
An Event-Based Near Real-Time Data Integration Architecture

 M. Asif Naeem, Gillian Dobbie, Gerald Weber

Department of Computer Science, The University of Auckland,

Private Bag 92019, 38 Princes Street, Auckland, New Zealand

mnae006@ec.auckland.ac.nz, {gill, gerald}@cs.auckland.ac.nz

Abstract

 Extract-Transform-Load (ETL) tools feed data from

operational databases into data warehouses.

Traditionally, these ETL tools use batch processing

and operate offline at regular time intervals, for

example on a nightly or weekly basis. Naturally, users

prefer to have up-to-date data to make their decisions,

therefore there is a demand for real-time ETL tools. In

this paper we investigate an event-based near real-time

ETL layer for transferring and transforming data from

the operational database to the data warehouse. One

of our main concerns in this paper is master data

management in the ETL layer. We present the

architecture of a novel, general purpose, event-driven,

and near real-time ETL layer that uses a Database

Queue (DBQ), works on a push technology principle

and directly supports content enrichment. We also

observe that the system architecture is consistent with

the information architecture of a classical Online

Transaction Processing (OLTP) application, allowing

us to distinguish between different kinds of data to

increase the clarity of the design.

Keywords: event-based architecture, content

enrichment, master data, extract-transform-load,

enterprise service bus.

1. Introduction

 The term data warehousing was defined by Bill

Inmon in 1990 [1]: “A warehouse is a subject oriented,

integrated, time variant and non volatile collection of

data in support of management’s decision making

process”. The basic purpose of data warehousing is to

aggregate and analyze data in order to provide reliable

information for making useful business related

decisions. The traditional data warehouses are static

data repositories implemented using batch driven

Extract-Transform-Load (ETL) tools. These ETL tools

work according to the pull technology principle as

shown in Figure 1. The data loading from operational

systems to data warehouses is usually performed on a

nightly basis or even in some cases on a weekly basis;

therefore typical data warehouses normally do not have

the most current data [12][17]. Furthermore the

operational systems have to go offline during the data

extraction process, generating delays that are

unacceptable in businesses that require instantaneous

access to up-to-date information.

 Businesses need to be prepared for growth and

volatility. Access to accurate data at the right time to

the right place in the right format has become more

significant to achieve business success. Business

organizations have a keen interest about sales trends

based on latest information. The collection of such up-

to-date information is a bottleneck in the current ETL

system.

 To make data integration near to real-time, different

approaches [2][3][4][5][6] have been introduced in

research that primarily support data translation during

the transformation process but do not directly support

data enrichment. In this paper our main target is to

discuss support for content enrichment in loosely

coupled and event-based approaches [14][15]. We use

the term “near real-time” in order to indicate, that apart

from event processing time the data is available as

soon as possible. We prefer the prefix “near”, since the

service is not real-time in the sense of real-time

systems. An event-based approach achieves near real-

time data integration but also has to deal with many

problems that are encountered with offline ETL tools.

Figure 1:Figure 1:Figure 1:Figure 1: Traditional data warehousTraditional data warehousTraditional data warehousTraditional data warehouseeee architecture architecture architecture architecture

 The rest of the paper is structured as follows.

Section 2 highlights the problems in proprietary

approaches. Section 3 presents the proposed

architecture with its important elements. Section 4

describes the information architecture and its relation

to the system architecture. The related work is

explained in Section 5 and finally Section 6 concludes

this paper.

2. Problems considered

 In the field of near real-time data integration the

following problems still need to be resolved and

present an important area for further research.

1. Repeated extraction and transformation of master

data for each data loading window is an overhead.

2. No plug-and-play support.

 In this paper we discuss these problems and propose

a new architecture for near real-time data integration

directly supporting content enrichment and loose

coupling. Content enrichment is a special form of

data translation in which some additional information

is injected into the current message [11]. Consider an

example of an inventory system with two data sources,

Shipping and Stock. The Shipping data source

publishes messages with attributes order_no,

product_id, quantity and shipped_date while the Stock

data source publishes attributes product_id,

product_name, sale_price, and supplier_id as shown in

Figure 2. In the transform step, a natural join is

necessary to create the fact table entries in the data

warehouse.

 Figure 2-a shows data integration using a proprietary

ETL architecture. Assuming that the product table is

small compared to the order data in every loading

window, it is convenient to extract the product table

afresh in each data loading window even if no change

to the product table has occurred. Based on this, the

join can be performed.

Figure 2Figure 2Figure 2Figure 2:::: Data integration Data integration Data integration Data integration example using example using example using example using
traditionaltraditionaltraditionaltraditional and and and and proposed approachproposed approachproposed approachproposed approach

 We will discuss in Section 4 that we can divide the

data into two kinds, master data which does not change

often and transactional data which is updated regularly.

For example, we would consider the product table as

master data and the order table as transactional data.

For content enrichment all master data referenced by

the transaction data in the current loading window has

to be available. The extraction and transformation of

master data for each data loading window might be

acceptable in batch processing ETL tools. In near real-

time data integration, where data is extracted and

transferred at the transactional level, it is not feasible to

extract the whole master data for each transaction.

