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Abstract 

This research focuses on investigating the vibration characteristics of branched 

circular cylindrical shells with applications to airway passages.  Analytical 

modelling is carried out based on Donnell–Mushtari equations of thin elastic 

membrane type of shells while numerical validation is conducted using the Finite 

Element Method (COSMOS/Works).  Further validation of the results is performed 

using experimental investigation of tracheobronchial tissues dissected from pigs.  

The analytical, numerical and experimental results are in acceptable agreement.   

Further investigation of the vibration characteristics of the airways for cases which 

cannot be dealt with analytically is carried out using COSMOS/Works.  Results 

show a strong trend relationship which suggests that the natural frequency of the 

trachea and the primary tracheobronchi is approximately 10 Hz.  Radial resonances 

of lower bronchi are predictable through trends found in this work that the resonant 

frequency is a linear function in certain region of generations. 
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Chapter 1 

Introduction 

1.1   Background 

Branched circular cylindrical shells have a wide range of engineering, physical and 

biological applications [1-18].  Water distribution networks are one of many which 

are found in every city or village in modern societies; not to mention the petroleum 

pipelines, sewage systems, etc which are essential components of our current life 

styles.  In biological applications, the blood circulation and respiratory systems are 

two of many.  The focus of this work is on a branched system made up of thin elastic 

shells with direct application to the human respiratory system.  This work represents 

the foundation for the vibration resonance of the lungs which must be understood in 

an attempt to determine whether this response could be used to help relieve airway 

constrictions. 

Asthma is defined as “A disorder characterised by the narrowing of airways which is 

reversible with time, either spontaneously or as a result of treatment.” [19].  Asthma, 

either intrinsic or extrinsic, affects one out of six New Zealanders [20].  The extrinsic 
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or atopic asthma is a type of allergic reaction to allergens, while the intrinsic or 

nonatopic asthma has an unknown cause and is believed to be a type of over-

response of the immune system to triggers [21].  The Asthma and Respiratory 

Foundation of New Zealand reported in The Burden of Asthma in New Zealand (18 

February 2002), “Asthma costs NZ over $800 million a year” [22].  New Zealand 

has a high prevalence of asthma among developed countries such as Australia, the 

United Kingdom and the United States.  Developing countries also have the up-trend 

records due to various factors, possibly the westernised living patterns, and better 

than ever health facilities and treatments to people on a whole.  However, there are 

more issues to consider other than the financial stress [22-24]. 

Asthma is an allergic pulmonary disease and is not curable at this time [25].  Severe 

episodes can be fatal, the higher the morbidity the higher the mortality, unless proper 

treatments and management are observed carefully [26].  During attacks, subjects 

may suffer one, two, or all of three kinds of symptoms, such as airway constriction, 

inflammation of airway walls and mucus secretions.  Consequently, airway passages 

are clogged with mucus and occluded by contraction and inflammation of smooth 

muscles to some extent, making conduction of air either difficult or impossible [19, 

27-35]. 

To be free from inducers or triggers [19] of this allergic disease seems to be the best 

solution.  Medication is the traditional care and treatment to relieve or prevent 

asthmatic attacks, and should be carried at all times for often and severe sufferers.  

Proper management keeps asthma under control quite well except that some side 
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effects are of concern recently [36-38].  Unfortunately, mortality of asthma is still a 

great concern.  This leads one to ask the question: 

Is it possible to relieve asthma by physical rather than medical means? 

In physical aspects, airways are a series of branched tubing from the trachea down to 

the bronchioles, ending with the alveolar sacs where gas exchange takes place.  

Science conceives that the airway network should behave similar to any physical 

system and has its own natural frequencies of vibration at which it responds 

spontaneously once excited.  Therefore, it is logical to perceive that identifying the 

natural frequency characteristics of the complex branching tree structure is crucial in 

such a novel thought of utilising the mechanical relaxation for relief of asthmatic 

contraction of airways. 

This thesis is the first insight in a research to investigate the natural frequencies of 

free vibrations of the airway system with the conceptive applications of the dynamic 

property parameters for an alternate means of relief of asthma. 

1.2   Human Respiratory System 

The respiratory system, as one of the biological circuits in the human body, provides 

a unique function of breathing in air to live.  This system is so critical to living cells 

and different from the other ten systems: the integumentary, the skeletal, the 

muscular, the nervous, the endocrine, the circulatory, the digestive, the urinary, the 

excretory and the reproductive systems, that its proper functioning is essential within 

minutes.  The respiratory system intakes, transports and diffuses oxygen to human 
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tissues for metabolism of all living cells for growth, maintenance and development, 

while disposing of the waste out of the body.  Cells, tissues and organs live on 

oxygen and may permanently starve to death so fast that recovery is not possible.  

Therefore asthmatic subjects can be in fatal conditions because constrictions and 

occlusions tend to occur in numerous and tiny peripheral airways during an 

asthmatic attack.  Both internal and external respirations are not sufficient or ceased 

by the increasing flow resistance of airways. 

The overall anatomy or structure of the human respiratory system has the airway 

passages as the main frame which looks like an inverted tree.  Air is breathed in and 

out through the nasal cavity, pharynx, larynx, and then to the subglottal respiratory 

system of the trachea, the primary, secondary and tertiary bronchi, the bronchioles 

and the acinus of alveoli (Appendix A).  Such rhythmic ventilation occurs when the 

dome-shaped diaphragm beneath the lungs is pulled downward by the spontaneously 

cyclic muscle contraction.  Physically, a vacuum is created as the lung volume 

expands following the contraction of the thoracic muscles and muscles controlling 

the diaphragm.  Air is drawn into and fills the lungs for ventilation.  When muscles 

relax, the elastic lungs return to their shape at rest and the gas content is expelled out 

of the lungs.  During the inspiration and expiration process, a tidal volume of 0.5 

litre flows in and out of the total lung capacity of 6 litres of an adult.  Maximum 

voluntary effort can drive extra 3.1 litres for the inspiratory reserve volume and 1.2 

litres for the expiratory reserve volume.  That means that 1.2 litres of the residual 

volume remains inside the lungs all the times [28, 39]. 
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Air transports through the conducting zone of the cartilaginous trachea and 

subsegmental bronchi, and the noncartilaginous bronchioles or terminal bronchioles 

to the respiratory zone of the respiratory bronchioles, alveolar ducts and alveolar 

sacs with over 300 million sites contributing to the diffusion surface equivalent to a 

tennis court with an area of 70 to 80 square metres [28, 32, 40].  To fulfil the 

metabolism of life, gases are diffused and exchanged through these invisible but 

incredible surfaces next to numerous capillaries where blood circulates throughout 

the whole body and tissue cells for the supply of nutrients and disposal of wastes [32, 

33, 41]. 

The trachea bifurcates its main windpipe into the left and right primary bronchi at the 

carina and such branching continues with tapering radii down to twenty-three 

generations.  The bronchial ducts are termed bronchioles before they run into the 

alveolar sacs where gases diffuse across the cell membrane walls of the sacs and the 

capillaries of blood.  Geometrically, all branches are similar in shape except for the 

physical dimensions.  Structurally, they vary slightly from one generation to the 

next.  As the main stem of the respiratory tree, the trachea is much stiffer than others 

with 16 to 20 C-shaped cartilaginous rings spaced along the 12 cm longitudinal 

dimension [28, 32, 40].  It ends with the carina where the trachea branches into two 

principal bronchi.  The cartilage support gradually vanishes when the bifurcation 

comes to the bronchiole levels.  These are the dominant regions where constrictions 

occur during an asthmatic attack. 
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Asthma places a physiological challenge on the respiratory system, and disturbs and 

even prohibits the conduction of air in and out of the airways.  Gas exchange is a 

transport process in series in numerous branches similar to a complex electrical 

series and parallel circuit.  Any open circuit in the path stops part of branches or the 

whole system from functioning.  Inter-diffusion of gases across membranes between 

alveoli and capillaries is deficient when expired gases are trapped in airways and 

cannot exchange with fresh air in the environment. 

Although monitored biologically, the prescribed function of lungs and airways are 

physical in nature and should be able to be modelled mechanically for investigation.  

To do so, the geometric description and restraints on the system should be assumed 

in order to proceed. 

1.3   Lung Morphology 

Weibel [42-44] had done a tremendous amount of work on lung morphology and 

measurements as investigated in “Morphometry of the Human Lung” [42].  In this 

book, Weibel started his first sentence with “The present monograph deals with a 

systematic approach to a quantitative morphologic analysis of the architecture of the 

human lung.”  This implies that he realised the role of morphology in lung studies 

and was one of the first pioneers who studied the morphology of the lung. 

Weibel [42] modelled lungs to have air, blood and tissue as their basic components 

with the first two mobilizing to exchange gases through the localized tissues or 

membranes.  The inspired air enters the nose, the upper respiratory tract, and then the 
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conductive zone starting from the trachea to the sixteenth bronchus, the transitory 

zone and the respiratory zone where external respiration occurs when oxygen and 

carbon dioxide are exchanged between alveoli and bloodstreams.  Finally, gas 

diffusion between bloodstreams and body tissue cells is referred to as internal 

respiration.  Weibel summarised the architecture of the human airway system in two 

models, the regular and the irregular dichotomy branching patterns.  

1.4   Airway Dichotomy 

Weibel’s [42] regular or symmetric dichotomy pattern of the lung is termed Model 

“A”, which is a simplified version as opposed to the irregular dichotomy, Model 

“B”, which is more realistic to human lungs.  Model “A” bifurcates the parent into 

two daughter branches at equal angles, equal radius and equal length while Model 

“B” has unequal branching parameter values.  The symmetric model is beneficial to 

most research work because of its regularity in geometry which makes modelling 

easier and gives the first insight of results when such an assumption can lead to a 

fairly good approximation.  This is particularly true in human airways where a 

precise response of individual tracheobronchial branches is critical when considering 

the overall lumped system of lungs. 

Horsfield and Cumming [45] term the asymmetric airway branching as orders of a 

count-up system instead of generations of a count-down system by Weibel.  The 

Horsfield order starts with the alveolar sacs and counts up to the trachea with the 

order of thirty-one [45, 46] and is practical and more applicable to the asymmetric 

airways in reality with the advantage that paths of the same Horsfield order can be 
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assumed to have the same physical dimensions, or the path length [47].  Fredberg 

and Moore adopted the Horsfield order in the self-consistent branching model of the 

airways of the human lung in simulating the distributed response of complex 

branching duct networks [4]. 

1.5   Histological View of Airways 

Airways of the tracheobronchial tree are responsible for clear passages of air 

ventilation of the respiratory system.  The continuous branching tracheobronchial 

tree varies not only in the geometric dimensions, but also in the physical properties 

down from the trachea to the bronchioles and the alveoli. 

In the histological aspect as seen in Figure 1.1, airways are covered with the 

epithelium over the inner surface as the first defence from the external intruders, 

similar to the lumens of other human organs.  This lining of pseudostratified ciliated 

columnar cells sits on top of a basement membrane which separates smooth muscles 

of the lamina propria layer.  The outermost cartilaginous layer diminishes 

progressively and finally disappears in bronchioles of 1 mm in diameters or less. 

On top of the cilia is a sol layer and a gel layer which form the mucous blanket for 

trapping debris from further invasion into the alveoli where diffusion occurs.  The 

wavelike movement of cilia vibrates about at 1500 times per minute and drives the 

sol layer to escalate the more viscous gel layer along with foreign particles, at 

roughly 2 cm per minute, up to the larynx for cleaning purposes.  This mucociliary 

transport mechanism may not function properly due to various factors. 
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Figure 1.1 Schematic comparison of airway wall, in cross-section between 
bronchus and peripheral bronchiolus where cartilage disappears.  
EP, epithelium; BM, basement membrane; SM, smooth muscle 
[43, 48]. 

The mechanism of asthma is irrespective of the cause, whether due to inducers or 

triggers, and is more or less the same.  Mast cells are considered to be the releasers 

of mediators such as histamine and leukotrienes upon initiation of asthma.  These 

mediators act on cells of receptors on the airway smooth muscles and 

bronchoconstriction occurs.  The current view of asthma is more concerned with the 

inflammation caused by such cells that initiate the mechanism rather than the 

contraction of airway smooth muscles [19, 31, 49, 50]. 

1.6   Airway Physiology 

Human airways are passages for gas transport in the lungs.  The lumen areas should 

be free from dirt and debris for smooth flow of gases during breathing cycles.  A 

segmental cross-sectional view depicts the layers of the epithelial lining of the 

airway wall.  The goblet cells and the submucosal glands secrete the mucous blanket 
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of the gel and the sol layers.  The viscous gel layer traps foreign particles while the 

sol layer is escalated by the cilia so that the mucous blanket moves up to the larynx 

as sputum at approximate 2 cm per minute.  A basement membrane separates the 

epithelium and the lamina propria.  Goblet cells are distributed intermittently among 

basal cells in the epithelial layer.  In the lamina propia, an inner circular and an outer 

longitudinal thin layer of smooth muscle as in Figure 1.2 [34, 51] lie right next to the 

basement membrane and parasympathetic nerves immersed in the rest of space.  

Finally it comes to the cartilaginous layer which is the stiffest part of the epithelial 

lining of the airways.  The stiffness of the airway wall therefore depends greatly on 

the proportion of the cartilaginous layer which diminishes as fast as the generation 

branches grow. 

Air is first cleaned and moistened at the nostrils of the respiratory system similar to 

the function of the carburettor of an automobile.  The ciliated epithelium with 

secreted mucus filters the inspired air, which is also warmed and moistened by the 

heat generated around the nasal cavity wall to ensure that the incoming air is close to 

the body temperature.  The cleaning process is then maintained by the escalating 

beating process of the epithelial cilia to bring any debris up for removal.  All these 

should occur in the passages of the trachea and the upper bronchi as bronchioles are 

physically too small and too far down to provide any cleaning job.   

 
 



 

   

  11 

 
 

Figure 1.2 (a)  Circumferential and longitudinal layers of smooth muscle of 
airways [51].  (b)  Contrarily, components of the major blood 
vessels with inner longitudinal and outer circumferential muscles 
[34]. 

 
(a)  Cross-section of airway muscle. 

 

(b)  Cross-section of blood vessel muscle. 
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Once air comes to the alveolar sacs, ventilation takes place by diffusing gases across 

the membrane boundary between the lungs and the vascular capillaries.  The 

exchange of oxygen with carbon dioxide oxygenates the blood with haemoglobins.  

The heart pumps the body’s blood in and out of its atria and ventricles in circulation 

for the supply of oxygen and disposal of waste, mainly carbon dioxide.  

Physiologically, carbon dioxide concentration in blood monitors the rhythm of 

breathing.  The central nervous system will initiate to speed up the breathing rate 

once it senses a high level of carbon dioxide concentration. 

This chapter has described the general background of respiratory system related to 

this work.  Chapter 2 is a literature review on work of the respiratory system related 

to the title.  The theoretical analysis of the circular cylindrical thin shell is presented 

in Chapter 3, resulting in the resonant frequencies of such a shell as membrane.  This 

serves as the fundamental unit in the expanded modelling of the complex airway 

network.  Further numerical investigation using Finite Element Analysis (FEA) 

COSMOS/Works, a computing software integrating the modelling and analysis 

features is presented in Chapter 4.  Chapter 5 gives the experimental validation for 

the resonant frequencies obtained from pigs’ tracheobronchial system.  Chapter 6 

discusses the analytical modelling, numerical modelling, experimental validation, the 

overall view of this thesis, and finally recommendations for future work. 
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Chapter 2 

Literature Review 

2.1   Introduction 

Branched circular cylindrical shells have many physical, biological and engineering 

applications.  To cite a few, the human body blood circulation, and respiratory 

systems, water distribution networks, petroleum distribution networks… etc. Most of 

these systems have been dealt with from fluid flow, load analysis, acoustics and 

elasticity modelling [5, 7, 10, 11, 14-17, 52-62]. No work has been found which 

deals with the vibration of branched circular cylindrical shells.  This problem entitles 

the complexity of the boundary conditions and the discontinuity of the branches and 

the junctions. This work represents one of the first to deal with the vibration of 

branched circular cylindrical shells with specific application to the respiratory 

branching structure. 

Study of lungs arises in the response to lung disorders in human beings.  Medical and 

clinical study of lungs focuses on the biological and cellular level.  Anatomy, a study 
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of human structure, is the basic knowledge required beyond the general 

understanding of chemistry and biology.  The next or concurrent course with 

anatomy is physiology which is more concerned about the functioning of human and 

animal organs. 

Lung functioning is critical to life.  However, the physiological study of the lung 

may come before the anatomy [42, 63] and physics is definitely a related subject 

other than chemistry and biology in medical study.  The physical study of lungs 

includes the movement of air in and out of the body, the physical properties of 

tissues and muscles and such geometric dimensions as factors of the respiratory 

functioning.  All such related studies can be termed as airway mechanics. 

2.2   Airway Mechanics 

Airway mechanics is a broad subject in applying physical laws in lungs and airways.  

The available literature on this subject may be classified into four main categories: 

1. Airway fluid mechanics approach 

2. Airway narrowing mechanisms 

3. Dynamic characteristics of airways and lung tissues 

4. Measurements of dynamic parameters 

 

In the following sections, a brief description is presented on each one of the 

categories [46]. 



 

  

 15 

2.2.1 Airway Fluid Mechanics Approach 

Airway pressure drop is proportional to the momentary flow rate and the regional 

resistance of the airway, which is inversely proportional to the cross-sectional area.  

In the lower generations of the bronchial tree, numerous bronchi are shunted together 

to equivalent to a huge cross-sectional area as seen by the pressure head; therefore 

the drop is practically negligible.  Contribution to pressure drop is less than 10% [64] 

for generations beyond 10, or diameters less than 0.5 mm.  Therefore, the dead space 

volume exists at the alveolar ending because of slow flow in this region.  The 

electrical analogy provides an alternative form of analysis of the airway mechanics. 

Historical development of airway mechanics applied to the respiratory system can be 

traced back to 1915 when Rohrer [63] first proposed the Rohrer's equation: airway 

pressure drop is a function of the instantaneous flow rate.  Rohrer assumed that the 

pressure drop in the respiratory system from the mouth down to the alveoli is 

contributed by a linear and a quadratic function of the flow and can be expressed as 

follows: 

 

2

21

••
+=∆ VKVKP   ( 2.2.1 ) 

where  P∆  is the airway pressure drop, 

•
V is the flow rate,  

1K  and 2K  are empirical constants. 
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Consequently, the airway resistance R  as a ratio of pressure drop to flow rate is 

expressed as: 

 
•

+= VKKR 21  ( 2.2.2 ) 

Therefore, the airway resistance is not ‘ohmic’ as indicated.  Twelve years later, von 

Neergaard and Wirz [65], designed the so-called Interrupter Method for 

experimental or clinical measurements of airway resistance [66, 67].  The pressure 

drop is defined as the pressure difference between the airway opening pressure and 

the mean alveolar pressure which comes with no direct method of measuring.  The 

Interrupter Method overcame this difficulty by assuming that the sudden occlusion 

or interruption of flow in the airway causes no variation of the alveolar pressure 

which is equated to be the instant pressure at the airway opening after the closure of 

the shutter.  The experimental airway resistance can therefore be determined by the 

ratio of the pressure drop due to the interruption and the airway flow rate prior to 

such an occlusion [66-68].  This technique was superseded by the Body 

Plethysmography Technique [69] in the late 1950's, but became common again due 

to its non-invasiveness of patients and its incorporation with the forced and high 

frequency techniques thereby expanding the scope of applications [70-74]. 

Rohrer's assumption of low and high-speed flow contributions lacked theoretical 

support.  Pedley et al. [64] investigated the pressure drop and its relation with the 

lower airway resistance in another manner.  He claimed that the airway flow, 

somewhat in a laminar way, should be considered to be in turbulent mode and that 
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the Poiseuille flow was not applicable even in smaller airways [75].  The derived 

equation for the pressure drop with respect to the Weibel's model is: 

 
2/3

2/1)(
•

=∆ VKP µρ  ( 2.2.3 ) 

where  K is a constant depending only on lung anatomy, ρ and µ are the density and 

dynamic viscosity of air respectively, and V�  is the volumetric flow rate. 

An additional factor Z , based on the Poiseuille equation, accounts for the turbulent 

disruption at bifurcations and is expressed as: 
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where C is an experimental constant estimated to be 1.85 in the developed model, Re 

is the Reynolds number, d is airway diameter, and l is the airway length. 

However this factor, a ratio of the real resistance to the Poiseuille resistance, can be 

used to multiply the pressure drop estimated in the laminar flow only when Z > 1. 

A correlation has been made on the pressure-flow data with normalisation on the 

family of curves obtained from an extension of Rohrer's development to a wide 

range of conditions by Jaffrin and Kesic [59].  Conclusively, the airway resistance at 

any given lung volume is proportional to the high flow rate or the flow of heavy 

gases; otherwise is independent for the opposite extremes.  With concern of 

turbulence at bifurcations, Jaffrin and Kesic's model in estimation of the pulmonary 

resistance can be summarised as follows: 
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where  ∆P  and  Pn – Pn+1  are pressure drops in straight airways and across nth 

and n+1th generations,  

un and un+1 are velocity of gas in nth and n+1th generations,  

G is the conductance (the reciprocal of resistance R) and V is the lung 

volume, 

ψn  is the angle of branching at  nth generation, and 

a  and  b  are constants. 

 

2.2.2 Airway Narrowing Mechanisms 

Airway obstruction can be caused either by inflammation or airway smooth muscle 

(ASM) contraction as far as asthma is concerned.  Inflammation is due to irritation 

resulting in epithelium thickening, mucous production and the non-specific defence 

of the immunity response.  ASM contraction is mainly due to the airway hyper-

responsiveness of the asthmatics.  Emotions are no longer believed to be factors for 

such episodes; instead they contribute to the effects of the cause.  Physiologically, 

the airway wall (cross-sectional) area can be approximated to a circular ring with 

mainly the inner mucosa, airway smooth muscle and the outer adventitia, Figure 2.1   
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Figure 2.1 Tissue composition of central airway walls. 

 
 

Human muscles are classified into three types, smooth muscle, cardiac muscle and 

skeletal muscle.  Smooth muscle is the most dominant type in the airway walls or the 

respiratory system, and gradually replaces the supportive cartilage rings in the 

lowering, branching and narrowing bronchi.  An airway smooth muscle is composed 

of two layers orthogonal to each other.  The inner layer is circumferential while the 

outer is axial to the airway geometry.  To preserve the muscle volume, contraction in 

either direction results in thickening of the airway wall (cross-section) area, that is, 

narrowing of the airway lumen.  Airway smooth muscle shortening has less effect on 

lumen occlusion for normal subjects than the asthmatic ones [76] because of the 

nervous control of self-regulation. 
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Fredberg [77] studied the molecular basis of mechanical friction by measuring the 

rates of mechanical energy dissipation and actomyosin adenosine triphosphate (ATP) 

utilisation in canine airway smooth muscle and found its dependence on the rate of 

cross-bridge cycling, instead of the classic viscosity.  The force maintenance or latch 

in the low-friction contractile state might be responsible for the irreversibility of the 

asthmatic subjects to spontaneous airway obstruction with a deep inspiration.  Away 

from the internal control of the smooth muscle mechanism, a simulation [50] was 

made on the airway narrowing by applying works from Weibel's symmetrical 

dichotomous branching tracheobronchial tree, Pedley et al. [64] fluid dynamic 

equations and Lambert et al. [78, 79] airway pressure-area curves.  It linked the 

physical parameters of the airway smooth muscle shortening, airway wall thickness 

and pulmonary resistance through simulating the control of the S-shaped dose-

response.  The resulting pulmonary resistance versus dose-response curves could be 

a potential tool to investigate obstructive diseases if such behaviour was realistic. 

2.2.3 Dynamic Characteristics of Airway and Lung Tissues 

A dynamic system has its statics as the building blocks for real-time investigation.  

Energy is the driving source for all dynamic operations.  The energy dissipating 

factors depend on the modelling of the system.  The pressure energy of fluid flow in 

a simple channel can be utilised in three ways:  

1. to overcome viscous forces exerted by the channel wall 

2. to accelerate the fluid or to overcome the inertial effect - inertance  

3. to expand the channel wall if it is elastic or non-rigid 
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It is quite possible to extend the channel flow idea to the complicated airway 

breathing system including other effective factors or parameters.  A stimulated 

frequency response [71], later in higher frequency [80], can probe into the system to 

reveal the dynamic characteristics, as breathing is an unsteady cyclic process with 

continually varying pressure, flow rate and volume due to inspiration and expiration.  

The inter-dependence among the mechanical, physical properties of the airway wall 

and tissues, and the acoustical properties of the air should also be observed.  Critical 

parameters in the dynamic analysis of the tracheobrochial tree are: airway wall 

compliance (reciprocal of elastance); lung tissue resistance (damping) and elastance; 

acoustical properties such as bulk modulus and the density of air.  Propagation of 

acoustic waves is limited to one dimension in the longitudinal direction while the 

transverse mode is negligible for the small radial dimension compared to the applied 

wavelength.  Figure 2.2 depicts the overview. 
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Figure 2.2 Parameters considered for dynamic characteristics of airways. 
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The impedance [16, 81] of such a non-conducting tube could be given as a function 

of perturbation frequency along with the physical and mechanical properties of the 

system as follows: 
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where         ρo  is the mean air density,   

L and S are the length and cross-section area of the tube (airway) 

respectively,   

k  is the wave number, i.e. ratio of frequency  (ω)  to sonic speed  (c),     

Z0  and  Z1  are impedances at section ‘0’ and ‘1’ respectively, and 

1−=j . 

 

The impedance ZL is however governed by the boundary conditions at section 1, in 

Fig 2.2 which depends on the mechanical response of the alveoli.  Modification and 

improvement [15] can be made on this simple model to a rigid symmetric Nth order 

branching network as the tracheobronchial tree. 

Schmid-Schoenbein and Fung [82] developed a distributed model (multi-degree of 

freedom) treating the respiratory system as a continuous elastic body. The lung 

dynamic characteristics were simulated using a lumped mass-damper-spring model. 

The model consisted of the dynamics of the airways, lung parenchyma, chest wall, 

diaphragm and abdomen. The non-linear governing partial differential equations 

were linearised for small perturbations and solved subject to boundary conditions 
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with a number of simplifying assumptions. They used the method of series 

expansion and collocation to solve the governing equations of the abdomen, lung 

parenchyma and the chest wall. They concluded from their study that by using a 

continuum model that more realistic dynamic characteristics of the respiratory 

system could be obtained to interpret various pulmonary diseases. 

Fredberg and coworkers [4, 5, 83, 84] investigated the dynamic characteristics of 

branching networks including the tracheobronchial tree under various conditions. 

Simulations were carried out with a view of modal analysis of asymmetrically 

branching networks. Two structures were analysed: a bushlike structure consisting of 

a trunk that divides into N siblings of variable lengths and cross-sections; and an 

asymmetric structure of the tracheobronchial tree. For the bushlike structure, the 

undamped system eigenvalues and the normalised input impedance of the damped 

system were given by: 
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where  0k , 0S  and 0L  are complex wave number, the cross-sectional area and 

length of the main trunk,  

nS  and nL  are the cross-sectional area and length of siblings,  

∧

nk  is the complex wave number,  
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0Z  is 000 Scρ , and 

niZ ,  are the input impedance of main trunk and branches respectively. 

 

Fredberg and Moore [4] presented a mathematical model to simulate the distributed 

response of asymmetric branching networks. Simulations were carried out on the 

human lung to investigate the response of pressure with frequency, path and 

position. The model included mechanical inhomogeneities from origin to 

terminations as well as parallel ways. The impedance matrix of a link was given by: 
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where 0P , LP  and 0V , LV  are the pressure and the volume rate at the ends of the link 

and α 's are given by: 
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where aZ  is the complex characteristics of the tree link and ak  is the complex wave 

number. They used recursive matrix formulation to determine the impedance at 

successive nodes along the principal path. From the simulation results they 

concluded that the effects of tree asymmetry are significant above 100 Hz in the air-

filled lung. 

