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CLASSROOM NOTE

Students’ misconceptions about random variables

Farida Kachapovaa* and Ilias Kachapovb
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Technology, Auckland, New Zealand; bExamination Academic Services,

University of Auckland, Auckland, New Zealand

(Received 23 June 2011)

This article describes some misconceptions about random variables and
related counter-examples, and makes suggestions about teaching initial
topics on random variables in general form instead of doing it separately
for discrete and continuous cases. The focus is on post-calculus probability
courses.

Keywords: misconception; counter-example; mixed random variable;
singular random variable; Riemann–Stieltjes integral; expected value

1. Introduction

Much research has been done on students’ thinking about probability and related
misconceptions (see, e.g. [1–6]). Many papers are devoted to the concept of
probability but not to the concept of random variable (see, e.g. [7–9]). Random
variable is ‘. . . a fundamental stochastic idea’ and ‘. . . is the support of many
probability and statistics subjects’ [7]. So, it is important that the students in
probability courses gain a deep understanding of this concept. In this article, we
focus on post-calculus probability courses, which are part of university courses in
quantitative areas, such as mathematical studies, physics and engineering. Students
in such courses have differentiation and integration skills, so they can master
probability concepts at a more advanced level than the introductory level of basic
statistics courses.

In Section 2, we look at some common students’ misconceptions about events
and random variables. In Section 3, we make suggestions about teaching random
variables. In most probability courses, random variables are taught in two separate
chapters containing the material on discrete variables and continuous ones,
respectively. So many topics are taught twice. Besides, some theorems that are
true for arbitrary random variables are stated only for the discrete and continuous
ones. So, instead of losing generality we suggest to use the Riemann–Stieltjes integral
to introduce the expectation of a random variable in general form and to develop the
theory for arbitrary random variables as long as possible before teaching particular
properties of the discrete and continuous variables. Our suggestions do not target
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introductory service courses in statistics, where students have a limited mathematical
background and common teaching methods with minimum mathematics are
appropriate.

2. Common misconceptions

2.1. Event

One of the common misconceptions in probability is the belief that an event is an
arbitrary subset of a sample space, which is usually correct in the case of a finite
sample space but not in the general case; sometimes Venn diagrams can strengthen
this misconception. The misconception can be avoided if we emphasize that a subset
A is an event if its probability P(A) exists; no theory can be developed for sets with
undefined probabilities.

2.2. Random variable

Random variable is a fundamental concept in probability theory that is not intuitive,
so some students develop misconceptions about it. One common misconception is
that a random variable X is any real-valued function on the sample space. Students
can overcome this misconception by learning the most important characteristic of the
random variable – its distribution function FX: FX(x)¼P(X� x). For the distribution
function to exist, the probability P(X� x) should be defined for any real number x;
therefore X is a valid random variable only if for any x2R the probability P(X� x) is
defined, that is {X� x} is an event.

2.3. Continuous random variable

Some students’ misconceptions in probability relate to continuous random variables,
which make a harder topic than discrete random variables. One of the
misconceptions is defining a continuous random variable as a variable with a non-
countable set of values (sometimes this set is expected to be an interval or a
combination of intervals). This leads to the misconception that any random variable
is either discrete or continuous. To help students to overcome these misconceptions,
we can emphasize the standard definition: a random variable X is continuous if its
distribution function F can be expressed as F(x)¼

R x
�1

f ðtÞdt for some integrable
non-negative function f, which is called the density function of X. A simple example
of a mixed random variable can clarify the matter further.

Example 1: Mixed random variable. Consider the following function (Figure 1):

FðxÞ ¼

0 if x5 0,

0:2x if 0 � x5 1,

0:2xþ 0:6 if 1 � x5 2,

1 if x � 2:

8>>><
>>>:

Clearly F is non-decreasing, right-continuous and has limits 0 and 1 at �1 and
1, respectively. So F is the distribution function of some random variable X.
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Here, P(X¼ 1)¼ 0.6. If we assume that X has a density function f(x), then

f(x)¼F 0(x) for any real x except points 0, 1, and 2; so

0:6 ¼ PðX ¼ 1Þ � Fð1Þ ¼

Z 1

�1

f ðxÞdx ¼

Z 1

0

0:2dx ¼ 0:2,

which is a contradiction. Therefore X is not continuous though the set of its values is

the interval (0, 2) and it is not countable.
This random variable is an example of a mixed variable: it is discrete at

point 1 (since the probability of 1 is 0.6) and it is continuous on intervals (0, 1)

and (1, 2).

