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Abstract

This thesis constitutes the results of our research towards structural and algorithmic

analysis of organizational networks. We study how interpersonal ties become crucial

empowerment channels that shape organizational structure. We develop an organi-

zational network model that is consistent with management studies; moreover, by

incorporating both formal and informal ties into the model, we build a promising the-

ory that is capable to explain several organizational phenomena including flattening,

workplace homophily, and loss of control. Through rigorous analysis, we demonstrate

that our theoretical framework can be used to reflect general properties of organiza-

tions.

Understanding how different departments and employees of an organization inter-

act with one another leads to comprehension of how well the organization operates.

Studying an organizational structure often reveals critical positions that may require

additional attention. It is the organizational structure from which one may extract

hidden clues about concealed communication obstacles. In this thesis, we consider or-

ganizational structures from the network perspective. We see the following problems:

(1) There is a lack of mathematical analysis on the dual-structure of formal and

informal organizations.

(2) Existing formal definitions of power only deal with networks whose edges have

a single interpretation of social links, while not incorporating formal roles and

levels.

(3) Network evolution represents a substantial direction of the structural analysis of

social networks but yet there is a lack of models suitable for joining two networks

as an outcome of strategic calculations.

The aim of this thesis, therefore, is to challenge the problems by developing a mathe-

matical model that sits at the confluence of algorithmic and structural analyses. Our
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investigation unfolds in two main directions: the first covers individual power in orga-

nizations; the second lies in integrating two disjoint organizational networks.

The first focal point of this thesis is our centrality-based definition of power which

is accompanied with comprehensive and deep analysis, case studies and experiments.

Our power based model provides novel insights into a range of organizational proper-

ties: 1) Organizations have limited hierarchy height. 2) Flattening is closely related

to changes in the power of employees. 3) Informal relations significantly impact power

of individuals. 4) Leadership styles could be reflected and analyzed through under-

standing weights on the ties in an organizational network. 5) The model endorses a

natural interpretation of the loss of managerial control.

Our second research direction concerns computational and algorithmic aspects of

network integration. The integration process amounts to the fundamental question

that arises in numerous social, political, and physical domains. We study the algorith-

mic nature of network integration, analyze the corresponding computational problems,

apply a formal framework to tackle the problems and employ various heuristics that

reflect natural intuition. To compare the methods, we perform thorough experimental

analysis on both synthesized and real-world data.

The significance of this thesis lies in theoretical models, simulations and analy-

sis. Our novel, structural approach to organizational analysis provides new insights,

explanations and potentially predictive guidelines for organizational decision making.
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Chapter 1

Introduction

The rapid progress of information technology in the last half-century greatly improved

communication and productivity in corporations, facilitating them to grow into giant

enterprises. Clearly, the bigger the company gets, the more incentive there is to

identify hidden information inside its structure – the more sense it makes to study

how decisions pass from the top levels to the bottom, how individuals interact with

each other, and which are the most important positions. Chaotic growth can lead

to inefficient management, and, hence, loss of money. This is why corporations are

willing to pay large sums of money not only on hiring talented managers who define

the firm’s direction, but also on costly business intelligence that guarantees all the

layers are on the same wavelength [30].

In behavioral management theory, one usually considers how different tenuous

aspects – such as motivation, personality, expectation, and conflicts – define the pro-

ductivity of an individual. Alternatively, a structural theory moves away from these

personal traits and rather views an organization as patterned and repeated interac-

tions among social actors within the organization [112]. In this thesis, we focus on

the structural theory. More precisely, we represent an organizational structure as a

network where agents are connected with each other by interpersonal relations. Using

this network, one can analyze how the flow of information circulates within the organ-

ism of the firm and uncover properties invisible at first glance. Moreover, centrality

measures are capable of detecting the most powerful positions in the network, and

hence, provide a rigorous analysis of power in organizations.

Thus, the first main goal of this thesis is to analyze organizational structures

1



2 CHAPTER 1. INTRODUCTION

from a network perspective and to develop a power based model that reflects general

properties of organizations. This novel, structural approach to organizational anal-

ysis provides us new insights, explanations and potentially predictive guidelines for

organizational decision making.

The second main goal of this thesis is to study computational and algorithmic

aspects of network integration through the prism of social and behavior bases for

integration of two networks, and, consequently, to propose several heuristics that reflect

natural intuition.

Indeed, every social network evolves through time. So do organizational networks.

When interpersonal links disappear, a network may be split into several components;

this corresponds to a process of disintegration, which closely relates to the problem of

graph partitioning and the identification of strong ties [84]. On the contrary, when new

relations are forged, several disjoint networks may be linked together; this corresponds

to a process of integration, which relates to the establishment of weak ties. Since the

seminal work of Granovetter [49], there has been a major interest in social network

research on the establishment of weak ties [87].

This thesis consists of theoretical, algorithmic, and experimental results that could

largely be split into three main parts:

• Structural analysis and modeling of organizational networks;

• Defining individual power in organizational networks;

• Studying network integration as a form of network evolution.

This work has found its inspiration in several sources grounded in management,

economics, social theory, mathematics, and computer science. The primary focus

is laid on the area of social network analysis, and the main results lie within the

theoretical scope. However, we build our theory in line with management and social

behavior studies; moreover, we perform series of experiments to validate our models.

1.1 Social Network Analysis and Power in Organi-

zations

To better understand the way a large company functions, one should learn not only

how decisions are made on the top of the iceberg, but also how the flow of information
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circulates within the organism of the firm [94]. Studies of the inner structure of a

firm, the hierarchy, can often uncover problems invisible at first glance. The reporting

relation is the strongest indicator of power in a company; ranks, titles, and uniform

clearly define privilege of individuals. On the other hand, a network perspective of

power posits that informal social ties and communication also grant power. For exam-

ple, Brass in his work [22] suggested that individual power in organizations comes from

a structural perspective, which includes both formal and informal communication.

Power has been a key notion in sociology, politics, and management theory. The

term is often interpreted as the capability of a person to affect the behaviors of others

[73], and is closely related to notions such as influence and authority. Organizational

power may come from multiple bases such as personal traits, ranks, skills as well as

interpersonal ties [45]. While we acknowledge the importance of behavioral factors in

power, the focus in this thesis is solely on power that arises from interpersonal ties.

The concepts introduced in the current work are rooted in the classical and notable

work by Chester Barnard [11], who laid most of the foundation of the structural theory

of organizations. According to Barnard, formal organizations coexist with informal

organizations within the same entity. Barnard defines formal organizations as dictated

by a set of rules and policies. An informal organization by Barnard is the personal

contacts and interactions between workers that form into small groups; these informal

groups of workers form their own organization in the larger organization. Power, thus,

arises out of the amalgamation of the formal and informal organizations.

Barnard’s dual-structural approach to organization studies has been revisited many

times. For example, Emerson claims in [41] that power is a property of the social

relations, and resides largely in the dependence between social actors in a network.

Brass in [22] focused on an informal network that unifies workflow, communication and

friendship relations, and displayed correlations between powerful nodes and central

positions in this network. In a similar vein, Krackhardt and Hanson in [61] drew an

analogy between a company and a human body: the formal structure of a company

is the skeleton, while the informal structure is the central nervous system. Informal

networks are more flexible and adaptive, formal structure is static. Krackhardt then

related power to em cognitive accuracy of an individual surrounding network in [62].

Cross et al. in [32] adopted a computational approach and argued that even though

informal networks are invisible, they are more reflective than the formal organizations.
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The authors defined scenarios where social network analysis is useful to assess informal

networks and facilitate effective collaboration. We also mention a number of works

that show how informal networks can be used to uncover the reporting hierarchy,

revealing interesting insight of an organization [42, 108].

There are two major technical ingredients in defining power in this thesis. Firstly,

we follow Barnard’s view that any model of an organization must contain the dual-

structure of formal and informal relations. Secondly, we define power from a structural

perspective based on interpersonal ties.

In [40], the authors advocates that social network analysis (SNA) helps business

in knowledge management in collaboration (communities and cross-functional con-

nections), team-building (finding individuals which are likely to be exposed to new

ideas), human resources (monitor formal relationships), sales and marketing (track

the adoption of new products) and strategy (interacting firms analysis). We apply

SNA techniques to study organizational structures, and build our theory around net-

work characteristics; power may be regarded as one of the instruments to reveal hidden

insights into organizational functioning.

1.2 Integration as a Form of Network Evolution

Network evolution represents a substantial direction of the structural analysis of social

networks, and the creation of interpersonal ties is one of the components of this process.

While strong ties emerge between individuals with similar social circles, forming a basis

of trust and hence community structure, weak ties link two members who share few

common contacts. The influential work of Granovetter reveals the vital roles of weak

ties: it is weak ties that enable information transfer between communities and provide

individuals positional advantage and hence influence and power [49].

Natural questions arise regarding the establishment of weak ties between communi-

ties: How to merge two departments in an organization into one? How does a company

establish trade with an existing market? How to create a transport map from existing

routes? We refer to such questions as network integration. The basic setup involves

two networks; the goal is to establish ties between them to achieve certain desirable

properties in the combined network. A real-life example of network integration is the

inter-marriages between members of the Medici, the leading family of Renaissance
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Florence, and numerous other noble Florentine families, towards gaining power and

control over the city [54]. Another example is by Paul Revere, a prominent Patriot

during the American Revolution, who strategically created social ties to raise a militia

[109].

In this thesis, we study network integration, the process of establishing new links

between two networks. The problem of how and why new ties appear in a network

has been a fundamental question in the study of complex networks. While links often

emerge due to natural network evolution, there are many scenarios where links are

created “by design”, i.e. connections are set up in order to meet certain targets. As

opposed to the field of dynamic network models, which focuses on network evolution, we

assume that in the course of network integration ties are established not as a physical

process but an outcome of strategic calculations. This is similar to the assumption

of agent-based models which employs game theory to explain how a network arrives

at a particular structure. The vital difference is that the network integration process

involves two already established networks and the outcome of this process guarantees

preserving topology within each network.

An example of network integration could be a merger between two companies. As

discussed by the authors of [1], the success of mergers and acquisitions of companies

often hinges on whether firms can socialize employees effectively into the merged new

entity. Therefore a big challenge faced by the top managers of both companies is

how to establish links between the two companies to ensure coherence and efficient

communication.

Integrating two arbitrary organizational networks can also be motivated from two

perspectives: On the one hand, the resulting network should provide both organiza-

tions with efficient channels for collaboration: bringing all individuals (or a particular

set of persons) in one organization closer to individuals in the other would be a ben-

eficial outcome of the collaboration. On the other hand, acquisition suggests that in

the result of integration, individuals in the acquiring company should be within reach

of the top manager. Such form of integration is called dominant integration. In this

thesis, we consider integration of arbitrary homogeneous networks, and then extend

the results to collaborative and dominant integration of organizational networks.

Inspired by the examples of the Medici and Paul Revere, we consider also a more

restricted scenario of network integration: indeed, one if the networks may contain
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only a single node, and the goal is to establish this node in the other network. We

motivate this setup from two directions: 1) This setup amounts to the problem of

socialization: the situation when a newcomer joins a network as an organizational

member. A natural question for the newcomer is the following: How should I forge

new relationships in order to take an advantageous position in the organization? As

indicated in [79], socialization is greatly influenced by the social relations formed by

the newcomer with “insiders” of the network. 2) This setup also amounts to the

problem of network expansion. For example, an airline expands its existing route map

with a new destination, while trying to ensure a small number of legs between any

cities.

1.3 Measures to Evaluate the Effect of Integration

Forging new links between two disjoint networks brings these networks together. Sev-

eral questions naturally arise concerning such processes: How should two departments

in an organization merge into a single unit? How to establish effective collaboration

between two research teams? How does socialization between two groups of people

occur? How to bridge existing bus routes to create a unified public transport map?

How to create hyperlinks connecting two web domains to allow convenient browsing?

Motivated by the questions above, we address the algorithmic nature of network

integration. The problem asks to build links between members of two networks so

that the combined network becomes a unified whole. It is then a major question how

“together” the unified networks should be as an outcome of this process. Naturally,

the more links there are that connect the two networks, the closer they become. On

the other hand, there is normally a cost associated with establishing and maintaining

links. Therefore, it is important to strike a balance between the amount of togetherness

and the number of new links created between the networks.

In recent years there has been a surge of the use of “togetherness” in sociology

[75], communication studies [6], politics [101] and biology [31]. In its most original

form, togetherness is a concept rooted in Kantian philosophy, meaning the confluence

of intuition and concepts [51]. In mathematics, togetherness is regarded as a “mark

of being integrated into a single unity” and influences the creations of notions such as

continuity and connectedness [72]. The notion is first discussed in information science
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by cybernetic pioneer Gordon Pask in his 1980 essay [89]; Pask refers togetherness as

an “index of human proximity” that is “determined by a communication/computation

medium”. He goes on to discuss how togetherness can be “engineered” through a

process of “conversation”, which is abstractly represented as the integration of two

concept networks. We rediscover and follow this seminal work, and provide a formal

interpretation of togetherness in the context of network science.

In this thesis, we consider different levels of togetherness. Already in the work

of Pask, it is mentioned that an appropriate measure of togetherness comes from the

notion of distance. In a network, the distance between two nodes is the smallest

number of “hops” needed to move from one node to the other. It is natural to adopt

distance as an indication of togetherness. In particular, diameter refers to the largest

distance between nodes in the network. It is well-known that most real-world networks

enjoy small diameters – this is the so-called small world property. We hold the view

that all nodes of a network have certain resources; and when a network has a small

diameter, the resource on each node can be reached out from everyone else within a

few steps, and each member is able to influence others. Hence, the diameter of the

integrated network forms the strongest form of togetherness.

When expressing togetherness between two networks in their integration, diameter

may be too strong. We define further two weaker notions of togetherness. Firstly, ex-

istential togetherness considers distances between every node in one network to some

node in the other network. Secondly, universal togetherness considers distances be-

tween every node in one network to all nodes in the other network. The former measure

of togetherness may be reasonable if we assume all nodes in any network hold the same

resource, and it is enough to reach any node in a network. The latter measure of to-

getherness may be reasonable if the distances to all nodes in the other network are

important. In this thesis, we relate and compare these three notions of togetherness.

Finally, we note that formal ties reflect the reporting structure of an organization,

building the managerial hierarchy. As most of the social networks have bounded di-

ameter (small-world properties), any organizational network has bounded hierarchical

height. Moreover, the diameter may not be important at all in organizational net-

works: indeed, a manager does not want to be too far from his or her subordinates,

but subordinates may not necessarily be close to each other. Some of the departments

(subnetworks) may require more control from the top manager (the root). Thus, to
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commend the traits of organizational networks and to define another level of togeth-

erness, we consider the distances from any node in the subnetwork to the root, calling

it hierarchical togetherness.

1.4 Related Works

This thesis is predated by organizational behavioral studies [99, 52, 79], which look at

how social ties affect a newcomer’s integration and assimilation to the organization.

The authors in [34, 109] argue that brokers – those who bridge and connect to diverse

groups of individuals – enable good network building; creating ties with and even

becoming a broker oneself allows a person to gain private information, wide skill set and

hence power. Network building theory has also been applied to various other contexts

such as economics (strategic alliance of companies) [102], governance (forming inter-

government contracts) [5], and politics (individuals’ joining of political movements)

[90]. Compared to these works, the novelty of this thesis lies in proposing a formal

framework of network building, which employs techniques from complexity theory and

algorithmics.

This work is also related to two forms of network formation: dynamic models and

agent-based models, both aim to capture the natural emergence of social structures

[54]. The former originates from random graphs, viewing the emergence of ties as

a stochastic process which may or may not lead to an optimal structure [37]. The

latter comes from economics, treating a network as a multiagent system where utility-

maximizing nodes establish ties in a competitive setting [60, 53]. Our work differs from

network formation as the focus here is on calculated strategies that achieve desirable

goals in the combined network.

Organizational network analysis (ONA) amounts to a collection of tools in business

management [33, 40]. Existing works apply SNA to study organizational processes and

problems; they include identifying important individuals [16], improving awareness

about informal networks [24], improving collaboration [32], building a new business

[35].

The importance of non-reporting links within a business hierarchy has also been in-

tensively studied. Firstly, in management studies, Krackhardt and Hanson [61] noted

that much of the work in a company happens despite the formal organization. They
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draw an analogy between a company and a human body: the formal structure of a

company is the skeleton, while the informal structure is the central nervous system.

Informal networks are more flexible and adaptive; the formal structure is static. Kil-

duff and Krackhardt [58] develop this idea further by studying interpersonal networks

in organizations; more specifically, they focused on the cognitive and personality dis-

tinctiveness of individuals and the ways in which such distinctiveness affects relation-

ships in organizations. They argued that business organizations are built by incor-

porating formal relations of authority and informal links that connect people across

departmental and hierarchical boundaries. Secondly, Cross et al. in [32] adopted a

computational approach and argued that even though informal networks are invisible,

they are more reflective than the formal organizations. The authors defined scenarios

where SNA is useful to assess informal networks and facilitate effective collaboration.

Finally, a number of works show how informal networks can be used to reveal the

reporting hierarchy [42, 108].

Social networks play a central role in studies on important problems such as struc-

tural holes [2], group cohesion [21] and resource allocation [19]. The first mentioned

work discusses a dual-structure within an organization, which consists of direct ties

and indirect ties. However, different to our notions of formal and informal ties, direct

ties refer to edges between nodes, and indirect ties correspond to paths in the network.

The second mentioned work used a mathematical model to simulate the interactions

between newly hired employees and relates cohesion with managerial autonomy. The

third paper applies a mathematical, centrality-based approach to study two strategies

in designing status-based competitions.

The network aspect of power and influence flourished in the last 5-10 years [23].

Power is a multiplex concept that is affected by many factors. There are indeed

various approaches to measure influence and importance of individuals in a social

networks. Our definition of power is based on Bonacich centrality [14], a widely-

adopted eigenvector centrality measure in social networks. In [20] Bothner et. al.

also used Bonacich centrality to social network analysis. However, in contrast to our

work, they emphasized individuals’ “statues” in a social network but did not take

into account hierarchical levels. More recently, Franceschet and Bozzo [44] provided a

definition of power that is motivated from negative exchange networks: a node gains

power by connecting to nodes with low power.
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Moving the reader’s attention to network integration, we would like to mention the

following interrelated research areas:

Firstly, strategic network formation considers how new links emerge due to rational

and self-centred decisions of members of the network [53]. Strategic network formation

models aim to explain how a network evolves in time [60]. A well known example

along this line is on the rise of the Medici Family in the XV century [88], which

explains how inter-family ties shape political structures. In a certain sense, the network

integration problem can be regarded as network formation between two established

networks. The network formation models are suitable for vast analysis of a single

network transformation, but they lack tools to operate with several networks.

Secondly, interdependent networks discusses the complex structures formed through

an integration of networks of different types (e.g. a transportation network with an

electrical network) [36]; the focus here is mainly on interdependence among the nodes

and robustness of network, i.e. whether node failures leads to a cascading failure

throughout the overall infrastructure.

The interdependent networks aim to model a complex environment where multiple

networks interact and form a type of network of networks. The networks in such a com-

plex environment are non-homogeneous, i.e., the networks are of different types. For

example, one may be interested in the interdependence between a telecommunication

network and a transportation networks and how such interaction affects robustness of

the entire infrastructure.

The interdependent networks indeed cover many multidisciplinary problems in eco-

nomics, sociology, biology and so on. However, the models do not explain what hap-

pens when two homogeneous networks ’dissolve in each other’ and become whole. An

example could be two merging companies: not only new relations are being formed,

but the entire structure of the new company should satisfy some certain criteria. Com-

pared to interdependent networks, the integration problem considered in this thesis

involves homogeneous networks and concerns a type of dynamic that ‘dissolves’ the

two networks into one.

A third related area is link prediction, which aims to infer potential ties between

nodes of a network [67]. Here, most approaches take into account surrounding contexts

such as homophily and maximum likelihood.

