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ABSTRACT

This project aimed to refine and validate an optiemote sensing method to predict the
ultimate pH of slaughter beef animals. An existbognmercial method converts muscle
glycogen in a known mass of muscle sample intoafachat is determined by a diabetic’s
personal meter. The method is expensive in tefrosrsumables and results are fraught
with inadequate operator skill levels. Pilot sesgdshowed that it may be possible to
measure the mass of the muscle sample and thentoataen of glucose by colorimetry.
Redness was a measure of muscle mass in acetétecbiusiurry, and after addition of
Fehlings solution and heating, yellowness was asoreaof glucose. This was the starting
point for the study. Phase 1 determined the vafuedividual Hunter colour a*, b* and L*
values for predicting mass of meat samples by tiegaations. Hunter a* was a useful
predictor of meat mass, but only within animalgbably due to the different muscular
origins of the meat cuts selected. However, it praposed that if samples were taken from
a single muscular site, as in the existing comméroethod, among animal variability might
be much reduced. In Phase 1, a digital cameraalsasused to extract colour data, but it
proved much less useful than the Hunter meter. uséswas thus discontinued. Phase 2
showed that different concentrations of glucosenditlaffect the colour due to meat mass,
which was a necessary condition for using colowa psedictor of meat mass. Phase 3
explored the broad relationship between glucoseamnation and meat mass on colour
change due to the Fehlings reaction induced incaawave oven. As expected from prior
research, the concentration of glucose stronghctdfl the heat-induced colour, but meat
mass also affected colour presumably through thiddvthreaction which would compete
with the Fehlings reaction for the available glleosHowever, if the mass of meat were
known, colour values could be adjusted for thie&ff In Phase 4, randomly chosen but
defined masses of meat, and similarly randomly ehpdefined concentrations of glucose
were used with the Fehlings reaction to test tlegliptive value of equations relating
concentration of glucose/mass of meat to varioustétwcolour values. The ratio was well
predicted by Hunter b* and L*, unexpectedly implyitihat information about meat mass and
glucose could be simultaneously extracted fromstme colour data. This result suggests
that there may be no need to measure meat massangtacally or by colour, to get useful
results. In a limited way, Phase 5 extended ttes®K work by using the ratio of colour

values before heating (no Fehlings added) cololuregaafter heating (Fehlings added) to see



if this would improve the predictive values estabéd in Phase 4. It did not. The results
are discussed with a focus on future work requioecbnfirm the results in Phase 4, and also

describe the steps required in a hypothetical sertomated application of the technology.
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CHAPTER 1
INTRODUCTION

The high pH problem and its current solution

In many New Zealand meat processing plants, ittenaequired to measure the
ultimate pH of the meat. Ultimate pH refers to timal pH attained by any carcass muscle
after the rigor state has been achieved. Attainmoengor takes up to 24 hours, when the
pH can be read with a conventional pH probe thatssrted below the surface of the muscle.
In so-called high quality meat cuts, from speaifiascle or muscle groups, the pH values
range from 5.5 t0 5.8. Within this range, the mgagsistant to microbial spoilage, has a
highly acceptable flavour, and is more often thantender. If the pH is higher than 5.8, the
colour becomes dark red rather than bright redrahial spoilage can occur easily, and the
cooked flavour becomes bland (Dransfield, 1981gBias, 1996). The higher pH condition
occurs particularly in bulls, where about half thels slaughtered each year in New Zealand
have this condition (Graafhuis and Devine, 1994un@and others, 2004).

Of the approximately 2 million bulls slaughtered\New Zealand each year, about half
have this high pH condition. The meat is not wa$tewever. Bull meat is lean, and is
mostly exported frozen to the U.S.A. where it imo@d with fatty beef trim from domestic
beef cattle finished on grain-based diets to yielthburger patties among other processed
meat uses, such as emulsion sausages. In thisxtans called manufacturing bull beef.
Because the cold chain between abattoir and fastdatlet is maintained by freezing at
nearly all points, spoilage is not an issue. Ngith flavour because the flavour of cooked
fatty trim swamps the blandness of the bull be&olour is not an issue either because the

consumer sees only the finished hamburger.

The problem for the New Zealand beef industry & #il bull meat is destined for the
manufacturing bull beef trade, which commands aloawerages price than so-called
premium cuts that are usually exported and soldechiather than frozen.  If the normal
pH carcasses could be cost-effectively identified segregated from the high pH carcasses,
then the normal pH meat could enter the highererahilled meat trade. At the same time,
other classes of animals can also yield higher @dtpbut these are all destined for the

chilled meat trade, thus posing spoilage risk dabiir problems.
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There is also another advantage for being abledoegate high pH meat from normal.
High pH meat has better water holding capacity thamal pH meat, and is much more
suited processed to meat products that so ofteendiepn this attribute. Moreover, the
advantage of high pH cannot be duplicated by simgaling the pH of normal meat with
edible alkalis; there are biochemical reasonsHisr lheyond the scope of this thesis (Young
and others, 2004). Thus, each category (high gHhanmal) has its advantages that can be

fully capitalised on only when each category isyfgkegregated.

In view of the importance of ultimate pH it seenfwious that pH testing should be
applied to all cattle if testing is cheap enoughm many cases ultimate pH testing is routinely
applied, but a technological change in slaughtecguiure has rendered conventional meter
testing useless in an increasing number of abatitwiNew Zealand. This change is called
hot-boning, where the meat is cut from carcassd$ared within one hour of slaughter.
pH at 24 hours can no longer be determined. Abalitof New Zealand’s beef abattoirs

now use this technology, first adopted in New Zedla thel9thcentury.

A method had to be found to determine the ultinpiteand that method would have to
apply within one hour of slaughter. Young and adh{@004ab) developed an internationally
patented method that circumvents the problem ingbgehot boning. This will be
described in more detail later. Before that, itgeful to describe the events occurring in
ruminant muscle after slaughter and how theseaétethe high pH condition. After that
section, the existing method will be describedpfeed by a description of the options
available for improving the technology. One ofsbd@ptions has been selected for the

research that is the main subject of this thesis.

Postmortem eventsin ruminant muscle

The biochemistry of post-mortem metabolism

Muscle ceases to function normally when an anisalaughtered. Metabolic
functions are greatly altered principally becaumseftow of blood stops when the heart stops.
Blood is a supply of nutrients, and critically feormal muscle metabolism, is the supply of
oxygen. To maintain normal ATP concentrationspmairmuscle depends on the
combination of glycolysis, and the Krebs cycle aralative phosphorylation in
mitochondria. In the absence of oxygen the Krsfotecand oxidative phosphorylation can
no longer occur, but glycolysis still can (Figurarid Figure 2).

14
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mutase

Glycogen glucose 3 ATP 2-Phosphoglycerate

enolase

Phosphoenolpyruvate
pyruvate C ADP
lactic  kinase ATP
dehydrogenase
Lactic acid < Pyruvate

!

Mitochondria for
aerobic metabolism

Figure 1. The glycolytic pathway showing the acclaton of lactic acid
when the oxygen supply to the muscle is lost aft@ughter.
From Greaser (2001)

The pyruvate created as product of glycolysi®isverted to lactic acid. Lactic acid
cannot be removed without a blood flow, so theidaatid accumulates in the muscle and the

pH falls from the typical live pH of 7. Althoughe animal is dead the nervous system is
15



still active, at least to the point that the satasmic reticulum calcium pump and the cell
membrane sodium potassium pump continue to workimgaheir respective ions against the
concentration gradients. These pumps require ATéhanergy source (Figure 2), which is
generated by glycolysis, but not nearly to the sartent as oxidative phosphorylation.

Bloodstream
4 "4
Glycogen  Glucose Fatty acids
& { Lactic acid  Q,
! Glycolysis i_, Pyruvate =S

\ = L Mitochondria
N — — w "
cP | —» |ATP ‘4“’ "4

l 002

Contraction
CaZ2* pump Na*/K* pump
Figure 2. An overview of muscle metabolism. CEPeresative phosphate.

From Greaser (2001).

Glycogen becomes exhausted and/or pH falls to ¢ive hat glycolytic enzymes no
longer work. ATP concentration falls close to zanal myosin and actincombine in the
rigor stateg(Bendall, 1951). The pH attained is the ultimatetp which the pH falls
during rigor development. The pH finally reachschormally between 5.4 and 5.7 in high

value bovine meat cuts.

For reasons to be discussed later, the glycogeerbof muscle is sometimes lower
than the normal 0.8 to 1.5% of wet muscle weighh this situation, the pH cannot fall to the
normal pH because there are not enough glucoseaenis in glycogen to generate enough
lactate in the form of lactic acid (Figure 3). tlms figure a normal starting content (more
accurately concentration) is assumed to be 100 emalalents of lactate per g of muscle.
Each glucose equivalent in glycogen yields twodtecmolecules, so the muscle contains 50
pmole equivalents of glucose. This in turn is egl@nt to approximately 0.9% glycogen in

wet muscle. Lower concentration in Figure 3 yie#s lower concentrations of lactate as
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lactic acid, so the ultimate pH becomes progregshvigher as glycogen concentration falls.
pH values above 5.8 increasingly approach the pikglcondition. An ultimate pH above 6

usually defines high pH meat, although definitioasy from researcher to researcher.

7.0
6.8 | Glycogen
6.6 4 At slaughter  In rigor
40 0
8.4
= 62+
% 6.0 - 60 0
g
= 5.8
5.6 1
75 0
5.4 - 100 25
5.2 A
5.0
Time after slaughter —
Figure 3. Hypothetical time course of pH fall foustle containing

different concentrations of glycogen. Low concetndraresult in
a high ultimate pH and no residual glycogen. (Fioong and
Gregory (2001).

The properties of high pH meat

Other names for the condition are dark-cuttingtreead DFD meat, dark, firm, and

dry to the touch.

The dark colour has two causes. First, at norrHalhg muscle fibres occupy a
minimal volume, creating gaps between the fibras thuse an increase in refracted of
ambient light. Light is therefore scattered mdrant at higher pHs. At higher pHs ambient
light penetrates the meat more deeply and is nikeby lto be absorbed than scattered. The
meat thus appears darker. Second, at higher pi¢sdhe mitochondria remain more active
than at normal meat pH values. Oxygen consumpétas are high in high pH meat (Figure
4; Faustman and Cassens, 1990) leaving little noed the dark deoxymyoglobin to the
bright red oxymyoblobin.
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Figure 4. Relative oxygen consumption rates in betf three rigor
conditions during display for 7 days. (From Zhu &rdwer,
1998).

The apparent firmness and dryness arise from ttietat at higher pH values, the
muscle proteins are far above their isoelectric lp¢tywveen 5 and 5.5. The water-holding
capacity is near minimal in normal pH meat, andgisarkedly as pH increases. When

water is tightly bound the meat is dry to the tauch

Glucose is important for the microbiological stéapibf meat (Young and Gregory,
2001). According to these authors, the storageofif@gh pH meat is compromised for two
reasons. One is that a putrefactive microflora tiggein high pH meat, and it achieves a
higher log occurrence value than in normal pH njBatnes and Impey, 1968; Grau, 1981).
Another reason is that the residual glucose conatmh decreases as pH increases.
Microbial growth requires a carbon source. If gise concentration is low or almost absent,
the microbes begin to use free amino acids asrtbigg source. When these are
decarboxylated, putrid amines are generated. Tds acommon solution to storing high pH
meat is freezing. This prevents microbial growtld aolid blocks of lean high pH New
Zealand meat are exported to USA where they areadifas a tempered block) with fatty US
trim to ultimately yield hamburger patties, otheod service products and emulsion sausages.
In many of these products high water-holding cagasian advantage. As noted earlier the

high water-holding capacity of high pH meat canp®tichieved by simply raising the pH of
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normal meat with edible alkalis; there are biochehieasons for this and other positive

attributes of high pH meat that are beyond the sa@dthis thesis (Young and others, 2004).
I ncidence of the high pH condition in New Zealand slaughter bovines

A surly by Graafhuis and Devine (1994) indicateat thearly 30 percent of cattle had
the ultimate pH above 5.8 in New Zealand slauglotesk (Figure 5). The figure shows that
bulls are more prone to develop the high pH coodjtand this is caused by beef production
systems and pre-slaughter animal handling that hatsignificantly changed in New
Zealand in a decade, as shown by Young and otkegzl}.

25

Steer

20 A

15 A

10

Percent frequency

6.0 6.2 6.
Ultimate pH

Figure 5. Frequency of ultimate pH values in degf@ranimal muscle from
pasture finished steers and bulls. (From Graaf@wisDevine,
1994).

Using a different pH assessment technology (thdiasubject of the present study),
Young and others (2004) conducted a comprehenaivein one abattoir on 13,700 cattle.
Young and others (2004) showed that the glycogeteod of muscle at slaughter (expressed
in this method as a ‘glucose value’) was much logreaverage in bulls than in so-called
prime cattle (Figure 6). This necessarily leada tegher mean ultimate pH.
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Figure 6. Glucose values in 13,700 pasture-finisdr@chal slaughtered in

one abattoir (From Graafhuis and Devine, 1994).

Since the Young and others survey, productionsprart and slaughter practices have
not changed, so there is almost certainly a comgnhbigh incidence of the pH problem,
providing motivation to segregate the high and ralroategories to take advantages of each

category’s positive attributes.

In this thesis, a further development of the tetbgy described by Young et al (2004)
is reported on detecting high pH meat within 20 utes of slaughter are reported. Both
depend on determination of glycogen in a small neusample excised immediately after the
pelt is removed in the abattoir process. For nessloat will be discussed in the final
discussion, Chapter 3, another abnormal post-mocterdition could compromise the
accuracy of the method. Therefore this conditidghe-pale, soft exudative condition — is
now described in anticipation of the final discossi

PSE, the pale, soft and exudative condition

In this condition, post-mortem muscle becomes patmlour, develops a soft texture and
exudes excess volumes of fluid. For reasons authigl scope of this thesis, the
post-mortem metabolic rate is greatly increasedTP Mepletion, pH decline, and attainment
of rigor mortis is very rapid and occurs when thecass is still warm (Bendall and
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Wismer-Pedersen, 1962; Young and others, 2001) higiemuscle temperature can lead to
denaturation of some muscle proteins. This redtimsvater holding activity of the muscle
and results in excess drip loss. Thus the PSEittmmds caused by the denaturation of
muscle proteins that takes place when muscles &inedusly experience a low pH, from

post-mortem metabolism, and high temperature.

