

Blockchain for Security of A Cloud-

Based Online Auction System

Yun Shu

A thesis submitted to the Auckland University of Technology

in partial fulfillment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

2017

School of Engineering, Computer and Mathematical Sciences

I

Abstract

In recent decades, Internet auctions have already been grown up as the most significant

e-commerce business model in worldwide. Meanwhile, with the rapid rising of cloud

computing over the past few years, the legacy online auction platform is gradually

replaced by service-oriented cloud computing in real time. This thesis describes design

and implementation of a high-performance online auction system over the cloud. We

propose the methodology to provide persistent state records during the auction process

so that we can ensure the reliability of submitted bid price, fairness and guarantee the

security of price message in the delivery process. We employ the actor-based

applications to achieve stateful, parallel and distributed architecture. Moreover,

utilising distributed databases to provide secure and efficient data storage. Our

preliminary result provides the guidelines for implementation of high-performance and

real-time bidding online auction.

 Auction fraud has become the highest threat and hazard to the future of this business

model (Grazioli & Jarvenpaa, 2000). In this thesis, we are going to demonstrate the

details of blockchain which will provide a new perspective to resolve this problem. It

is able to be used for current financial services, certificates, remittances and online

payments. Furthermore, it also provides several crucial services such as smart contract,

smart property, trust system and security services (Gareth William Peters, Panayi, &

Chapelle, 2015). This thesis will discuss how to apply a private blockchain to a cloud-

based online auction and the principle of operation. The purpose is to fundamentally

solve the problem of online fraud caused by information asymmetry of electronic

transactions. To the best of our knowledge, this is the first time that the blockchain is

applied to authentication of online auction. Our preliminary result is for preventing

auction fraud from the aspects of smart properties and smart contract.

Keywords: auction fraud, blockchain, elliptic curve digital signature algorithm, real-

time online auction, actor model, concurrent, parallel and distributed system, real-time

service-oriented cloud computing.

II

Table of Contents

Abstract .. I

Table of Contents .. II

List of Figures ... V

List of Tables .. VII

Attestation of Authorship .. VIII

Acknowledgment ... IX

Chapter 1 Introduction ... 1

1.1 Background and Motivation .. 2

1.2 Research Question ... 3

1.3 Contribution .. 4

1.4 Objective of This Thesis .. 4

1.5 Structure of This Thesis .. 5

Chapter 2 Literature Review .. 7

2.1 Introduction ... 8

2.2 MVVM and Serverless Framework .. 10

2.2.1 MVVM ... 10

2.2.2 Serverless Framework .. 12

2.3 Actor Framework .. 14

2.3.1 Erlang ... 14

2.3.2 Akka ... 14

2.3.3 Orleans ... 15

III

2.4 Traffic Reliability in Online Auction .. 16

2.5 Auction Model ... 17

2.6 Blockchain ... 20

2.6.1 Block .. 24

2.6.2 Decentralized Framework .. 27

2.6.3 Smart Contract and Smart Property ... 28

2.6.4 Properties Exchange on Blockchain .. 32

2.6.5 Tradenet ... 35

2.6.6 Challenges of Blockchain .. 36

2.6.7 Hawk .. 37

2.7 Online Fraud .. 40

Chapter 3 Methodology ... 45

3.1 Introduction ... 46

3.2 Design.. 46

3.2.1 Immutable Message ... 46

3.2.2 Fault Tolerance of The Actor ... 48

3.2.3 Location Transparency ... 50

3.2.4 State Persistence in Actor Model ... 50

3.3 Distributed Database ... 51

3.3.1 High Performance Read/Write ... 51

3.3.2 Fault Tolerance of The Database .. 52

3.4 Elliptic Curve Cryptography ... 52

3.4.1 Elliptic Curve Digital Signature Algorithm ... 52

3.4.2 Implementation .. 54

3.5 Blockchain Network Architecture ... 56

IV

3.5.1 Mining Nodes... 58

3.5.2 Transaction Nodes .. 61

3.5.4 Actor Framework Works with Blockchain .. 62

Chapter 4 Results ... 64

4.1 Actor Framework .. 65

4.2 ECDSA .. 67

4.3 Transaction Verification in Blockchain ... 71

4.4 Implementation of Tokens on Private Blockchain .. 72

Chapter 5 Analysis and Discussions .. 78

5.1 Analysis ... 79

5.1.1 NoSQL Database .. 79

5.1.2 Blockchain ... 80

5.2 Discussions .. 83

Chapter 6 Conclusion and Future Work ... 85

6.1 Conclusion ... 86

6.2 Future Work ... 88

References .. 89

V

List of Figures

Figure 2.1 Architecture of legacy web applications ... 9

Figure 2.2 The model-view-viewmodel framework. ... 11

Figure 2.3. Serverless framework .. 13

Figure 2.4 Understanding of an actor .. 16

Figure 2.5 A supervisor and its children in a graph ... 16

Figure 2.6 Overview of online auction process ... 18

Figure 2.7 The workflow of real-time bidding .. 19

Figure 2.8 The diagram of blockchains ... 22

Figure 2.9 Bitcoin network (resource from bitcoin) .. 22

Figure 2.10 An example of mining process in the blockchain ... 23

Figure 2.11 The details of a branch of blockchain ... 24

Figure 2.12 A block in blockchain that is represented by JSON ... 25

Figure 2.13 Digital signature in blockchain technology .. 26

Figure 2.14 Decentralized network .. 27

Figure 2.15 Hawk overview ... 38

Figure 3.1Overview of Online Auction System ... 46

Figure 3.2 The communications between actor systems ... 47

Figure 3.3 A bidder actor and its behaviours ... 48

Figure 3.4 A diagram of the comparison actor ... 49

Figure 3.5 Fault tolerance of actor model .. 49

Figure 3.6 State persistence for bidding .. 51

Figure 3.7 The addition of two distinct elliptic curve points ... 53

Figure 3.8 Doubling a point on an elliptic curve ... 53

VI

Figure 3.9 Blockchain network architecture .. 56

Figure 3.10 Summary of deployment of our private blockchain ... 57

Figure 3.11 Details of our private blockchain deployment .. 58

Figure 3.12 Resource allocation of miners .. 59

Figure 3.13 Coinbase account .. 60

Figure 3.14 Actor system, mongo database and blockchain network 62

Figure 3.15 Actor communicate with blockchain .. 63

Figure 4.1Blockchain hashcode example .. 69

Figure 4.2 Private key and public key in hexadecimal .. 70

Figure 4.3 The transaction file needs to be signed by private key ... 70

Figure 4.4 House token .. 73

Figure 4.5 House token in wallet ... 74

Figure 4.6 Smart contract of coffee cup ... 74

Figure 4.7 Set a new project .. 75

Figure 4.8 Bidding the price .. 76

Figure 4.9 Bidding List .. 76

Figure 4.10 Settle the price .. 77

Figure 4.11 The final transaction on Blockchain ... 77

Figure 5.1 Insert ServerTimeSync status into database ... 79

Figure 5.2 Query state from comparison actor and bidder actor ... 80

Figure 5.3 Difficulty incensement in recent two years .. 81

Figure 5.4 Hash rate incensement in recent two years ... 81

Figure 5.5 Incensement of cost per transaction in recent two years .. 82

Figure 5.6 Block size incensement in recent two years ... 83

VII

List of Tables

Table 2.1 An example of blockchain applications in version 2.0 .. 28

Table 2.2 A record of Alice’s account .. 32

Table 2.3 A changed record of Alice’s account .. 33

Table 2.4 A record of Bob’s account .. 33

Table 3.1 Mnemonic code and root key ... 61

Table 4.1 A feature comparison of the actor framework and the client-server architecture 65

Table 4.2 TimeAsync Actor State in MongoDB .. 66

VIII

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgments), nor material which

to a substantial extent has been submitted for the award of any other degree or diploma

of a university or other institution of higher learning.

Signature: Date: 01 Nov 2017

IX

Acknowledgment

This research work was completed as the part of the Master of Computer and

Information Sciences (MCIS) course at the School of Engineering, Computer and

Mathematical Sciences (SCMS) in the Faculty of Design and Creative Technologies

(DCT) at the Auckland University of Technology (AUT) in New Zealand. I would like

to sincerely thank my parents for the financial support they provided during my entire

time of master’s study in Auckland.

My deepest thanks are to my primary supervisor Dr Wei Qi Yan who has provided

me with much appreciated technological guidance and support. I believe that I would

not have been able to achieve my Master Degree without his invaluable help and

supervision. Also, I would like to appreciate my secondary supervisor Dr Jian Yu and

school administrators of our school for their support and guidance through the MCIS in

the past years.

Yun Shu

Auckland, New Zealand

01 Nov 2017

1

Chapter 1

Introduction

The first chapter of this thesis consists of five sections. In

the first section, background and motivation of this thesis are

introduced, an actor framework is utilised to establish a high-

speed, high-scalability and low-latency network for an online

auction system. Meanwhile, blockchain technology also has been

introduced to resolve the online fraud issue. Objectives will be

discussed in the fourth section. This chapter also covers the

details of research questions after the in-depth, comprehensive

understanding of the relevant literature and research background.

Finally, we will present an overview of the structure of this thesis

in Section 5.

2

1.1 Background and Motivation

 With the ubiquitous Internet connections in the world, the online auction platform is

reshaping the market by providing professional services, like the third part guarantee

payment, or digital signatures and certificates. These professional services are no

longer limited by the typical location of buyers and sellers (Ackerberg, Hirano, &

Shahriar, 2006). The research outcome (Krasnokutskaya, Terwiesch, & Tiererova,

2016) also indicates that eighty percent of online transactions are carried out by

participants from foreign countries and regions. However, the e-commerce industry,

especially online auction, is up against several difficulties. For example, traditional

online auction system is robust to handle large-scale data transmission from different

regions at the high-speed and parallel network. Additionally, the traditional architecture

must face significant issues that come from traffic reliability and massive data

processing within a short period. Furthermore, the online fraud in this industry is also

a severe shortcoming.

 Thus, we are eager to find a new way to solve the issues above. Five key features

from existed actor frameworks are demonstrated: safe message delivery, mobility, state

persistence, location transparency and fair scheduling (Karmani, Shali, & Agha, 2009).

The mobility, location transparency and fair scheduling are able to provide the data

consistency and integrity on the distributed cloud services; the state persistence is able

to improve the packet loss and traffic rates for cloud online auction model; the

mechanism of immutable message delivery guarantees that messages are not able to be

tampered. We believe that the implementation of the actor framework in an online

auction system will help to provide a high-speed, low-latency and high-stability of the

network environment. Moreover, the actor framework supports scalability. It is easy

for us to apply this framework to a distributed architecture.

 However, actor framework still is not able to solve the online fraud issue. One key

goal of our thesis is to facilitate online transactions between participants within the

untrusted environment. The search outcome illustrated that the incredible trading

environment is caused by complicated reasons like geographical separation, or

uncertainty, inconvenience or corruption of existing legal systems (Wood, 2014a).

3

Several types of research about the Bitcoins and Ethereum have enlightened us about

leveraging blockchain for online auction system, especially financial fairness. There

are several prior work explored about how to implement the blockchain technique to

achieve the financial fairness. Researchers demonstrate how Bitcoin is utilised to

guarantee the fairness of a secure multi-party computing protocol that also performs

various types of offline security calculations (Andrychowicz, Dziembowski,

Malinowski, & Mazurek, 2014; Kiayias, Zhou, & Zikas, 2016; Kumaresan & Bentov,

2014; Zyskind, Nathan, & Pentland, 2015). Furthermore, the Ethereum blockchain has

introduced the smart contract which is an executable code (Delmolino, Arnett, Kosba,

Miller, & Shi, 2016). We are able to automatically move digital assets, or transfer the

ownership according to any pre-specified rules in the smart contract (Buterin, 2014).

1.2 Research Question

 As we mentioned, this thesis aims at the data consistency and integrity during the

high-performance network environment for online auction system, and

implementations of blockchain database to provide the confidential transaction in the

untrusted environment. Analyzing the methods and techniques helps us to know the

necessary procedures of implementing actor framework and the Elliptic Curve Digital

Signature Algorithm. Therefore, the research questions of this thesis are:

(1) Could we use cloud computing to improve the performance of online auction

system?

(2) Is there any cloud-based technology which could provide a new idea to solve the

issues of online fraud?

We attempt to find answers to the following question which is developed from the

primary question:

“What are the security algorithms for online auction system? Which algorithm is

the best one for our research? Which cloud-based framework is the best solution to

provide the immutable message delivery that ensures our bid price cannot be tampered

during the data passing from end to end?

4

The core idea of this thesis is stated actor framework and blockchain. Thus, the

techniques that we adopted in this research project need to be evaluated, and proper

techniques need to be chosen so as to implement the best result of blockchain and state

actor model.

1.3 Contribution

 The main contributions of this thesis include: (1) We use the actor framework to

improve the packet loss and traffic rates for our cloud online auction model. The

message is wrapped in the web stock, so we cannot guarantee that any messages can

be received or dispatched each time successfully. Thus, the additional implementation

must be taken to actor mode like at-least-once in Orleans. It requires retry when

transport losses. (2) We implement the mechanism of immutable message delivery and

ensure that our bid price cannot be tampered during the data passing from end to end.

(3) We record all actors’ state persistently in document database so that we are able to

approve the data persistence, which is a highly-challenging task in the high-latency

database like SQL database.

Also, this is also the first time that the blockchain is applied to authentication of

online auction. Our preliminary result is for preventing auction fraud from the aspects

of smart properties and smart contract.

1.4 Objective of This Thesis

Firstly, this thesis introduces actor framework relates to offer the data consistency

and integrity during the high-performance network environment. Moreover, the

features and principles of the actor framework will be illustrated and evaluated in this

thesis. Furthermore, Ethereum blockchain technology is about implementation of

smart property and smart contract for providing reliable online transactions underlying

the untrusted trading environment.

Secondly, in order to implement the actor model and blockchain system on the cloud

service, a conceptual framework is also presented for our cloud-based online auction

system. Therefore, the overall objective of this thesis is divided into three different

5

parts which include:

 design of actor framework for English auction model;

 implementation of elliptic curve digital signature algorithm for elaborating

the working mechanism of blockchain;

 Development and implementation of the private blockchain and actor

framework on Azure;

 Finally, the comparison of performances and algorithms for the actor model

and blockchain will be presented in this thesis.

1.5 Structure of This Thesis

The thesis is structured as follows:

In Chapter 2, literature will be reviewed, such as the previous studies in message-

driven development, and online fraud solutions in an online auction for the area of

state actor framework and blockchain. Actor framework and blockchain are studied as

a high-level processing in semantic. Thus, Chapter 2 will introduce the fundamentals

of the Elliptic Curve Digital Signature Algorithm, the data consistency and integrity

during the high-performance network environment. So that we are able to improve the

packet loss and traffic rates for our cloud online auction model. Meanwhile, we are

able to provide a secure transaction mechanism between clients underlying an

untrusted trading environment.

In Chapter 3, the explanation of research methodology of this thesis will be stated.

Moreover, potential solutions and answers will also be presented. Moreover, the

experimental layout and design as well as datasets and implementations with the

evaluation methods, will be presented.

In Chapter 4, the methodologies and algorithms we presented will be implemented.