Another work to mention is network weaving [63], a process where several disjoint
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components of a network become a single unit by establishing a hub.

Lastly, we mention management studies on collaborative team building. When two

companies merge, the success of the new entity largely hinges on whether the firms can

effectively socialize employees from both sides to a unified direction [1]. The challenge

lies in how venues could be set up (e.g. meetings, group assignments, etc.) that

nurture collaboration and allow efficient communication [102, 104]. The framework

proposed in this thesis addresses this challenge through an algorithmic perspective.

1.5 Summary of Results

This thesis constitutes the results of our research towards structural and algorithmic

analysis of organizational networks. We study how interpersonal ties become crucial

empowerment channels that shape organizational structure. We develop an organi-

zational network model that is consistent with management studies; moreover, by

incorporating both formal and informal ties into the model, we build a promising the-

ory that is capable to explain several organizational phenomena including flattening,

workplace homophily, and loss of control. Through rigorous analysis, we demonstrate

that our theoretical framework can be used to reflect general properties of organiza-

tions.

Our investigation unfolds in two main directions: the first covers individual power

in organizations; the second lies in integrating two disjoint organizational networks.

The first focal point of this thesis is our centrality-based definition of power which

is accompanied with comprehensive and deep analysis, case studies and experiments.

Our power based model provides novel insights into a range of organizational proper-

ties: 1) Organizations have limited hierarchy height. 2) Flattening, the process when

a business changes from a tall hierarchy to a flat structure by delayering, is closely re-

lated to changes in the power of employees. 3) Informal relations significantly impact

power of individuals. 4) Leadership styles could be reflected and analyzed through

understanding weights on the ties in an organizational network. Moreover, the model

endorses a natural interpretation of the loss of managerial control: the more con-

nections managers maintain, the less their power depends on each of their neighbors

power.

Not only can interpersonal ties facilitate individual communication but also they
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serve as instruments of bringing entire organizations together. We define network inte-

gration as a process of building links between two networks so that the networks form a

single unified network. To evaluate the effect of integration, we introduce the notion of

togetherness, which measures the proximity of two networks. We first investigate the

integration process for two homogeneous networks. We study the algorithmic nature

of network integration, analyze the corresponding computational problems of network

integration, and propose methods that generate solutions. To compare the methods,

we perform thorough experimental analysis on both synthesized and real-world data.

Finally, we expand the integration concept to organizational networks. Motivated

by different scenarios, we define two main approaches: collaborative and dominant

integration. The collaborative integration simulates project communication and col-

laboration between two organizations, while the dominant integration represents an

organizational acquisition. The dominant integration requires a wider perspective on

togetherness, which we extend by introducing a new level of applicability.

The rest of the manuscript is structured as follows: Chapter 2 contains main def-

initions and a necessary background. In Chapter 3, we introduce our power based

model, analyze organizational structures from the network perspective and perform

experimental analysis. In Chapter 4, we consider integration of two arbitrary homo-

geneous networks: we define togetherness as a measure of proximity of two networks,

study relevant network integration problems and propose several heuristics for solving

these problems. The network integration concepts are then extended and modified to

suit organizational networks with formal and informal ties in Chapter 5. Finally in

Chapter 6, we mention directions of further research and state several open questions.

Chapter 2. Preliminaries

This chapter contains main definitions and a necessary background into social network

analysis as well as our model of organizational structures and eight heuristics for finding

small distance dominating sets. The model was first introduced in our work in [68],

and the algorithms appeared in [80].

In the first section, we define a network as a connected graph G = (V,E) with set

of nodes V and set of edges E. We list main characteristics of a network and define

most common properties. We also mention some of the properties that a typical social

network has. We then list and describe a number of centrality measures, which would
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later be used in this thesis. Centrality measures are most often applied to define

advantageous positions in a network and/or to quantify importance of a certain node.

In the second section, we describe our model of organizational networks. An orga-

nizational structure consists of a network where employees are connected by working

and social ties. Analyzing this network, one can discover valuable insights into infor-

mation flow within the organization.

By integrating different interpersonal relations in the same network model, we

suggest a uniform approach to perform organizational network analysis [32, 33, 40, 24].

Our model is consistent with management theory, and captures main traits of large

corporations. More specifically, we define the structure of a firm as a network where

employees are connected to their managers and each other by working ties. The carcass

of the model is an organizational hierarchy. We extend it by allowing additional types

of connections between two employees (e.g. collaboration, friendship, family relations

and others), and introduce the notion of an organizational network. Having both

reporting and non-reporting relationships, our model supports a multiplex approach

to organization structures.

We define two main types of relationships: reporting (formal ties) and non-reporting

(informal ties). Two principles, unity of direction and maximal relative capacity, en-

able us to define ”well-built” organizational networks. The first principle refers to

the idea of having a single source of instructions, and the second principle reflects a

natural proposition that a person can maintain only a limited number of ties.

Finally, we mention the problem of finding distance k dominating sets on graphs.

We describe four greedy algorithms Max, Min, MinLeaf, and Btw. The first three

algorithms have been introduced in [38] for regular graphs; Btw is a novel algorithm

although it uses the same intuition as the three algorithms above. We also present

our modifications of these algorithms, S-Max, S-Min, S-Btw, S-MinLeaf, that are also

suitable for finding small distance k dominating sets [80].

Chapter 3. Power in Organizational Networks

The aim of this chapter is to analyze organizational structures from a network per-

spective using our notion of power. The results presented in this chapter have been

published in [68, 69, 70].

We consider organizational networks as defined in Chapter 2. Then, we define a
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notion of power based on the Bonaich centrality [14]. This notion not only enriches

the mathematical management theory [15] but also enables formal analysis of con-

cepts specific to organizations such as stability and flattening. Comparing to existing

centrality notions, our definition of power is novel in the following aspects:

(1) the model takes into account three types of interactions: the interaction between

a manager and her subordinates, the mutual interaction effect between two em-

ployees connected by a non-reporting relation, and the backflow effect from a

subordinate to her manager;

(2) the model enables a natural interpretation of the “loss of control” of a manager:

the more connections a manager maintains, the less her power depends on each

of her neighbors’ power [77].

We introduce a novel business intelligence software tool, CORPNET, which is de-

signed to provide automated and accurate decision support. The prototype implements

statistical and stability analysis, community detection, synthesizing networks, and vi-

sualization. Using a range of parameters, the software not only allows identification of

personal power in a company but also reasoning about leadership styles and strategies.

Based on our network model and definition of power, we are able to formally study

multiple important phenomena relevant to organizational management. In particular,

we build our theory around the following issues:

1. Bounded height: A management hierarchy typically involves a bounded number

of levels, regardless of the individual capabilities. A common belief is that a

tall hierarchy reduces the effectiveness of communication. Using a natural mea-

sure on the stability of a network, we provide an alternative explanation: as a

company creates more and more levels in its hierarchy, it will eventually become

unstable, i.e. employees at lower levels possess more power than those at the

higher levels. See Section 3.2.

2. Flattening: Flattening is a well-known phenomenon of organizational change

when a company acquires a new structure with fewer hierarchical levels. The al-

leged benefits of flattening include empowering employees, increasing flexibility,

pushing down decision making, and improving information flow [64]. We pro-

vide a somewhat paradoxical view on flattening through computation: Although
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flattening reduces average power in the company, the majority of employees gain

more power. See Section 3.3.

3. Workplace homophily: Homophily refers to the tendency of individual to be

associated and linked to others who are similar to themselves. In the workplace,

this principle translates to the fact that employees tend to associate with people

in the same unit (i.e. department, office, etc.) as well as the same level [76, 28].

Clustering of the formal tie hierarchy alone does not reveal this tendency in an

organizational network. Hence, we provide a benchmark for informal ties that is

in line with the observed homophily principle. See Section 3.4.

4. Importance of informal ties: As argued by numerous studies, informal ties sig-

nificantly impact on organizations [32]. We analyze this phenomenon from the

point of view of power consistency: A network is more likely to be destabilized

by social links in taller hierarchies than in flattened hierarchies. On the other

hand, the gap between the power of upper and lower levels can be diminished

with the presence of informal ties. See Section 3.4

5. Leadership styles: Leadership styles refer to ways in which a manager leads by

setting directions, carrying out plans and communicating with subordinates. It

is generally agreed in management studies that leadership styles play a decisive

role in shaping the working atmosphere and effectiveness of an organization

[105]. Here we deviate from the traditional, behavioral approach to analyzing

leadership styles, but provide network-oriented angle using parameters in the

definition of power. See Section 3.5.

Through these analyses above, we demonstrate that our theoretical framework can

be used to reflect general properties of organizations. This novel, structural approach

to organization analysis provides us new insights, explanations and potentially predic-

tive guidelines for organizational decision making.

This chapter has the following structure: Section 3.1 introduces our definition of

power in the organization. Section 3.2 focuses on formal hierarchies of organizations

and discusses the relation between stability and height. Section 3.3 discusses the

phenomenon of flattening and tries to explain it from a network point of view by con-

sidering power distribution. In Section 3.4, we look at informal ties and study how
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they affect power. Section 3.5 applies our model to the analysis of leadership styles.

In Section 3.6, we consider a real-world case study (Krackhardt and Hanson’s net-

work [1993]) and apply our power based approach. Section 3.7 discusses the software

CORPNET.

Chapter 4. Integrating Homogeneous Networks

This chapter approaches the problem of integrating two homogeneous networks. We

define network integration as a process of building links between two networks so

that the networks form a single unified network. Creating new ties in a network

(particularly, in a social network) facilitates knowledge exchange and affects positional

advantage. We study the process of establishing ties between two existing networks in

order to reach certain structural goals.

We consider networks represented by connected undirected unweighted graphs,

i.e. there is only one type of relations between two nodes. To evaluate the effect of

integration, we introduce the notion of togetherness, which measures the proximity of

two networks. As we mentioned above, this notion is fundamental to social networks

and is relevant to important concepts such as trust, coherence and solidarity. We study

the algorithmic nature of network integration and formally introduce three notions of

togetherness.

We analyze the corresponding computational problems of network integration:

1. Network Integration under Togetherness constraint. Given two networks and a

desired level of togetherness, build links between members of these networks so

that the overall network meets the togetherness criterion. An optimal solution

of this problem is a set of edges that has the smallest cardinality. We analyze

optimal solutions to this problem, describe several heuristics and compare their

performance through experimental analysis.

2. Network Integration under Edge constraint. Given a fixed number of edges, the

problem asks which nodes to connect in order to maximize the togetherness.

An optimal solution of this problem is a set of edges that leads to the largest

togetherness.

We study computational complexity of the problems and propose methods that

generate solutions. Broadly, these methods could be split into two parts:
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1. The first type of methods are heuristics that are based on the equi-privilege prop-

erties of the networks. We propose heuristics that search for small sets of edges

that integrate two networks. We assume that the networks enjoy equi-privilege

property, i.e. any pair of nodes between networks can be freely connected. The

goal of these heuristics is to gain maximal togetherness in the integrated net-

works. To motivate this formal framework, we make three assumptions: 1) the

integration takes place assuming equipotency of nodes; 2) creating weak ties be-

tween the networks can be encouraged and forced; and 3) structural properties

such as distance provide a measure of effective communication and resource ac-

cessibility.

2. The second type are simulations based on certain priorities given to nodes of the

network. We propose four scenarios where nodes in one network preferentially

establish links with nodes in the other network. We assume that every node is

given a priority which is determined by the network structure. The difference be-

tween these priority-based methods and the heuristics in the first category is that

their aim is to simulate the preferential attachments of links during integration,

rather than explicitly searching for good solutions.

To compare the methods, we perform experimental analysis on both synthesized

and real-world data.

As a special case, we focus on the scenario when one of the two networks consists

only of a single member and motivate this case from two perspectives. The first

perspective is socialization: we ask how a newcomer can forge relationships with an

existing network to place herself at the center. We prove that obtaining optimal

solutions to this problem is NP-complete, and present several efficient algorithms to

solve this problem and compare them with each other. The second perspective is

network expansion: we investigate how a network may preserve or reduce its diameter

through linking with a new node, hence ensuring small distance between its members.

For both perspectives the experiment demonstrates that a small number of new links

is usually sufficient to reach the respective goal.

This chapter has the following structure: In Section 4.1, we introduce integrated

networks, define three levels of togetherness and bounds on their values. We propose

two network integration problems, show that they are, in fact, closely related to each
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other, argue that finding optimal solutions is in general computationally hard. We

separately approach the network integration problems under the assumption of equi-

privilege property and then by assigning priorities to all nodes. Section 4.2 contains

algorithms for integrating networks with equi-privilege property (optimizing togeth-

erness). In Section 4.3, we define four priority based heuristics and introduce a

mechanism for integrating two networks following these heuristics. In Section 4.4, we

consider the special case when one of the networks is represented by a single node.

Finally, in Section 4.5, we present experimental results obtained by implementing pro-

posed algorithms in 14 experiments. To compare our heuristics, we use both generated

and real-world datasets.

Results presented in this chapter have appeared in [80, 81, 82].

Chapter 5. Dominant and Collaborative Integration of Organizational Net-

works

This chapter extends the results presented in Chapter 4, knitting them together with

the concepts from Chapter 3. We consider organizational networks with two types

of ties that represent formal hierarchical relations and informal non-hierarchical rela-

tions such as collaboration or friendship. Motivated by different scenarios, we define

two approaches: collaborative and dominant integration. The first one represents col-

laboration of two companies; the second one illustrates an acquisition when one of

the companies becomes the other company’s part. The vital difference between the

approaches is that collaborative integration is established by informal ties only. As

a result, the networks are still independent. On the other hand, in the process of

dominant integration, one of the networks becomes the other network’s subnetwork.

To evaluate the effect of integration, we revisit our notion of togetherness. We

argue that all edges, regardless of their type, serve as channels of communication

between people [94]. Formal organizational structure is designed to perform a function

of delivering commands; commands can also go through informal networks taking the

form of advice [61]. However, a directive would unlikely pass from a subordinate to his

or her manager: indeed, information may travel in any direction, while the presence

of authority suggests that orders may not go up the hierarchical structure.

Universal, existential, and diametric togetherness, as defined in Chapter 4, are

designed to capture the proximity of two networks; in the context of organizations
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these measures could be used to indicate how fast information gets from one network

to the other. To capture how fast a command can reach individuals in a certain

department, we introduce a new level of togetherness, hierarchical togetherness.

We extend the applicability of togetherness measures to reveal how well a certain

department is “integrated” in the entire organization. Thus, togetherness in this

chapter is considered as a measure of interaction between a certain unit with the

rest of the network, or more generally, between two organizational networks after

they establish some new relationships. Finally, we consider separately dominant and

collaborative network integration problems and propose several ideas and heuristics

for solving these problems.

This chapter has the following structure: In Section 5.1, we explain and motivate

network integration for two organizations. Section 5.2 considers togetherness and

introduces two approaches how this measure could be used: one is a local measure of

proximity within a single network, and the other one is a measure to evaluate integra-

tion of two organizational networks. In Section 5.3, we study dominant integration:

we split the problem into two steps and investigate what should be taken into account

in order to solve the problem. Section 5.4 considers collaborative integration of orga-

nizational networks; in this section we consider integration of two subnetworks as a

special case.

Chapter 6. Conclusion

In the last chapter, we suggest several directions in which the results presented in this

thesis could be expanded.



Chapter 2

Preliminaries

2.1 Social Network Analysis

2.1.1 Defining a Network

Network analysis helps to understand and predict the behavior of complex networked

systems [86]. Examples of these systems include the World Wide Web, transportation

networks, distribution networks, neural networks, social networks, networks of busi-

ness relations between companies, collaboration networks, and many others. Social

network analysis (SNA) brings together social and mathematical sciences by applying

network and graph theories to structures, which represent interactions and relations

of individuals within the networks.

We view a network as a connected graph G = (V,E) where V is a set of nodes and

E is a set of edges on V . For any vertex u ∈ V , the degree is the number of edges

incident to the vertex.

Some of networks we consider have weighted edges, meaning that edges have dif-

ferent importance or represent stronger/weaker connections than others. An edge is

directed, denoted
−−−→
(u, v) ∈ E if it runs in only one direction, and undirected if it runs

in both directions, denoted simply (u, v) ∈ E.

A path (of length l) is a sequence of nodes u0, u1, . . . , ul where uiui+1 ∈E for any

0≤ i< l. A geodesic path is the shortest path, in terms of number of edges traversed,

between a specified pair of vertices.

For any nodes u, v ∈ V , the distance between u and v, denoted by dist(u, v), is the

length of a shortest (geodesic) path from u to v. The eccentricity of v, denoted ecc(v)

20
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is the largest path from v to any other node in the graph. The largest eccentricity is

the diameter of the graph, and the smallest is its radius denoted diam(G) and rad(G),

respectively.

The center of G is the set of all nodes that have the least eccentricity, i.e., C(G) =

{u ∈ V | ecc(u) = rad(G)}. The periphery of G is the set P (G) = {u ∈ V | ecc(u) =

diam(G)}. The network G is called diametrically uniform if C(G) = V .

2.1.2 Properties of Social Networks

Social networks have been intensively studied in the last few decades. In this chapter,

we mention briefly some properties of social networks that are relevant to our research.

More details could be found for example in [111]; for more complex insights one may

consult in [86].

Homophily is the extent to which a person forms connections to similar people.

Similarity can be defined by gender, race, age, occupation, educational achievement,

status, values or any other salient characteristic [76].

A small world property, or six degree of separation, was first empirically shown by

the social psychologist Stanley Milgram in the 1960s. This phenomenon demonstrates

that any two individuals are, in fact, quite close to each other. We will use Newman-

Watts-Strogatzs small-world network model [85], which produces graphs with small

average path lengths and high clustering coefficient.

Another essential property of numerous real-world networks is that degree distri-

bution of nodes follows a power law. Such networks are called scale-free networks [86]

We will use Barabasi-Alberts preferential attachment model that generates scale-free

graphs [3].

We say that two networks are homogeneous if they are of the same nature: For

example, two social networks, representing collaboration among two groups of people,

are homogeneous.

Interdependent networks is a system of coupled networks where nodes of one or

more networks depend on nodes in other networks. Interdependent networks, clearly,

are often non-homogeneous [36].
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2.1.3 Centrality Measures

As pointed out in [84], centrality measures address the question, ”Who is the most

important or central person in this network?” There are several approaches to answer

this question; following these approaches different centrality measures could be defined.

However, one needs to be careful when choosing the most suitable centrality measure

[18].

Let R be the adjacency matrix of the network. We implicitly mean there is an

indexing of all nodes in the matrix as natural numbers 1, . . . , n, and Ri,j denotes

the (i, j)-entry of R. If we consider unweighted networks, all Ri,j are either 1, or 0,

meaning there is or there is not an edge between i and j.

The simplest measure is degree centrality, or simply degree, defined as xi =
∑

j Rij.

This measure is too weak to be suitable for defining important positions in a social

network. For example, the recent work [25] demonstrates the negative effect of the

number of contacts in terms of job search. This rather contra-intuitive conclusion,

however, confirms that not only the number of connections matter.

The approach taken whereby the centrality of a node is recursively related to the

centralities of the node’s neighbors, seems to be the one that we need. Eigenvector

centrality is based on the same idea, but it takes into account that different connections

have different significance (or quality):

λpi =
∑
j

Rijpj,

or in matrix notation:

λp = Rp,

where p is an eigenvector of R, which is associated with the largest eigenvalue λ (as

can be proved using the Perron-Frobenius theorem).

While degree centrality gives a simple count of the number of connections a vertex

has, eigenvector centrality acknowledges the fact that connections may be not equal.

The intuition behind is that connections to people who are more influential would

contribute to one’s own influence more than connections to less influential individuals.

However as mentioned in [15], the eigenvector centrality can be used effectively

only for symmetric adjacency matrices. In our model, the adjacency matrix is clearly
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asymmetric.