Fredberg and Hoenig [84] presented an efficient method for computing the input 

impedance of complex asymmetrically branching duct networks. The proposed 

method incorporated the concept of a ‘self consistent’ network to deal with the 
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complex non-symmetric structures. Self-consistency of a branching network implies 

that the impedance boundary conditions in all terminal links are identical. Governing 

equations of the model comprised the description of the dynamic characteristics of 

conducting airways, alveolar ducts and airway terminals. Conducting airways were 

represented with resistance, inertance and compliance components for both gas and 

airway walls. An additional factor was also introduced for the conducting airways to 

account for the thermal resistance of the air.  For alveolar ducts, the resistance, 

inertance, compliance and thermal resistance of air were considered. The terminals 

of the airways were described by using a six-component model to account for 

resistance, inertance and compliance of both the lung tissue and thorax wall. The 

model was simulated to obtain the dynamic response of the lungs of normal adult 

humans in the frequency range exceeding 10,000 Hz. They concluded that the 

response of comparable symmetric and asymmetric networks differ at high 

frequency ( > 2 kHz.) and the airway wall response is an important factor in 

determining system resonance and damping. 

Al-Jumaily and Al-Saffar [85] have extended the model developed by Fredberg [4] 

above by including the effect of the wall inertia to study the dynamic response of the 

respiratory system.  Further Al-Jumaily and Mithraratne [54] developed a theoretical 

acoustical model of the respiratory system based on the Weibel's symmetric 

dichotomy and simulated the dynamic response of rigid as well as compliant airway 

walls with rigid and compliant terminations.  Occlusions, if any, may be revealed 

and analysed systematically by the normalised curves of the input impedance versus 
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the stimulating frequency, at each generation from alveolar sacs up to the distal end 

of the primary bronchi. 

Margolis and Tabrizi [14] presented a method to investigate the dynamics of the lung 

using 'bond graphs'. The model included the distributed dynamics of the proximal 

airways (trachea and main bronchi), with the distal generations represented in 

lumped resistance and compliance. The model was capable of simulating system 

dynamic characteristics of frequencies as high as 8500 Hz. With appropriate 

modifications the model claimed to predict the input-output relation between the 

mouth and any desired lung segment location. 

A technique was developed by Raphael [15] to determine explicit resonance 

conditions at the open end of a rigid, symmetrical, branching structure with an 

arbitrary number N of successive bifurcations resulting in 2N terminal closed 

branches. In general, recursive matrix techniques are used to obtain the impedances 

at the nodes in a branching network and Raphael manipulated the equations [71] to 

express explicitly the overall resonance condition of the entire network related to the 

branch lengths, areas, the angular frequency and the integral harmonic number. 

Raphael and Epstein [16] also extended the technique of branching networks [4, 15, 

83] to estimate the volume of symmetrically branching structures using the 

resonance mode analysis in two approaches, using fundamental frequency and 

equivalent length. The volume estimation using the former method for a 3rd order 

bifurcation network is given by: 
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V ≈  ( 2.2.13 ) 

where     V  is the total volume,  

1S  is the cross-section of the 1st (main) branch,  

c   is the acoustic velocity, and  

1f  is the fundamental frequency. 

 

They considered two special cases with the Weibel model under the fundamental 

frequency method.  

1. Equivalent area where the total cross-sectional area of each generation 

remains the same.   

2. The successively fractional diameter decreasing case where the diameter of 

each lower generation is a fraction of its parent link. 

 

The studies conducted on the respiratory system using the acoustical approach 

attempted mainly to determine the lung structure using non-invasive methods. It is 

clear from scrutiny of the literature pertinent to the subject concerned that some 

models have incorporated the airway dynamic characteristics (inclusion of 

mechanical properties) into the acoustics of the system while others have simply 

treated the airways as rigid walls. None of the dynamic analysis studies reported in 

the literature has considered the dynamic characteristics of the airways (walls). This 

basically involves mode shapes and the natural frequencies of the airways. 

Identifying these parameters will give a better understanding of the ways of 

expanding airways that have been contracted due to respiratory disorders. 

Furthermore, investigation of these parameters may have a clinical relevance. 
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2.2.4 Measurements of Dynamic Parameters 

Dynamic parameters of the lung are clues in the diagnosis of the respiratory system.  

The measuring techniques integrate the background knowledge of physiology and 

fundamental concepts on airway mechanics with dynamic frequency response as the 

probing tools, also the narrowing mechanism incorporated for relief of occlusion.  

Investigations so far are mainly on experimental measurements of pressure, volume 

and volume flow rate, under a variety of conditions depending on the model 

designed, to reflect indirectly the diagnostic parameters such as pulmonary 

resistance, lung dynamic elastance.  Clinical practice and research share similar 

equipment [40, 86] in functioning whilst focusing on respective purposes.  In 

general, the latter searches for a methodology for the former to apply. 

With the four-element lung mechanical model, Figure 2.3, Advanzolini and Barbini 

[87] presented and evaluated three proposed recursive algorithms: (i) equation error 

(ii) two-stage-least-square and (iii) output error. 

 

Figure 2.3 Four-element lung mechanical model Avanzolini and Barbini 
[87]. 
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The four-element biquadratic impedance arrangement represented the respiratory 

mechanics of the patients undergoing artificial ventilation. The general input–output 

identification model for discrete time was given by: 
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 ( 2.2.14 ) 

where y is the output, u is the input, v is the disturbance (noise), A and B are 

functions of z transforms of discrete time functions. 

The signals used for identification were the airflow at the mouth and the pressure 

difference between the trachea and the pleurae. They have reported that the output 

error algorithm, in general, gives a better disturbance screening or rejection effect 

than the equation error method and it is attractive for practical applications since it 

needs less computational effort. 

Hantos et al. [8] studied the regional input impedance of airways and lung tissues 

using the measurements by a modified wave-tube technique. Small-amplitude 

computer generated pseudorandom forced oscillations between 0.1 and 48 Hz were 

applied through catheters placed in 2mm diameter bronchi in dogs' lungs. The 

impedance was evaluated using simple models that were considered adequate to 

describe the gross mechanical behaviour of the lung periphery. The models for data 

fitting consisted of the resistance, inertance of segmental airways, the resistance of 

the collateral channels, and the damping and elastance of the tissues. The separated 

elastance and damping was claimed for better impedance results to the single tissue 
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compliance. The model parameters were estimated by means of a global optimisation 

procedure minimising the fitting error. 

Pedersen et al. [61] investigated experimentally the peak expiratory flow using the 

wave-speed flow-limiting mechanism. Peak expiratory flow (PEF) is defined as the 

highest flow achieved at the mouth during a maximum forced vital capacity (FVC) 

manoeuvre starting at full inspiration. That the volumetric flow rate through an 

airway segment approaches maximum when the convective velocity reaches the 

sonic speed, the maximum flow 
•

V  may be given by: 
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where          A is the airway cross-sectional area,  

ρ  is the air density, and  

C is the airway compliance.  

Therefore, if PEF is limited by the sonic speed, then the peak flow should occur 

when the velocity of the accelerating flow reaches sonic speed at some point in the 

airway and at that point the speed index �
�
�
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 is equal to one. From the 

experimental measurements made on healthy and asthmatic subjects they concluded 

that SI , when the PEF reached, is close to unity for healthy subjects but is less than 

1 for most asthmatic subjects. 
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Officer et al. [88] measured with a volume-displacement plethysmograph [28] the 

pulmonary resistance and lung elastance in normal subjects and in subjects with 

emphysema and asthma, then compared, through least square data fitting, the 

response by the four models as follows: 

1. a single resistance and elastance 

2. separate resistances and elastances for each half breath 

3. separate inspiratory and expiratory resistance with a single elastance  

4. separate inspiratory and expiratory resistance, an expiratory interaction term 

and a single elastance  

They concluded that all the models gave comparable responses with the exception of 

models 1 and 3 overestimating the dynamic elastance and inspiration resistance. It 

has also been found that model 4 appears to give a good measure of inspiratory 

resistance and dynamic elastance. Further they concluded that the expiratory 

resistance is larger than the inspiratory resistance in normal and asthmatic subjects 

and that inspiratory resistance is higher than the expiratory resistance in subjects who 

experience severe broncho-constriction. 

Kaczka et al. [89] proposed a method to partition the total lung resistance (RL) into 

two components, the airway resistance (Raw) (viscous dissipation) and the lung tissue 

resistance (Rti) (mechanical resistance). With this approach they compared the 

resistive components in asthmatic and healthy subjects. Another parameter that was 

used in the study for comparison purposes was the lung elastance.  By measuring the 

lung impedance at different frequencies around the breathing rate, they were able to 

partition Raw and Rti since these two components have distinct frequency–response 
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characteristics. From the comparative studies they proposed four models to cover 

experimental data obtained from asthmatic subjects: 

 
(a) A homogeneous airway model consisting of a rigid-walled airway 

channel with parameters for airway resistance (Raw) and inertia 

(Iaw) followed by a visco-elastic tissue compartment with 

parameters for tissue damping (G) and tissue elastance (E). 

(b) An airway shunt model consisting of an additional parameter for 

airway compliance (Caw). 

(c) An inhomogeneous airway model consisting of two separate 

airway pathways both leading to identical visco-elastic tissue 

compartments. 

(d) An Inter-regional flow model with an additional collateral 

resistance in parallel with the tissues. 

 

The study investigated the relative contribution of the two partitioned factors, airway 

resistance and tissue resistance, to the overall lung resistance in asthmatics before 

and after albuterol inhalation, compared to previous results with healthy subjects 

during methacholine-induced bronchconstriction.  They found that the contribution 

ratio was relatively the same and independent of the constriction of the smooth 

muscle.  However, asthmatics had a greater airway to peripheral resistance ratio. 

The human respiratory system, as part of the circulatory system, provides a unique 

function, breathing of air to live.  This system is so critical and different from the 

others, the integumentary, the skeletal, the muscular, the nervous, the endocrine, the 

circulatory, the digestive, the urinary, the excretory and the reproductive systems.  It 

delivers and provides oxygen for metabolism of all living cells for growth, repair and 
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development.  Cells may be starved of oxygen to death within minutes.  For that 

asthmatic subjects can be in fatal condition because constriction and occlusion tend 

to occur in peripheral airways during attacks. 

2.3   Objectives 

Since no previous research was found to focus on investigating the vibration 

characteristics of branched circular cylindrical shells, the main objectives of this 

research are summarised as follows: 

1. Investigate the possibility of modelling such a branched circular 

cylindrical thin shell analytically.  In this respect it is expected to use an 

appropriate thin shell theory and suitable boundary conditions to reflect 

that of the respiratory branching structure. 

2. Since no values for validation are available, a finite element code will be 

used to determine the natural frequencies and mode shapes of a branched 

structure. 

3. The results of step 2 above will be used for validation as well as for 

studying other cases which cannot be dealt with analytically. 

4. Since obtaining an experimental natural frequency and mode shape of human 

airways for validation purpose is very cumbersome if not impossible, and 

requires equipment which are not available at AUT, the natural frequency of 

a trachea and a tracheobronchial system will be determined with pig samples 
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through the modal analysis and testing techniques for the dynamics response 

in terms of the radial resonance and mode shape. 

5. Utilise the results so that a thorough understanding of the dynamics of the 

lungs as a network of circular cylindrical thin shells so that there may be 

radial relaxation of constriction and occlusion with pulmonary disorders. 
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Chapter 3 

Analytical Models 

3.1   Introduction 

Airways are the transport passages of air to and fro between the alveoli and the 

environment.  The luminal diameters of the trachea and bronchi determine how easy 

the gases can pass through in the breathing rhythm.  The trachea, or windpipe and 

each bronchus have a pipe shape with thin walls slightly tapering as it progresses. 

To model airways for the natural frequencies, both geometric and physical 

parameters of the concerned system are the critical factors of the outcome.  The 

extreme thinness of these layers relative to the longitudinal dimensions of the 

conducting passages suggests a circular cylindrical shell structure when ignoring the 

small tapering of branching.  In the same token, it is quite legitimate to approximate 

the respiratory branching tree as homogeneous with isotropic wall properties.  As the 

vibration response of this system is modelled for the first time, it is felt that such 

assumptions will generate reasonable results which may not be accurate, but 

definitely will show the trend of variation.  The continuum can then be analysed by 

considering an isolated element of the airway wall which is membrane-like and 
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sustains a very small bending moment which may be neglected in comparison with 

axial forces.  Due to the fact that the airway passages undergo mainly radial 

deformations, the in plane deformation is relatively small in comparison with the 

radial ones, and may be neglected in the present investigation. 

The base unit of the airway tree is a narrowing tube which can be modelled as a 

circular cylindrical thin shell, assuming that the slight tapering contribute no 

significant deviation from the expected results.  Such a concept can then be extended 

to all branching components of the overall structure. 

3.2   Governing Equations 

Soedel [90] praises Galileo Galilei (1564-1642) as the pioneer in vibration analysis 

in his study of the frequency dependence on the length of a simple pendulum.  Since 

then, development phases continue from continuous systems by Robert Hooke 

(1635-1703), longitudinal vibrations of rods by Chladni and Biot, transverse 

vibration of flexible thin beams by Daniel Bernoulli and Euler, and torsional 

vibrations by Couloumb, Cauchy, Posisson, and Saint-Venant.  Further vibration 

work on membranes, plates and shells are studied by Euler, Bernoulli, Lagrange, 

Kirchhoff, Love and Rayleigh, while Sophie Germaine (1776-1831) is the first who 

investigated shell vibrations before 1821.  The basic classical theory of shells was 

formulated by Love based on the vibrations of thin plates by Kirchhoff. 

A thin circular cylindrical shell [90-95] is now considered as the fundamental 

structure of the overall airways.  In fact, the airway walls are so thin relative to the 
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lumen radius and  the branch length [42, 48, 96, 97] that they are actually considered 

as membranes with no resistance to both loads and bending.  Consider an element of 

the airway walls as a shell element exposed to planer forces Nx, N� and Nx� only.  

Bending is assumed insignificant as compared to other loadings in this analysis.  

Consider a cylindrical membrane element of radius a, Figure 3.1, with axial force per 

unit length Nx, circumferential force per unit length, N� and shear force Nx� per unit 

length. 

 
 

Figure 3.1 A cylindrical membrane element with normal and shear stresses [98]. 

Applying Newton’s second law and the first equilibrium condition in the axial 

direction x leads to 
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This can be simplified to: 
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where the N’s are the normal stresses (with single subscripts) and the shear stresses 

(with double subscripts) in the captioned direction x. 

Similarly, applying Newton’s second law in the �-direction with some simplification 

leads to the resulting forces in the y direction  
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To satisfy the condition of equilibrium of moment about the z axis implies that 

 xx NN θθ =  ( 3.2.4 ) 

Then equation ( 3.2.3 ) can be re-written as 
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Similarly, summing forces in the z-direction can lead to 
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Neglecting the second order term of d� gives 
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 0=+ Z
a

Nθ  ( 3.2.7 ) 

Since the aim is to determine the natural frequencies of the cylindrical membrane 

element, the only external loads are the inertial components.  Based on d’Alembert’s 

principle, the dynamic equations ( 3.2.2 ), ( 3.2.5 ) and ( 3.2.7 ) reduce to 
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where ρ  is the density, h is the thickness of the membrane and t is the time. 

Obviously, stresses are not the practical parameters of measurements that can be 

transformed into the axial, circumferential and radial displacement u, v and w 

respectively, stress-strain relationships, along with the physical parameters of the 

Young’s modulus of elasticity E and Poisson’s ratio �, can be written as [92, 94, 98-

100] 
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Substituting equation ( 3.2.9 ) into equation ( 3.2.8 ) one obtains 
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The terms double underlined are the inertial forces in the longitudinal and 

circumferential directions, which are suppressed, as more interest is on the radial 

deformation of the airways, in addition to the fact they are much smaller than the 

radial inertias.  Equation ( 3.2.10 ) is rewritten as  
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Among the three displacement variables, u, v and w, the focus of this work is on the 

radial deformation.  Therefore, it is necessary to eliminate the first two in order to 

observe the behaviour of the third, w.  Although the algebraic process is tedious, the 

approach is no more than solving three simultaneous equations of three unknowns.  

Apply the following operations, 2

2

x∂
∂

 and 2

2

2

1
θ∂
∂

a
 on the first expression in 

equations ( 3.2.11 ) [91, 93].  This gives: 
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Now apply 
θ∂∂

∂
x

2

  on the second expression of the equation ( 3.2.11 ) and we have 
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Substitute the v terms in equation ( 3.2.12 ) and ( 3.2.13 ) into equation ( 3.2.14 ) and 

simplify to 
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Another similar expression to equation ( 3.2.17 ), but in terms of v, by applying 
2
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 on the second expression in equations ( 3.2.11 ), then substituting the u 
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terms into the first expression in equation ( 3.2.11 ) had resulted after the operation 

of 
θ∂∂

∂
x

2

 , and is expressed as 
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To eliminate u and v, 
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on equation ( 3.2.17 ), and 
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were applied and added up to result 
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Grouping the underlined terms and simplifying the double-underlined terms leads 

equation ( 3.2.19 ) to be 
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Note that the bracketed terms are exactly the same as the left handed side of equation 

( 3.2.11 ) and can be replaced by the right handed side equivalent.  This gives 
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3.3   Proposed Solutions 

Equation ( 3.2.21 ) is a fourth order partial differential equation with a biharmonic 

term.  The assumed solution is expected to involve four constant coefficients Ci  and 

can be expressed as, 
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where the radial deformation w is a function of the longitudinal displacement u, the 

circumferential displacement v, and the time t with their relevant controlling 

parameters λi, n, the longitudinal length l and the angular frequency, ω. 

Substitute this expression into the last expression of equation ( 3.2.21 ) and take only 

the time derivative of it.  This gives [101] 
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where w is reduced to be a function of the longitudinal displacement x and the 

circumferential folding number n only.  Equations ( 3.2.21 ) and ( 3.3.2 ) result in . 
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This can be solved to get 
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Therefore � can be expressed in terms of a real parameter K as 
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where j is the imaginary part 1−  of a complex number. 

3.4   Boundary Conditions 

The respiratory system is embedded in a complicated spongy moist environment 

with tedious boundary conditions for each of the branches.  If embedded elastic 

elements are assumed, it will complicate the system and make it impossible to 

generate an analytical solution.  Since the main goal of this investigation is to 

determine the trend of variation of the natural frequencies, a simply support 

boundary condition will suffice the need for the undergoing research. 

Consider the simply supported boundary conditions where displacements and 

moments at both ends of the cylindrical shell are zero (u=0, v=0, N=0 and M=0).  

Four simultaneous equations of the four coefficients resulted.  For non-trivial 

solutions, the determinant of these coefficients requires that matrix be zero, implying 

the following values for the longitudinal mode parameter �. 
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where 1−=j , and m = 1, 2, 3, 4, … for simply supported boundary ends. 
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Equation ( 3.2.8 ) also leads to the membrane radial frequency (or membrane 

frequency for short) equation for the circular cylindrical shell membrane. 
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This cylindrical membrane radial frequency equation may be considered as a product 

of three factors, namely, the frequency of a ring  
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and a limiting factor  

 
1

22

22

1
−

�
�

�

	






�

�
−

nl
a iλ

 ( 3.4.5 ) 

To confirm the positive value in frequency, the product of the last two factors needs 

to be positive, with the relevant value(s) of iλ  as given in equation ( 3.4.1 ).  For 

both options of 3λ  and 4λ , equation ( 3.4.2 ) becomes 
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Applying Yu’s approximation to long cylinders with many circumferential waves 

that 12
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mπ ,  equation ( 3.4.7 ) is reduced to  
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Therefore, equation ( 3.4.7 ) is the analytical expression which is most applicable in 

determining the natural frequencies of the tracheobronchi for each branch considered 

as a simple circular cylindrical thin shell.  The lowest frequency occurs when the 

axial integer m = 1.  The circumferential integer n, however, should be equal to 1 for 

radial deformation. 

In the case of 12

2

2

2
2 >>

l
a

n
mπ , the resonant frequency will approach to the limit of the 

frequency of a ring. 

3.5   Other Analytical Frequency Equations of Cylindrical Thin Shells 

Yu [91] made an overview on vibrations of cylindrical thin shells and a justified 

approximation for solutions to Donnell’s equations [90-94, 102-104] for the bending 

and buckling of cylindrical shells, by reducing the eighth order of the differential 

equation to the fourth.  The characteristic equations of the resonant frequency of 

cylindrical shells with different boundary conditions, i.e. edges freely supported, 
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edges clamped, and one edge freely supported and other edge clamped, have the 

similar patterns as those of the lateral vibration of beams.  The resulting frequency 

equation involves the frequency parameter to the power of three, implying that there 

are three resonant frequencies for each set of longitudinal and circumferential modal 

numbers. 

Kraus [93] further investigated the free vibration of cylindrical shells with edges 

with clamped boundary conditions with Yu’s approximation in the variational, and 

“exact’ or analytical solutions.  Kraus then compared results against the experimental 

data and results of clamped steel cylinders by Koval and Cranch [105]. 

Neglecting the higher frequency terms, an approximation to the lowest natural 

frequencies f1, the lowest natural frequencies for the radial character fr1, without the 

longitudinal and circumferential inertia, and the simplified solutions of Rayleigh’s 

approach [93, 100] fray 1 were found as the following equations respectively. 
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where 2

2

12
1

a
h=

ξ
 and ( )

E
a

2
22 1

ωνρ −=∆ .  Therefore, the frequency expression is 

 ( )212
1

νρπ −
∆= E

a
f  ( 3.5.4 ) 

 

Ventsel [94] determines the natural frequency for axisymmetric free flexural 

vibrations of cylindrical shells with simple supports to be 
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where ( )22
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, and 
l

anπλ = . 

 

In the case of fixed shell edges and application of Yu’s approximation, the natural 

frequency and its second harmonic expressions are respectively 
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In the case of free asymmetric flexural vibrations of circular cylindrical shells, 

Ventsel [94] determines the natural frequency by differentiating the frequency 

parameter � expression for the minimum and the corresponding flexural number m 

values. 

3.6   Application to Respiratory walls 

Analytical solutions of the vibration of branched systems involve extreme 

complexity in matching the boundary conditions between generations and therefore 

are not found in the current literature.  This work makes no attempt to strive for such 

solutions simply because the nature of the boundary conditions in the respiratory 

system is not clearly defined.  Instead, a numerical approach is adopted for such an 

investigation and results are analysed and related to those from individual branches 

with simply supported and branched angles. 

Although analytical solutions for branched systems are not possible at this stage, the 

concept of a circular cylindrical membrane or shell may be applicable to the 
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individual respiratory bronchus. Table 3.1 tabulates the physical properties, elasticity 

(of the numerical values of elastance) and density, from Fredberg [84], the airway 

wall thickness to radius ratios from Kamm [48], in addition to the geometric 

dimensions of tracheobronchial lengths and radii from Weibel [42].  The wall 

thickness of each branch can then be determined with the corresponding radius of the 

airway. 

The elastance by Fredberg [84] is one order of magnitude greater than the Young’s 

modulus from other literatures [106-108].  This work assumes only the numerical 

values of Fredberg’s elastances and the orders of magnitudes and units of elasticity 

from Hill et al. [108], and .Halpern and Grotberg [106-107] for the Young’s moduli 

of the tracheobronchial generations. 
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Table 3.1 Geometric and physical data of airways from the trachea to the 
16th bronchus, including the analytical ring frequency of each 
branch. 

 

 

Resonant frequencies at the ring limits are calculated for the trachea and bronchi up 

to the 16th generation.  The increasing frequency of the generations agrees with the 

ratio variation among the contributed geometric and physical parameters, and ranges 

from 41 Hz for the trachea to 787 Hz for bronchus 16.  Figure 3.2 shows the 

variation of the square root values of the Young’s modulus to the tracheobronchial 

density in an approximate ‘linear’ decreasing curve on the airway generations, with 

few exceptive points. 

Generation 

No. of 

Tubes Radius Length 

Thickness 

/Radius 

Wall 

thickness Elasticity Density 

frequency 

of ring 

z 2n a,  mm l, cm t/a t, mm E, kN/m2 �, kg/m3 f, Hz 

0 1 9.000 12.000 0.043 0.387 7.3 1351 41 

1 2 6.100 4.760 0.044 0.268 5.7 1959 45 

2 4 4.150 1.900 0.044 0.183 4.7 3103 47 

3 8 2.800 0.760 0.045 0.126 4.7 1324 107 

4 16 2.250 1.270 0.046 0.104 4.7 1069 148 

5 32 1.750 1.070 0.047 0.082 3.9 1188 165 

6 64 1.400 0.900 0.049 0.069 3.9 1132 211 

7 128 1.150 0.760 0.050 0.058 3.9 1221 247 

8 256 0.930 0.640 0.052 0.048 3.2 1035 301 

9 512 0.770 0.540 0.054 0.042 3.2 1162 343 

10 1024 0.650 0.460 0.056 0.036 3.2 1178 404 

11 2048 0.545 0.390 0.059 0.032 3.2 1059 508 

12 4096 0.475 0.330 0.063 0.030 2.1 966 494 

13 8192 0.410 0.270 0.065 0.027 2.1 1256 502 

14 16384 0.370 0.230 0.068 0.025 2.1 976 631 

15 32768 0.330 0.200 0.071 0.023 2.1 835 765 

16 65536 0.300 0.165 0.075 0.023 2.1 955 787 
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Such trend is applicable at generation 3 and onward to generation 16, particularly 

between generations 5 and 10.  A graph of ring frequencies versus generations is 

plotted in Figure 3.3.  The ring frequencies show a good linear trend between 

generation 2 and 16 and could be extrapolated to lower generations and the predicted 

frequencies can in turn be used in estimating the physical parameter like the Young’s 

modulus if such a hypothesis holds true. 
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Figure 3.2 The graph of the square root of elasticity to density ratio versus 
the generation number z from the trachea to bronchus 16. 
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Figure 3.3 The ring frequency distribution in tracheobronchial generation.  
The curve behaves quite linearly over the range. 

 
 

3.7   Results 

The conceptive idea of this work is to link the circular cylindrical thin shell as the 

fundamental unit to the resonant frequencies of the complex airway structure.  

Therefore, it is worth investigating the trend related between the single simple unit 

and the overall airways with numerous branching.  The derived membrane frequency 

equation for the fundamental shell has simple supports as contrast to the clamped 

restrains at the end boundaries in Kraus’s investigation.  Yu shows that the type of 

boundary conditions corresponds to different values of the characteristic constant or 

the longitudinal mode number m’s previously, which are whole integers for simply 

supported boundaries and are 1.506, 2.500, 3.500, 4.500, and so on, instead of 

clamped conditions.  Comparison of analytical frequency is shown in Table 3.2. 
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Table 3.2 Comparison of analytical frequencies of tracheobronchial 

generations. 
 

Generation 

Ring 

frequency 

fring 

Lowest 

frequency 

f1 

Radial 

mode 1 

fr1 

Membrane 

frequency 

fm 

Membrane 

Approx. 

fm~ 

z Hz Hz Hz Hz Hz  

0 41.11 1.67 2.36 2.16 2.28 

1 44.50 5.12 7.24 6.21 7.21 

2 47.20 15.72 22.23 15.11 22.22 

3 107.11 101.45 143.50 61.33 143.49 

4 148.33 32.52 46.00 35.08 45.95 

5 164.76 30.80 43.57 34.41 43.50 

6 210.98 35.70 50.50 40.67 50.39 

7 247.34 39.62 56.04 45.59 55.89 

8 300.95 44.49 62.93 51.90 62.72 

9 343.05 48.86 69.12 57.34 68.84 

10 403.59 56.47 79.88 66.44 79.53 

11 507.73 69.53 98.36 82.05 97.86 

12 494.00 71.77 101.54 83.87 101.02 

13 502.03 81.11 114.76 93.07 114.25 

14 631.11 114.37 161.82 128.40 161.20 

15 764.89 145.81 206.31 162.00 205.53 

16 786.90 181.96 257.48 193.58 256.74 

 

There is a reason why the ratio of the approximate membrane (radial) frequency fm~ 

to the membrane (radial) frequency fm ranges from 1.06 (the trachea) to 2.34 

(bronchus 3) in the tracheobronchi.  As the radius to length ratio of the shell 

increases, the deviation also increases as in bronchus 3.  The other two frequencies f1 

and fr1 are the approximate lowest frequency and the lowest radial frequency of thin 

shells.  It is interesting to find that fm~ is almost the same as fr1. And the membrane 
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frequency fm is higher than the approximate lowest frequency f1 no more than 20% 

except for the trachea and bronchus 3 as shown in Figure 3.4. 