Moreover, experimental results and outcomes will be detailed with supports of tables

and figures. The limitations of this project will also be addressed as well.

6

In Chapter 5, analysis and discussions are depicted based on experimental results

and outcomes we acquired in Chapter 4. Finally, conclusion and future work will be

presented in Chapter 6.

7

Chapter 2

Literature Review

With in-depth analysis of the research question and rationale

reviews of the previous studies, the focus of this thesis is on actor

framework and blockchain. For instance, the actor-based

framework is able to achieve stateful, parallel and distributed

architecture. We utilise distributed databases to provide secure and

efficient data storage. Our preliminary result provides the

guidelines for implementation of high-performance and real-time

bidding online auction. The-state-of-art of state actor model and

message driver methods will be summarized in this chapter.

8

2.1 Introduction

 Cloud computing is becoming increasingly attractive to firms and developers today.

Compared with the traditional Internet service provider, the legacy service provider is

divided into infrastructure vendors and service providers. The infrastructure providers

(Platform as a Service), such as Microsoft Azure, Amazon Web Application Service,

and Google App Engine. The services provide impressive, reliable, and cost-efficient

cloud-based platforms and lease these platforms to the service providers who rent

resources from infrastructure providers to serve the end clients (Armbrust et al., 2010).

Moreover, those developers who worked for the service providers have significant

opportunities to transform their innovative ideas into highly scalable Internet services.

We also call them as Software as a Service (SaaS). These services can be easily

expanded to large scales so as to handle the expeditious increase in service demands

(Armbrust et al., 2009).

Because of these features of SaaS, we, therefore, have the opportunity to deploy

actor-based applications in a parallel and distributed system on the cloud to construct

the bottlenecks of traditional client / server framework of the online auction. The actor

model (Hewitt, Bishop, & Steiger, 1973) adopts an abstract concept to describe

concurrency of the program that is centred on the actor unit which performs distributed

computations and communicates through asynchronous information exchange. Thus,

the actor is suitable for developing large-scale parallel programs. However, the

concurrency of actors is limited by hardware resources and capability of logical

computations (Agha, 1985). As the rapid progression and innovation of cloud

technology in recent years, hardware constraints gradually weakened. The actor model

is increasingly being applied to highly concurrent applications on SaaS, such as

Microsoft Orleans and JVM Akka.

The main technical bottleneck of traditional online auction system is that it is hard

to handle significant amounts of data from different regions in a highly concurrent and

parallel environment. More specifically, when an online auction system receives quotes

from all over the world, the traditional tree-tired architecture shown in Figure 2.1 will

place cache area between middle tire and physical storage for improving I/O

9

performance (Power & Li, 2010). Unfortunately, usage of the cache will directly lose

the concurrency. The cache manager or application must implement concurrency

control policy to avoid deviations resulting from concurrent updates to a cached object

(Miller, M. S., Tribble, & Shapiro, 2005). Hence, the traditional architecture has to

face major issues from traffic reliability and massive data processing within a short

period. With or without the cache, this pattern cannot fulfil the requirement of

conformity on a cache with rapid reaction for interactive access (P. A. Bernstein,

Bykov, Geller, Kliot, & Thelin, 2014). Eventually, these problems will result in

excessive use of CPU resources and physical memory depletion. On the other hand, a

traditional relational database that is commonly utilised in a concurrently read or write

scenario cannot provide reliable data concurrency and consistency.

Figure 2.1 Architecture of legacy web applications

In this thesis, we discuss the methodology that can be implemented to convert the

structure of traditional English online auction into actor architecture, so that we can

guarantee data consistency and integrity in the high-performed environment of the

online auction. We utilise the mechanism of safe message delivery which ensures the

security of bid data from end to end. Moreover, the internal state of the actor offers the

reliability of persistent state records during the auction process. Finally, fair scheduling,

location transparency and mobility of state will assure data integrality and consistency

to the actor model (Miller, M. S., Tribble, & Shapiro, 2015) resulting in offering high-

10

concurrency and low-latency online auction service. To the best of our knowledge, this

is the first time that the actor framework is applied to the online auction.

2.2 MVVM and Serverless Framework

2.2.1 MVVM

The reason we use MVVM pattern is that the flexibility of this pattern provides a

convenience for a decentralised distributed architecture. This pattern was used early in

Windows Presentation Foundation(Smith, 2009). With the progress of the technology,

MVVM pattern has now been widely used in a variety of e-commerce platform. This

architecture has a quite good compatibility for client-side (browser, mobile, or desktop

application). MVVM pattern model is able to separate business logic and UI easily. So,

we can increase the reusability of our code. Meanwhile, this makes the code easily to

be developed, test and maintain (L. Liu, 2012).

 Model tier is responsible for handling the real data and information. It also includes

all the business objects and the relations of objects such as one to one, one to many,

and many to many. We usually called this tier as the secondary package of business

information. According to the rules of object-oriented, our business information will

be packaged into the business objects. Moreover, we transfer this information into the

view model. For example, our auction project objects, bidder objects, time sync objects,

immutable message objects, etc. In our whole project, the model tier is the core.

Because of this, we are not able to expose our core business objects directly to users. If

the business information needs to be changed, we only need to update our model tier.

View tier is mainly responsible for communicating with the customer. We also

called this tier as UI. It displays information to our client. This is similar to MVC

architecture; the users are able to obtain useful information and enjoyable user

experience by using UI in the view tier. In MVVM design model, our view tier is not

limited to the desktop application, which can be a web page or mobile client. Most of

the view tier today is compatible with the different size of the screen from 4K display

to mobile size. The most significant thing is that there should not include any of

11

business logic in this tier. Therefore, view tier is able to be in coded by using front-end

languages such as HTML and JavaScript. Another benefit of MVVM framework is that

we are able to develop the front end (View) and the back end at the same time. This

dramatically increases the development efficiency. To be more specific, when we

develop the view tier, we only need to mock up the fake data for the view model. As

the view tier, we do never care about the business logic. Also, the view tier is most

frequently asked to make changes to clients. This design pattern reduces the impact of

UI changes (Gao, Zhang, & Yao, 2012).

Figure 2.2 The model-view-view model

View model tier is holding all display logic for view tier. It will not quote the view

controllers directly instead of binding command and data of view controllers in view

tier to view model layer (X. Li et al., 2015). The role of the view model layer is the

12

coordination of the objects in the view tier and model tier. So, the view model layer is

the bridge between the view layer and the model layer. As we have already indicated

that we should never expose our model tier directly to the client side. View model plays

a pivotal role for data exchanging and data validation. When the data comes from the

client side, view model needs to validate all data to make sure that there is no dirty data

will be passed to model tier. On the other hand, when data comes from the model layer,

we need to expose the necessary information to view model tier. So, we say that the

view model layer connects the entire system, separating the view layer and the model

layer. The design model achieves high cohesion and loosely coupled targets. The view

model layer is the link layer between the view layer and the model layer. In this layer,

the client-side operation commands of the view layer are transfered to the business

functions identified in the model layer and the business information returned from the

model layer is displayed for the client through the view layer. Therefore, the view

model layer is the core one of the overall system.

2.2.2 Serverless Framework

With the progression and innovation of cloud computing frameworks, increasingly

efficient, lightweight, abstracted and virtualised framework (like docker container)

have indicated that the public cloud market has evolved rapidly (D. Bernstein, 2014).

Yu et al. (2010) pointed out that because the current virtual machine-based technology

has already reached very stable level within the cloud computing market, the main trend

begins to focus on container-based virtualization, such as Docker or RaaS Cloud (Li,

Tang, & Chou, 2015; Sáez, Andrikopoulos, Sánchez, Leymann, & Wettinger, 2015).

Enterprises are beginning to accept cloud systems, it is not a viable solution, but also

a significant strategy (McGrath, Short, Ennis, Judson, & Brenner, 2016). This has led

to the emergence of many competing or parallel patterns for building efficient and

effective cloud solutions. Cloud technology, as a cloud system, is used in conjunction

with a business process framework, such as Roboconf (Pham et al., 2015), which

creates a powerful automated computing system that greatly enhances enterprise

productivity. Ad Hoc Cloud Computing is another example, which is utilized to

improve productivity and efficiency (McGilvary, Barker, & Atkinson, 2015). The use

13

of cloud events in conjunction with the Internet of Things (IoT) is probably the most

influential. As more and more data sources grow, it is increasingly evident that we are

behind our ability to handle these data. Software-defined ecosystems designed to

handle data provide a space for many diverse and efficient applications of cloud events

(Parashar, Abdelbaky, Zou, Zamani, & Diaz-Montes, 2015).

For realizing the distribution from end to end, actor-model employs web socket

protocol to maintain the data persistent with the front end and central database. The

decentralized structure requires the serverless framework. To be more specific, we are

not going to build a web API server to expose from the endpoints to the front end. This

kind of traditional server framework is difficult to scale out. Meanwhile, it obviously

does not have enough capacity to support distributed database. Most of the cloud server

platform like Azure or AWS has already provided the server fewer components such

as Lambda on AWS or Fabric Server on Azure. For instance, we are able to build an

actor by using Fabric Server called Time Sync actor which can be used to sync time

with clients. We can copy and rebuild the actor as many times as we want to. Even if

one of them is failed, the others would keep working. We can build bidder and compare

actors in the same way. The actors are communicating between each other by the

immutable message.

Figure 2.3. Serverless framework

14

2.3 Actor Framework

Five key features are demonstrated (Karmani et al., 2009) for comparing those

existed actor frameworks: safe message delivery, mobility, state persistence, location

transparency and fair scheduling. There are now three main actor frameworks: Erlang,

Akka, and Orleans.

2.3.1 Erlang

The Erlang is a functional programming language (Armstrong, Virding, Wikström,

& Williams, 1993). The actor in Erlang is called process. Compared with Orleans,

actors in Erlang are created explicitly (Orleans uses virtual actors). So once the actor is

created, its location cannot be changed anymore (Armstrong, 2007). Meanwhile,

Erlang uses the link operation to handle the erratic propagation. The problem is that if

the processes are not linked together, the process will die silently. Moreover, Erlang

utilises the Open Telecom Platform (OTP) to expand performance and capabilities from

distribution, fault tolerance, and concurrency. OTP provides supervisor tree for

unexpected error handling (Vinoski, 2007), but it will kill all its children and recreates

them once one of them dead. Otherwise, the developer needs to control the process of

lifecycle manually. By contrast, Orleans and Akka create and garbage collect their

actors on runtime automatically.

2.3.2 Akka

 Akka is an actor-based framework, which is available for Java, Scala, and C#.

The main features are almost as same as Orleans. For instance, each actor is single

threaded; the private state is able to access through the reference. The difference is that

the actor in Akka is named by the path that illustrates the hierarchy structure from the

supervisor to the children.

15

2.3.3 Orleans

 Orleans is the latest actor framework from Microsoft which blends several

technologies from previous actor frameworks, such as Erlang and Akka. For example,

it fully supports immutable message delivery, state persistence, efficient and fair

scheduling for actors of sharing CPU, location transparency. Meanwhile, Orleans also

supports weak mobility - the actor can be moved from one machine to another in the

idle state (P. A. Bernstein et al., 2014).

 The main features of an actor, namely, an event-based asynchronous thread,

protected internal state’s mailbox mechanism, transparent location, make it scale out

from clusters and scale up to multi-core processors (De Koster, Marr, D'Hondt, & Van

Cutsem, 2013). An actor is regarded as a container for behaviour, internal state,

children, and supervisor strategy as shown in Figure 2.3.

The mailbox is utilised to store and deal with immutable messages that are sent from

other actors who are in or out of the actor system (Hewitt, 2010). The behaviour of the

actor defines the actions that are responsible for the matched messages. States in actor

reflect the possible statuses that could be business logic, a set of listeners, the situation

of HTTP requests, and so on. These state data is significant for actors. Thus, actors

encapsulate the internal state’s data and only share them with other actors through

immutable messages (Haller, 2012). Each actor will split tasks into sub-tasks and

delivery to its generated children shown in Fig. 4. Meanwhile, it will automatically

handle failures (also called supervisor strategy) from these children for the sake of

providing an environment of highly fault-tolerant systems shown in Fig. 5.

16

Figure 2.4 Understanding of an actor

Figure 2.5 A supervisor and its children in a graph

2.4 Traffic Reliability in Online Auction

 Traditional client/server architecture faces a severe problem of traffic reliability in

an online auction. The server is responsible for processing all clients’ bid data

regarding each round in a live online auction system. Because of network delay, the

clients’ request could be late to arrive the server side. Thus, the data from clients’ side

will be dropped that will result in packet loss. This is one of the main reasons why

online auction systems cannot be trusted. Bidders never know whether their bid has

arrived safely on the server side or not.

17

A proposed solution to solve this problem is active protocol filters (H. Liu, Wang,

& Fei, 2003). This protocol has a capability of filtering out low-bid data in the process

of price delivery before they reach the server side. Then the active filters will reject

the appropriate clients. Meanwhile, sending rejection notices to clients is for the sake

of improving loading balance of the server side. Other online auctioneers use semi-

enclosed auctions, which can lengthen the auction cycle. For example, eBay or

Amazon provides non-real-time online auction method so that there is no need to

control network delays of the online auction system. Obviously, performance and

stability of the communications between online auction systems, such as cost, fairness,

response time, traffic reliability and packet loss, have become the major concern for

all parties involved in the online auctions (McAdam, 2001). Another mode (H. Liu et

al., 2003) is for multicast-based online auctions. Although the multicast model can

enhance the capability of packet delays and traffic rates, the issue of packet loss still

cannot be resolved.

2.5 Auction Model

In general, most e-commercial auction services launched are based on disclosed

method, like English auction or reverse auction. The eBay in the USA, the Alibaba

from China, or the Trademe in New Zealand is the best example based on this point.

These auction methods were developed and used in B2C, C2C and B2B domains. C2C-

based English auction is the dominant mechanism in e-commerce marketplace(Chan,

Ho, & Lee, 2001).

With the globalisation of Internet-based cloud services, the online auction platform

is reshaping the market by providing a professional service. A key aspect of this shift

is the provision of many services, especially professional services, which are no longer

limited by the common location of buyers and sellers (Ackerberg et al., 2006). The

research outcome Krasnokutskaya et al. (2016) indicates that 80% of online

transactions are carried out by participants (both buyers and sellers) from foreign

countries and regions.

Under these conditions, it is difficult for us to track the status of all bidders in the

clustering of trade to ensure the fairness and reliability of online auctions. English

18

auction has set an excellent example which is the most widely used methodology on

the Internet. We can divide the whole process of online auction into four steps (as

shown in Figure 2.4). They are bidder invitation, online auction, financial clearing and

product delivery. Meanwhile, this type of transaction has a very high demand for

concurrency and responsiveness of a system. In a very short period, the system needs

to complete the price comparisons, price updates, and real-time notifications of all

bidders shown in Figure 2.5.

Figure 2.6 Overview of online auction process

19

Two important principles should be emphasised on cloud-based online auction:

price priority and time priority. Bidding keeps increasing before the close time, and

finally, the bidder holding the highest offer will win absolutely. Also, an English

auction provides a given period to all interested bidders in each round. This ensures

that buyers have enough time to think over and give their final responses shown in Fig.