This measure is often called ”approximate importance” - the centrality of a node

depends on the centralities of its neighbors. The number of edges is still important,

but nodes with fewer but more important connections can outrank nodes with higher

degrees.

In 1987, Philip Bonacich [14] expanded the eigenvector by introducing parameter β:

using positive and negative values of the parameter, one can apply it for ”traditional”

networks (i.e. when connections to more powerful nodes give more power), as well as

for negative exchange networks (i.e. connections to less central nodes make a node

more central.)

Let R be an adjacency matrix. Then for any node i, Bonacich power is defined as

following:

pi(α, β) =
∑
j

(α + βpj)Rij (2.1)

In matrix notation, Bonacich power can be defined as following:

p(α, β) = α(I − βR)−1Re, (2.2)

where I is an identity matrix, and e is a column vector of ones.

The parameter α is a scalar that affects only the length of the power vector p.

It means that we use it only to normalize the powers. In this thesis, α is selected

such that the squared length of p equals the number of nodes in the network. Then,

pi(α, β) = 1 means (approximately) that position i does not have an unusually large

or small degree of centrality.

The parameter β can be any value on the interval [− 1
λ
, 1
λ
] where λ is the largest

eigenvalue. When β = 0, Bonacich power is the same as the degree centrality. When

β is positive, nodes that are connected to more central nodes are more central. In

contrast, when β is negative, more scores get nodes that are connected to less cen-

tral.Note that when β approaches 1
λ

the centrality vector approaches the eigenvector,

which is associated with λ.

Finally, another useful centrality measure is betweenness centrality, which is based

on the network paths. The betweenness centrality of vertex v is the fraction of geodesic

paths between other vertices that pass through v. To compute the betweenness cen-

trality, one needs to find the shortest paths between every pair of vertices, and thus,
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it is in general computationally costly.

2.2 Organizational Networks: Model and Key Prop-

erties

An organizational structure is often defined as a set of positions, groups of positions,

reporting relationships, and interaction patterns [12]. We use the network approach

and propose a model that captures main traits of a company. On the one hand,

our model delineates the organizational hierarchy of a firm by featuring reporting

relationship. On the other hand, we enrich the model by also including non-reporting

relations. Indeed, as we will show later, these non-reporting relations can significantly

affect a company as a whole.

In our model of organizational networks, the structure is represented as a net-

work, where nodes stand for work positions (or departments, or people) and they are

connected to each other by reporting relationships or some other social interactions:

Definition 2.2.1 (Organizational network). An organizational network is a structure

G = (V, r, Efml, Einf), where V is a set of nodes, Efml, Einf ⊆ V 2 are edge relations such

that

1. r ∈ V is called the root and (r, r) ∈ Efml;

2. the pair (V,Efml) forms a directed acyclic graph (ignoring the edge (r, r)), where

every node apart from r has an incoming edge from another node;

3. the pair (V,Einf) forms an undirected graph.

Informally, the set V denotes the individuals (or work positions) in the network.

The root r is the top manager, i.e. r does not report to anyone else. The edge set Efml

represents the reporting relation on members of the network; if (u, v) ∈ Efml then v

reports to u and is called a subordinate of u. By the definition above, any nodes in the

network may play the roles of managers and subordinates. Clearly, any node v 6= r

reports to its manager u and thus is a subordinate of u; at the same time, u may also

have its subordinates. A node that has no subordinates is called an operative.

The edge set Einf represents the undirected dyadic non-reporting relation. This

could be collaborations, advice relations, or friendship between employees, etc. We
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will refer to edges in Efml as formal ties since reporting relations are usually more

important. We will call undirected edges in Einf informal ties. For simplicity, we

assume that any two nodes (u, v) can be connected either by a formal tie or a informal

tie, but not both. In fact, this can be justified intuitively: any reporting relation

presumes some social interaction between a manager and her subordinates.

The definition of organizational networks covers most essential characteristics of a

firm’s structure, however, it is somewhat vague and is far from representing a well-

built structure. To define a “well-built” structure, we accompany the definition above

with two principles:

Firstly, unity of direction refers to the principle that there are one leader and

one plan for business activities. It has been a fundamental criterion for an effective

organization [114]. Having several sources of instructions, which in real life happens

sometimes, often causes bungling decision-making. Translating this principle to our

model, we assert that each person should have exactly one manager in the formal tie

hierarchy.

Principle 1: Unity of Direction. Each node has exactly one incoming directed

edge, which represents relationship with its manager, i.e., for all u ∈ V there is a

unique v ∈ V with (v, u) ∈ Efml.

Principle 1 requires the directed graph (V,Efml) to form a tree structure, which we call

the formal tie hierarchy (or reporting hierarchy) of G. The managers of the hierarchy

are all the internal nodes of the tree (V,Efml) and the operatives are the leaves. The

top (level 0) of the hierarchy contains only the root r. We will use the following

terminology.

Definition 2.2.2. The level of any node v in G is the length of the path from r to v

in the reporting hierarchy. The height of the hierarchy is the number of levels.

Secondly, one may notice that a person can maintain only a limited number of

interpersonal relations, due to limited time and effort. In fact, all social networks

emerge under the constraint of limited resources. For example, in the context of

online social networks, the number of formal ties (mutual communication during some

period) for networks of more than 500 nodes on Facebook varies from 10 to 20 [39].

In defining the notion of capacity of individuals, we distinguish the formal and

informal ties in regarding how much resource each of them consumes. Let ∆ be an
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abstract quantity that defines the maximum amount of resources (working hours, for

instance) that a person can distribute between his or her ties. For simplicity, we

assume that each individual in the network has the same amount of resources ∆. We

also assume that a person needs f resources and i resources to maintain a formal and

an informal tie, respectively. The root node also spends f resource on some exogenous

factors, which are represented by the loop (r, r). Therefore, for any node v, if |Efml(v)|
is the number of directed edges (including self-loop), and |Einf(v)| is the number of

undirected edges, then A spends |Efml(v)|×f + |Einf(v)|× i ≤ ∆ resources to maintain

all his connections. Let δ := i
f

be called the correlation coefficient.

Definition 2.2.3. The relative degree of a node v ∈ V is defined as deg(v) =

|Efml(v)| + |Einf(v)| × δ, where |Efml(v)|, |Einf(v)| are the numbers of formal ties (in-

cluding both incoming and outgoing edges) and informal ties v maintains, respectively.

Clearly, if δ = 1, then we assume that maintaining a informal tie requires the

same amount of resources as maintaining a formal tie; in this case, the relative degree

deg(v) is the conventional degree notion in graph theory. Such assumption may be

reasonable when the organization contains equipotent members who have respective

expertise (e.g., a research team). The lower δ is, the greater distinction there is between

formal and informal ties.

The relative capacity of a node v is a given number that defines the upper bound

on its relative degree deg(v). In other words, it defines the total available resources

for a person to maintain all ties.

Principle 2: Maximal Relative Capacity. There is a constant relative capacity c

for any node v ∈ V .

Management theory defines the span of control of a manager as the number of her

direct subordinates. If we only consider the reporting relation, Principle 2 guarantees

that the span of control of every individual is limited[57], and, thus, refers to the

“limited managerial attention”, a phenomenon in hierarchy theory [47]. The loop

(r, r) guarantees that the root must not have more direct subordinates than all the

other managers and, hence, make our approach uniform.

Definition 2.2.4. An organizational network is called well-built if it satisfies the

principles 1 and 2.
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In this thesis we assume that all organizational networks are well-built without

explicit mention. Given its simplicity, the model of organizational networks above has

natural limitations, which we explain in the remarks below:

Remark 1. We remark that the requirement that there is a single root of the

network may seem too restrictive. Indeed, large corporations tend to have a board of

directors. Nevertheless, we argue that this simplified model be still reasonable as the

board of directors normally perform as a whole by hiring a CEO. The loop (r, r) ∈ Efml

indicates that the root makes decisions by herself. Another reason why we need this

loop is technical – as we will show later, it makes the capacity of nodes uniform.

Remark 2. In this model, we eliminated the functional differences between indi-

viduals in the organization. Such a restriction again may seem like a departure from

real life; Indeed, people in a corporation perform vastly different tasks, and it is these

tasks that give their positions real “meaning”. Nevertheless, we argue that the model

still encapsulate meaningful interpretation: Firstly, the interpersonal ties in the model

capture in a certain sense the channels of information/resource flow within an orga-

nization, irrespective of the duties of individuals. Secondly, regardless of the tasks of

individuals, any person who has at least one subordinate will need to act in the role of

a manager, which involves a type of decision-making process or directive actions that

are common to all managers. Thirdly, our goal is to use a general model that captures

any types of organizational structure which may perform very different functions (e.g.

a university department or a bank). It is very difficult to fix tasks for all kinds of roles

in such a general setting.

2.3 Finding a Small Distance-k Dominating Set in

the Network

Many problems on social networks involve searching for the shortest paths. Solving

such problems on large datasets is often very costly, and it requires incorporating

different heuristics. We will consider computational problems that are related to the

problem of finding dominating sets on graphs.
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Definition 2.3.1. Let G = (V,E) be a graph. The subset D ⊂ V is called a dominat-

ing set for G if every vertex not in D is adjacent to at least one member of D. The

domination number γ(G) is the number of vertices in a smallest dominating set for

G.

The dominating set problem concerns testing whether γ(G) ≤ K for a given graph

G and input K. The (connected) dominating set problem is one of the fundamen-

tal mathematical problem underlying routing. It is a classical NP-complete decision

problem in computational complexity theory.

Definition 2.3.2. We say that Dk ⊂ V is a distance k dominating set if for every

vertex v ∈ V , either v ∈ Dk or there exists a vertex u ∈ Dk that is at distance at most

k from v.

Distance k dominating sets may be used, for example, to solve resource allocation

problems [9].

We let γk(G) denote the number of nodes in a smallest distance k-dominating

set. Chang and Nemhauser in [29] showed that the problem of finding the minimum

distance k dominating set is also NP-hard.

We will now present several heuristics for finding small distance k dominating sets

2.3.1 Four Greedy Algorithms

We present four greedy algorithms that are suitable for finding distance-k dominating

sets. Each algorithm below applies a heuristic that iteratively adds new nodes to the

solution set S.

The starting configuration is S = ∅ and U = V . During its computation, the

algorithm maintains a subgraph F = (U,E � U), which is induced by the set U of all

“uncovered” nodes, i.e., nodes that have distance > (r − 1) from any current nodes

in S. It repeatedly performs the following operations until U = ∅, at which point it

outputs S:

1. Select a node v ∈ U based on the corresponding heuristic and add v to S.

2. Compute all nodes at distance at most (r− 1) from v. Remove these nodes and

all attached edges from F .
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Algorithm Max (Max-Degree). The first heuristic is based on the idea that one

should connect to the person with the highest number of social ties. The intuition

here is that a newcomer would be benefited by linking to someone with maximal

connections.

At each iteration, it adds to S a node with maximum degree in the graph F . Using a

priority queue (e.g., a Fibonacci heap) to keep track of maximal degrees and assuming

the radius rad is given, the algorithm can be implemented in time O(n log n+m) where

n = |V | and M = |E|.

Algorithm Min (Min-Degree). The second heuristic first picks a node v with

minimum degree in F , then adds to S a node with maximum degree that is adjacent

to v. The intuition is as follows: A node is called a leaf if it has minimum degree

in the graph; leaves correspond to least connected members in the network, and may

become outliers once nodes with higher degrees are removed from the network. Hence

this heuristic gives first priority to “covering” leaves; Namely, it always picks a node

with maximum degree that is adjacent to a leaf.

To implement this algorithm, one may use a min-priority queue to keep track of

degrees of all nodes; this is used to extract a leaf at each iteration. Then with each

node v, one may associate a max-priority queue to keep track of degrees of all adjacent

nodes of v. The overall running time of min-priority queue operations is O(m+n log n).

The overall running time of max-priority queue operation is O(m log d) where d is

the maximum degree in G. Therefore assuming rad is given, the algorithm can be

implemented in time O(n log n+m log d).

Algorithm Btw (Betweenness). The third heuristic is based on betweenness, an

important centrality measure in networks [13]. More precisely, the betweenness of a

node v is the number of shortest paths from all nodes to all others that pass through

v. Hence, high betweenness of v implies, in some sense, that v is more likely to have

short distance with others. This heuristic works in the same manner as Max but picks

nodes with maximum betweenness in F .

Using Brandes’ algorithm, calculating betweenness centrality of all nodes requires

timeO(mn). However since the algorithm requires updating the graph and re-computing

betweenness after each of the O(n) iterations, the algorithm can be implemented in
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time O(mn2).

Algorithm MinLeaf (Min-Leaf). The fourth heuristic is an improvement of Min.

To remove a leaf v from F , one does not need to always add an adjacent node to v; it

is enough to add to S a node that has distance at most r − 1 from v. The heuristic

first picks a leaf v in F , then applies a sub-procedure to find the next node w to be

added to S. The sub-procedure determines a path v = u1, u2, . . . in F iteratively as

follows:

1. Suppose ui is picked. If i = r or ui has no adjacent node in F , set ui as w and

terminate the process.

2. Otherwise select a node ui+1 (which is different from ui−1) among adjacent nodes

of ui with maximum degree.

After the process above terminates, the algorithm adds w to S. Note that the distance

between w and v is at most r − 1.

The algorithm can be implemented using the same data structures as Min. The

sub-procedure used to compute w at each iteration does not take extra computational

time as edges of each ui are removed during the procedure. Hence assuming r is given,

the algorithm takes time O(n log n+m log d).

We mention that Algorithms Max, Min, and MinLeaf have been applied in [38]

to regular graphs, i.e., graphs where all nodes have the same degree. In particular,

MinLeaf has been shown to produce small k-dominating sets for a given k in the

average case for regular graphs: : e.g. the size of the output S is roughly 10% of the

number of nodes when all nodes have degree 5. The Btw-algorithm was introduced in

[80]

2.3.2 Simplified Greedy Algorithms

One significant shortcoming of the four algorithms above lies in the fact that by delet-

ing nodes from the network G, the network may become disconnected, and nodes that

could have been connected via short paths are no longer reachable from each other.

This process may produce isolated nodes in F , i.e., nodes having degree 0, which are

subsequently all added to the output set S. Moreover, maintaining the graph F at
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each iteration also makes implementations more complex. Therefore we next propose

simplified versions of Algorithms Max, Min, Btw, and MinLeaf.

Algorithms S-Max, S-Min, S-Btw, S-MinLeaf. The simplified versions of Algorithms

Max, Min, Btw, and MinLeaf act in a similar way as their “non-simplified” counterparts;

the difference is that here the heuristic works over the original network G as opposed

to the updated network F . Hence, the graph F is no longer computed. Instead we

only need to maintain a set U of “undominated” nodes.

The simplified algorithms have the following general structure: Start from S = ∅

and U = V , and repeatedly perform the following until U = ∅:

1. Select a node v from U based on the corresponding heuristic and add v to S.

2. Compute all nodes in the sub-radius ball B(v) of v, and remove any node in

B(v) ∩ U from U .

The set S is the output. We stress that we apply the same heuristic as described

above in Algorithms Max, Min, Btw, and MinLeaf, but replace any mention of “F” in

the description with “U”, while all notions of degrees, distances, and betweenness are

calculated based on the original network G.



Chapter 3

Power in Organizational Networks

In this chapter, we present a centrality-based definition of power. This measure en-

ables us to identify important individuals in the network. Our model provides novel

insights into a range of organizational properties: 1) Organizations have limited hier-

archy height. 2) Flattening, the process when a business changes from a tall hierarchy

to a flat one by delayering, is closely related to changes in the power of employ-

ees. 3) Informal relations significantly impact power of individuals. 4) Leadership

styles could be reflected and analyzed through understanding weights on the ties in

an organizational network. We implement our model and tools in a stand-alone appli-

cation CORPNET, which provides functions for generating synthesized organizational

networks, analyzing and visualizing interpersonal relations, and computing network

measures.

The aim of this chapter is to analyze organizational structures from a network

perspective. More specifically, the main contribution of this chapter is three-fold.

Firstly, by integrating different interpersonal relations in the same network model, we

suggest a uniform approach to perform organizational network analysis (ONA)

[32, 33, 40, 24]. Our model is consistent with management theory, and captures

main traits of large corporations. More specifically, we define the structure of

a firm as a network where employees are connected to their managers and each

other by working ties. The carcass of the model is an organizational hierarchy.

We extend it by allowing additional types of connections between two employees

(e.g. collaboration, friendship, family relations and others), and introduce the

notion of an organizational network. Having both reporting and non-reporting

32
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relationships, our model supports a multiplex approach to organization struc-

tures.

Throughout this chapter we consider well-build organizational networks as de-

fined in Chapter 2.

Secondly, we define a notion of power based on a centrality measure for individuals

in an organization. This notion not only enriches the mathematical management

theory [14, 15] but also enables formal analysis of concepts specific to organiza-

tions such as stability and flattening. Comparing to existing centrality notions,

our definition of power is novel in the following aspects: 1) the model takes into

account three types of interactions: the interaction between a manager and her

subordinates, the mutual interaction effect between two employees connected

by a non-reporting relation, and the backflow effect from a subordinate to her

manager. 2) the model enables a natural interpretation of the “loss of control”

of a manager: the more connections a manager maintains, the less her power

depends on each of her neighbors’ power [77].

Thirdly, based on our model, we design and implement a novel business intelligence

software tool, CORPNET, to provide automated and accurate decision support.

The prototype implements statistical and stability analysis, community detec-

tion, synthesizing networks, and visualization. Using a range of parameters, the

software not only allows identification of personal power in a company but also

reasoning about leadership styles and strategies.

3.1 Measure of Power

3.1.1 What Defines Power: a Network Perspective

Power is a multiplex concept that is affected by behavioral, cognitive as well as so-

cial factors. Among these factors, the social network has been identified as the most

significant one; as pointed out in [91], “power is first and foremost a structural phe-

nomenon, and should be understood as such”. Following a social network approach

to organization analysis [23], we focus on power that emerges from the organizational

network.
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Example 1. Consider the organizational network as described in Figure 3.1. The

directed edges form the set Efml of formal reporting relations, and undirected edges

form the set Einf of informal ties. It is natural to believe that r would enjoy a high

power in this organization as r is on the top level of the formal tie hierarchy. Comparing

the managers A, B and C on level 1, we see the following differences: A has two direct

subordinates, but he does not maintain any informal tie; C has three subordinates,

but only one of them is a child, while B does not have any outgoing directed edges;

nevertheless, she has collaboration with all nodes except A. Several natural questions

arise: which position is the ‘best’ among A, B, and C? How much power does each

node has? Does the link between B and C affects B’s power the same way as the

link between B and D does? All of these questions originate from a social network

perspective of power, which we elaborate below:

• The network structure defines the formal tie hierarchy of the network, and hence

expresses certain legitimate power in the organization [93]. For example, r nat-

urally has power since as top manager, r has a responsibility to make decisions.

• The network structure also implies a type of referent power [45]. For example,

having extensive and broad interpersonal ties (e.g. manager B) also means that

the individual is capable of developing statues and building loyalty.

• Viewing power as a product of the competition for resources, one may regard

interpersonal ties as sources for resources, i.e., they serve as access points for

resources such as information and skills (human resources) [92]. For example, A

has access to information that may be passed from his subordinates, while B’s

informal ties provide her with information across diverse departments. Both of

these cases empower the particular individuals.

• From a social exchange theory perspective, interpersonal ties provides people

alternatives during negotiations and hence enhance one’s power [8]. For example,

the fact that A has two subordinates means that A is at a more advantageous

position when he assigns tasks to the subordinates, i.e., the competition between

the two subordinates may allow A to exercise more control. On the other hand,

B is also in an advantageous position when seeking advice from his peers as he

has informal connections across wide parts of the network.
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Figure 3.1: Defining power of A, B and C

3.1.2 Power, Influence, and Authority

Marketing and management studies customarily compare power with other notions

such as authority and influence. Indeed, it is tempting to use these terms interchange-

ably as they all imply the ability to affect others and infer leadership. Before we

proceed with a formal definition of power, it is necessary to clarify the differences

between these notions.