Another common students’ misconception is thinking of a continuous random

variable as the variable with a continuous distribution function; the condition of

continuity of the distribution function is necessary but not sufficient. Any singular

random variable can be used as a counter-example here, since the distribution

function of such a variable is continuous and its derivative equals 0 almost

surely; therefore the singular random variable does not have a density function and is

not continuous. The following is a well-known example of a singular variable

(see, e.g. [10]); the students need only basic knowledge of calculus to understand

the example.

Example 2: Singular random variable.We will define a distribution function F as the

Cantor function. For any x2[0, 1], denote by (x1, x2, x3, . . .) the expression of x in

base 3, that is x ¼ x1
3 þ

x2
32 þ

x3
33 þ � � �. Denote

k ¼ minfr : xr ¼ 1g

if there is no r with xr¼ 1, then k¼1. Define

FðxÞ ¼
Xk

r¼1

signðxrÞ

2r
, where sign ðaÞ ¼

1 if a4 0,

0 if a ¼ 0:

�

Figure 1. The distribution function of the mixed random variable.
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This is the analytical definition of the Cantor function (Figure 2). Geometrically,

it can be described as follows. Divide [0, 1] into three equal parts and define F on the

middle part by F(x)¼ 1
2 for x2

1
3,

2
3

� �
. Next, divide each of the remaining two intervals

into three equal parts and define F in the middle parts by:

FðxÞ ¼ 1
22
for x 2 1

9,
2
9

� �
and

FðxÞ ¼ 3
22
for x 2 7

9,
8
9

� �
:

This process is repeated infinite number of times. For other definitions of the Cantor

function, see [11]. Define F(x)¼ 0 for x5 0, and F(x)¼ 1 for x4 1.
Clearly F(0)5F(1), the function F is continuous, non-decreasing and its

derivative equals zero almost surely. Hence F is a singular function and is the

distribution function of some singular random variable Y.

The following theorem also helps the students to understand that discrete and

continuous are not the only types of random variables (for details, see [12]).

Lebesgue decomposition: any random variable X can be uniquely represented in the

form: X¼ �1Xdþ �2Xcþ �3Xs, where numbers �i� 0 (i¼ 1, 2, 3), �1þ �2þ �3¼ 1,

and Xd, Xc, and Xs are discrete, continuous, and singular random variables,

respectively.

3. Teaching suggestions

Many textbooks define a random variable and its distribution function in general

form, then give most definitions and statements about random variables twice: first

in discrete case, then in continuous case. This is good for a basic probability course.

For a university course, we suggest a more holistic teaching approach with more

emphasis on the general theory for all random variables and with less attention to

particular details of the discrete and continuous cases.

Figure 2. The Cantor function as the distribution function of the singular random variable.
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After defining a random variable X, we recommend to introduce its distribution

function FX, survival function SX by SX(x)¼P(X4 x), and quantile function F�1X by

F�1X ðuÞ ¼ inffx 2 R : FXðxÞ � ug, u 2 0, 1½ �, with inf1 ¼ þ1 by convention:

The quantile function is used for simulating continuous distributions and is

usually introduced later with other simulation methods but it is more logical to

introduce this function and its properties at the beginning of the course.
Next, we suggest to introduce the Riemann–Stieltjes integral with respect to a

distribution function F. In a post-calculus course, the students can master this

concept without difficulty, because there is a natural analogy with the Riemann

integral, where increments of x are replaced with increments of F. For a random

variable X with the distribution function F, the expectation is defined by the

following Riemann–Stieltjes integral:

EðXÞ ¼

Z 1
�1

xdFðxÞ:

Thus, the students see that a random variable does not have to be discrete or

continuous to have an expectation. This is illustrated by calculating the expectations

for the aforementioned mixed and singular random variables.

Example 3: Find the expectation E(X) for the mixed random variable X from

Example 1.