M easur ement of muscle and meat pH

pH probes

Young and other (2002) reported that pH probeshastandard method of determining
ultimate pH in New Zealand abattoirs. This invalwesertion of the probe into the
longissumus dorsi muscle at the beef carcass queyigoint. This has to be done when the
carcasses are in rigor at their ultimate pH whigh t@ake up to 24 hours. If the testis
performed earlier pH values can be erroneously.high busy abattoirs the pressure on
storage space is high so the natural tendency ihéomeasurement to be made too early (it
cannot be made too late). This coupled with padibration, and clogging of the probe with
fat, returns a high error rate. ~ Moreover, thet@iravorkers who perform this task are
generally poorly trained and have ‘blind faith’thee values returned by the meter. This has
been confirmed by unpublished trials comparing talbratesults with equivalent validated
results; in one abattoir the data generated amduateandom numbers between 5.00 and

7.00 (O.A. Young, personal communication).

The other problem is that with the increasingly yaptechnique of hot-boning and early
packaging, the meat is in cartons and being chibefdeezing long before the ultimate pH has
been reached (Young and others 2004). pH proleés iyieaningless data at these times.
pH has to be predicted before hot-boning. The &dApimethod was developed to do this.

RapidpH

A small sample of muscle is taken from an indicamaiscle of the slaughter animal at 15
minutes after slaughter. At this time, the musggieogen that will ultimately cause the
decrease in pH is substantially intact, represgrdimaximum of 2% of the muscle mass.
The sample is weighed and dispersed in a smalhwelof an acidic buffer that also contains a
hydrolytic fungal enzyme, amyloglucosidase. Thigidly and completely hydrolyses the
glycogen to glucose. The concentration of gluégss®nveniently measured with a
diabetic’s personal meter. In outline, the glucosecentration divided by the mass of
muscle indicates the concentration of glycogemenindicator muscle. If the value is high

and above a critical value, pH is predicted totialhormal, less than 5.8. If the value is

21



lower than the critical value, the pH will be higlzend the carcass could be validly classed as
higher pH destined for the lower value hamburgerketaYoung and others, 2004).

The method works and is in routine industrial usenany New Zealand beef abattoirs.
The patent is owned by AgResearch Limited, Hami{iM® 00112844) and royalties accrue

to that company.

The method is however not without its problems. e Ttethod requirs two labour units
for each beef processing line, the diabetic tegisstost about $1 each per animal, and the
method requires a degree of skill not always foumtthe low-paid labourers that do this job.

It is easy to take shortcuts that compromise acgura
Near infrared spectroscopy

A recent AUT MAppSc student, Dominic Lomiwes, exjeld the use of near infrared
(NIR) spectroscopy as a means of measuring glycogeaentration fifteen minutes after
slaughter (Lomiwes and others 2009). This was yvgming to be challenging because of
the inherent variability of muscle. The attempswasuccessful, although curiously NIR
was able to distinguish different beef classesdasegender. It is possible that with a
much larger data base that useful algorithms cbeldeveloped, but that is for the future.

Optionsfor improving the RapidpH method

The RapidpH depends on a labour-intensive massndigi@ion and homogenisation step,
followed by a labour-intensive glucose determinmatioth a diabetic meter. To avoid some
of the costs associated with this manual metho®esgarch Limited developed a
semi-automated method in the form of a dedicatechina that required only that the
operator manually inserts the muscle sample ic@veng hole (Figure 7). However, the
complexity and estimated price in excess of NZ$200 meant that no machines were ever

sold.
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Figure 7. An exposed view of a semi-automatic maehd measure
liberated glucose in a small pre-rigor muscle samplThe
sample is placed in the hole on the fascia of taehime.
(Picture courtesy of Dr. O.A. Young.)

There may be opportunities to simplify the existimgnual method such that only one
operator is required and that the diabetic metersat needed. The meters are designed for

domestic use and have a continuing cost for eattoteeach animal.

It is proposed that optical methods might be useabt/iate the need to weigh meat and
determine glucose concentration.

Determination of muscle mass by muscle colour

Myoglobin is the main characteristic red proteinrinscle and meat. It comprises a
proteinaceous globin and a non protein part, alpenp ring structure. That holds iron.
The porphyrin ring has six coordination sites, foliwhich bind iron one binds to a histidine
residue on the globin, and the sixth can bind exy(rigure 8).
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xXid
Deoxymyoglobin (Fe?*) —au’ Metmyoglobin (Fe3*)

reductlon

Oxymyoglobin (Fe?*)

Figure 8. The myoglobin molecule (left) consistadfelical polypeptide
chain and a haem group within the folded chain (&Ga&
Grisham, 2005). The different forms of the myoghoimolecule
are shown (right). The colour of meat is reguldigdhe
oxidation state of iron in the haem group withia tholecule.

Whether myoglobin is binding oxygen or not, thehl@gthe myoglobin concentration in
muscle the redder the muscle is. It follows tha@hi one muscle of a single animal the
redness of a constant-volume muscle slurry made &sample would be a guide to the mass
of the sample. Thus, if a muscle sample for Rapidgre dispersed in a slurry and the
reflected colour of incident white light were meiesi) the sample mass might be estimated
by a suitable calibration curve. Clearly the saanpbuld have to be taken from one muscle
in a carcass, and the calibration would assumehbamuscle was equally red in all bovines
slaughtered in a particular abattoir. The fornarstraint is not a problem because the
RapidpH samples are routinely taken from one ditthe muscle (Figure 9). This site is a

prominent bulge lateral to the spine in the lumiagion.
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Figure 9. Tools for sampling pre-rigor muscle. Tbel is inserted into
the muscle bulge (arrowed), then rapidly extractaigng a
sample reliably between 0.8 and 2.2 g, The ritheftool is
sharp in order to cut the cut the muscle samplPictre
courtesy of Dr. O.A. Young.)

The second constraint is more serious due to betapginal variation in myoglobin
concentration. This constraint will be examined@tail in subsequent chapters, but is

ignored for the moment.

Tan (2007) set out to devise a way of measuringchaisample mass without the need to
handle the sample on a balance. Bovine musckdliamd the proposition was that redness
in muscle slurry in the acid buffer would be a m#af muscle mass. Tan showed this was
a fair assumption. Figure 10 is drawn directlynirber report. She has fitted a least
squares straight line. The a* value (a measuredifess) could be used to predict mass.

a* is a measure of redness-greenness in the sedddlinter colour space. Other Hunter

values might also have been useful in derivingne tf best fit, but she did not pursue that.
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Weight of sample Vs a* values
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Figure 10. Relationship between muscle mass irffaered slurry and
Hunter a* values. From Tan (2007).

Determination of glucose by colour
There are several potential methods for determanaif glucose by colour, the most
obvious being exploitation of the enzyme glucosielase, which in the presence of oxygen

generates gluconic acid and®4:

Equation:

Amyloglucosidase Glucose oxidase (GOD)

Glycogen —————— Glucose m———= Gluconic acid + kO

H.O,is a metabolite that is the basis of oxidoreduatethods of measuring the original
analyst, in this case glucose. Peroxidase is@umsinally-available enzyme that catalysis

the oxidation of a peroxidases substrate w4

Many of these substrates change colour when oxidiseUnpublished work by Dr. O.A.
Younghas shown that peroxidase is active underamiditions and will generate coloured
(or luminescent) products from a range of peroxedagostrates. In the case of opaque
slurry, the colour could be measured as reflegtgd in Hunter colour space. However, it
was often difficult to dissolve sufficient mole egalents of the substrates in the slurry.
Moreover, the sequence from glucose to oxidisedxp@ase substrate requires that a mole of
O, is present to react with each mole of glucose. thAtconcentrations of glucose commonly
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encountered in these slurries, there was insuffic® dissolved in the aqueous slurry to react
with all the available glucose (data not shown).xy@en was thus limiting. The problem
could be overcome by shaking to encourage aerdiigdrthis requirement added unwanted
complexity. Also, the peroxidase method requinesrbutine purchase of three
biochemicals, glucose oxidase, peroxidase andhbgsen peroxidase substrate. This would
add to cost. Finally, catalase in the meat slaright compete with the intended reaction.

This possibility was never investigated.

Another approach was explored by Tan (2007). énpilesence of nitrite, 4@, turns
myoglobin a vivid green. If nitrite were addedla¢ same time as glucose oxidase, the
green colour might be proportional to the amourglotose present.  Conceptually, the
redness of the muscle slurry would indicate thesnodsnuscle (Figure 10), and the greenness
would indicate the mass of glucose. The higherdhie of greenness to redness, the more
glucose — originally as glycogen — there would begof muscle sample. However,
calculations showed that at the concentrationduafoge commonly encountered in these
slurries, there were insufficient mole equivalesftenyoglobin(Young and West, 2001)
dissolved in the aqueous slurry to react with tietey H,O,. At the same time the
problem of insufficient oxygen applied as it dictie peroxidase concept. Experiments by
Tan (2007) showed that green colour could be gésetaut a positive and significant
correlation between glucose concentration and gessssncould not be produced, presumably
in response to the limiting myoglobin.

A way was sought to measure glucose by colour witkiee use of oxygen and enzymes.
A classic test for glucose, or more accuratelyraicing sugar, is the Fehlings test. Under
alkaline conditions, Cllis reduced to Cli, which is visible as a clear colour change. This
is shown in the following series of pictures (L2009). Figure 11 shows the colour of
muscle slurries containing 0 to 6.67 mM. This aanication range matches the range that

would be derived from muscle tissue in a typicapidpH trial.
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Figure 11. Colour of muscle slurries containindet#nt concentrations of glucose,
but no Fehlings’ solution. The glucose concentretiovere, from left to
right, 6.67, 3.34, 1.22 and 0 mM. (From Lei, 2009).

Figure 12. The muscle slurries with the Fehlindstsan added. (From Lei, 2009).
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Figure 13. The muscle slurries with the Fehlindstsan after heating in a
microwave oven for 60 seconds. The glucose coratgots
were, from left to right, 6.67, 3.34, 1.22 and 0 mMFrom Lei,
2009).

The colour changes were measured by Lei (2009partear relationship was established

between several Hunter colour variables and glucoseentration (data not shown).

The concept of determining relative glucose conedion (representing glycogen) in an
unknown mass of muscle is simple. The greatectlh@ur changes due to the Fehlings
reaction (Figure 12, 13), the higher the conceiainadf glucose: call this value G. The
greater the colour of the meat slurry before Fejsliaddition (Figure 11) the greater the mass
of muscle: call this value M. The relative conecatibn of glycogen is thus given by the

expression G/M.

If the process were semiautomated only one opevaiatd be required and moreover,
Fehlings solution is cheap, as are microwave oveiitus the model method presented here

could solve the cost and skill problem associated the existing method.

The planned resear ch

The research described in this thesis formally@esl the effect of different muscle
sample masses on slurry colour, the effects oéuifft glucose concentrations on Fehlings
colour, and their interaction, if any. This is @onithin the volume and mass constraints of
the existing pH method, with a future goal to adabpat is learned here to a commercial

industrial environment.

The ideal meat to work with in developing a novelthod of determining muscle

glycogen is to use pre-rigor, harvested from agiiéered animal within 20 minutes of
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slaughter.  Outside the meat industry this is aopcable to achieve.  However, it is
possible to simulate the pre-rigor condition byiagdylycogen or glucose equivalents to rigor
muscle. If glycogen were to be added, amyloglwasse would also have to be added to
hydrolyse the glycogen to glucose, as is the sdnatith the existing RapidpH method.

This hydrolysis step is very well defined in thiag tglycogen is rapidly hydrolysed 100% to
glucose. ltis far easier to simply add glucosgegor meat, and this was the strategy

adopted here.

The research to date has employed a Hunter meteeasure colour (HunterLab, 2001).
Hunter meters are expensive research instrumeiitse modern digital camera offers a
cheap and versatile alternative. The proposedreisavill determine colour in parallel with
both systems. There will be no attempt to desigaraiautomated procedure but the design
concept will be defined.
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CHAPTER 2
MATERIALSAND METHODS

Chemicals, equipment and meat sampling

Chemicals
Sodium acetate buffer (200mM, pH 5.0) was prep&@d reagent-grade acetic acid.
A dilution series of D (+)-glucose was preparedthis buffer between 0 to 6.67 mM.
Fehlings solutions 1 and 2 were prepared by digsgpl9.3 g of CuS@Q5H,0 in water
and making up to one litre for Fehlings 1, andaligag 100 g sodium hydroxide and 345 g
KNaC,06.4H,0 in water and making up to one litre for Fehli@gs In the experiments, 4
mL each of Fehlings 1 and 2 were added to meatysiu@ ratio to be described later.

Equipment

A balance with a vibration compensation mechanisas used to weigh the muscle
samples from 0.8 g to 2.2 g. An Ika (Staufen, Gerynhd 25 Ultra-Turrax drive fitted with a
S25 dispersing element 18mm in diameter was matifie confidential way to make muscle
slurry (Figure 14). The assembly was mounted oeaayrweight laboratory stand so that
dispersion was accomplished by moving vials comgisamples about the dispersing

element.
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L LU

Figure 14. Homogenizer (lka T25) basic Ultraturfigbed with a dispersing
element.

A disperser (Ultraturrax T25 basis) used to crédaeslurries. This was done before
measuring colour or testing glucose concentratiorhe dispersing process was completed

within ten seconds and then different concentratmiglucose added.

A microwave oven was used to heat the slurry wéhlifgs solution in Phase 3. The
brand is National and model is NE-6770, made irmdamput is 1200w 5.2a 240v ~50Hz,
output is 600w 2450MHz.

The sample was in a glass reaction dish undesickIshroud lid. To measure colour,
the L*, a*, and b* readings were recorded by usirtdunter lab ColorFlex colorimeter set
(Figure 15).
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Figure 15. Hunter colour meter, Model 45/0.

A Canon SX110 digital camera was used to identig/gurface colours of slurries. The
illumination system used a compact fluorescent I§b@yVv D65 1000 lamp) as shown in
Figure 16. In all trials, the distance betweenlise of the interior the box was white box
and the front of the lens was 19 cm, and the twgpkwere 5 cm above the camera screen.
The fluorescent laboratory room lights were offt there was some ambient room light from
large, south-facing windows 8 m from the photograpissembly. The field of view was
shown in Figure 16 and was achieved by using th@orfacus function. With the lighting
level achieved, satisfactory exposures were actientth an ISO setting of 100, an F stop of

6.3 and an exposure time of 2.5 seconds.
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Figure 16. The digital camera system under stanilardination conditions.
The rectangle in the right-side photograph wasrttage analysed by
the ImageAnalysis software.