Influence is a measure of the ability of one person to affect another person’s percep-

tion, attitude, and thought. In management studies, influence commonly relies

on skillful tactics to alter the other person’s point of view [59]. In marketing, in-

fluence is often associated with the word of mouth in consumer decisions [55]. A

major line of research concerns the use of social networks to analyze the individ-

uals’ connections to harness influence word of mouth by identifying influencers

and predicting adoption probabilities. More recently, efforts have been focused

on the spread of influence through a physical diffusion model, and influential

individuals in a complex network that maximally spread influence in this model

[78][56][4].

Authority refers to the right given to a person to achieve the objectives of the or-

ganization. In other words, it is an entitlement of the individual and thus is

predominantly a positional concept [50]. For example, the top manager of an

organization has the authority to make decisions about the future directions of
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the company largely thanks to her position. Hence authority refers to a certain

form of privilege.

Power of an individual is defined by three intuitive factors: The first is the person’s

proximity to the root of the reporting hierarchy. The second is the number of ties

the individual maintains – more connections provide more sources of information.

Finally, the span of control indicates how many subordinates a person has, and,

hence, how much involved he or she is in making decisions over the network.

The notion of power is distinct from both influence and authority in the following

aspects. Firstly, power refers to the overall ability of the person to define the entire

course of the organization. Thus power is considerably distinct with influence, which

in principle relates to the capacity to affect the behavior of one’s neighbors. In this

sense, there is an overlap between power and the spread of influence. However, the

spread of influence is the outcome of a physical process [55], while power is a fixed

attribute that is defined by the network structure. Secondly, authority denotes the

type of power that is accepted within an organization and is derived from the formal

roles. While formal ties affect power, informal ties also play a crucial role, which is

not captured by authority. Hence power is also inherently different from authority.

3.1.3 Definition of Power

To capture the difference between formal and informal ties, we assign a weight of 1

to all formal ties and a weight of k between the values 0 and 1 to all informal ties

to represent the strength of the tie. We call the parameter k interaction effect. In

some sense, interaction effect measures the capability to affect the neighbors and is

therefore similar to the notion of influence. However, here we keep a uniform weight

to for all informal ties as the focus is not on the influence of individual ties, but rather

the overall power of nodes. Furthermore, we introduce a weight ρ to the self-loop on

the root, which measures the “self-assertiveness” of the root. A weight ρ of 1 suggests

that it has the same effect as all the other formal ties, while 0 means that the loop

only affects the capacity of the root node but not the power. We will show later

that the weight ρ is useful for defining leadership styles: A larger ρ indicates a more

“autocratic” style of management. For simplicity, we will assume that ρ = 1 if without

explicit mention.
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Figure 3.2: An organizational network (on the left) and its weighted interaction graph
(on the right)

More formally, we define the weight function µ which depends on the two param-

eters k and ρ:

• Formal ties: If e ∈ Efml, we define the following:

µρ,k(e) =

1 if any end point e is a non-root node

ρ if e = (r, r)

• Informal ties: If e ∈ Einf , we assign µρ,k(e) = k. The range of k guarantees that

directed edges are more important than undirected. An edge from A to B can

be interpreted as the interaction effect between A and B, ranked as the weight

of this edge.

• Backflow: It is natural to assume that the interaction effect between an employee

and her manager is not one-way: While the manager is empowered by having

subordinates, the subordinate also gains power from her manager through social

interaction. On one hand, as a manager acquires subordinates, the manager has

increased her span of control and, hence, becomes more powerful. On the other

hand, the subordinate also increases power through support and patronage of

the manager. Hence, this effect could be captured by an informal tie from the

subordinate back to the manager, i.e., a backflow; and we assume that such tie

exists. Therefore, we set µρ,k(e) = k where e = (u, v) whenever u reports to v.

Based on the definition above, we regard any organizational network as a weighted

interaction graph; an example of this is shown in Figure 3.2.
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Definition 3.1.1 (Weighted interaction graph). Let G = (V, r, Efml, Einf) be an orga-

nizational network. The weighted interaction graph of G is

W (G) = (V, r, Efml, Einf , k, ρ, µρ,k)

where the parameters k, ρ ∈ [0, 1] and the weight function µρ,k are defined as above.

Bonacich power, introduced in [14], is a widely-adopted eigenvector centrality mea-

sure in social networks. The basic idea is that the power of any individual depends

on the power of those it is connected to; the difference between Bonacich power and

the usual eigenvector centrality is the inclusion of a parameter β, which affects the

meaning of centrality.

Definition 3.1.2 (Bonacich power). Let R be the adjacency matrix of the network

(here we implicitly mean there is an indexing of all nodes in the matrix as natural

numbers 1, . . . , n), and Ri,j denotes the (i, j)-entry of R. The Bonacich power of

i = 1, . . . , n is

pi =
n∑
j=1

(α + βpj)Ri,j (3.1)

where α, β are scalar constants. In matrix form, the vector of Bonacich power ~p =

(p1, . . . , pn) is

~p = α(In − βR)−1R~en (3.2)

where I is the n × n identity matrix, and ~en is the column vector of ones with length

n.

It is clear that different values of α and β result in different centrality measures.

Here α only serves as a normalizing factor; It is selected such that the norm ||~p|| equals
√
n. Thus, the most “evenly distributed” case is when pi = 1 for every i = 1, . . . , n.

For the matrix In − βR to be invertible, the parameter β can be any value on the

interval [− 1
λ
, 1
λ
] where λ is the dominating eigenvalue of R. In some sense, it captures

the contribution of ties of a node to its power. When β = 0, Bonacich power coincides

with degree centrality. When β > 0, a node becomes more powerful as its neighbors

become more powerful. In contrast, when β is negative, nodes become more powerful

as their neighbors become less powerful1.

1A negative value of β implies a negative exchange power where connections to nodes with smaller
power results in a bigger power. See e.g. [15] and [44]
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Intuitively, when β > 0, it specifies how much the power of a person depends on

the power of her neighbors. Thus the parameter β also corresponds to a managerial

reality. The principle of loss of control states that as an individual acquires more social

ties, the less her power depends on each of her neighbor’s power [77]. We can reflect

this principle by setting a range for β. In particular, since the capacity c indirectly

indicates how much effect a person spends with each of their subordinates, friends or

collaborator, we require β to be inversely proportional to the capacity minus one (the

“minus one” is for the relation with its manager):

β <


1
λ

if λ > 1,

1
c−1

otherwise
(3.3)

To derive a measure of power in an organizational network, we adopt Bonacich

power on the interaction graph of the network.

Definition 3.1.3. Let i = 1, . . . , n be a node in G. Let Fmli denote the set {j |
1 ≤ j ≤ n, (i, j) ∈ Efml} of all subordinate of i, let Infi denote the set {j | 1 ≤ j ≤
n, (i, j) ∈ Einf} of nodes connected from i by informal ties, and let µi be the node such

that (µi, i) ∈ Efml. We define the power pi of i as discussed above, i.e., by (3.1) it is

pi =
∑
s∈Fmli

(α + βps) + k
∑

w∈Infi∪{µi}

(α + βpw) (3.4)

Now we can answer the questions stated in Example 1. Let the correlation coeffi-

cient δ = 0.5. Assume that capacity of each node is 4, and β = 0.3 < 1
3
. Figure 3.3

shows the resulting power of each node when k = 0.5 (left) and k = 0.1 (right).

When k = 0.5, even though B does not have a single subordinate, she is almost

as powerful as the top manager while A and C possess similar power. However, when

k = 0.1, A and C are much more powerful than B. Hence k captures in some sense

the “importance” of informal ties.

Note also that the power of D, who has two subordinates (through formal ties)

and an informal tie with B, exceeds her manager C in both cases above. We interpret

this situation as follows: Since our notion of power aims to capture a node’s ability

to promote the node’s ideas and decisions to others, it denotes in a sense a level of

“real power”. In the case of D, the real power is higher than her “nominal power”,



40 CHAPTER 3. POWER IN ORGANIZATIONAL NETWORKS

1.51T

0.93A 1.44B 1.11 C

0.51 0.51 1.18

D

0.55

0.55

2.22T

1.15A 0.48B 1.01 C

0.14 0.14 1.18

D

0.15

0.15

Figure 3.3: Individual power with k = 0.5 (left) and k = 0.1 (right)

which is indicated by her level formal position. This may imply a form of “incon-

sistency” within the structure, as D may seek more formal recognition (say, in the

form of promotion). Furthermore, C may experience certain loss of control over D’s

subordinates, as communication may not effectively pass down from C to these nodes.

Such inconsistency gives the network a potential to change. Thus, we say that in this

case the organizational network is unstable. We stipulate that in a stable network, the

levels in the formal tie hierarchy should truthfully reflect the actual power of individ-

uals. In other words, the power of nodes is consistent with their respective levels in

the reporting hierarchy.

Definition 3.1.4. An organizational network G is stable if for any nodes i, j ∈ V ,

lev(i) < lev(j) implies that pi > pj where lev : V → N maps every node to its level in

the hierarchy of Efml. We say that G is unstable if it is not stable.

This definition allows us to formally analyze several phenomena, which we elaborate

in the subsequent sections.

3.2 Stability and Height

Some scholars argue that not only the span of control is limited in organizations, but

there is an “optimal” number of employees for any company [113] resulting in the

limited size of its network. In this section, we continue to study the relation between

the notion of stability introduced above and the height of an organizational network.
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The goal is to explore the formal tie hierarchy throughout this and the next section,

thus, we assume the set of informal ties Einf = ∅.

3.2.1 Chain Networks

Consider a network Cn consisting of n nodes 1, . . . , n such that Efml = {(i, i+ 1) | 1 ≤
i ≤ n − 1}; this is a chain of n nodes. A chain network does not appear as a typical

management structure; clearly, a large number of nodes connected in a chain structure

leads to ineffective communication as the top node will find it difficult to pass down

her power to the bottom of the chain. In the following, we show that the notion of

stability provides us a formal evidence for this ineffectiveness of the chain network.

By (3.4), the power of node i is

pi =


α + βp2 if i = 1

k(α + βpn−1) if i = n

α + βpi+1 + (α + βpi−1)k if 2 ≤ i ≤ n− 1

(3.5)

Lemma 3.2.1. If 0 < β ≤ k < 1, Cn is unstable for any n > 2.

Proof. By (3.5) we get the following derivation

p1 = α + βp2

= α + β(α + βp3 + (α + βp1)k)

= α + αβ + αβk + β2p3 + β2kp1

In other words, p1 =
α + αβ + αβk + β2p3

1− β2k
.

Similarly, by (3.5) we get

p2 = α + βp3 + (α + βp1)k

= α + αβk + αk + βp3 + β2kp2

In other words, p2 =
α + αk + αβk + βp3

1− β2k
.
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Combining the above, we get

p1 − p2 =
αβ + β2p3 − αk − βp3

1− β2k

Since 1− β2k > 0 for any positive β, k < 1, p1 − p2 is negative whenever αβ + β2p3 <

αk + βp3. Clearly, since α is positive and β2p3 < βp3, β ≤ k implies p1 < p2 for any

n > 2

Lemma 3.2.2. The chain Cn is stable if and only if p1 > p2.

Proof. We only need to prove the “only if” direction. Suppose p1 > p2. Then by

(3.5), βp2 > βp3 + (α + βp2)k. Since (α + βp2)k > 0, p2 > p3. Consequently, we have

βp2 > βp4 + (α + βp2)k, and hence p2 > p4. Inductively, we may show that p2 > pi

for any i = 3, . . . , n.

We now prove that pi > pi+1 for any i = 3, . . . , n − 1. Suppose on the contrary

that i > 2 is the smallest such that pi+1 ≥ pi. Then by (3.5), we have pi+2 + kpi ≥
pi+1 + kpi−1. Since pi−1 > pi, it must be that pi+2 ≥ pi+1 ≥ pi. Iterate the same

argument we conclude pn ≥ pi. However, by (3.5) again this would mean that

α + kβpn−1 ≥ α + βpi+1 + k(α + βpi−1) > α + kβpn−1

A clear contradiction. Hence, such an i does not exist and we conclude p1 > p2 >

· · · > pn.

Combining the two lemmas above, we get the following theorem.

Theorem 3.2.1. Fix k and β such that 0 < k < 1 and 0 ≤ β < 1. There is some

n ≥ 1 such that Cm is unstable for any m ≥ n.

Proof. Lemma 3.2.1 shows the statement holds when β ≤ k (where n = 3). Suppose

β > k, by Lemma 3.2.2 we need to find n such that p1 < p2 holds in Cn. Iteratively

applying (3.5), we get that

p1 = α + αβ + · · ·+ αβn−2 + k(β(α + βp1) + β2(α + βp2)+

· · · βn−1(α + βpn−1))

p2 = α + αβ + · · ·+ αβn−3 + k((α + βp1) + β(α + βp2)+

· · · βn−2(α + βpn−1))
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Subtracting the first equation with the second, we get

p1 − p2 = αβn−2 − αk
(
1 + β + β2 + · · ·+ βn−2

)
(1− β)−

βk
(
p1 + βp2 + β2p3 + · · ·+ βn−2pn−1

)
(1− β)

= αβn−2 − αk1− βn−1

1− β
(1− β)− (1− β)βk

n−2∑
i=0

βipi+1

= αβn−2 − αk(1− βn−1)− (1− β)βk
n−2∑
i=0

βipi+1

Since 0 ≤ β < 1, p1 < p2 if αβn−2 ≤ αk(1− βn−1). We solve this inequality and get

n ≥
⌈

logβ
k

1 + kβ

⌉
+ 2

Thus, the theorem is proved.

Theorem 3.2.1 justifies that the chain networks are not suitable for organizations

from the point of view of stability: The network will become unstable as the number

of people (and thus levels) increases.

Remark 3. The above example also provides a mathematical explanation for the use

of backflows in the model. Recall that a backflow represents the reciprocal interaction

effect from a subordinate to the supervisor in a formal relation, which means that the

subordinate is empowered by the supervisor through support and privilege, and it is

given a weight of k in the weighted interaction graph. If such weight is not given, then

the adjacency matrix R of the weighted interaction graph of a chain network will be

Rij = 1 if j = i − 1 and 0 otherwise. The corresponding Bonacich power vector will

be:

~p =



α + αβ + · · ·+ αβn−3 + αβn−2

α + αβ + · · ·+ αβn−3

. . .

α + αβ

α

0


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In this case, the power is strictly decreasing from the top of the chain to the bottom,

and the structure will remain stable regardless of the size of the chain, which does

not meet with our intuition. Thus, the weight added to backflows in our model is

necessary.

3.2.2 Perfect Tree Networks

With a similar but more involved technical analysis, we can generalize Theorem 3.2.1

to perfect tree networks.

Definition 3.2.1. Fix d > 1. A perfect d-ary tree network is an organizational

network where the formal ties Efml form a tree in which every non-leaf node has exactly

d children and all leaves are at the same level in the tree. We use Ddh to denote a perfect

d-ary tree network of height h. The number d is called the arity of the tree.

Note that a unary perfect tree is simply a chain network. The arity d in the perfect

tree network equals to the capacity c minus one, and therefore we get dβ < 1 by our

earlier assumption (3.3) that β < 1
c−1

. Similarly to (3.5), the power of node i is

computed by

pi =


d(α + βp2) if i = 1

k(α + βph−1) if i = h

d(α + βpi+1) + (α + βpi−1)k if 2 ≤ i ≤ h− 1

(3.6)

The following is a lemma that generalizes Lemma 3.2.1.

Lemma 3.2.3. If β ≤ k
d2

, then any perfect d-ary tree network Ddh, with d ≥ 1 and

height h > 2, is unstable.

Proof. By (3.6) we derive the following equations:

p1 =
dα + d2αβ + dαβk + d2β2p3

1− dβ2k

and

p2 =
dα + αk + dαβk + dβp3

1− dβ2k
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Combining the above we get

p1 − p2 =
d2αβ + d2β2p3 − αk − dβp3

1− dβ2k

By assumption we get dβ < 1. Thus 1−dβ2k > 0 for any positive k < 1. Therefore,

p1 − p2 is negative whenever

d2β − k < dβp3(1− dβ)

α

This clearly holds for any β ≤ k
d2

The next theorem generalizes Theorem 3.2.1 to d-ary perfect trees. Lemma 3.2.3

handles the case when β ≤ k
d2

. The case when β > k
d2

can be proved similarly to

Theorem 3.2.1.

Theorem 3.2.2. For any arity d ≥ 1, there is a constant cd ∈ R such that any perfect

tree network Ddh is unstable if

n ≥ cd + logdβ(1/d), (3.7)

where an upper bound for the constant cd is defined as cd ≤ logdβ k/(1 + kβ) + 2.

Proof. Lemma 3.2.3 shows that the statement holds when β ≤ k/d2 (where h ≥ 3).

Suppose β > k/d2. Iteratively applying (3.6), we get that:

p1 = dα + dα(dβ) + dα(dβ)2 + · · ·+ dα(dβ)h−2+

dβk(α + βp1) + (dβ)2k(α + βp2) + · · ·+ (dβ)n−1k(α + βph−1))

= dα
h−2∑
j=0

(dβ)j + k
h−1∑
r=1

(dβ)r(α + βpr)

p2 = dα + dα(dβ) + dα(dβ)2 + · · ·+ dα(dβ)h−3+

k(α + βp1) + (dβ)k(α + βp2) + · · ·+ (dβ)h−2k(α + βph−1))

= dα

h−3∑
j=0

(dβ)j + k

h−1∑
r=1

(dβ)r−1(α + βpr)
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Subtracting the first equation by the second, we obtain:

p1 − p2 = dα(dβ)h−2 − αk
(
1− (dβ)h−1

)
−

βk(1− dβ)
(
p1 + dβp2 + (dβ)2p3 + · · ·+ (dβ)h−2ph−1

)
= dα(dβ)h−2 − αk

(
1− (dβ)h−1

)
− (1− dβ)βk

h−2∑
i=0

(dβ)ipi+1

Since 0 ≤ β < 1/d by our assumption, p1 < p2 if dα(dβ)h−2 ≤ αk(1 − (dβ)h−1).

Solving this inequality we get:

h ≥
⌈

logdβ
k

1 + kβ

⌉
+ 2

Thus, the theorem is proved.

Remark 4. The proof of Theorem3.2.2 gives us an upper bound for the constant

cd which only depends on d:

cd ≤ logdβ k/(1 + kβ) + 2 (3.8)

The inequality (3.8) provides a theoretical upper bound on the number of levels for a

perfect d-ary tree to stay stable. Note that this bound may be much larger than the

minimum value for such cd. For example, using UCINET [17], we computed the actual

limits on numbers of hierarchy levels with k = 0.5: for d = 2, it is 5; for d = 3, it

is 8 (the theoretical bounds are 18 and 21, respectively.) Furthermore, by increasing

the span of control (i.e., d) of nodes, the theorem implies a logarithmic growth on the

bounds on the number of levels. Theoretical bounds for small values of d can be found

in Table 3.1.

We now interpret the main result (Theorem 3.2.2) of the section.