 

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

Generation, Z

Fr
eq

ue
n

cy
, H

z

Exact membrane fm Membrane Approx. fm~ Kraus: f1 Kraus: fr1

 

Figure 3.4 Comparison of the analytical frequency results from equations of 
the membrane fm, approximate membrane fm~, Kraus’s lowest f1 
and the lowest radial frequency fr1. 

 
 

3.8   Application of Analytical Models to Airways 

The analytical solution of a circular cylindrical shell serves as the preliminary 

investigation and a basis to the natural frequencies of airways in the absence of an 

analytical model for such an angular branching network.  Morphology by Weibel 

and Horsfield [42, 45, 47, 109] is quite consolidated and applicable for research 

work although geometric dimensions vary among individuals.  Physical properties 

and boundary conditions of the numerous branching structures of lungs are not that 
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clearly understood and defined in the literature.  Modelling is a powerful technique 

in probing unknowns with simulation. 

The analytical modelling of airways is not to search for the exact solutions as the 

boundary conditions between generations still remain as an un-attackable issue.  

Instead, the investigation is to search for the trend and behaviour of an individual 

shell unit in relation to the whole structure.  Simple support is considered to be the 

suitable end or joint conditions in airways as it is not too loose as free and not too 

tight as clamped boundaries. 

With numerical modelling with finite element analysis, the complexity of boundary 

conditions can be resolved by inter-connected elements of defined shape and 

structural analysis that lead to approximate solutions to some accuracy in return of 

the time and resource of the computing process.  The following chapter is to model 

airways numerically for result comparison and trend of airway behaviour. 
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Chapter 4 

Numerical Models 

4.1   Introduction 

Nowadays numerical modelling plays an important role in research and 

development.  In this work numerical modelling is utilised to investigate the natural 

frequencies of the airways as analytical approaches are generally limited to simple 

geometry and ideal physical constrains; for instance, a single circular cylindrical 

shell with clamped or simply supported ends.  Chapter 3 has modelled each 

tracheobronchial generation individually.  Therefore, numerical models are needed 

for result comparison with the analytical models, and then extend the numerical 

investigation to models of the branched circular cylindrical shells as the complexity 

of human airways. 

In 1943, Courant [110] elaborated the Ritz method in modelling the effect of torsion 

on cylindrical structures and initiated the foundation of the Finite Element Analysis 

(FEA), with variational calculus to vibration systems in structural engineering.  The 
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Ritz method is an approximate solution to simple geometric shapes while the FEA 

utilises such concepts and extends that to complex structures by discretising the 

geometry into simple finite elements which can be solved numerically with given 

boundary conditions.  Therefore, it is obvious that FEA is just an alternative 

approximation of the analytical models of thin shell theory which also involves 

applications of variational methods and principles, and there should be a good 

agreement between the analytical and numerical results on a simple thin shell as 

shown in the verification of COSMOS/Works in the later section. 

Furthermore, FEA has the flexibility to by-pass or overcome the difficulty due to the 

boundary conditions of various geometric structures.  Since analytical solutions are 

not feasible for many of the shell problems, in particular branched shells, FEA seems 

to be an excellent vehicle to numerically investigate the continuously branched 

airway tree structure, and overcome the difficulties due to branched angles and 

boundary conditions between generations.  COSMOS/Works, which is the 

integration of the modelling software SolidWorks and FEA software 

COSMOS/Works, is adopted in this study.  This program has proved excellent 

compatibility with SolidWorks which is normally used to generate almost any three 

dimensional drawing no matter how complex it is. 

4.2   Modelling with COSMOS/Works 

SolidWorks is one of the most popular modelling software in engineering.  It is 

particularly well suited for three dimensional perspective structures.  

COSMOS/Works is adopted as the modelling tool in this work as it integrates the 
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mechanical design automation software, SolidWorks, and the FEA software 

COSMOS.  SolidWorks implements the graphical user interface approach in design 

and creation of models which can then be analysed numerically by COSMOS in 

finite element methods.  COSMOS/Works version 7.0 is used in this work. 

The following steps outline the general procedure in model analysis, using 

COSMOS/Works: 

 
1. Create a geometric model from SolidWorks. 

2. Create a COSMOS/Works study name, analysis type of frequency and mesh 

type of either solid or shell using surface. 

3. For shell analysis, define thickness to selected surface. 

4. Define loads and boundary conditions. 

5. Mesh the model. 

6. Run the analysis. 

7. Visualise results. 

 

The branched geometric airways are modelled as a connected network with units of 

circular cylindrical thin shells.  Investigation is first focused on individual airway 

branches or generations with simple supports at both ends as assumed in the 

analytical models.  In this simple structure, each model could be built as a cylindrical 

thin shell to a specific length, radius and wall thickness with SolidWorks.  With the 

add-in features of COSMOS/Works, the material properties of density, Young’s 

modulus and Poisson ratio are inputted to the model which is then meshed for FEA.  

The mesh element size can be varied from the optimal value generated by the 

system. 
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Many problems arise when it comes to modelling branched structure with added 

generations.  Constructing branched cylindrical thin shells becomes more difficult 

with two generations and tends to be impossible with further generations.  It is good 

to find that COSMOS/Works has the solution which is to mesh selected surfaces as 

thin shells.  Although models are built as solids, they can be meshed as thin shells 

with specific thickness to the selected surfaces.  Models can then be edited with 

appropriate material properties for respective shell elements meshed as thin shells, 

and progress to FEA.  The shell using the surfaces option in the mesh type of 

COSMOS/Works study is particularly useful in the airway tree models which are 

first created as solid angular branched tubes.  This process reduces a great deal of 

difficulty when compared to modelling the shell structure to start and has solved the 

impossible task of constructing models of continuous branching airways of shells. 

The following steps illustrate the modelling procedure of symmetric branched 

airways between generation 4 and 5. 

1. A circle is first drawn to the diameter of bronchus 4, 4.5 mm Figure 4.1 (a). 

2. The circle is then extruded to its length, 12.7 mm, to form a cylinder Figure 

4.1 (b). 

3. Two reference planes are created for the daughter generations of bronchus 5 

which has a diameter of 3.5 mm and length 10.7 mm Figure 4.1 (c) and (d). 

4. These two branched cylinders are built by extruding the two bronchial circles 

on the reference plane to their length Figure 4.2. 
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  (a)      (b) 

   

  (c)      (d) 

 
Figure 4.1 Modelling bronchus 4 with SolidWorks by extruding a circular 

base. Two reference inclined planes are added for generating 
bronchi 5 in symmetric branching.  Dimensions are in mm.
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Figure 4.2 Illustration of the angular branching from bronchus 4 to bronchi 5 
by extruding the base circles on the reference planes. 
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COSMOS/Works comes with two mesh checks, aspect ratio and Jacobian ratio, to 

measure the element quality.  Numerical accuracy is based on the tetrahedral element 

with an aspect ratio of 1.0, i.e. the meshed element is a uniform perfect tetrahedral 

whose edges are equal in length, Figure 4.3 and Figure 4.4.  A high quality element 

is a parabolic tetrahedral with 4 corner nodes as in a linear tetrahedral, plus 6 mid-

side nodes to form a second order element, Figure 4.3.  A shell mesh is either a linear 

triangular shell element defined by 3 corner nodes connected by 3 straight edges, or 

a parabolic triangular element with a mid-side node on each edge, with defined 

thickness of the geometry of the model.  For a shell mesh, a triangular element of 

either linear or parabolic geometry is used instead of the tetrahedral.  The Jacobian 

ratio is a measure of the element distortion with respect to the set Gaussian points in 

the mesh preference.  The analysis program will stop with a negative Jacobian 

element. 

 

Figure 4.3 A regular tetrahedral is a perfect FEA solid which can be meshed 
as a linear element with 4 nodes, or a parabolic element with 6 
extra mid-side nodes.  A linear triangular element with 3 nodes or 
a parabolic triangular element with 6 nodes is meshed for shell 
structure analysis. 
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Figure 4.4 The angular branching of bronchus 4 and 5 is modelled as solid 
cylinders and then meshed into shells in analysis. 

 

4.3   Verification of COSMOS/Works 

To confirm the applicability of COSMOS/Works before proceeding to use it for 

further analysis, comparison is conducted with available literature.  Koval and 

Cranch [105] reported an experimental investigation of a clamped-clamped circular 

cylindrical thin shell.  Kraus [93] has determined the natural frequencies of the same 

shell using an “exact” analytical solution as well as an approximate analytical 

solution using the method of variation.  In this work the same shell (radius a = 3 in., 

thickness h = 0.01 in., length l = 12 in., Young’s modulus of elasticity E = 30 x 106 

psi, density � = 0.282 lb/in3, and Poisson ratio � = 0.3) is used to determine the 

natural frequencies using COSMOS/Works.  Two types of meshes were used, coarse 

mesh 0.52 inch and user mesh 0.25 inch.  The experimental values, the analytical 

results as well as COSMOS/Works results are summarised in Table 4.1.  It is clearly 
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indicated that the COSMOS/Works result with user mesh 0.25 inch falls in between 

the approximate analytical and experimental values (Refer to Appendix A for 

comparison of analytical and experimental results, and Appendix A for a sample of 

exact solution in Mathcad, a computing software).  Figure 4.5 shows the appropriate 

mode shapes of such a shell using COSMOS/Works. 

However, later analyses show that variation of mesh size has little effect on the 

natural radial frequencies of the current modelling of circular cylindrical thin shells 

with the applied dimension and physical property values. 

 
Table 4.1 The lowest frequency comparison of experimental, analytical and 

COSMOS/Works results on the experimental steel cylinder [105]. 
 

COSMOS/Works 

 

Koval & 
Cranch 

experimental 
results 

Kraus’s 
variational 

solution coarse mesh 
0.52 inch 

User mesh 
0.25 inch 

Lowest frequency ~530 Hz 552 Hz 663 Hz 551 Hz 

 
 

The greatest advantage of the finite element analysis is that the investigation is not 

limited to a single circular cylindrical thin shell as it can overcome the difficulty of 

the boundary conditions of the numerous continuous branching airways.  On the 

other hand, numerical modelling provides only approximate results which rely 

greatly on approximation and modelling techniques, and resources of computational 

capability.  Therefore, the results of the numerical models are to serve the 
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verification of the analytical models which are not solvable in the branching network 

like airways. 

  

 (a)  Default mesh    (b)  Fine mesh 
 

Figure 4.5 Verification of COSMOS/Works results: 663 Hz with coarse or 
default mesh of 0.52” and 551 Hz of user defined mesh of 0.25” 
versus analytical solution of lowest frequency of 552 Hz  by 
Kraus on the experimental sample of Koval and Cranch [93, 105]. 

 

This has given the necessary confirmation to use the software for further 

investigation. 

After the use of COSMOS/Works has been verified, it will be used for further 

investigations, in particular those which do not have analytical solutions.  Particular 

attention will be made to mode shapes of the trachea and their corresponding 

frequencies, individual branch frequencies at different generations, the effect of the 
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branching (bifurcation) angle on the free vibration characteristics and the trache-

bronchia combined model mode shapes. 

In the following sections, the free vibration characteristics of each element of the 

respiratory system structure from the trachea to the sixteenth generation are 

thoroughly investigated. 

4.4   The Trachea 

The trachea is embedded in the thoracic muscle with layers of various properties in 

terms of thickness, stiffness and mass density.  All these contribute to factors of the 

natural frequencies once the trachea is excited.  The following assumptions are made 

in investigating the models of the trachea and the bronchi as well.  The following 

assumptions should be kept in mind: 

The classical or “the first approximation” theory of thin shells are assumed in this 

work.  The thickness, strains and displacement are small compared with the other 

dimensions.  The transverse normal stress is negligible, and normal to the middle 

surface which is not subject to deformation remain unchanged. 

The physical properties are homogeneous and isotropic for simplicity and that the 

embedded muscle is much denser and stiffer than in the dimension of the wall 

thickness. 

Boundary conditions at ends or joints between generations are simply supported to 

ensure that the whole airway is not too tight, but loose enough to move 
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longitudinally during the breathing cycles.  A Poisson ratio of 0.49 is used as the 

volume is conserved. 

The trachea is modelled with SolidWorks as a cylinder of 18 mm diameter and 120 

mm of length.  With the COSMOS/Works added-in feature, a frequency study was 

created and the mesh type as shell mesh using surfaces was created.  Then the 

material properties of Young’s elastic modulus, density and Poisson ratio and simply 

support as the restraints at both ends were inputted.  The model was meshed with the 

default size and then fine meshed for analysis and comparison.  The number of 

modes is set as 100 in the study property in order to identify higher radial 

frequencies. 

The geometric dimensions of airways are based on Weibel’s measurements in the 

“Morphometry of Human Lung [42]”.  Mass densities of generations are adopted 

from Fredberg’s [84] work in the “Mechanical Response of the Lungs at High 

Frequencies”, and the magnitudes of the elastance as the Young’s moduli because 

they seem to be too high for the airway walls.  Halpern and Grotberg [106] have 

taken the bronchiole elasticity as 6x104 dynes/cm2 (about 6 kPa) in their analysis.  

This work assumes the values of Fredberg’s elastance as the elasticity of the airway 

walls so that they are in the right order of magnitude as in Halper and Grotberg’s 

work.  For conserved volume, the Poisson ratio is 0.5 theoretically and 0.49 

numerically in FEA.  Appendix B summarises the geometric and physical data taken 

for numerical analysis in this chapter. 
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The airway wall is really a thin layer and the embedded environment has different 

physical properties in terms of stiffness and density.  A simplified model is assumed 

as in most branched networks of airways [4, 5, 11, 15, 16, 58, 84].  Therefore, a non-

embedded structure is assumed in the current modelling, which is a stand alone 

circular cylindrical shell or branching network.  As the first investigation of this 

kind, the interest is focused on the dynamic trend of the natural frequencies of the 

overall airway structure. 

Before running any analysis on the tracheobronchial models from the trachea to 

bronchus 16, an analytical characterisation of results by COSMOS/Works has been 

made on a trachea like model.  The frequency modes are then plotted against the 

geometric dimensions, length, radius and thickness, and the physical parameters, the 

elasticity and density of the model for an overview.  Results as shown in Appendix A 

behave in the trends as expected in theory, confirm the depending factors of the 

resonance frequencies and validate the applicability of COSMOS/Works for 

investigation in this work. 

For the trachea, the lowest frequency is 2.4 Hz for the default mesh and 2.0 Hz for 

the fine mesh with a bending mode along the longitudinal direction as shown in 

Figure 4.6.   



  

  

 71 

 
(a)  Default mesh 

 

 
(b)  Fine mesh 

 
Figure 4.6 Mode 1 of the trachea with both twist and bending, (a)  2.4 Hz  

with default mesh; (b)  2.0 Hz with fine mesh. 
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The trachea has the longest length in all tracheobronchi.  The large ratio between the 

length and the radius of the shell tends to make the longitudinal mode excite first.  

Circumferential and radial modes generally occur in later modes at higher 

frequencies. 

However, there are distinct radial modes of frequency 5.6, 11.2 and 16.84 Hz of the 

first, second and third harmonics respectively as listed in bold in Appendix E.  

Figure 4.7 shows the first two radial mode shapes of the trachea with default mesh.  

The first radial mode at 5.6 Hz is clearly a pure radial type while the second radial 

mode at 11.2 Hz can be considered as a mixture of radial and twisting modes (see 

Figure 4.7) although the former is the dominant.  Figure 4.8 also shows the first two 

radial mode shapes of the same trachea, but with fine mesh.  In numerical analysis, 

the mesh size varies, the resonance varies.  The type of mesh, whether default or fine 

meshes, has some effect on most of the frequency modes, however not on the radial 

modes which have the same values regardless of the mesh size, as the mode shapes 

shown in Figure 4.7 and Figure 4.8, and the resonant frequencies listed in Appendix 

E, and Appendix F which has half of the densities and double the thickness. 

Fisher et al. [72] measured the resonant frequency to be between 5 and 8 Hz, and Lee 

et al. [111] found that “… there is improved volume delivery at resonance 

frequency.”, which was determined to range from 12 to 23 Hz.   
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(a)  Default mesh 

 

 
(b)  Default mesh 

Figure 4.7 The trachea radial frequency with default mesh: (a)  5.6 Hz, 
fundamental of pure radial mode, and (b)  11.2 Hz, the first 
harmonic with twist and radial modes. 
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(a)  Fine mesh 

 

 
(b)  Fine mesh 

 
Figure 4.8 The trachea radial frequency with fine mesh: (a)  5.6 Hz, 

fundamental of pure radial mode, and (b)  11.2 Hz, the first 
harmonic with twist and radial modes. 
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4.5   Individual Bronchus 

Analyses similar to the trachea are conducted for the bronchi of generations one to 

sixteen for 100 modes.  With smaller length to radius ratios, bronchial shells did not 

have their bending modes first; instead, it is a mix of circumferential and radial 

modes.  Bronchus 1 has mode 1 at a frequency of 3.66 Hz with default mesh and 

3.46 Hz with fine mesh, while, bronchus 16 has mode 1 at a frequency of 107 Hz 

with default mesh and at 106 Hz with fine mesh.  Figure 4.9 shows the variation of 

the first mode frequency for various generations starting from the trachea to 

generation 16. 
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Figure 4.9 Comparison of COSMOS/Works mode 1 frequency, with default 
and fine mesh, versus generation number. 
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At mode 100, bronchus 1 frequency ranges from 34.8 Hz with default mesh and 31.8 

Hz with fine mesh, while bronchus 16 frequency ranges from 890 Hz with default 

mesh to 865 Hz with fine mesh (Appendix E).  Figure 4.10 shows plots of the 

membrane fm, approximate membrane fm~, Kraus’s lowest frequency f1, and lowest 

radial frequency fr1 versus tracheobronchial generations.  Frequency f1 is relatively 

the lowest except for bronchus 3 where f1 is greater than the membrane frequency fm, 

but is below the approximate membrane frequency fm~ as well as the lowest radial 

frequency fr1 which are numerically the same within acceptable tolerance.  This 

variation is obviously attributed to the dimensions of the branches. 
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Figure 4.10 Comparison of membrane, approximate membrane, Kraus’s 
lowest and lowest radial frequencies resulted analytically 
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4.6   Angular Branching 

The tracheobronchial airway is an up-side-down tree pattern of numerically 

branching networks of cylindrical shells at various angles from one generation to 

another.  To expand the investigation from individual branches to the airway 

network as a whole, it is necessary to observe the dependence of resonance on the 

angles of branching and the add-on generations. At this moment, the trachea section 

is not considered because of its comparatively longer length than others.  A section 

of airway between generation 4 and 7 is modelled with various branching angles in 

the longitudinal direction while holding other parameters constant.  The frequencies 

of the first five modes are plotted against the angle of branching between zero to 90o 

in steps of 5o is as shown in Figure 4.11.  All modes follow the same trend of 

variation in frequency.  The deviation between the maximum and minimum 

frequency is about 5 Hz, except at the angle of 5o to the longitudinal bronchus 4.  

Therefore, it is quite appropriate to neglect the effect due to branching angles 

between generations as the probability of the end extreme angles in such a random 

structure like the airways are.  This provides a good approximation of the natural 

frequencies of airways as the function of the generation number and the physical 

parameters of that generation, but independent of the angular branching to the next 

generation. 
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Figure 4.11 Frequency dependence on the angles between bronchus 4 and 5 of 

branching airway. 

 

4.7   Tracheobronchial Models 

The tracheobronchial tree has more than twenty generations starting from the trachea 

to the alveoli and has over eight million branches in the twenty-third generation 

according to Weibel’s model.  The tree grows in a simple algorithm but becomes 

tedious and complex in analysis due to the huge number of branching structure and 

the gradual variation of the physical properties.  Pioneers such as Rohrer, [63] von 

Neergaard and Witz [65], Weibel [42-44], Horsfield [9, 45, 47, 109, 112-114], and 

Dubois [69, 71, 115-117] have done tremendously great foundation work for the 

continuity of research in lungs and airway mechanics. 
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A one-sided branching model is built on the fundamental unit of the airway tree, the 

trachea.  Five cases are considered for investigation, the trachea alone, trachea to 

bronchus 1 (TB1), trachea to bronchus 2 (TB2), trachea to bronchus 3 (TB3), and 

trachea to bronchus 4 (TB4). 

 
Figure 4.12 A deformation mode of the one-sided branching model from the 

trachea to the bronchus 4. 
 
 

Results of these five-case, and trachea to bronchus 7 (TB7) are shown in Figure 4.13.  

The lowest frequency mode 1 is almost the same in all cases.  As the mode number 

increases, the frequency tends to merge together for TB2, TB3 and TB4.  However, 

the trachea and TB7 spread out to the upper and lower bounds respectively.  

Comparably, the trachea is much longer in length than the bronchi and therefore has 

a relatively higher frequency of vibration corresponding to a longer longitudinal half 

wavelength.  The spreading space between TB4 and TB7 is due to the missing data 
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for TB5 and TB6.  It may be concluded that the one-side branching model follows 

the trends that resonant frequencies occur approximately in response to the 

vibrations of individual branch of mode shapes. 
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Figure 4.13 Frequencies of one-sided branching of trachea, trachea to 

Bronchus 1 (TB1), 2 (TB2), 3 (TB3) and 4 (TB4), together with 
the tracheobronchial tree (TB7). 

 
 
 

4.8   Model of a Symmetric Airway Tree 

A regional symmetric model of the airway tree is modelled for investigation and 

analysis, instead of the whole lung structure which involves a great deal of time and 

computing resources.  The model starts from bronchus 3 to bronchus 9 in a pseudo-

symmetric pattern as shown in the Figure 4.14.  The main reason for excluding the 

trachea is to avoid its lower frequency mode shapes and stiffer physical properties 

when compared to the bronchi.  Bronchus 3 is particularly shorter in length than its 
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parent and daughters.  Therefore this region of the airway tree should present an 

optimal overview of the airway wall structure as the trachea is relatively too long and 

dominates the low frequency modes of vibration.  On the other hand, the lower 

bronchi are too fine and improper in the preliminary investigation computing 

resource for finite element analysis.  Figure 4.14 and Figure 4.16 show the 

SolidWorks model and the graph of the COSMOS/Works fundamental frequency 

versus the mode number, respectively. 

 
Figure 4.14 A pseudo-symmetric model of airway tree, bronchus 3 to 

bronchus 9. 
 

First, the whole model was assumed to be of homogeneous in physical parameters of 

bronchus 9, then properties were updated to half of the densities and double the 

thickness according to the respective bronchial data in Table 3.1, so that the radial 

resonance could be observed in the earlier modes (Refer to Appendix E and 

Appendix F) and computing resources could be optimised.  It has been verified that 
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the numerical resonances in COSMOS/Works agree quite well with the theoretical 

expectations in term of parameters of elasticity and density (Appendix A).  Finally, 

the model was meshed to finer elements of 0.6 mm for analysis.  Frequencies shifted 

vertically and remained in the similar trend.  Figure 4.15 shows the mode shape 1 at 

the frequency 34.098 Hz and the major excitation is circumferential dominantly with 

bronchus 4 which has a longer longitudinal length than bronchus 3.  Bronchus 5 had 

a minor deformation in the radial direction and the phenomenon was more obvious 

in the COSMOS/Works animation. 

 

 

Figure 4.15 Mode shape 1 of the regional airway model from bronchus 3 to 
bronchus 9.  Bronchus 4 is excited at the frequency 34 Hz. 

 

The homogeneous curve behaved continuous as compared to the curves with updated 

properties of respective bronchi, and finer meshes as shown in Figure 4.16.  The 

finer mesh curve was split into levels of frequency clusters.  The analysis mesh size 
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magnified the quantum gap of the clusters between the frequency levels or mode 

shapes.  Below mode 16, the frequency levels had the same mode span, which 

tended to be shorter with the increase in frequency levels. 
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Figure 4.16 Frequencies of airway tree from bronchus 3 to bronchus 9.  The 
model is first analysed with the physical properties of bronchus 9 
(Homogeneous B9), then with the updated properties of the 
respective generations, and finally the updated properties with 
finer mesh of 0.6 mm. 

 

Figure 4.17 and Figure 4.18 show the radial deformation pair of the bronchus 4 at 

76.6 Hz and 76.8 Hz respectively.  This resonant frequency is quite unique as 

deformations of other branches are not obvious or observable except of bronchus 3 

which has a mixed mode of deformation.  Referring to Appendix F, bronchus 4 has 

its first radial resonance at 68.5 Hz which is about 8 Hz below its resonance in this 

regional airway tree from bronchus 3 to 9.  No additional radial mode of the same 

bronchus or others was observed in this model within the current computing 

resources. 
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Figure 4.17 Mode shape 191 of the regional airway model from bronchus 3 to 
bronchus 9.  Bronchus 4 left is excited in the radial mode at the 
frequency 76.6 Hz. 

 
 
 

 
 

Figure 4.18 Mode shape 191 of the regional airway model from bronchus 3 to 
bronchus 9.  Bronchus 4 right is excited in the radial mode at the 
frequency 76.8 Hz. 
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4.9   Closure 

Finite element analysis (FEA) of COSMOS/Works is adopted in this work to link the 

relationship between the analytical and numerical modelling in the airway structure 

while searching for the radial natural frequencies in application to airway 

constriction and occlusion due to pulmonary disorders.  COSMOS/Works was 

utilised in modelling and analysing Koval and Cranch’s experimental sample.  The 

first resonant mode shape was compared with the experimental, analytical and 

numerical results as shown in Table C.1 and Table 4.1.  The FEA results may vary 

according to the mesh size in the analysis.  In general, it is logically acceptable that 

the smaller the element size, the better the approximation to the analytical or real 

solution.  Table 4.1 shows that COSMOS/Works provides a satisfactory frequency of 

551 Hz versus the analytical value of 552 Hz which just lies above the experiment 

measurements. 

In terms of the structure modelling of airways, the one-side branched model with 

expanded branched bronchial generation results small variation of frequencies when 

the angular branching angle at parent-to-daughter joints.  Therefore the effect of such 

angles on the natural frequencies of a branched network like the airways is within the 

tolerance due to the fact that the complexity and the exact branching of human 

airways is not unique.  The focus is on the trend of the pattern instead of the definite 

solutions. 

In the model of a symmetric airway tree from bronchus 3 to 9, three analyses were 

run with homogeneous physical properties of bronchus 9, the updated properties of 
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the individual bronchus, and finally the updated properties with finer mesh for 

analysis.  The frequency versus mode number graph (Figure 4.16) displayed a more 

continuous curve than curves of the updated properties and the updated properties 

with finer mesh.  The discontinuous cluster is distinct with the finer mesh which acts 

like a magnifying glass or microscope when viewing curves.  The mode frequencies 

of the tracheobronchial airway behave like photons of molecules in quantum 

mechanics [118]. 

In summary, numerical modelling can be a good approximation, depending on the 

chosen mesh size of elements, to the analytical solution as shown in the experimental 

data validation.  Different mesh sizes lead to different results but have no obvious 

effect on the radial resonance of the assumed modelling of circular cylindrical thin 

shells.  The branching angles of airways may be negligible in the preliminary 

investigation of airway resonances.  Continuous branching airways may affect the 

resonances of tracheobronchial branches as a whole while compared to each branch 

individually in an acceptable range. 
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Chapter 5 

Experimental Validation 

5.1   Introduction 

In spite of the fact that the main intention of this research is to conduct analytical and 

numerical investigations to determine the free vibrational characteristics of a 

branched structure, it is felt that conducting some experimental validations will 

enhance the results and give them more practicality.  Obviously conducting in-vivo 

experimental validation tests is beyond the scope of this research due to the risks 

involved and the ethical requirements.  Therefore, in this work samples of animal 

tissues are felt to be appropriate for the validation process. 

Airway mechanics arises for investigation of lung disorders and develops with 

simple physical laws.  Further theoretical advancement relies on the validation 

through other theoretical approaches, numerical modelling and/or experimental data.  

Rohrer [63] applied the fluid mechanics concept in measuring the air flow and 

pressure drop in the airways to determine the respiratory resistance of human lungs.  