Solution: For the continuous part of the variable the density equals f(x)¼F 0(x)¼ 0.2,

x2 (0, 1)[ (1, 2). So the expectation equals

E Xð Þ ¼ 1� PðX ¼ 1Þ þ

Z 1

0

xf ðxÞdxþ

Z 2

1

xf ðxÞdx

¼ 1� ð0:8� 0:2Þ þ

Z 2

0

0:2xdx ¼ 1:

The following is a more rigorous proof that demonstrates how the answer can be

derived from the general definition of expectation; this can be used in more advanced

probability courses.
Since the random variable X is bounded, the expectation E(X) exists and

E(X)¼
R 2
0 xdFðxÞ. This integral is a limit of integral sums.

For an odd integer n¼ 2mþ 1 (m4 0), divide [0, 2] into n equal sub-intervals:

0 ¼ x0 5 x1 5 � � � 5 xm 5 15 xmþ1 5 � � � 5 xn ¼ 2:

For i¼ 0, 1, . . . , n� 1, denote �i¼xiþ1 and DFi¼F(xiþ1)�F(xi). Then, for i 6¼m:

DFi ¼ 0:2Dxi: ð1Þ

The integral sum equals

Sn ¼
Xn�1
i¼0

�iDFi ¼ S 1ð Þ
n þ S 2ð Þ

n þ S 3ð Þ
n ,

International Journal of Mathematical Education in Science and Technology 5
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where

Sð1Þn ¼ �mDFm, Sð2Þn ¼
Xm�1
i¼0

�iDFi and Sð3Þn ¼
Xn�1

i¼mþ1

�iDFi:

Here

Sð1Þn ¼ xmþ1 F xmþ1ð Þ � F xmð Þ½ � !
n!1

1 � lim
x! 1þ

FðxÞ � lim
x! 1�

FðxÞ

� �
¼ 0:8� 0:2 ¼ 0:6:

By (1),

S 2ð Þ
n ¼

Xm�1
i¼0

�i � 0:2Dxi ¼ 0:2
Xm�1
i¼0

�iDxi !
n!1

0:2

Z 1

0

xdx,

the Riemann integral.
Similarly,

S 3ð Þ
n ¼ 0:2

Xn�1
i¼mþ1

�iDxi !
n!1

0:2

Z 2

1

xdx:

So

EðXÞ ¼ limn!1 Sn ¼ 0:6þ 0:2

Z 1

0

xdxþ 0:2

Z 2

1

xdx ¼ 0:6þ 0:2

Z 2

0

xdx ¼ 1:

Similarly, it can be shown that for the singular random variable Y from

Example 2, the expectation E(Y)¼ 1
2. This also follows from the symmetry of the

distribution function with respect to point 1
2,

1
2

� �
.

The singular random variable seems to be an artificial mathematical construc-

tion. Mixed random variables, on the other hand, have natural applications, in

actuarial science in particular. ‘A mixed type rv frequently encountered in actuarial

science is an insurance risk for which there is a probability mass in zero (the

probability of non-occurrence of claims), while the claim amount given that a claim

occurs is a continuous rv.’ [13, p. 17]. We illustrate this with the following two

examples (for more examples, see [14]).

Example 4: Consider an insurance payment X against accidental loss with excess of

$200 and maximum payment of $2000. Assume that the loss is below $200 with

probability 0.08 and above $2200 with probability 0.12, with the uniform

distribution in between. Find the distribution and expectation of X.

Solution: Clearly, P(X¼ 0)¼ 0.08, P(X¼ 2000)¼ 0.12, P(05X5 2000)¼ 0.8, and X

is uniformly distributed between 0 and 2000. The distribution function of X is

given by

FðxÞ ¼

0 if x5 0,

0:0004xþ 0:08 if 0 � x5 2000,

1 if x � 2000:

8><
>:
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For the continuous part of the variable, the density equals f(x)¼F 0(x)¼ 0.0004,

x2 (0, 2000). So the expectation (expected payment) equals

EðXÞ ¼ 0� PðX ¼ 0Þ þ 2000� PðX ¼ 2000Þ þ

Z 2000

0

x f ðxÞdx

¼ 2000� 0:12þ

Z 2000

0

0:0004xdx ¼ $1040:

Example 5: Consider an insurance claim of size X, where X equals 0 with

probability 0.2 and the distribution of its positive values is proportional to

exponential distribution with parameter 0.005. Find the distribution and expectation

of X.