5. However, we must take into account that the network delay can quite easily lead to

several buyers in a few milliseconds of time to place the same price. For traditional

online auction system, all quotes must be stochastically posted back to the main server

for price and time comparison. Moreover, the system achieves the highest offer to the

database in each round. If several buyers place the same highest offer, the system will

compare the timestamps to choose the earliest bidder.

Figure 2.7 The workflow of real-time bidding

20

 English auction allows sellers to set a start price, a reserve price, and bid

increment. Reserve price (Kekre & Bharadi, 2011b) provides an insurance mechanism

against low closing prices which means that if the final bidding cannot reach the reserve

price, all bidders will be failed. Moreover, bid increment also plays a pivotal role in

English auction outcomes. Although high bidding increment pushes bidding price up

quickly (Karmani et al., 2009), it will result in reducing the participation.

Most of the online English auctions offer proxy bid service. It allows the buyers to

place a maximum bid price via the service. Moreover, bidding will keep increasing

until it reaches the proxy bid price (Chan et al., 2001).

The biggest challenge for applying this trading model to an online trading platform

is whether we distribute the comparisons of the highest price and the timestamp to the

other clusters. Also, it is tough to guarantee that the security of information exchange

between clusters. Because of features of the distribution of clustering, information

exchange on the Internet will be riskier than we expected. The existing signature

verification technology has been quite effective for online message protection (Philip

& Bharadi, 2016). For example, modified digital difference analyser algorithm is the

best case in this point. It is used to capture dynamic characteristics of a signature in

discrete values so that we are able to identify whether the variables in messages have

been modified (Kekre & Bharadi, 2011a). Most of these solutions of security for a “live”

online auction is too heavily. The encryption or decryption process will undoubtedly

affect the efficiency of online auction systems. We are still looking for a more

lightweight solution to solve the issue of information exchange, like actor model. This

is also the main reason why we introduce the actor model to the online auction platform.

The technology is also widely used in big data deployment and data mining to

guarantee the efficiency of data processing (Estrada & Ruiz, 2016).

2.6 Blockchain

 As the most significant electronic market, the online auction transforms the

collectables business and e-commercial business to a global billion-dollar market

(Corcoran, 1999). With the idea of frictionless economy, an online auction is

considered to be a rapid and efficient platform to eliminate geographic boundaries and

21

establish the accurate price based on supply and demand (Ba, Whinston, & Zhang,

2003). Alibaba, Amazon and E-Bay are the exemplary cases in this area. These

platforms offer low cost, excellent technical support, and massive data analysis so that

traditional sales industry begins to transition to e-business model increasingly. The

usage of online auction sites ranges from individuals to firms; however, the market

fraud is rising. According to the Internet fraud operated by the National Consumers

Union, online auctions were still the primary source of Internet fraud (Alanezi, 2016).

For this reason, a growing number of institutions, such as the Alibaba, Samsung,

Louis Vuitton, Internet Fraud Watch (www.fraud.org) and the Internet Fraud

Complaint Center (www.ifccfbi.gov), are jointly developing a new mechanism to

combat this challenges (C. E. H. Chua & Wareham, 2004). Simultaneously, Alibaba

and a myriad of financial institution proposed a new solution - giant distributed

database blockchain. The blockchain is secured by Byzantine fault tolerance (BFT).

This database is used to maintain a continuous growth of blocks. As shown in Figure

2.5, the design of blockchain is to prevent data modification. Once the data were

recorded, it could not be altered reversely anymore.

In blockchain, each block consists of block hash link, timestamp, and valuable data

as shown in Figure 2.6. The blocks can be transferred from one blockchain

to another. This technology has approved that it can eliminate the double-spend

problem (Pilkington, 2015).

Thus, it can be utilised to various scenarios, such as financial services

and medical record (Gareth W Peters & Panayi, 2016). The blockchain might become

the most critical online promising technology for Internet interaction (X., Li, Jiang,

Chen, Luo, & Wen, 2017). This database is more magic than what we expected. It could

be the final solution to the online auction fraud.

22

Figure 2.8 The diagram of blockchains

Figure 2.9 Bitcoin network (resource from bitcoin)

Based on the distributed blockchain technology, we create a broad range of

distributed applications. The revolutionary methodology in this area is the Etherum

platform, which includes a complete programmable framework (English, Auer, &

Domingue, 2016). This framework is utilised to implement the smart contract.

Moreover, the blockchain infrastructure facilitates virtual currency, such as Bitcoin,

trust and contract applications. The most significant feature is that the linked data are

decentralised so that we do not need to be dependent on the central server anymore.

In this thesis, we discuss the methodology that can prevent the online fraud actively.

The implementation of a blockchain can secure the currency transition of online action.

We utilise the mechanism of smart contract and linked data which ensures the security

of online payment from end to end. Moreover, final transactions are permanently

23

recorded in the database so that we are able to provide permanent records for all clients

(Black, Hashimzade, & Myles, 2013). Finally, the Elliptic Curve Digital Signature

Algorithm (ECDSA) is implemented in blockchains for offering trusted handshakes

between blocks (Johnson, Menezes, & Vanstone, 2001).

Blockchains are considered as one of the most promising technologies in the next

generation of Internet transaction systems. It can be used not only for current financial

services such as digital asset management, deposit certificates, remittances and online

payment systems but also for smart contracts, Internet of Things (IoT), reputation

systems and security services (Gareth William Peters et al., 2015), etc. In order to

provide a secure environment for virtual currency transactions, Bitcoins (BTC) utilise

blockchain to reinforce its cryptocurrency.

Specifically, the blockchain facilitates the elastic and distributed ledger for storing

a significant amount of transactions, attributing them to a block in the network and

ordering these blocks in real time (English et al., 2016). As the number of blocks

proliferates, generating new blocks requires significant resources. So many private

organisations join the competing with each other for utilising dedicated high-power

computers to run ASICs for the real-time process of Bitcoin networks (Kroll, Davey,

& Felten, 2013). This process is also called mining as shown in Figure 2.7. Once the

miner successfully finds a new valid block on the longest branch of the branching tree,

a new transaction will be added to the log and its nonce is selected. Meanwhile, invalid

blocks will be ignored. This mechanism is called proof-of-work (POW), which is

considered difficult to be performed, but the result is easy to be verified (Becker et al.,

2013).

Figure 2.10 An example of mining process in the blockchain

24

Blockchains work in a decentralised and untrusted environment through the

integration of encryption hash, consensus mechanism, and digital signatures (based on

asymmetric encryption). Figure 2.11 shows the details of a branch of the blockchain.

In the blockchain, each client fully participates in all operations, such as initiating new

transactions, receiving transactions, validating transactions, and the generation of new

blocks.

Figure 2.11 The details of a branch of blockchain

2.6.1 Block

To prevent online fraud, such as double spending, all clients must participate in a

peer-to-peer protocol that implements a distributed timestamp service, and provide a

fully-serialized log which contains the details of all transactions. The transactions in

the log are formulated into blocks that contain block version, serial numbers,

timestamps, encrypted hashes, a nonce, metadata, and a set of valid records of the

transaction. A single block structure is shown in Figure 2.9, which is presented by

JavaScript Object Notation.

Specifically, a header of the blockchain illustrates which block validation rule

should be followed. The previous block is a 256-bit encrypted hash number. The

difficulty is utilised to indicate the coefficient of difficulty for mining the new block.

The timestamp is a big integer that shows the current timestamp for the world UTC

since 1970. A nonce number is a 4-byte field. This field usually begins from zero, and

each time the block is hashed, this field is incremented. The maximum amount of

transactions, which are stored in the single block, entirely depend on the size of the

blocks and the size of each record.

25

The block body contains a number of transaction records and the set of transaction

logs. A credible record of the transaction consists of two main components: output and

input. The identity section of records of transaction inputs is a significant reference to

the unspent transaction outputs (UTXO) of the sender while the sender must have to

designate the destination address and numbers in outputs. Also, clients or miners are

able to validate the digital signature so as to ensure the transaction is entirely validated.

Asymmetric cryptography mechanism (Shown in Figure 2.10) is utilised in blockchain

to verify the authentication of each transaction for the sake of ensuring the

authentication, data integrity, and repudiation. The trusted third party provides the

digital signature based on asymmetric cryptography is widely utilised in an online

market (Christidis & Devetsikiotis, 2016).

Figure 2.12 A block in blockchain that is represented by JSON

26

Figure 2.13 Digital signature in blockchain technology

In online auctions, massive individuals participate in transactions. This situation

makes it tough to bind an identity to a participant. Naturally, blockchain facilitates to

solve this problem quickly. The absence of interpersonal interactions and

communications-based authentication in electronic markets is another issue that leads

to online frauds. In a traditional business, the buyers and sales have got used to the

face-to-face business at the same place. Customers and vendors establish their basic

trust via conversation, handshake, facial expression, eye contacts, etc. (Ba et al., 2003).

The in-kind transactions provide opportunities to know the quality of products by

viewing and touching. Thus, due to the existing problems in an online auction, we will

demonstrate how the blockchain solves these problems by using decentralise

framework, reputation system and smart contract in the next sections.

27

2.6.2 Decentralized Framework

Figure 2.14 Decentralized network

Once the records of transaction or block are generated, the validation mechanism

will be triggered immediately. The new node needs to be verified by the network.

However, as shown in Figure 2.11, there may be a profoundly distrusted network of the

blockchain, because each branch may have a view which is different from the entire

network state. Thus, a decentralised network is needed to diminish the branches in the

blockchain.

In a distributed blockchain database, one of the most challenging issues is how to

reach consensus block on a transaction among the invalid blocks. Each miner

communicates with the blockchain database through a dedicated node in which a client

is implemented. Many blocks across the network form a decentralised network. Once

a block receives transaction record from another customer, it is going to verify the

authentication of the block first. Moreover, the result of validation will be broadcasted

to every valid block connected to it. Thus, the valid block will be rapidly spread

throughout the whole network. The advantage of the decentralised systems is the

independence, which is able to save the cost of the enterprise. However, the

decentralised network also increases the difficulty in verifying the transaction record

in the untrusted environment.

28

2.6.3 Smart Contract and Smart Property

Programmable electronic smart contract conceptual concept can be traced back to

nearly two decades (Szabo, 1997). From the very beginning, the smart contract and

smart property in Blockchain 2.0 are mainly utilised to solve the critical issue from

generic identification and authorisation, whereas the Blockchain 1.0 focuses on virtual

money transaction, the Blockchain 2.0 is for decentralising the market generally, and

the implementation of a blockchain beyond the currency (Kosba, Miller, Shi, Wen, &

Papamanthou, 2016). To be more specific, the technologies from Blockchain 2.0, such

as smart contract, smart property, decentralized applications (Dapps) and decentralized

autonomous organizations (DAOs) are implemented in the application layer that

provides to the software developer a tightly integrated end-to-end platform, such as

Ethereum (Altcoin project), for building blockchain-based software (Wood, 2014a).

The essential functionality of decentralised transaction ledger in Blockchain 2.0 is

utilised to register, approve, and execute all types of contracts and properties. Table 2.1

illustrated the properties; the contracts could be transferred with the blockchain.

Table 2.1 An example of blockchain applications in version 2.0

Category Properties

1 Public records Land and properties title, death certification, business

registration data, and vehicle registration data.

2 Private records Personal contracts, digital signature, individual loans

and marriage certifications.

3 Identification
Passport, ID cards, driver license.

4 Documents Notarized documents, property ownership

Certifications, and proof of insurance documents

5 Financial records Deposit, bank statement, private equities, stock records,

bonds, pensions.

29

Category Properties

6 Intangible assets Copyrights, intellectual property, domain names, and

reservations.

Any forms of assets can be registered in blockchain database, once these properties

are encoded into the blockchain, they become smart properties, such as public records,

private records, identification, digital documents, financial reports, and intangible

assets, like stock shares, copyrights of music and books. The fundamental idea of the

smart property is controlled by an owner who has the private key (Swan, 2015). By

using the smart contract, the ownership of smart property is able to be transferred

automatically to another owner after all payments are made. The execution of this smart

contract is entirely automatic; there is no need to be interacted by human operations

when the authentication and verification are successfully processed.

 Delmolino et al. (2016) proposed that a smart contract is executable code. For

example, we can write a smart contract on Ethereum by using Solidity language. These

codes run on the Ethereum’s blockchain. A smart contract mainly includes code,

storage files, gas, and account balance. Any user is able to create and publish their

contract on the blockchain. Once the contract is published, it cannot be changed

anymore. Also, another type of the smart crypto contract also has been discussed.

Compared with the original smart contract, only the participants of the contract are able

to access the sensitive messages like transactions records in the contract. Several

programming frameworks have been implemented within high-level programs as

specifications and encryption, which include the secure multiparty computation of

contract compiler (Kreuter, Shelat, Mood, & Butler, 2013) (C. Liu, Wang, Nayak,

Huang, & Shi, 2015; Rastogi, Hammer, & Hicks, 2014), and zero-knowledge

proofs(Fournet, Kohlweiss, Danezis, & Luo, 2013) (Fournet et al., 2013). L. Zheng,

Chong, Myers, and Zdancewic (2003) explains how to build secure distributed protocol,

such as a sealed-bid auction, battleship games and banking applications.

A smart contract’s storage file will be published to the blockchain with the logic

code together. When another user executes the contract, a consensus is reached on the

30

outcomes of the implementation. Meanwhile, the blockchain is updated accordingly.

For example, when a bidder tries to join an online auction on our system, he/she will

trigger the smart contract automatically. The contract will check the bidder’s account

balance and transfer a deposit directly into our system. If the bidder does not have

enough balance, the application will be rejected. While, the deposit will be

automatically refunded to the bidder if he/she does not win on the system.

Also, the contract’s code is able to be executed either by a user or by another contract.

For instance, if a bidder wins the auction, he/she will trigger a smart contract and

transfer the money directly to the seller. At the same time, the smart contract will notify

another smart contract to transfer ownership to the bidder. The information exchange

between smart contracts includes message data and contract address. While executing

its code, the smart contract will read significant information from its storage file, like

contract address that can be used to collect money or write the transaction records into

to its storage file. Because the contract has its address, so it is able to receive money

into its account balance as well and transfer the funds to anther contracts or users.

The smart contract allows us to perform general calculations on the blockchain.

However, they are good at managing data-driven interactions between entities on the

network (Industries, 2016). Let’s explain this one with an example. Consider Alice,

John and Tony in a blockchain network, as well as X and Y-type digital assets are

trading. John has deployed a contract on the blockchain that defines:

(a) The deposit function allows him to deposit X units into the contract;

(b) The trading function sends back an X unit from the contract itself for every five

Y units received;

(c) The withdraw function allows John to withdraw all the assets of the contract.

Note that the deposit and withdrawal functions are only executed by John (through

his private key) that can be called because it is John’s decision; once John releases the

smart contract on the blockchain, any user on the network can successfully call

functions on this smart contract.

31

John sends the transaction to the address of the smart contract, called the deposit

function, and transfers the three units of X into the smart contract. If the transaction

reaches a consensus between transaction nodes, the transaction will be stored

permanently on the blockchain. Alice owns 12 units of Y, and then sends a transaction

that moves ten units of Y to the trading function of the contract and returns two units

of X. Before Alice trigger the trading function, the blockchain will check the balance

of X unit on the smart contract. This transaction is recorded on the blockchain as well.