This becomes the foundation of airway mechanics, especially in the experimental 

stream.  The interrupter technique developed by Rohrer’s student, von Neegaard, 
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force oscillation technique and plethysmograph by Dubois [69] are later techniques 

for experimental investigation of lungs so that control of lung disorders may be 

possible through improved modelling of the mechanical airway structure. 

Lee et al. [111] concluded that there are better volume flow rates at the resonant 

frequency of the respiratory system in respiratory distress syndrome.  The mean 

resonant frequency was 18.6 Hz and the median was 19 Hz for a sample of 18 

infants.  Fisher et al. [72] found that the resonant frequency was between 5 and 8 Hz 

for adults when determining the total respiratory resistance by the forced oscillation 

technique. 

All the above experimental work has dealt with fluid flow measurements and the 

resistance-compliance, fluid mechanics approach with no relevance to the respiratory 

walls.  No work has been done on determining the free vibration characteristics of 

the airway walls in particular as a branched structure.  Since the intention of this 

work is to investigate the free vibration characteristics of branched structures with an 

application to the airway passages and not to investigate the vibration 

characterisations of airway passages as they are situated in the human body, 

measurements using animal tissues are justified for the present work.  Also since the 

purpose of this experimentation is for validation only, trachea and tracheobronchial 

samples are used in the experimental validation conducted.  It is felt that these 

suffice for the intention of the present validation. 

This chapter describes the experimental work done on samples of pig tracheobronchi 

and identifies, in the concept of modal analysis and testing, the resonant frequencies 
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for comparison with values from the analytical and the numerical models.  Two 

methods of measurements are used, one by mechanical excitation using a shaker and 

recording the dynamic response, while the second is by using acoustical excitation to 

avoid any direct contact of the samples with the exciting source. 

5.2   Modal Analysis and Testing 

Modal analysis involves a mathematical formulation for data dynamically 

characterising the system in terms of natural frequencies, damping factors and mode 

shapes [119-123].  An ideal and simple structure or system like a pendulum 

oscillates at one single frequency once displaced slightly from its equilibrium 

position.  The periodic motion should continue for ever.  However, the motion will 

eventually stop due to resistance of air as the damping effect.  To maintain the 

oscillation or vibration, an external excitation is needed to drive the system in 

motion, and the system will resonate when the source drives at the natural frequency 

of the system.  The pendulum moves in one plane and is restricted to motion in the 

orthogonal plane in space.  Therefore, it is termed as the vibration of a single-degree 

of freedom (SDoF) system.  The equation of motion for this system may be written 

as [123] 

 )()()()( tftkxtxctxm =++
•••

 ( 5.2.1 ) 

where m, c, k, x and t are the mass, damping factor, stiffness, displacement and time 

respectively. 
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The Laplace transformation of this time domain equation into the corresponding 

frequency domain (s = j�) expression is 

 )()(
)(

)( 2 sFsG
kcsms

sF
sX =

++
=  ( 5.2.2 ) 

Modal analysis assumes the vibration response is a set of simple harmonic motions 

and natural frequencies resulted from the linear time-invariant dynamic system as the 

Fourier series of any function.  Each frequency is associated with a mode of 

vibration which is either a real or complex quantity.  These modes are a function of 

the physical properties of mass, stiffness and damping, and the spatial distributions. 

Modal testing is an experimental technique to investigate and validate modal models 

whose analytical solution is either difficult or impossible.  Experiments include test 

preparation, frequency response measurements and modal parameter identification.  

The data produced from this method are sets of frequency response functions (FRF) 

to be analysed for modal parameters of the tested system. 

5.3   Mechanical Excitation 

The first experimental set-up in this chapter is to measure the deformation of 

samples excited by an electromagnetic shaker with a laser sensor head.  The captured 

signals are processed by the vibrometer controller which outputs the conditioned 

voltage in the time domain to an oscilloscope for display.  A block diagram and a 

photo of the experimental apparatus set-up are showed in Figure 5.1 and Figure 5.2 

to Figure 5.5 respectively. 
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Figure 5.1 A block diagram of the experimental set-up. 

 

Referring to Figure 5.2, the electromagnetic shaker (Ling Dynamic Systems Ltd., 

LDS V203) with an extended pointer was placed in contact with the sample at one 

end as a vibration exciter.  The shaker is driven by a signal generator (TTi TG230) 

through a power amplifier (LDS PA25E Power Amplifier).  A laser sensor head 

(Polytec OFV 505) of the vibrometer (Polytec OFV 5000) is used as the detection 

device of deformation which is then converted into the frequency domain through 

the Fast Fourier Transform (FFT) and displayed on the screen of an electronic 

oscilloscope (Tektronix TDS1012).  Measurements are taken at the designated 

position of the sample with a reflective film where the laser beam is focused on for 

motion detection, Figure 5.9. 
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After checking the proper set-up connection, the Polytec OFV 5000 vibrometer is 

first turned on for at least twenty minutes of warm-up for stability of measurements.  

The Polytec OFV 505 sensor head in Figure 5.3 is calibrated to focus the reflective 

film in a distance of approximate 30 cm for the maximum lighted signal level 

displayed at the back of the sensor head.  Once achieved, the laser spot on the 

reflective film is at the minimum size and in focus.  A pre-caution was taken when 

switching on the LDS PA25E Power Amplifier which has its power on/off control 

together with the master gain knob.  The power amplified was slightly turned just 

enough to click on the power to avoid overloading the fuse.  The excited amplitude 

of the shaker was monitored by both outputs of the signal generator and the master 

gain of the LDS Power Amplifier.  The shaker pointer was positioned just in-touch 

with the sample location and the vibrating amplitude was kept very small to avoid 

over-driving the sample, or over-loading the shaker.  Data was then taken at step 

increments of frequency in Hertz of the signal generator and the corresponding 

intensity in decibels of the frequency spectrum displayed on the Tektronix TDS1012 

oscilloscope set at the Mathematics Fast Fourier Transformation mode, Figure 5.5. 

Although electromagnetic shakers and impact hammers are the two main types of 

excitation in general modal analysis and testing, it is possible to consider and design 

other source of excitation.  Acoustic excitation is one of the sources that is used in 

the second part of the experimental validation. 
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Figure 5.2 A photo of the experimental set-up. 

 
 
 
 

 
 

Figure 5.3 Polytec OFV 505 sensor head. 

 

Full scale 
signal level. 

 

Tektronix TDS1012 oscilloscope 

LDS V203 

shakr 

LDS PA25E Power 

Amplifier 

TTi TG230 

signal 

LDS PA25E 

Power Amplifier 

Plastic 

sample tube 

Polytec OFV 505 sensor head 



  

  

 94 

  

 
Figure 5.4 Polytec OFV 5000 vibrometer. 

 
 
 
 
 
 

 
 

Figure 5.5 The Tektronix TDS1012 in Math FFT mode displays the 
frequency spectrum of signal input from the Polytec OFV 5000 
vibrometer. 
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5.4   Acoustic Excitation 

Due to the extended branching dimensions and the damping nature of the trachea-

bronchia samples, the acoustic excitation is believed to generate more uniform 

driving power than the mechanical excitation using the shaker.  The second 

experimental set-up in this work was to replace the shaker by an acoustic pressure 

chamber.  The chamber was designed and built for the purpose of the 

experimentation.  It consists of a transparent plastic enclosure which is firmly seated 

on a wooden board with a rubber seal, a speaker and clamps.  The acoustic pressure 

is generated by the power speaker which is attached to the top of the enclosure.  The 

inner air of the chamber is to be oscillated at the frequency of the speaker, Philips 

XB100 which is monitored by a signal generator TTi TG230.  The sample is placed 

inside the chamber and excited by the speaker to produce the desired pressure and 

frequency.  The chamber was firmly fixed in position using two elastic strings, one 

on each side, as shown in Figure 5.10. 

5.5   Experimental Samples 

Pig lungs have geometric and physical properties similar to the human lungs [124, 

125].  Table 5.1 lists the average parameter values of the two lungs. 

Table 5.1 Comparison of the average geometric and physical parameters 
between pig’s and human trachea. 

 Length Diameter Wall 
thickness 

Young’s 
modulus Density 

 mm mm mm N/m2 kg/m3 

Human 120 18 0.4 7300 1350 

Pig 190 22 2.5 7300 [125] 1040 
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Experimental samples were dissected from pig lungs ordered from the local meat 

provider.  The lungs were first dissected in the science laboratory with a scalpel.  

Excision of the trachea from the oesophagus was carefully performed and took about 

an hour but became more difficult from the trachea down to the primary bronchi and 

lower bronchi due to the increased branching and small bronchi size.  Investigation 

showed that the pig’s trachea had about 32 cartilaginous rings over its length of 

approximately 190 mm.  Other than the normal primary bronchi at the carina, an 

extra or the third primary bronchus was branched out approximately at the 25th 

cartilaginous ring or 150 mm from the proximal.  Although cartilaginous rings could 

be counted easily along the trachea, they were not so obvious or distinguishable from 

the soft tissue in the primary bronchi.  Dimensions of length, radius, thickness and 

density were measured randomly for average values whenever possible.  The 

morphological dimensions of pig tracheae are in general greater than those of 

human, referring to Table 5.1.  The wall thickness was measured to be 2.5 mm 

average, which is one order of magnitude greater than that of the human 

measurements made by Weibel [42]. 

One of the pig tracheae was divided into two samples, i.e. sample 1 and sample 2, 

because there was a cut before the third primary bronchus.  Sample 1 was a proximal 

sectioned trachea and sample 2 was a distal sectioned trachea with bronchi.  Then 

sample 3 was the other pig trachea with bronchi.  These three samples were to be 

used in the resonant frequency measurements with both mechanical and acoustic 

excitations as explained in the following sections. 
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5.6   Experimental Procedures 

As previously described, the testing includes experiments on three samples from two 

pig tracheae and with two excitations, namely the mechanical excitation using an 

electromagnetic shaker and the acoustic excitation with an acoustic pressure 

chamber. 

In summary, there were six experiments, three with mechanical excitation and three 

with acoustic excitation.  Each experiment was run for two trials in general.  The 

main focus was to measure the resonant frequency of the trachea although one 

experiment was performed on the bronchus.  With the defined samples and two 

excitation approaches A and B, the six experiments are listed as follows, 

 

A Mechanical Excitation 

1 Resonant frequency measurements on the trachea of sample 1. 

2 Resonant frequency measurements on the trachea of sample 2. 

3 Resonant frequency measurements on the trachea of samples 3.

B Acoustic Excitation 

1 Resonant frequency measurements on the trachea of sample 1. 

2 Resonant frequency measurements on the trachea of sample 3. 

3 Resonant frequency measurements on the bronchus of sample 3. 
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Experiments can now be coded or identified as A1, A2, A3, B1, B2 or B3 although 

descriptive detail may be included for clarity.  The dimensions of the experimental 

samples are listed for mechanical excitation and acoustic excitation in Table 5.2 and 

Table 5.3, respectively. 

 

Table 5.2 Dimensions on experiments with mechanical excitation. 

Experiment  A1 A2 A3 

Length, mm  90 60 151 

Diameter, mm  24 24 21 

Thickness, mm  3.1 3.1 2.8 

 

Table 5.3 Dimensions on experiments with acoustic excitation. 

Experiment  B1 B2 B3 

Length (mm)  54 121 37 

Diameter (mm)  23 21 12 

Thickness (mm)  1.6 2.8 0.5 

 

With reference to the experimental set-ups for mechanical and acoustic excitations, 

the experimental procedures for each experiment is quite typical with minor 

variations such as samples, sample mounting, measurements on trachea or bronchus 

and the type of excitation. 
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5.7   Mechanical Excitation Experimentation 

The first experimental trial was experiment A1, on a sectioned pig trachea of sample 

1 which was mounted on a circular tube at each end.  One side was fixed and the 

other attached to a tiny cart pulled by a hanging mass over a string to eliminate any 

sagging of the sample as shown in Figure 5.6, but not too tight to contribute 

excessive tension altering the elasticity of the material.  Precaution should be taken 

by varying the excitation position of the shaker to avoid exciting the vibration right 

at the node of the sample. 

 

Figure 5.6 Mounting set-up of the pig trachea [126] adopted in natural 
frequency measurements. 

 
 

In this work, the black circular clips were replaced with twisted wires to minimise 

the clamping effect.  The effective length of the sample was considered to be 

between the inner supported edges. 
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This type of experimentation was conducted on a single trachea.  However a 

tracheobronchial system excitation with a shaker was a bit difficult due to the 

geometrical complexity and the nature of damping of the sample.  Therefore an 

acoustic pressure chamber was built for this purpose and was used in the second part 

of the experimental validation. 

The second experiment was A2, on a tracheobronchial section of the first pig trachea 

and had a short tracheal part and the branched primary bronchi.  The proximal 

trachea and distal bronchi were fitted with plastic tubing right into the lumen 

circumference of these three ends which were then nailed on a mounting board 

clamped on the laboratory bench.  The carina was secured in place by three nails on 

the mounting board to serve as simple supports at the tracheobronchial junction, 

Figure 5.7.  A light tension was applied before fixing the three end-points so that the 

hanging mass was eliminated. 

 

 

Figure 5.7 Nails were used to provide simple supports around the carina. 

 

Fixing nail for simple support 
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The third experiment was A3, and made on the trachea of the second pig sample.  An 

improved fixture was designed to facilitate the mounting process.  The sample was 

elevated above the mounting board as in the first trial and a circular split clamp was 

used for the simple support of the sample, Figure 5.8 and Figure 5.9. 

 

  
 

Figure 5.8 A circular split clamp of 16.5 mm to support the pig trachea 
sample. 

 
 

The width of the circular split clamp was about 2 mm with an inner shell structure.  

Therefore, it provided support at the edges and was not clamped tight during 

measurements. 

It was obvious that the shaker excitation was stronger at the point of contact with the 

sample and became weaker at further positions.  Therefore, certain mode shapes may  

have not been detected as the excitation position changes [127]. 
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Figure 5.9 Fixture and mounting of the pig tracheobronchi for resonance 
measurements, with the laser beam focused at the mid position. 

 
 

5.8   Acoustic Excitation Experimentation 

Acoustic pressure was generated by longitudinal air wave motion of the power 

speaker mounted on top of the chamber.  The deformed movement of the sample was 

detected by the laser head focused on a reflective film stuck to the sample. 

The fourth experiment was B1, with acoustic excitation on the trachea of the first pig 

sample.  Figure 5.10 shows the mounting of the sectioned tracheal sample placed 

inside the acoustic pressure chamber.  The trachea ends were pined to a support 

made of corks which were fixed to an aluminium base block.  The cork was used due 

to its low resistance and it allowed the joining with the tissues without damage. 
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The fifth experiment was B2, measurement on the trachea of the second pig sample.  

Figure 5.11 is a view of the tracheobronchial sample mounted on the base board of 

the acoustic pressure chamber.  Both ends and joint supports of the sample were 

pined to cork supports which were fixed to the mounting base.  It is worth 

mentioning that the pig trachea has an extra bronchus, which was removed and the 

connection point was sealed in the experimentation to generate a Y-shape which 

resembles to the theoretical model.  The sixth experiment was B3 and had the same 

set-up as experiment B2, except that resonant frequency measurements were made 

on the bronchus instead of the trachea.  The resonant frequency is expected to be 

higher because the effective length between boundaries is shorter. 

 

 
Figure 5.10 Mounting of the trachea section of sample 1 in the acoustic 

pressure chamber, with pined supports on corks at the ends. 
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Figure 5.11 Mounted pig trachea with branched bronchi and simple supports 
at the carina and ends. 

 
 

5.9   Mechanical Excitation Results 

In all experiments with mechanical or acoustic excitation, the laser head was used to 

capture the sample deformation at the stimulated frequency which was varied in 

steps.  Deformation intensity was measured through the oscilloscope which can be 

set at either in time domain or the Fast Fourier Transformation (FFT) mode.  Figure 

5.12 shows a sample graph of intensity versus frequency measured around the 

central position.  The first peak is at 13 Hz and the second peak is at 50 Hz which 

has the highest relative peak. 

To magnify these peaks, the abscissa is plotted with logarithmic frequency as shown 

in Figure 5.13.  Below 13 Hz, there are two more peaks, 2 Hz and 4 Hz. 
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Figure 5.12 Trachea frequency spectrum of a sectioned pig trachea, sample 1, 

measured at the central position. 
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Figure 5.13 Logarithmic trachea frequency spectrum of the sectioned pig 

trachea, sample 1, measured at both the central and off-central 
positions (A1 for trachea of sample 1). 
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Table 5.4 Resonant frequency (fx in Hertz) summary of experiments with 
mechanical excitation. 

Experiment 

A1 A2 A3 

 

Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 Trial 3 

f1 2 -* 5 6 7 5 4 

f2 4 4 12 11 16 10 7 

f3 13 13 17 15 30 26 27 

f4 50 60 25 -* 65 68 96 

f5 85 120 90 90 80 93 93 

 * Frequency not observed. 

Results are tabulated according to the relative resonant frequencies instead of the 

absolute mode shapes which are not detectable using the present techniques. 

5.10   Acoustic Excitation Results 

The first experiment with acoustic excitation was B1, measuring resonant frequency 

of the proximal sectioned trachea of the first pig sample.  Figure 5.14 shows a 

sample of the frequency spectrum with several peaks ranging between 1.5 Hz and 19 

Hz with the relative maximum at 11 Hz.  The trend of the frequency spectrum in 

either mechanical or acoustic excitation is similar.  However, the observable 

resonances may be different due to the excitation power transferable to the sample.  

Results by acoustic excitation are summarised in Table 5.5.  Five matched resonant 

frequencies are listed for each experimental trial.  In experiment B2, there were more 

unobservable resonances as compared with those results by mechanical excitation, 
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which has a stronger driving power, especially at points closer to the exciting 

position.  However, the acoustic excitation is in general more uniform. 
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Figure 5.14 The acoustic (measured with the acoustic pressure chamber) 

frequency spectrum of the sectioned trachea of sample 1. 
 

 

Table 5.5 Resonant frequency (fx in Hertz) summary on experiments with 
acoustic excitation. 

Experiment 

B1 B2 B3 

 Trial 1 Trial 1 Trial 2 Trial 1 Trial 2 

f1 5 -* -* 6 6 

f2 11 12 11 10 11 

f3 16 -* - 18 15 

f4 17 -* -* 27 25 

f5 19 22 26 39 35 

  * Frequency not observed. 
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5.11   Closure 

This chapter has presented a summary of the experimental validation method 

adopted in this research.  Due to equipment unavailability, measurements were made 

to determine the natural frequencies only.  No attempt was made to measure the 

mode shapes as they are beyond the scope of this research.  The results of the 

experimental validation will be presented in chapter 6 and compared with the 

theoretical and numerical results. 
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Chapter 6 

Discussion 

6.1   Introduction 

Since, to the best of our knowledge, no previous work in the open literature was 

found on the vibrations of branched circular cylindrical shells, the theoretical 

methods with some experimental validation are developed in this thesis.  This 

includes analytical modelling of circular cylindrical thin shells, numerical modelling 

as an alternative solution to the analytical modelling, especially when the exact 

solutions are not available, and the experimental investigation to confirm and 

validate how and under what conditions that the analytical and numerical modelling 

are applicable.  Although these approaches may not give an exact formulation of the 

present system, it is believed that a trend of variation of the natural frequencies of 

such a system is established.  This process requires the integration of the three parts 

to characterise, deduce and conclude features of branched circular cylindrical shells 

as applied to airway modelling.  This work is considered as the foundation for future 
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research on the vibration response of the lungs, identifying the range and limitation 

in modelling applications and monitoring dynamic progress and feedback in practice. 

6.2   Analytical Modelling 

The resonant frequencies of a circular cylindrical thin shell depend on the geometric 

dimensions and the material properties of the shell itself.  The radial frequencies fall 

into the category of axisymmetric vibrations which occur in pipes, tanks, boilers, and 

other similar structural vessels subjected to asymmetrically internal loaded pressure.  

The derived natural frequency equation ( 3.4.3 ) of a circular ring as well as for an 

infinite long circular cylindrical thin shell could be written as [94, 98] 

 
ρπ
E

a
fring 2

1=  ( 6.2.1 ) 

The circular ring frequency equation depends on the radius, Young’s modulus of 

elasticity and the density of the structure only.  This is a single mode result 

regardless of the type of boundary conditions.  However, it does not hold true when 

the longitudinal length and the radial thickness of the shell vary relatively in the 

finite range.  In the case of a cylindrical membrane, the derived resonant frequency 

expression, equation ( 3.4.7 ), is found previously to be 
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The dependent factors extend, from Young’s modulus and the material density for 

the frequency of a ring, to the ratios of radius to length, the ratio of the longitudinal 
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mode number to the circumferential mode number, but not the membrane thickness 

as in the case of a thin shell.  The analytical frequencies in Table 3.2 are listed again 

in Table 6.1, including two frequency ratios fm~/fm  and fr1/f1, and the relevant 

frequency equations ( 3.4.7 ) to ( 3.5.1 ) for ready comparison. 

This table shows the membrane frequency fm using equation ( 3.4.7 ), the membrane 

approximate frequency fm~ using equation ( 3.4.8 ), the frequency ratio fm~/fm, the 

lowest frequency using exact formulation f1 in equation ( 3.5.1 ) and the lowest 

radial frequency fr1 in equation ( 3.5.2 ) and the ratio of fr1/f1.  The ratio of the 

approximate membrane frequency to the membrane frequency fm~/fm ranges from 

1.06 to 2.34 with an average of 1.30, and 1.24 excluding the highest ratio 2.34 of 

bronchus 3.  This indicates that on average using membrane approximation generates 

frequencies 24% higher than those produced by exact membrane analysis.  However, 

it is very interesting to notice that the ratio fr1/f1 is almost constant of a value 1.41 

over the tracheobronchial airways under study.  Both ratios are greater than 1, 

implying that the approximate membrane frequency fm~ is greater than the exact 

membrane frequency fm.  Also it is noticed that the lowest radial frequency fr1 is 

greater than the lowest frequency f1 of the shell.  In fact, the radial frequency of a 

circular cylindrical shell, not too short and approaching to the ring shape, is greater 

than the first mode frequency as shown by the COSMOS/Works results (Table 6.2). 
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Table 6.1 Comparison of analytical frequencies and the frequency ratios. 

Generation 

rad/length 

a/l 

Exact 

Membrane 

fm 

Membrane 

Approx. 

fm~ fm~/fm 

Simply 

supported 

Kraus: f1 

Simply 

supported 

Kraus: fr1  fr1/f1 

Z  Hz  Hz   Hz  Hz   

0 0.075 2.16 2.28 1.06 1.67 2.36 1.41 

1 0.128 6.21 7.21 1.16 5.12 7.24 1.41 

2 0.218 15.11 22.22 1.47 15.72 22.23 1.41 

3 0.368 61.33 143.49 2.34 101.45 143.50 1.41 

4 0.177 35.08 45.95 1.31 32.52 46.00 1.41 

5 0.164 34.41 43.50 1.26 30.80 43.57 1.41 

6 0.156 40.67 50.39 1.24 35.70 50.50 1.41 

7 0.151 45.59 55.89 1.23 39.62 56.04 1.41 

8 0.145 51.90 62.72 1.21 44.49 62.93 1.41 

9 0.143 57.34 68.84 1.20 48.86 69.12 1.41 

10 0.141 66.44 79.53 1.20 56.47 79.88 1.41 

11 0.140 82.05 97.86 1.19 69.53 98.36 1.41 

12 0.144 83.87 101.02 1.20 71.77 101.54 1.41 

13 0.152 93.07 114.25 1.23 81.11 114.76 1.41 

14 0.161 128.40 161.20 1.26 114.37 161.82 1.41 

15 0.165 162.00 205.53 1.27 145.81 206.31 1.41 

16 0.182 193.58 256.74 1.33 181.96 257.48 1.42 

where  
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Refer to equations ( 3.4.7 ), ( 3.4.8 ), ( 3.5.1 ) and ( 3.5.2 ). 
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Figure 6.1 shows the frequency plots of the tracheobronchial generations together for 

the frequencies given in Table 6.1. 
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Figure 6.1 Comparison of analytical frequencies of airway from trachea to 
bronchus 16, where f1, fr1, fm~ and fm are the lowest frequency, the 
lowest radial frequency and the membrane frequency of circular 
cylindrical thin shells. 

 

The lowest frequency f1 is based on the circular cylindrical thin shell with simply 

supported boundaries.  When the longitudinal bending and the circumferential modes 

are ignored, the lowest radial frequency fr1 of the thin shell is greater than the lowest, 

the membrane and the membrane approximated frequencies f1, fm and fm~ 

respectively.  However, all these three frequencies including fr1 are lower than the 

ring frequency of equation ( 3.4.3 ) which is the upper limit of such a structure.  

They progress in the same trend from the trachea to bronchus 16, except at bronchus 

2 and 3 where the membrane frequencies are the lowest.  This is attributed to the 
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dimensions of the bronchus.  The ‘bump’ at bronchus 3 is obvious in the ring 

frequency and is relatively less for the membrane frequency, most likely due to 

variation in its geometric and physical parameters. 

So far, the analytical results presented for airways are based on the fundamental 

circular cylindrical shell.  The complexity of the airway structure in numerous 

branching generations with various branching angles leads to the extreme difficulty 

in finding the exact solution of the natural frequencies of the tracheobronchial 

system. An approximate estimation formula for individual branch can be obtained 

using equation ( 6.2.2 ).  The latter equation can be simplified with the 

circumferential mode number equal to one (n = 1) for radial modes to get 
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For 2222 πmal >> , the membrane radial frequency becomes 
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The lowest membrane radial frequency occurs when m = 1 
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Therefore, it is possible to conclude that the first membrane radial frequency fm1 with 

simply-supported boundary conditions is the same as the lowest radial frequency fr1 

of simply-supported cylindrical thin shells by Kraus.  However, the membrane 

frequency is smaller than the lowest radial frequency and is approximately 0.8 of the 

exact value, and is about 1.1 of the exact lowest frequency. 

6.3   Numerical Modelling 

 

… that Rayleigh or his followers realized that the 
geometrical shape of many members made them 
difficult or impossible to handle with an appropriate 
untheoretical approximation. [128] 

 

The demand of finite element analysis is increasing in science and engineering for 

numerical solutions due to the fact that theoretical analysis is limited to applications 

of simple and regular geometric constraints as well as the boundary conditions 

imposed on the structural system.  In spite of the popularity, numerical analysis is in 

general the next option to the exact analytical approach.  Confirmation of the result 

accuracy and skills in formulating the numerical analysis process are the draw-back 

of this versatile and rewardable approach. 
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6.3.1 Numerical Modelling and Analytical Modelling 

The verification of results on the experimental sample by Koval and Cranch [105] 

shows that COSMOS/Works can be a reliable numerical software in investigating 

similar geometric structures like circular cylindrical thin shells which are assumed to 

make up the airway system.  It has been shown in the previous section that 

COSMOS/Works resolves the fundamental resonant frequency of the verification 

sample in section 4.3  to be ranged from 663 Hz to 551 Hz as compared to 552 Hz by 

Kraus [93], which lies just above the experimental measurement [105]. 

Using the same assumptions as described in the Analytical Models, Chapter 3, 

namely a circular cylindrical thin shell is the basic unit in building up the whole 

airway network, the airway walls have negligible influence from the surrounding 

medium, and simple support is the type of boundary conditions at all ends and joints 

of branching, the numerical solutions were generated.  

COSMOS/Works analyses of the trachea and each bronchus as an individual base 

unit had been achieved and the results of both default mesh and fine mesh of analysis 

are given in Appendix E.  Appendix F also gives results with double shell thickness 

and half density of the parametric values.  Both Table 6.2 and Table 6.3 summarise 

the generation frequencies of COSMOS/Works analysis mode 1 of clamped and 

simply-supported conditions, COSMOS/Works first radial mode, theoretical 

membrane frequency and the exact thin shell frequencies with clamped and simply-

supported conditions.  It is important to note that the radial resonant frequencies 

listed together with the lowest frequencies are for comparison purposes and in 
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general do not correspond to the lowest frequencies of generations.  In fact, both 

COSMOS/Works fr1 and the membrane radial frequency fm are greater in values than 

other lowest frequencies because the radial mode is not the first mode shape of 

vibrations in thin shell structures.  In some cases, the exact shell frequency fs is 

greater than fm because  

 
1. the membrane frequency is independent of the thickness while the shell 

frequency has a defined shell thickness for calculation, and  

2. the relative radius to thickness ratio in calculating the shell frequency 

(referring to Appendix B). 