Therefore we have to use more sophisticated master-

data management for the ETL process. The lack of

plug-and-play support leads to a lack of flexibility in

replacing components in the architecture and

businesses want to avoid vendor lock-in. A standard

event-based solution for data integration is shown in

Figure 2-b which is explained later in Section 3.1.

3. Proposed system architecture

 To overcome the problems, described in Section 2, a

new architecture is proposed using event-based

components as shown in Figure 3.

Figure 3:Figure 3:Figure 3:Figure 3: A A A Architecturerchitecturerchitecturerchitecture of proposed solu of proposed solu of proposed solu of proposed solutiontiontiontion

 Besides the master data repository and the content

enrichment component the following three components

of the architecture are important: middleware, database

queue, and message driven bean.

 The middleware is a software layer installed over

each database to capture the changes in the form of a

writeset. The basic purpose of using middleware in our

proposed system is to capture the writeset at the

middleware level without operational systems going

offline or changing the internal structure of the

database. The writeset is then propagated through the

database queue as shown in figure 3.

 The database queue is a message oriented queue

that stores the messages in database tables. The

advantages of using a database queue include:

1. Message will be processed once it is placed in the

queue.

2. Multiple message driven beans can work on same

queue.

3. All features of databases are available to use.

4. No need to write additional code for create(),

enqueue(), dequeue(), poll() and destroy().

 In our proposed architecture the database queue

takes the role of typical enterprise service bus and

performs the given operations.

 The content-based router analyses the message on

the basis of its contents and transmits it on an

appropriate channel. The routing criterion is based

upon the existence of fields and specific field values

[11]. In our proposed architecture the original data

sources forward master data and transaction data. Our

approach is to distinguish the master data and store it

in a separate repository. The content-based router is

used to identify the master and the transactional data

on the basis of table and field names stored in

incoming messages. The master data is directed to the

master data repository while the transaction data is

propagated to the enrichment process.

 A message driven bean continuously examines the

database queue. As soon as the updates are transformed

into the required format it extracts these updates and

loads them into the data warehouse.

3.1. Content enrichment in the proposed

architecture

 Content enrichment, as described in Section 2, is a

process of adding more information to the current

message. We pass only the transaction data in the

message and append the required attributes through the

enrichment process before delivering the message at its

destination.

 To explain the role of content enrichment in our

proposed system let us reconsider the example,

described in Section 2. Figure 2-b explains data

integration using the proposed architecture along with

the support of content enrichment. According to Figure

2-b, both applications propagate their updates directly

to the database queue.

 In Figure 2-b the attributes product_id,

product_name, sale_price and supplier_id belong to

master data and are stored in the master data repository

by generating a view of the original attributes. Now the

attributes from the master data repository can be

appended to the relevant message through the enrich

process using index nested loop join. Content

enrichment, if stated as a relational query for batch

processing, involves joins of transaction data with the

master data. Our system architecture executes this as

on-the-fly index nested loop join, where the master

data tables serve as inner loop tables. The tuples of the

outer relation are presented by messages from the

operational database. Then an index-lookup in the

master data tables is performed using the foreign keys

in the transaction data table.
 The main advantage of enrichment in our proposed

solution is that there is no need to replicate the master

data for each transaction. The master data will be

extracted from the data source and transferred only if it

has changed.
 In the data transformation process the data is

prepared into required format similar to current

approaches.

4. Information architecture

 We distinguish the following kinds of data that

together constitute an essential part of enterprise data.

 Transaction data models events in the central

operational business processes in the enterprise. A

typical example of transaction data are shopping carts

in the retail business. Transaction data will be

consolidated in fact tables in the data warehouse. In the

simplest case, every unit of transaction data will result

in a row of the fact table. Transaction data refers to

longer-lived master data.

 Master data (dimension data) is referenced by

transaction data. The fact tables in a data warehouse

contain transaction data that refers to many different

dimensions of master data such as customer, product,

store etc. Master data is typically much smaller and

slowly changing data, used as a reference for

transaction data. Typically, master data is changed by

idempotent overwrites (write-only transactions [16]).

 Other data, such as metadata is not considered

further and we focus on transaction and master data.

The different kinds of data give structure to the overall

data schema and constitute an information architecture.

4.1. Information architecture and system

architecture

 The distinction between the different kinds of data is

originally motivated solely by the meaning of the data.

From that alone we would not necessarily assume that

these kinds of data are treated in a markedly different

way. However, in our system architecture that is

chiefly derived from distribution requirements we

make the observation that the different kinds of data

are naturally treated and routed differently, and this

then contributes to the quality of the architecture.

 Since the amount of master data is considerably

smaller than the amount of transaction data, the master

data can be easily cached. In our real-time ETL

architecture, master data is cached in the transport

component.

5. Related Work

 Most of the research related to data warehousing

deals with managing proprietary warehouses [7][8][9]

[10]. A major part of the research has focused on the

front-end related tools and very limited literature is

available related to backend tools.

