming. BMC 

Sports Science, Medicine and Rehabilitation, 5(29). doi: 10.1186/2052-1847-5-29 

Zaryski, C., & Smith, D. J. (2005). Training principles and issues for ultra-endurance athletes. 

Current Sports Medicine Reports, 4(3), 165-170. 

 

  



97 
 

APPENDIX A: SAS LINEAR MODELS 

 

Examples of the SAS coding using to specify the mixed linear models for each of the 

original-research studies. I have also included a small sample of the dataset and variables used 

by each model.   

Chapter 3- Mixed model for individual Olympic trajectories 

Twelve observations for one swimmer in one event from the dataset datlog: 

  Obs Sex  Stroke         Distance Athlete                            Age0    Age0sq Olympics01 Y2009 Y2010 SwimTime 
 
     1 Male Backstroke        100   Arnamnart, Daniel                ‐6.38630 40.7848      0       0     0    6:53.36 
     2 Male Backstroke        100   Arnamnart, Daniel                ‐5.42541 29.4351      0       0     0    6:46.63 
     3 Male Backstroke        100   Arnamnart, Daniel                ‐4.42192 19.5534      0       0     0    6:43.99 
     4 Male Backstroke        100   Arnamnart, Daniel                ‐2.78082  7.7330      0       0     0    6:42.12 
     5 Male Backstroke        100   Arnamnart, Daniel                ‐2.67397  7.1501      0       0     0    6:40.72 
     6 Male Backstroke        100   Arnamnart, Daniel                ‐1.43088  2.0474      0       0     0    6:40.62 
     7 Male Backstroke        100   Arnamnart, Daniel                 0.13699  0.0188      0       1     0    6:40.26 
     8 Male Backstroke        100   Arnamnart, Daniel                 0.73699  0.5431      0       0     1    6:39.95 
     9 Male Backstroke        100   Arnamnart, Daniel                 2.23836  5.0102      0       0     0    6:40.44 
    10 Male Backstroke        100   Arnamnart, Daniel                 2.50355  6.2678      0       0     0    6:38.99 
    11 Male Backstroke        100   Arnamnart, Daniel                 3.61370 13.0588      0       0     0    6:39.42 
    12 Male Backstroke        100   Arnamnart, Daniel                 4.45753 19.8696      0       0     0    6:39.73 
 

Coding for mixed model: 
 
proc mixed data=datlog covtest cl alpha=0.1 maxfunc=1000 convg=1E-6; 
class Athlete &AgeGroup; 
model SwimTime=Olympics01 Y2009 Y2010 Age0 Age0sq/ddfm=sat outp=pred 
alpha=0.1 alphap=0.1 s residual;  
repeated/group=&AgeGroup; 
random int Age0 Age0sq/subject=Athlete type=&type s;  
random Y2009 Y2010/subject=Athlete type=vc s; 
estimate “Olympics” Olympics01 1/cl alpha=0.1; 
estimate "Y2009" Y2009 1/cl alpha=0.1; 
estimate "Y2010" Y2010 1/cl alpha=0.1; 
estimate “Age0” Age0 1/cl alpha=0.1; 
estimate “Age0Sq” Age0Sq 1/cl alpha=0.1; 
ods output estimates=est;  
ods output classlevels=clev;  
ods output solutionr=solr;  
ods output solutionf=solf;  
ods output covparms=cov; 
by Sex Stroke Distance; 
run; 
 

Chapter 4- Mixed model for individual Australian trajectories 

Four observations for one Australian swimmer in one event from the dataset datlog: 

  Obs   Sex    Stroke   Distance   Athlete                             Weight 
 
  2845   Male   Back        100     RAY BORNMAN                        0.54165 
  2846   Male   Back        100     RAY BORNMAN                        0.77379 
  2847   Male   Back        100     RAY BORNMAN                        1.10541 
  2848   Male   Back        100     RAY BORNMAN                        1.57916 
 
   Obs     Age0      Age0sq   Olympics02   AUS01   Olympics01   Y2009   Y2010 
 
  2845   ‐5.15068   26.5296        0         1          0         0       0 
  2846   ‐4.15342   17.2509        0         1          0         0       0 
  2847   ‐3.15616    9.9614        0         1          0         0       0 
  2848   ‐2.82540    7.9829        0         1          0         0       0 
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Coding for mixed model: 
 