Meat selection

Chilled rump steaks from beef, were purchased flaral supermarkets, such as
Countdown and New World in Auckland. Rump steaitudes the muscle from which the
industrial samples are routinely taken (Figureb®f,the rump obviously includes many more
muscles than the RapidpH sample muscle (Figure 3Bhus there was no control over age,
breed and position within the rump.

Figure 17. A typical piece of rump steak boughtdoe day of
experimentation

The samples for dispersion were always taken bipsicirom the core of meat, to avoid

meat that was ‘bloomed’ due to atmospheric oxygen.
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Description of the colorimetric methods

The intensity or colour characteristic of an obgepends upon the amount of light which
it reflects (HunterLab, 2001). A colorimeter ideo represent this as numbers. The
colorimeter used for most of the work in this tlsesas a Hunter lab ColorFlex colorimeter
(Figure 15). Colour is represented as 3-dimensi@udangular colour space which stems
from the opponent-colours theory (HunterLab, 200Iheory is based on opponent pairs of
colour which are red-green, blue-yellow and bladkte; and states that colours cannot be seen
or perceived “as both reddish and greenish ataheegime, but they can be perceived as
reddish-yellow or reddish-blue” (Figure 18).

+L

+H +3

Figure 18. 3-dimensional rectangular colour spagérom
http://www.tasi.ac.uk/images/cielab.gif)

The L* (lightness) axis refers to the degree ofifigess in a colour, ranging from 0 (-L)
which is black, to 100 (+L), which is white. The(aed-green) axis measures the change from
green to red as the values move from the negadivgerinto the positive range. 0 is the neutral
midpoint. The b* (blue-yellow) axis measures tharale from blue to yellow as the values

move from the negative end into the positive endlgain, 0 is the neutral midpoint.

Two public domain software programs were testednfiage analysis. These were
ImageAnalyst Version 1.0, apparently sourced franim& and written by Long Xiao Li, and the
prorgram Image J 1.424t{p://rsb.info.nih.gov/). They both gave identical results from the

same model image. As seen in Figure 16, the cafoewaed on the beaker, and the

operator-selected rectangle was analysed by Imaggstrto yield RGB colour values. A
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color in the RGB color model is described by howcmeed, green, and blue light is included in
the image. The color is expressed as an RGB tyrigdeh component of which can vary from
zero to a defined maximum value, commonly 255 &whe If all the components are at zero
the result is black; if all are at maximum, theutess the brightest representable white
(Wikipedia, 2011). Zero to 255 inclusive represemnumerical value of 256 £ B-bit binary

code.

The experimental method

Phase 1 was to validate the relationship between masseztrand colour, where the
latter was measured in two ways. The first way wils the Hunter meter to measure the
colour as L*, a*, and b* through the base of a gllasaker. The second way was by digital
photography under controlled white light conditiondn the digital camera method, the field
of view was the maximum area of surface slurry thatnot include the glass walls of the
beaker. Data was extracted from the image by progrsuch the free software

ImageAnalyst.

The main factor of interest was obviously the iel&hip between colour and mass, but a
major thrust of Phase 1 was to explore the effeanonal. That is to say, does the
relationship vary from animal to animal (within aisele)? To explore this effect, a standard
cut of beef (rump) was bought at retail on six stmas over three weeks.  Masses of meat
between 0.8 g and 2.2 g were cut from the corep@sg to be at a low oxygen partial
pressure)of the meat sample, and dispersed in Z.&f sodium acetate-acetic acid buffer (pH
5.0) plus 0.5 mL of the same buffer to simulateitoii of the amyloglucosidase enzyme
solution used in the existing industrial procedsic@se was included in the acetate buffer to
achieve a final concentration of 3.34 mM. Thisoglse concentration represents the median
concentration of glycogen, as glucose, that woeldiérived from a 1.5 g muscle sample.

The reason for this addition is simply to simuldte industrial process as closely as possible.
Analysis of the colour data will be discussed affter description of Phase 3.

An issue in these Phase 1 experiments was the mwaten of acetate in the buffer.
The colour development method planned (see Phasgd@yes the reaction of glucose in a
strongly alkaline solution containing copper sulgh@ehlings solution). If the acetate
buffer were too strong, it could reduce the alkiglito a level where the reaction from Ctio
Cu"* might be inhibited. At the same time the buffarsnbe strong enough to hold the pH
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within a range where amyloglucosidase activityaestant. This issue required some

experiments to determine the maximum acetate caratem that could be tolerated.

Phase 2 was to confirm or otherwise that different concations of glucose would not
affect the colour due to meat (without applicatddnhe Fehlings reaction). It was not
expected to do so. This experiment required eapaaises of meat (1.5 + 0.05 g) to be
dispersed in 8 mL of acetate buffer (7.5 mL + 0l5am before) containing varying glucose
concentrations between 0 and 6.67 mM. The higledge, 6.67 mM, represents the very
highest concentrations of glycogen that are likelipe encountered in the industrial situation.

Phase 3 was to explore the relationship between addedogkiconcentration — 0, 3.34
and 6.67 mM — and colour change due to the Fehtiegstion induced in a microwave oven
in the presence of four levels of meat mass. These 1.00, 1.33, 1.66 and 2.00 g to a
precision of + 0.05 g. mass of meat was dispeirs&dnL of acetate buffer, to which was
added 8 mL of Fehlings solution, making a finalurok between 17 and 18 mL. Prior work
by Lei (2009) showed that 30 seconds in the mick@ax@aen on full power was sufficient to
generate a potentially useful colour change. Tb&ting regime was used here. Colour
was measured after addition of Fehlings solutiah laemating.

In the execution of Phase 3, linear regression tsaglere developed between

concentration of glucose/mass of meat after micveweeating.

On one of the four days that this experiment wasedaith replicate rump steak
purchases, the colour of the slurries was alsardecbbefore addition of Fehlings solution.

This particular data set was used for Phase Sh@lesv).

In Phase 4 a widely varying range of meat masses (0.8 tagp\®ere randomly mixed
with varying concentrations of glucose in the siyfy to 6.67 mM) to generate colours that
were substituted into the single relationship descrin Phase 3 to predict the relationships’
accuracy and precision. In this work only Huntalues after heating were considered
because it was technically difficult to measureniieefore heating (no Fehlings solution

added) when it was required to do 30 tests on omgp Isteak per day.

In Phase 5 a single trial was performed to test the hypoth#sat colour values obtained
from slurries before Fehlings addition could beduseimprove regression models between
colour values and concentration of glucose/massezt after microwave heating. This
contrasts with Phase 4 where only values afteiifgeatere considered.  The masses of
meat were 1.00, 1.33, 1.66 and 2.00 g, and theectrations of glucose were 0, 3.34 and
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6.67 mM. Data were analysed to compare the piedigalue of absolute Hunter values

after heating, with the predictive value of Huntatue ratios before and after heating.

Data analysis

Basic data handling functions in Microsoft Excelreveentral to data analysis throughout
this study, and the linear regression functionxodt was used in Phase 1 to correlate colour
data and meat mass in the buffered slurries. Tieenay analysis of variance routine in
Minitab Release 14.2 (Minitab, Stale College, Pgivasia) was used to test for statistically
significant differences among various treatmentsuhout the study. The multiple linear

regression function in Minitab was used in Phasasdib.
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CHAPTER 3
RESULTSAND DISCUSSION

Phase 1

As described in the Chapter 2 the aim of Phasesltovaalidate the relationship between
mass of meat and colour, where the latter was todsesured in two ways. The first way
was with a Hunter meter to measure colour in L*,afd b* space through the base of a glass
beaker. The second way was to measure colourdgialdphotography under controlled

white light conditions.

The main factor of interest is the relationshipamzn colour and mass with an emphasis
on the effect of animal. That is to say, does #iationship (if any exists) vary from animal to
animal? To explore the effect of animal, a staddart of beef (rump) was bought at retalil
on nine occasions over three weeks.  Masses dflmetaeen 0.8 g and 2.2 g were cut from
the oxygen-free core of the meat, and dispers&dmh. of 200 mM sodium acetate-acetic
acid buffer (pH 5.0) containing 3.34 mM glucosesitmulate an average concentration in the

existing industrial process.

Also as noted in Chapter 2, an important issuater Iphases is the concentration of
acetate in the buffer. The colour development oetfhlanned (see Phase 3) involves the
reaction of glucose in a strongly alkaline solutcamtaining copper sulphate (Fehlings
solution). If the acetate buffer is too strongyduld reduce the alkalinity perhaps to a level
where the reduction of copper fromCto CU* may be inhibited. At the same time the
buffer must be strong enough to hold the pH withiange where amyloglucosidase activity
Is constant. This issue required a preliminaryeexpent to determine the maximum acetate
acetate-acetic acid buffer concentration that coeltblerated.

Effect of acetate-acetic acid buffer concentration on pH of Fehlings solution

The initial concentration of acetate-acetic acitfdruvas set at 200 mM because that is
the concentration used routinely in the currenustdal RapidpH method (Young and others
2004).

Tables 1 and 2 shows the effect of different cotre¢ions of acetate-acetic acid buffer at
approximately pH 5 on the pH of a mixture with kiebs solution. In these two experiments

the volumes are different but the ratios of compmisiare the same.
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Table 1. Effect of acetate-acetic acid buffer comiaion on pH of Fehlings solution where
water was added to simulate meat.

Volume of Volume of Initial concn. Final concn. Measured Volume Measured
acetate-acetic water added acetate-acetic acetate-acetic pH of Fehlings pH of final

acid buffer to simulate  acid buffer  acid buffer buffer (mL) mixture

(mL) meat (mL) (mM) (mM)

16 2.4 200 174 5.0 10 14.5
16 2.4 150 131 4.9 10 145
16 2.4 100 87 4.9 10 14.5
16 2.4 50 44 4.9 10 14.5
16 2.4 30 26 4.9 10 14.6
16 2.4 20 17 4.9 10 14.6
16 2.4 10 9 4.9 10 14.7
16 2.4 0 0 4.8 10 14.7
16 2.4 0 0 4.8 10 14.7

™his calculation was based on a moisture contentezft of 80%

Table 2 Effect of acetate-acetic acid buffer cotregion on pH of Fehlings solution where
meat was added.

Volume of Mass of meat Initial concn. Final concn. Measured Volume Measured
acetate-acetic sample (g) acetate-acetic acetate-acetic pH of Fehlings pH of final

acid buffer acid buffer  acid buffer buffer (mL) mixture
(mL) (mM) (mM)

40 7.5 200 174 4.8 25 14.5
40 7.5 150 130 4.9 25 14.6
40 7.5 100 87 4.8 25 14.6
40 7.5 50 43 4.9 25 14.7
40 7.5 30 26 5.0 25 14.8
40 7.5 20 17 5.0 25 14.8
40 7.5 10 9 5.0 25 14.8
40 7.5 0 0 4.8 25 14.8
40 7.5 0 0 4.8 25 14.8

™This calculation was based on a moisture contentegztt of 80%

Whether meat was added or not, the alkalinity effehlings solution was high enough

to swamp any effect of the buffer. The pH of timaf mixtures was never below 14.5.

At the time this experiment was performed, it wascipated that the ratio of the
buffer/meat slurry to Fehlings solution (A and Brdawned) would be about 1.8 in the main
body of this thesis. That is the ratio set in Eaftland 2, and was based on the ratio used by
Lei (2009). In Phases 2 to 5 of the present stbdyatio used was about 1.14 (see later).
That is to say the buffer concentration relativ€éhlings was higher in these pH trials
(Tables 1 and 2) than in the work reported in Ph@s® 5. Thus the volume of Fehlings in
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Phases 2 to 5 — and thus the ratio used — was thremmeenough to swamp the buffer effect

from 200 mM acetate-acetic acid buffer.

To summarise, this experiment showed that the gtineof buffer in the existing RapidpH
method had no significant effect on the requireghlpH of a Fehlings solution mixture.

Therefore 200 mM acetate-acetic acid at pH 5.0wgasl in all subsequent work and is

referred to simply as ‘buffer’.

Relationship between mass of meat and Hunter colour values
In the nine trials the relationship between meagsna buffer slurry and Hunter a* values
was statistically variable, as exemplified in Figgil9 and 20, which were the worst and best

results, with T values of 0.215 and 0.911 respectively.

14 -

12 -

10 1 y = 1.958x - 0.4925
3 | 2= 0.2159

Hunter a*

O N A O
®
[ ]
o
o

0 0.5 1 1.5 2 2.5

Mass of meat sample (g)

Figure 19. A poor linear relationship between nasseat sample and
Hunter a* value
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Figure 20.

A good linear relationship between nudsseat sample and
Hunter a* value

The f value of the other seven trials lay between tleasemes. The data are

summarised in Figure 21, shown without data poants, in Table 3.
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Figure 21.

Nine linear relationships between Huatevalues and mass of
meat sample in a buffered slurry
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Table 3. Linear relationships between mass of rs&aiple
and Hunter a* value in nine trials.

Trial Predicted value of Hunter a* r?
number where X is mass of meat sample
1 4.297x - 1.640 0.462
2 4.937x - 1.659 0.436
3 6.179x - 2.271 0.615
4 5.392x + 1.515 0.911
5 4.425x + 2.460 0.738
6 4.405x - 3.331 0.897
7 1.958x - 0.492 0.215
8 4.949x — 2.177 0.841
9 5.088x —2.101 0.805

Figure 21 shows that there was always a posititioaship between Hunter a* value
and mass of meat in the buffer slurry. Howevez,dlopes and particularly the y axis
intercepts were variable, as were thealues. At first sight these two result indicttat
Hunter a* values could not be used to predict meds, because the apparent among-animal
variability (slopes, intercepts) is too high asvithin-animal variability (f). For example, a
Hunter a* value of 4 in Figure 21 could represeasses anywhere between about 0.3 and 2.3
g of meat depending on which one of nine equatiees chosen. However, as is explained

later, the results for Hunter a*are necessarilysedess as appears at first sight.

It was anticipated that Hunter b* would less uséfiain Hunter a* because meat is
fundamentally red. Hunter b* values represent kdgefyellowness. This proved to be the
case (Figures 22, 23, 24, Table 4). The slopéiseolines were lower than for Hunter a*,
and the 7 values ranged from 0.017 to 0.688, well belowrtrgye for Hunter a*. The worst
case relationship (Figure 23) would be entirelyleseat predicting mass. Overall, Hunter

b* on its own is of no value in predicting meat as
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Figure 24. Nine linear relationships between Hubtevalues and mass of
meat sample in a buffered slurry

Table 4. Linear relationships between mass of reaaiple
and Hunter b* value in nine trials.