Then, John sends the signed transaction to the withdrawal function of the contract. The

contract checks the signature and ensures that the withdrawal is initiated by the contract

owner and transfers all of its deposits (1 unit of X, ten units of Y) back to John.

According to the example above, we can make few concepts clearer:

(1) The smart contract has its public address and state, which are able to take custody of

digital assets on the blockchain (Clack, Bakshi, & Braine, 2016). Meanwhile, the

smart contract supports the account-based model. In the instance above, it is able to

hold the X and Y digital assets.

(2) We are able to contain the business logic inside to the smart contract. For example,

when a user buys 1 unit of X, they need to pay five units of Y.

(3) The smart contract is triggered by the transaction messages that send to its public

address.

(4) John hopes that the relationship with the counterparties is a data-driven model. A

transaction is signed by the valid key-pairs, which demonstrates a transfer of

value(Antonopoulos, 2014). John implements a smart contract on the blockchain,

which defined the trading rule like if one of the users transfers five units of Y asset

into the smart contract address, it will return 1 unit of X to user’s wallet.

 Conceptually, we can think of a contract as a particular “trusted third party” –

however, this party is trusted only for correctness and availability but not for privacy.

In particular, a contract’s entire state is visible to the public. Whenever a message is

received, the protocol code will be called. A contract can define multiple execution

entry points in Ethereum’s Solidity language; each entry point is defined as a

32

function. The message content will specify the entry point where the contract code

will be invoked. Therefore, the message is like a function call in a standard

programming language. After the contract completes processing the received

message, it returns the return value to the sender (Christidis & Devetsikiotis, 2016).

2.6.4 Properties Exchange on Blockchain

To explain how the smart properties are transferred on the blockchain, the best way

to imagine a decentralised banking network that tracks the aggregate balances and

transaction records for each client. We are primarily having a table style record for

each user. The table has three columns: “asset type”, “owner/counterparty(Gendal

Brown, 2015)” and “amount”. Once the property is registered into the blockchain, a

permanent record will be marked. For example, a row of the table will indicate that

“NZD”, “Alice”, and “10000” identify Alice’s NZD balance has ten thousands New

Zealand dollars. Bob has an account with a hundred NZD. If Alice tries to transfer like

$10 to Bob’s account, we can imagine that the “amount” of the Alice row will get an

update to $9990, and the balance of Bob’s account will increase to $110. In this case,

the NZD is able to be the digital asset.

We can use a blockchain network with an Ethereum currency transaction model to

easily transfer digitally tagged assets in an encrypted and verifiable way. Please

consider again the model of a decentralised database which is shared in an entirely

trustless environment. Each row carries the same properties fields, the only difference

that the “owner” field new holds the public key. Thus, everyone who knows the public

key is able to transfer the money into this account. Alternatively, it can be seen as Alice

owns ten thousands of units of an asset of something. For example:

Table 2.2 A record of Alice’s account

Asset type Owner (Alice) Amount

X 0x05e93e78eaf49be440f05db15f470a17a1c47257 10

As shown in Table 2.2 , a row in the database, carries a kind of asset X, it is public

33

key is “0x05e93e78eaf49be440f05db15f470a17a1c47257” and the total amount is 10.

We assume that Alice knows Bob’s public key. So, she can transfer asset into Bob’s

account. To be more specific, she signs a transaction to transfer two units of X from

her account to Bob’s account. We see what is happening below is that the blockchain

will generate a Tx records. The Alice’s account will increase a new record which

indicates that two units of X have been removed from her account. Meanwhile, the

units of X asset in Bob’s account have updated from 0 to 2. This is done in order to

control concurrency and prevent conflicts between concurrent write operations in the

system; rows are not modified but are increased, and new rows are created with

updated values (Greenspan, 2015)

Table 2.3 A changed record of Alice’s account

Asset type Owner (Alice) Amount

X 0x05e93e78eaf49be440f05db15f470a17a1c47257 10

X 0x05e93e78eaf49be440f05db15f470a17a1c47257 8

Table 2.4 A record of Bob’s account

Asset type Owner (Bob) Amount

X 0x05e93e78eaf49be440f05db15f470a17a1c34527 0

X 0x05e93e78eaf49be440f05db15f470a17a1c34527 2

Now, we are able to see Bob’s new balance above. There are two new assets “X”

shown in the database record. During the transaction process, there is another

milestone – validation, must be discussed.

We will encode the verification checks in the nodes of the block-chain network set

34

for this asset transfer will be to:

 Check the transaction address does exist.

 The transaction is properly signed by using the private key.

 Check the transaction is not a duplicated operation (preventing an asset to be

spent twice).

 Check the transaction amount to the new row is correct. Because the

blockchain database keeps all transaction records, so it is very easy to retrieve

the transaction history and check the transaction amount. For example, if the

Alice transfers two units of X to Bob, but the balance of Alice reads 9 units

of X, the transaction will be failed.

We need to mention that a transaction can resolve several existing rows instead of

just one; that is, to transfer the assets to the database, as long as it is properly signed

to access them. These existing un-inserted rows are called unspent transaction outputs

(UTXO) in Ethereum; they are created by earlier transactions in the Ethereum.

Transactions consumed by UTXO are called transaction input; transaction creation

UTXO is called transaction output(Antonopoulos, 2014). Then, the transaction

basically removes a set of rows (UTXO) and creates a new row (UTXO) in the

database.

One of the outstanding questions in the above description is how we generate assets

and introduce them into the blockchain. Before we arrive at 10 X units of Alice, the

10 X units must come from somewhere. The answer is that it depends on the

organization or starters who create the private chain or public chain. Typically,

properly authorized nodes use special types of transactions to bring assets (or new

units of assets) into the network.

For example, assume a private blockchain network, which is set up by Tony. He

sets this up using the Ethereum system. His role is the system administrator of the

private blockchain. Tony has the privilege to issue assets on the network by using his

private key. He invites Bob and Alice join in; both of them have reached an agreement

35

that allows the Tony to issue assets on the blockchain. In order to ensure the system

secure, they have already set three networks in different places to save and sync their

data on the blockchain. Meanwhile, all of them have a pair of private and public keys.

Once all clients are invited into the blockchain. Tony creates a signed transaction to

generates 10 units of X. This transaction result will spread to all networks. All these

nodes on the network will consider that this transaction record is valid since Tony’s

key pairs are permission. In next step, Tony transfers all these units of X to Alice which

will result in Alice’s account will be topped up 10 units of X. In the case of Ethereum,

new coins are generated into the network with every mined block. The coin-based

transaction will be included in the mining node in the block of transactions. The

mining result will be broadcasted on all networks (Franco, 2014). The coin-based

transaction has not inputted and the mining node is rewarded with the number of

Ethereum (through the network).

There are several things we should bear in mind: if we have a group of users who

want to trade digital tokens and have agreed on how these tokens are generated, then

the blockchain network is the ideal tool for exchanging these tokens and tracking the

ownership of these tokens. There is no need for intermediaries to facilitate tokens

exchange, results from each node on the network will carry out the necessary checks

and agree on the results of the acceptance. Asset tracking is out of the box because

each node can access a set of identifiable encrypted transactions on the block.

2.6.5 Tradenet

With the rapid development of Bitcoin, we gradually realise that the practical value

of blockchain is far more than the electronic money system, especially in the auction

market. All deals are able to be automatically transacted based on specific permissions

and contract(Swan, 2015). The real-time bidding (RTB) networks are the best case in

existing examples of automatic markets.

With the rise of online auctions in future, the blockchain is applied to restrict the

order and plan transactions for resource allocation of our real world. An advanced

concept is that the self-operation system (integrated with blockchain) will be

implemented for the management of those self-owned assets like house, private stock,

36

and self-owning car. Once these assets are registered into the blockchain, they will

become self-directed assets (smart properties). These properties are able to employ

themselves for automatically trading continuously connected to the Internet so that they

can query significant data and search for the potential transferee (Pagliery, 2014). If the

conditions of potential customers meet the requirement of smart properties, they are

going to execute the smart contracts to finish the transaction. This is a significant step

of the distributed online auction.

2.6.6 Challenges of Blockchain

Blockchain has a great capacity for establishing the future Internet interaction

systems, but it has to face technical challenges. To be more specific, there are further

needs to be considered in the current blockchain for the sake of meeting the requirement

of real-time processing of billions of transactions. Additionally, there is a need to

propose a new mechanism to avoid selfish miners in blockchain (Eyal & Sirer, 2014).

Meanwhile, before the blockchain is widely applied to various Internet interaction,

other challenges also need to be addressed, such as the lack of privacy and current

consensus algorithms (Kosba et al., 2016). For example, the entire sequence of events

that will be executed in the smart contract will broadcast to the whole network for

validation and mining. However , their public key is visible for anyone result in all

transaction records and clients’ balance are exposed. Ron and Shamir (2013) and

Meiklejohn et al. (2013) pointed out that hackers are using this public information to

analyse the transactional graph structures of cryptocurrencies, and then, implement the

deanonymization attacks.

We emphasize that the lack of privacy is a major obstacle to the widespread adoption

of decentralized smart contracts because financial transactions (such as insurance

contracts or stock deals) are perceived by many individuals and organizations as highly

confidential. Despite the progress made in designing privacy to protect encrypted

currencies such as Zerocash (Sasson et al., 2014) and others (Danezis, Fournet,

Kohlweiss, & Parno, 2013), (Sasson et al., 2014), (Bonneau, J., Miller,

Clark, Narayanan, Kroll, & Felten, 2015). These systems give up programmability.

Meanwhile, we do not know how to implement programmability in advance without

37

exposing the transaction records and data to miners in cleartext. The last and the most

important is to ensure the authenticity of privacy rather than the nearest decentralized,

encrypted currency, most of the smart contract implementations rely on the security of

trusted servers (M. S. Miller, Morningstar, & Frantz, 2000).

2.6.7 Hawk

Kosba et al. (2016) proposed a framework called Hawk for establishing the privacy

protections of the smart contract. With Hawk, non-professional programmers can easily

write a Hawk program without having to perform any encryption. The Hawk compiler

is responsible for compiling the program into a blockchain and an encryption protocol

between users. As shown in the Figure 2.15, Hawk program consists of two parts:

(1) A private part is represented as a party with input data from parties and

currency units (such as bids in auctions). Private part performs a calculation

to determine the payment distribution between parties. For example, in the

auction, the winner's bid is transferred to the seller, and the other bidder’s

deposit will be refunded. The private Hawke program is aimed at protecting

participants’ data and money exchange.

(2) The public part is expressed as a non-contact access to private information or

money. The compiler of Hawk will translate the program into the following

pieces, which together define the password protocol between the user, the

manager, and the blockchain:

 An executable programme for all consensus nodes on the blockchain;

 An executable programme for users;

 An executable programme for managers;

38

Figure 2.15 Hawk overview

The security guarantees: The Hawk’s security guarantees consist of two aspects:

(1) On-chain privacy

 On-chain privacy regulations provide trading privacy to the public (i.e., breach

of any party to the contract) - unless the contractor itself voluntarily discloses the

information. Although in the Hawk protocol, the user exchanges data with the

database and relies on it to ensure the fairness of the suspension, the flow and

amount of traffic in the private Hawk program is invisible from the public

regarding encryption. Informally, this is achieved by sending encrypted

information to the blockchain. Relying on zero knowledge proves the

implementation of contract execution and financial protection of the correctness.

(2) Contractual security

 While the on-chain privacy protects the privacy of the parties and prevents the

security information to be released to the public (i.e., against anyone who does

not participate in the parties of the financial contract), the contract protects the

parties to the same contractual agreement from both sides of the contract. In the

real business environment, we believe that the contractors always act selfishly to

maximize their economic interests. Especially, they are able to forthwith deviate

from the prescribed agreement, or even prematurely. Therefore, the contract

39

security is a multi-faceted concept, not only contains the confidentiality and

authenticity of the encryption concept but also includes cheating and suspension

of the existence of financial fairness.

(3) Minimally trusted manager

 The implementation of the Hawke contract is facilitated by a manager (who

deploys the contract within the blockchain). The manager can see the user's input

and maybe not go to expose the user’s private data to the third part. However, the

manager is not entirely equal to the trusted third party - even if the manager is

able to sidestep the agreement or connive with the other parties arbitrarily, the

manager is not able to affect the correct execution of the smart contract. Kosba

et al. (2016) believed that the manager will be financially punished if the manager

breaks off the agreement. The users will receive compensation. Also, he also

pointed out that the manager should not be trusted to preserve the security or

privacy policies effect on the underlying currency.

Moreover, if multiple contract instances need to execute concurrently, each

contract must be assigned and executed randomly by the different manger. So,

the manager does not have the privilege to retrieve the smart contract from

blockchain network. Technically, if they do not know the address of the smart

contract, they are not able to assign the specific smart contract from the

blockchain network.

Before we continue to explain hawk's smart contract, we need to clarify the

concepts to avoid confusion. In Ethereum (Wood, 2014b), the protocol is called

the Ethereum contract. However, in the paper of Hawk, the completed protocol

is considered as the Hawk program which defines the contract; the programme

of blockchain is a component of the more important protocol. Just in case that the

managers break off the protocol, they will be financially punished so that the

users will receive compensation.

Cryptographic protocols of Hawk: The Hawk’s cryptographic protocols are able

to be broken into two pieces:

40

(1) The private cash. In this part, the Hawk smart contract focused on the

implementation of direct money transfer between participants. The

construction of this smart contract utilises the Zerocash-like protocol (Garman,

Green, & Miers, 2016) that is used for the implementation of private cash and

currency transfers. The spender needs to prove that the generated coins are

constructed correctly by using the zero-knowledge proof:

a. The spent coins are part of existed private pool coins.

b. No double-spending issue.

c. The total value of the input coins must be equal to the withdrawn coins

during the process of money conservation.

(2) Binding the transactional privacy with smart contract logic. Once the currency

is transferred into a private pool of coins, the blockchain is responsible for

maintenance of the exchanges of private coins between users.

a. Using the frozen operation to freeze the direct money transaction

between clients instead of committing the amount of money and an

accompanying private into the smart contract.

b. Minimally trusted manager performs the computation of a proof of

correctness and the pay-out distribution.

c. Hawk programme verifies the proof of the correctness and redistributes

the frozen coins. If the verification failed, the money would be refunded

to clients

2.7 Online Fraud

The seriousness of auction fraud is far beyond our imagination. Victims do not have

to participate in the Internet auction but will suffer the consequences of fraud. The

triangulation can be used to implement an offline fraud via a merchant sells the product

from the online auction (Chua & Wareham, 2004). For example, when a thief uses

stolen money to buy valuable products and put them online for auction, anyone could

41

win the auction. However, once the fraudulent purchase is restricted and confined, the

buyers will lose the money paid for these stolen products. Meanwhile, all stolen

products will be detained from the winners.