A general and significant organizational change trend in the last 50 years is the shift

from tall hierarchies with many levels to flat hierarchies, where the number of levels is

kept bounded. Research has found that most large companies changed their structures

to the flattened ones in the past 3-4 decades [115], e.g., back in 1950s companies had

up to twenty layers in their hierarchies while by the end of the twentieth century they

had been trimmed to five or six. We conjecture that this delayering process implies
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span of β < 1
d

k =0.1 k =0.5 k =0.75
control
1 0.9 25 13 10
2 0.45 31 18 15
3 0.3 35 21 18
4 0.225 38 23 20
5 0.18 40 25 22
6 0.15 42 27 23
7 0.128571 43 28 25
8 0.1125 44 29 26
9 0.1 45 30 27
10 0.09 46 31 28

Table 3.1: Stable d-ary tree networks: theoretical bound on the number of layers

computed as n =

⌊
logdβ

k

d(1 + kβ)

⌋
+ 2

some fundamental truth regarding organizational networks. The well-known theory

of “six degrees of separation” has been extensively studied and verified in the social

network analysis community[84]. This theory states that six is a natural bound in the

acquaintance relation on the distance between two people in the world.

Analogously, it seems that for organizational networks, a bound on the number of

levels of the hierarchy also exists. Moreover, this upper bound is natural as it allows

the top manager to maintain control over the hierarchy.

Theorem 3.2.2 provides an evidence of the existence of such a bound: As the arity d

is bounded (by capacity of individuals), the maximum height for a perfect tree network

to maintain power consistency is bounded.

3.3 Flattening – Workplace Democratization or Power

Concentration?

Flattening (or delayering) is the phenomenon when an organization acquires a new

structure by decreasing the number of hierarchy levels. It reflects a notable trend

in organizational structure in the last half a century. Researches show that in last

few decades most large companies changed their structures to the flattened ones. For

instance, as it is shown in [115], the average number of those who reported directly to

the CEOs in large companies was 4.7 in 1980, and 9.8 in 1999.
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Figure 3.4: Network A with 31 nodes

The alleged reasons for flattening include empowering staff with decision mak-

ing entitlement, increasing flexibility of employees, pushing down decision making,

improving information flow and consequently enabling faster decision. In general, flat-

tening is viewed as a strategy for democratization of the work place. However, some

researchers also argue that flattening leads to the opposite effect – more control and

decision making is concentrated on the top in the flattened organization, and hence it

is also a strategy of strengthening controls by the top managers [106, 115].

In this section, we analyze the flattening process from the point of view of power.

Based on our organizational network model, we argue that most employees indeed ob-

tain more power through flattening, although the average power decreases. Moreover,

the upper level managers are the ones whose power improves considerably.

Example 2. Consider a network A representing a perfect tree network without in-

formal ties, such that there are 31 nodes and the capacity of each node is 3. Suppose

that the span of control is exactly two for all nodes. This network can be represented

as a perfect binary tree of height 5 as in Figure 3.4.

Suppose we increased the span of control of each node to 5, and the total number

of nodes is kept the same, the network becomes a 5-ary perfect tree with height 3 (See

Figure 3.5.)

We ran several tests computing the individual power with different parameters and

list results in the Table 3.2, where n is the number of nodes and ` is a hierarchy level.

One can see that the average power in A is strictly greater than the average power in

B. Similarly, the figures for the case k = 0.1 shows that flattening negatively impact

power of individuals in the network: only four nodes increase their power while 11
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Figure 3.5: Network B with 31 nodes

others become less powerful and 16 stay the same. However, when we even slightly

increase k to 0.15, the majority of nodes increase their power. Moreover, when k = 0.8,

the network A becomes unstable while B is still stable.

A: d = 2, β = 0.45
n k=0.1 k=0.15 k=0.5 k=0.8

l = 0 1 2.613 2.553 2.193 1.949
l = 1 2 2.175 2.181 2.181 2.149
l = 2 4 1.522 1.527 1.556 1.587
l = 3 8 0.819 0.828 0.864 0.882
l = 4 16 0.070 0.100 0.252 0.323

max 2.613 2.533 2.193 2.149
min 0.070 0.100 0.252 0.323
average 0.668 0.685 0.765 0.800

B: d = 5, β = 0.18
l = 0 1 3.503 3.450 3.056 2.733
l = 1 5 1.929 1.941 1.966 1.936
l = 2 25 0.070 0.103 0.306 0.437

max 3.503 3.450 3.056 2.733
min 0.070 0.103 0.306 0.437
average 0.481 0.507 0.662 0.753

Table 3.2: Comparing individual power in networks A and B (tests performed using
UCINET [17])

In [64], the authors carried out a survey in a company after introducing a new flat

structure. The survey showed that 65.9% of employees were very happy, 26.3% were

not happy, and 7.8% were not concerned about the change. This correlates very well

with the results we obtain: the computation reveals that 64.5% (20 out of 31) of nodes

when k = 0.15 become more powerful.

Through this example, we argue the following rather paradoxical aspect of flatten-
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ing in an organizational network (flattening paradox): Flattening decreases the average

power in the company, but empowers most employees.

The above displays a complicated relation between organizational power and struc-

tural properties of the formal tie hierarchy. To develop a better understanding of this

relation, we perform a series of experiments.

Experiment 1. Perfect tree hierarchies

We first focus on perfect tree hierarchies. Here the goal is to investigate the dis-

tribution of power in perfect trees of different heights and arities.

Using CORPNET, we generate perfect tree hierarchies of various heights and set

the parameter k = 0.1 and ρ = 0. The arity of the trees is set between 2 and 9, while

the height h is between 2 and 7. When the tree has more than three levels and the

sum of the arity and height exceeds 9, the tree becomes too large for the software

to handle. Thus, we only explore the results for the remaining cases. In particular,

Table 3.3, Table 3.4 and Table 3.5 list the power of the roots of the trees, the average

power of all nodes, and its variance, respectively.

arity\height 8 7 6 5 4 3

2 3.5684 3.2424 2.922 2.6126 2.317 2.031
3 5.0269 4.4021 3.7703 3.1529 2.5671
4 5.7099 4.8204 3.9219 3.0557
5 5.7602 4.6223 3.5034
6 5.2635 3.9172
7 5.8549 4.3025
8 6.4049 4.6639
9 6.9198 5.0049

Table 3.3: The Power of Top-level managers (roots) in perfect trees of varying heights
and arities

Expectedly, when the arity is fixed, as the tree becomes taller, the root node gets

more powerful; at the same time, the average power among all nodes drops, which

means that the distribution of power becomes more uneven. This observation gives

the impression that when we fix individuals’ capability, power is distributed more

evenly in flattened hierarchies than in taller hierarchies.

However, when taking into account possible changes in capability, the situation is

rather different. As shown in the tables, if the height of the tree is fixed, as the arity



3.3. FLATTENING 51

arity\height 8 7 6 5 4 3

2 0.5865 0.5663 0.5625 0.6503 0.6795 0.6883
3 0.5620 0.5652 0.5710 0.5806 0.5923
4 0.5080 0.5109 0.5172 0.5277
5 0.4679 0.4722 0.4807
6 0.4376 0.4445
7 0.4100 0.4156
8 0.3873 0.3918
9 0.3680 0.3726

Table 3.4: The average power of nodes in perfect trees of varying heights and arities

arity\height 8 7 6 5 4 3

2 0.5876 0.5840 0.5759 0.5538 0.5383 0.5263
3 0.6841 0.6810 0.6740 0.6629 0.6492
4 0.7277 0.7052 0.6686 0.6561
5 0.7811 0.7771 0.7690
6 0.8085 0.8024
7 0.8319 0.8273
8 0.8500 0.8465
9 0.8646 0.8613

Table 3.5: Variance of power of nodes in perfect trees of varying heights and arities

increases (that is, as people’s span of control increases), the root becomes significantly

more powerful, while the average power drops and variance increases.

We then plot the distribution of power across all levels of perfect tree hierarchies

with arity ranging in 2,3,4 and heights 3 ≤ h ≤ 8 (See Figure 3.6. )

In each plot, as the hierarchy flattens, the power of any level strictly decreases. At

the mean time, when we consider the distance of nodes from the leaves, for almost

any k, the k-th last level of the trees gains power slightly. When the arity increases,

the difference between upper levels and lower levels becomes increasingly visible. One

can interpret this intuitively: when managers get more subordinates, there is a wider

power gap between an upper and a lower level.

Experiment 2. Random tree hierarchies Flattening may refer to two types of

structural changes in an organization: The first type reduces the height of an organi-

zation by removing nodes, while not changing the capacity of its managers. An effect

of this process may be conceptually revealed in the results of Experiment 1. The sec-

ond type reduces the height of a hierarchy by improving the capacity of nodes, while
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Figure 3.6: The power of three perfect tree networks with arities 2,3, and 4. The plots
show the power across all levels of the hierarchies.

not changing too much the number of members of the organization. We now focus

on this type of changes. Here perfect tree hierarchies no longer apply as they tend to

have very different sizes when arities and heights differ.

For this experiment, we simulate formal tie hierarchies using a random tree model.

Procedure 1 is a simple procedure that produces trees with a given height h, where

the degrees of all internal nodes are taken from a normal distribution with mean d

and standard deviation.

Procedure 1 RandomTree(d, h, s) where h ∈ Z, d, s ∈ R
Initialize an empty tree and add a root
lev = 0
while lev < h do

for every node u at level lev of the current tree do
Randomly generate a number m in a normal distribution with mean d and

standard deviation s
Create m children for the node u

end for
end while
Return the constructed tree

We generate 10 random trees for each height between 3 and 7 while setting s = 1

and k = 0.1. We then compute the average power of nodes in each level and take the
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average over all trees of the same height. The details of the generated trees are listed

in Table 3.6.

Starting from random trees with height 7 in the top row, we can imagine a flatten-

ing process that reduces the height of the hierarchy iteratively, while expanding the

expected arity. Hence the first row corresponds to the tallest hierarchy where the last

row corresponds to the flattest. The third column lists the average number of nodes of

trees for each height; as the hierarchy flattens, the number of nodes reduces slightly.

h d Avg size Level 0 1 2 3 4 5 6 Avg

7 1.7 84 1.804 1.785 1.232 1.293 1.355 0.878 0.071 0.647
6 2 76.4 1.873 1.997 1.738 1.358 0.953 0.070 0.647
5 2.5 67.2 2.279 2.106 1.649 1.247 0.071 0.611
4 3.5 65.4 2.930 2.400 1.567 0.067 0.536
3 7.5 65.2 4.314 2.445 0.056 0.399

Table 3.6: Random trees generated by Procedure 1 with height h and expected arity
d. The third column shows the average number of nodes of the generated trees. The
subsequent columns show the average power of nodes across all levels. The last column
shows the average power of all nodes for height h.

We then plot the average power of nodes across all levels for each height. Each curve

shows changes to the average power of nodes at a particular level as the organization

flattens. We also illustrate the change of power in the last level, and in the second-to-

last level (See Figure 3.7.)

From these plots, one can identify the following pattern: As the hierarchy is flat-

tened, the root (level 0) gains the most power, while the other levels tend to lose power

the closer we get to the last level. In particular, the leaves (operatives) lose power

as a result of flattening, while levels that are above the last level tend to gain power.

Overall, this flattening process reduces the average power in the hierarchy.

These results are consistent with our observation in Example 2, where flattening

provides upper levels of the hierarchy with more power. In general, flattening empow-

ers managers in the organization, and therefore a large number of individuals would

prefer a flat hierarchy to a taller one. However, the process also reduces the power of

the operatives.
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Figure 3.7: The average power of nodes across all levels in different random trees as
the hierarchy flattens (left). Each curve corresponds to a particular level, and the
horizontal axis refers to the different trees. Average power of nodes in the last level of
these trees (right). Average power of nodes in the second-to-last level (center).

3.4 Understanding Informal Ties

Our analysis so far discusses only formal tie hierarchies, where no undirected informal

tie is maintained. A long argument in management studies addresses the importance

of informal social relations among members of organizations. Such relations, such as

collaboration, advice or friendship, play important roles in the cohesion and effective-

ness of the organizational structure [61, 32]. It is, therefore, crucial to incorporate

informal ties into our analysis. In this section, we no longer assume that Einf = ∅ and

aim to find how these informal ties affect the power of individuals.

3.4.1 A Benchmark for Organizational Networks

To correctly predict the impacts of informal ties on the network, it is imperative to

adopt a reasonable benchmark for generating random social links. Popular benchmarks

models such as planted `-partition, relaxed caveman graphs, and the LFR graphs [43]

are not suitable for organizational networks as the informal ties generated by these

models will be independent of the formal tie hierarchy of the organization. Naturally,

the establishment of informal ties in an organizational network is significantly affected

by the position of individuals in the reporting hierarchy.
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Homophily is a recurring theme in social network studies which means that indi-

viduals have a natural tendency to bond with others that are similar to themselves.

Numerous management studies also observe a kind of homophily in the workplace:

Employees in an organization are more likely to establish social connections within a

certain “circle”, such as departments, offices. Moreover, individuals tend to establish

personal ties with those who are at the same or similar levels in the hierarchy [76, 28].

No social network model so far has been defined taking into account this multiplex

view of an organization. Hence, we provide a new benchmark graph; our view is that

the new benchmark graph shall exhibit community structure that reflects the observed

homophily phenomenon in an organization.

We adopt a distributed approach where each node randomly chooses to set up

informal ties with other, in such a way that closer nodes (in distance) enjoy a higher

“probability” of an informal tie. The procedure is described in Procedure 2.

Procedure 2 RandomInformalTies(T, γ, p) where T = (V,Efml) is a formal tie hier-
archy, γ ∈ N, p ∈ [0, 1]

Initial a set of undirected edges Einf := ∅
for Every node u ∈ V do

Compute the level `(u) of u in T
end for
for Every node u ∈ V do . Generate a probability distribution of all nodes in
V \ {u} by setting for any node v 6= u a probability Pru(v)

for v ∈ Su do
Compute the lowest common ancestor of u and v, that is, a node w such that

w is an ancestor of both u and v, and `(w) is maximal.
Set ∆ := max{`(u), `(v)} − `(w)
Set Pru(v) := p∆

end for
Randomly select γ nodes that are not u based on the probability Pru
For each selected node x, add to Einf an edge (u, x) if it is not in Einf already

end for
Return the constructed set Einf of undirected edges

To generate a random organizational network with both formal and informal ties,

we first apply a procedure that constructs a formal tie hierarchy T = (V,Efml), and

then apply Procedure 2 with the parameters T , γ, p to derive the set of informal

ties. The resulting network not only captures main characteristics of social networks

(such as community structure), but also entails reporting hierarchy of the network;

see Figure 3.8 for a generated network visualized using a force-directed method. The
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community structure clearly resembles departments and reflect hierarchical levels in

an organization.

Figure 3.8: A randomly generated network for d = 3 and 7 levels. Blue and yellow
lines are formal and informal ties, resp. The root is the brown square. Sizes of nodes
indicates their power. The graph is generated and visualized by CORPNET.

Example 3. To further validate our benchmark, in Figure 3.9(a), we consider a perfect

3-ary tree hierarchy with no social ties on it. We perform Newman’s spectral graph

clustering algorithm on this network and show the identified cluster (i.e. community)

of each node, as indicated by its color [43]. In this case, we can see that clusters reflect

departments, but not the levels of hierarchy. However, when we enrich this hierarchy

with a generated social network, we get a quite different picture in Figure 3.9(b).

The resulting clustering clearly indicates the following pattern:

1. Clusters typically reflect departments: people in the same department tend to

form a cluster.

2. Clusters also reveal levels: managers in the same level tend to form a cluster.

Clustering of the same nature is observed for another network, with randomly

generated formal tie hierarchy using Procedure 1; See Figure 3.10.
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(a) Clustering without informal ties

(b) Clustering with informal ties

Figure 3.9: Power of informal ties on community formations in organizations. Clusters
are indicated by different colors. The graphs and their clustering are computed by
CORPNET

Figure 3.10: Random tree and random social network. The graph is generated and
visualized by CORPNET

3.4.2 Importance of Informal Ties

We use two experiments to test how informal ties affect power in an organizational

network. The first goal is to compare the power distribution before and after informal

ties are introduced to a formal tie hierarchy. The second goal is to see how the formal

tie hierarchy impacts power with the presence of informal ties. The third goal is to

see how changing density of informal ties in the network affects structural properties

and power. All experiments are carried out using CORPNET.

Experiment 3. Stability and Informal Ties We consider two perfect trees: one

has the span of control d = 3 and 7 levels, the other one has the span of control d = 10

and 4 levels. The resulting values of individual power in both networks are listed in

Table 3.7. Note that both hierarchies are stable. We then generate random informal

ties with γ = 8 and different parameter p over the formal tie hierarchies.

In Figure 3.11, we plot the distribution of average values of power at each hi-
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β 0.3 0.07
d 3 10
n 1093 1111

Level: k = 0.1 k =0.5 k =0.1 k=0.5
0 5.03 4.8 6.16 5.66
1 4.53 4.79 4.86 4.7
2 3.77 3.9 2.89 2.85
3 2.95 2.91 0.05 0.22
4 2.06 1.96 - -
5 1.1 1.07 - -
6 0.06 0.24 - -

Table 3.7: Power Distribution in Two Perfect Tree Hierarchies

erarchy level in eight randomly generated social networks over the tall and the flat

organizations. In Figure 3.11(a), one may see that only two out of eight generated

networks are stable. However, as shown in Figure 3.11(b), in the flat organizations

the non-reporting relations does not change the power distribution: all the networks

stay stable.

As the result shows, the taller hierarchy’s power consistency is very fragile – adding

informal ties in all experiments makes the network unstable. On the other hand, the

flattened hierarchy stays stable in most of our experiments with k = 0.1 and the

probability p = 0.5 of existing friendship between two nodes which have the same

direct manager. When the probability is small, corporate networks stay stable even

with k = 0.5. Thus, this experiment justifies following: As an organizational hierarchy

has more levels, it is much more likely to be destabilized by non-reporting connections.

Experiment 4. Perfect Tree Networks with Social Ties

We generate three perfect tree formal tie hierarchies. The first is a tall hierarchy

with arity 2 and height 8; there are 255 nodes in the tree. The second is a flat

hierarchy with arity 6 and height 4; there are 259 nodes in the tree. The third one is a

hierarchy in between the previous two, with arity 4 and height 5; there are 341 nodes

in the tree. We then generate informal ties by fixing p = 0.5 and varying parameter

γ ∈ {0, 1, . . . , 10}.

In Figure 3.12 we plot the average power of nodes and its variance in each net-

work. It is clear that as more informal ties are introduced to the network the average

power in all network increases, although this increase is more evident in the flattened
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(a) Distribution of power in the tall orga-
nization

(b) Distribution of power in the flat orga-
nization

Figure 3.11: Average values of power at each hierarchy level in randomly generated
social networks: (a) in the tall organization, and (b) in the flat organization. The
different lines indicate differences in “density” of the informal ties; in general, a denser
informal relation causes a more even distribution of power across levels, hence a “flat-
tened” (less-steep) curve.

.

networks and when there are fewer informal ties. On the other hand, the variance

drops significantly as more informal ties are introduced, showing that power tends to

be more evenly distributed with informal ties.

Figure 3.12: Power (left) and variance (right) for three types of perfect trees with
increasing density of informal ties.

We next measure the level of stability in the network as more informal ties are

added. To do that, we recall Definition 3.1.4 where a network is called stable if power

in upper levels is consistently higher than power in lower levels. We thus call an

internal node (a manager) u stable if there is no node v with a lower level than u and

whose power exceeds the power of u; otherwise, the internal node is called unstable.



60 CHAPTER 3. POWER IN ORGANIZATIONAL NETWORKS

Note that this definition only applies to managers (people with subordinates) of the

network. In the following definition, we introduce a measure for the level of instability

within a network.

Definition 3.4.1. The instability index ι of the network is the proportion of unstable

internal nodes among the set of all internal nodes in the formal tie hierarchy.

Based on the definition above, in Figure 3.13 (left), we plot the instability index for

all three networks as more informal ties are added. In all three formal tie hierarchies,

instability increases as more informal ties are added. However, the tall hierarchy is

especially unstable only after a small set of informal ties (γ = 1) is added, while in

the flat hierarchy, the instability index is kept low (lower than 0.1) even when a large

number of informal ties are added. This further confirms the finding in Experiment 3

about the differences between tall and flat hierarchies.