 

The COSMOS/Works analysis also shows that the clamped frequency is higher than 

the simply-supported frequency unless the structural geometry is in the shape 

approaching to the limit of rings, i.e. the radius to length ratio is either too large or 

too small. 

6.3.2 Sensitivity of Boundary Conditions and Physical Properties 

Both COSMOS/Work and the analytical method were applied to a clamped-clamped 

as well as simply-simply boundary conditions for bronchi at different generations.  

The simply-simply boundary conditions are 0==== xMwvu , at x = 0 and x = l, 

and the clamped boundary conditions are 0=
∂
∂===

x
w

wvu , at x = 0 and x = l.  

These are summarized in Table 6.2.  It is obviously clear that the effect of the 

boundary conditions is not critical in this case as the values of the frequency are very 

close.  This may be attributed to the nature of the bronchial materials as they have 
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very low elasticity when compared to the stiffer materials such as steel and 

aluminium. 

Table 6.2 Comparison of COSMOS/Works and theoretical fundamental or 
lowest resonant frequencies (with the clamped frequencies for 
reference). 

The lowest frequencies (Hz) 

  
COSMOS/Works 

Membrane 

radial 
Exact thin shell 

z 
f  

(clamped) 

f  

(supported) 

fr1      

(radial) 

fm            

(supported) 

fs  

(clamped) 

fs  

(supported) 

0 1.96 1.97 5.61 2.16 2.41 1.67 

1 3.49 3.46 10.38 6.21 6.01 5.00 

2 6.97 6.87 18.77 15.11 12.79 7.12 

3 24.95 23.88 71.83 61.33 45.42 31.80 

4 17.71 17.38 47.84 35.08 29.07 19.50 

5 17.82 17.52 49.05 34.41 29.37 21.19 

6 21.61 21.27 59.75 40.67 36.14 27.43 

7 24.61 24.23 68.13 45.59 41.65 32.45 

8 28.80 28.38 79.62 51.90 49.98 40.51 

9 32.46 32.00 89.06 57.34 57.24 47.35 

10 48.02 47.33 122.48 66.44 68.65 57.71 

11 47.33 47.67 129.18 82.05 88.30 74.13 

12 49.70 48.96 129.47 83.87 92.13 77.00 

13 54.11 53.18 138.81 93.07 98.76 82.84 

14 73.53 72.11 184.87 128.40 133.60 109.78 

15 92.93 91.03 229.82 162.00 170.79 140.31 

16 108.27 105.56 260.55 193.58 197.64 155.03 
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Table 6.3 Comparison of COSMOS/Works and theoretical fundamental or 
lowest resonant frequencies, with double shell thickness and half 
density (with the clamped frequencies for reference). 

 
The lowest frequencies (Hz) 

 COSMOS/Works 
Exact 

membrane 
Exact thin shell 

z 
f  

(clamped) 

f  

(supported) 

fr1      

(radial) 

fm            

(exact) 

fs  

(clamped) 

fs  

(supported) 

0 3.92 3.88 8.03 6.57 5.44 2.60 

1 7.00 6.92 14.85 17.10 8.51 7.07 

2 12.00 11.57 26.84 34.84 18.09 10.08 

3 48.78 45.66 102.77 115.22 64.23 44.97 

4 30.88 30.08 68.46 87.53 41.11 27.58 

5 32.18 31.45 70.22 88.26 41.54 29.97 

6 40.40 39.61 85.58 106.08 51.11 38.79 

7 46.83 45.97 97.61 119.96 58.90 45.90 

8 56.59 55.65 114.13 138.32 70.69 57.29 

9 64.90 63.87 127.13 153.73 80.95 66.96 

10 77.82 76.63 149.00 178.69 97.09 81.61 

11 98.54 98.54 185.53 221.51 124.88 104.83 

12 103.92 102.26 186.15 224.70 130.30 108.90 

13 110.72 108.65 199.68 245.48 139.66 117.15 

14 148.21 144.95 266.16 332.72 188.94 155.25 

15 188.98 184.54 331.16 416.56 241.53 198.42 

16 214.46 208.05 375.84 481.75 279.50 219.25 
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Figure 6.2 Comparison of frequencies by analytical and numerical 

modelling. 
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Figure 6.3 Comparison of frequencies by analytical and numerical modelling, 

with double shell thickness and half density. 
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Theoretically, the resonant ring frequency is proportional to the square root of 

Young’s modulus or elasticity, and is inversely proportional to the square root of the 

density of the material.  Comparison between Table 6.2 and Table 6.3 may be clear 

in terms of the corresponding frequency ratios which are listed in Table 6.4 and 

illustrated in Figure 6.4. 

Table 6.4 Comparison of frequency ratios of results Table 6.2 to Table 6.3. 
 

The lowest frequencies 

 COSMOS/Workss Exact 
membrane Exact thin shell 

z 
f    

(clamped) 
ratio 

f  
(supported) 

ratio 

fr1      
(radial)   

ratio 

fm            
(radial)  

ratio 

fs  
(clamped) 

ratio 

fs  
(supported) 

ratio 

0 2.00 1.97 1.43 3.04 2.26 1.56 

1 2.01 2.00 1.43 7.10 1.42 1.41 

2 1.72 1.68 1.43 12.27 1.41 1.42 

3 1.96 1.91 1.43 14.44 1.41 1.41 

4 1.74 1.73 1.43 2.74 1.41 1.41 

5 1.81 1.80 1.43 3.94 1.41 1.41 

6 1.87 1.86 1.43 2.61 1.41 1.41 

7 1.90 1.90 1.43 4.20 1.41 1.41 

8 1.96 1.96 1.43 4.30 1.41 1.41 

9 2.00 2.00 1.43 4.15 1.41 1.41 

10 1.62 1.62 1.22 4.29 1.41 1.41 

11 2.08 2.07 1.44 4.56 1.41 1.41 

12 2.09 2.09 1.44 2.68 1.41 1.41 

13 2.05 2.04 1.44 3.86 1.41 1.41 

14 2.02 2.01 1.44 4.72 1.41 1.41 

15 2.03 2.03 1.44 4.29 1.41 1.41 

16 1.98 1.97 1.44 2.49 1.41 1.41 

Average 1.93 1.92 1.42 5.04 1.46 1.42 
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Figure 6.4 Frequency ratios of results from Table 6.2 and Table 6.3, the 

COSMOS/Work results of f and fr1, and the analytical results of 
fs. 

 
 

Except for the trachea, the analytical frequency fs expects the ratio of approximate 

1.42 for half of the density and indicates that doubling the thickness has no effect on 

the resonant frequencies.  It is, however, surprising to see that the COSMOS/Works 

radial frequency ratios are approximately equal to 1.42, implying that there is also no 

obvious effect of the thickness on the radial resonances and the change of resonant 

values depends on the change of elasticity only.  The COSMOS/Works frequency 

ratios of clamped and simply-supported boundaries have fairly constant values 

implying that the numerical approximation by FEA is good and approaching to the 

analytical accuracy and relationship.  The analytical membrane frequency ratios vary 

the most among others, especially for bronchus 2 and bronchus 3.  This is due to the 

steep change of geometric and/or physical parameters from one generation to the 
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other as the membrane resonant frequency is factor of shell length or to be more 

specific, the radius to length ratio. 

Table 6.5 compares the average ratio of resonant frequencies of COSMOS/Works 

results of Table 6.2 and Table 6.3 which has half of the density � and double of the 

wall thickness t (Column 1).  Column 2 is the ratio of the first radial to lowest mode 

1 frequency by COSMOS/Works.  Column 3 is the ratio of the first radial by 

COSMOS/Works to the analytical membrane frequency.  The average ratios are over 

the trachea up to bronchus 16.  Such ratios indicate that constant relationship or trend 

is held between the relevant frequencies.  Therefore one frequency can be predicted 

by the other with a given ratio. 

 
 

Table 6.5 Average ratios of radial to simply supported frequencies, and 
radial to membrane frequencies of Table 6.2 and Table 6.3. 

 Average frequency ratio 

  fr1 (radial) / f (supported) fr1 (radial) / fm (supported) 

� and t 2.73 1.54 

�/2 and 2t 2.03 0.84 
 
 

Figure 6.5 and Figure 6.6 are the graphs of the COSMOS/Works first radial 

frequencies of the tracheobronchi as listed in Table 6.2 and Table 6.3.  Two linear 

curves are fitted to the data in each graph with the corresponding slopes and 

intercepts.  With the assumed geometric and physical properties used in this work, 

linear relationships exist among the radial resonances of certain bronchi. 
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Figure 6.5 The tracheobronchial radial frequencies with linear curve fittings. 
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Figure 6.6 The tracheobronchial ( of half density and double wall thickness) 

radial frequencies with linear curve fittings. 
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6.3.3  Numerical Modelling and Experimental Validation 

With the two pig trachea samples used in the experimental validation, it is possible 

to obtain numerical results based on their measured geometric dimensions and 

densities, and the assumed Young’s moduli of pigs to be the same as those of 

humans taken in previous modelling.  Taking the average measurements of the 

sample dimensions, the COSMOS/Works results (refer to Appendix G) are 

summarised in Table 6.6 with the first column for each of the experimental 

measurements previously coded in Chapter 5, the Experimental Validation, second 

column for the first mode frequency f1, and the third column for the first radial 

resonant frequency fr1.  The harmonics of the radial frequency are multiples of the 

fundamental frequency as found in Appendix G. 

 
Table 6.6 Resonant frequencies by COSMOS/Works on pig trachea samples 

with mode 1, f1 and the first radial resonant frequency, fr1. 

   COSMOS/Works Resonance, Hz 

Validation Experiment Mode 1 (f1) First Radial (fr1) 

A1 5.22 8.59 

A2 8.48 12.89 

A3 2.40 5.12 

B1 7.26 14.25 

B2 3.36 6.39 

B3 (Bronchus) 7.88 18.66 

 

It is noticeable that the first radial resonant frequencies are greater than the first 

resonant frequencies, implying that the lowest resonant frequencies are not 

axisymmetric and may involve bending modes or its mixture.  Also, the first radial 
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resonant frequencies are approximately double of the lowest or mode 1 frequencies 

although that is not the analytical result in theory. 

6.4   Experimental Validation 

In this work the experimental testing was performed to validate the theoretical 

results. 

Experiments were performed based on the concept of vibrational resonance, and 

modal analysis and testing.  Pig trachea samples were the optimal choice regarding 

the compatibility and the research resource capacity.  As described in the previous 

chapter, the resonant frequencies resulting from different trials do not totally agree 

with each other, or able to correlate with the analytical and numerical models.  Such 

phenomena are common and should be expected in most, especially preliminary 

research work.  The valuable finding of this experimental work is the strong trend 

that reflects the physical behaviour of individual trials and the inter-relation among 

trials and other types of modelling. 

The frequency response function (FRF) of a single degree of freedom (SDoF) is the 

basic building block of vibrations and modal analysis and testing of further complex 

systems with multiple degrees of freedom.  A real system with a single degree of 

freedom has a flatter resonant peak with a band width relative to the damping than 

the ideal single frequency peak or spike.  Analysis of the frequency spectrum of 

multiple degrees of freedom is quite manageable when the system is lightly coupled 

so that each resonant frequency is far enough from the others to be considered as a 
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system of a single degree of freedom.  Otherwise intensities of close resonances 

suppress each other in a heavily coupled system. 

Each of the experiments shows one or more distinct peak resonant frequencies.  

Figure 6.7 shows the logarithmic frequency spectrum of experiment A1 of a 

sectioned trachea of pig sample 1 run for two trials. 
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Figure 6.7 Logarithmic frequency spectra of experiment A1, the sectioned 

trachea of pig sample 1. 
 
 

The curves follow the same trend with some frequency shifts and the highest peaks 

at 50 Hz and 60 Hz for trial 1 and trial 2, respectively.  And logarithmic frequency 

spectra of other experiments are shown in Figure 6.8 to Figure 6.12. 
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Figure 6.8 Logarithmic frequency spectra of experiment A2, the sectioned 

trachea with bronchi of pig sample 2. 
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Figure 6.9 Logarithmic frequency spectra of experiment A3, the trachea with 

bronchi of pig sample 3. 
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Figure 6.10 Logarithmic acoustic frequency spectrum of experiment B1, the 

sectioned trachea of pig sample 1. 
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Figure 6.11 Logarithmic acoustic frequency spectra of experiment B2, the 

trachea with bronchi of pig sample 3. 
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Figure 6.12 Logarithmic acoustic frequency spectra of experiment B3, the 

trachea with bronchi of pig sample 3. 
 
 

All experimental frequency spectra on trials start with low frequencies rising to a 

peak and then decline.  Measurements with the mechanical excitation resulted in 

distinct peaks.  However, lower resonant frequencies were observed with the 

acoustic excitation and the peaks were flatter.  Such phenomena could be understood 

through the modal analysis and testing concept.  The sectioned trachea of pig sample 

1 gave sharper peaks than other samples as shown in the spectral figures.  Although 

all samples are complex with soft tissues and cartilaginous rings, sample 1 is closer 

to a simple thin shell model which should behave as a single degree of freedom 

(SDoF) system with only one fundamental resonant frequency.  Sample 2 and 

sample 3 are trachea with bronchi and therefore would behave as a system with a 

multiple degrees of freedom (MDoF) which has more than one fundamental resonant 
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frequency.  A MDoF system may have distinguishable fundamental frequencies over 

the spectral range if the system is lightly coupled.  In the case of a heavily coupled 

MDoF system, the fundamental resonant frequencies can be so many and crowded 

together that interference among amplitudes of neighbouring resonant frequencies 

usually distort the mode shapes. 

Figure 6.13 compares the frequency spectra of experiment A3 trial 1 and trial 2 with 

increasing and decreasing shaker frequency respectively.  Both curves display 

similar patterns with a frequency shift and the characteristics of hysteresis that the 

lagging of response to the driving force and the current status depends on the path or 

history. 
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Figure 6.13 Frequency spectra of experiment A3 with increasing shaker 

frequency for  trial 1 and decreasing frequency for trial 2. 
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Table 6.7 summarises the resonant frequencies observed and the average in the 

experimental trachea samples, and results from the numerical modelling by 

COSMOS/Works and analytical modelling. 

 
Table 6.7 Comparison of resonant frequencies of experimental pig trachea 

samples with numerical and analytical results. 

  Resonant Frequency, Hz 

 A1 A2 A3 B1 B2 B3 Average 

Experimental 13 12 11 11 12 10 12 

COSMOS/Workss 
radial 9 13 5 14 6 19 11 

Membrame fm 5 10 2 11 3 13 7 

Membrame fm~ 6 14 2 16 3 16 10 

Kraus f1 5 10 3 12 3 12 8 

Kraus fr1 7 14 4 17 5 16 11 

 
 
 

All values are rounded off to integers for easy comparison.  The resonant frequencies 

match quite well in experiment A2 which is a sectioned trachea with bronchi.  The 

analytical results (Appendix H) are lower than the observed values in experiment A3 

and B2, which are samples with longer trachea dimensions.  The observed 

frequencies from the experimental validation are chosen to have a relative match in 

values since identification of vibrational mode shapes is not possible without further 

detective equipment such as an electronic scanning device.  It is worth noting that 
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from the COSMOS/Works results in Appendix H that the radial harmonics are 

multiples of the first radial frequency.  The average values agree quite well with the 

previous theoretical and numerical analysis. Analytically, the membrane frequencies 

and Kraus’s approximation are of the same order of magnitude and have the similar 

relationship in Table 3.2 that the approximate membrane frequency and the 

approximate radial frequency are about the same but higher than the membrane 

frequency and the lowest frequency. 

Numerically, the COSMOS/Works radial frequency may be higher or lower than the 

membrane frequency depending on the Young’s modulus of elasticity of the material 

as in Table 6.2 and Table 6.3. 

Experimentally, trial 1 of experiment A1, the first radial resonance from 

COSMOS/Works is 8.59 Hz and the highest peak frequency from the experimental 

frequency spectrum is 50 Hz, which is about six times of the first resonance 8.59 Hz.  

Seven times of 8.59 Hz is 60.13 Hz which is the highest peak frequency 60 Hz of 

trial 2 of the same experiment.  This relationship between the numerical radial 

frequency and the experimental peak frequency also holds quite well in other 

experiments.  This finding is important because comparison is within the same 

experiment since each experimental setting is different in terms of geometric 

dimensions, especially the longitudinal length, and the actual physical properties. 

Therefore, the resonant frequency of pigs’ trachea can be estimated to be between 5 

Hz and 13 Hz based on the integrated results presented in Table 6.7 and the inter-

modelling analysis.  The resonance of bronchus 1 would be between 10 Hz to 19 Hz.  
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Both tracheobronchial frequencies are in the same magnitude as found in the 

analytical and numerical resonance for human. 

6.5   Conclusions 

It is believed that the investigation of the natural frequencies of airways leads to 

better understanding of the dynamic response of such complex branching duct 

networks and could contribute to the study of relieving asthma by alternative means 

other than the traditional medical medications.  The motion of airways is governed 

by their geometric and physical properties regardless whether the excitation is from 

the central nervous system or the external mechanically driven.  This is a premier 

study of the dynamics and responses of airway walls through applying vibrations to 

branched circular cylindrical shells, analytically, numerically and experimentally for 

validation. 

With Yu’s approximation on cylindrical thin shells [91], the frequency equation of a 

circular cylindrical membrane with simple supports is derived by neglecting the 

inertia and bending effects of the Donnell-Mushtari equation [90-94].  The so-called 

analytical approach on cylindrical thin shells or membranes which can be 

manipulated for solutions is subjected to the assumed and limited approximation that 

reduces the eighth order differential equations to the fourth, applicable to clamped, 

simply-supported and free types of standard boundary conditions.  Dichotomic or 

bifurcated structures beyond the simple circular cylindrical shells induce problems 

and difficulties in boundary matching between generations.  Therefore searching for 
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the natural frequencies of the complex airways is not optimistic and in fact has no 

such solutions available in literature. 

Analytically, the natural membrane frequency has the upper limit of the ring 

frequency of the same radius and physical properties of Young’s modulus and 

density.  This is a reference for a simple cylindrical membrane of one degree of 

freedom in vibration modes.  It is this basic concept used in analysing a complex 

system with multiple degrees of freedom in either frequency analysis or modal 

analysis and testing.  Mathematically, Fourier transformation decomposes the 

resulting response of a complex system into two or more components which may be 

lightly or heavily coupled.  Therefore, the frequency spectrum of airways may 

suggest the type of coupling among branches of the tree structure. 

Kraus [93] made the verification between analytical and experimental results through 

Koval and Cranch data on clamped cylindrical thin shells [93, 105].  Although there 

is no logical conclusion that similar agreement may work well with cylindrical 

membranes, verification and validation is needed in assuming a shell membrane as 

the fundamental building block of the airway tree  

Finite element analysis (FEA) is overwhelming for its wide applications in fields and 

is a good tool in probing responses as well as analysing systems.  COSMOS/Works 

is used in verifying Koval and Cranch’s experimental sample and identifies the FEA 

drawback in approximation.  Finer mesh improves results but requires more time and 

computing resources.  FEA is not different from other numerical analysis where 

results are justified on their stability similar to the Simpson’s rule in numerical 
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integration.  With limited computing resources in the present time, only one radial 

mode of 77 Hz for bronchus 4 is identified in the bronchus 3-9 airway tree modelling 

as compared to the radial frequency of 68 Hz of modelling bronchus 4 itself 

(Appendix F).  Results of COSMOS/Works analyses show that the mode 1 

frequency changes as the mesh size of the study changes.  Therefore, it may take a 

lot of work to reach the stability of analysis.  However, simulations run with various 

mesh sizes do confirm one analytical and logical result that has been overlooked 

without attention to the fact that radial modes are the same and relatively 

independent of the analysis mesh size for individual shell structure of the airways. 

The experimental validation comes in two parts, one with mechanical excitation by a 

shaker and the other with acoustic excitation by the acoustic pressure chamber, of 

two pig traheobronchial samples.  In this section, resonant frequencies are identified 

by taking step-frequency responses instead of observing the peak or phase shift 

around the resonant frequency on the oscilloscope display or the frequency analyser.  

This approach is particularly suitable for systems with multiple degrees of freedom 

clustering together as tuning for the resonant frequency while observing for the 

relative peaks is not practical.  The shift of resonant frequencies with the increasing 

and decreasing frequency trends for measurements reveals the tissue damping effect. 

In conclusion, this work represents the initial stage of investigation of the free 

vibration characteristics of the respiratory walls and it sets the boundaries for the 

resonant frequencies of each individual generation of the respiratory system.  The 

average radial resonance of the trachea is found to be about at 10 Hz as in Table 6.7, 
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and the radial frequencies of bronchi may be predicted with linear curve fitting to 

certain regions of generations.  The radial frequencies found in this work agree quite 

well with literature values that fall between 5 and 8 Hz [72]. 

6.6   Future Work 

To have more accurate results many of the assumptions made in the analytical and 

numerical modelling can be made more realistic. In further work, one could consider 

1. Use matching of boundary conditions rather than pure simple supported 

boundary conditions 

2. Consider the respiratory walls to be embedded in a viscoelastic medium 

3. Consider the properties as viscoelastic properties rather than purely elastic.  
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Appendices 
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Appendix A Respiratory System and Tidal Breathing Cycle 

 

Figure A.1 An overview of the respiratory system organs and tidal breathing 
cycle [39]. 
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Appendix B Morphological and Physical Data of Lungs 

Table B.1 The geometric [42, 48] and physical [84] properties are listed for 
the generation z from 0 (the trachea) to the 16th bronchus. 

Gen. 

No. of 

Tubes Diameter Radius Length Thickness Elasticity Density 

z 2z d  , mm a,  mm l, mm t, mm  (kN/m2) (kg/m3) 

0 1 18.00 9.000 120.00 0.3870 7.3 1351 

1 2 12.20 6.100 47.60 0.2684 5.7 1959 

2 4 8.30 4.150 19.00 0.1826 4.7 3103 

3 8 5.60 2.800 7.60 0.1260 4.7 1324 

4 16 4.50 2.250 12.70 0.1035 4.7 1069 

5 32 3.50 1.750 10.70 0.0823 3.9 1188 

6 64 2.80 1.400 9.00 0.0686 3.9 1132 

7 128 2.30 1.150 7.60 0.0575 3.9 1221 

8 256 1.86 0.930 6.40 0.0484 3.2 1035 

  9 512 1.54 0.770 5.40 0.0416 3.2 1162 

10 1024 1.30 0.650 4.60 0.0364 3.2 1178 

11 2048 1.09 0.545 3.90 0.0322 3.2 1059 

12 4096 0.95 0.475 3.30 0.0299 2.1 966 

13 8192 0.82 0.410 2.70 0.0267 2.1 1256 

14 16384 0.74 0.370 2.30 0.0252 2.1 976 

15 32768 0.66 0.330 2.00 0.0234 2.1 835 

16 65536 0.60 0.300 1.65 0.0225 2.1 955 
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Appendix C Kraus’s Analytical Validation on Koval & 

Cranch’s Experiment Measurements of a 

Cylindrical Thin Shell 

Kraus determined the lowest frequency on Koval and Cranch’s sample to be 552 Hz 

with longitudinal parameter m = 1 and circumferential parameter n = 6, in the 

variational solutions as shown in Table C.1.  For each set of parameters m and n, 

there are three frequency solutions with the second and the third frequencies much 

higher in order of magnitude than the first. 

Table C.2 Natural Frequencies (Hertz or cycles/second) of Clamped Steel 
Cylinders  [93] (radius a = 3 inch, thickness h = 0.01 inch, and 
length l= 12 inch.) 
   ½ Axial Wave (m = 1)   1 ½ Axial Waves (m = 2)   

n      f1      f2       f3      f1        f2      f3     

3 1,176 27,071 36,866  4,350 30,578 46,524  

4 783 32,418 47,318  3,139 36,021 54,848  

5 597 38,118 58,107  2,342 41,551 64,210  

6 552 44,071 69,055  1,823 47,242 74,170  

7 611 50,194 80,092  1,503 53,096 84,489  

8 736 56,436 91,184  1,338 59,088 95,038  

9 902 62,763 102,313  1,302 65,192 105,742  

10 1,100 69,151 113,467  1,369 71,386 116,555  

11 1,321 75,586 124,639  1,512 77,651 127,449  

12 1,568 82,056 135,825  1,710 83,973 138,402  

13 1,837 88,554 147,022  1,950 90,340 149,401  

14 2,128 95,074 158,228   2,224 96,746 160,437   

         

Table C.1 is a frequency graph, as a function of the circumferential parameter n, 

which compares results among the variational solutions, the approximate frequency 

solutions, the first approximate radial frequency solutions and the Rayleigh’s 

C.1 
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solutions [93] with the experimental results [105] for a clamped steel cylinder  Kraus 

claimed that the variational solutions has a close fit to the experimental results.  The 

two approximate exact solutions predict higher values than the variational solutions 

and the experimental results in the range of frequencies lower than minimum 

resonance of the sample.  Rayleigh’s minimum frequency is zero.  However, all 

curves merges together with the experimental results as the circumferential 

parameter n increases beyond the minimum frequency. 

 

 
 

Figure C.2 Natural frequencies for a freely vibrating circular cylindrical shell 
with clamped ends (with referring equations) [93, 105]. 

C.1 



  

  

 143 

Appendix D A Sample of Analytical Calculation with 

Mathcad 

Kraus “Exact” solutions on the experimental data of Koval and Cranch calculated in 

Mathcad.  The lowest frequency is f(6, m=1) of 564 Hz as compared to 552 Hz of 

the variational approach with clamped boundary conditions. 
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Appendix E Frequency mode 1 to 100 of the 

Tracheobronchial Generation 0 to 16 by 

COSMOS/Works Analysis  

Table E.3 Results of COSMOS/Works of individual tracheobronchus from the 

trachea (T0) to the 16th bronchus (B1-B16).  Analyses include default mesh and fine 

mesh data of mode 1 to 100.  The radial frequencies (in bold) are the same for each 

branch and independent of the mesh size of the analysis. 