ods listing close; 
proc mixed data=datlog covtest cl alpha=0.1 maxfunc=1000 convg=1E-6; 
weight weight; 
class Athlete &AgeGroup Olympics02 AUS01; 
model SwimTime=Olympics02*AUS01 Olympics01 Y2009 Y2010 Age0 
Age0sq/ddfm=sat outp=pred alpha=0.1 alphap=0.1 s residual;  
repeated/group=&AgeGroup; 
random int Age0 Age0sq/subject=Athlete type=&type s;  
estimate “Olympic Effect” Olympics01 1 0/cl alpha=0.1; 
estimate “AUS Effect” Olympics02*AUS01 1 0/cl alpha=0.1; 
estimate "Y2009" Y2009 1/cl alpha=0.1; 
estimate "Y2010" Y2010 1/cl alpha=0.1; 
estimate “Age0” Age0 1/cl alpha=0.1; 
estimate “Age0Sq” Age0Sq 1/cl alpha=0.1; 
ods output estimates=est;  
ods output classlevels=clev;  
ods output solutionr=solr;  
ods output solutionf=solf;  
ods output covparms=cov; 
by Sex Stroke Distance; 
run; 
 

Chapter 4- Mixed model for swim time and age regression 

Thirteen observations for five swimmers in one event from the dataset ausfilterlog: 

  Obs     Sex      Stroke    Distance    Athlete 
 
       1    Female    Back         100      ABBEY HELLINGA 
       2    Female    Back         100      ABBEY SWEENEY 
       3    Female    Back         100      ABBY DERBYSHIRE 
       4    Female    Back         100      ABBY DERBYSHIRE 
       5    Female    Back         100      ABBY DERBYSHIRE 
       6    Female    Back         100      ACACIA WILDIN‐SNEDDEN 
       7    Female    Back         100      ACACIA WILDIN‐SNEDDEN 
       8    Female    Back         100      ACACIA WILDIN‐SNEDDEN 
       9    Female    Back         100      ADELAIDE HART 
      10    Female    Back         100      ADELAIDE HART 
      11    Female    Back         100      ADELAIDE HART 
      12    Female    Back         100      ADELAIDE HART 
      13    Female    Back         100      ADELAIDE HART 
 
                                Percent 
     Obs    Year      Time12      Diff       Age0       Age0sq 
 
       1    2007           .    24.9574    ‐2.87397     8.2597 
       2    2008           .    26.3267     0.16162     0.0261 
       3    2007           .    33.7961    ‐4.19178    17.5710 
       4    2008           .    32.7707    ‐3.18906    10.1701 
       5    2009           .    30.2879    ‐2.19178     4.8039 
       6    2009           .    35.2468    ‐4.30411    18.5254 
       7    2010           .    26.7697    ‐3.30685    10.9353 
       8    2011           .    26.3608    ‐2.30959     5.3342 
       9    2008     6:54.95    18.8485    ‐2.75965     7.6156 
      10    2009     6:54.95    16.5637    ‐1.75068     3.0649 
      11    2010     6:54.95     7.7923    ‐0.08767     0.0077 
      12    2011     6:54.95     6.6397     0.26301     0.0692 
      13    2012     6:54.95     8.6954     1.17205     1.3737 
 

Coding for mixed model: 
 
Proc mixed data=ausfilterlog cl alpha=0.1; 
Class Athlete; 
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Model Time12=PercentDiff Age0 Age0sq/ddfm=sat outp=pred alpha=0.1 
alphap=0.1 s residual intercept; 
Repeated; 
ods output classlevels=clev;  
ods output solutionf=solf;  
by Sex Stroke Distance; 
run; 

 

Chapter 5- Mixed model for analysing career training and performance relationships 

22 observations for two swimmers in one event from the dataset train2: 

    Obs    Sex      Stroke          Distance    UniqueID       Year 
 
      1   Female    Backstroke         50       ADSR160400     2007 
      2   Female    Backstroke         50       ADSR160400     2008 
      3   Female    Backstroke         50       ADSR160400     2008 
      4   Female    Backstroke         50       ADSR160400     2009 
      5   Female    Backstroke         50       ADSR160400     2009 
      6   Female    Backstroke         50       ADSR160400     2010 
      7   Female    Backstroke         50       ADSR160400     2010 
      8   Female    Backstroke         50       ADSR160400     2011 
      9   Female    Backstroke         50       ADSR160400     2011 
     10   Female    Backstroke         50       ADSR160400     2012 
     11   Female    Backstroke         50       ADSR160400     2012 
     12   Female    Backstroke         50       ADSR160400     2013 
     13   Female    Backstroke         50       ADSR160400     2013 
     14   Female    Backstroke         50       ALEK101000     2010 
     15   Female    Backstroke         50       ALEK101000     2011 
     16   Female    Backstroke         50       ALEK101000     2011 
     17   Female    Backstroke         50       ALEK101000     2012 
     18   Female    Backstroke         50       ALEK101000     2012 
     19   Female    Backstroke         50       ALEK101000     2013 
     20   Female    Backstroke         50       ALEK101000     2013 
     21   Female    Backstroke         50       ALEK101000     2014 
     22   Female    Backstroke         50       ALEK101000     2014 
 