Trial Predicted value of Hunter b* r

number where x is mass of meat sample
1 1.697x + 18.33 0.481
2 2.238x + 18.01 0.631
3 3.064x + 13.45 0.682
4 1.586x + 15.84 0.224
5 2.880x + 12.20 0.577
6 0.470x + 18.16 0.017
7 2.755x + 13.68 0.688
8 2.461x + 14.88 0.423
9 2.380x + 11.20 0.342

Turning now to Hunter L*, the linear relationshipsall nine trials were essentially flat
(Figure 25) and most vales approached zero (Table 5). As for HunteiHhnter L* on its

own is of no value in predicting meat mass.
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Figure 25. Nine linear relationships between Huhtevalues and mass of
meat sample in a buffered slurry

Table 5. Linear relationships between mass of reeaiple
and Hunter L* value in nine trials
Trial Predicted value of Hunter L* r?
number where x is mass of meat sample
1 2.388x + 48.81 0.193
2 0.443x +51.91 0.007
3 1.092x + 50.73 0.021
4 -0.892x + 51.90 0.013
5 1.739x + 48.38 0.092
6 0.670x + 48.36 0.004
7 -0.062x + 47.17 0.00005
8 2.461x + 14.88 0.423
9 -0.325x + 47.13 0.00005

Relationship between mass of meat and R, G and B values of digital images

The alternative method of measuring colour wasrahysis of digital photographs.

was done in five trials.

This

The images were procebgetie software program ImageAnalyst.
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Figure 26. Five linear relationships between R)(kedues and mass of
meat sample in a buffered slurry

Table 6. Relationships between mass of meat saamoldR
values in five trials

Trial Predicted value of R where x is r
number mass of meat sample
1 -1.996x + 249 0.097
2 7.832x + 218 0.050
3 -7.584x + 258 0.339
4 -5.973x + 253 0.288
5 -0.255x + 251 0.000

As Figure 26 shows, the trend lines are closeatioaihd therefore useless to predict meat
mass (by application of inverse equations). TFhalues were low, ranging from 0 to 0.339.
However, it is important to note that the valuesampassed by the data were all close to 255,
the upper limit of redness in RGB colour space. e ithportance of this is discussed later in

this section.

a7



140

120 A

100 ~

80 ~

60 -

Green values

40 A

0 T T T 1

0 0.5 1 1.5
Mass of meat sample (g)

2.5

[a]

Figure 27. Five linear relationships between Gdgjesalues and mass
of meat sample in a buffered slurry

Table 7. Relationships between mass of meat saamol&s
values in five trials

Trial Predicted value of G where x is r
number the mass of meat sample
1 -7.457x + 115.8 0.050
2 13.38x + 88.88 0.065
3 2.819x + 98.39 0.013
4 -9.492x + 112.9 0.059
5 1.709x + 99.79 0.001

As for Figure 26, Figure 27 shows a flat relatiapdbetween G values and mass, and a
very low range ofTvalues 0.001 to 0.059 (Table 7). Thus, G as dezbin this optical
system is of no value in predicting meat mass. ddwavalent values for B are shown in

Figure 28 and Table 8, with the same outcome:d ® value.

Colour saturation, which is mathematically derivienn R, G and B was similarly of no

value (Figure 29, Table 9), as expected.
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Figure 28. Five linear relationships between Bébhalues and mass of
meat sample in a buffered slurry

Table 8. Relationships between mass of meat saamold3
value in five trials

Trial Predicted value of B where x is r
number mass of meat sample
1 -0.919x + 39.26 0.002
2 0.330x + 47.32 0.000
3 10.17x + 33.84 0.159
4 -2.234x + 51.69 0.032
5 3.446x + 39.62 0.031
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Figure 29. Five linear relationships between sémaralues and mass of
meat sample in a buffered slurry

Table 9. Relationships between mass of meat saamgle
Saturation values in five trials

Trial Predicted value of Saturation r
number where x is mass of meat sample
1 -0.153x + 80.85 0.001
2 1.249x + 81.59 0.027
3 3.677x + 75.07 0.226
4 1.542x + 79.45 0.066
5 0.177x + 80.52 0.002

It should be noted that Figures 26 to 29 are allestwith zero on the ordinate, which is
arguably the most honest way to present these détalso emphasised the fact that R values
are usually around 250, close to the upper lim2%5 (O to 255 represent8 2 256). It is
possible that the R values, which intuitively woblelthe most useful in predicting mass, are
saturating around 250, and thus might be inseesitivchanges in meat mass. If R values
were closer to the middle of the range, say 12%ieity might have been better and might
be manifest as a positive slope. One way of achiggthis might be to under expose the image
gathering by reducing exposure time from 2.5 sesdod..25 seconds. This possibility

remains unexplored.

With the existing data set, the digital images widu entirely useless at predicting mass.
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Summary of main outcomes of Phase 1

Of all the data collected in Phase 1, Hunter atigalwere potentially the most useful,
because the slopes were positive dnslare mostly high. However, the values of intetsep
were also unacceptably variable between meat sarbpleght on different days. At first
sight, the high variability in intercept values i@uule out Hunter a* values as mass
predictors. However, as Figure 9 shows in Chahténe extracted sample in the industrial
application of the RapidpH method is always takemfone site on the carcass rump, a
distinct bulge, and therefore from one site ofregl® muscle. By contrast, the rump steaks
used in the present study were taken from anywindiee rump (Figure 51 in Chapter 4).
Myoglobin content responsible for the red colountdat varies from muscle to muscle, and
this could account for much of the variability mercept. To test this hypothesis would
require sampling from an unvarying site in an ugieg muscle, as is done industrially

(Figure 9). This cannot be done without accesmtabattoir slaughter line.
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Phase 2

In Phase 1, a constant amount of glucose was iedludeach slurry. The aim of Phase
2 was to confirm or otherwise that different cortcations of glucose will not affect the
colour due to meat. As discussed in Chapter lhgdesmuscle from different animals has
different concentrations of glycogen (the causthethigh pH condition), which when
hydrolysed by the RapidpH enzyme amyloglucosidasles different concentrations of
glucose. Different concentrations of glucose wareexpected to affect colour, because
glucose is colourless in aqueous solution, anderhigh moisture environment of the slurry it
would be very unlikely to react with free amine gps in the Maillard reaction at ambient
temperature. However, the possibility that glucoseld affect colour had to be formally

tested.

Hunter L*, a* and b* values where meat mass was constant and glucose concentration was

variable

The hypothesis was tested by having equal massesatf(1.5 + 0.05 g) dispersed in 8
mL of acetate buffer (7.5 mL + 0.5 mL as before)taming varying glucose concentrations,
0, 3.34 and 6.67 mM. The highest value, 6.67 mé@resents the very highest
concentrations of glycogen that is likely to be@nttered in the industrial situation.

Trials were done on four days with a different naaichase on each, each sourced from
a different supermarket. On each day five repdicaeat masses were dispersed at each of

the three glucose concentrations.

Table 10 shows the means and standard deviatioeséh of the four days testing for

significant differences between glucose concermtnati
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Table 10.  Effect of glucose concentration on Huntour values in the presence

of 1.5 g of meat. Data are means and standarcii@vs.

Glucose concn. (mM) Statistical effect

Hunter of glucose
values Day 0 3.34 6.67 concn. P)
a* 1 3.14 £0.49 3.38+£1.60 349+1.03 0.88

2 6.32 £0.23 6.82 £ 0.37 7.40+1.05 0.07

3 4.38 £ 0.97 4.38 £+ 0.17 455+1.69 0.96

4 5.14 +1.02 5.30 + 0.82 4.37+0.94 0.28
b* 1 15.48 £ 0.81 1542 +£1.18 15.59+1.04 0.96

2 19.43 +0.83 19.35+1.00 19.15+1.46 0.92

3 16.81 +2.02 15.42 +1.29 17.42+2.52 0.31

4 18.72 + 0.49 18.90 + 0.93 18.68+1.23 0.93
L* 1 50.79+237 49.66 +2.37 49.66% 2.37 0.65

2 51.45+2.92 48.33+1.48 46.92+0.99 0.10

3 52.39 £ 2.06 49.04 £ 2.33 47.16£0.95 0.20

4 46.30 +2.34 46.44 +2.34 47.76+2.21 0.51

In all casesP is more than 0.05, so the hypothesis that varylagage concentrations (O,

3.34 and 6.67mM) do not affect colour readings whmeat mass was constant is supported.
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Phase 3

Phase 1 established that although there was coabldesariation among to animals and
in the position of sampling with the rump cut, Hema* values showed some potential in
predicting mass, because in the industrial appiinagampling is always taken from one site
in one muscle within the rump. Phase 2 indicalted the concentration of glucose did not
affect meat colour. It remained to develop a daoletric method to quantify glucose
concentration and thus glycogen concentration. s Thihe aim of Phase 3: to explore the
relationship between glucose concentration — Q8@ M — and colour change due to the
Fehlings reaction induced in a microwave oven.@Zer6.67 mM covers the glucose
concentration range derived from glycogen expeitede industrial application.)

Lei (2009) showed that a final volume of aroundils (meat + 8 mL buffer + 8 mL
Fehlings) would require about 30 seconds of mick@nzeating to a temperature that would
usefully accelerate the reaction. Subsequently, fitass categories of meat from four
supermarket purchases (from different supermarkdtsyent days) were selected: 1.00, 1.33,
1.66 and 2.00 g to a precision of + 0.05 g. Irheafcthese categories, single slurries were
prepared each containing three concentrationsugbgk as in Phase 2: 0, 3.34 and 6.67 mM.
Colours were developed with Fehlings by microwasatimg for 30 seconds on full power

and the colour measured by the Hunter meter.

Figure 30. The relationship between zero conceatratf glucose with 1.00,
1.33, 1.66 and 2.00 g meat samples and colour ehdungto the
Fehling reagent. The left photograph shows thgiral slurries,
and the right photograph shows the result afteitiatdof
Fehlings solution and microwave heating.
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Figure 31. The relationship between 3.34 and 6.57aoncentrations of
glucose with 1.00, 1.33 1.66 and 2.00 g meat sasrgoid colour
change due to the Fehling reagent after heatingpe |87t
photograph shows the colour development with 3.84gtucose
and the right with 6.67 mM.

Figure 30 (right) shows that in the absence of ddgecose, the colour due to different
masses of meat and Fehlings solution after heataggessentially constant. When glucose
was present however (Figure 31), the blue Fehlotsur was lost, yielding a Cliyellow
pigment, particularly when the quantity of massnafat added was low (1.00 g in Figure 31,
left and right). This means that the colour depglent due to glucose and Fehlings was

affected by the quantity of meat in the slurry.

The following graphs (Figures 32, 33 and 34) shioeveffect of glucose concentration
after heating on Hunter values when meat mass v@@s 1.33, 1.66 and 2.00 g.
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Figure 32.

Effect of glucose concentration on Huatevalues when meat
mass was 1.00, 1.33, 1.66 and 2.00 g. Column tseagh
means of four meat replicates and bars are stamigardtions.
The white bar displays 0.00 mM glucose, the ligiatydoar 3.34
mM and the dark grey bar displays 6.67 mM.
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Figure 33.

Effect of glucose concentration on Hubtevalues when meat
mass was 1.00, 1.33, 1.66 and 2.00 g. Column tseagb
means and bars are standard deviations. The wdmitéigplays
0.00 mM glucose, the light grey bar 3.34 mM anddakk grey
bar displays 6.67 mM.
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Figure 34. Effect of glucose concentration on Huhtevalues when meat
mass was 1.00, 1.33, 1.66 and 2.00 g. Column tseagh
means and bars are standard deviations. The wdmitéigplays
0.00 mM glucose, the light grey bar 3.34 mM anddakk grey
bar displays 6.67 mM.

At the two glucose concentrations above zero, Hurtand L* decreased with
increased mass of meat. At 0.00 mM the situatias @ssentially static. At the highest
concentration of glucose (6.67 mM), Hunter a* valdecreased with increased mass of meat,
as was observed for Hunter b* and L*. Howevern@ a.34 mM glucose, the situation was
more complicated. Overall the data show that atihg under these very alkaline
conditions, some component(s) in the meat competasCi?* for reaction. That
component(s) is likely to be amine groups, abundanteat proteins, which can participate in

the first stages of the Maillard reaction (Hodg&3p

It was initially hoped that the quantity of meatle slurry would not affect colour
development due to glucose but clearly that waghetase. However, it might be possible
to linearly relate the colour values to the paramef fundamental interest, mass of glucose
per mass of meat (Young and others 2004). Posslatonships were explored with the
multiple regression function in Minitab (Table 11)Table 11 is summary of the Minitab

output and the full analysis is shown in the Append

In the industrial situation the predicted valuecommercial interest is mass of glucose
(glycogen) per mass of meat. This value is dimenegs. In Table 11, the solutions to the
equations — which are not shown — have units ofgiM This does not matter because

volumes are very close to identical in all tridfsgure 32, 33 and 34).
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Table 11.  Usefulness of linear equations with &*abd L* to predict concentration of
glucose/mass of meat after microwave heating

Coefficients Statistical values
Value used
ax b* L*  Constant F P r? (%)
a* alone 0.0361 0.203 6.4 0.030 39.1
b* alone 0.0119 0.0688 157 <0.001 94
L* alone 0.0103 -0.0255 130 <0.001 929
a*, b*and L* 0.0325 -0.0101 0.0160 -0.0580 392 <0.001 99.3
combined

What is important in Table 11 are the statistica* alone was not a particularly good
indicator of concentration of glucose/mass of me&t.was a low 6.4, and although the P
value was significant at 0.030, only 39.1% of tlagiation in concentration of glucose/mass
of meat could be explained by Hunter a*. This wassurprsing because a* measures
redness/greenness, a range that is not obviote ®ye in Figures 30 and 31. b* was much
more useful as was expected because of the yellesvdolour range in Figures 30 and 31.
The surprise was L*. The purportedQuprecipitate was highly reflective, yielding an F
value of 130, @ < 0.001 and arf(%) is 92.9. Of some interest was the colouhef t
precipitate. The literature describes,Owas being red. However, it was clearly more
yellow than red in this particular situation ass/ious from Figure 31 and the predictive
value of b*in Table 11.  Combining all the Hunt@lues was the most useful: F was 392,
P was < 0.001 and (%) was 99.3.