Information asymmetry has been recognized as the major issues that result in

cheating quickly over the Internet (Choi, Stahl, & Whinston, 1997). This results from

that two parties do not share the same data in business timely (Ba et al., 2003). For

instance, trading partners use anonymous identities or buyers cannot acquire the real

data on the quality of products. The main reason is that online market lacks

interpersonal interactions and communications. By contrast, in the traditional business

environment, both sides of a business establish their initial trust via physical contacts

like hugging, eye contact, and a handshake. Meanwhile, buyers get to know the quality

of products by touching, looking, or even tasting. However, these cases do not happen

in the online auction based on e-commerce.

In order to reduce the fraudulent transactions in the online auction, the

intermediaries have offered various services, like reputation system, feedback system,

insurance or guarantee, and certification authorities (CAs). Besides the Class 4 of CAs

can provide the maximum level of trust and assurance by thoroughly investigating

companies and individuals, most of the anti-fraud mechanisms are passive defence

(Froomkin, 1996). Literatures have shown that trading partners heavily rely on their

reputations in the traditional business. Specifically, individual’s reputation can act as a

“hostage”. The disrepute always spreads quickly in the business community. The social

pressure or lost trusts caused by bad reputations might be more effective than

legislation in this online community (Kekre & Bharadi, 2011b). Because the online

auction sites rarely provide the strong authentication at present. Thus, those disrepute

traders may renew the identity by re-registering a new user ID (Ba et al., 2003) to get

a new reputation.

Table 2.5 provided several frauds of online auctions; the triangulation is just one of

them (C. Chua & Wareham, 2002). Moreover, there are variations of online frauds.

For instance, escrow services fraud is a variant of failure to ship. The escrow services

are provided by the trusted third party, like Alipay, which is responsible for holding the

42

transaction funds from the buyers before the deal is successfully accomplished.

However, the cheaters are able to set up a fake escrow service after receiving the funds.

In order to prevent this type of fraud, auction houses establish a reputation system to

mark each trader, like Alibaba, Amazon, and E-bay.

Bidders not only can view the reputation score itself, but also can find the number

of positive, neutral or dissatisfied transactions as well as the comments (Ba & Pavlou,

2002). However, the reputation score system is rarely implemented based on the high-

priced consumable market like artwork auction even if the seller really hard tells the

fakes from originals.

With the globalisation of Internet-based cloud services, the online auction platform

is reshaping the market by providing a professional service platform. A key aspect of

this shift is the provision of multiple services, especially professional services, which

are no longer limited by the location of buyers and sellers (Ackerberg et al., 2006). The

research outcome (Krasnokutskaya et al., 2016) indicates that 80% of online

transactions were joined by participants (both buyers and sellers) from different

countries and regions.

43

Table 2.5 Types of online fraud

Fraud Types Descriptions

1 Failure to ship Never ship the product after payment.

2 Failure to pay Buyers do not send the money to the seller.

3 Misrepresentation
Seller describes items incorrectly that do not

match real items

4 Loss or damage claims
Buyer claim the loss or damage services to

retrieve money back.

5 Shilling
Seller uses another account to bids on own

stuff to push up the prices.

6 Triangulation Fraud Sell stolen items online.

8 Buy and switch
Buyer switches the original sound with

inferior one and returns it to the seller.

9 Shell auction
Seller set up a fake auction to store the credit

card information from the buyer.

10 Bid shielding Two or three bidders collude on an auction.

11 Fee stacking
Seller asks the buyer to pay extra fees after

auction ends.

44

Under these conditions, information asymmetry illustrates a specific situation that

two parties do not share the same information; it has been regarded as the majority of

issues in the electronic markets (Akerlof, 1970). There are two most important aspects

related to online frauds: one is the anonymous trading; the other is the unwarranted

products or uncertain quality of goods (Choi et al., 1997).

Obviously, the blockchain and smart contract provide a new perspective for us to

address the online fraud issues. The working mechanism of blockchain and smart

contract is built on a untrust environment. All the smart properties registered on the

blockchain need more than two thirds of the nodes to reach a consensus so as to ensure

the authenticity of the information. In addition, all smart properties’ transaction records

and ownership changes are traceable. It would be very difficult to put stolen goods on

blockchain because it is impossible for the seller to provide the original material to

prove its ownership. If these goods have a special serial number, the stolen is not able

to register the goods on the blockchain.

45

Chapter 3

Methodology

The main content of this chapter is to clearly articulate

research methods, which satisfy the objectives of this thesis. The

chapter mainly covers the details of research methodology for

actor framework, elliptic curve cryptography and blockchain

architecture. The actor framework is employed to provide the

data consistency and integrity during the high-performance

network environment. Meanwhile, ECDSA in the blockchain is

able to provide the mechanism of zero-knowledge proof and a

distributed ledger. Finally, the blockchain architecture illustrates

the methodology of implementation of our private blockchain.

46

3.1 Introduction

 In this chapter, we will articulate the design of architecture of our online auction

system. As shown in Figure 3.1, when a bidder bids for the price (signed price data by

their private key), the bidder actors will fetch the timestamp from TimeAsync actor,

and then send the price data to comparison actors. Once the price is settled, the

winner’s data will be written into the blockchain via JsonRpc provider.

Figure 3.1Overview of Online Auction System

To be more specific, we will explain how to design the module of bidder actors,

TimeAsync actors and comparison actors from Chapter 3.2 to Chapter 3.3. The

principle of signature of price data will be demonstrated in Chapter 3.4. Finally, we

illustrate the design of the architecture of our private blockchain nodes.

3.2 Design

3.2.1 Immutable Message

When we instantiate actor pattern in code, actors become essential building blocks

of an application. They are also a unit of isolation and distribution. Each actor has its

unique identity consisting of its type and primary key (a 128-bit GUID). An actor will

encapsulate its behaviours and internal state. Meanwhile, the state can be held by using

47

the built-in persistence facility which means the core of actor is isolated, that is, they

do not share state and memory. Thus, the two actors or actor systems can only interact

asynchronously by sending an immutable message (Gupta, 2012).

With regard to features, the bidder actor encapsulates its quotation and timestamp

in the message and pass it to comparison actor in the actor system. After the comparison

actor evaluates all messages from bidder actors, it will deliver the highest price from

its actor system to another system for price and timestamp estimation shown in Fig. 3.1.

Once the comparison actor achieves the final price, it will notice all bidder actors

update the highest price in the actor system.

In this way, figuring out the highest offer will be hierarchical. First, the filter of the

highest quotation starts from each actor system, and then gradually spreads the message

to another actor system. After the comparison actors receive the final price, they will

push it to bidder actors in the actor system instead of broadcasting the result to all

clients. Due to the hierarchical feature, this pattern improves the network work balance

efficiently.

Figure 3.2 The communications between actor systems

Shown in Figure 3.2, when bidders place their offers, they must require the

timestamp for server side first. The bidder actor will send a request to ServerTimeSync

Actor via timestamp message. There are three parts of information in one message:

project ID, bidder ID, and timestamp. When a message arrived the ServerTimeSync

Actor, this actor will generate a new timestamp and update its state, which will be

48

stored in the document database. This information will be an intense connection

between actors.

A Comparison Actor also communicates with the bidder actor via BidderMessage

shown in Figure 3.3. The difference is that the comparison actor will set up an observer

pattern to keep tracking the messages from bidder actor in real time. The comparison

actor has the capability to subscript several actors’ messages at the same time so that

the messages from various actors in different regions are able to be handled

immediately.

Figure 3.3 A bidder actor and its behaviours

3.2.2 Fault Tolerance of The Actor

The fault-tolerant mechanism notoriously is hard to implement correctly the

distributed systems that include actor model applications and distributed databases

(Stutsman, Lee, & Ousterhout, 2015). The reason is that the nodes may crash before

49

finishing its computing or database server may crash and result in losing all data and

replicas shown in Figure 3.4.

Figure 3.4 A diagram of the comparison actor

Figure 3.5 Fault tolerance of actor model

50

The actor models commonly employ hierarchies of supervisor strategy to establish

an intensive supervisor – children relationships to achieve an efficient solution of fault-

tolerance (Lu et al., 2016). When the failure occurs in nodes, the error message will

propagate upwards to the root node. If the error node cannot be activated, the root node

will force to restart the node and recover its state and message box (Armstrong et al.,

1993).

3.2.3 Location Transparency

Location transparency allows actors and actor systems to easily talk to each other

without knowing physical locations. The actor is designed to extend out to a significant

number of dedicated servers and allow this actor instantiated at different places

(Thurau, 2012). There is nearly no physical address for the actors. They may exist in

the purely virtual memory. In this way, the actor model can easily relocate some actors

to a different host server, so that we can scale out our web applications (Bernstein et

al., 2014). Significantly, the actors no longer heavily rely on the Web API for the actual

remoting layer.

3.2.4 State Persistence in Actor Model

There are two options for persistent in actor model. Firstly, we load state from the

external relational database, or system information, such as bidder’s user ID, level, and

project ID from the authentication token. Moreover, we can populate the variables of

the actor. Another option is that we can choose the distributed document database on

the cloud, like Document DB on Azure or Mongo DB on AWS. Both document

databases provide the shard mechanism. Specifically, the document can be spread with

reading and writing transactions across more infrastructures with a high throughput.

Technically, the storage that is used to store the state data on the cloud can scale out

unlimited shown as Figure 3.4.

The document has a unique ID and a partition key for collection shard. Documents

are stored in a collection. Meanwhile, the collection can be shard between different

servers in various locations. Even if some data fragments are lost, they could be

recovered by using replicas of document database.

51

Figure 3.6 State persistence for bidding

3.3 Distributed Database

The traditional relational database has difficulties to fulfil the requirements of the

high-concurrent applications. As we all know, its biggest problem is that it is hard to

deal with the exponential growth of data collection (Tauro, Aravindh, & Shreeharsha,

2012). If we need to track and record the status of all bidders, the process will generate

a plenty of associated data. Additionally, a complex relationship like many to many

relationships between tables, which enables data query, has become tough in a

relational database. For instance, some of the queries need to cross several tables for

retrieving many related data. In this stage, relational databases must join tons of tables

together and traverse all data pace by pace.

3.3.1 High Performance Read/Write

To achieve the best performance of an actor model, the databases that are served for

it must be disturbed and extendable. Meanwhile, they are also demanded to fulfil the

requirement of high performance of reading and writing with high concurrency and low

latency (Han, Haihong, Le, & Du, 2011). Most of the document databases, like

MongoDB, offer the capability of massively-parallel data processing (Moniruzzaman

& Hossain, 2013). Owing to the dependence on the relationship between the tables, the

document database is schemaless. We deposit complex data types with BSON or JSON

document so that we are able to speed up the access to mass data highly. The access to

52

Mongo DB is at ten times faster than relational database such as MySQL (Castro &

Liskov, 1999).

3.3.2 Fault Tolerance of The Database

 Generally, most of the NoSQL databases use replication and sharding to provide the

fault-tolerant design.

 Replication allows database scale horizontally. It is also called master-slave

replication. In the pattern, only the master database responds to write request;

slaves respond to read requests from clients.

 Sharding machinimas allow us to store separated replication sets into each

shard and results in offering high availability and data consistency.

Additionally, another replication algorithm (Byzantine faults tolerate BFT) from

MIT can provide highly available service without interruptions like system bugs,

accidental operation and malicious attacks (Castro & Liskov, 1999).

3.4 Elliptic Curve Cryptography

3.4.1 Elliptic Curve Digital Signature Algorithm

Elliptic Curve Digital Signature Algorithm (ECDSA) implements in an online

transaction based on the blockchain. The elliptic curve for cryptography (ECC) is

utilised to the establishment of open key encryption algorithm(Koblitz, 1987; Miller,

1985). Compared to the RSA algorithm, the advantage of using ECC is that it has

shorter keys to achieve the same security strength. Elliptic Curve cryptography is based

on the Eq.(1).

𝑌2 = ሺ𝑋3 + 𝑎𝑋 + 𝑏ሻ 𝑚𝑜𝑑 𝑝 (3.1)

where the possible value of Y2 should between 0 to p, we thus have the modulo p.

53

Figure 3.7 The addition of two distinct elliptic curve points

Figure 3.8 Doubling a point on an elliptic curve

54

There is a significant rule that is called chord-and-tangent rule. For example, let p =

23 and the elliptic curve E: Y2 = 𝑋3 − 4𝑋 + 0 where a = -4 and b = 0. We have two

distinct points on an elliptic curve shown in Figure 3.6, E: P = (x1, y1), Q = (x2, y2). If

we draw a line through P and Q, there must be an intersection point R on the elliptic

curve. Then the reflection point (x3, y3) of R is the sum of P and Q.

x3 = ቀ
y2−y1

x2−x1
ቁ − x1 − x2 (3.2)

𝑦3 = ቀ
𝑦2−𝑦1

𝑥2−𝑥1
ቁ ሺ𝑥, −𝑥3ሻ − 𝑦1 (3.3)

In the same way, we have a point P (x1, y1) on the elliptic curve shown in Figure 3.7,

E: y2 = 𝑥3 + 3𝑥 + 3 where 𝐏 ≠ −𝐏, and a = b = 3. We are able to draw a tangent so

that it will intersect with the E at the third point, and its reflection point will be at 2P =

(x2, y2). Thus, we draw a line from 2P to P and it will intersect on the curve, and the

symmetrical point is 3P,

x2 = ቀ
3x1

2+a

2y1
ቁ

2

− 2x1 (3.4)

y2 = ቀ
3x1

2+a

2y1
ቁ ሺx, −x2ሻ − y1 (3.5)

 One particularity of this point is that if we have a point: 𝑘𝐏 = 𝐏 + 𝐏 + 𝐏 + ⋯ +

𝐏 (k times and k Z+ is a positive)

3.4.2 Implementation

Elliptic Curve Digital Signature Algorithm (ECDSA) is implemented to Blockchain

for online auctions. In blockchain, we use public key encryption to create a key-pair,

which is able to control the acquisition of specific transactions, like virtual currency.

The key pair includes a private key and the only public key derived from it. The public

key is used to receive the transaction, and the private key is used for the transaction

signature when the operation is finished.

55

Mathematically, the relationship between the public key and the private key is that

the private key is able to be utilised for the signature of a particular message. This

signature is able to be used to verify the public key. Meanwhile, we do not need to

disclose our private key.

When the transaction is finished, the current owner of the virtual currency needs to

submit its public key and signature in the transaction (the signatures of each operation

are different, but they are made from the same private key). All traders in an blockchain

secured online auction are able to be verified by using the submitted public key and

signature for the sake of verifying the validity of the transaction.

 In an online auction, the whole process uses ECDSA with the secp256k1 curve. We

will demonstrate that the above procedure includes three phases: key generation,

signature, and verification (Zyskind & Nathan, 2015). To be more specific, the key pair

of an entity is associated with a specific set of EC domain parameters (Johnson et al.,

2001), 𝐷 = ሺ𝑞, 𝐹𝑅, 𝑎, 𝑏, 𝐺, 𝑛, ℎሻ .

The generation of key pairs follows:

Step 1. Select a random integer d in [1, n-1]

Step 2. 𝑄 = 𝑑𝑃 (P is a point of prime order n in the E)

Step 3. The public key is Q, while the d is a private key.

The signature massage follows:

Step 1. Select a random or pseudorandom integer k in the interval [1, n-1].

Step 2. Compute kP =x1, y1 and r= x1 mod n (where x1 is regarded as an integer

between 0 and q-1). If r = 0, then go back to Step 1.