Figure 3.13: (left) The instability index for three types of perfect trees with informal
ties. (right) The modularity for these networks.

We then apply Newman’s spectral community detection algorithm to the networks

with informal ties and compute modularity in each case. Modularity is a standard

measure for a network and indicates how “clustered” a network is, i.e., how strong the

network exhibits community structure with the detected communities [83]. Intuitively,

the higher the modularity is, the more evident the clusters in the network become.

The experiments show that Newman’s spectral algorithm produces roughly the

same number of communities in each case (between 18 to 22). However, there has

been a considerable variation regarding modularity as more informal ties are added.

As the density increases, modularity significantly drops from above 0.6 to around 0.4

(for tall networks) and 0.3 (for flat networks). In a certain sense, this result captures
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the fact that all members of the organization form a more cohesive and unified team

with more informal ties.

We further perform analysis on the distribution of power and show the results in

Figure 3.14:

Figure 3.14: The results include three types of perfect trees with informal ties. The
horizontal axis for all plots is the density of informal ties in the network. (left) The
average power of the root. (center) The average power of the leaves. (right) The ratio
between the average power of the root against the leaves.

• We plot the power of roots in the networks. The plot reveals that as the density

of informal ties increases, the power of roots initially drops but then lifts up

when more and more informal ties are present.

• We plot the average power of the leaves in the networks. The plot shows that in

general more informal ties brings higher power to the operatives in the network,

and the change can be dramatic, the power of operatives almost triples when

the parameter γ is changed from 0 to 10.

• We compute the ratio between the power of the root and the average power of

leaves in the networks. In some sense, this ratio reflects the level of inequality

of the network. In general, more informal ties makes the power among members

more equal and the ratio drops. The most significant change occurs for flat

networks, where without informal ties, this ratio reaches above 14, much higher

than the other taller hierarchies. However, as more informal ties are added to

the network, this ratio converges to about 3, which is very similar to the other

hierarchies.
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This experiment also gives us more insights towards the general phenomenon of flat-

tening. Recall from Section 3.3, the experimental results show that flattening increases

the power of the majority, but widens the gap between upper-level managers to lower

levels. Here, our experiments show the importance of informal ties under this context:

One can significantly reduce the gap between power across upper and lower levels by

enabling more informal ties in the organization.

3.5 Leadership Styles: a Network Perspective

A leadership style is usually defined as a general approach acquired by the organi-

zation’s leader into directing and performance management, i.e. how to set goals,

implement plans, and motivate team members. A good leader makes sure the whole

team is working towards a common goal, delivers outcomes and develop a healthy

working atmosphere within the organization. Thus, the cohesion and productivity of

an organization often hinge on the adoption of effective leadership styles by its top

managers [97].

Traditionally, management studies focus on a behavioral perspective of leadership

styles and analyze important traits of good leaders. Based on traits of cognitive, social

and psychological factors, management theorists and practitioners typically classify

leadership styles into several well-established categories, such as autocratic, paternal-

istic/consultive and democratic styles [48]. In this section, our goal is to provide an

alternative, structural angle to the categorization and analysis of management styles.

We start with a detailed discussion of the factors affecting the distribution of power.

Experiment 5. We carry out this experiment based on the 4-ary perfect tree hierarchy

with height 5. The hierarchy is “standard” in the sense that it is neither tall (with

a low span of control) nor flat (with a large span of control) and therefore should

capture an idealized typically formal tie hierarchy. We generate random informal ties

in the hierarchy using the parameters γ = 5 and p = 0.5. Two important factors

influence power in this network: the value of the parameter k, which measures the

weight of informal ties as compared to formal ties, and the value of ρ, which measures

the self-assertiveness of the root of the hierarchy. Our goal for this experiment is to

see how the combination of k and ρ affects the distribution of power.

We take k ∈ {0.1, . . . , 1} and ρ ∈ {0.1, . . . , 1} and generate 10 networks for each
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combination of k and ρ values. We then calculate using CORPNET the average power

of nodes for each combination of k and ρ and plot them in Figure 3.15. As k increases,

the average power in the network also increases; on the other hand, a higher value of

γ leads to a decrease in average power, although the difference is minor.

Figure 3.15: Average power of perfect tree of arity of 4 and height 5 with random
informal ties

We then plot more statistics in Figure 3.16. Firstly, as shown in the plot on the

left, the power of the root of the network decreases linearly on the increase in k, and

increases with respective to the value of ρ. Secondly, the variance of the distribution

of power drops exponentially with increasing k. Thirdly, the ratio of power between

the root and leaves also drops exponentially with increasing k. Combined, these facts

indicate that the power is distributed more evenly as k increases.

Figure 3.16: Perfect Tree of height 5 with informal ties. (left) The power of the roots.
(center) The variance of power among all nodes. (right) The ratio between power of
roots against leaves.

Finally, we plot the modularity and instability index of the community structure
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Figure 3.17: Perfect Tree of height 5 with informal ties. (left) Modularity of the
identified clusters by Newman’s spectral algorithm. (right) Instability index of the
networks.

identified by Newman’s spectral algorithm with increasing k in Figure 3.17. Just like

in Experiment 4, the algorithm identified 18-22 communities in all cases, and as k

increases from 0.1 to 1, the modularity increases between 0.34 and 0.46 in a linear

fashion. This observation shows that the network tends to be more clustered as k

increases. On the other hand, as k increases, the instability also gets larger. More

interestingly, the instability index grows in different speed as k grows and roughly

separate into three stages: It grows very slowly (below 0.1) when k is small (between

0.1 and 0.4), and then grows very fast when k is between 0.4 and 0.75 before slowing

down again for large k (above 0.8) but at a much higher value. We also obtain the

same pattern regardless of the value of ρ. Thus in the plots, we do not modify the

values of ρ.

The results of Experiment 5 demonstrate that the distribution of power is greatly

influenced by the value k and, at a much smaller scale, the value of ρ. These results

suggest that a network-based approach to define and assess leadership styles is possi-

ble. In general, leadership styles in organizations are classified by the level of control

exercised by the top managers. For example, managers in an autocratic organization

make decisions unilaterally with no initiatives from the bottom while in a democratic

organization, decisions are made by majority rather than by the top managers. The

value of k characterizes the amount of influence to the power of informal ties compared

to formal ties; in this sense, k can be regarded as an indicator of a level of control from

higher to lower level of the reporting relation. Moreover, ρ also intuitively character-

izes the top manager’s sense of self-determination when it comes to decision making

and hence also affects leadership style.
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We describe below some major classified leadership styles defined in management

science [105]. We also interpret each style using a combination of parameters k and ρ:

Autocratic style. This style assumes that the decisions are made from the top

management unilaterally. There are few or no initiatives from the bottom of the

hierarchy. The number of connections of any individual employee is relatively low

because maintaining a reporting relation requires a lot of resources. Hence, we say

that an organizational network (with a fixed weighted interaction graph) is autocratic

if ρ > 1, k is very small (i.e. within the range [0, 0.1]). The benefit of this style is high

stability, while the negative effect is the lack of motivation of employees.

Democratic style. Here the decisions are made by the majority of the employ-

ees. There are many initiatives from the bottom of the hierarchy and collaboration

requires as many resources to maintain as the reporting relations. Thus, we say that

an organizational network is democratic if ρ = 0, k ∈ [0.5, 1). The benefit of this style

lies in job satisfaction and quality. However, it does mean a higher level of instability

and inefficiency.

Paternalistic (consultative) style. This leadership style sits somewhere between

autocratic and democratic styles. While the decisions are made mainly by the top

managers, they take into account the best interests of the employees. The interaction

is mainly one-directional (downwards), but feedbacks are encouraged. Hence, we define

an organizational network to be paternalistic if ρ > 0, k ∈ (0.1, 0.5).

Chaotic style. This is a more recent style of management, which gives employees

total control over decision making. Here, informal ties become the dominant personal

links and thus require a larger weight as their effect and a large amount of resources

to maintain. We define an organizational network to be chaotic if ρ = 0, k = 1. One

would expect any chaotic organizational structure to be unstable.

Example 4. Based on the description above, we use CORPNET to generate organiza-

tional networks that capture each management styles above, by setting the parameters

correspondingly. Figure 3.18 shows three typical networks with different management

styles: autocratic, paternalistic, and democratic. The sizes of the nodes (drawn in
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Leadership style ρ k Instability index

Autocratic ρ = 1 k ∈ [0, 0.1] low
Paternalistic ρ > 0 k ∈ [0.1, 0.5) low
Democratic ρ = 0 k ∈ [0.5, 1) high
Chaotic ρ = 0 k ∈ 1 high

Table 3.8: Organizational networks with different leadership styles

force-based layout) represent their power. One can clearly identify that the distribu-

tion of power in such networks is quite different, and reflect the reasoning above.

(a) A network with auto-
cratic management styles

(b) A network with paternal-
istic management styles

(c) A network with demo-
cratic management styles

Figure 3.18: Distribution of power in networks with different management styles

Experiment 6. Leadership styles

We elaborate the discussion above by carrying out systematic experiments on ran-

dom networks. Here once again we consider both a tall hierarchy (Height 7) and a flat

hierarchy (Height 4). We generate random trees using Procedure 1 setting the mean

arity of the trees to be 3 (for tall hierarchy) and 6 (for flat hierarchy). For each lead-

ership style in Table 3.8, we generate ten networks of each type and compute average

power at each level. We then plot the average power of each level in Figure 3.19.

In both organizations, autocratic style results in the largest variation of power

across levels. The difference between a tall organization and a flat one is that the

flat organization is stable under autocratic style whereas middle levels of the tall

organization display much fluctuation. The other three styles, on the other hand,

gives a much more even distribution of power across the levels. In the tall organization,

the network is stable under the paternalistic style and becomes highly unstable under

chaotic style.
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Figure 3.19: The distribution of average power across all levels in randomly generated
networks. The networks consist of random formal tie hierarchy and random informal
ties. Power in random tall organizations (left) where the formal tie hierarchy has
height 7 and mean arity 3. Power in random flat organizations (right) where the
formal tie hierarchy has height 4 and mean arity 6.

3.6 Case Study: Krackhardt and Hanson’s Net-

work

Krackhardt and Hanson in [61] studied a high-tech company with 21 managers. They

analyzed the reporting hierarchy in the company, as well as reconstructed two types

of social links on the same group of employees through a series of interviews – one

type of social link is the advice relation (based on the interview question “To whom

do you go for advice?”) and the other is friendship (based on the question “Who are

your friends?”). This data provides a real world case study for testing our model. In

[61], the friendship links are directed; to fit our model we make them undirected by

keeping only mutual friendship connections.

The reporting hierarchy of the network is depicted in Figure 3.20: there is one top

manager (7), four departments, managed by 2, 14, 17, and 21, respectively.

We considered separately a reporting hierarchy and a “hybrid” organizational net-

work that contains both formal and informal ties. We applied our power based ap-

proach to the both cases, and obtained the results that are listed in Table 3.9.

From the results, we draw two main conclusions:

(1) There is no correlation between power and the age, nor years of service of em-

ployees.
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Figure 3.20: Krackhardt and Hanson’s hierarchy with 21 nodes.

Attribute Hierarchy Hybrid
ID Dept Age YoS k = 0.1 0.5 0.75 k = 0.1 0.5 0.75
1 4 33 9 0.06 0.25 0.34 0.18 0.68 0.84
2 4 42 20 1.35 1.41 1.42 1.43 1.55 1.48
3 2 40 13 0.07 0.32 0.45 0.11 0.41 0.5
4 4 33 8 0.06 0.25 0.34 0.22 0.85 1.06
5 2 32 3 0.07 0.32 0.45 0.2 0.77 0.97
6 1 59 28 0.06 0.27 0.37 0.1 0.39 0.49
7 - 55 30 2.39 2.13 1.96 2.33 1.67 1.33
8 1 34 11 0.06 0.27 0.37 0.1 0.38 0.47
9 2 62 5 0.07 0.32 0.45 0.07 0.24 0.28
10 3 37 9 0.05 0.23 0.31 0.05 0.18 0.21
11 3 46 27 0.05 0.23 0.31 0.26 1 1.24
12 1 34 9 0.06 0.27 0.37 0.19 0.72 0.9
13 2 48 0 0.07 0.32 0.45 0.11 0.42 0.51
14 2 43 10 3.06 2.98 2.88 2.99 2.34 1.96
15 2 40 8 0.07 0.32 0.45 0.16 0.59 0.73
16 4 27 5 0.06 0.25 0.34 0.1 0.36 0.45
17 1 30 12 0.06 0.27 0.37 0.27 1.03 1.29
18 3 33 9 0.92 1.03 1.07 0.96 1.04 1
19 2 32 5 0.07 0.32 0.45 0.24 0.89 1.09
20 2 38 12 0.07 0.32 0.45 0.07 0.24 0.28
21 1 36 13 1.77 1.8 1.78 1.9 1.68 1.53

Table 3.9: Power in Krackhardt and Hanson’s network, β = 0.1

(2) By taking into consideration the informal ties, the power of individuals on the

bottom (leaves) increases while those on higher levels lose some of their power.

Note further that this network is unstable by our definition as 14 has more power than

7 in all the cases. We suggest two possible ways to interpret this fact:

• A high power of a manager may suggest high capability and performance, as well
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as a high workload. This could be used as a rigorous basis for certain rewards to

the particular employee in the form of, for instance, bonuses or promotion. Such

bonuses would increase the loyalty of the employee, and, as a result, decrease

possible risks.

• The node 14 is overwhelmed, as it has too many direct subordinates. To re-

duce this number and, therefore, to “stabilize” the structure, certain structural

changes can be done. One of the possible solutions is to promote two of 14’s

most powerful direct subordinates (5 and 19) and distribute the rest (3, 9, 13,

15, 20) between them.

3.7 CORPNET: an ONA Tool

An ONA tool is a software that provides analytics the network structures within a com-

pany. It should reveal information flows, identify potential structural holes, gaining

insights into properties that are invisible at first sight. Such insights can then be used

to derive beneficial business strategies such as restructuring or promotion/demotion

of staffs.

There are various existing ONA tools, examples of which include InFlow2, SYNAPP3,

and SYNDIO4. These software tools usually perform data visualization tasks, as well

as extracting standard network measures. However, two significant limitations exist:

1) Such products are mostly commercially available which made them difficult to

be adopted for management science research, and,

2) Most importantly, they do not study correlations between formal and informal

structures.

The aim of CORPNET is a stand-alone software application created to perform

ONA functions based on our model above. CORPNET provides interactive simulation,

analysis, and visualization functionalities. It is developed using the Scala programming

language and runs on the Java Virtual Machine5.

2Retrieved from http://orgnet.com/inflow3.html
3Retrieved from http://www.seeyournetwork.com/
4Retrieved from https://synd.io/
5A prototype of CORPNET and its source code can be downloaded from

https://github.com/mourednik/corpnet
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The main features of CORPNET include instruments of statistical and stability

analysis, community detection, and functions to generate random formal tie hierarchies

and social networks:

Network creation and visualization The network graph can be visualized as ei-

ther a tree layout or a force directed layout. The tree layout is hierarchical with

respect to the directed edges only. The color of a node can represent either its

power or its membership within a detected community; See Figure 3.21.

Figure 3.21: CORPNET user interface: a tree layout (left) and a force directed layout
with a power distribution (right)

Power analysis. CORPNET computes Bonacich power as defined above and visu-

alizes power in multiple ways. For both layout styles, a darker shade of blue

indicates a higher power within the network. The force layout draws nodes with

varying sizes, such that more powerful nodes are relatively larger. Two plots are

available providing statistical information regarding individual power:

• Descending power grouped by level: This is a scatter plot of individual node

powers. The nodes are arranged from left to right in descending order of

power, grouped by level such that the nodes on higher levels are to the left

of nodes on lower levels.

• Power histogram: This is a histogram of node powers with a configurable

number of bins.
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See Figure 3.22 for examples of both types of plots.

Figure 3.22: Power distribution plots: Descending power grouped by level (left) and
power histogram (right)

Community detection. CORPNET incorporates a module which computes clusters

in the network based on formal and informal ties using Newman’s spectral al-

gorithm [43]. This is visualized by node colors which represent the detected

clusters. See Figure 3.9 and Figure 3.10 for examples of clusterings in the tree

layout.

Random network generation. To facilitate experiments on organizational networks,

CORPNET incorporates a network simulator which is able to generate synthetic

benchmark organizational networks.

1. Random tree generator. This module generates tree using Procedure 1. The

number of children is sampled from a normal distribution with a specified

mean and standard deviation.

2. Social network generator. This module generates a benchmark social net-

work of undirected edges over the existing hierarchical network, as described

in Procedure 2.



Chapter 4

Integrating Homogeneous Networks

This chapter approaches the challenge of bringing two homogeneous networks together.

To motivate our formal framework, we make two main assumptions. The first one

is that creating weak ties between the networks can be encouraged and forced; the

second is that structural properties, such as distance, provide a measure of effective

communication and resource accessibility.

The first condition arises from the nature of interpersonal relations. Social net-

works are usually the result of complex interactions among autonomous individuals

whose relationships cannot be simply controlled and forced. For example, in business

networks, although working relations might be clearly prescribed, a firm is seldom

in control of informal relationships (especially strong ties) among its employees [95].

Nevertheless, a company can prepare the ground for future weak ties: conferences and

meetings, group assignments, special promotions etc. can be instruments of bringing

people together.

The second condition discusses how the integrated network provides members with

appropriate access to resource and information. When building new links between

members of two networks, the crucial question is how to make the the combined

network a unified whole. It is then a major question how “together” the unified

networks should be as an outcome of the integrating process. Naturally, the more

links there are that connect two networks, the closer they become. On the other hand,

there is normally a cost associated with establishing and maintaining links. Therefore,

it is important to strike a balance between the amount of togetherness and the number

of new links created between the networks.

Distance is an important factor of information dissemination in a network [65]: a

72
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network with a small diameter means that members are, in general, close to each other

and information could be passed from one person to any others within a small number

of steps [110]. This argument has been used to explain how small-world property –

the property that any node is reachable from others via only a few hops – becomes

a common feature of most real-world social networks [3]. We hold the view that all

nodes of a network have certain resources; and when a network has a small diameter,

the resource on each node can be reached out from everyone else within a few steps,

and each member is able to influence others. Hence, the diameter of the integrated

network forms the strongest form of togetherness.

When expressing togetherness between two networks in their integration, diameter

may be too strong. We define further two weaker notions of togetherness. Firstly,

existential togetherness considers distances between every node in one network to some

node in the other network. This measure is reasonable if we assume all nodes in any

network hold the same resource, and it is enough to reach any node in a network.

Secondly, universal togetherness considers distances between every node in one network

to all nodes in the other network, which implies that the distances to all nodes in the

other network are important.

Bearing the concepts of togetherness and the conditions in mind, we define net-

work integration as the process when one or more edges are established across two

existing networks in such a way that the integrated network has a bounded value of

togetherness. Furthermore, a new edge always costs effort and time to establish and

maintain. To minimize the number of new edges during the integration process, one

needs to carefully choose which nodes to connect. Hence, the integration problem is

comprised of two parameters, the value of togetherness and the number of edges. An

additional challenge could be posed by assigning priorities to nodes that define which

individuals should be connected first. We formally define corresponding network in-

tegration problems, study their complexity, propose several algorithms to solve them

and perform numerous experiments to test these heuristics.

4.1 Togetherness and Network Integration

In this chapter, we view a network as a connected undirected unweighted graph G =

(V,E) where V is a set of nodes and E is a set of undirected edges on V .
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For two disjoint sets of nodes V1, V2, we use V1 ⊗ V2 to denote the set of all edges

{uv | u ∈ V1, v ∈ V2}; these edges will be our instruments for integration two networks

with nodes V1 and V2, respectively.