 ETL techniques are mostly working in offline

fashion using manual applications [17]. At the same

time offline techniques have disadvantages in terms of

latency and reliability.

 Enterprise Application Integration (EAI) [13][15]

also seems to integrate business applications near to

real-time basis. Two architectures, hub-spoke, and bus,

have been proposed to improve traditional ETL tools.

In the case of hub-spoke architecture scalability is

affected as the number of messages increase and also a

single point failure is introduced. In a bus architecture

the message transformation engine is distributed

among the applications, which improves the scalability

but makes it more complex to manage.

 Another effort is done to enhance ETL near to real-

time using a queue network [5]. There is an Active

Data Staging Area (ADSA) between the source system

and data warehouse. ETL functions are performed with

the help of queues in this area. Issues with this

approach are, for instance, choosing the right topology

and the right selection of communication methods.

6. Conclusion and future directions

 In the traditional ETL approach the most current

information is not available in the data warehouse. By

treating all updates to data as events we minimize the

latency of the data loading window and achieve a

natural system architecture for near real-time ETL. The

distinction between transaction data and master data is

natural due to the different semantics of both kinds of

data. By storing the master data in a repository, we

need to extract it only when it has changed. We have

shown how even complicated transform operations

such as content enrichment can be performed with this

architecture. As a proof of concept we have completed

the writeset extraction using a trigger-based approach

and also tested our database queue in a distributed

database environment. In the future, we have a plan to

propagate the writset into the database queue and

implement the enrichment and transformation

processes. Finally the performance evaluation of the

proposed architecture is also a part of our future plan.

7. References

[1] Inmon, W.H., Building the Data Warehouse. John

Wiley, 1992.

[2] Robert M. Bruckner, Beate List, and Josef Schiefer,

Striving towards Near Real-Time Data Integration

for Data Warehouses, Springer-Verlag Berlin

Heidelberg, 2002, pp. 317-326.

[3] Tho, M. Nguyen, Tjoa, A. Min, Zero-Latency Data

Warehousing for heterogeneous data sources and

continuous data streams, The fifth International

Conference of Information and Web-based

Application and Services, 2003, pp. 55-64.

[4] Francisco Araque, Real-time Data warehousing with

temporal requirements, June, 2003

[5] Alexandros Karakasidis, Panos Vassiliadis, Evaggelia

Pitoura, ETL Queues for Active Data Warehousing,

Baltimore, MD, USA, June2005.

[6] Neoklis Polyzotis, Spiros Skiadopoulos, Panos

Vassiliadis, Supporting Streaming updates in an

Active Data Warehousing, ICDE 2007, IEEE 23rd

International Conference on Data Engineering, April

15-20, pp. 476-485.

[7] Galhardas, H., Florescu, D., Shasha, D., and Simon,

E.. Ajax: An Extensible Data Cleaning Tool. In Proc.

ACM SIGMOD, Dallas, Texas, May 2000, pp. 590.

[8] Wilburt Labio, Jun Yang, Yingwei Cui, Hector

Garcia-Molina, Jennifer Widom: Performance Issues

in Incremental Warehouse Maintenance. In Proc.

VLDB, Cairo, Egypt, September 2000, 461-472.

[9] Wilburt Labio, Janet L. Wiener, Hector Garcia-

Molina, Vlad Gorelik. Efficient Resumption of

Interrupted Warehouse Loads. In Proc. of ACM

SIGMOD, Dallas, Texas, USA, May 2000, 46-57.

[10] Vijayshankar Raman, Joseph M. Hellerstein: Potter's

Wheel. An Interactive Data Cleaning System. In Proc.

VLDB, Rome, Italy, September 2001, 381-390.

[11] Gregor Hohpe,Bobby Woolf, Kyle Brown, Enterprise

Integration Patterns, Addison-Wesley,2003.

[12] Surajit Chaudhuri, Surajit Chaudhuri, An Overview of

 Data Warehousing and OLAP Technology, In ACM

SIGMOD, 1997.

 [13] J.E. Armendáriz, H. Decker, F.D.Muñoz-Escoí, L.

Irún-Briz, and R. de Juan-Marín, A middleware

architecture for supporting adaptable replication of

enterprise application data. In: TEAA. Volume 3888

of LNCS., Springer (2006) 29.43.

[14] Zheng Yuan Luo, Investigation of Real-time ETL layer,

Master Thesis, 2007, The University of Auckland,

New Zealand.

[15] Ian Gorton, Anna Liu, Architectures and Technologies

for Enterprise Application Integration, Proceedings

of the 26th International Conference on Software

Engineering ,ICSE’04.

[16] Agrawal, D. and Krishnaswamy, V. 1991. Using

multiversion data for non-interfering execution of

write-only transactions. SIGMOD Rec. 20, 2 (Apr.

1991), 98-107.

[17] Dave Chappell, Enterprise Service Bus. O’Reilly,

USA, 2004.