Step 3. Compute k-1mod n.

Step 4. Compute s = k -1 {h (m) + dr mod n, where h is the Secure Hash Algorithm

(SHA-1). If s = 0, then go back to Step 1.

Step 5. The signature for the message m is the pair of integers (r, s)

56

Verification follows the steps:

Step 1. Verify that r and s are integers in the interval [1, n-1].

Step 2. Compute w = s -1mod n and h (m)

Step 3. Compute u1 = h(m)w mod n and u2 = rw mod n.

Step 4. Compute u1P + u2Q = (x0, y0) and v= x0 mod n.

Step 5. Accept the signature if and only if v = r.

3.5 Blockchain Network Architecture

3.5.1 Introduction

We set up our private blockchain on Microsoft Azure for the experimental purpose.

Fundamentally, the network is composed of a set of transaction nodes and a set of

mining nodes. The network architecture is illustrated in the Figure 3.8.

Figure 3.9 Blockchain network architecture

57

The transaction nodes are responsible for handling the submitted transactions from

the application. In the real blockchain application, all members who connect to the

same blockchain system share a set of transaction nodes. The loading balance system

covers These nodes.

We have explicitly separated the nodes that accepted transactions from the nodes

that mine transactions to ensure that the two actions are not competing for the same

resources. We have also load-balanced the transaction nodes within an availability set

to maintain high availability. According to our requirement, the smallest possible

deployment (shown in figure 3.9 and 3.10) for one member will need:

 Four virtual machines (4 cores) will include two miners and two transaction

nodes

 One loading balancer

 One Vnet

 One generic type of the storage account

 One DNS server for mapping the public address

Figure 3.10 Summary of deployment of our private blockchain

58

Figure 3.11 Details of our private blockchain deployment

3.5.2 Mining Nodes

In the private blockchain (Ethereum-based), we set up two members for the

experiment purpose. Ideally, four members will provide a standard, decentralized

architecture in the real production environment. Additionally, each member is assigned

a detached and an identical subnet that includes one or more miners. A storage account

supports all mining nodes.

The first virtual machine in the subnet of each member is configured as a boot node.

This node is used to discover the other nodes automatically and dynamically in our

network. The boot node in the subnet has the list like we have two mining nodes and

59

two transaction nodes. Once we add a new node in the subnet, the boot node will detect

the changes and add the node to its list.

Mining nodes are able to communicate with each other so as to achieve the

consensus on the status of the underlying distributed ledger. Because of the boot node,

the application layer will not be aware of these node, or communicate with them.

Additionally, our private blockchain is deployed on the private networks, so these

nodes are detached from public Internet traffics from the outside. The only way to

access these nodes to use the Go Ethereum (Geth) to visit the JSON-PRC endpoint

that is a remote procedure call protocol. Meanwhile, the outbound internet traffic is

acceptable, but we will not allow exposing the Ethereum discovery port to outside.

Inside of our private blockchain network, we allow each member’s VMs (nodes) to

connect and communicate with another in a separate subnet by using the Ethereum’s

discovery protocol. This will help the mining nodes to achieve the consensus, even if

they are in located in different members.

Figure 3.12 Resource allocation of miners

All our mining nodes have already installed the latest Geth client software and are

configured to be mining nodes. Thus, we are able to control the resource allocation,

and access to smart contract for these nodes using the same Ethereum address and key

pair that is protected by the personal account password. To be more specific, we are

60

able to allocate how many cores of CPU, network, or memory we will assign to each

mining node (shown in Figure 3.11). Moreover, we also need to provide the Ethereum

passphrase (dynamically generated mnemonic code for generating deterministic key

pair, shown in Table 3), when we create the blockchain network, which is used to

generate the default account (eth coinbase) for each mining node. After we finish all

deployment of our blockchain, all mining nodes begin to work. They will start to mine

coins, and that will be added to the coinbase account (shown in Figure 3.11).

How many mining nodes we need in a member entirely depends on the size of the

required network. For instance, how many users will execute their transactions per

second. Meanwhile, it also depends on the hashing speed for each member. Thus, the

larger the private blockchain, the more mining nodes we will need to balance the

hashing power.

Figure 3.13 Coinbase account

61

3.5.3 Transaction Nodes

In our private blockchain network, all members share a set of loading balanced

nodes of the transaction. These nodes are able to be accessed from outside the virtual

network to the application layer is able to use these nodes to submit transactions or

deploy and execute the specific smart contract within our private blockchain network.

All transaction nodes are installed the Geth client as well. Meanwhile, they are

configured to preserve an entire copy of distributed ledger. To ensure that the mining

and transaction will not compete for the same resource, we have already clearly

separated the nodes that received transactions from the mining nodes (used to mine

transactions).

Table 3.1 Mnemonic code and root key

BIP39 Mnemonic entire canal bonus call arrow there slide march above neutral

delay equip vault relief element sick humble carry picnic solve

cheap

BIP39 Seed f9e844f1e1aa01f3b36d934db9d40f06fc1037febf03badd69c52

626c04f783985eea3cb7d3c8ff1233785e788c6acf6133e2520c

7d2fe291138a52be0b3f1ab

Coin Ethereum

Root Key xprv9s21ZrQH143K3QVSQELdTvgCMLh3V2Wk4N8FKCd

E3oBZNqGgpDduLHmq795ZCFKomPN8GmQDg34ktQGxF

9KBd5NbXFEJ5oTPxM2zRHEDX3n

62

3.5.3 Actor Framework Works with Blockchain

There are three important characters that are involved in the progress – actor system,

shard mongo database, and private blockchain network as shown in Figure 3.13.

Figure 3.14 Actor system, mongo database and blockchain network

The actor system is able to provide real-time data processing capability in a

distributed environment, thus the state changes for very single actor will be stored in

mongo database nearby. The shard collections of mongo database will be deployed to

different locations for the sake of fulfilling with the requirement of distributed system

architecture, which means that we will not store all transaction data into blockchain

when actor state changes. The reason is that the amount of state data from actors are

extremely large. The transaction will cost large amount of money to pay for the

transaction fee. Moreover, mining a single transaction on the blockchain will spend

twenty seconds to one minute at least. Thus, the actors will trigger the significant

transaction records only in a certain circumstance; for example, the comparison actor

is able to trigger the transaction when deposit of an online auction is required to pay,

or the final price is settled in an online auction.

To be more specific, the actors are responsible for recording the rapid changes of

the transaction sate during an online auction, but the changes are not settled. Once the

transactions are over, actors will send the transaction record via JSON RPC and Web3

library to the smart contract, which has been deployed on the blockchain network

63

(shown in Figure 3.14). Thus, the smart contract will execute immediately to transfer

money from transferor’s account to transferee’s account. Meanwhile, the ownership

will be transferred as well. All the crucial transactions will not be interrupted by any

human intervention. Technically, once the transaction is executed successfully by the

smart contract, the transaction information will broadcast to whole main network of

blockchain. In addition, the smart contract on the blockchain network is totally

transparent, so anyone who is interested in the contract is able to download the contract

and the data inside of it.

Figure 3.15 Actor communicate with blockchain

The advantages and disadvantages of the actor framework and blockchain are

described in the article. Obviously, the cooperation of the actor framework and the

blockchain, on the one hand, compensates for the speed of the blockchain in real-time

transactions. On the other hand, it provides zero-knowledge proof for online trading

systems.

64

Chapter 4

Results

The main content of this chapter is to introduce schema of

the entire method and implementation of actor framework and

Elliptic Curve Digital Signature Algorithm. Each step in the

Elliptic Curve Digital Signature Algorithm will be detailed; in

addition, data collections with the experimental environment will

be articulated in this chapter, as well as the results of

performance of actor framework with NoSQL database and

critical indicators of the blockchain will be clarified. Moreover,

the results and findings will be evaluated as well as the

limitations of this thesis will be pointed out at the end of this

chapter.

65

4.1 Actor Framework

The actor framework we proposed is Orleans from Microsoft. The latest version of

Orleans combined most of the actor models from Erlang and Akka. We implemented

three grains (bidder actor, time sync actor and comparison actor) in an actor system.

We implemented a single SiloHost server on the local server and calling actors from

another laptop. We find that the advanced features of the actor are stronger than the

legacy client / server framework shown in Table 4.1.

Table 4.1 A feature comparison of the actor framework and the client-server

architecture

Actor framework Client-Server

1
Tracking the states’ changes to

clients immediately

Needing to request states’ changes to

clients from the server every time.

2 Providing safe message delivery

Utilising SSL protocol and digital

signature technique to guarantees the

message security.

3 Distributed to different server Only implemented on one server

4
At-least-once model guarantees

no packet loss
Packet loss in heavy network traffic

5
Supervison strategy and internal

state provide data fault tolerant
No fault tolerant support

6 Location transparency Physical address requirements

66

Actor framework Client-Server

7 Capability of nodes generation Do not support children management.

8

Using NoSQL database to

tracking persistent state (record

states’ changes every time)

Support NoSQL or Relational database to

store the final result (winner only)

 In Table 4.1, we find that the actor is stateful. Each actor shares its inner state via

immutable message. We are able to see the state tracking on the server side. When a

bidder actor tries to get the timestamp from the ServerTimeSync actor, its behaviours

or states will be stored in a database on Azure. The messages passing through the actors

are in pairs. Each actor has a unique GUID code so that every behaviour of the actor is

trackable. The state persistence ensures the data concurrency and consistency.

Because of this, the actor framework is able to effectively reduce the packet loss rate

and effectively increase the transmission speed. As described Table 4.2, we exported

from the mongodb, there are four clients got the timestamp from the server side. These

states will be pushed to client side at least once to guarantee there is no package loss

during the transaction. Additionally, these states are cached in both sides; thus, the

transaction speed will extremely fast when states are passed by different actors. The

details of the comparison of data transfer will be explained in the next chapter.

Table 4.2 TimeAsync Actor State in MongoDB

User ID timestamp

f429397c-8f21-4f19-99a9-4af6cca46fcd 17-06-2016 14:52:08

00dace91-e238-40d4-b8bf-a0637877d4ef 17-06-2016 14:52:10

67

a4f84aa1-c9c2-42db-82bc-a3a8e8f26eaa 17-06-2016 14:52:11

0b323884-05b8-47f1-8b9f-aeec863a44fd 17-06-2016 14:52:14

511163ee-59d4-4485-9632-c7d7e8326d52 17-06-2016 14:52:15

In order to observe the price notification between bidder actors, we set up three

bidder robots to bid the price randomly in one hundred rounds. Specifically, every

time a bidder bids the highest price, the asynchronous notification will be triggered.

The Comparison Actor will send the notifications to all bidders (except winner itself)

through winner message. The advantage of the asynchronous notification is that the

winner actor will not be noticed, which means that the server side will not broadcast

to all clients, they only update bidders’ state. In this way, we improve the loading

balance of the network. In addition, the document database is schemaless. The data

with different structures are saved in the same collection. To be more specific, we

store the bidder actor, compare actor and server time async actor’s states in the same

collection though their data structures are entirely different. The benefit of the

schemaless is that we do not need to join or transaction data in various tables which

result in providing high-performance reading, writing, updating and deleting (CRUD).

4.2 ECDSA

We now used the design algorithms for testing. Our example was a prototype of an

online auction which we have developed. Compared with the most of the online auction

system, we implemented the blockchain into our system. Meanwhile, we utilise

standard cryptographic building blocks in our platform: keys generator, digital

signature and verification respectively employed by using the ECDSA prime256v1

curve.

 First, the SHA-256 result is shown along with the private and public set of keys.

68

Input: “37F01AC0-66D5-49DA-AE14-E5F369225C5E”,

SHA -256 Hash

Output: 0d13ba7e63ee5faa77214fde9541e4cc4ec70cc22b5341e415a85ad955b6d46c

We utilise the SHA-256 hash to reproduce the hashcode that is stored in the head of

each block. The new block’s hash code is hashed by its parent’s hash code, including

previous block hash, timestamp, difficulty and nonce. So, each block is tightly linked

together by using the chain. The most significant thing is that the hash is irreversible.

This prevents the block from being deleted and changed. Thus, we can easily retrieve

the verified history of the transaction (This process is also known as zero-knowledge

proof) (Parno, Howell, Gentry & Raykova, 2013). These features are critical to prevent

the online auction fraud. For example, we register a diamond, and its certification is

based on the blockchain for auction. Before the diamond becomes the smart property,

the specific data of the diamond, such as brand, colour, size, certification number, and

price, will be broadcasted for verification. Private key signs these broadcast messages,

so other networks can easily verify these messages by using the public key. This

process will be described in detail in the next section. If the data is verified, the

blockchain is able to generate a new node to save the data.

The next step is to generate the paired keys. According to the algebraic description

over Fp, the p is a prime number. In our cryptographic applications, p must be a vast

random prime number.

Key Pair Generation: 256-bit random private key and corresponding public key. We

use the NIST standard curve (P-256) to the implementation of EC cryptography.

The modulus p is:

1157920892103562487626974469494075735300861434152903141955

33631308867097853951

The order n:

69

115792089210356248762697446949407573529996955224135760342

422259061068512044369

The domain parameter seed is:

c49d3608 86e70493 6a6678e1 139d26b7 819f7e90

According to the P-256 standard, we can generate the paired keys:

-----BEGIN EC PRIVATE KEY-----

MHcCAQEEIKz8GGNNeWs79SyS7oKiceneJ97VZ/oHbLwl1TU+qKYloAoGCCq

GSM49AwEHoUQDQgAEDzylCotL5r+Tmr8eDRBk3mJ0rZbQwlpbBVo4P3BZx4J

C/66YCs93DNEvM09v40zS+DamySjZbpCQ8r0SDUb7UA==

-----END EC PRIVATE KEY-----

-----BEGIN PUBLIC KEY-----

MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEDzylCotL5r+Tmr8eDRBk3mJ0r

ZbQwlpbBVo4P3BZx4JC/66YCs93DNEvM09v40zS+DamySjZbpCQ8r0SDUb7UA

==

-----END PUBLIC KEY-----

Figure 4.1Blockchain hashcode example

70

Figure 4.2 Private key and public key in hexadecimal

Signature:

We utilise the private key to signature (r,s) on the file as shown in Fig 4.2, where

r=0xB1CC56C49D15D43065D6C33856CCA8B0267C8808E4F585DEFC5B6A1007

40870E

s=0xDD37897025A9BA67192604B68BA3EF43AC3BBAC6335AC3966E03C3845

7FD2B6B

Figure 4.3 The transaction file needs to be signed by private key

Proof of Verification:

71

We have already known the r and s in the signature (r, s) on the transaction file, so

the easiest method to prove the verification is to utilise the OpenSSL. All platforms,

such as Linux, Unix and Windows, have this built-in command line. We save the

private key into the file: ec_private_key.pem, and then store the public key into the file:

ec_public_key.pem. The signature transaction file is stored in ec_signature.der.

Meanwhile, the transaction file is kept in the transaction.json file. We only need to run

and execute the command line below:

OpenSSL dgst -sha256 -verify ec_pub_key.pem -signature ec_signature.der

transaction.json

We emphasise that this example involves extremely modest-size integer numbers

for the sake of explanation of the basic principle of ECDSA. In blockchain applications,

these integers are typically 256 bits long. For example, the hash code in the header of

the block is actually hashed twice by the SHA256 hash algorithm. Thus, this process

will result in dramatically increasing the cost performance of operations above.