 

E.1 
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Frequency 

Number 
T0 

T0 

fine 
B1 

B1 

fine 
B2 

B2 

fine 
B3 

B3 

fine 
B4 

B4 

fine 
B5 

B5 

fine 
B6 

B6 

fine 
B7 

B7 

fine 
B8 

B8 

fine 

1 2.40 1.97 3.66 3.46 7.22 6.87 24.34 23.88 17.64 17.38 17.83 17.52 21.87 21.27 24.95 24.23 29.23 28.38 
2 2.41 1.97 3.66 3.46 7.22 6.87 24.34 23.88 17.64 17.38 17.85 17.53 21.87 21.27 24.96 24.23 29.27 28.38 
3 2.72 2.71 6.26 5.35 7.27 7.17 29.91 28.58 21.68 20.09 23.96 22.12 32.39 28.91 38.34 34.28 47.34 42.76 
4 2.72 2.71 6.26 5.35 7.28 7.17 29.93 28.59 21.73 20.10 24.09 22.12 32.51 28.92 38.44 34.29 47.59 42.77 
5 3.47 3.19 6.31 6.26 7.22 10.72 30.17 30.05 30.57 29.11 31.29 30.48 37.74 37.73 42.79 42.78 49.56 49.55 
6 3.48 3.19 6.34 6.26 11.43 10.72 30.17 30.05 30.59 29.11 31.30 30.48 37.75 37.73 42.80 42.78 49.57 49.55 
7 5.32 4.69 7.18 6.63 11.81 11.18 43.00 40.75 30.93 30.92 32.14 31.28 41.27 38.35 48.12 44.59 57.73 54.01 
8 5.33 4.70 7.19 6.63 11.82 11.18 43.03 40.75 30.94 30.92 32.16 31.28 41.36 38.36 48.17 44.59 57.74 54.01 
9 5.61 4.95 7.48 7.07 12.45 12.45 44.90 42.68 36.11 34.29 36.36 36.15 43.93 43.56 49.80 49.37 58.10 57.22 

10 6.04 4.95 7.50 7.07 12.45 12.45 44.91 42.68 36.12 34.29 36.36 36.15 43.93 43.56 49.81 49.37 58.19 57.22 
11 6.04 5.14 9.67 8.97 13.88 12.90 45.10 44.52 37.65 35.94 42.88 38.75 56.32 51.50 65.05 61.53 77.14 73.53 
12 6.08 5.14 9.69 8.97 13.89 12.90 45.10 44.52 37.71 35.94 43.07 38.76 56.37 51.51 65.08 61.55 77.22 73.53 
13 6.11 5.54 10.38 9.79 14.75 14.70 48.19 48.19 42.35 38.48 45.27 42.53 59.47 53.95 68.13 61.96 79.62 77.53 
14 6.34 5.54 11.66 9.79 14.75 14.70 48.19 48.19 42.39 38.49 45.35 42.54 59.62 53.95 70.45 61.96 87.82 77.55 
15 6.36 5.61 11.66 10.34 17.36 16.64 53.87 50.74 44.23 42.75 47.07 43.83 59.75 55.81 70.61 66.25 88.09 79.62 
16 6.82 6.04 11.86 10.34 17.37 16.64 53.90 50.75 44.25 42.75 47.17 43.84 63.96 55.82 75.40 66.26 92.86 82.75 
17 6.85 6.04 11.92 10.38 17.67 16.72 58.46 57.46 47.84 46.21 49.06 49.05 64.06 59.75 75.56 68.13 92.90 82.76 
18 7.64 6.51 12.41 11.44 17.69 16.72 58.46 57.47 50.55 46.21 54.37 49.76 70.26 64.04 80.00 75.29 93.29 92.46 
19 7.64 6.51 12.46 11.44 18.61 16.99 62.20 58.35 50.57 47.84 54.62 49.76 70.28 64.05 80.01 75.29 93.46 92.46 
20 7.69 7.50 12.57 11.58 18.62 16.99 62.36 58.35 57.53 54.38 58.33 58.08 71.24 70.20 84.09 79.68 100.56 92.78 
21 7.70 7.50 12.59 11.58 18.77 18.13 64.96 62.01 57.54 54.39 58.34 58.08 71.27 70.20 84.21 79.69 100.58 92.78 
22 8.89 7.83 12.86 12.02 20.17 18.13 64.98 62.01 59.99 56.96 61.48 59.66 76.13 72.99 86.52 83.44 100.79 98.22 
23 8.90 7.84 12.86 12.02 20.20 18.77 67.96 65.49 60.02 56.97 61.49 59.67 76.15 72.99 86.54 83.44 100.83 98.22 
24 9.66 8.96 13.65 12.86 22.17 20.67 67.97 65.50 60.18 57.25 62.87 60.06 76.81 76.05 87.34 86.53 104.99 100.57 
25 9.95 8.96 13.71 12.86 22.19 20.67 69.18 66.73 60.23 57.26 62.88 60.07 76.85 76.05 87.36 86.53 105.07 100.57 

Frequency mode 1 to 25 of the tracheabronchial generation T0 to B8 by COSMOS/Work Analysis 
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Frequency 

Number 
T0 

T0 

fine 
B1 

B1 

fine 
B2 

B2 

fine 
B3 

B3 

fine 
B4 

B4 

fine 
B5 

B5 

fine 
B6 

B6 

fine 
B7 

B7 

fine 
B8 

B8 

fine 

26 9.96 9.09 14.95 13.14 22.91 21.46 69.21 66.74 61.76 57.32 65.25 61.75 83.64 76.14 98.32 88.61 118.78 107.71 
27 10.16 9.10 14.97 13.14 22.91 21.46 71.83 67.01 61.77 57.32 65.36 61.77 83.73 76.14 98.40 88.62 118.85 107.72 
28 10.17 9.34 16.22 15.35 23.46 22.85 73.66 67.01 62.07 58.46 69.04 62.87 96.30 82.26 110.17 98.38 128.98 124.09 
29 10.40 9.35 16.23 15.35 23.52 22.85 73.81 71.83 62.07 58.46 69.49 62.87 96.41 82.28 110.27 98.41 129.00 124.12 
30 10.41 9.42 16.57 15.43 23.73 23.17 81.39 77.69 63.74 61.77 72.20 64.38 96.68 85.33 111.18 101.79 130.73 125.23 
31 11.23 9.42 16.58 15.43 23.75 23.17 81.40 77.69 63.75 61.77 72.58 64.39 96.86 85.35 111.21 101.81 130.80 125.24 
32 11.74 9.65 17.26 15.73 24.44 24.25 83.66 79.13 70.06 62.39 77.92 69.23 98.08 90.70 114.02 105.32 134.56 126.72 
33 11.74 9.78 17.28 15.74 24.44 24.26 83.67 79.13 70.08 62.40 78.32 69.24 98.11 90.70 114.38 105.34 138.90 126.74 
34 11.90 9.78 17.65 16.14 26.48 24.31 84.64 81.02 75.66 69.48 78.42 72.59 98.53 91.22 114.87 106.59 139.30 127.97 
35 11.94 9.95 19.12 16.15 26.51 24.32 84.79 81.02 75.68 69.49 78.49 72.60 98.58 91.23 115.79 106.60 142.50 127.99 
36 12.01 9.95 19.40 16.35 27.07 24.44 85.07 83.01 76.85 70.27 78.76 76.25 100.24 93.29 116.16 107.99 142.70 128.74 
37 12.03 10.07 19.61 16.35 27.63 24.44 85.19 83.01 76.90 70.29 79.04 76.26 100.56 93.30 118.10 108.00 146.85 128.74 
38 12.25 10.07 19.66 16.88 28.42 25.43 87.82 83.65 78.15 74.48 80.13 76.46 100.60 96.94 118.53 110.41 147.30 134.48 
39 12.27 10.40 19.98 16.88 28.76 25.43 87.92 83.65 78.16 74.49 80.18 76.48 106.34 96.95 125.26 110.42 155.00 134.94 
40 12.62 10.40 19.99 17.63 28.95 26.78 89.43 85.02 79.22 77.72 82.27 79.67 106.72 99.34 125.76 114.80 155.61 134.95 
41 12.64 11.10 20.04 17.95 29.06 26.78 89.46 85.03 79.25 77.72 86.79 79.68 115.52 99.34 133.19 117.29 155.75 145.45 
42 12.86 11.11 20.06 17.95 29.70 27.51 93.14 86.62 79.68 79.28 86.96 82.20 115.71 100.49 133.23 117.30 155.79 145.46 
43 12.86 11.22 20.22 18.00 29.72 27.52 93.36 86.63 87.76 79.29 93.37 85.41 116.40 107.66 133.69 124.29 158.27 148.63 
44 13.28 11.29 20.23 18.00 30.07 28.77 95.36 87.16 87.81 79.61 93.52 85.42 116.57 107.68 134.10 124.32 158.41 148.66 
45 13.31 11.29 20.73 18.96 30.08 28.77 96.77 87.17 90.63 79.82 95.36 87.07 116.67 110.59 135.93 129.61 159.24 152.69 
46 13.74 12.20 20.77 18.96 30.40 29.09 96.87 95.30 90.63 79.84 95.43 87.07 116.70 110.59 136.26 129.63 162.36 152.70 
47 13.79 12.21 20.90 19.53 31.12 29.09 97.90 96.74 91.09 81.84 95.48 90.16 118.76 113.47 136.27 129.92 162.63 155.77 
48 14.06 12.74 21.13 19.53 31.30 29.87 97.91 96.74 91.15 81.85 95.50 90.18 119.03 113.48 137.26 129.94 163.62 155.77 
49 14.06 12.74 21.15 20.22 31.53 29.87 98.88 96.85 91.34 83.68 98.12 92.49 119.49 116.68 137.51 133.21 163.67 159.23 
50 14.20 13.08 21.95 20.22 31.69 30.38 98.88 96.85 91.52 83.70 98.15 92.49 122.50 116.68 139.77 133.21 168.71 159.57 

Frequency mode 26 to 50 of the tracheabronchial generation T0 to B8 by COSMOS/Work Analysis 
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Frequency 

Number 
T0 

T0 

fine 
B1 

B1 

fine 
B2 

B2 

fine 
B3 

B3 

fine 
B4 

B4 

fine 
B5 

B5 

fine 
B6 

B6 

fine 
B7 

B7 

fine 
B8 

B8 

fine 

51 14.24 13.08 22.16 20.76 34.41 30.53 103.02 98.16 92.25 86.05 99.04 92.52 122.52 119.49 139.84 136.26 169.47 159.57 
52 15.01 13.39 22.73 20.81 34.42 30.54 103.24 98.18 92.27 86.09 99.14 92.53 130.50 120.19 150.63 138.59 183.70 162.53 
53 15.05 13.39 22.77 20.81 34.47 32.30 106.38 98.68 93.07 89.81 99.56 95.48 131.15 120.22 151.92 138.60 184.21 162.54 
54 15.48 14.06 23.39 20.97 34.57 32.31 106.57 98.68 93.16 89.83 99.65 95.48 133.57 121.19 157.11 143.74 187.47 172.12 
55 15.50 14.06 23.42 20.97 35.26 33.23 106.60 101.10 95.67 91.55 101.15 96.49 133.77 121.19 157.96 143.78 187.83 172.14 
56 15.82 14.55 24.04 21.43 35.33 33.24 110.21 101.11 95.90 91.59 105.13 96.51 138.78 122.90 158.73 143.85 188.21 177.20 
57 15.83 14.56 24.16 21.43 35.60 33.75 110.29 104.74 95.93 92.26 107.14 97.17 138.95 122.93 158.97 143.90 189.38 177.22 
58 16.44 14.66 25.36 22.46 35.71 33.76 110.54 104.74 96.95 92.26 108.36 97.19 141.74 123.59 164.39 145.76 194.30 179.46 
59 16.50 14.67 25.39 22.46 35.92 34.31 110.74 105.99 97.10 92.36 108.90 98.10 142.29 123.61 164.48 145.77 194.37 179.48 
60 16.84 14.72 25.57 23.08 35.95 34.32 111.13 106.00 104.82 92.40 110.79 98.83 143.90 126.18 168.01 146.84 201.48 181.28 
61 17.28 14.72 25.64 23.09 36.17 34.41 111.76 106.14 105.04 95.19 111.41 98.84 143.98 126.20 168.11 146.88 201.55 181.32 
62 17.32 14.87 26.30 23.46 36.74 34.41 112.01 106.14 105.31 95.19 111.80 101.55 144.89 127.83 168.86 152.18 206.00 184.80 
63 18.04 14.88 26.33 23.46 36.83 34.47 112.37 106.27 105.60 95.67 112.01 101.56 145.26 127.86 170.29 152.21 206.79 184.85 
64 18.11 15.01 26.70 23.65 37.35 34.48 112.53 108.11 107.04 98.07 113.46 102.57 147.37 132.81 170.70 152.23 208.50 190.93 
65 18.12 15.01 26.80 23.65 37.53 34.58 113.96 108.14 107.04 98.10 113.80 102.58 148.32 132.82 170.75 152.26 210.57 190.97 
66 18.13 15.19 26.81 23.86 38.84 34.60 114.02 109.20 108.78 100.75 115.95 107.85 148.50 134.88 171.83 160.02 212.88 192.11 
67 18.21 15.20 27.03 23.86 38.85 35.36 118.07 109.21 108.88 100.78 116.03 107.86 148.54 134.91 172.30 160.07 213.83 192.12 
68 18.26 15.40 27.22 24.11 39.64 35.36 118.09 110.66 110.79 104.04 118.70 109.97 151.62 139.11 177.70 161.94 214.32 195.26 
69 18.45 15.40 27.30 24.11 39.76 36.23 118.19 111.26 110.83 104.09 119.49 109.98 151.83 139.14 178.08 161.99 214.59 195.29 
70 18.51 15.61 27.92 25.05 39.92 36.24 119.86 111.26 112.18 104.79 119.77 110.55 152.23 141.88 178.72 162.89 214.63 198.98 
71 18.64 15.62 28.35 25.06 40.00 37.53 120.26 114.27 112.19 104.80 119.81 110.57 152.48 141.88 178.75 162.90 214.84 199.04 
72 18.84 16.16 28.43 25.15 40.16 37.89 122.88 114.29 115.00 108.78 122.63 114.87 153.95 144.14 180.50 166.43 215.07 200.06 
73 18.87 16.16 29.13 25.16 40.27 37.90 123.10 116.46 115.02 108.80 122.67 114.88 153.98 144.15 180.61 166.45 216.10 200.11 
74 18.94 16.17 29.15 25.78 40.89 38.77 123.44 116.46 116.07 109.47 123.98 116.61 158.17 144.83 181.76 170.51 220.79 201.49 
75 18.99 16.17 29.24 25.78 40.90 38.80 123.64 117.12 116.13 109.48 124.65 116.63 158.32 144.87 182.09 170.58 220.90 201.49 

Frequency mode 51 to 75 of the tracheabronchial generation T0 to B8 by COSMOS/Work Analysis 
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Frequency 

Number 
T0 

T0 

fine 
B1 

B1 

fine 
B2 

B2 

fine 
B3 

B3 

fine 
B4 

B4 

fine 
B5 

B5 

fine 
B6 

B6 

fine 
B7 

B7 

fine 
B8 

B8 

fine 

76 19.24 16.84 29.41 26.22 41.15 38.81 123.73 119.65 120.89 110.92 127.24 119.73 161.10 148.48 185.93 170.69 222.40 205.14 
77 19.67 16.86 29.47 26.23 41.21 38.81 128.12 119.65 120.92 110.99 127.74 119.73 161.79 148.48 186.16 170.70 222.92 205.17 
78 19.99 16.86 30.44 26.33 41.39 38.97 128.17 120.27 122.01 111.31 128.77 120.41 163.29 151.16 188.39 173.53 230.11 211.84 
79 20.03 16.95 30.58 26.34 41.94 38.98 132.41 120.28 122.09 111.34 129.33 120.47 163.40 151.18 188.93 173.56 232.08 211.90 
80 20.36 16.96 30.58 26.80 41.98 39.50 132.58 123.17 122.39 112.11 129.67 122.33 167.71 153.89 191.27 178.66 234.04 214.52 
81 20.49 17.59 30.63 26.81 42.58 39.50 132.74 126.37 122.44 112.11 130.35 122.34 168.40 153.89 191.89 178.66 234.12 214.52 
82 20.52 17.59 31.09 26.93 42.66 39.72 132.97 126.39 123.74 112.74 131.00 122.57 170.03 155.24 196.56 181.27 234.88 217.40 
83 20.77 17.78 31.15 26.93 43.28 39.73 133.11 126.53 123.87 112.79 131.27 122.57 170.08 155.25 196.61 181.34 236.38 217.41 
84 20.83 17.78 31.27 27.91 43.29 39.79 134.17 126.54 124.56 114.96 131.84 123.82 170.82 156.98 199.25 183.30 236.87 218.15 
85 21.31 17.97 31.64 27.92 43.37 39.80 134.41 127.56 124.81 114.96 133.99 123.85 171.25 157.00 201.34 183.32 238.84 218.20 
86 21.62 17.98 31.96 28.80 43.67 40.85 135.65 127.57 125.12 115.29 135.91 124.01 172.54 159.27 201.73 183.68 239.85 224.30 
87 21.70 18.12 31.98 28.80 44.22 40.85 135.77 127.58 125.24 115.32 135.95 124.04 174.29 159.27 202.30 183.80 240.16 224.39 
88 21.75 18.12 32.23 28.84 44.27 42.55 139.91 127.58 126.63 117.64 138.17 126.13 175.42 163.62 203.20 188.15 242.13 226.81 
89 21.83 18.61 32.34 28.85 44.97 42.59 140.10 128.02 126.64 117.71 138.75 126.17 175.75 163.67 204.39 188.18 242.66 226.88 
90 21.90 18.62 32.44 29.12 45.49 43.16 141.01 128.03 128.41 118.76 140.38 128.23 176.81 165.11 204.61 193.96 246.36 229.82 
91 21.92 18.85 32.62 29.13 45.68 43.17 142.20 129.68 128.71 118.80 140.81 128.23 179.23 165.15 205.38 194.00 247.02 229.85 
92 22.04 18.88 32.67 29.80 45.97 43.49 142.98 133.45 128.81 120.96 141.93 130.07 182.27 167.76 206.46 196.42 250.93 233.92 
93 22.19 18.88 33.07 29.81 45.97 43.49 143.45 133.46 131.54 120.98 142.21 130.13 182.58 167.79 207.07 196.42 252.80 233.93 
94 22.38 19.31 33.35 30.08 46.10 43.57 143.65 134.04 132.04 121.31 142.68 131.63 184.66 168.73 213.66 197.46 256.47 236.73 
95 22.44 19.31 33.67 30.09 46.25 43.59 145.50 134.09 134.42 121.32 142.68 131.69 184.69 168.76 213.79 197.51 256.54 238.84 
96 22.45 19.72 33.97 30.57 46.83 43.60 145.89 134.48 134.48 123.32 143.71 132.42 187.19 169.59 214.30 199.04 258.00 239.25 
97 22.57 19.72 34.12 30.57 47.01 43.61 151.44 134.50 135.66 123.39 143.94 132.46 187.96 169.64 214.37 199.15 259.78 239.26 
98 22.84 20.41 34.28 31.14 47.05 43.65 152.21 134.74 135.71 126.44 146.56 135.68 190.19 169.88 219.61 199.17 262.90 242.29 
99 23.03 20.41 34.42 31.78 47.12 44.10 152.79 134.79 136.95 126.44 146.70 135.73 190.82 169.89 220.32 200.49 263.20 242.36 

100 23.11 20.71 34.80 31.80 47.42 44.11 153.46 137.48 137.02 127.60 146.71 135.79 191.03 172.44 220.69 200.53 269.65 244.63 

Frequency mode 76 to 100 of the tracheabronchial generation T0 to B8 by COSMOS/Work Analysis 
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Frequency 

Number 
B9 

B9 

fine 
B10 

B10 

fine 
B11 

B11 

fine 
B12 

B12 

fine 
B13 

B13 

fine 
B14 

B14 

fine 
B15 

B15 

fine 
B16 

B16 

fine 

1 33.04 32.00 48.76 47.33 49.21 47.67 50.39 48.96 54.57 53.18 73.22 72.11 92.39 91.03 106.72 105.56 
2 33.06 32.00 48.78 47.34 49.23 47.67 50.40 48.96 54.59 53.18 73.33 72.11 92.53 91.03 106.75 105.57 
3 55.20 50.27 75.56 75.54 79.69 79.66 80.44 80.41 87.27 87.25 117.59 115.85 146.88 146.62 167.45 161.44 
4 55.21 50.28 75.58 75.54 79.70 79.66 80.45 80.41 87.29 87.25 117.61 115.87 146.90 146.63 167.75 161.45 
5 55.63 55.18 90.60 85.16 87.62 80.26 90.11 83.24 94.39 87.67 121.59 117.56 153.68 146.85 169.21 169.17 
6 55.76 55.18 90.65 85.17 87.86 80.27 90.34 83.25 94.59 87.69 121.77 117.57 154.07 146.85 169.22 169.17 
7 64.55 62.37 91.75 89.77 94.08 93.10 95.80 94.81 104.32 103.40 141.19 140.33 177.42 176.38 206.17 205.27 
8 64.56 62.37 91.92 89.78 94.10 93.10 95.82 94.81 104.32 103.40 141.20 140.34 177.43 176.39 206.23 205.28 
9 67.22 63.90 106.77 100.46 103.89 96.88 106.63 100.35 113.89 107.33 149.80 143.90 189.41 182.38 212.78 206.76 
10 67.30 63.91 106.93 100.46 104.07 96.88 106.82 100.35 114.00 107.33 149.92 143.90 189.55 182.38 212.85 206.77 
11 88.06 83.70 122.49 122.48 129.19 126.78 129.48 129.47 138.82 138.81 184.88 184.87 229.83 229.82 260.57 260.55 
12 88.14 83.71 134.61 128.29 133.57 126.80 136.78 130.89 148.28 141.62 197.87 191.71 250.28 242.88 287.18 280.55 
13 89.06 89.06 134.67 128.31 133.65 129.18 136.88 130.91 148.35 141.63 198.12 191.71 250.56 242.89 287.36 280.58 
14 103.52 91.67 144.49 143.64 150.79 147.43 152.89 152.07 166.18 160.03 223.21 210.23 280.99 265.73 303.41 289.12 
15 103.69 91.70 144.51 143.65 150.81 147.47 152.91 152.07 166.21 160.06 223.60 210.26 281.08 265.76 303.93 289.14 
16 103.77 97.38 153.87 153.88 162.27 149.95 163.34 152.80 174.32 165.28 224.26 223.35 281.98 279.92 324.60 314.39 
17 103.86 97.40 153.91 153.88 162.31 149.96 163.39 152.83 174.51 165.29 224.32 223.36 282.81 279.94 324.68 314.39 
18 109.59 103.24 171.36 157.15 163.38 155.65 168.61 161.54 176.41 170.21 236.60 225.07 294.96 285.07 329.90 323.51 
19 109.82 103.24 171.63 157.18 163.70 155.68 168.88 161.57 176.45 170.22 236.65 225.07 295.02 285.07 330.33 323.52 
20 112.18 108.30 171.98 165.24 172.03 162.27 176.38 163.36 185.73 176.42 239.79 236.62 302.74 294.99 337.40 337.43 
21 112.21 108.32 172.07 165.26 172.18 162.28 176.43 163.36 185.95 176.43 239.95 236.63 303.18 295.00 337.46 337.43 
22 114.81 111.09 180.22 165.31 173.31 165.84 177.52 170.67 193.06 185.51 258.88 251.58 327.03 318.64 373.93 360.06 
23 114.95 111.11 180.45 165.34 173.39 165.87 177.67 170.71 193.15 185.52 259.08 251.60 327.55 318.65 374.15 360.10 
24 121.74 112.19 196.64 180.40 189.53 171.33 195.42 178.04 206.66 189.25 269.75 252.89 341.63 320.81 384.20 370.80 
25 121.82 112.20 196.96 180.41 189.84 171.35 195.53 178.06 207.06 189.27 270.13 252.92 342.26 320.85 384.56 370.83 

Frequency mode 1 to 25 of the tracheabronchial generation B9 to B16 by COSMOS/Work Analysis 
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Frequency 

Number 
B9 

B9 

fine 
B10 

B10 

fine 
B11 

B11 

fine 
B12 

B12 

fine 
B13 

B13 

fine 
B14 

B14 

fine 
B15 

B15 

fine 
B16 

B16 

fine 

26 137.11 124.77 201.41 200.30 209.86 194.70 212.40 202.49 229.63 217.20 307.77 292.42 384.96 371.92 433.43 424.95 
27 137.36 124.79 201.47 200.32 209.92 194.72 212.46 202.51 229.70 217.23 307.92 292.47 385.18 371.98 439.77 425.03 
28 144.45 141.27 207.54 202.98 213.92 209.34 216.32 211.60 234.12 228.69 310.65 307.05 385.47 383.72 439.97 433.22 
29 144.51 141.29 214.73 202.99 214.19 209.35 216.46 211.61 237.07 228.70 312.18 307.07 395.17 383.74 446.55 438.43 
30 147.57 143.97 214.89 207.42 218.85 209.97 219.01 215.48 237.28 233.98 312.72 310.48 396.32 385.30 446.95 438.45 
31 147.77 143.98 222.01 207.65 219.38 210.00 227.60 215.52 243.68 234.28 328.44 318.09 415.07 402.18 481.47 458.22 
32 150.68 145.85 222.29 207.69 219.52 218.71 227.94 218.89 243.86 234.31 328.63 318.12 415.49 402.21 481.82 458.26 
33 159.73 145.86 239.68 232.56 246.93 225.11 251.87 234.16 271.55 252.93 356.68 334.80 447.72 422.70 486.15 467.72 
34 160.01 146.81 239.76 232.57 247.08 225.13 251.98 234.18 271.63 252.99 360.75 334.84 447.83 422.76 486.34 467.76 
35 167.96 146.85 244.98 239.72 252.70 236.07 253.41 244.34 275.60 255.42 360.84 342.79 450.53 436.55 501.89 478.36 
36 168.58 150.59 251.88 239.72 252.77 236.12 253.49 244.39 275.83 255.47 361.84 342.88 457.26 436.63 502.00 478.38 
37 172.73 151.14 251.91 244.96 258.37 242.52 258.95 251.31 277.63 263.49 366.27 346.57 459.66 438.20 507.79 501.90 
38 173.57 151.16 256.71 251.26 264.58 242.56 268.44 251.35 280.46 263.53 367.61 346.61 464.28 438.25 508.16 501.91 
39 174.22 158.96 256.77 251.31 264.70 252.73 268.55 253.44 281.26 271.58 369.76 360.79 465.07 447.77 521.12 505.05 
40 174.27 158.99 262.44 251.92 265.49 252.74 273.32 253.45 289.75 271.59 372.68 360.80 469.25 447.78 530.55 505.17 
41 178.12 170.29 262.66 251.97 265.71 253.97 273.67 258.94 289.83 277.62 375.84 367.36 474.62 459.65 531.39 513.95 
42 178.76 170.31 277.07 254.54 267.74 253.99 274.63 261.82 290.88 277.77 385.94 367.41 481.34 465.36 544.26 513.95 
43 179.00 170.67 277.22 254.55 267.88 255.54 275.02 261.87 291.53 277.80 386.12 369.74 481.48 465.41 544.49 521.11 
44 181.31 170.68 284.48 257.85 272.01 255.58 280.49 263.62 296.30 284.35 397.15 383.47 501.29 478.06 549.14 540.37 
45 182.15 172.24 284.65 257.89 272.27 258.36 280.94 263.64 296.38 284.39 398.70 383.49 503.41 478.09 550.32 540.40 
46 183.75 172.27 291.04 267.49 286.10 260.87 290.84 267.82 308.10 287.60 399.23 385.62 504.60 487.25 585.20 565.48 
47 183.86 174.24 291.26 267.51 286.38 260.90 291.20 267.83 309.01 287.60 401.01 385.66 507.24 487.30 585.51 565.53 
48 186.49 174.25 298.67 269.54 286.68 265.87 295.35 271.32 321.95 294.48 429.32 397.95 545.06 505.27 603.94 566.13 
49 186.97 178.11 299.28 269.55 287.04 265.88 295.86 271.35 322.48 294.55 431.77 398.00 545.46 505.31 603.98 566.21 
50 196.24 182.26 305.80 286.59 307.49 271.09 316.79 281.90 334.65 298.86 434.84 400.89 550.84 511.02 609.20 596.13 

 

Frequency mode 26 to 50 of the tracheabronchial generation B9 to B16 by COSMOS/Work Analysis 
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Frequency 