                                                             Cumult 
                                      Age    Swim    Total   Others 
    Obs   SwimTime   Age0   Age0sq   Group   Rank   DPTert    Tert 
 
      1    6:42.34   ‐8.4    70.56     1       1       0        0 
      2    6:37.03   ‐8.2    67.24     1       2       0        0 
      3    6:32.51   ‐7.4    54.76     1       1       0        0 
      4    6:21.46   ‐6.8    46.24     1       2       0        0 
      5    6:20.29   ‐6.4    40.96     1       1       0        1 
      6    6:09.71   ‐6.3    39.69     1       2       0        1 
      7    6:08.06   ‐5.4    29.16     1       1       1        1 
      8    6:01.87   ‐4.7    22.09     1       2       2        1 
      9    6:00.88   ‐4.4    19.36     1       1       2        1 
     10    5:54.10   ‐4.2    17.64     1       2       2        1 
     11    5:53.11   ‐3.8    14.44     1       1       2        2 
     12    5:51.54   ‐3.2    10.24     1       2       2        2 
     13    5:50.56   ‐2.6     6.76     2       1       1        2 
     14    6:14.31   ‐5.9    34.81     1       1       0        0 
     15    6:02.14   ‐4.9    24.01     1       1       1        0 
     16    6:02.65   ‐4.9    24.01     1       2       1        0 
     17    5:54.30   ‐3.9    15.21     1       1       2        0 
     18    5:56.02   ‐3.9    15.21     1       2       2        0 
     19    5:46.95   ‐2.8     7.84     2       1       1        0 
     20    5:48.46   ‐2.8     7.84     2       2       1        0 
     21    5:45.25   ‐2.5     6.25     2       2       1        0 
     22    5:43.20   ‐2.4     5.76     2       1       1        0 

Coding for mixed model: 
 
proc mixed data=train2 covtest cl alpha=0.1 maxfunc=1000; 
class UniqueID Year AgeGroup SwimRank TotalDPTert CumultOthersTert; 
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model SwimTime=Age0 Age0sq AgeGroup*SwimRank AgeGroup*TotalDPTert 
AgeGroup*TotalDPTert*CumultOthersTert/ddfm=sat alpha=0.1 alphap=0.1 s 
residual;  
repeated/group=AgeGroup; 
random int Age0 Age0sq/subject=UniqueID type=un s;  
random year/subject=UniqueID;  
lsmeans AgeGroup*TotalDPTert*CumultOthersTert/diff cl alpha=0.1; 
ods output classlevels=clev;  
ods output solutionr=solr;  
ods output solutionf=solf;  
ods output covparms=cov; 
ods output lsmeans=lsm;  
ods output diffs=lsmdiffs; 
by Sex Distance Stroke; 
run; 
 

Chapter 6- Mixed model for assessing performance effect of centralisation and 

development of club trajectories 

Observations for ten swimmers in one event and year from the dataset datlog: 

    Obs   Sex       Event        Athlete                     SwimTime 
 
   1606    F     100Freestyle    ALICE ULTEE                  7:26.69 
   1607    F     100Freestyle    ALISHA SARGENT               6:55.43 
   1608    F     100Freestyle    ALISON FITCH                 6:42.52 
   1609    F     100Freestyle    ALLANNAH PEAT                7:16.07 
   1610    F     100Freestyle    ALYSHA WILSON                7:43.50 
   1611    F     100Freestyle    ALYSSA JONES                 7:20.44 
   1612    F     100Freestyle    ALYSSA WONG                  7:47.97 
   1613    F     100Freestyle    AMAKA GESSLER                7:12.59 
   1614    F     100Freestyle    AMANDA BROWN                 7:04.79 
   1615    F     100Freestyle    AMANDA BUNCKENBURG           7:24.09 
   1616    F     100Freestyle    AMANDA CRAIG                 7:04.12 
 