However, the process also dramatically enhances the cost of hacking. In other words,

it is impossible to restore the private key from the public key.

The experimental result demonstrates the fact that the implementation of blockchain

in online auction system is able to prevent the online fraud issue. Because the ECDSA

is employed, every essential link needs to be signed and verified. So, we are able to

quickly retrieve the critical information about the transaction records, like traders’

identities, the authenticity of the goods or the trading history of the trading items. We

do not need to predict the potential fraud through analysing the behaviour pattern of

the transaction of sellers.

4.3 Transaction Verification in Blockchain

The ECDSA is the essence of blockchain applications. This system is a point-to-

point (P2P) network whose primary purpose is to propagate transactions that need to

be validated to all participants (Antonopoulos, 2014). Generally, the registration of

smart properties or the transaction of payment is validated through replicated execution

of the nodes that receive this signification information. For example, we register a

72

house on blockchain for online auction. The house’s registration data, such as real

estate license, land certificate, holder history information, and so forth. will be signed

by our private key and broadcasted to other networks (the third part organisation) for

verification. When these messages arrive at other institutions’ network, their

verification server is able to decrypt these messages by using our public key. We will

know where the verification request comes from. It is an excellent idea to ensure the

authenticity of the data.

The land certificate data is able to be verified by a government department, who will

decrypt verification request and then check whether our information of land

certification is entirely matched their database; the historical records of housing

transaction are able to be verified by banks. They can retrieve all transaction records of

the house in the database to compare our data of trading history. The potential auction

price will also be circulated in the community (other online auction organisations) for

price comparisons. Validation data contain transaction records of a similar model of

units and nearby locations. Thus, another auction organisation will inform us that

whether our price is reasonable. The whole process of verification is covered by

ECDSA algorithm so that verification request and response are impossible to be

tampered. Meanwhile, the verification response with the digital signature is issued by

trusted hosting organisations. Thus, these processes are quite useful for providing a

high degree of credibility under the untrusted environment.

The properties are able to be registered, or the payments are able to be finished

successfully if and only if the validation process is valid. This is a huge difference from

the most popular algorithm for fraud detection which utilises the data mining to

optimise the fraudulent behavioural patterns from social networks or reputation

systems to estimate the possibility. By contrast, the blockchain only stores the solid

data for transactions. It is easier to authenticate that the transaction data are fake or not.

4.4 Implementation of Tokens on Private Blockchain

Now, we utilise the ERC20 token (Vogelsteller, 2015) to implement our smart

contract. As shown in Figure 4.4, we set up a House token smart contract for our online

73

action. We are not going to dive into the details of this contract. All design is to facilitate

functionality proposed.

 We see that our House token is worth one million dollars. Once we deploy this

contract on the private blockchain, this contract will own a unique public address

(Shown in Figure 4.5). Meanwhile, only the deployer owns this token. The owner of

this token is able to transfer some tokens to another shareholder. If one of the clients

owns 100% of the token, the ownership will be automatically transferred. The owner

is able to transfer the ownership to another uesrs directly. The value of the token can

be increased by calling the mint function, or we also can reduce the value of the token

by calling the burn function. Furthermore, the owner is able to authorize the agent to

assist him/her to transfer a specific amount of token to another client.

Figure 4.4 House token

74

Figure 4.5 House token in wallet

4.5 Bidding on Blockchain

In order to illustrate the bidding process on the blockchain, we set up a scenario to

describe the auction process. A company bought a hundred coffee cups from suppliers

as shown in Figure 4.7, a desired price ($10.00/each) was set for this smart contract as

shown Figure 4.6. Once the contract is deployed to the blockchain, the suppliers are

able to bid the price.

Figure 4.6 Smart contract of coffee cup

 When the suppliers bid the price (Figure 4.8), the data will be signed and store in

the state of comparison actors. The buyers are able to track price changes on real time

75

from the actor state (Figure 4.9). We must emphasize that these data are not sent to the

blockchain. The transaction price will be written to the blockchain if the project is

closed shown as Figure 4.10 to Figure 4.11.

Figure 4.7 Set a new project

76

Figure 4.8 Bidding the price

Figure 4.9 Bidding List

77

Figure 4.10 Settle the price

Figure 4.11 The final transaction on Blockchain

78

Chapter 5

Analysis and Discussions

In this chapter, the discussion and resultant analysis

concerning outcomes of the experiments are demonstrated and

presented. More specifically, comparisons regarding the

performance of the actor framework with NoSQL database and the

blockchain will be discussed in this chapter. Finally, the

significance will be also stated through analysing the outcomes.

79

5.1 Analysis

5.1.1 NoSQL Database

The document database, such as MongoDB that we used in the implementation

provides high speed of reading, creating, and updating. When the bidder robots get the

system timestamp, we track the ServerTimeSync actor’s state changes. We set up two

different databases (SQL Server and MongoDB) as the data record providers. In the

process of inserting the first 5000 data, it is hard for us to distinguish who is faster.

However, when the amount of data written gradually increased to 15000, the SQL

database writing speed is almost ten times slower than MongoDB shown in Figure 5.1.

Figure 5.1 Insert ServerTimeSync status into database

The state of bidder and comparison is a complex data structure. For instance, states

of the comparison actor include bidder actors’ states in each round of competition. So,

we need to join two or three tables together to query the data in SQL Server. However,

the document database only nests the relevant information in a document. For complex

data queries, we are not surprised that MongoDB is still faster. When the query data is

higher than 15000, SQL takes 16 seconds, and NoSQL Database takes approximately

5 seconds shown in Figure 5.2.

100
Rows

1000
Rows

5000
Rows

15000
Rows

SQL Server 0.11 1 9 60

MongoDB 0.05 0.09 4.6 6

0

20

40

60

80

Se
co

n
d

s

SQL Server MongoDB

80

Figure 5.2 Query state from comparison actor and bidder actor

5.1.2 Blockchain

We collect three main index (difficulty, has rate, and cost of each transaction) from

the offical website of the Etherscan to demonstrate issues from decentralized

blockchian database.

The difficulty of mining a new block is more chanllenge nowadays. Figure 5.3

illustrates the incensement of the difficulty in recent two years of the blockchain

network. Especially in recent one year, we see that the difficulty rapidly increases from

80TH over 3397TH. This could be a severe issue for the development of the

blockchain. We find a new block will be great hard in future.

Meanwhile, the hash rate of the blockchain is also growing rapidly in recent two

years as shown in Figure 5.4. This will result in clients need to spend the very long time

to finish a transaction. With the rapid development of blockchain, demands of hashing

also soared in the short term. We see that a standard transaction will spend twenty

seconds to two minutes waiting for the result of the transaction.

500
Rows

1000
Rows

5000
Rows

15000
Rows

SQL Server 0.11 1 4.6 16

MongoDB 0.1 0.09 2 5.4

0

5

10

15

20

Se
co

n
d

s
SQL Server MongoDB

81

Figure 5.3 Difficulty incensement in recent two years

Figure 5.4 Hash rate incensement in recent two years

82

Also, the cost of each transaction is also growing unexpectedly (as shown in

Figure 5.5). Usually, the clients need to pay the commission fee to the third-

party trading institutions. Meanwhile, they also need to pay a gas fee to the

institutions who are responsible for runing the blockchain network. The more

gas fee we pay, the faster transaction speed we are able to achieve.

Figure 5.5 Incensement of cost per transaction in recent two years

The last line graph (Figure 5.6) demonstrates the incensement of the block

size in recent two years. Because of the distributed architecture of the

blockchain, the block size has risen rapidly. Meanwhile, the popularity of the

blockchain rises linearly.

83

Figure 5.6 Block size incensement in recent two years

5.2 Discussions

Experimental results were detailed and demonstrated in previous Chapters. Firstly,

the focus of these experiments is on the actor model framework and No SQL database.

The design and implementation of our framework have been elaborated from Section

3.1 to Section 3.2. The purpose is to provide the data consistency and integrity during

the high-performance network environment. We improve the packet loss and traffic

rates for our cloud online auction model. Moreover, the mechanism of safe message

delivery ensures that our bid price cannot be tampered during the data passing from

end to end. Secondly, we describe the Elliptic Curve Digital Signature Algorithm,

blockchain and smart contract in details from Section 4.2 to Section 4.4. The features

of the blockchain are able to help us to establish the trading net under the untrusted

environment so that we are able to efficiently address the online fraud issues.

In this thesis, the experiments are detailed in Section 5.1.1 and the discussions will

84

be followed in Subsection 5.1.2. We see that when the amount of data (simple structure)

gradually increased to 15000 rows, the SQL database writing speed is almost ten times

slower than NoSQL database. Even if we are using the complex data queries, we are

not surprised that NoSQL database is still faster. When the query data is higher than

15000 rows of data, SQL takes sixteen seconds to read, but the NoSQL database takes

approximately five seconds. Because of the advantages of the NoSQL database, we

track and record all state changes from the client side, while we do not need to worry

about the performance of database have negative effect on online action system.

Moreover, Section 5.1.2 illustrates the progression of the blockchain in recent two

years. According to our analysis of official data like difficulty, hashing rate, cost per

transaction and block size, the virtual concurrency technology grows rapidly in very

short term. It provides a new perspective to solve the online fraud issues on the trading

network. However, the difficulty of the hashing has directly resulted in the transaction

pending issues on the blockchain network. Meanwhile, the incensement of difficulty

also proves that blockchain network is getting bigger and slower. Ideally, the solution

is that we can establish our private blockchain locally, and then synchronize the private

chain with the Ethereum main network. This will increase the performance of the

transaction. Moreover, it will decrease the cost per transaction as well.

85

Chapter 6

Conclusion and Future Work

In this thesis, in-depth articulation of the techniques was

discussed which can be utilized to implement a high-performance

actor framework and private blockchain network for the online

auction. The corresponding approaches for each step have been

implemented as the results of this thesis. In this chapter, we will

present this thesis at a scholarly level, also highly organize and

integrate the conclusion into the context; meanwhile, the future

work will be pointed out by the end of this thesis.

86

6.1 Conclusion

The online auction platform transfers the market by providing reliable and

professional service platform. A vital aspect of this shift is the accommodation of

clustering services. These services are no longer limited by the interconnected location

of buyers and sellers (Ackerberg et al., 2006). There are 80% of online participants

(both buyers and sellers) from different countries or regions.

In this situation, the traditional client-server architecture does not have enough

capability to manage all bidders in the distinct clustering of trade to ensure the fairness

and reliability of online auctions. English auction is an excellent case in point. It has

a very high demand for system concurrency and responsiveness. Because the system

needs to complete the price delivery, comparison, and notification in accurate time of

period.

Thus, the actor framework is employed to provide the data consistency and integrity

during the high-performance network environment. We improve the packet loss and

traffic rates for our cloud online auction model. Moreover, the mechanism of safe

message delivery ensures that our bid price cannot be tampered during the data passing

from end to end. The message is wrapped in the web stock; we cannot guarantee that

any messages can be received or dispatched each time successfully. Thus, the

additional implementation must be taken to actor mode like at-least-once in Orleans.

It requires retry when transport losses. Although immutable message guarantees data

security within the delivery process, we cannot stop online fraud by using actor model.

Additionally, we run a single Silo Host server on the local server, so the network

condition is not considered. In future, we set a REST API server to test the

performance in a different network environment.

Online fraud detection is extremely hard to be implemented. The traditional

methodology does not have enough capability to prevent online fraud in the distinct

clustering of trade so as to ensure the fairness and reliability of online auctions.

Blockchain 2.0 and 3.0 provided the fundamental solution for these issues. English

auction is an excellent case in point. It has a very high demand for protecting the

transactions under the untrusted environment. Blockchain provides a complete set of

87

secure trading mechanisms from the zero-knowledge proof mechanism, smart

property to smart contract.

Thus, blockchain is employed to provide the private transaction in the untrusted

environment. Once the subject is registered into the blockchain, it will automatically

become a smart property. All relevant data of the subject will be stored in the

distributed blockchain and are not able to be deleted and modified. In each of the

online auction transactions, all relevant data about the subject has been verified

(broadcast the information to all distributed blockchain databases for verifications),

such as house ownership certification. When the online auction transactions are

finished, the smart contract will be automatically verified, and the transaction is

completed.

88

6.2 Future Work

Our future work includes,

(1) We implemented a single SiloHost server on the local server and calling actors

from another laptop. In future, we need to implement the framework into the complex

environment. For instance, the SiloHost server is able to connect to server-less web

API, so that we are able to test the performance of the actor framework from end to

end. We hope to achieve more concrete data to support our result.

(2) We established a private blockchain for test our smart contract. We have

already proved that this methodology can improve our transaction performance on our

private blockchain server. However, we still need to sync with the Ethereum main

network. In future, we will need to improve the private blockchain architecture in this

thesis for the next massive step for syncing with the main network.

(3) We also need to implement the Hawk-like smart contract in our private

blockchain network. Because the blockchain network exposes all information to the

public, the Hawk-like contract is able to establish the privacy protections of the smart

contract, so we only need to expose the auction information to participants.

89

References

Ackerberg, D., Hirano, K., & Shahriar, Q. (2006) The buy-it-now option, risk aversion,

and impatience in an empirical model of eBay bidding. University of Arizona.

Agha, G. A. (1985) Actors: A model of concurrent computation in distributed systems.

The MIT Press.

Agha, G., Mason, I. A., Smith, S., & Talcott, C. (1992) Towards a theory of actor

computation. In International Conference on Concurrency Theory (pp. 565-

579). Springer, Berlin, Heidelberg.

Akerlof, G. A. (1970) The market for ‘lemons’: quality uncertainty and the market

mechanism. Aug, 84(3), 488-500.

Alanezi, F. (2016) Perceptions of online fraud and the impact on the countermeasures

for the control of online fraud in Saudi Arabian financial institutions. Brunel

University London,

Andrychowicz, M., Dziembowski, S., Malinowski, D., & Mazurek, L. (2014) Secure

multiparty computations on bitcoin. In IEEE Symposium on Security and

Privacy (SP) (pp. 443-458). IEEE.

Antonopoulos, A. M. (2014) Mastering Bitcoin: unlocking digital cryptocurrencies:

USA: O'Reilly Media, Inc.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., . . . Stoica,

I. (2010) A view of cloud computing. Communications of the ACM, 53(4), 50-

58.

Armstrong, J. (2007) Programming Erlang: software for a concurrent world:

90

Pragmatic Bookshelf.

Armstrong, J., Virding, R., Wikström, C., & Williams, M. (1993) Concurrent

programming in ERLANG.

Ba, S., & Pavlou, P. A. (2002) Evidence of the effect of trust building technology in

electronic markets: Price premiums and buyer behavior. MIS Quarterly, 243-

268.

Ba, S., Whinston, A. B., & Zhang, H. (2003) Building trust in online auction markets

through an economic incentive mechanism. Decision Support Systems, 35(3),

273-286.

Becker, J., Breuker, D., Heide, T., Holler, J., Rauer, H. P., & Böhme, R. (2013) Can

we afford integrity by proof-of-work? Scenarios inspired by the Bitcoin

currency. In Economics of Information Security and Privacy (pp. 135-156):

Springer.