In this approach the mass of meat was known to piighision, 1.00 to 2.00 g, because it
was weighed rather than predicted by colour. Phadewed that colour was not
particularly useful in predicting mass so if rednbad been used instead of known mass 1.00,

1.33 etc., then the predictive values of the equativould have been worse.

Accepting this limitation in the meantime, Phasextends Phase 3 work by selecting
randomly chosen but defined masses of meat, arnithdinthosen defined concentrations of
glucose to test the predictive value of linear ¢igna such as in Table 11.
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Phase 4

The aim of Phase 4 was to randomly choose defirestes of meat between 0.8 and
2.15 g, and similarly defined concentrations ofcglee between 0 and 6.67 mM to test the
predictive value of equations between concentraifagilucose/mass of meat and various
Hunter colour values. Concentration of glucosegadsneat after heating is directly
proportional to the value of commercial intereséissiof glycogen/mass of meat). This was
done of each of four rump steaks bought on diffederys.

For a given steak there were 30 concentration-m@asbinations. On each of four days
two columns of random numbers were generated irlfxging the function
RANDBETWEEN (1, 7) for glucose concentration andNR2BETWEEN(1,10) for meat
mass (Figure 35). These random numbers dictatddamcentration-mass combination.
For example, in Combination 1, the concentratioglo€ose was 0.111 mM and the mass of
meat was 1.10 + 0.05 g. The mixtures were dispergdthe Ultraturrax, the slurry mixed

with Fehlings solution and the colour developethemicrowave oven.

Concn Code  Meat Code Combination Random Random
(final  number mass number number code code
in 8 glucose  (g) meat number number
mL) glucose meat
(mM)
0.000 1 0.80 1 1
0.111 2 0.95 2 2
0.222 3 1.10 3 3
0.334 4 1.25 4 4
0.445 5 1.40 5 5
0.556 6 1.55 6 6
0.667 7 1.70 7 7
1.85 8 8
2.00 9 9
2.15 10 10
11
12
13
14
15
16
17

Figure 35. Excel spreadsheet output usedig
to select 30 combinations of 19
concentration and meat mass. 20
The random numbers generated:
in Excel were different for each 3
of the four days. See the text ,,
for more details 25

26
27
28
29
30
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Preliminary inspection of the data by plotting agl@alues against concentration of
glucose/mass of meat, exemplified by Figures 36ltashowed that a* and b* plots were
possibly linear, and that L* plots were possiblywiinear. For simplicity all the
relationships were considered as linear to adipproximation. Tables 12, 13, 14 and 15
show the coefficients of linear equations develdpetiveen a*, b* and L* (and their linear

combination) and concentration of glucose/massedtm

Table 12.  Usefulness of linear equations with &*ad L* to predict concentration of
glucose/mass of meat after microwave heating (Day 1

Coefficients Statistical values
Value used
ar b* L* Constant F P r? (%)
a* alone 0.0189 0.2240 29.6 <0.001 51.4
b* alone 0.00936 0.0954 262.3 <0.001 90.4
L* alone 0.00965 -0.0034 104.8 <0.001 78.9

a*, b*and L* 0.0165 -0.00345 0.0105 -0.0105 286.5 <0.001 97.1
combined

Table 13.  Usefulness of linear equations with &*afd L* to predict concentration of
glucose/mass of meat after microwave heating (Day 2

Coefficients Statistical values
Value used
a* b* L*  Constant F P r* (%)
a* alone 0.0281 0.2190 12.9 0.001 31.6
b* alone 0.00946 0.0999 210.7 <0.001 88.3
L* alone 0.00916 -0.0089 243.6 <0.001 89.7

a*, b*and L* 0.00816 0.00119 0.00746 0.0110 121.4 <0.001 93.3
combined

Table 14.  Usefulness of linear equations with &*abd L* to predict concentration of
glucose/mass of meat after microwave heating (Day 3

Coefficients Statistical values

Value used

ar b* L* Constant F P r? (%)
a* alone 0.0214 0.232 18.3 <0.001 39.6
b* alone 0.00883 0.137 133.9 <0.001 82.7
L* alone 0.00959 0.0193 116.0 <0.001 80.6
a*, b*and L* 0.0135 -0.00156 0.00943 0.0210 74.1 <0.001 89.5

combined
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Table 15.  Usefulness of linear equations with &*ald L* to predict concentration of
glucose/mass of meat after microwave heating (Day 4

Coefficients Statistical values

Value used

a* b* L*  Constant F P r* (%)
a* alone 0.0239 0.223 19.8 <0.001 36.8
b* alone 0.00888 0.126 115.8 <0.001 77.3
L* alone 0.00896 0.0103 1009 <0.001 74.8
a*, b*and L* 0.0149 -0.00142 0.00874 0.0186 544 <0.001 83.6

combined

Inspection of thé® and f values in these tables shows that Hunter b* with, ane
exception (Table 13), the single most useful cofmmameter to predict concentration of
glucose/mass. Hunter a* was the worst predictud,l# r* values were close to those of b*.
The combined linear function with a*, b* and L* walsvays the best predictor. The best
data were obtained on Day 1, and the worst on DayTéese are illustrated in Figures 36 to
41.
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Figure 36. The relationship between Hunter a* amtcentration of
glucose/mass of meat after microwave heating (Day 1
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Figure 37.  The relationship between Hunter b* amcentration of
glucose/mass of meat after microwave heating (Day 1

62



60
*
50 - o * o
* " » *

40 - .
= . . .
T
£ 30 1 *
é 'S ¢ oL*

20 - ¢

10 -

S
0 ‘ e T T T
0.0 0.2 0.4 0.6 0.8
Concentration of glucose/mass of meat (mM/g)

Figure 38.  The relationship between Hunter L* aadaentration of
glucose/mass of meat after microwave heating (Day 1
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Figure 39.  The relationship between Hunter a* amtcentration of
glucose/mass of meat after microwave heating (Day 4
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Figure 40. The relationship between Hunter b* amcentration of
glucose/mass of meat after microwave heating (Day 4
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Figure 41. The relationship between Hunter L* aodoentration of
glucose/mass of meat after microwave heating (Day 4

Figures 42 to 44 show plotted data combined aalb$sur days and Table 16 shows the
regression with the Hunter values and their contlmna Unlike the results for a* values to
predict meat mass in Phase 1 (Figure 21), theid&tmure 42 to 44 were tightly clustered,
suggesting that it may not be required to measwerass of meat by colour or direct

weighing before the development of colour due tecgte and the Fehlings’ reagent.
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(Recall that the between-animal variation was highRigure 21, probably arising in part from
different locations of muscle in the rump.) In@thvords, information about the mass of
meat in each slurry may be inherent in the colduh® heated slurries. However, there is
no obvious physical model to explain how this cdugdthe case. Equally, the choice of
meats on the four days in Phase 4 may have by ehrasalted in very similar reflectance for
equal mass.  These issues are further discuss&abjpter 4 as they are fundamentally

important to the development of this method.
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Figure 42. The relationship between Hunter a* amtcentration of
glucose/mass of meat after microwave heatingpall days

combined
60 ™
A
50 - A AA A
A
40 A WY
& A
= 307 A“% ADay1
5 A, 0
- 20 4 ADay2
g AA
= 10 4 A ADay3
A# ADay4
in T T T
10 0.2 0.4 0.6 0.8 1{0
-20
Concentration of glucose/mass of meat (mM/g)

Figure 43. The relationship between Hunter b* amcentration of
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Figure 44. The relationship between Hunter L* aodoentration of
glucose/mass of meat after microwave heatingpall flays
combined

Table 16.  Usefulness of linear equations with &*ald L* to predict concentration of
glucose/mass of meat after microwave heating, diys combined

Coefficients Statistical values
Value used
ar b* L* Constant F P r? (%)
a* alone 0.0215 0.225 81.2 <0.001 39.6
b* alone 0.00905 0.117 643.7 <0.001 83.8
L* alone 0.00930 0.0054 4949 <0.001 80.0

a*, b*and L* 0.0139 -0.00148 0.00910 0.00097 369.6 <0.001 90.1
combined

Inspection of the preceding graphs in Phase 4 shimatsvhen glucose
concentration/mass of meat is 0.0, there is oftém&’ or ‘tail’ in the distribution of data
points. This is particularly obvious in Hunter {z&lues as can be seen in Figure 38 for
example, and possibly contribute to lowevalues than if those 0.0 data points were ignored.
It is valid to ignore these points if required besathe situation of zero glucose concentration
can never exist in the real world of slaughter aiém Therefore the regression statistics

were recalculated ignoring the 0.0 data and conapaith the results in Table 16 (Table 17).
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Table 17.  fwith a*, b* and L* to predict concentration
of glucose/mass of meat after microwave
heating, all 4 days combined with and without

0.00 data
Statistical values
Value used 2 (%) with 2 (%) without
0.00 data 0.00 data
a* alone 39.6 40.9
b* alone 83.8 83.7
L* alone 80.0 78.4
a*, b* and L* 90.1 89.4
combined

Table 17 shows that values remained similar for all values used, & there was no
advantage to be gained by ignoring 0.00 values.we¥er, while that is true for linear
equations, there may be an advantage for ignorid@ alues if non-linear equations are
fitted, in particular for Hunter L* where the trlie of best fit is probably curvilinear . This
can be seen by comparing Figures 44 and 45.

60

50 - 30? ’ ¢

40 A
= ’o@go
§ 30 4 ©Dayl
g o ¢ Day?2
20 -

¢ Day3
10 + & L4 ®Day4
0 _M T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Concentration of glucose/mass of meat (mM/g)

Figure 45.  The relationship between Hunter L* aadaentration of
glucose/mass of meat after microwave heating iggodmM data,
all four days combined
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Phase 5

Phase 4 showed that over four days b*, L* and ealirtcombination of a*, b* and L*
after heating were useful predictors of concerdratif glucose/mass of meat, and implied
that it may not be necessary to measure the mamgatf However, it seems intuitive that
colour information from before heating could adgtedictive value. In particular it was
thought that ratios of Hunter colour values mightnpensate for variation and thus error in
mass prediction. For example, the function ‘beafieating/a* before heating’ might
contain information about mass of meat in bothgaftthe function, and would cancel this

variation by division.

Limited data were available to test this hypothesi® Phase 3 where meat from four
days was used to measure colour of slurries aftatiig, on Day 1, colour before heating was

also measured. This limited data set was usetasd>5.

The aim of Phase 5 was to choose defined massesaif 1, 1.33, 1.66 and 2 g, and
similarly defined concentrations of glucose betw@emd 6.67 mM to compare the predictive
value of absolute Hunter values after heating, Withpredictive value of Hunter value ratios
before and after heating. In the case of absdlutger values after heating there are three
basic equations: a*, b* and L* each regressed orceatration of glucose/mass of meat
(Table 18). There are many more possibilities watiios. These can be calculated in two
fundamentally different ways: after heating/befbeating, and before heating/after heating.
For the ratios after heating/before heating, tla@eenine possible ratios from the three
primary values L*, a* and b*. However, a*/b* for axmple is simply the inverse of b*/a*.
Thus the possibilities contract to six (Table 19)ikewise for before heating/after heating

there are six possibilities.

Table 18, from the one meat selection, shows thatét values L* and b* were
potentially useful in predicting concentration ddigpse/mass of meat. Hunter a* was not

useful, and these results general concur with theomes of Phase 4.
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Table 18.  Predictivévalues from linearly
regressing ratios of Hunter values on
concentration of glucose/mass of
meat after heating

Statistics
Hunter values
r* (%)
L* 0.89
a* 0.05
b* 0.87

The results in Table 18 can be compared with the rasults in Table 19 where ratios
containing a* also had poor predictive value coragddp ratios with L* and b* but no a*.
However, there was no improvementirvalues by using the ratios, after heating/before
heating and before heating/after heating. Furibi@y, after heating/before heating ratios

were useful.

Figures 46 to 50 show the four best correlatiortstare worst, the latter showing how

useless some ratios were.

Table 19.  Predictivévalues from linearly regressing
ratios of Hunter values on concentration of
glucose/mass of meat

Statistics
Ratio of values r* (%) from after r* (%) from before
heating/before heating/after
heating heating
L*/b* 0.86 0.36
a*/b* 0.05 0.24
L*/a* 0.67 0.03
b*/b* 0.86 0.33
a*/a* 0.04 0.01
L*/L* 0.88 0.28
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CHAPTER 4
OVERALL DISCUSSIONSAND CONCLUSION

In this work the ideal meat source would be presriguscle obtained from the
commercial sampling site (Figure 9). It would beighed to record mass, and colour
development work would be performed after totabglyen hydrolysis with amyloglucosidase
and subsequent determination of glucose concemtrhi a validated method. These data
would yield mass (or concentration) of glucose/nasseat, which is the ratio of
commercial importance. Hunter colour data wouldibed to predict this ratio. Pre-rigor
muscle was not available, so the first part ofadbmercial glycogen test was simulated by
adding different known amounts of glucose in thenfof different concentrations of glucose
in 8 mL of acetate dispersion buffer. Thus in #ygroach the mass of meat was accurately
known as was the concentration of glucose. (Ittrhashoted however that this addition
would not represent the total amount of glucosa given slurry because rigor meat contains

low concentrations of glucose.)

In Phase 1, the aim was to determine the valuediidual Hunter colour values for
predicting mass of meat samples by linear equatishere mass was gravimetrically known.
Hunter a* was the best predictor as might be exgokitbm the red colour of meat. Hunter b*
was less useful, and Hunter L* was the poorestipi@d Even for a*, the’rvalues varied
between 0.215 and 0.911, and the intercepts gbakgively sloped regressions were variable,
suggesting high variation among-animal. Howevergimof this intercept variation might
be due to differences between sites within the rumtnch is a large cut that would yield
many steaks each derived from different combinatimimmuscles (Figure 51). Restated, the
rump steaks on offer in supermarkets do not desc¢hie site of origin in the rump. If the
muscle sample were taken only from a single sitkeally the commercial sampling point —
then the intercept variation would likely be mueluced. But at the same time the wide
range in f values suggests that the predictive value mightdme, requiring a weighing step

by the operator in the abattoir.
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Figure 51. British beef cut diagram. The rump fsradquarter cut. (From:
http://upload.wikimedia.org/ British_Beef Cuts.svg)

Phase 1 also established that with the opticaésystused, the digital camera method of
measuring colour was much less useful than thedduméter. However, the digital camera
was not applied to heated slurries where colodeihces were much more obvious. The

camera method is further discussed later in reggddature research directions.