Definition 4.1.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two networks. Fix a

non-empty set of edges E ⊆ V1 ⊗ V2. The integrated network of G1 and G2 by E is

G1 ⊕E G2 := (V1 ∪ V2, E1 ∪ E2 ∪ E).

4.1.1 Three Levels of Togetherness on Integrated Networks

Consider the integration G1⊕EG2. Any edge uv ∈ E represents a channel for the flow

of certain resources (information, traffic, knowledge, etc.) between G1 and G2. Hence,

the set E should provide nodes in each network with appropriate access to resources

in the other network.

Togetherness is an index for proximity of G1 and G2, and thus measures the ef-

fectiveness of E. As argued above, distances between nodes play a significant role.

Further, we introduce three levels of togetherness and motivate each notion with an

example scenario in organizational management:

(a) Imagine two groups of specialists who provide information and advices to each

other (e.g. the accounting and the procurement teams in a company). A member of

one group needs to access some but not necessarily all members of the other group.

In this case, it is sufficient to measure togetherness based on the distance from a node

in a network to any node in the other network.

In particular, the ∃-span σ∃E(u) of u ∈ Vi refers to min{dist(u, v) | v ∈ V3−i} where

i ∈ {1, 2}. Let σ∃E(G1, G2) := max{σ∃(u) | u ∈ V1 ∪ V2}. This distance forms the base

for existential togetherness.

(b) Imagine two groups of people with varying skills who collaborate on a joint

project. To fully utilize skills and incorporate knowledge, a person in one group

should access everyone in the other group. Hence, we measure togetherness based on

the distance from a node in a network to all members of the other network.

In particular, the ∀-span σ∀E(u) of u ∈ Vi refers to max{dist(u, v) | v ∈ V3−i} where

i ∈ {1, 2}. Let σ∀E(G1, G2) := max{σ∀(u) | u ∈ V1 ∪ V2}, this is to be used to define

universal togetherness.
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(c) Imagine two groups of people who merge into a single group. To ensure the

resulting group is a cohesive, tightly-knit unit, we measure togetherness based on the

diameter of the combined group. The diameter is to be used to define diametrical

togetherness.

Definition 4.1.2. Let G1⊕E G2 be an integration of two networks G1 = (V1, E1) and

G2 = (V2, E2). We define three notions of togetherness of G1 and G2 as follows:

1. The ∃-togetherness (or existential togetherness) is defined as τ∃E(G1, G2) :=(
σ∃E(G1, G2)

)−1
.

2. The ∀-togetherness (or universal togetherness) is defined as τ∀E(G1, G2) :=
(
σ∀E(G1, G2)

)−1
.

3. The ∆-togetherness (or diametrical togetherness) is defined as τ∆
E (G1, G2) :=

(diam (G1 ⊕E G2))−1.

When G1, G2 and E are clear from context, we abuse the notation writing χ\ for

χ\E(G1, G2) for all χ ∈ {σ, τ} and \ ∈ {∃,∀,∆}.
In the following proposition, we use diammax and diammin to denote max{diam(G1), diam(G2)}

and min{diam(G1), diam(G2)}, respectively.

Proposition 4.1.1. The following properties hold for all networks G1 = (V1, E1), G2 =

(V2, E2) and E ⊆ V1 ⊗ V2:

(a)
(
σ∃ + diammin

)−1 ≤ τ∀ ≤ τ∃

(b) τ∆ ≤ τ∀; and τ∀ = τ∆ whenever σ∀ ≥ diammax

Proof. For (a), it is clear that τ∀ ≤ τ∃ as σ∃(u) ≤ σ∀(u) for every node u. Without

loss of generality assume diam(G2) ≤ diam(G1). From any node u ∈ V1, there is v ∈ V2

where dist(u, v) ≤ σ∃, and for all w ∈ V2, dist(v, w) ≤ d̃. Thus dist(u,w) ≤ τ∃+diammin.

This means that σ∀ ≤ σ∃ + diammin and hence τ∀ ≥
(
σ∃ + diammin

)−1
.

For (b), it is clear that τ∆ ≤ τ∀ as diam (G1 ⊕E G2) ≤ σ∀(u) for any node u. When

σ∀ ≥ diammax, dist(u, v) ≥ max{diam(G1), diam(G2)} for any u ∈ V1 and v ∈ V2. Thus,

diam(G1 ⊕E G2) = σ∀, which means τ∀ = τ∆.

Example 5. As an example, we integrate two networks in three ways in Figure 4.1.

One may see that the choice of edges affects togetherness in resulting integrated net-

works.
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Figure 4.1: Integrating two line networks: E1 = {v2u4} with τ∃ = 1/4, τ∀ = 1/5, and
τ∆ = 1/6 (on the left); E2 = {v2u3, v2u5} with τ∃ = 1/3,τ∀ = 1/4, and τ∆ = 1/6 (in
the middle); and E3 = {v2u2, v2u6} with τ∃ = 1/3, τ∀ = τ∆ = 1/4 (on the right).

4.1.2 The Network Integration Problems

When integrating two networks G1 and G2, we have two constraints:

(a) The first constraint is the togetherness of G1 and G2 in the integrated network.

(b) The second constraint is the number of new edges established during the process.

To ensure high togetherness, one needs to create sufficiently many edges between

G1 and G2. As each edge requires certain resources to set up and maintain, the

challenge is to obtain maximal togetherness while creating minimal number of new

edges.

Formally, fix \∈{∃,∀,∆}. We define the following problems:

1. Network Integration under Togetherness constraint NIT\t(G1, G2) (where t ∈ (0, 1]):

This problem asks for, given G1 = (V1, E1) and G2 = (V2, E2), a set of edges

E ⊆ V1 ⊗ V2 such that the togetherness τ \E(G1, G2) ≥ t. An optimal solution E

of this problem is one that has the smallest cardinality.

2. Network Integration under Edge constraint NIE\e(G1, G2) (where e ≥ 1 is an

integer): This problem asks for, given G1 = (V2, E1) and G2 = (V2, E2), a set

E ⊆ V1 ⊗ V2 that has cardinality e. An optimal solution E of this problem is

one that leads to the largest togetherness τ \E(G1, G2).

We first will show that the two network integration problems are closely related.
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Theorem 4.1.1 (Duality). For any \ ∈ {∃,∀,∆}, there is a solution of NIT\t(G1, G2)

containing at most e edges iff there is a solution E of NIE\e(G1, G2) that leads to τ \ ≥ t.

The next result discusses the size of any optimal solution E of NIT\1(G1, G2) (i.e.,

when we desire maximal togetherness).

Lemma 4.1.1. For any networks G1, G2 and E ⊆ V1 ⊗ V2:

(a) τ∃=1 iff ∀u ∈ Vi∃v ∈ V3−i : uv ∈ E where i ∈ {1, 2}.

(b) τ∀=1 iff E = V1 ⊗ V2.

(c) τ∆=1 iff both G1, G2 are complete and E = V1⊗V2.

Proof. For (a), let E ⊆ V1⊗V2 be a set of edges with cardinality |E| = max{|V1|, |V2|}.
If E connects every node in V1 with some node in V2 and vice versa, then the ∃-span

σ∃(u) = 1 for every u ∈ V1 ∪ V2. On the other hand, if ∃u ∈ V1∀v ∈ V2 : uv /∈ E, then

σ∀(u) ≥ 2.

For (b), it is sufficient to note that if there is some u ∈ V1, v ∈ V2 with uv /∈ E, then

dist(u, v) ≥ 2; (c) is straightforward as τ∆ = 1 iff G1 ⊕E G2 is a complete graph.

The next result discusses togetherness achieved by optimal solutions of NIE\1(G1, G2)

(i.e., adding one new edge {u, v}).

Lemma 4.1.2. For any networks G1, G2 and uv ∈ V1 ⊗ V2, the maximum value of

τ \{uv}(G1, G2) is

(a) (max{rad(G1), rad(G2)}+1)−1 if \ = ∃.

(b) (rad(G1)+rad(G2) + 1)−1 if \ = ∀.

(c) (max{rad(G1)+rad(G2)+1, d})−1 if \ = ∆.

Proof. The optimal solution {uv} connects a center u in G1 with a center v in G2.

The properties (a)(b)(c) can then be easily checked.

The problem of finding optimal solutions for network integration is in general

computationally hard.

Theorem 4.1.2. For any \ ∈ {∃, ∀,∆}, the following problems are hard for W[2], the

second level of the W-hierarchy:
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1. Fix t ∈ (0, 1/2]. Decide if NIT\t(G1, G2) has a solution with ≤ e edges for given

G1, G2 and integer e > 0

2. Fix e > 1. Decide if NIE\e(G1, G2) has a solution E that leads to τ \ ≥ t for given

G1, G2 and t ∈ (0, 1].

Proof. Due to the duality (Theorem 4.1.1) between the two problems NIT\t(G1, G2)

and NIE\e(G1, G2), it is sufficient to prove one of (1) and (2). As shown in [71], finding

the smallest distance-r dominating set in G with diameter r + 1 is complete for W[2]

(for any fixed r). We now show a reduction from this problem to NIT\t(G1, G2) for

t ∈ (0, 1/2].

Suppose, without loss of generality, that t = k−1 for some integer k ≥ 2. Now let

G1 = (V1, E1) be a graph with diameter k and let G2 be a graph that contains only

a single node {u}. For any distance-(k−1) dominating set S ⊆ V1, the set of edges

S ⊗ {u} is a solution of NIT\t(G1, G2). Conversely, suppose S ⊆ V1 is not distance-

(k−1) dominating. Then there is a node w ∈ V1 that is at distance at least k away

from any node v ∈ S. This means that dist(w, u) in the integrated network is at least

k+ 1 and S is not a solution of NIT\t(G1, G2). Thus NIT\t(G1, G2) has a size-` solution

if and only if G1 has a size-` distance-(k−1) dominating set.

4.1.3 Privilege and Priorities

We note that to find optimal solutions for NIT\t(G1, G2) and NIE\e(G1, G2) problems, one

needs to make an assumption that nodes in the integrated networks are equipotent.

This condition assumes the networks follow peer-to-peer relational dynamic, which

refers to social structures where information and resources are distributed.

In such a social structure, as discussed by Baker in [7], members have no formal

authority over each other, and have equal privileges regardless their roles [27]. Ex-

amples of such social groups include volunteer organizations, teams of scientists, and

companies that embrace a holacracy management style [96]. Baker claims that in

order for such a peer-to-peer network to operate efficiently, there must be clear and

open communication; moreover each individual should be aware of the resources avail-

able from other nodes. The main challenge of merging two such organizations is to

establish channels that allow exchanges of intellectual ideas and trusted transactions.
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However, when integrating two organizations, each person may have constraints

over who he or she may connect to; this is determined largely by privilege, i.e., the

type of social inequality created from difference in positions, titles, ranks, etc [27].

We, thus, consider the special case when certain priorities are assigned to all nodes in

the networks.

Summing up these ideas, we present several algorithms for integrating two net-

works. The mechanisms are broadly divided into two categories:

1. We propose heuristics that search for small sets E that integrate two networks

G1, G2. We assume that the networks enjoy equi-privilege property, i.e., any pair

of nodes between networks can be freely connected. The goal of these heuristics

is to gain maximal togetherness in the integrated networks.

2. We propose four scenarios where nodes in one network preferentially establish

links with nodes in the other network. Here every node is given a priority which

is determined by the network structure. The difference between these priority

based methods and the heuristics in the first category is that their aim is to

simulate the preferential attachments of links during integration, rather than

explicitly searching for good solutions.

4.2 Algorithms for Integrating Networks with Equi-

Privilege Property

In this section we focus on social networks with equipotent nodes, and therefore assume

all nodes have unbounded and equal privilege. Discussions on equi-privilege property

originates from organizational behavioral studies of social networks. In [7], Mila Baker

describes peer-to-peer organizations as social structures where members have equal

privileges regardless of their roles (such as volunteer groups, research teams, etc.);

these organizational structures are said to have equi-privilege property.

In subsequent subsections we focus on heuristics for solving the NIT\t(G1, G2) and

NIE\e(G1, G2) problems. We consider each level of togetherness and present several

heuristics for solving the network integration problems. Indeed, the mechanism for

network integration depends on the level of togetherness one desires to achieve. If the

goal is to optimize ∃-togetherness, by Theorem 4.2.1, the key is to identify dominating
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sets in the networks G1 and G2. If the goal is to optimize ∀- or ∆- togetherness, then

it is desirable to establish links that minimize diameter.

4.2.1 Optimizing ∃-togetherness

We first focus on ∃-togetherness and characterize the optimal solutions of NIT∃t (G1, G2).

Theorem 4.2.1 (∃-Togetherness Theorem). Suppose E is an optimal solution of

NIT∃t (G1, G2). Then

(1) If t = 1, then |E| = max{|V1|, |V2|}

(2) If t < (max{rad(G1), rad(G2)})−1, then |E| = 1

(3) If 1 > t ≥ (max{rad(G1), rad(G2)})−1, |E| = max{γ1, γ2}, where γi is the

(t−1−1)-dominating number of the network Gi for each i ∈ {1, 2}.

Proof. (1) and (2) directly follow from Lemma 4.1.1(a) and Lemma 4.1.2(a), resp. We

now prove (3).

Let k = t−1 and D1 ⊆ V1 and D2 ⊆ V2 be minimum distance-(k−1) dominating

sets for G1 and G2, resp. In other words, |D1| = γ1 and |D2| = γ2. Without loss of

generality, assume γ1 ≥ γ2. Then there is a set E ⊆ V1 ⊗ V2 that contains for every

u ∈ Di, some edge uv where v ∈ D3−i where i ∈ {1, 2}, and |E| = γ1. Our goal is to

show that E is an optimal solution of NIT∃t (G1, G2).

Note that any node w in Vi is at most k − 1 steps away from some node u ∈ Di,

which means that the ∃-span σ∃(w) ≤ k. Thus E is a solution of NIT∃t (G1, G2). Now

take a set E ′ ⊆ V1 ⊗ V2 has |E ′| < Γ1. Let S = {u ∈ V1 | ∃v ∈ V2 : uv ∈ E ′}. Then

there is some node w ∈ V1 that is at least k steps away from any node in S. Thus

the ∃-span σ∃(w) > k and E ′ is not a solution. This means that E is an optimal

solution.

Finding optimal solution E for the NIT∃t (G1, G2) (where t ∈ (0, 1]) is equivalent to

finding two distance k dominating sets for each G1 and G2. As soon as the dominating

sets are found, create max{|D1|, |D2|} new edges: connect each node in a smaller

dominating set with a node in the larger set (one-to-one) until the set is empty. Then

connect the remaining nodes with any nodes in the other graph.
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In Chapter 2, we presented eight greedy algorithms for finding distance k-dominating

sets: Max, Min, Btw, MinLeaf, S-Max, S-Min, S-Btw, S-MinLeaf. Any of these algo-

rithms could be applied for finding small sets of edges E. We compare the performance

of these algorithms below in Section 4.5.

Example 6. To illustrate the idea, consider an example as in Figure 4.2. Here, we

have two random Newman-Watts-Strogatz connected graphs with 50 nodes each. One

of the graphs has radius 6 and diameter 9. The second graph has radius 7 and diameter

10. Thus, using the S-Max algorithm, we get that if τ∃ = 1
6
, 3 new edges should be

created; for τ∃ = 1
5
, the number of edges if 4, for τ∃ = 1

4
, it is 7; and finally if τ∃ = 1

3
,

the total number of edges is 11. One may see that the larger the value of ∃-togetherness

is, the less the initial structure of the graph is visible.

To integrate networks with ∃-togetherness constraint we apply S-MinLeaf, which

proves to be the most efficient for finding small distance k dominating sets (see Ex-

periment 16 in Section 4.5):

Our algorithm takes two networks G1 = (V1, E1) and G2 = (V2, E2) and t ∈ (0, 1]

as input and outputs a set E = D1 ⊕ D2, where D1 and D2 are distance (t−1−1)

dominating sets in G1 and G2, respectively. By Theorem 4.2.1, the set E is a solution

of NIT∃t (G1, G2).

For i ∈ {1, 2}, the algorithm iteratively builds Di ⊆ Vi by maintaining a set

Ui ⊆ Vi of “uncovered” nodes, i.e., nodes that have distance ≥ k from any current

node in Di. The initial configuration is when Ui = Vi. It repeatedly performs the

following operations until U = ∅:

1. Select a node u ∈ U and add u to Di (see below).

2. Compute all nodes at distance at most (k − 1) from v and remove these nodes

from U .

We now describe the heuristic for finding a node u in each iteration. A node is

called a leaf if it has minimum degree in the graph; leaves correspond to least connected

members in the network, and may become outliers once nodes with higher degrees are

removed from the network. Therefore, the heuristic first picks a leaf v in Ui, then

applies a sub-procedure to find the next node u to be added to Ui. The sub-procedure

determines a path v = w1, w2, . . . iteratively as follows:
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(a) Two generated graphs with 50 vertices each.

(b) τ∃ = 1
6 : three new edges (c) τ∃ = 1

5 : four new edges

(d) τ∃ = 1
4 : seven new edges (e) τ∃ = 1

3 : eleven new edges

Figure 4.2: Integrating two networks with different values of τ∃

1. Suppose wi is picked. If i = r or wi has no adjacent node in Ui, set wi as u and
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terminate the process.

2. Otherwise select a wi+1 (which is different from wi−1) among adjacent nodes of

wi with maximum degree.

When this process terminates, the algorithm adds u to Di. Note that the distance

between u and v is at most k − 1.

Theorem 4.2.2. For any networks G1, G2 and t ∈ (0, 1], the S-MinLeaf algorithm

outputs a solution of the NIT∃t (G1, G2) problem.

4.2.2 Optimizing ∀-/∆-togetherness

In this subsection we consider NIT\t(G1, G2) problem for \ ∈ {∀,∆}. Clearly, to opti-

mize ∀- or ∆- togetherness, one needs to establish links that minimize diameter.

The next theorem bounds the size of optimal solutions of NIT\t(G1, G2) for large t

(i.e., t≥1/3). Recall that γ(G) denotes the dominating number of G.

Theorem 4.2.3. Suppose E be an optimal solution of NIT\t(G1, G2) where \∈{∀,∆}.

(1) If t = 1, then |E| = |V1| · |V2|

(2) If t = 1/2, then |E| ≤ min{γ(G1)·|V2|, γ(G2)·|V1|}

(3) If t = 1/3, then |E| ≤ |V1|+ |V2| − 1

Proof. (1) directly follows from Lemma 4.1.1 (b)(c).

For (2), let D1, D2 be a dominating set in G1 and G2, respectively. Let E1 =

{uv | u ∈ D1, v ∈ V2} (so |E1| = γ(G1)·|V2|) and E2 = {uv | u ∈ V1, v ∈ D2} (so

|E2| = γ(G2)·|V1|). Then both G1 ⊕E1 G2 and G1 ⊕E2 G2 have diameter 2, and thus

τ∀ = τ∆ = 1/2.

For (3), pick any node u ∈ V1 and v ∈ V2 and let E ′ = {uy | y ∈ V2}∪{xv | x ∈ V1}.
Then |E ′| = |V1| + |V2| − 1. The diameter of the integrated network G1 ⊕E′ G2 is 3,

and thus τ∀ = τ∆ = 1/3.
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Diameter oriented approach: NI∆(G1, G2) integration problem

Clearly, the problem NIT∆
t (G1, G2) is equivalent to the problem of integrating two

networks such that diam(G1 ⊕E G2) ≤ t−1 for some given t ∈ (0, 1] (as τ∆
E (G1, G2) =

(diam (G1 ⊕E G2))−1 ). Thus, we reformulate NIT∆
t (G1, G2) as following:

Take an integer dm ≥ 1 (that is dm = τ∆
E (G1, G2)−1). We propose the following

modified network integration problem, NI∆(G1, G2):

INPUT Two networks G1 = (V1, E1), G2 = (V2, E2) where V1 ∩ V2 = ∅.