Bernstein, D. (2014) Containers and cloud: From lxc to docker to kubernetes. IEEE

Cloud Computing, 1(3), 81-84.

Bernstein, P. A., Bykov, S., Geller, A., Kliot, G., & Thelin, J. (2014) Orleans:

Distributed virtual actors for programmability and scalability. USA: Microsoft

Research Press.

Birch, D., Brown, R. G., & Parulava, S. (2016) Towards ambient accountability in

financial services: Shared ledgers, translucent transactions and the

technological legacy of the great financial crisis. Journal of Payments Strategy

& Systems, 10(2), 118-131.

Black, J., Hashimzade, N., & Myles, G. (2013) Committee on Payment and Settlement

Systems. UK: Oxford University Press.

91

Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J. A., & Felten, E. W. (2015)

Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.

In IEEE Symposium on Security and Privacy (SP) (pp. 104-121). IEEE.

Buterin, V. (2014) A next-generation smart contract and decentralized application

platform. Ethereum White Paper

Castro, M., & Liskov, B. (1999) Practical Byzantine fault tolerance. In Third

Symposium on Operating Systems Design and Implementation (pp. 173–186)

Chan, H. C., Ho, I. S., & Lee, R. S. (2001) Design and implementation of a mobile

agent-based auction system. IEEE Pacific Rim Conference on

Communications, Computers and signal Processing.

Choi, S.-Y., Stahl, D. O., & Whinston, A. B. (1997) The economics of electronic

commerce: Macmillan Technical Publishing Indianapolis.

Christidis, K., & Devetsikiotis, M. (2016) Blockchains and Smart Contracts for the

Internet of Things. IEEE Access, 4, 2292-2303.

Chua, C., & Wareham, J. (2002) Self-regulation for online auctions: An analysis. Self,

12, 31-2002.

Chua, C. E. H., & Wareham, J. (2004) Fighting internet auction fraud: An assessment

and proposal. Computer, 37(10), 31-37.

Clack, C. D., Bakshi, V. A., & Braine, L. (2016) Smart contract templates: foundations,

design landscape and research directions.

Corcoran, C. (1999) The auction economy. Red Herring, 69.

Danezis, G., Fournet, C., Kohlweiss, M., & Parno, B. (2013) Pinocchio coin: building

zerocoin from a succinct pairing-based proof system. In Proceedings of the

92

First ACM workshop on Language support for privacy-enhancing

technologies (pp. 27-30). ACM.

De Koster, J., Marr, S., D'Hondt, T., & Van Cutsem, T. (2013) Tanks: multiple reader,

single writer actors. In Proceedings of the 2013 workshop on Programming

based on actors, agents, and decentralized control (pp. 61-68). ACM.

Delmolino, K., Arnett, M., Kosba, A., Miller, A., & Shi, E. (2016) Step by step towards

creating a safe smart contract: Lessons and insights from a cryptocurrency lab.

In International Conference on Financial Cryptography and Data Security (pp.

79-94). Springer, Berlin, Heidelberg.

English, M., Auer, S., & Domingue, J. (2016) Block chain technologies & the semantic

web: a framework for symbiotic development. In Computer Science

Conference for University of Bonn Students, J. Lehmann, H. Thakkar, L.

Halilaj, and R. Asmat, Eds (pp. 47-61).

Estrada, R., & Ruiz, I. (2016) Big Data SMACK. Apress, Berkeley, CA.

Eyal, I., & Sirer, E. G. (2018) Majority is not enough: Bitcoin mining is

vulnerable. Communications of the ACM, 61(7), 95-102.

Fournet, C., Kohlweiss, M., Danezis, G., & Luo, Z. (2013) ZQL: A Compiler for

Privacy-Preserving Data Processing. In USENIX Security Symposium (pp.

163-178).

Franco, P. (2014) Understanding Bitcoin: Cryptography, engineering and economics:

John Wiley & Sons.

Froomkin, A. M. (1996) Essential Role of Trusted Third Parties in Electronic

Commerce. Oregon Law Review, 75, 49.

Gao, B., Zhang, S., & Yao, N. (2012) A Multidimensional Pivot Table Model Based

93

on MVVM Pattern for Rich Internet Application. In International Symposium

on Computer, Consumer and Control (IS3C) (pp. 24-27).

Garman, C., Green, M., & Miers, I. (2016) Accountable privacy for decentralized

anonymous payments. In International Conference on Financial Cryptography

and Data Security (pp. 81-98). Springer, Berlin, Heidelberg.

Grazioli, S., & Jarvenpaa, S. L. (2000) Perils of Internet fraud: An empirical

investigation of deception and trust with experienced Internet consumers.

IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and

Humans, 30(4), 395-410.

Greenspan, G. (2015) Ending the bitcoin vs blockchain debate. MultiChain blog.

Gupta, M. (2012) Akka essentials: Packt Publishing Ltd.

Haller, P. (2012) On the integration of the actor model in mainstream technologies: the

scala perspective.The 2nd edition on Programming systems, languages and

applications based on actors, agents, and decentralized control abstractions.

Han, J., Haihong, E., Le, G., & Du, J. (2011) Survey on NoSQL database. In Pervasive

computing and applications (ICPCA) (pp. 363-366). IEEE.

Hecht, R., & Jablonski, S. (2011). NoSQL evaluation: A use case oriented survey.

In International Conference on Cloud and Service Computing (CSC) (pp. 336-

341). IEEE.

Hewitt, C., Bishop, P., & Steiger, R. (1973) Session 8 formalisms for artificial

intelligence a universal modular actor formalism for artificial intelligence.

In Advance Papers of the Conference (Vol. 3, p. 235). Stanford Research

Institute.

Industries, E. (2016) Explainer | Smart Contracts. Eris Industries Documentation.

94

Johnson, D., Menezes, A., & Vanstone, S. (2001) The elliptic curve digital signature

algorithm (ECDSA). International Journal of Information Security, 1(1), 36-

63.

Karmani, R. K., Shali, A., & Agha, G. (2009) Actor frameworks for the JVM platform:

a comparative analysis. In International Conference on Principles and Practice

of Programming in Java (pp. 11-20). ACM.

Kekre, H., & Bharadi, V. (2011a) Dynamic signature pre-processing by modified

digital difference analyzer algorithm. In Thinkquest (pp. 67-73).

Kiayias, A., Zhou, H. S., & Zikas, V. (2016) Fair and robust multi-party computation

using a global transaction ledger. In Annual International Conference on the

Theory and Applications of Cryptographic Techniques (pp. 705-734). Springer,

Berlin, Heidelberg.

Koblitz, N. (1987) Elliptic curve cryptosystems. Mathematics of computation, 48(177),

203-209.

Kosba, A., Miller, A., Shi, E., Wen, Z., & Papamanthou, C. (2016) Hawk: The

blockchain model of cryptography and privacy-preserving smart contracts.

In 2016 IEEE symposium on security and privacy (SP) (pp. 839-858). IEEE.

Krasnokutskaya, E., Terwiesch, C., & Tiererova, L. (2016) Trading across Borders in

Online Auctions. Report, Johns Hopkins University.

Kreuter, B., Shelat, A., Mood, B., & Butler, K. R. (2013) PCF: A Portable Circuit

Format for Scalable Two-Party Secure Computation. In USENIX Security

Symposium(pp. 321-336).

Kroll, J. A., Davey, I. C., & Felten, E. W. (2013) The economics of Bitcoin mining, or

Bitcoin in the presence of adversaries. In Proceedings of WEIS (Vol. 2013, p.

11).

95

Kumaresan, R., & Bentov, I. (2014) How to use bitcoin to incentivize correct

computations. In ACM SIGSAC Conference on Computer and

Communications Security (pp. 30-41). ACM.

Li, L., Tang, T., & Chou, W. (2015) A rest service framework for fine-grained resource

management in container-based cloud. In IEEE 8th International Conference

on Cloud Computing (CLOUD) (pp. 645-652). IEEE.

Li, X., Chang, D., Pen, H., Zhang, X., Liu, Y., & Yao, Y. (2015) Application of MVVM

design pattern in MES. In IEEE International Conference on Cyber

Technology in Automation, Control, and Intelligent Systems (CYBER),

2015 (pp. 1374-1378). IEEE.

Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2017). A survey on the security of

blockchain systems. Future Generation Computer Systems

Liu, C., Wang, X. S., Nayak, K., Huang, Y., & Shi, E. (2015) Oblivm: A programming

framework for secure computation. In IEEE Symposium on Security and

Privacy (SP) (pp. 359-376). IEEE.

Liu, H., Wang, S., & Fei, T. (2003) Multicast-based online auctions: a performance

perspective. Benchmarking: An International Journal, 10(1), 54-64.

Liu, L. (2012) Analysis and Application of MVVM Design Pattern. Application of

Micro Computer, 28(12), 57-60.

Lu, K., Yahyapour, R., Wieder, P., Yaqub, E., Abdullah, M., Schloer, B., & Kotsokalis,

C. (2016) Fault-tolerant Service Level Agreement lifecycle management in

clouds using actor system. Future Generation Computer Systems, 54, 247-259.

McAdam, R. (2001) Fragmenting the function-process interface: The role of process

benchmarking. Benchmarking: An International Journal, 8(4), 332-349.

96

McGilvary, G. A. (2014) Ad hoc cloud computing.UK: University of Edinburgh

McGrath, G., Short, J., Ennis, S., Judson, B., & Brenner, P. (2016) Cloud event

programming paradigms: Applications and analysis. In International

Conference on Cloud Computing (CLOUD) (pp. 400-406). IEEE

Meiklejohn, S., Pomarole, M., Jordan, G., Levchenko, K., McCoy, D., Voelker, G. M.,

& Savage, S. (2013) A fistful of bitcoins: characterizing payments among men

with no names. In the Conference on Internet Measurement (pp. 127-140).

ACM.

Michael, A., Armando, F., Rean, G., Anthony, D. J., Randy, K., Andy, K., ... & Matei,

Z. (2009) Above the clouds: A Berkeley view of cloud computing. EECS

Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-

28.

Miller, M. S., Morningstar, C., & Frantz, B. (2000) Capability-based financial

instruments. In International Conference on Financial Cryptography (pp. 349-

378). Springer, Berlin, Heidelberg.

Miller, M. S., Tribble, E. D., & Shapiro, J. (2005) Concurrency among strangers.

In International Symposium on Trustworthy Global Computing (pp. 195-229).

Springer, Berlin, Heidelberg.

Miller, V. S. (1985) Use of elliptic curves in cryptography. In Conference on the theory

and application of cryptographic techniques (pp. 417-426). Springer, Berlin,

Heidelberg.

Pagliery, J. (2014) Bitcoin: And the Future of Money: Triumph Books.

Parashar, M., Abdelbaky, M., Zou, M., Zamani, A. R., & Diaz-Montes, J. (2015)

Realizing the potential of iot using software-defined ecosystems. In IEEE

International Conference on Cloud Computing (CLOUD) (pp. 1149-1158).

97

IEEE.

Parno, B., Howell, J., Gentry, C., & Raykova, M. (2016) Pinocchio: Nearly practical

verifiable computation. Communications of the ACM, 59(2), 103-112.

Peters, G. W., & Panayi, E. (2016) Understanding Modern Banking Ledgers through

Blockchain Technologies: Future of Transaction Processing and Smart

Contracts on the Internet of Money. In Banking Beyond Banks and Money (pp.

239-278): Springer.

Peters, G. W., Panayi, E., & Chapelle, A. (2015) Trends in crypto-currencies and

blockchain technologies: A monetary theory and regulation perspective.

Journal of Financial Perspectives, Vol.3

Pham, L. M., Tchana, A., Donsez, D., De Palma, N., Zurczak, V., & Gibello, P. Y.

(2015) Roboconf: a hybrid cloud orchestrator to deploy complex applications.

In International Conference on Cloud Computing (CLOUD) (pp. 365-372).

IEEE.

Philip, J., & Bharadi, V. A. (2016) Article: Online Signature Verification in Banking

Application: Biometrics SaaS Implementation. The International Conference

on Communication Computing and Virtualization.

Pilkington, M. (2016) Blockchain technology: principles and applications. Research

handbook on digital transformations (pp.225).

Power, R., & Li, J. (2010) Building fast, distributed programs with partitioned tables.

In 9th USENIX Symposium on Operating Systems Design and

Implementation: (OSDI).

Rastogi, A., Hammer, M. A., & Hicks, M. (2014) Wysteria: A programming language

for generic, mixed-mode multiparty computations. In IEEE Symposium on

Security and Privacy (SP) (pp. 655-670). IEEE.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3084011##

98

Ron, D., & Shamir, A. (2013) Quantitative analysis of the full bitcoin transaction graph.

In International Conference on Financial Cryptography and Data Security (pp.

6-24). Springer, Berlin, Heidelberg.

Sáez, S. G., Andrikopoulos, V., Sánchez, R. J., Leymann, F., & Wettinger, J. (2015)

Dynamic tailoring and cloud-based deployment of containerized service

middleware. In International Conference on Cloud Computing (CLOUD) (pp.

349-356). IEEE.

Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., & Virza, M.

(2014) Zerocash: Decentralized anonymous payments from bitcoin. In IEEE

Symposium on Security and Privacy (SP) (pp. 459-474). IEEE.

Smith, J. (2009) Patterns-wpf apps with the model-view-viewmodel design pattern.

MSDN magazine, 72.

Stutsman, R., Lee, C., & Ousterhout, J. K. (2015). Experience with Rules-Based

Programming for Distributed, Concurrent, Fault-Tolerant Code. In USENIX

Annual Technical Conference (pp. 17-30).

Swan, M. (2015) Blockchain: Blueprint for a new economy: O'Reilly Media, Inc.

Szabo, N. (1997) Formalizing and securing relationships on public networks. First

Monday, 2(9).

Tauro, C. J., Aravindh, S., & Shreeharsha, A. (2012) Comparative study of the new

generation, agile, scalable, high performance NOSQL databases. International

Journal of Computer Applications, 48(20), 1-4.

Thurau, M. (2012) Akka framework. University of Lübeck.

Vinoski, S. (2007) Reliability with Erlang. IEEE Internet Computing, 11(6).

99

Vogelsteller, F., & Buterin, V. (2015) ERC 20 token standard. Ethereum Foundation

(Stiftung Ethereum), Zug, Switzerland.

Wood, G. (2014) Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151, 1-32.

Yu, P., Xia, M., Lin, Q., Zhu, M., Gao, S., Qi, Z., ... & Guan, H. (2010) Real-time

enhancement for xen hypervisor. In International Conference on Embedded

and Ubiquitous Computing (EUC) (pp. 23-30). IEEE.

Zheng, L., Chong, S., Myers, A. C., & Zdancewic, S. (2003) Using replication and

partitioning to build secure distributed systems. In Symposium on Security and

Privacy (pp. 236-250). IEEE.

Zyskind, G., & Nathan, O. (2015) Decentralizing privacy: Using blockchain to protect

personal data. In Security and Privacy Workshops (SPW) (pp. 180-184). IEEE.

Zyskind, G., Nathan, O., & Pentland, A. (2015) Enigma: Decentralized computation

platform with guaranteed privacy.