Number 
B9 

B9 

fine 
B10 

B10 

fine 
B11 

B11 

fine 
B12 

B12 

fine 
B13 

B13 

fine 
B14 

B14 

fine 
B15 

B15 

fine 
B16 

B16 

fine 

51 197.05 182.26 305.83 286.60 308.24 271.09 317.58 281.91 334.89 298.87 437.00 401.01 553.61 511.17 610.13 596.27 
52 210.10 186.32 309.60 296.57 313.15 293.96 318.09 306.21 342.92 326.79 454.43 438.25 561.15 557.70 622.49 603.62 
53 210.33 186.34 309.85 296.63 313.48 294.01 318.37 306.27 343.09 326.81 454.60 438.31 561.29 557.74 622.60 603.63 
54 214.33 196.89 312.90 303.38 318.53 300.26 324.92 308.03 348.14 334.04 455.71 450.15 565.93 560.51 627.23 622.26 
55 214.70 196.91 313.01 303.39 318.83 300.30 325.16 308.08 348.26 334.08 455.83 450.19 566.03 560.54 628.04 622.27 
56 215.86 202.65 319.73 306.60 329.73 300.90 328.73 312.29 349.66 339.39 466.89 452.64 572.39 561.00 637.04 629.52 
57 216.20 202.68 320.42 306.63 329.84 300.95 328.84 312.31 349.81 339.40 467.00 452.69 572.52 561.01 637.34 629.56 
58 219.18 205.88 334.05 309.43 330.16 316.31 334.66 317.84 363.40 340.07 469.94 455.64 594.13 572.00 684.06 632.61 
59 219.67 205.91 334.54 309.48 330.62 316.32 335.26 317.85 363.46 340.16 471.54 455.65 594.52 572.06 685.30 632.70 
60 226.33 214.50 339.21 312.92 336.20 322.43 347.23 328.73 366.30 348.11 483.54 464.26 613.74 572.26 689.80 663.06 
61 226.40 214.55 339.26 312.93 336.83 322.51 348.78 328.74 367.19 348.12 487.35 464.42 616.39 572.26 689.82 663.13 
62 237.50 216.05 347.49 337.78 357.73 329.75 351.29 336.38 375.15 361.17 500.37 466.77 631.71 592.30 692.11 664.73 
63 238.99 216.06 347.94 337.87 357.79 329.76 351.35 336.46 375.71 361.23 500.74 466.77 633.27 592.46 695.11 664.81 
64 241.69 218.47 350.61 339.11 359.29 341.97 363.22 351.19 390.40 363.28 509.54 486.18 639.63 613.21 696.50 681.59 
65 242.46 218.52 350.70 339.11 359.66 342.01 363.35 351.19 390.56 363.28 516.04 486.27 639.78 613.31 708.19 681.67 
66 243.17 224.21 356.94 340.72 364.03 344.46 372.60 353.31 401.50 371.63 516.30 487.65 641.98 621.75 709.39 688.58 
67 243.21 224.24 357.26 340.78 364.32 344.55 372.92 353.37 401.63 371.69 520.49 487.68 643.51 621.79 720.83 688.58 
68 245.48 225.49 367.18 346.53 372.00 345.14 379.81 355.81 402.94 379.15 520.67 497.13 644.31 627.58 721.73 691.83 
69 246.22 225.53 367.29 346.54 372.90 345.20 380.96 355.84 403.22 379.21 521.18 497.20 645.40 627.67 728.66 695.02 
70 247.76 226.33 367.45 348.50 377.45 350.48 383.18 356.04 405.73 382.79 525.90 508.92 657.65 633.79 730.02 695.23 
71 247.93 226.34 370.16 348.52 377.75 350.55 383.29 356.12 408.35 382.84 539.73 508.96 683.05 633.83 733.61 711.35 
72 249.43 229.23 379.60 365.77 386.57 356.05 386.40 361.56 409.62 384.73 540.59 515.95 683.92 638.96 734.01 711.42 
73 249.88 229.27 380.39 365.84 386.68 356.16 386.88 361.58 412.33 384.74 541.82 516.01 686.27 638.96 747.61 713.42 
74 251.91 232.00 383.35 367.01 387.54 357.62 387.80 362.56 413.02 388.37 546.89 518.88 689.45 645.17 747.90 713.52 
75 252.96 232.03 383.64 367.02 388.64 357.62 388.41 362.63 416.42 388.48 548.13 518.95 693.10 652.16 757.29 714.14 

 

Frequency mode 51 to 75 of the tracheabronchial generation B9 to B16 by COSMOS/Work Analysis 
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Frequency 

Number 
B9 

B9 

fine 
B10 

B10 

fine 
B11 

B11 

fine 
B12 

B12 

fine 
B13 

B13 

fine 
B14 

B14 

fine 
B15 

B15 

fine 
B16 

B16 

fine 

76 260.71 235.61 391.66 367.44 390.20 360.27 400.57 371.88 421.25 392.07 554.59 520.07 694.76 652.22 768.47 714.22 
77 261.49 235.64 391.74 369.97 390.26 360.28 402.92 371.97 422.06 392.13 554.68 520.07 695.41 656.48 770.20 744.56 
78 264.04 243.09 404.26 371.18 395.61 360.86 404.74 373.77 427.52 401.18 566.29 525.69 696.04 656.54 781.63 744.58 
79 264.12 243.09 404.36 371.29 397.05 360.92 404.84 373.83 428.44 401.18 566.36 531.25 697.88 678.47 781.79 756.91 
80 265.30 245.15 405.73 372.05 402.54 375.89 408.15 382.96 435.31 401.34 568.87 531.43 713.53 678.60 782.67 759.76 
81 266.95 245.16 405.84 372.10 402.65 375.95 408.73 382.97 435.55 401.44 570.61 542.66 714.30 687.63 783.04 759.88 
82 267.16 248.80 406.81 382.62 407.25 384.86 417.95 386.69 438.08 405.52 571.11 542.73 717.82 687.65 794.09 764.81 
83 267.38 248.85 407.98 382.67 407.60 384.86 419.18 388.41 439.03 410.74 572.01 545.56 722.29 689.47 794.65 764.93 
84 270.62 251.31 413.44 383.95 409.29 386.39 421.45 389.97 439.14 410.82 578.00 545.61 724.72 693.34 804.23 780.90 
85 271.16 251.33 414.83 384.01 410.76 386.40 421.53 390.03 439.88 416.42 580.47 554.61 728.69 693.35 805.09 781.66 
86 274.48 256.83 422.73 385.46 416.22 387.54 422.43 397.66 455.42 425.24 595.11 562.99 731.94 696.27 805.95 789.06 
87 275.08 256.85 423.86 385.50 417.20 388.22 423.18 397.73 457.28 425.27 598.50 563.03 736.07 696.41 810.54 789.09 
88 277.64 260.31 426.14 392.45 425.55 388.29 427.54 400.56 457.87 431.34 598.59 564.95 736.61 702.43 811.64 792.12 
89 277.72 260.34 426.95 392.46 426.31 390.04 428.77 400.59 459.54 431.40 601.35 564.95 750.52 702.48 827.60 792.25 
90 279.31 263.91 428.58 397.95 426.52 393.94 433.54 400.92 463.75 435.18 602.96 578.66 756.29 724.47 828.76 799.72 
91 280.36 263.91 430.05 398.00 426.64 394.04 434.10 400.95 464.18 435.27 611.10 578.67 768.05 731.72 833.71 799.95 
92 290.20 265.79 431.28 405.12 430.30 396.41 444.01 410.48 464.30 438.00 613.90 585.35 770.42 731.75 842.18 801.97 
93 290.30 265.81 431.30 405.13 430.87 396.50 444.13 410.52 465.52 438.01 617.09 585.46 773.22 734.28 844.26 807.61 
94 291.22 266.80 433.72 409.18 442.17 398.88 445.35 413.17 468.10 438.54 620.48 594.94 776.31 734.35 855.59 807.88 
95 292.96 267.16 434.33 409.33 442.20 398.89 446.22 413.24 474.56 438.66 621.82 595.58 782.40 741.96 856.99 819.90 
96 296.85 270.42 440.35 418.26 452.31 420.43 446.64 420.70 474.83 446.96 630.48 595.61 783.22 742.04 867.00 820.09 
97 297.35 270.43 447.66 418.32 452.45 420.50 446.66 420.70 487.59 447.10 630.58 600.58 786.15 749.98 867.27 829.24 
98 298.50 278.83 448.23 420.58 452.99 425.87 455.11 435.99 489.17 462.10 630.92 600.71 788.02 766.74 874.15 845.76 
99 298.65 278.87 452.83 420.60 453.14 425.88 464.64 436.01 490.17 462.11 635.87 610.42 788.35 767.74 890.21 845.83 

100 306.94 285.59 453.05 428.08 456.47 428.41 466.10 437.73 491.24 463.74 636.28 610.50 791.73 767.90 890.54 865.09 

 

Frequency mode 76 to 100 of the tracheabronchial generation B9 to B16 by COSMOS/Work Analysis 
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Appendix F Frequency mode 1 to 100 of the 

Tracheobronchial Generation 0 to 16 by 

COSMOS/Works Analysis (Half density and 

double wall thickness) 

Table F.4 Results of COSMOS/Works of individual tracheobronchus from the 

trachea (T0) to the 16th bronchus (B1-B16).  Analyses include default mesh and fine 

mesh data of mode 1 to 100.  The radial frequencies (in bold) are the same for each 

branch and independent of the mesh size of the analysis. 

F.1 
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Mode 

Number 
T0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

1 3.88 6.92 11.57 45.66 30.08 31.45 39.61 45.97 55.65 63.87 76.63 98.54 102.26 108.65 144.95 184.54 208.05 

2 3.89 6.92 11.57 45.66 30.08 31.49 39.61 45.99 55.65 63.89 76.66 98.58 102.29 108.70 144.99 184.63 208.20 

3 5.27 8.96 17.03 48.83 44.29 44.81 54.09 61.34 71.08 79.20 92.19 114.49 115.68 125.59 169.36 211.72 244.21 

4 5.29 8.96 17.04 48.83 44.30 44.82 54.09 61.35 71.09 79.21 92.20 114.51 115.71 125.61 169.39 211.76 244.24 

5 6.51 11.48 17.82 69.06 53.47 56.69 69.32 79.20 93.25 105.20 124.19 156.82 161.38 174.53 236.18 299.29 346.27 

6 6.51 11.49 17.82 69.07 53.50 56.72 69.34 79.23 93.29 105.24 124.25 156.91 161.49 174.67 236.40 299.64 346.61 

7 8.03 14.85 22.30 74.33 55.66 60.14 80.19 95.50 114.13 127.73 149.00 185.53 186.15 199.68 266.16 331.16 375.84 

8 8.64 15.38 22.31 74.35 55.68 60.23 80.24 95.59 120.13 140.77 171.64 224.27 233.55 242.76 317.08 404.34 438.48 

9 8.65 15.41 22.68 80.84 65.00 70.22 85.58 97.61 120.25 140.83 171.72 224.46 233.70 242.84 317.19 404.50 438.65 

10 8.86 16.94 22.68 80.87 65.00 70.80 92.19 108.62 134.68 156.75 187.69 233.36 235.24 254.27 341.48 426.28 488.72 

11 8.86 16.95 26.84 88.82 68.46 70.80 92.22 108.64 134.75 156.79 187.74 233.43 235.31 254.35 341.57 426.39 488.85 

12 12.01 17.84 30.13 88.84 84.42 88.67 107.97 123.02 144.04 161.10 189.24 238.39 244.16 265.27 357.89 454.38 506.92 

13 12.02 17.85 30.14 98.20 84.47 88.72 108.01 123.08 144.11 161.14 189.35 238.52 244.32 265.49 358.17 454.87 507.30 

14 13.81 18.40 31.42 98.20 87.12 89.34 109.18 124.11 144.32 161.76 190.95 247.46 257.93 270.72 359.93 457.75 529.12 

15 14.24 18.41 31.43 102.78 87.16 89.48 109.21 124.14 144.36 161.83 190.98 247.53 257.98 270.83 360.32 458.10 529.68 

16 14.24 19.94 33.73 112.88 88.53 90.11 113.64 132.39 161.49 186.21 224.43 289.86 301.99 321.58 430.61 550.86 625.43 

17 14.25 19.94 33.74 112.90 88.55 90.13 113.72 132.45 161.55 186.36 224.54 290.02 302.21 322.03 431.32 551.54 625.81 

18 14.30 24.22 34.59 121.28 97.72 111.17 142.68 164.76 193.07 216.28 252.40 314.48 315.04 336.97 447.53 555.79 626.19 

19 14.64 24.22 34.60 121.29 97.79 111.25 142.80 164.89 198.65 223.41 262.28 328.97 336.34 364.84 493.83 624.09 724.31 

20 14.68 24.84 35.04 122.21 105.27 113.90 144.19 165.02 198.84 223.51 262.43 329.17 336.59 365.13 494.39 624.89 725.08 

21 15.38 24.85 35.05 122.27 105.31 113.93 148.71 169.69 198.95 227.51 272.53 349.85 364.52 392.77 523.20 650.83 733.37 

22 15.43 25.26 39.89 129.22 109.33 117.91 148.76 169.76 199.04 227.73 272.83 350.24 364.99 392.85 523.35 651.03 733.56 

23 15.62 28.97 39.92 129.25 109.42 118.21 149.27 178.14 224.01 250.72 292.53 364.30 366.07 393.03 530.57 662.31 751.67 

24 15.63 28.98 41.98 132.25 114.23 118.21 149.41 178.36 224.09 250.80 292.62 364.42 366.20 393.30 531.29 679.09 784.38 

25 16.05 28.99 42.01 132.33 118.42 121.72 157.31 186.91 224.62 255.46 297.99 371.06 372.30 399.36 532.31 680.57 785.66 

Frequency mode 1 to 25 of the tracheabronchial generation T0 to B16 by COSMOS/Work Analysis  
(half density and double wall thickness) 
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Mode 

Number 
T0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

26 16.61 29.24 43.62 136.38 118.44 121.79 157.42 187.09 224.82 263.20 320.88 418.69 429.23 449.75 584.17 743.14 798.64 

27 16.64 29.41 46.00 136.43 118.94 130.72 167.71 191.48 228.26 263.45 321.15 418.99 429.56 450.13 584.78 743.79 799.09 

28 18.27 29.41 46.02 137.75 118.97 130.97 167.76 191.55 234.63 274.44 330.88 420.18 434.99 464.53 615.01 782.39 850.35 

29 18.29 29.70 47.71 148.77 132.65 137.20 171.15 195.23 234.74 274.63 331.22 420.47 435.27 464.98 615.56 783.36 850.53 

30 19.52 30.09 47.78 148.78 132.68 137.23 171.78 202.79 243.15 277.43 334.35 423.29 440.88 470.31 627.61 793.53 876.53 

31 19.53 30.31 48.61 157.18 136.92 140.44 171.90 202.94 243.44 277.79 334.39 423.85 441.56 470.62 628.39 794.58 876.57 

32 20.12 31.85 48.63 160.59 137.29 142.01 176.59 203.30 252.76 284.71 334.83 435.68 452.98 478.68 650.93 818.58 919.64 

33 20.13 31.86 49.64 160.72 137.39 142.14 176.79 203.56 252.82 284.86 334.92 435.90 453.10 479.29 651.15 818.66 920.56 

34 20.45 32.03 49.65 166.15 137.76 149.01 187.90 215.00 253.30 294.77 358.27 466.13 477.91 507.67 666.13 832.50 921.93 

35 20.45 32.21 50.74 166.23 137.77 149.23 187.99 215.11 253.39 295.01 358.35 466.36 478.08 507.85 666.26 832.72 922.23 

36 23.00 34.97 50.79 167.38 148.05 153.00 193.42 226.80 280.24 325.09 382.61 477.72 484.94 508.24 669.02 833.05 941.21 

37 23.01 35.09 53.21 167.40 148.14 153.12 193.54 226.91 280.32 325.15 382.74 477.89 484.98 508.27 669.71 834.90 941.40 

38 23.44 35.22 53.24 167.84 155.55 171.18 212.92 244.59 291.14 327.20 393.62 505.82 505.10 522.85 674.12 853.10 972.60 

39 23.46 35.22 53.68 167.92 155.63 171.37 213.05 244.94 291.23 327.31 393.76 506.57 505.16 522.90 674.27 854.54 974.15 

40 24.08 38.48 56.08 170.88 161.46 172.90 214.56 246.62 291.93 332.78 396.42 508.24 519.59 561.60 746.95 933.05 1003.10 

41 25.85 38.50 56.09 170.93 161.48 172.94 214.63 246.69 292.23 333.09 396.84 508.55 520.01 562.09 748.17 954.60 1060.10 

42 25.88 38.51 56.14 174.45 161.85 173.58 220.67 256.20 304.33 343.12 404.01 510.94 527.02 563.48 759.13 956.00 1060.10 

43 25.95 38.52 56.18 175.83 161.89 174.00 220.70 256.23 304.50 343.32 404.24 511.17 527.83 563.78 759.38 960.84 1070.60 

44 25.96 39.01 56.25 179.42 162.33 175.91 221.70 257.24 307.72 348.86 409.49 513.82 532.31 574.89 759.78 961.68 1071.50 

45 26.98 39.07 56.26 179.63 162.38 175.94 221.86 257.30 307.77 348.90 409.54 513.88 532.38 575.72 777.16 963.48 1107.60 

46 27.21 41.20 59.03 183.17 165.87 176.63 224.71 258.44 316.44 365.02 440.63 556.57 557.38 585.05 777.34 964.11 1117.50 

47 27.32 41.22 59.08 183.25 165.90 178.74 224.89 258.67 316.51 365.19 440.73 561.53 558.42 593.99 783.82 993.41 1118.80 

48 27.35 43.75 59.46 188.27 167.07 181.90 238.87 285.18 340.31 383.17 446.98 565.28 563.61 594.14 786.53 1005.00 1127.40 

49 27.39 43.75 59.46 188.27 167.25 182.03 239.26 285.41 341.12 383.67 449.11 565.45 563.76 599.01 798.42 1006.60 1170.10 

50 27.75 43.92 62.80 205.53 173.96 183.09 246.00 286.18 341.22 384.99 451.36 569.43 594.59 634.70 848.12 1053.10 1180.60 

Frequency mode 26 to 50 of the tracheabronchial generation T0 to B16 by COSMOS/Work Analysis  
(half density and double wall thickness) 
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Mode 

Number 
T0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

51 28.07 43.94 63.93 207.51 174.00 184.96 246.48 286.54 342.37 385.11 451.50 569.53 594.83 634.95 851.58 1080.50 1183.10 

52 28.38 44.55 63.95 207.65 175.07 194.15 247.79 286.62 342.97 391.55 466.02 593.20 608.07 657.68 862.76 1080.60 1200.60 

53 28.52 44.79 64.86 209.97 175.20 196.16 248.06 287.25 343.16 391.81 466.50 593.70 608.63 658.30 869.47 1086.90 1201.10 

54 28.94 44.82 64.87 210.09 184.98 198.36 248.13 287.73 353.06 398.87 470.59 595.32 619.74 663.89 869.58 1088.70 1237.20 

55 28.97 45.90 65.08 211.48 185.92 198.56 249.68 292.83 353.29 399.10 470.90 596.12 620.49 663.98 891.15 1106.20 1238.20 

56 29.27 46.08 65.13 211.68 185.93 198.60 249.84 292.98 359.29 413.75 498.04 632.89 631.29 676.87 891.95 1132.60 1244.30 

57 29.30 46.10 66.08 211.88 190.14 199.77 256.62 293.26 359.59 414.49 498.29 633.04 631.38 678.91 904.91 1134.00 1244.50 

58 30.38 46.17 66.10 215.50 190.19 199.81 256.71 296.53 360.89 420.35 504.04 641.37 657.10 680.13 913.71 1135.80 1246.60 

59 30.42 46.84 66.76 215.51 190.73 204.59 257.16 296.79 361.13 421.08 504.14 641.52 670.69 705.95 920.44 1135.90 1246.90 

60 31.08 47.26 68.47 216.28 190.75 205.06 258.93 297.84 368.30 428.95 511.72 665.96 671.28 706.01 920.57 1159.40 1247.20 

61 31.12 47.31 69.56 216.32 198.12 209.38 259.44 298.18 368.64 429.04 512.53 666.32 672.81 710.33 926.24 1162.00 1288.20 

62 31.40 48.46 70.01 219.34 198.36 209.59 259.63 307.15 379.02 430.65 523.95 669.04 672.86 710.70 928.41 1175.40 1293.10 

63 31.42 48.47 70.53 219.42 201.32 210.63 260.08 307.42 379.09 431.35 524.81 676.64 689.86 710.78 930.94 1189.80 1293.50 

64 31.84 49.53 70.72 228.24 201.48 210.67 273.57 316.81 384.57 448.55 532.80 676.76 690.43 720.64 943.31 1192.00 1324.50 

65 31.90 49.72 71.37 229.77 203.43 211.82 273.62 316.86 384.93 449.45 535.81 677.78 692.26 721.23 945.74 1195.30 1326.40 

66 32.11 49.84 71.39 229.79 203.50 218.00 277.80 327.78 395.37 452.29 535.99 678.24 695.38 729.16 954.32 1206.30 1356.90 

67 32.24 50.58 71.40 234.27 203.93 218.01 278.09 328.29 395.40 452.36 538.92 681.41 695.77 729.55 966.18 1207.20 1359.50 

68 32.27 50.65 72.77 234.48 205.37 223.58 283.88 330.82 399.40 453.53 539.39 681.77 699.49 734.91 966.58 1210.50 1360.00 

69 33.68 50.74 73.42 238.15 211.49 230.17 287.54 330.98 400.75 453.97 539.66 689.45 699.71 734.95 971.72 1227.20 1374.20 

70 33.76 51.76 74.14 238.28 212.59 230.66 287.73 331.34 401.03 454.26 539.73 690.35 706.01 738.26 973.10 1244.90 1374.40 

71 34.65 51.78 74.25 244.42 212.60 232.28 292.14 336.92 405.57 459.09 545.66 699.51 706.54 755.81 992.55 1248.40 1389.40 

72 34.71 51.83 76.38 244.43 218.18 232.48 292.18 337.18 405.61 459.13 546.38 699.64 716.73 756.51 996.68 1260.30 1404.70 

73 35.55 53.27 76.42 251.29 218.37 232.93 294.15 338.83 408.00 470.18 557.34 706.17 717.47 763.86 1002.80 1273.90 1406.10 

74 35.61 53.48 76.46 251.58 218.88 233.01 294.22 338.89 408.24 471.25 557.36 709.05 718.12 764.46 1028.90 1276.40 1411.40 

75 35.95 53.55 76.57 259.75 221.76 233.75 296.19 341.75 413.31 474.79 561.41 709.87 734.85 772.14 1029.50 1285.70 1411.50 

Frequency mode 51 to 75 of the tracheabronchial generation T0 to B16 by COSMOS/Work Analysis  
(half density and double wall thickness) 
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Mode 

Number 
T0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 

76 36.00 55.02 77.55 259.94 221.86 236.98 297.55 341.78 413.92 474.81 564.78 724.92 735.34 788.94 1043.60 1312.60 1438.10 

77 36.30 55.64 77.65 261.74 225.05 237.08 298.16 346.08 419.31 476.26 564.97 725.10 744.50 790.85 1048.70 1313.90 1439.70 

78 36.33 55.65 77.87 265.17 225.17 237.89 303.04 352.38 420.13 476.82 577.47 729.16 744.74 796.01 1057.30 1324.40 1489.60 

79 36.44 55.95 78.28 265.26 228.21 238.65 303.53 352.39 420.15 477.21 578.29 742.03 749.16 796.17 1058.00 1331.10 1489.90 

80 36.46 56.19 78.32 266.23 228.56 239.62 305.02 355.56 431.90 491.79 579.08 744.17 749.47 798.60 1063.10 1332.40 1503.00 

81 37.96 56.31 80.52 266.36 228.83 244.84 305.15 356.32 440.17 499.82 589.66 744.25 759.06 813.17 1064.40 1351.60 1523.10 

82 38.02 56.61 80.57 271.45 230.76 244.86 305.22 356.46 440.49 499.97 589.81 749.31 760.10 813.86 1072.10 1354.10 1524.40 

83 38.50 56.84 81.98 271.70 230.95 248.49 315.52 366.99 440.71 507.31 595.92 750.11 777.59 814.75 1082.60 1354.20 1548.10 

84 38.51 57.08 82.83 277.60 231.25 249.95 317.24 367.28 441.01 509.79 597.95 753.74 778.08 819.85 1085.60 1364.30 1549.30 

85 38.51 57.63 83.07 277.86 231.34 252.91 317.30 368.11 445.61 509.94 603.88 763.86 780.44 821.12 1108.10 1379.60 1557.10 

86 39.13 57.64 84.03 278.84 231.66 253.10 327.22 376.44 449.78 510.85 604.13 764.58 790.17 823.98 1112.40 1386.30 1579.60 

87 39.18 59.39 84.04 278.86 231.80 255.49 327.40 376.83 449.84 511.34 614.44 784.92 790.77 857.08 1113.00 1389.10 1580.10 

88 40.13 59.48 84.15 295.01 238.52 258.11 329.32 378.93 450.76 511.67 614.79 788.11 806.07 859.47 1113.10 1429.00 1635.00 

89 40.53 59.71 85.22 295.20 238.87 258.76 330.83 379.14 450.97 516.34 619.04 789.14 816.27 860.24 1113.50 1431.50 1637.60 

90 40.56 59.74 86.34 298.81 239.26 260.20 331.14 383.19 456.45 516.57 619.76 802.15 816.64 874.55 1156.10 1433.20 1639.80 

91 40.97 59.95 86.36 298.82 239.30 263.91 333.96 388.60 463.10 527.10 621.93 802.78 820.70 874.86 1161.40 1433.50 1641.40 

92 41.03 60.00 86.49 299.38 241.33 264.82 335.38 389.27 469.48 533.92 636.42 805.71 820.82 878.79 1161.50 1471.10 1642.60 

93 41.62 60.58 86.60 300.11 242.51 265.24 340.09 390.40 470.41 535.09 636.92 805.93 831.93 879.31 1166.40 1481.90 1642.60 

94 41.69 60.77 87.89 301.24 242.85 266.49 340.33 390.59 475.01 539.72 641.10 818.35 833.23 879.38 1174.90 1483.70 1672.10 

95 42.23 61.89 87.95 301.32 243.08 266.82 341.98 391.43 475.41 540.10 641.55 818.63 833.56 879.56 1176.20 1491.40 1672.90 

96 42.24 61.95 88.14 308.19 254.81 268.05 342.25 396.52 480.74 550.14 649.11 819.30 841.13 888.35 1176.80 1493.80 1674.80 

97 42.25 62.33 88.17 308.80 255.67 269.25 343.63 396.85 481.09 555.66 668.70 843.69 845.79 889.68 1177.30 1505.80 1739.20 

98 42.49 63.14 89.36 308.83 255.93 272.68 343.77 399.24 483.30 556.81 671.22 846.20 845.82 889.75 1180.80 1507.50 1741.40 

99 42.59 63.23 90.49 313.25 258.42 272.80 347.37 411.13 497.85 567.02 671.54 850.12 858.96 908.18 1245.10 1546.10 1760.50 

100 42.66 63.58 91.27 314.39 258.52 275.27 347.81 413.38 500.64 568.69 671.99 850.17 860.08 909.77 1248.20 1546.20 1761.60 

Frequency mode 76 to 100 of the tracheabronchial generation T0 to B16 by COSMOS/Work Analysis  
(half density and double wall thickness) 
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Appendix G Experimental Data and Results 

Intensity versus frequency measurements on experimental samples. 