    Obs     Age16     Age16sq    Year    HPC01    Club 
 
   1606   ‐5.53056    30.5871     ‐7       0      CRMOT 
   1607   ‐1.22419     1.4986     ‐7       0      ASTED 
   1608    6.51269    42.4151     ‐7       1      NSSAK 
   1609   ‐4.18630    17.5251     ‐7       0      TEPBP 
   1610   ‐6.71288    45.0627     ‐7       0      HAWTR 
   1611   ‐2.71840     7.3897     ‐7       0      MANCO 
   1612   ‐8.20000    67.2400     ‐7       0      WHLAK 
   1613   ‐4.26849    18.2200     ‐7       0      NELNM 
   1614   ‐2.79452     7.8093     ‐7       0      ASTED 
   1615   ‐4.71233    22.2060     ‐7       0      PCAWN 
   1616    1.11215     1.2369     ‐7       0      STRTR 

Coding for mixed model: 
 
proc hpmixed data=datlog;  
class Athlete Event Club Year; 
model SwimTime=Event Age16 Age16sq HPC01*Year/s;  
random int Age16 Age16sq/subject=Athlete*Event type=un s cl alpha=0.1;  
random int Year/subject=Club s cl alpha=0.1; 
output out=SS.predictions pred=predicted resid=residual lcl=lower 
ucl=upper/alpha=0.1; 
estimate “Age16” Age16 1/cl alpha=0.1; 
estimate “Age16Sq” Age16Sq 1/cl alpha=0.1; 
Estimate “HPC in 2002” HPC01*Year 1/cl alpha=0.1; 
Estimate “HPC in 2003” HPC01*Year 0 1/cl alpha=0.1; 
Estimate “HPC in 2004” HPC01*Year 0 0 1/cl alpha=0.1; 
Estimate “HPC in 2005” HPC01*Year 0 0 0 1/cl alpha=0.1; 
Estimate “HPC in 2006” HPC01*Year 0 0 0 0 1/cl alpha=0.1; 
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Estimate “HPC in 2007” HPC01*Year 0 0 0 0 0 1/cl alpha=0.1; 
Estimate “HPC in 2008” HPC01*Year 0 0 0 0 0 0 1/cl alpha=0.1; 
Estimate “HPC in 2009” HPC01*Year 0 0 0 0 0 0 0 1/cl alpha=0.1; 
Estimate “HPC in 2010” HPC01*Year 0 0 0 0 0 0 0 0 1/cl alpha=0.1; 
Estimate “HPC in 2011” HPC01*Year 0 0 0 0 0 0 0 0 0 1/cl alpha=0.1; 
Estimate “HPC in 2012” HPC01*Year 0 0 0 0 0 0 0 0 0 0 1/cl alpha=0.1; 
Estimate “HPC in 2013” HPC01*Year 0 0 0 0 0 0 0 0 0 0 0 1/cl 
alpha=0.1; 
ods output estimates=ss.est;  
ods output classlevels=ss.clev;  
ods output solutionr=ss.solr;  
ods output parameterestimates=ss.solf;  
ods output covparms=ss.cov; 
by Sex;  
run; 
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APPENDIX B 

 

Poster presented at the 17th meeting of the European Congress of Sport Science, Bruges, 

Belgium, in July 2012. 
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APPENDIX C 

 

Oral presentation given at the 11th International Symposium of Biomechanics and 

Medicine in Swimming, Canberra, Australia, in May 2014. 
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APPENDIX D 

 

Mini-oral presentation given at the 19th European Congress of Sport Science, Amsterdam, 

The Netherlands, in July 2014. This presentation was awarded an ECSS Young Investigator 

Award (2nd place). 

 

 

 

 

 

 

 



106 
 

 

 

 

  



107 
 

APPENDIX E 

 
Mini-oral presentation of collaborative research given by lead author Pat Lipinska at the 

19th meeting of the European Congress of Sport Science, in Bruges, Belgium, in July 2014. 
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APPENDIX F 

 
Oral presentation of collaborative research given by lead author Pat Lipinska at the 5th 

World Congress of Performance Analysis in Sport, held in Opatija, Croatia, in September 2014. 

 

 

 

 

 



110 
 

 

 

 

  



111 
 

APPENDIX G 

 

Sample of the report provided to Swimming NZ and the HPSNZ board in October 2012 to 

review the performance of individuals within the New Zealand swim team at the London 

Olympics and assess the prospects for future progression of Olympic team members.  

London Olympics 2012: NZ Swim Performance Report  

Tom Vandenbogaerde, Sian Allen, Rita Malcata, Will Hopkins 

High Performance Sport New Zealand, Auckland, New Zealand and Sport Performance 

Research Institute of New Zealand, AUT University, Auckland, New Zealand 

We first present an analysis of the performance of New Zealand in Swimming, using a 

novel method developed by Will Hopkins, Rita Malcata and Tom Vandenbogaerde. In many 

sports such as Swimming, medal count at major competitions is the usual measure of country 

performance. This approach has several problems. First, a medal count does not reflect a 

country’s talent base, because it excludes performances of athletes not winning medals. 