Solution: Clearly P(X¼ 0)¼ 0.2 and P(X4 0)¼ 0.8, so the distribution function of X

is given by

FðxÞ ¼
0 if x5 0,

1� 0:8e�0:005x if x � 0:

�

For the continuous part of the variable, the density equals

f(x)¼F 0(x)¼ 0.004 e�0.005x, x4 0. So the expectation (expected claim size) equals

EðXÞ ¼ 0� PðX ¼ 0Þ þ

Z 1
0

x f ðxÞdx ¼

Z 1
0

0:004x e�0:005x dx ¼ $160:

The properties of expectation can be stated and proved in general form using the

properties of the Riemann–Stieltjes integral. Next, it is logical to introduce other

numerical characteristics of random variables in general form through expectation,

such as moments, variance, standard deviation, covariance and Pearson correlation.

Besides general properties of these characteristics, it is useful to consider Chebyshev’s

inequality and Hoeffding’s equality [15]:

Cov X,Yð Þ ¼

Z 1
�1

Z 1
�1

FX,Yðx, yÞ � FXðxÞFYð yÞ
� �

dxdy,

where FX,Y is the joint distribution function of X and Y, and Cov(X,Y) is their

covariance. The Hoeffding equality is not sufficiently known, though it has useful

applications, and it is easily stated and proved [16, p. 1139].
Finally, formulas can be derived for the expectation of a discrete random variable

and a continuous one. In addition to the standard formulas, it is suggested to include

these interesting alternative formulas:

E Xð Þ ¼

Z 1
0

SX xð Þdx�

Z 0

�1

FX xð Þdx for a continuous X and

EðXÞ ¼
X1
k¼0

P X4 kð Þ �
X0

k¼�1

P X5 kð Þ for a discrete, integer-valued X:

They have quite simple proofs.
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4. Discussion

The described approach is not suggested for introductory statistics courses, where

students’ mathematical background is limited. Our suggestions are intended for post-

calculus probability courses, which are part of university courses in quantitative

areas. The students in these courses enjoy the mathematical side of probability and

are not entirely focused on statistical applications.
A standard one-semester course in calculus provides the students with necessary

differentiation and integration skills; these students are familiar with Riemann

integral and therefore they can understand the Riemann–Stieltjes integral, which is

defined similarly, only increments of x are replaced with increments of y. So the

expectation of a random variable can be defined in general form through a

Riemann–Stieltjes integral.
The described general approach to teaching random variables covers all types of

variables, not only discrete and continuous ones. This is the way random variables

are taught in actuarial science where mixed variables have important applications

and the expected value has to be introduced through the Riemann–Stieltjes integral.
This approach was used by the authors for several years in post-calculus

probability courses at the Auckland University of Technology (New Zealand) and

the Moscow Technological University (Russia). Our case studies show that this

approach helps:

. to avoid the misconception that discrete and continuous variables are the

only possible ones;
. to avoid tedious repetition of definitions and proofs;
. to produce more interesting proofs in the general case.

We noticed that the described examples of unusual random variables stimulated

students’ interest in the subject and their critical thinking. The students got interested

what other types of random variables exist, and Lebesgue decomposition theorem

helped to answer such questions.
Many university students have got a basic knowledge of discrete and continuous

variables from high school. In university courses we can build on this knowledge,

generalize and develop it to a more advanced level. The universal approach to

random variables can help students to distinguish between general and type-specific

properties of random variables. Together with the aforementioned counter-

examples, the described teaching approach can also help students to avoid

misconceptions and gain a deeper understanding of the basic probability concepts.

More advanced counter-examples in probability can be found in [17]. The general

teaching approach provides students with an abstract knowledge of random

variables, which is important in a variety of applications. In particular, this

knowledge can be applied in actuarial science (as shown in Examples 4 and 5), so

there is no need to study mixed random variables separately as a third type of

variables.
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