Experiment A1, trial 1 

fShaker  Intensity fShaker  Intensity fShaker  Intensity fShaker  Intensity 

(Hz)  (dB) (Hz)  (dB) (Hz)  (dB) (Hz)  (dB) 

1.00 -48.50 85.00 -16.50 280.00 -25.50 710.00 -34.50 

2.00 -40.50 90.00 -18.50 300.00 -30.50 720.00 -34.50 

3.00 -40.50 95.00 -18.50 320.00 -27.50 730.00 -34.50 

4.00 -31.50 100.00 -18.50 340.00 -28.50 740.00 -34.50 

5.00 -30.50 105.00 -17.50 360.00 -29.50 750.00 -35.50 

6.00 -29.50 110.00 -16.50 380.00 -32.50 760.00 -36.50 

7.00 -28.50 115.00 -15.50 400.00 -33.50 770.00 -38.50 

8.00 -26.50 120.00 -15.50 420.00 -34.50 780.00 -39.50 

9.00 -24.50 125.00 -16.50 440.00 -34.50 800.00 -40.50 

10.00 -23.00 130.00 -16.50 460.00 -34.50 820.00 -42.50 

11.00 -22.50 135.00 -16.50 480.00 -33.50 840.00 -44.50 

12.00 -21.50 140.00 -16.50 500.00 -33.50 860.00 -44.50 

13.00 -20.50 145.00 -16.50 520.00 -34.50 880.00 -44.50 

15.00 -23.50 150.00 -17.50 540.00 -35.50 900.00 -44.50 

20.00 -23.50 155.00 -16.50 560.00 -36.50 910.00 -42.50 

25.00 -18.50 160.00 -18.50 580.00 -37.50 920.00 -42.50 

30.00 -16.50 165.00 -18.50 600.00 -39.50 930.00 -41.50 

35.00 -13.50 170.00 -18.50 610.00 -38.50 940.00 -41.50 

40.00 -8.50 175.00 -15.50 620.00 -38.50 950.00 -41.50 

45.00 -4.50 180.00 -14.50 630.00 -36.50 960.00 -42.50 

50.00 -2.50 185.00 -14.50 640.00 -36.50 970.00 -43.50 

55.00 -6.50 190.00 -13.50 650.00 -34.50 980.00 -42.50 

60.00 -9.50 195.00 -14.50 660.00 -34.50 990.00 -43.50 

65.00 -12.50 200.00 -14.50 670.00 -33.50 1000.00 -43.50 

70.00 -13.50 220.00 -14.50 680.00 -32.50     

75.00 -14.50 240.00 -14.50 690.00 -33.50     

80.00 -16.50 260.00 -20.50 700.00 -33.50     
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Experiment A1, trial 2 
fShaker  Intensity fShaker  Intensity fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB) (Hz)  (dB) (Hz)  (dB) 
0.50 -44.10 80.00 -16.50 440.00 -33.50 730.00 -35.50 
0.99 -43.00 90.00 -16.50 450.00 -34.50 740.00 -36.50 
1.98 -41.10 100.00 -17.50 460.00 -34.50 750.00 -36.50 
3.01 -39.00 110.00 -16.50 470.00 -34.50 760.00 -36.50 
3.99 -38.10 120.00 -15.50 480.00 -35.50 770.00 -36.50 
5.00 -38.50 130.00 -16.50 490.00 -36.50 780.00 -37.50 
5.60 -40.30 140.00 -15.50 500.00 -38.50 790.00 -38.50 
6.99 -36.10 150.00 -16.50 510.00 -39.50 800.00 -38.50 
8.02 -33.00 160.00 -16.50 520.00 -42.50 810.00 -39.50 
9.01 -32.40 170.00 -14.50 530.00 -42.50 820.00 -39.50 

10.00 -31.50 180.00 -20.50 540.00 -45.50 830.00 -40.50 
11.02 -30.80 190.00 -21.50 550.00 -49.50 840.00 -39.50 
12.00 -30.60 200.00 -20.50 560.00 -49.50 850.00 -40.50 
12.96 -30.30 220.00 -19.50 570.00 -51.50 860.00 -40.50 
14.98 -30.90 240.00 -21.50 580.00 -52.50 870.00 -40.50 
16.01 -31.30 260.00 -20.50 590.00 -49.50 880.00 -42.50 
16.98 -31.30 270.00 -21.50 600.00 -45.50 890.00 -42.50 
17.03 -31.70 280.00 -24.50 610.00 -45.50 900.00 -44.50 
18.01 -31.30 290.00 -22.50 620.00 -44.50 910.00 -42.50 
19.01 -30.80 300.00 -21.50 630.00 -42.50 920.00 -44.50 
20.00 -30.70 320.00 -21.50 640.00 -39.50 930.00 -44.50 
25.00 -29.30 340.00 -22.50 650.00 -38.50 940.00 -45.50 
30.00 -26.30 360.00 -23.50 660.00 -37.50 950.00 -46.50 
35.00 -24.20 380.00 -24.50 670.00 -37.50 960.00 -47.50 
40.00 -22.10 390.00 -26.50 680.00 -35.50 970.00 -48.50 
45.00 -20.80 400.00 -29.50 690.00 -34.50 980.00 -48.50 
50.00 -18.50 410.00 -29.50 700.00 -34.50 990.00 -50.50 
60.00 -10.50 420.00 -30.50 710.00 -34.50     
70.00 -13.50 430.00 -31.50 720.00 -34.50     
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Experiment A2, trial 1  Experiment A2, trial 2 
fShaker  Intensity fShaker  Intensity  fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB)  (Hz)  (dB) (Hz)  (dB) 
0.50 -42.50 180.10 -15.50  0.97 -50.50 120.00 -16.50 
1.00 -41.70 190.10 -15.50  1.99 -48.70 129.90 -17.50 
1.99 -41.10 200.00 -15.50  3.02 -47.80 139.70 -19.50 
3.01 -40.90 225.00 -18.50  3.97 -47.20 150.10 -22.50 
4.01 -39.70 240.00 -17.50  5.00 -46.50 160.00 -26.50 
5.00 -38.50 250.00 -20.50  6.03 -44.10 169.90 -31.50 
6.10 -39.00 261.00 -23.50  7.01 -43.00 180.00 -44.50 
6.97 -37.10 270.00 -24.50  7.99 -41.80 190.20 -21.50 
8.01 -35.60 280.00 -26.50  8.43 -40.70 202.00 -25.50 
9.01 -33.60 300.00 -31.50  9.02 -40.70 225.00 -22.50 

10.00 -32.50 320.00 -30.50  9.99 -40.50 240.00 -21.50 
10.99 -31.30 341.00 -33.50  10.97 -38.60 250.00 -21.50 
11.98 -30.60 350.00 -34.50  12.01 -39.00 261.00 -23.50 
13.05 -30.80 360.00 -34.50  13.04 -38.10 269.00 -24.50 
14.01 -31.00 382.00 -36.50  13.97 -37.30 281.00 -25.50 
15.00 -29.50 399.00 -36.50  15.01 -36.50 300.00 -26.50 
16.50 -29.30 420.00 -35.50  16.02 -36.90 320.00 -30.50 
18.01 -28.90 448.00 -35.50  17.02 -36.10 341.00 -35.50 
19.02 -28.80 475.00 -36.50  17.98 -35.30 348.00 -36.50 
20.20 -28.50 499.00 -36.50  19.00 -34.80 360.00 -38.50 
25.20 -24.50 525.00 -36.50  19.80 -34.50 381.00 -38.50 
30.00 -23.50 550.00 -37.50  25.10 -32.50 401.00 -35.50 
40.00 -21.50 574.00 -37.50  30.00 -30.50 421.00 -34.50 
50.20 -18.50 601.00 -38.50  40.10 -28.50 440.00 -39.50 
59.90 -15.50 625.00 -38.50  49.70 -26.50 475.00 -50.50 
70.00 -12.50 651.00 -38.50  59.90 -24.50 499.00 -50.50 
79.90 -11.50 675.00 -40.50  69.90 -21.50 523.00 -54.50 
90.00 -10.50 699.00 -42.50  80.00 -18.50 550.00 -53.50 

100.00 -12.50 724.00 -43.50  90.10 -13.50 575.00 -51.50 
110.30 -11.50 750.00 -46.50  100.20 -23.50 599.00 -54.50 
119.90 -13.50 774.00 -46.50      
130.30 -16.50 802.00 -49.50      
139.90 -18.50 824.00 -50.50      
150.00 -20.50 876.00 -51.50      
160.10 -19.50 899.00 -52.50      
170.10 -17.50          
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Experiment A3, trial 1 
fShaker  Intensity fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB) (Hz)  (dB) 
0.50 -48.50 16.04 -9.70 93.20 -4.50 
0.60 -44.10 16.57 -8.90 94.80 -4.50 
0.70 -42.50 17.01 -6.90 97.00 -5.30 
0.80 -38.90 17.53 -6.10 97.60 -6.10 
0.90 -40.10 17.95 -5.70 97.90 -8.50 
1.00 -37.70 18.55 -5.70 98.20 -11.30 
1.10 -36.10 19.04 -5.70 98.50 -10.90 
1.20 -30.90 19.86 -4.10 99.20 -11.70 
1.30 -30.90 21.60 -4.50 100.50 -9.70 
1.40 -29.70 22.00 -2.50 100.80 -6.90 
1.50 -27.70 23.60 -2.90 101.80 -6.10 
1.60 -26.90 24.20 -2.10 102.20 -6.10 
1.70 -24.90 26.30 -1.30 104.60 -6.50 
1.80 -23.70 26.90 -0.90 106.20 -6.50 
1.90 -22.90 28.20 -1.30 108.80 -6.50 
2.00 -21.70 30.40 -1.70 111.00 -6.10 
2.51 -19.30 31.30 -2.10 112.50 -13.70 
3.10 -17.30 34.30 -3.30 113.40 -13.70 
3.68 -16.50 35.50 -4.50 117.30 -15.30 
4.06 -14.50 37.70 -4.50 117.70 -13.70 
4.47 -13.70 39.10 -5.30 120.20 -10.10 
5.10 -13.70 41.80 -7.30 123.20 -8.10 
5.48 -13.30 43.50 -8.10 125.00 -7.70 
6.02 -12.50 47.90 -11.30 130.50 -6.90 
6.58 -11.30 50.40 -12.50 134.70 -6.90 
7.00 -11.70 54.30 -13.30 137.80 -6.10 
7.60 -12.50 57.70 -14.10 144.10 -6.90 
8.03 -10.90 60.30 -14.10 147.90 -6.90 
8.55 -11.30 62.20 -14.10 150.70 -6.90 
9.11 -13.30 64.70 -12.50 156.20 -6.50 
9.55 -13.70 69.80 -10.90 161.80 -7.30 

10.10 -12.90 72.80 -9.70 165.30 -7.30 
10.73 -13.30 75.20 -8.90 170.40 -7.70 
11.35 -13.70 78.70 -7.30 176.00 -7.30 
11.97 -14.90 83.90 -5.30 179.00 -8.10 
12.42 -16.10 85.70 -4.10 185.10 -9.30 
12.98 -16.90 87.10 -4.10 189.00 -9.30 
13.48 -16.50 87.50 -5.30 195.20 -10.10 
14.13 -16.50 88.90 -6.90 210.00 -14.10 
14.49 -14.50 89.80 -8.10 233.00 -21.30 
15.03 -12.10 91.30 -7.30     
15.61 -10.10 92.60 -5.70     
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Experiment A3, trial 2 
fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB) 
1.007 -19.3 55.4 -13.7 
1.998 -19.7 57.7 -16.1 

3.01 -19.1 60.1 -17.3 
4.02 -18.6 65.2 -18.9 
5.01 -18.1 67.7 -18.1 
6.01 -19.3 69.9 -22.5 
6.98 -18.4 72.6 -20.5 
7.99 -15.9 74.9 -22.5 

9 -14.6 80.4 -25.7 
9.98 -12.5 84.9 -26.5 
11.2 -12.9 89.7 -33.7 
11.7 -13.3 95.2 -32.1 
12.3 -14.8 97.7 -32.1 

12.54 -15.3 100 -32.1 
13 -15.1 102.7 -30.5 

13.56 -15.5 104.9 -29.3 
13.98 -16.0 107.5 -29.3 
14.56 -16.9 110.4 -34.1 
14.96 -17.3 112.7 -33.3 
17.54 -14.1 115.1 -31.7 

20.1 -10.1 119.7 -29.3 
22.5 -8.1 124.9 -27.3 
25.5 -1.3 127.2 -26.1 
27.7 -2.1 129.7 -25.3 
30.5 -3.3 132.8 -23.7 

33 -4.1 135.1 -23.7 
35 -5.3 137.9 -23.7 
40 -5.3 139.5 -22.5 

45.5 -7.7 144.6 -21.3 
50 -8.5 147.1 -21.3 

52.4 -9.3     
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Experiment A3, trial 3 
fShaker  Intensity fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB) (Hz)  (dB) 
0.50 -48.50 16.04 -9.70 93.20 -4.50 
0.60 -44.10 16.57 -8.90 94.80 -4.50 
0.70 -42.50 17.01 -6.90 97.00 -5.30 
0.80 -38.90 17.53 -6.10 97.60 -6.10 
0.90 -40.10 17.95 -5.70 97.90 -8.50 
1.00 -37.70 18.55 -5.70 98.20 -11.30 
1.10 -36.10 19.04 -5.70 98.50 -10.90 
1.20 -30.90 19.86 -4.10 99.20 -11.70 
1.30 -30.90 21.60 -4.50 100.50 -9.70 
1.40 -29.70 22.00 -2.50 100.80 -6.90 
1.50 -27.70 23.60 -2.90 101.80 -6.10 
1.60 -26.90 24.20 -2.10 102.20 -6.10 
1.70 -24.90 26.30 -1.30 104.60 -6.50 
1.80 -23.70 26.90 -0.90 106.20 -6.50 
1.90 -22.90 28.20 -1.30 108.80 -6.50 
2.00 -21.70 30.40 -1.70 111.00 -6.10 
2.51 -19.30 31.30 -2.10 112.50 -13.70 
3.10 -17.30 34.30 -3.30 113.40 -13.70 
3.68 -16.50 35.50 -4.50 117.30 -15.30 
4.06 -14.50 37.70 -4.50 117.70 -13.70 
4.47 -13.70 39.10 -5.30 120.20 -10.10 
5.10 -13.70 41.80 -7.30 123.20 -8.10 
5.48 -13.30 43.50 -8.10 125.00 -7.70 
6.02 -12.50 47.90 -11.30 130.50 -6.90 
6.58 -11.30 50.40 -12.50 134.70 -6.90 
7.00 -11.70 54.30 -13.30 137.80 -6.10 
7.60 -12.50 57.70 -14.10 144.10 -6.90 
8.03 -10.90 60.30 -14.10 147.90 -6.90 
8.55 -11.30 62.20 -14.10 150.70 -6.90 
9.11 -13.30 64.70 -12.50 156.20 -6.50 
9.55 -13.70 69.80 -10.90 161.80 -7.30 

10.10 -12.90 72.80 -9.70 165.30 -7.30 
10.73 -13.30 75.20 -8.90 170.40 -7.70 
11.35 -13.70 78.70 -7.30 176.00 -7.30 
11.97 -14.90 83.90 -5.30 179.00 -8.10 
12.42 -16.10 85.70 -4.10 185.10 -9.30 
12.98 -16.90 87.10 -4.10 189.00 -9.30 
13.48 -16.50 87.50 -5.30 195.20 -10.10 
14.13 -16.50 88.90 -6.90 210.00 -14.10 
14.49 -14.50 89.80 -8.10 233.00 -21.30 
15.03 -12.10 91.30 -7.30     
15.61 -10.10 92.60 -5.70     
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Experiment B1 
fShaker  Intensity fShaker  Intensity fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB) (Hz)  (dB) (Hz)  (dB) 
1.02 -84.60 9.10 -66.60 13.74 -57.40 16.37 -55.00 
1.50 -74.60 9.44 -65.80 14.08 -58.60 16.55 -55.40 
2.00 -76.20 9.77 -61.00 14.28 -62.60 16.68 -53.40 
2.50 -73.00 10.14 -54.60 14.54 -63.80 17.04 -53.00 
3.05 -75.80 10.28 -53.40 14.75 -65.00 17.16 -55.00 
3.49 -71.80 10.51 -49.00 14.82 -62.60 17.48 -56.20 
4.20 -70.20 10.71 -49.00 15.10 -57.80 17.77 -55.00 
4.91 -68.20 10.85 -49.00 15.37 -56.60 17.92 -53.80 
5.64 -70.20 11.21 -50.20 15.52 -56.20 18.25 -53.00 
6.19 -73.00 11.57 -51.80 15.65 -56.20 18.74 -52.60 
6.81 -71.80 12.11 -53.40 15.87 -55.40 19.03 -53.40 
7.36 -72.20 12.93 -55.40 16.03 -54.20 19.08 -53.80 
8.08 -68.60 13.48 -55.80 16.07 -53.00 19.24 -55.00 

 

Experiment B2, trial 1 
fShaker  Intensity fShaker  Intensity fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB) (Hz)  (dB) (Hz)  (dB) 
8.00 -12.20 13.80 -1.39 40.00 11.00 58.00 6.61 
9.00 -10.60 20.60 11.00 41.00 9.41 60.00 6.61 
10.00 -8.59 21.10 13.40 42.00 9.01 62.00 5.81 
11.00 -5.79 22.00 14.60 44.00 5.81     
12.00 -4.59 25.00 10.20 50.00 5.41     
13.00 -4.99 39.00 9.81 57.00 6.61     

 



  

   

 165 

 

Experiment B2, trial 2 
fShaker  Intensity fShaker  Intensity fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB) (Hz)  (dB) (Hz)  (dB) 
1.00 -36.50 20.30 -0.21 37.30 22.20 69.10 11.80 
2.20 -35.00 21.30 2.21 39.30 25.00 72.80 8.61 
2.40 -35.80 22.60 5.01 41.70 25.80 74.10 5.01 
3.40 -32.30 23.50 6.21 42.70 25.80 76.90 3.01 
5.50 -24.20 24.50 5.81 43.40 25.80 78.00 3.01 
5.60 -25.40 25.70 5.81 44.60 25.80 79.30 3.01 
7.70 -18.60 26.50 5.01 46.00 25.80 81.10 3.01 
8.50 -19.30 27.00 3.81 48.50 25.40 83.20 3.41 
9.50 -14.60 28.00 2.21 49.70 24.20 86.20 3.41 
12.40 -7.79 29.20 1.41 50.50 24.20 88.50 3.41 
14.30 -6.99 30.40 3.01 52.40 21.80 90.60 2.61 
15.80 -5.79 31.00 4.21 55.10 19.80 92.80 1.01 
16.50 -3.99 31.70 7.01 56.70 18.20 95.10 -1.39 
17.50 -3.79 32.80 10.60 59.50 17.00 98.20 -5.79 
18.00 -4.99 34.20 15.00 62.30 17.00     
18.80 -2.59 35.00 17.80 65.80 15.80     
19.50 -1.79 35.50 17.80 67.30 14.20     

 



  

   

 166 

 

Experiment B3, trial 1  Experiment B3, trial 2 
fShaker  Intensity fShaker  Intensity  fShaker  Intensity fShaker  Intensity 
(Hz)  (dB) (Hz)  (dB)  (Hz)  (dB) (Hz)  (dB) 
1.00 -32.60 47.20 16.20  1.10 -32.00 43.50 16.20 
1.90 -31.80 48.80 16.20  2.10 -31.50 46.20 20.20 
2.97 -27.00 49.70 16.20  2.40 -30.00 47.70 21.80 
3.99 -23.40 52.50 15.40  3.50 -27.20 50.10 21.80 
5.01 -19.70 54.90 15.00  4.30 -24.20 51.70 21.40 
5.50 -16.20 57.10 14.20  5.50 -20.40 52.70 20.60 
6.20 -15.00 58.90 13.00  6.30 -14.60 54.10 19.80 
7.99 -16.70 60.60 12.20  7.50 -15.80 56.00 19.40 
8.01 -12.20 62.30 11.40  8.40 -9.39 57.70 19.00 
8.98 -8.77 64.70 11.40  10.50 -6.19 58.90 19.80 
9.70 -8.59 66.90 11.00  13.10 -6.59 59.20 19.80 

13.00 -6.19 68.60 11.40  13.70 -4.19 60.10 20.20 
13.99 -4.58 70.80 11.80  14.70 -2.99 61.10 21.00 
14.97 -3.96 72.70 11.80  15.40 -2.59 62.80 21.40 
16.01 -3.24 74.20 12.20  17.00 -1.39 64.20 21.40 
16.60 -2.59 77.40 11.40  19.30 0.61 65.30 21.40 
18.40 0.61 79.40 11.40  21.40 3.01 66.80 21.40 
20.60 0.61 82.80 10.60  23.60 5.41 68.00 21.40 
24.40 4.61 84.60 10.20  25.40 6.61 69.50 20.60 
27.40 7.41 87.50 8.61  25.80 6.21 70.30 20.60 
28.30 7.01 89.60 7.41  26.30 4.61 72.80 19.80 
31.50 6.21 91.60 6.21  27.60 2.61 73.80 19.40 
35.30 10.60 93.40 5.81  28.30 2.61 75.50 19.40 
38.90 15.80 95.80 4.61  29.10 3.41 76.80 19.40 
41.10 16.20 97.20 3.81  29.60 4.21 79.50 18.50 
43.60 16.20 99.10 2.61  31.10 7.41 81.10 18.20 
44.40 16.20 100.00 2.61  33.80 11.40 82.60 17.40 

     34.50 11.80 85.80 16.60 
     34.80 11.80 87.40 15.80 
     35.50 11.00 88.60 15.80 
     36.00 11.40 90.00 15.40 
     36.80 12.20 92.60 15.00 
     37.20 12.60 94.30 14.60 
     38.00 12.60 96.40 13.80 
     40.30 14.20 98.80 12.60 
     42.10 14.60 99.90 11.80 
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Appendix H Analytical Results on Experimental Validation 

Sample A1 

K 3.14= fr 36.87=

Membrane shell based on thin shell theory
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Experiment A1:
Analytical solutions of membrane radial frequency, the lowest frequency and the lowest radial frequency on 
experiment A1.

 
E 7300:= ν 0.5:= ρ 1040:=
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Appendix I   COSMOS/Works Validation 

Resonant frequencies on experimental samples by COSMOS/Works. 
Lengths, diameters and thicknesses are measured in mm.  Radial frequencies (Hz) are in bold. 

Length  90 60 151  Length  54 121 37 
Diameter 24 24 21  Diameter 23 21 12 
Thickness 3.1 3.1 2.8  Thickness 1.6 2.8 0.5 

A1 A2 A3   B1 B2 B3 Mode No. 
Hertz Hertz Hertz   

Mode No. 
Hertz Hertz Hertz 

1 5.22 8.48 2.40   1 7.26 3.36 7.88 
2 5.22 8.48 2.40   2 7.27 3.36 7.88 
3 8.58 9.86 5.12   3 9.44 6.39 11.87 
4 8.58 9.86 5.41   4 9.44 7.29 11.87 
5 8.59 12.89 5.41   5 12.93 7.29 14.21 
6 10.77 14.96 8.77   6 12.93 8.98 14.21 
7 10.77 14.97 8.93   7 13.57 8.99 14.62 
8 10.90 17.09 8.94   8 13.57 10.00 14.63 
9 10.91 17.09 8.98   9 14.25 10.00 16.95 
10 14.53 21.21 8.99   10 16.59 10.91 16.95 
11 14.71 22.09 9.49   11 16.59 11.90 18.66 
12 14.73 22.09 9.51   12 18.68 11.90 21.73 
13 17.10 22.29 10.25   13 18.68 11.91 21.73 
14 17.10 22.31 10.62   14 19.95 11.93 23.05 
15 17.19 25.11 10.65   15 19.95 12.79 23.05 
16 19.52 25.13 12.35   16 21.55 14.64 23.89 
17 19.54 25.78 12.40   17 21.56 14.66 23.90 
18 21.39 25.81 12.80   18 23.31 16.68 26.01 
19 21.39 25.81 12.81   19 24.29 16.68 26.01 
20 22.64 28.65 14.60   20 24.29 17.97 27.62 
21 22.65 28.65 14.67   21 26.46 18.00 27.62 
22 23.04 30.29 15.37   22 26.46 19.18 27.93 
23 23.05 30.31 16.68   23 27.00 21.09 27.94 
24 24.71 30.72 16.69   24 27.00 21.35 30.54 
25 24.72 30.74 17.18   25 27.08 21.36 30.55 
26 24.87 32.89 17.25   26 27.08 21.71 31.36 
27 24.89 33.32 17.33   27 27.91 21.74 31.69 
28 24.90 33.32 20.18   28 27.92 23.43 31.69 
29 24.93 36.91 20.28   29 28.50 23.43 34.79 
30 25.78 37.31 20.45   30 30.21 24.01 34.79 
31 26.45 37.35 20.47   31 30.21 24.02 34.94 
32 28.10 38.50 20.49   32 30.50 25.04 34.95 
33 28.13 38.50 23.33   33 30.50 25.04 36.48 
34 28.35 38.66 23.43   34 33.01 25.04 36.48 
35 28.36 39.78 23.70   35 33.01 25.05 37.33 
36 30.62 39.80 23.77   36 34.08 25.57 39.74 
37 30.65 39.88 24.03   37 34.09 25.71 39.74 
38 32.23 40.05 24.05   38 34.35 25.73 40.24 
39 32.27 40.05 24.05   39 35.15 25.73 40.24 
40 32.46 40.86 24.11   40 35.16 25.75 41.27 
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A1 A2 A3   B1 B2 B3 Mode No. 
Hertz Hertz Hertz   

Mode No. 
Hertz Hertz Hertz 

41 32.54 40.87 24.30   41 35.46 26.56 41.27 
42 32.54 41.84 24.31   42 35.47 26.59 42.27 
43 33.20 41.84 24.69   43 37.12 28.61 42.28 
44 33.20 42.73 24.70   44 37.51 28.65 42.61 
45 34.37 43.04 24.74   45 37.51 29.28 42.61 
46 35.09 44.88 25.61   46 37.67 29.71 44.97 
47 36.59 44.91 25.66   47 37.67 29.72 44.97 
48 36.62 44.95 25.68   48 39.56 29.89 46.18 
49 37.13 44.95 26.62   49 39.56 29.93 46.18 
50 37.17 45.71 26.73   50 39.58 30.08 46.60 
51 37.32 45.75 26.96   51 41.27 30.08 46.61 
52 37.87 48.44 26.96   52 41.28 31.16 46.98 
53 37.87 48.44 27.37   53 41.99 31.21 46.99 
54 38.03 49.39 27.40   54 42.00 31.96 47.20 
55 38.03 49.42 27.87   55 42.39 33.43 47.20 
56 38.88 49.94 27.88   56 42.74 33.43 48.38 
57 38.89 50.54 28.57   57 42.75 34.18 48.39 
58 39.64 50.58 28.61   58 42.78 34.20 49.75 
59 40.25 51.54 30.02   59 42.78 34.23 49.76 
60 40.26 52.16 30.14   60 42.84 34.25 52.87 
61 40.61 52.16 30.50   61 42.84 34.27 52.88 
62 40.63 53.30 30.50   62 43.06 35.90 52.92 
63 41.24 53.30 30.53   63 43.07 35.90 52.93 
64 41.46 55.03 30.54   64 44.73 36.86 53.17 
65 42.62 55.08 30.60   65 44.73 37.00 53.58 
66 42.67 55.13 30.73   66 46.06 37.00 53.59 
67 42.79 56.94 32.33   67 47.13 37.60 53.71 
68 42.83 56.94 32.34   68 47.13 37.66 53.72 
69 42.92 57.07 32.83   69 47.33 38.35 55.99 
70 42.92 57.08 32.92   70 47.34 38.54 57.35 
71 42.96 57.64 33.48   71 49.00 38.63 57.36 
72 43.10 57.69 33.50   72 49.01 38.68 57.84 
73 43.13 58.53 33.53   73 49.22 40.06 57.84 
74 43.16 58.53 33.65   74 49.22 40.58 58.37 
75 43.16 59.08 34.20   75 49.41 40.58 58.38 
76 45.00 59.09 35.40   76 49.57 41.36 59.59 
77 45.63 59.53 35.56   77 49.58 41.43 59.60 
78 46.35 59.56 35.85   78 51.58 41.52 59.94 
79 46.39 59.58 36.29   79 51.60 41.52 59.95 
80 47.09 62.45 36.31   80 53.14 41.73 60.25 
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A1 A2 A3   B1 B2 B3 Mode No. 
Hertz Hertz Hertz   

Mode No. 
Hertz Hertz Hertz 

81 47.09 62.47 36.37   81 53.14 41.74 60.84 
82 47.14 63.06 37.05   82 53.15 41.74 60.85 
83 47.15 63.06 37.05   83 53.17 42.23 61.35 
84 48.58 63.84 37.10   84 54.88 42.24 61.36 
85 48.63 63.85 37.24   85 54.88 43.07 61.41 
86 48.79 64.05 37.81   86 55.34 43.08 61.42 
87 48.79 64.05 38.26   87 55.35 43.17 62.59 
88 49.24 64.41 38.43   88 56.65 43.23 63.01 
89 49.28 65.17 39.01   89 56.68 43.57 63.01 
90 49.89 65.21 39.20   90 56.68 44.27 64.20 
91 50.31 65.38 39.22   91 57.00 44.27 64.77 
92 50.36 65.38 40.23   92 57.32 44.27 64.79 
93 51.54 65.92 40.77   93 57.32 44.29 65.16 
94 52.74 65.98 40.90   94 57.50 44.74 65.16 
95 52.74 67.18 40.96   95 57.50 44.87 65.30 
96 53.32 67.22 41.38   96 57.80 45.42 65.30 
97 53.33 67.27 41.44   97 57.81 45.50 65.77 
98 54.01 68.12 41.44   98 58.00 45.76 65.77 
99 54.92 68.12 41.54   99 58.02 45.84 66.05 
100 54.92 69.67 41.57   100 60.11 45.87 66.10 
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Appendix J COSMOS/Works Resonant Characterisation on 

Geometric and Physical Parameters of the 

Trachea 

The following are graphs of COSMOS/Works frequency analyses versus the 

tracheobronchial parameters of the Young’s modulus (N/m2), density (kg/m3), 

thickness (m), radius (m) and length (m). 
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