Secondly, the count is biased against countries with more talent when (as is usually the case) 

there is a cap on the number of entries from each country. Finally, medal counts are low and 

therefore inherently imprecise: in any one year they provide only an approximate assessment of 

performance. The novel method, which solves these problems combines world rankings of 

individual athletes into a country score by summing the inverse of the athletes' ranks. The 

resulting score is equivalent to the top-rank or gold-medal capability of the country. A paper on 

this method has been submitted for publication in Medicine and Science in Sports and Exercise. 

Please contact Rita or Tom for more info.  

We then show performance times of the New Zealand Olympic Team swimmers at the 

London Olympics and other major competitions 2010 through 2012. We’ve compared 

performance progression rates between trials and Olympics, personal best and Olympics, and 

heats vs semi-finals vs finals, for New Zealand, Great Britain, Australia, USA, China and Japan. 

We’ve also included comparisons in number and percentage of total number of performances in 

individual events that had improved between competitions and from heats to semi-finals and/or 

finals at the Olympics.  

We then present performance trajectories of our London Olympic Team swimmers that 

qualified for an individual event, and trajectories of medal winners and of the top 16 in the 

respective event. These modelled trajectories include only best performances each year and do 

sometimes not reflect performance at the major competition. Nevertheless, we believe these 

trajectories are a useful tool to track performance progression. We also provide some statistics 

on the mean age of medalists, finalist and semi-finalists, and on times required to win medals, 

make finals and make semi-finals.  

Finally, we report some general comments and observations, and we’ve included additional 

figures and tables in addenda.   
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Men’s 100 Backstroke, Gareth Kean: 

Gareth Kean’s performance progression in the 100-m backstroke has been much steeper 

compared to those of London Olympic medal winners. He is substantially younger compared to 

medal winners in both the 100-m and 200-m backstroke. His personal best time from the 2012 

NZ trials would have ranked him 5th at the Olympics. 

 Medalists Finalists Semi-Finalists  GK 

Time Required for… 52.97 53.74 54.36 54.00 

Mean Age (y) of… 25.4 26.0 24.7  20.8 
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Men’s 200 Backstroke, Gareth Kean: 

 

 Medalists Finalists Semi-Finalists  GK 

Time Required for… 1:53.94 1:57.33 1:58.22 2:00.54 

Mean Age (y) of… 24.6 22.4 23.3  20.8 

 

 

 

Olympics 2012 
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APPENDIX H 

 

An Excel-based application designed to allow Swimming NZ to assess the performance 

progression of any individual swimmer against the performance progression benchmarks of 

Olympic top-16 swimmers from Beijing and London. An example is shown here for one New 

Zealand male swimmer.  

 

MEN 

Type Name  Joe Bloggs 

Select Event  1500 Free  3 

London Gold Time  14:31.02 

Swimmer Age  Time 
Performance Time 
Difference (%) 

17.8  15:48.36  8.9 

17.5  15:58.39  10.0 

15.5  16:30.50  13.7 

14  17:45.00  22.3 
 

Instructions for Use: 

Type the swimmers name in cell C4. Select their event in cell C5.  
Enter each age and time for the swimmer in the cells highlighted pink.  

The benchmarks on the graph are for a typical middle-distance (200m) swimmer.  
 
For sprint events (50-100m) 1 year is subtracted from each age of your swimmer  
before plotting the points. 
For distance events (400-1500m) 1 year is added to each age of your swimmer  
before plotting the points. 
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APPENDIX I 

 

An Excel-based application designed to allow Swimming NZ to assess the performance 

progression of all New Zealand swimming clubs since 2002, and to compare progressions 

between clubs. An example is shown here for female swimmers for two top swimming clubs. 

 

   Select 1st Club  NSSAK 

  

   Select 2nd Club  AQGCB 
 

 

 

Notes             

Negative performance effect values mean better performance 

Downward slope shows an improving club       
 

 

‐10

‐8

‐6

‐4

‐2

0

2

4

6

8

10

2
0
0
1

2
0
0
2

2
0
0
3

2
0
0
4

2
0
0
5

2
0
0
6

2
0
0
7

2
0
0
8

2
0
0
9

2
0
1
0

2
0
1
1

2
0
1
2

2
0
1
3

2
0
1
4

P
e
rf
o
rm

an
ce
 (
%
 f
ro
m
 A
ve
ra
ge

 C
lu
b
)

Females
Mean ±90% Confidence Limits

NSSAK

AQGCB