Phase 2 confirmed that different concentrationglodose would not affect the colour
due to meat. Different concentrations of glucoseemot expected to affect colour, because
glucose is colourless in aqueous solution, anderhigh moisture environment of the slurry it
would be very unlikely to react with free amine gps in the Maillard reaction at ambient
temperature. However, the possibility that glucoseld affect colour had to be formally
tested.

Phase 3 was to explore the broad relationship legtwkicose concentration and meat
mass and the Hunter colour change due to the Fshleaction induced in a microwave oven.
It was hoped that the quantity of meat in the glwould not affect colour development due
to glucose but clearly that was not the case. edtreed likely that the glucose could not only
reduce the Cii of the Fehlings’ reagent, but could also reachwimeat component(s),
presumed to be protein by way of the Maillard rissctHowever, the fate of glucose mixed

with meat was not further examined.

Phase 4 was to randomly choose defined massesabfawveen 0.8 and 2.15 g, and
similarly defined concentrations of glucose betw@emd 6.67 mM to test the predictive
value of equations indicating a relationship caoricgion of glucose/mass of meat and
various Hunter colour values. Concentration otgke/mass of meat after heating is
directly proportional to the value of commercidirest: mass of glucose (glycogen)/mass of
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meat. Plots between L* and concentration of glafoass of meat were curvilinear, but
linear between a*, b* and that ratio. As a firgpeoximation, all regressions were declared
linear. Strong correlations were obtained betwberratio and b*, L*, and a*, b* and L*
combined, but not a* alone. When the data for the fays the work was replicate were
combined, the correlations remained strong, imglyhmat information about meat mass and
glucose concentration was simultaneously inherettie colour-developed slurries. This is a
very important result because — subject to repgatrements — it suggests that meat mass
may not have to be known, by a* values for exanopldirect weighing, to get accurate

estimates of the commercially important ratio.

Phase 5 extended the Phase 4 work by using cotdues before heating (no Fehlings
added) in ratios with colour values after heatifghlings added) to see if this would improve
the predictive values established in Phase 4. uRately, limited data were available from
Phase 3 where the colour values before additidrebfings solution were recorded as well as
after heating. There were four defined masseseatni.0, 1.33, 1.66 and 2.0 g, and four
defined concentrations of glucose, 0, 3.34 and BT to first compare the predictive value
of absolute Hunter values after heating for conegioin of glucose/mass of meat, with the
predictive value of Hunter value ratios before aftdr heating. The absolute Hunter L* and
b* were useful predictors but a* was not, as wanalestrated in Phase 4. Turning now to
the predictive values of Hunter value ratios, ahly after heating/before heating ratios were
useful. However, the best three correlations,dftef heating)/b* (before heating), b*/b*,
and L*/L* were no better than those obtained fos@bte Hunter values after heating. This
result reinforces the idea that that meat massmoaiiave to be known to get accurate

estimates of the commercially important ratio: mafsglucose (glycogen)/mass of meat.

Thus, the directions for future statistical work atear. Phase 5 will have to be repeated
with many steak replicates to confirm or deny thespect of not having to determine meat
mass colour or weighing. In the data analysis gftthat work, it is likely that regressions

will involve curvilinear functions for L*.

At a practical level, the results suggest sevaatgsses that need to be further developed

or optimised.

First, a digital camera records reflected ligh&isimilar manner to a Hunter ColorFlex
meter, and offers the advantages of low cost, auemnee and remote recording. The Hunter
meter requires a transparent container, and dicettact with the light housing. However
data analysis indicated that the camera approastisnieprovement. There are many factors

affecting the result. With the Hunter meter, thieinal flash light is at the bottom of the
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machine, and the black cover avoids problems witaraal light sources. Light is let directly
into the internal slurry and may penetrate to godeéevel than the continuous halogen light
used to illuminate the slurry container and theaurding light box. A better arrangement
might be to have an intense pulse of directed wigke and a short exposure time to ensure
the useful colour values — R,G, or B as the casebaa- are in the middle to the dynamic
range 0 to 255. However, the camera work did rtirel to Phases 3 to 5, and the existing
light box arrangement and exposure time shouldsed as a starting point for further work.

It is likely that the camera will be more usefulevé the colour differences are marked, as they

are after heating.

Table 20.  Steps of a semi-automated proceduretéondme the value of mass of
glucose as glycogen/mass of pre-rigor muscle

Step Action Comment
1 Sample excised from carcass Weighs between 0.2.2rg
2 Add 8 mL acetate buffer with

amyloglucosidase
3 Disperse meat to a slurry Disperser must be frkxgy-
Incubate to hydrolyse glycogen  This takes abauir8

5 Record colour with camera or This is to determine mass if Step 8 is
other colour meter inadequate to simultaneously detern
mass
6 Add Fehlings solution Optimum ratio applied
Microwave heat Optimum conditions applied
8 Record colour with camera or This is to determine glucose and
other colour meter possibly mass
9 Compute ratio of interest Mass of glucose asagigo/mass of
pre-rigor muscle
10 Discard entire volume and rinse
11 Goto Step 1

Second, the 30 seconds microwave heating at treeohmower setting yielded good
results. The temperature of the resulting colowtady was not measured but was felt to be

warm to hot. Further experimentation is requil@dptimise the heating.

Third, the ratio of slurry volume to Fehlings sabut volume was arbitrarily chosen to be
approximately 1:1. This ratio needs to be optimised
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Fourth, at some point an abattoir trial will hawebe held where pre-rigor meat and the
amyloglucosidase enzyme will be used to generatglticose and colour-derived results will

be compared with the results from the existing tetbgy.

After all this work has been done, the engineefor@ semi-automated procedure could

begin. Table 20 is an outline of the steps invdlwhich could be arranged in a carousel.
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APPENDIX

Phase 3

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is

mMg = - 0.0255 + 0.0103 L*

Predi ctor Coef SE Coef T P
Const ant -0. 02553 0.02917 -0.88 0.402
L* 0.0103442 0.0009071 11.40 0.000

S = 0.0616239 R-Sq = 92.9% R-Sq(adj) = 92.1%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 0.49381 0.49381 130.04 0.000
Residual Error 10 0.03798 0.00380

Tot al 11 0.53179

Unusual Observations

bs L* nmV g Fit SE Fit Residual St Resid
3 53.3 0.6670 0.5257 0.0309 0. 1413 2. 65R

R denotes an observation with a | arge standardi zed residual .

Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.203 + 0.0361 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.20324 0.05375 3.78 0.004
a* 0.03607 0.01424 2.53 0.030

S = 0.180000 R Sq = 39.1% R-Sg(adj) = 33.0%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.20779 0.20779 6.41 0.030
Resi dual Error 10 0.32400 0.03240

Tot al 11 0.53179

Unusual Observations

Cbs a* v g Fit SE Fit Residual St Resid
3 10.8 0.6670 0.5912 0.1488 0. 0758 0.75 X

X denotes an observati on whose X value gives it large |everage.



Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.0688 + 0.0119 b*

Pr edi ct or Coef SE Coef T P
Const ant 0. 06880 0.02113 3.26 0.009
b* 0.0119072 0.0009487 12.55 0.000

S = 0.0563400 R-Sg = 94.0% R-Sq(adj) = 93.4%

Anal ysi s of Variance

Sour ce DF SS M5 F P
Regr essi on 1 0.50005 0.50005 157.53 0.000
Residual Error 10 0.03174 0.00317

Tot al 11 0.53179

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is

mMg = - 0.0580 + 0.0160 L* + 0.0325 a* - 0.0101 b*
Predi ctor Coef SE Coef T P

Const ant -0.05795 0.01809 -3.20 0.013

L* 0.016007 0.002145 7.46 0.000

ar 0.032540 0.005699 5.71 0.000

b* -0.010082 0.003111 -3.24 0.012

S = 0.0211918 R-Sq = 99.3% R-Sq(adj) = 99.1%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 0.52819 0.17606 392.05 0.000
Resi dual Error 8 0.00359 0.00045

Tot al 11 0.53179

Source DF Seq SS

L* 1 0.49381
a* 1 0.02966
b* 1 0.00472

Unusual Observations

Qbs L* nmV g Fit SE Fit Residual St Resid
9 45.4 0.40181 0.45257 0.00884 -0.05076 -2.64R

R denotes an observation with a | arge standardi zed residual .
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Phase 4
Day 1

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is

mMg = - 0.0105 + 0.0105 L* + 0.0165 a* - 0.00345 b*
Pr edi ct or Coef SE Coef T P

Const ant -0.01049 0.01714 -0.61 0.546

L* 0.010461 0.001359 7.70 0.000

ar 0.016518 0.002471 6.68 0.000

b* -0.003449 0.001719 -2.01 0.055

S = 0.0368704 R-Sg = 97.1% R-Sq(adj) = 96.7%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 1.16840 0.38947 286.49 0.000
Resi dual Error 26 0.03535 0.00136

Tot al 29 1.20375

Source DF Seq SS

L* 1 0.94988
a* 1 0.21305
b* 1 0.00547

Unusual Observations

mv g
bs L* Fit SE Fit Residual St Resid
14 44.0 0.28500 0.36975 0.01088 -0.08475 -2.41R
16 35.6 0.40500 0.51001 0.01517 -0.10501 -3.12R

R denotes an observation with a | arge standardi zed residual .
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is

mMg = - 0.0034 + 0.00965 L*

Pr edi ct or Coef SE Coef T P
Const ant -0.00341 0.03302 -0.10 0.918
L* 0. 0096519 0.0009430 10.24 0.000

S = 0.0952197 R-Sq = 78.9% R-Sq(adj) = 78.2%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.94988 0.94988 104.76 0.000
Resi dual Error 28 0.25387 0.00907

Tot al 29 1.20375

Unusual Observations

mv g
Obs L* Fit SE Fit Residual St Resid
17 34.7 0.5710 0.3311 0.0180 0. 2399 2.57R
23 43.5 0.6860 0.4166 0.0217 0. 2694 2.91R

R denotes an observation with a | arge standardi zed residual .

Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mMg = 0.224 + 0.0189 a*

Predi ctor Coef SE Coef T P
Const ant 0.22375 0.02861 7.82 0.000
ar 0.018941 0.003480 5.44 0.000

S = 0.144528 R-Sq = 51.4% R-Sg(adj) = 49.7%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 0.61888 0.61888 29.63 0.000
Residual Error 28 0.58487 0.02089

Tot al 29 1.20375

Unusual Observations

mv g
Obs a* Fit SE Fit Residual St Resid
17 22.1 0.5710 0.6424 0.0709 -0.0714 -0.57 X
23 22.9 0.6860 0.6577 0.0736 0. 0283 0.23 X

X denotes an observati on whose X value gives it |large influence.



Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.0954 + 0.00936 b*

Pr edi ct or Coef SE Coef T P
Const ant 0. 09541 0.01654 5.77 0.000
b* 0. 0093605 0.0005779 16.20 0.000

S = 0.0643910 R-Sg = 90.4% R-Sq(adj) = 90.0%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 1.0877 1.0877 262.33 0.000
Residual Error 28 0.1161 0.0041

Tot al 29 1.2037
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Day 2

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mM g = 0.0110 + 0.00746 L* + 0.00816 a* + 0.00119 b*

Pr edi ct or Coef SE Coef T P

Const ant 0.01100 0.02492 0.44 0.663
L* 0.007458 0.001985 3.76 0.001
ar 0. 008157 0.005610 1.45 0.158
b* 0.001191 0.002606 0.46 0.651

S = 0.0513616 R-Sg = 93.3% R-Sg(adj) = 92.6%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 0.96067 0.32022 121.39 0.000
Resi dual Error 26 0.06859 0.00264

Tot al 29 1.02925

Source DF Seq SS

L* 1 0.92315
a* 1 0.03696
b* 1 0.00055

Unusual GObservations

mv g
bs L* Fit SE Fit Residual St Resid
18 43.8 0.28200 0.39783 0.01480 -0.11583 -2.35R
25 53.1 0.58500 0.58368 0.03373 0.00132 0.03 X
28 46.8 0.57500 0.41700 0.01351 0.15800 3.19R

R denotes an observation with a | arge standardi zed residual .

X denotes an observati on whose X value gives it large influence.
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is

mMg = - 0.0089 + 0.00916 L*

Pr edi ct or Coef SE Coef T P
Const ant -0.00889 0.02007 -0.44 0.661
L* 0.0091581 0.0005868 15.61 0.000

S = 0.0615579 R-Sq = 89.7% R-Sq(adj) = 89.3%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.92315 0.92315 243.62 0.000
Resi dual Error 28 0.10610 0.00379

Tot al 29 1.02925

Unusual Observations

nmV g
Obs L* Fit SE Fit Residual St Resid
28 46.8 0.5750 0.4201 0.0156 0. 1549 2.60R

R denotes an observation with a | arge standardi zed residual .

Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.219 + 0.0281 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.21865 0.03029 7.22 0.000
a* 0.028080 0.007808 3.60 0.001

S =0.158573 R Sq = 31.6% R-Sg(adj) = 29.2%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.32518 0.32518 12.93 0.001
Resi dual Error 28 0.70407 0.02515

Tot al 29 1.02925

Unusual Observations
mV g
Cbs ar Fit SE Fit Residual St Resid
25 13.7 0.5850 0.6025 0.1020 -0.0175 -0.14 X

X denotes an observati on whose X value gives it |large influence.



Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.0999 + 0.00946 b*

Pr edi ct or Coef SE Coef T P
Const ant 0. 09994 0.01586 6.30 0.000
b* 0. 0094594 0.0006517 14.51 0.000

S = 0.0656710 R-Sq = 88.3% R-Sq(adj) = 87.8%

Anal ysi s of Variance

Sour ce DF SS M5 F P
Regr essi on 1 0.90850 0.90850 210.66 0.000
Residual Error 28 0.12075 0.00431

Tot al 29 1.02925

Unusual Observations

mv g
Cbs b* Fit SE Fit Residual St Resid
18 33.2 0.2820 0.4137 0.0164 -0.1317 -2.07R
28 32.7 0.5750 0.4093 0.0162 0. 1657 2. 60R

R denotes an observation with a | arge standardi zed residual .
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Day 3

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mM g = 0.0210 + 0.00943 L* + 0.0135 a* - 0.00156 b*

Pr edi ct or Coef SE Coef T P

Const ant 0.02105 0.03238 0.65 0.521
L* 0.009434 0.002330 4.05 0.000
ar 0.013467 0.005006 2.69 0.012
b* -0.001558 0.002828 -0.55 0.587

S = 0.0704008 R-Sg = 89.5% R-Sq(adj) = 88.3%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 1.10176 0.36725 74.10 0.000
Resi dual Error 26 0.12886 0.00496

Tot al 29 1.23062

Source DF Seq SS

L* 1 0.99133
a* 1 0.10893
b* 1 0.00150

Unusual GObservations

mv g
bs L* Fit SE Fit Residual St Resid
22 36.0 0.3940 0.5425 0.0414 -0.1485 -2.61R
27 51.5 0.7760 0.6319 0.0333 0. 1441 2.32R

R denotes an observation with a | arge standardi zed residual .
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is
mM g = 0.0193 + 0.00959 L*

Pr edi ct or Coef SE Coef T P
Const ant 0. 01933 0.02905 0.67 0.511
L* 0. 0095906 0.0008905 10.77 0.000

S = 0.0924459 R-Sq = 80.6% R-Sq(adj) = 79.9%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.99133 0.99133 116.00 0.000
Resi dual Error 28 0.23929 0.00855

Tot al 29 1.23062

Unusual Observations

nmV g
Obs L* Fit SE Fit Residual St Resid
27 51.5 0.7760 0.5130 0.0279 0. 2630 2.98R

R denotes an observation with a | arge standardi zed residual .

Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.232 + 0.0214 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.23160 0.03136 7.39 0.000
a* 0.021415 0.005002 4.28 0.000

S =0.162981 R Sq = 39.6% R-Sg(adj) = 37.4%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.48686 0.48686 18.33 0.000
Resi dual Error 28 0.74376 0.02656

Tot al 29 1.23062

Unusual Observations

mv g
Cbs ar Fit SE Fit Residual St Resid
22 18.6 0.3940 0.6306 0.0884 -0.2366 -1.73 X
25 16.0 0.5850 0.5734 0.0760 0.0116 0.08 X
27 15.5 0.7760 0.5631 0.0738 0.2129 1.47 X

X denotes an observati on whose X value gives it |large influence.



Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.137 + 0.00883 b*

Pr edi ct or Coef SE Coef T P
Const ant 0.13672 0.01985 6.89 0.000
b* 0.0088272 0.0007627 11.57 0.000

S =0.0871741 R-Sq = 82.7% R-Sq(adj) = 82.1%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 1.0178 1.0178 133.94 0.000
Residual Error 28 0.2128 0.0076

Tot al 29 1.2306

Unusual Observations

mV g
Cbs b* Fit SE Fit Residual St Resid
27 53.5 0.7760 0.6085 0.0330 0. 1675 2. 08R

R denotes an observation with a | arge standardi zed residual .
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Day 4

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mM g = 0.0186 + 0.00874 L* + 0.0149 a* - 0.00142 b*

Pr edi ct or Coef SE Coef T P

Const ant 0.01859 0.03547 0.52 0.604
L* 0.008739 0.002493 3.50 0.001
ar 0.014906 0.005950 2.51 0.018
b* -0.001417 0.003141 -0.45 0.655

S =0.0839414 R-Sq = 83.6% R-Sg(adj) = 82.1%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 1.15025 0.38342 54.42 0.000
Resi dual Error 32 0.22548 0.00705

Tot al 35 1.37573

Source DF Seq SS

L* 1 1.02906
a* 1 0.11976
b* 1 0.00143

Unusual GObservations

mv g
Cbs L* Fit SE Fit Residual St Resid
12 50.0 0.1590 0.5136 0.0258 -0. 3546 -4, 44R
36 51.7 0.7760 0.6329 0.0450 0. 1431 2.02R

R denotes an observation with a | arge standardi zed residual .

89



Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is
mM g = 0.0103 + 0.00896 L*

Pr edi ct or Coef SE Coef T P
Const ant 0. 01028 0.02932 0.35 0.728
L* 0.0089578 0.0008917 10.05 0.000

S = 0.100976 R Sq = 74.8% R-Sq(adj) = 74.1%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 1.0291 1.0291 100.93 0.000
Resi dual Error 34 0.3467 0.0102

Tot al 35 1.3757

Unusual Observations

mv g
Cbs L* Fit SE Fit Residual St Resid
12 50.0 0.1590 0.4582 0.0266 -0.2992 -3.07R
27 49.2 0.6620 0.4507 0.0260 0.2113 2.17R
36 51.7 0.7760 0.4730 0.0277 0. 3030 3.12R

R denotes an observation with a | arge standardi zed residual .
Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.223 + 0.0239 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.22332 0.02738 8.16 0.000
a* 0.023905 0.005367 4.45 0.000

S =0.159851 R Sq = 36.8% R-Sg(adj) = 35.0%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.50695 0.50695 19.84 0.000
Resi dual Error 34 0.86878 0.02555

Tot al 35 1.37573

Unusual Observations

mv g
Cbs a* Fit SE Fit Residual St Resid
26 14.4 0.5670 0.5685 0.0760 -0. 0015 -0.01 X
27 13.3 0.6620 0.5410 0.0703 0.1210 0.84 X
36 16.2 0.7760 0.6094 0.0847 0. 1666 1.23 X

X denotes an observati on whose X value gives it |arge influence.



Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mMg = 0.126 + 0.00888 b*

Pr edi ct or Coef SE Coef T P
Const ant 0.12644 0.01975 6.40 0.000
b* 0.0088793 0.0008251 10.76 0.000

S = 0.0958300 R-Sq = 77.3% R-Sq(adj) = 76.6%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 1.0635 1.0635 115.81 0.000
Residual Error 34 0.3122 0.0092

Tot al 35 1.3757

Unusual Observations

nmM g
Cbs b* Fit SE Fit Residual St Resid
12 41.9 0.1590 0.4984 0.0280 -0. 3394 -3.70R

R denotes an observation with a | arge standardi zed residual .
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Without Zero:

Day 1

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mMg = 0.0128 + 0.00927 L* + 0.0153 a* - 0.00243 b*

Predi ctor Coef SE Coef T P

Const ant 0.01277 0.03708 0.34 0.734
L* 0.009271 0.002278 4.07 0.001
ar 0.015309 0.003300 4.64 0.000
b* -0.002426 0.002446 -0.99 0.333

S = 0.0402453 R-Sq = 95.3% R-Sq(adj) = 94.6%

Anal ysi s of Variance

Sour ce DF SS M5 F P
Regr essi on 3 0.68614 0.22871 141.21 0.000
Residual Error 21 0.03401 0.00162

Tot al 24 0.72015

Source DF Seq SS

L* 1 0.46636
a* 1 0.21818
b* 1 0.00159

Unusual Observations

mv g
Obs L* Fit SE Fit Residual St Resid
2 0.4 0.06300 0.02562 0.03310 0.03738 1.63 X
9 44.0 0.28500 0.37182 0.01240 -0.08682 -2.27R
11 35.6 0.40500 0.51367 0.01718 -0.10867 -2.99R

R denotes an observation with a | arge standardi zed residual .

X denotes an observati on whose X value gives it |large influence.
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is

mMg = - 0.0005 + 0.00958 L*

Predi ctor Coef SE Coef T P
Const ant -0.00050 0.05653 -0.01 0.993
L* 0.009582 0.001474 6.50 0.000

S = 0.105045 R Sq = 64.8% R-Sg(adj) = 63.2%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 0.46636 0.46636 42.26 0.000
Residual Error 23 0.25379 0.01103

Tot al 24 0.72015

Unusual Observations

mv g
Obs L* Fit SE Fit Residual St Resid
2 0.4 0.0630 0.0036 0.0559 0. 0594 0.67 X
12 34.7 0.5710 0.3316 0.0211 0. 2394 2.33R
18 43.5 0.6860 0.4165 0.0240 0. 2695 2.64R

R denotes an observation with a | arge standardi zed residual .
X denotes an observati on whose X value gives it large influence.

Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mMg = 0.278 + 0.0166 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.27849 0.02334 11.93 0.000
a* 0.016592 0.002592 6.40 0.000

S = 0.106099 R-Sq = 64.0% R-Sq(adj) = 62.5%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.46124 0.46124 40.97 0.000
Resi dual Error 23 0.25891 0.01126

Tot al 24 0.72015

Unusual Observations

mv g
bs ar Fit SE Fit Residual St Resid
2 0.4 0.0630 0.2851 0.0229 -0.2221 -2.14R
12 22.1 0.5710 0.6452 0.0521 -0.0742 -0.80 X
18 22.9 0.6860 0.6586 0.0540 0. 0274 0.30 X

R denotes an observation with a | arge standardi zed residual .
X denotes an observati on whose X value gives it |arge influence.
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Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.137 + 0.00829 b*

Pr edi ct or Coef SE Coef T P
Const ant 0.13719 0.01761 7.79 0.000
b* 0.0082878 0.0005620 14.75 0.000

S = 0.0547264 R-Sq = 90.4% R-Sq(adj) = 90.0%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.65127 0.65127 217.45 0.000
Resi dual Error 23 0.06888 0.00299

Tot al 24 0.72015

Unusual Observations

nmV g
Obs b* Fit SE Fit Residual St Resid
9 32.9 0.2850 0.4095 0.0119 -0.1245 -2.33R

R denotes an observation with a | arge standardi zed residual .
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Day 2

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mM g = 0.0487 + 0.00575 L* + 0.00730 a* + 0.00247 b*

Predi ctor Coef SE Coef T P

Const ant 0.04870 0.04053 1.20 0.243
L* 0. 005746 0.002602 2.21 0.038
ar 0.007298 0.006284 1.16 0.259
b* 0.002471 0.003091 0.80 0.433

S = 0.0550465 R-Sq = 90.2% R-Sq(adj) = 88.8%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 0.58852 0.19617 64.74 0.000
Resi dual Error 21 0.06363 0.00303

Tot al 24 0.65215

Source DF Seq SS

L* 1 0.54624
a* 1 0.04034
b* 1 0.00194

Unusual Observations

mv g
bs L Fit SE Fit Residual St Resid
13 43.8 0.2820 0.4008 0.0163 -0.1188 -2.26R
23 46.8 0.5750 0.4145 0.0146 0. 1605 3.02R

R denotes an observation with a | arge standardi zed residual .
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is

mMg = - 0.0136 + 0.00927 L*

Pr edi ct or Coef SE Coef T P
Const ant -0.01358 0.03190 -0.43 0.674
L* 0.0092710 0.0008512 10.89 0.000

S =10.0678584 R-Sq = 83.8% R-Sq(adj) = 83.1%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.54624 0.54624 118.63 0.000
Resi dual Error 23 0.10591 0.00460

Tot al 24 0.65215

Unusual Observations

nmV g
Cbs L* Fit SE Fit Residual St Resid
23 46.8 0.5750 0.4207 0.0175 0. 1543 2.35R

R denotes an observation with a | arge standardi zed residual .

Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.268 + 0.0275 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.26846 0.02534 10.59 0.000
a* 0.027528 0.006002 4.59 0.000

S =0.121694 R Sq = 47.8% R-Sq(adj) = 45.5%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.31153 0.31153 21.04 0.000
Resi dual Error 23 0.34062 0.01481

Tot al 24 0.65215

Unusual Observati ons

mv g
Cbs a* Fit SE Fit Residual St Resid
3 1.4 0.0000 0.3078 0.0244 -0.3078 -2.58R
20 13.7 0.5850 0.6448 0.0788 -0.0598 -0.64 X
23 2.2 0.5750 0.3282 0.0251 0. 2468 2.07R

R denotes an observation with a | arge standardi zed residual .
X denotes an observati on whose X value gives it |arge influence.



Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.134 + 0.00845 b*

Pr edi ct or Coef SE Coef T P
Const ant 0. 13439 0.01752 7.67 0.000
b* 0. 0084490 0.0006580 12.84 0.000

S = 0.0589183 R-Sq = 87.8% R-Sq(adj) = 87.2%

Anal ysi s of Variance

Sour ce DF SS MS F P
Regr essi on 1 0.57231 0.57231 164.87 0.000
Residual Error 23 0.07984 0.00347

Tot al 24 0.65215

Unusual GObservations

mv g
bs b~ Fit SE Fit Residual St Resid
13 33.2 0.2820 0.4146 0.0147 -0.1326 -2.33R
23 32.7 0.5750 0.4107 0.0146 0. 1643 2. 88R

R denotes an observation with a | arge standardi zed residual .
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Day 3

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mM g = 0.0531 + 0.00765 L* + 0.0112 a* + 0.00011 b*

Predi ctor Coef SE Coef T P

Const ant 0.05307 0.04548 1.17 0.255
L* 0.007647 0.002970 2.58 0.017
ar 0.011191 0.005655 1.98 0.060
b* 0. 000115 0.003356 0.03 0.973

S = 0.0730967 R-Sq = 87.5% R-Sq(adj) = 85.8%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 0.85754 0.28585 53.50 0.000
Resi dual Error 23 0.12289 0.00534

Tot al 26 0.98043

Source DF Seq SS

L* 1 0.74347
a* 1 0.11406
b* 1 0.00001

Unusual Observations

mv g
bs L* Fit SE Fit Residual St Resid
19 36.0 0.3940 0.5417 0.0430 -0.1477 -2.50R
24 51.5 0.7760 0.6260 0.0350 0. 1500 2.34R

R denotes an observation with a | arge standardi zed residual .
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is
mM g = 0.0290 + 0.00935 L*

Pr edi ct or Coef SE Coef T P
Const ant 0.02903 0.03630 0.80 0.431
L* 0.009350 0.001056 8.86 0.000

S = 0.0973567 R-Sg = 75.8% R-Sq(adj) = 74.9%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.74347 0.74347 78.44 0.000
Resi dual Error 25 0.23696 0.00948

Tot al 26 0.98043

Unusual Observations

nmV g
Cbs L* Fit SE Fit Residual St Resid
24 51.5 0.7760 0.5103 0.0299 0. 2657 2.87R

R denotes an observation with a | arge standardi zed residual .

Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.261 + 0.0202 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.26085 0.03021 8.63 0.000
a* 0.020204 0.004573 4.42 0.000

S = 0.148404 R Sq = 43.8% R-Sg(adj) = 41.6%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.42984 0.42984 19.52 0.000
Resi dual Error 25 0.55059 0.02202

Tot al 26 0.98043

Unusual Observations
mV g
Cbs a* Fit SE Fit Residual St Resid
19 18.6 0.3940 0.6372 0.0806 -0. 2432 -1.95 X

X denotes an observati on whose X value gives it |arge influence.



Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.160 + 0.00825 b*

Pr edi ct or Coef SE Coef T P
Const ant 0.16043 0.01987 8.08 0.000
b* 0.0082487 0.0007245 11.39 0.000

S = 0.0796252 R-Sq = 83.8% R-Sq(adj) = 83.2%

Anal ysi s of Variance

Sour ce DF SS M5 F P
Regr essi on 1 0.82193 0.82193 129.64 0.000
Residual Error 25 0.15850 0.00634

Tot al 26 0.98043

Unusual Observations

mv g
Cbs b* Fit SE Fit Residual St Resid
15 34.9 0.2870 0.4482 0.0199 -0.1612 -2.09R
24 53.5 0.7760 0.6013 0.0302 0. 1747 2.37R

R denotes an observation with a | arge standardi zed residual .

100



Day 4
Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mM g = 0.0519 + 0.00726 L* + 0.0141 a* - 0.00035 b*

Predi ctor Coef SE Coef T P

Const ant 0.05192 0.04671 1.11 0.276
L* 0.007264 0.002935 2.48 0.020
ar 0.014102 0.006353 2.22 0.035
b* -0.000348 0.003472 -0.10 0.921

S = 0.0873390 R-Sq = 80.4% R-Sq(adj) = 78.3%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 0.87763 0.29254 38.35 0.000
Resi dual Error 28 0.21359 0.00763

Tot al 31 1.09122

Source DF Seq SS

L* 1 0.74582
a* 1 0.13174
b* 1 0.00008

Unusual Observations
mM g
Cbs L* Fit SE Fit Residual St Resid
8 50.0 0.1590 0.5117 0.0269 -0.3527 -4.25R

R denotes an observation with a | arge standardi zed residual .
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is
mMg = 0.0175 + 0.00878 L*

Pr edi ct or Coef SE Coef T P
Const ant 0.01752 0.03804 0.46 0.648
L* 0.008779 0.001091 8.05 0.000

S = 0.107300 R Sq = 68.3% R-Sg(adj) = 67.3%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.74582 0.74582 64.78 0.000
Resi dual Error 30 0.34540 0.01151

Tot al 31 1.09122

Unusual Observations

mv g
Cbs L* Fit SE Fit Residual St Resid
8 50.0 0.1590 0.4564 0.0287 -0.2974 -2.88R
23 49.2 0.6620 0.4492 0.0280 0.2128 2.06R
32 51.7 0.7760 0.4710 0.0301 0. 3050 2.96R

R denotes an observation with a | arge standardi zed residual .
Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.254 + 0.0236 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.25436 0.02556 9.95 0.000
a* 0.023643 0.004736 4.99 0.000

S = 0.140960 R-Sq = 45.4% R-Sq(adj) = 43.6%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 0.49513 0.49513 24.92 0.000
Resi dual Error 30 0.59609 0.01987

Tot al 31 1.09122

Unusual Observations

mv g
Cbs a* Fit SE Fit Residual St Resid
8 7.9 0.1590 0.4407 0.0403 -0.2817 -2.09R
22 14.4 0.5670 0.5958 0.0675 -0.0288 -0.23 X
23 13.3 0.6620 0.5686 0.0624 0. 0934 0.74 X
32 16.2 0.7760 0.6362 0.0750 0. 1398 1.17 X

R denotes an observation with a | arge standardi zed residual .
X denotes an observati on whose X value gives it |arge influence.
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Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.149 + 0.00826 b*

Pr edi ct or Coef SE Coef T P
Const ant 0. 14885 0.02154 6.91 0.000
b* 0.0082575 0.0008496 9.72 0.000

S = 0.0936363 R-Sg = 75.9% R-Sq(adj) = 75.1%

Anal ysi s of Variance

Sour ce DF SS M5 F P
Regr essi on 1 0.82819 0.82819 94.46 0.000
Residual Error 30 0.26303 0.00877

Tot al 31 1.09122

Unusual Observations

mv g
Cbs b* Fit SE Fit Residual St Resid
8 41.9 0.1590 0.4948 0.0274 -0.3358 -3.75R
32 54.9 0.7760 0.6022 0.0368 0.1738 2.02R

R denotes an observation with a | arge standardi zed residual .
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All 4 days:

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mM g = 0.0097 + 0.00910 L* + 0.0139 a* - 0.00148 b*

Predi ctor Coef SE Coef T P

Const ant 0.00974 0.01421 0.69 0.494
L* 0. 009096 0.001044 8.71 0.000
ar 0.013899 0.002228 6.24 0.000
b* -0.001484 0.001304 -1.14 0.257

S = 0.0628710 R-Sq = 90.1% R-Sq(adj) = 89.8%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 4.3829 1.4610 369.61 0.000
Resi dual Error 122 0.4822 0.0040

Tot al 125 4.8652

Source DF Seq SS

L* 1 3.8905
a* 1 0.4873
b* 1 0.0051

Unusual Observations

mv g
Obs L* Fit SE Fit Resi dual St Resid
17 34.7 0.57100 0.56623 0.02351 0.00477 0.08 X
23 43.5 0.68600 0.64205 0.02241 0.04395 0.75 X
58 46.8 0.57500 0.41742 0.00837 0.15758 2.53R
82 36.0 0.39400 0.53027 0.01836 -0.13627 -2.27R
87 51.5 0.77600 0.61374 0.01470 0.16226 2.65R
89 53.5 0.68800 0.54165 0.01031 0.14635 2.36R
90 47.1 0.57500 0.41807 0.00883 0.15693 2.52R
102 50.0 0.15900 0.51189 0.00940 -0.35289 -5.68R
113 45.0 0.28700 0.41211 0.00793 -0.12511 -2.01R
125 48.0 0.58000 0.43676 0.00840 0.14324 2.30R
126 51.7 0.77600 0.62262 0.01522 0.15338 2.51R

R denotes an observation with a | arge standardi zed residual .

X denotes an observati on whose X value gives it large influence.
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is
mM g = 0.0054 + 0.00930 L*

Pr edi ct or Coef SE Coef T P
Const ant 0. 00542 0.01407 0.38 0.701
L* 0.0092976 0.0004179 22.25 0.000

S = 0.0886596 R-Sg = 80.0% R-Sq(adj) = 79.8%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 3.8905 3.8905 494.94 0.000
Resi dual Error 124 0.9747 0.0079

Tot al 125 4.8652

Unusual Observations

mv g
Obs L* Fit SE Fit Residual St Resid
17 34.7 0.57100 0.32767 0.00840 0.24333 2. 76R
23 43.5 0.68600 0.41005 0.01026 0.27595 3.13R
87 51.5 0.77600 0.48397 0.01264 0.29203 3.33R
89 53.5 0.68800 0.50321 0.01333 0.18479 2.11R
102 50.0 0.15900 0.47030 0.01217 -0.31130 -3.54R
117 49.2 0.66200 0.46258 0.01191 0.19942 2.27R
126 51.7 0.77600 0.48573 0.01270 0.29027 3.31R

R denotes an observation with a | arge standardi zed residual .
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Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.225 + 0.0215 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.22493 0.01440 15.62 0.000
a* 0.021486 0.002384 9.01 0.000

S = 0.153973 R Sq = 39.6% R-Sg(adj) = 39.1%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 1.9254 1.9254 81.22 0.000
Resi dual Error 124 2.9397 0.0237

Tot al 125 4.8652

Unusual Observations

1.40 X
0.88 X
0.22 X
0.24 X
1.56 X
0.11 X
1.46 X

mv g
Obs a* Fit SE Fit Residual St Resid
16 18.1 0.4050 0.6132 0.0411 -0.2082 -
17 22.1 0.5710 0.6998 0.0502 -0.1288 -
23 22.9 0.6860 0.7172 0.0521 -0.0312 -
24 15.7 0.5980 0.5618 0.0357 0. 0362
82 18.6 0.3940 0.6252 0.0423 -0.2312 -
85 16.0 0.5850 0.5678 0.0364 0.0172
87 15.5 0.7760 0.5575 0.0353 0. 2185
126 16.2 0.7760 0.5719 0.0368 0. 2041

X denotes an observati on whose X val ue gives it

1.36 X

| arge infl uence.
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Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mMg = 0.117 + 0.00905 b*

Pr edi ct or Coef SE Coef T P
Const ant 0.116648 0.009176 12.71 0.000
b* 0. 0090544 0.0003569 25.37 0.000

S = 0.0796102 R-Sq = 83.8% R-Sq(adj) = 83.7%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 4.0793 4.0793 643.65 0.000
Resi dual Error 124 0.7859 0.0063

Tot al 125 4.8652

Unusual Observations

mv g
Obs b* Fit SE Fit Residual St Resid
58 32.7 0.57500 0.41273 0.00919 0.16227 2.05R
87 53.5 0.77600 0.60061 0.01503 0.17539 2.24R
102 41.9 0.15900 0.49594 0.01156 -0.33694 -4. 28R
126 54.9 0.77600 0.61374 0.01549 0.16226 2.08R

R denotes an observation with a | arge standardi zed residual .
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Without Zero:

Regression Analysis: Glucose (mM) / mass of meat (g) versus L*, a*, b*

The regression equation is
mvMg = 0.0151 + 0.00881 L* + 0.0136 a* - 0.00122 b*

Predi ctor Coef SE Coef T P

Const ant 0.01514 0.01589 0.95 0.343
L* 0.008810 0.001123 7.85 0.000
ar 0.013569 0.002312 5.87 0.000
b* -0.001224 0.001371 -0.89 0.374

S = 0.0639917 R-Sq = 89.4% R-Sq(adj) = 89.1%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 3 4.0222 1.3407 327.41 0.000
Resi dual Error 117 0.4791 0.0041

Tot al 120 4.5013

Source DF Seq SS

L 1 3.5273
a 1 0.4917
b 1 0.0033

Unusual Observations

mv g

Obs L* Fit SE Fit Residual St Resid
12 34.7 0.57100 0.56596 0.02395 0.00504 0.08 X
18 43.5 0.68600 0.64178 0.02282 0.04422 0.74 X
53 46.8 0.57500 0.41720 0.00853 0.15780 2. 49R
77 36.0 0.39400 0.53071 0.01870 -0.13671 -2.23R
82 51.5 0.77600 0.61318 0.01498 0.16282 2.62R
84 53.5 0.68800 0.54121 0.01050 O0.14679 2.33R
85 47.1 0.57500 0.41810 0.00899 0.15690 2. 48R
97 50.0 0.15900 0.51126 0.00960 -0.35226 -5.57R

120 48.0 0.58000 0.43641 0.00856 0.14359 2.26R

121 51.7 0.77600 0.62217 0.01550 0.15383 2. 48R

R denotes an observation with a | arge standardi zed residual .

X denotes an observati on whose X value gives it large influence.
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Regression Analysis: Glucose (mM) / mass of meat (g) versus L*

The regression equation is
mM g = 0.0069 + 0.00926 L*

Pr edi ct or Coef SE Coef T P
Const ant 0. 00692 0.01532 0.45 0.652
L* 0. 0092608 0.0004461 20.76 0.000

S = 0.0904716 R-Sq = 78.4% R-Sg(adj) = 78.2%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 3.5273 3.5273 430.94 0.000
Resi dual Error 119 0.9740 0.0082

Tot al 120 4.5013

Unusual Observations

mv g
Obs L* Fit SE Fit Residual St Resid
12 34.7 0.57100 0.32790 0.00861 0.24310 2. 70R
18 43.5 0.68600 0.40996 0.01048 0.27604 3.07R
82 51.5 0.77600 0.48358 0.01297 0.29242 3.27R
84 53.5 0.68800 0.50275 0.01370 0.18525 2.07R
97 50.0 0.15900 0.46997 0.01247 -0.31097 -3.47R
112 49.2 0.66200 0.46228 0.01220 0.19972 2.23R
121 51.7 0.77600 0.48534 0.01304 0.29066 3.25R

R denotes an observation with a | arge standardi zed residual .
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Regression Analysis: Glucose (mM) / mass of meat (g) versus a*

The regression equation is
mM g = 0.235 + 0.0210 a*

Pr edi ct or Coef SE Coef T P
Const ant 0.23533 0.01428 16.47 0.000
a* 0.021047 0.002318 9.08 0.000

S = 0.149489 R Sq = 40.9% R-Sg(adj) = 40.4%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 1.8420 1.8420 82.43 0.000
Resi dual Error 119 2.6593 0.0223

Tot al 120 4.5013

Unusual Observations

mv g
Obs a* Fit SE Fit Residual St Resid
11 18.1 0.4050 0.6157 0.0399 -0.2107 -1.46 X
12 22.1 0.5710 0.7005 0.0488 -0.1295 -0.92 X
18 22.9 0.6860 0.7175 0.0506 -0.0315 -0.22 X
19 15.7 0.5980 0.5654 0.0347 0. 0326 0.22 X
77 18.6 0.3940 0.6274 0.0411 -0.2334 -1.62 X
80 16.0 0.5850 0.5712 0.0353 0.0138 0.09 X
82 15.5 0.7760 0.5611 0.0343 0. 2149 1.48 X
121 16.2 0.7760 0.5752 0.0357 0. 2008 1.38 X

X denotes an observati on whose X value gives it large influence.
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Regression Analysis: Glucose (mM) / mass of meat (g) versus b*

The regression equation is
mM g = 0.124 + 0.00886 b*

Pr edi ct or Coef SE Coef T P
Const ant 0.124067 0.009392 13.21 0.000
b* 0. 0088595 0.0003580 24.74 0.000

S = 0.0784563 R-Sq = 83.7% R-Sq(adj) = 83.6%

Anal ysi s of Variance

Sour ce DF SS VS F P
Regr essi on 1 3.7688 3.7688 612.28 0.000
Resi dual Error 119 0.7325 0.0062

Tot al 120 4.5013

Unusual Observations

mv g
Obs b* Fit SE Fit Residual St Resid
53 32.7 0.57500 0.41377 0.00907 0.16123 2.07R
82 53.5 0.77600 0.59761 0.01485 0.17839 2.32R
97 41.9 0.15900 0.49519 0.01140 -0.33619 -4, 33R
121 54.9 0.77600 0.61045 0.01531 0.16555 2.15R

R denotes an observation with a | arge standardi zed residual .
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