OUTPUT A set E ⊆ V1 ⊗ V2 such that diam(G1 ⊕E G2) ≤ dm.

In the rest of the section we investigate NI∆(G1, G2) on two networks G1 = (V1, E1)

and G2 = (V2, E2) where V1 ∩ V2 = ∅. The problem naturally depends on the value

of dm. When dm = 1, it is easy to see that NI∆(G1, G2) has a solution if and only if

both networks G1, G2 are complete. When dm ≥ 2, since G1 ⊕V1⊗V2 G2 has diameter

2, NI∆(G1, G2) guarantees to have a solution.

Throughout, we assume dm ≥ 2. We are interested in a solution E to the problem

NI∆(G1, G2) that contains the least number of edges; such an E is called an optimal

solution of NI∆(G1, G2).

The brute-force way of finding optimal solutions for NI∆(G1, G2) examines all pos-

sible sets of edges until it finds a required solution set E. This will take time 2O(|V1|·|V2|).

In fact, obtaining optimal solutions is computationally-hard. Theorem 4.1.2 implies

that this problem is unlikely to be polynomial-time solvable.

We propose two heuristics to perform network integration. The first is a naive

greedy method that iteratively creates edges to minimize the diameter of the resulting

network. The second method separately discusses two cases: 1) When dm is at least the

diameter of the original networks, we create edges by considering center and peripheral

nodes in the networks. 2) When dm is smaller than the original diameter of the original

networks, we first reduce the distance between nodes in the respective networks and

then apply the procedure in case 1).

We, therefore, turn to heuristics for finding small solution sets of NI∆(G1, G2). In

the next subsection, we present several efficient approaches.
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4.2.3 Algorithms for Solving NI∆(G1, G2)

We first introduce a greedy heuristic that approximates a solution of NI∆(G1, G2);

this heuristic will also be used as a benchmark in our experiments in Section 4.5 (see

Experiment 10, Experiment 11).

Definition 4.2.1. A set of edges E ⊆ V1 ⊗ V2 is called a naive greedy set if we can

write it as {e1, . . . , e`} such that for all 1 ≤ i ≤ `, and e′ ∈ (V1 ⊗ V2) \ {e1, . . . , ei−1},
diam(G1⊕{e1,...,ei}G2) ≤ diam(G1⊕{e1,...,ei−1,e′}G2). A naive greedy solution to NI∆(G1, G2)

is a solution that is a naive greedy set.

As its name suggests, a naive greedy set can be constructed incrementally using

a greedy strategy that locally optimizes diameter in the integrated network. Naive

greedy solutions to NI∆(G1, G2) are not necessarily optimal, and vice versa:

Example 7. Let bothG1 andG2 be paths of length 5, i.e., G1 contains nodes a1, . . . , a5

while G2 contains nodes b1, . . . , b5 with edges aiai+1, bibi+1 for any 1 ≤ i < 5.

Suppose dm = 3. The only optimal solution E contains four edges, i.e., E =

{a1b3, a3b1, a3b5, a5b3}. However, for any edge e ∈ E, diam
(
G1 ⊕{e} G2

)
= 7, while

diam
(
G1 ⊕{a3b3} G2

)
= 5. Thus E is not a naive greedy solution, nor will any naive

greedy solution be optimal.

Theorem 4.2.4. There exists an algorithm Naive∆(G1, G2) that runs in time O(n6)

and computes a naive greedy solution for NI∆(G1, G2) where n = |V1 ∪ V2|.

Proof. The algorithm Naive∆(G1, G2) iteratively adds edges e1, e2, . . . to the solution

set E. It also computes a matrix D : (V1 ∪ V2)2 → N that represents the distance

between nodes in the current integrated graph. See Procedure 3

Since dm ≥ 2, the algorithm will terminate. Furthermore, the set of edges created by

the algorithm is a naive greedy solution.

At each iteration, computing each matrix De takes time O(n2); computing F takes

O(n2). Since there are O(n2) edges in (V1 ⊗ V2) \ Ei, this iteration runs in O(n4).

Since there are at most n2 iterations, the algorithm takes times O(n6).

We remark that when dm > 2, the maximum number of edges required is O(n),

and hence Naive∆(G1, G2) will take O(n5). The algorithm Naive∆(G1, G2) is still too

inefficient in most practical cases and hence in subsequent subsections we discuss more

efficient heuristics for NI∆(G1, G2).
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Procedure 3 Naive∆(G1, G2); Output E

Initialize D (for the disjoint union of G1, G2); Set E := ∅
while diam (G1 ⊕E G2) > dm do

for e := xy ∈ (V1 ⊗ V2) \ E do
for (u, v) ∈ (V1 ∪ V2)2 do . define a temporary De : (V1 ∪ V2)2 → N

De(u, v) := min{Di(u, v), Di(u, x) +Di(y, v) + 1}
end for
Set diame := max{De(u, v) : (u, v) ∈ (V1 ∪ V2)2}.

end for
Set F := {e ∈ (V1 ⊗ V2) \ Ei | diame ≤ diame′ for all e′ ∈ (V1 ⊗ V2) \ Ei}.
Pick a random edge ei ∈ F and set D := Dei , E := E ∪ {ei}

end while

Efficient Algorithms for NI∆(G1, G2) We separately discuss two cases:

(a) when the integrated network’s diameter is at least the diameters of the given

networks, i.e. dm ≥ max{diam(G1), diam(G2)};

(b) when we ’improve’ the diameter, i.e. dm < max{diam(G1), diam(G2)}.

(a) The case when dm ≥ max{diam(G1), diam(G2)}

When integrating two networks, it makes sense first to establish a link between the

most central persons in the networks, as they have the closest proximity to other

nodes.

Furthermore, if x, y are nodes that are furthest apart in the integrated network,

they are unlikely to communicate effectively thanks to their shear distance; this, in

a certain sense, represents a form of structural hole [26]. Hence, it makes sense to

connect x, y by an edge.

Formally, the center C(G) of a graph G = (V,E) is the set of all nodes that have

the least eccentricity, i.e., C(G) = {v ∈ V | ecc(v) = rad(G)}. A pair of nodes (x, y)

in G forms a peripheral pair, denoted by (x, y)∈P(G), if dist(x, y)=diam(G).

Our heuristic first creates an edge between two nodes that are in C(G1) and C(G2)

respectively, and then iteratively “bridges” peripheral pairs.

Definition 4.2.2. A set E ⊆ V1 ⊗ V2 is called a center-periphery set if we can write

it as {e0, . . . , e`} such that:

1. e0 ∈ C(G1)⊗ C(G2);
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2. for all 1≤ i≤`, ei ∈ P
(
G1 ⊕{e0,e1,...,ei−1} G2

)
.

A center-periphery solution is a solution to NI∆(G1, G2) that is also a center-periphery

set.

Clearly, if dm > rad(G1) + rad(G2), then for any uv ∈ C(G1) ⊗ C(G2), we have

diam
(
G1 ⊕{uv} G2

)
≤ max{diam(G1), diam(G2), rad(G1) + rad(G2) + 1} ≤ dm. Thus

{uv} forms a solution of NI∆(G1, G2). In this case, center-periphery solutions coincide

with optimal solutions.

Theorem 4.2.5. There exists an algorithm CtrPer that has O(n4) running time (n =

|V1 ∪ V2|) and computes a center-periphery solution for NI∆(G1, G2), where dm ≥
max{diam(G1), diam(G2)}.

Proof. The CtrPer algorithm also maintains a matrix D : (V1 ∪ V2)2 → N such that

D(u, v) is the distance between u, v.

The eccentricity of each node can be easily extracted from D allowing the algorithm

to identify the centers C(G1) and C(G2), respectively. The algorithm then iteratively

adds edges that connect peripheral pairs in the integrated graph until its diameter

becomes at most dm. See Procedure 4.

Suppose the algorithm creates a set E ⊆ V1 ⊗ V2 and diam (G1 ⊕E G2) > dm.

The algorithm will update the matrix D and then picks (u, v) with the largest

D(u, v). By definition of D, (u, v) forms a peripheral pair in G1 ⊕E G2. We need to

show that uv is a valid edge to add, that is, u, v cannot both lie in one of V1 and V2.

Indeed, if {u, v} ⊆ V1 or {u, v} ⊆ V2, then dist(u, v) ≤ max{diam(G1), diam(G2)} ≤
dm < diam (G1 ⊕E G2). Thus, uv ∈ V1 ⊗ V2.

Now either E ∪ {uv} is a solution, or diam
(
G1 ⊕E∪{uv} G2

)
> dm. In the latter

case the algorithm repeats the iteration to find another peripheral pair. Thus, the

algorithm will terminate and produce a center-periphery solution to NI∆(G1, G2).

It takes O(n3) to initialize the matrix D using Floyd-Warshall algorithm. At each

iteration, the algorithm takes O(n2) to update D and finds a peripheral pair. Since

there are at most n2 iterations, the algorithm takes time O(n4).

It is easy to see that, consequently, the following theorem also holds:

Theorem 4.2.6. For any networks G1, G2 and t ∈ (0, 1], CtrPer algorithm outputs a

solution of the NIT∀t (G1, G2) problem.



88 CHAPTER 4. INTEGRATING HOMOGENEOUS NETWORKS

Procedure 4 CtrPer: dm ≥ max{diam(G1), diam(G2)}; Output E

Initialize the matrix D so that D(u, v) = dist(u, v) in the un-integrated graphs
Take a node u ∈ C(G1) and a node v ∈ C(G2)
Set e := uv, E := {e}
while (diam (G1 ⊕E G2) > ∆) do

for (x, y) ∈ (V1 ∪ V2)2 do . define D′ : (V1 ∪ V2)2 → N
D′(x, y) := min{D(x, y), D(x, u) +D(v, y) + 1} where e = uv

end for
D := D′ . update matrix D
Pick (u, v) with the largest D(u, v). Set e := uv and E := E ∪ {e}

end while

(b) The case when ∆ < max{diam(G1), diam(G2)}

When the diameter bound dm is less than the diameters of the two component net-

works G1, G2, the goal is to improve the connectivity of each original network through

integration. In other words, the integration should “bring people closer”. In this case

CtrPer no longer applies as it is possible for both nodes in a peripheral pair to lie in the

same component graph G1 or G2, forbidding us to create the edge xy. We, therefore,

need to first decrease the distance between nodes in each G1 and G2.

Suppose a, b are two people in an organization with large distance. When their

organization merges with another organization, a and b can be brought closer if they

both know a ‘third person’ c in the other organization, i.e., the ties ac and bc allows

a, b to be only 2 steps away.

Definition 4.2.3. Let E ⊆ V1 ⊗ V2 be a set of edges and i ∈ {1, 2}. The diameter of

Gi relative to E is the maximum distance between any two nodes in Vi in the integrated

network G1 ⊕E G2; we denote this by diamE(Gi). A set of edges E ⊆ V1 ⊗ V2 is a

dm-bridge if diamE(Gi) ≤ dm for both i ∈ {1, 2}.

Theorem 4.2.7. For any dm ≥ 2, there exists an algorithm Bridgedm(G1, G2) that

runs in time O(n4) and computes a dm-bridge E, where n = |V1 ∪ V2|.

Proof. The algorithm has two phases. In phase i ∈ {1, 2}, it makes diamE(Gi) ≤ dm.

Phase i consists of several iterations; at each iteration, the algorithm takes a pair

(u, v) ∈ Vi with maximum distance and a node w ∈ V3−i, and builds two edges uw

and vw. See Procedure 5.

Throughout, the algorithm computes and maintains a matrix D : (V1 ∪ V2)2 → N

such that D(u, v) is the current distance between nodes u, v. When a pair of new edges
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uw, vw are added, the new distance D′(x, y) between any pair of nodes (x, y) ∈ V 2
i is

calculated as follows:

D′(x, y) = min{D(x, y), D(x, u) +D(w, y) + 1, D(x, u) +D(v, y) + 2,

D(x, v) +D(w, y) + 1, D(x, v) +D(u, y) + 2} (4.1)

In the worst case, the algorithm adds edges uw, vw for any pair (u, v) ∈ V 2
i where

i ∈ {1, 2}. Thus, the algorithm terminates in at most n2 iterations. Finding nodes

u, v, w and updating the matrix D at each iteration takes time O(n2). Therefore, the

total running time is O(n4).

Procedure 5 Bridgedm(G1, G2): dm < max{diam(G1), diam(G2)}; Output E

Initialize the matrix D so that D(u, v) = dist(u, v) in the un-integrated graphs
Initialize E := ∅
for i = 1, 2 do . The two phases

while diamE(Gi) > dm do
Take a pair of nodes u, v ∈ Vi with maximum D(u, v)
Take a node w in V3−i
E := E ∪ {uw,wv}
for (x, y) ∈ (V1 ∪ V2)2 do . define D′ : (V1 ∪ V2)2 → N

Compute D′(x, y) as in (4.1)
end for
D := D′ . update matrix D

end while
end for

Remark. Suppose the Bridgedm(G1, G2) algorithm adds edges uw, vw. Here w plays

the role as a bridging node that links u and v. Naturally, the choice of w affects the

performance of the algorithm: by carefully choosing the bridging node w, we may

reduce the number of new ties that need to be created. Imagine that G1, G2 represent

two organizations.

1. To allow smooth flow of information between the two organizations and avoid

information gate keepers, we should have many bridging nodes in G2.

2. A node with a higher degree means it has better access to resource and informa-

tion, and thus is a more appropriate bridging nodes.

Therefore, we introduce the following heuristics to Bridgedm(G1, G2):
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Suppose the algorithm has selected a set E of edges and picked (u, v) ∈ Vi where

i ∈ {1, 2} with the largest D(u, v). To pick a bridging node w:

Heuristic 1 For any node w ∈ V3−i, let b(w) = |{v | wv ∈ E}|. The chosen bridging

node w is taken from Bi = {w ∈ V3−i | b(w) ≤ b(w′) for all w′ ∈ V3−i}.

Heuristic 2 The chosen bridging node w has the highest degree in Bi.

We now extend Bridgedm(G1, G2) to an algorithm that solves NI∆(G1, G2).

Suppose E is a set of edges output by Bridgedm(G1, G2). For any set E ′ ⊇ E with

diam (G1 ⊕E′ G2) > dm, if (u, v) is a peripheral pair in G1 ⊕E′ G2, then:

dist(u, v) = diam (G1 ⊕E′ G2) > dm

≥ max{diamE(G1), diamE(G2)}

≥ max{diamE′(G1), diamE′(G2)}

This implies that uv must be a pair in V1 ⊗ V2. Therefore, we can apply the same

procedures as in CtrPer to link peripheral pairs in the integrated network to obtain a

solution to NI∆(G1, G2); See Procedure 6.

Note that when dm ≥ max{diam(G1), diam(G2)}, Bridgedm(G1, G2) will output

E = ∅.

Hence, we have:

Theorem 4.2.8. The Integratedm(G1, G2) algorithm runs in time O(n4) and computes

a solution to NI∆(G1, G2) for any networks G1, G2 and ∆ ≥ 2, where n = |V1 ∪ V2|.

Algorithm 6 Integratedm(G1, G2); Output E

Run Bridgedm(G1, G2) to obtain a set E ⊆ V1 ⊗ V2

Run CtrPer to add edges to E (instead of building E from scratch)

Consequently, we can see the following:

Theorem 4.2.9. For any networks G1, G2 and t ∈ (0, 1], Integratedm(G1, G2) algo-

rithm outputs a solution of the NIT\t(G1, G2) problem, where \ ∈ {∀,∆} and t = dm−1.
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4.3 Integrating Networks with Priority Based Ap-

proaches

In real-world networks nodes differ in various ways which may affect their integration.

For example, in an organization, people sometimes connect to each other according to

their abilities or roles. We therefore consider the network integration problem under

the assumption that all nodes have certain priorities. We investigate cases when higher

priorities are assigned to nodes with different structural properties:

1. MaxDegree: A high degree indicates the possession of certain advantage such as

capability or resources. Hence, we give higher priorities to nodes with higher

degrees.

2. MinDegree: A low degree indicates a certain disadvantage such as isolation and

lack of resources. To ensure togetherness, it also may be reasonable to give

higher priorities to nodes with lower degree.

3. MaxBtw: Betweenness indicates the centrality of a node, i.e., how much the node

serve as a “gatekeeper” and connects diverse parts of the network [13]. Hence in

this scenario, we give higher priorities to nodes with higher betweenness.

4. Random: Lastly, we consider the case when the priorities are assigned randomly.

This corresponds to a case when the priorities are assigned according to some

extraneous factors.

For each of the four scenarios above, we implement a mechanism that integrates

networks G1 and G2 to achieve \-togetherness t ∈ (0, 1]. The procedure iteratively

builds a set E ⊆ V1⊗V2 that is a solution to NIT\t(G1, G2). If uv is created, the nodes

u, v become bridging nodes that link G1 with G2. We have the following intuition:

1. To allow smooth flow of resources between the two networks and avoid informa-

tion gate keepers, we should have many different bridging nodes.

2. Nodes with higher priorities should serve more as bridging nodes and be linked.

Suppose a set of edges E ′ has already been created. We adopt the following mech-

anism to find two nodes u ∈ V1 and v ∈ V2:
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(a) For any node w ∈ Vi, let b(w) = |{v ∈ V3−i | wv ∈ E ′}|.

(b) Choose the node u from B1 = {w ∈ V1 | b(w) ≤ b(w′) for all w′ ∈ V1} that has

the highest priority.

(c) Choose the node v from B2 = {w ∈ V2 | b(w) ≤ b(w′) for all w′ ∈ V2}.

Example 8. To illustrate the ideas above, consider Figure 4.3. It shows the results

of integrating two Newman-Watt-Strogatz random networks (see Section 4.5) with 50

nodes each using various approaches. Each of the integrated networks has diameter 9.

According to this example, while MaxBtw requires the smallest number of edges,

there is a big variation in terms of the number of edges created using different priorities.

It is therefore interesting to compare the results of the different heuristics in more

detail.

(a) MaxDegree: 9 edges (b) MaxBTW: 4 edges

(c) MinDegree: 14 edges (d) Random: 10 edges

Figure 4.3: Integrating two Newman-Watts-Strogatts networks with 50 nodes to
achieve diameter of 9 in the integrated network.
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4.4 Socialization as a Special Case of Integration

When an individual joins a social network, the position he or she is going to acquire

clearly depends on the quality of the established connections. The process of the new

links formation is often called socialization [79], and has still many open questions in

social science, for example, is it better to have many connections, or only few but with

powerful and central individuals?, should the relationships be diverse or homogeneous?,

and so on [34].

Clearly, edges play an important role: some of them can be defined as (local)

bridges, others provide nodes with better connectivity. For instance, calculating be-

tweenness, the amount of flow of information that goes through a node, is one of the

most common approaches in evaluating importance of edges and nodes [39].

In this section, we consider integration of two networks from a different angle:

suppose one of the networks consists of a single node. This can be interpreted as a

situation when a person joins a social network.

Clearly, a social network inside this company is already formed, and the newcomer

needs to establish his own connections in order to gain a certain status. In [109], the

authors argue about importance of the social network formation for an individual.

They mention that any network provides an individual with three advantages: access

to private information, access to diverse skill sets, and power. All information is either

public (for instance, available on the Internet), or private. Private information can

only be acquired via network connections, and thus is more valuable.

Stuart in his works [102, 103, 104] study how the environment affects formation

of strategic alliances and interorganizational collaborations. Particularly, he noticed

that the focus of research has been changed from outside-the-network explanations

for relationship formation (e.g., strategic alliances arise among pairs of firms with

complementary resource profiles) to within-the-network explanations.

We, thus, focus on the integrated network from the perspective of a “newcomer”,

study the complexity of the problem, and suggest possible solutions. Personal network

should be indeed carefully constructed: the number of connections is always limited,

but it should provide the individual with access to information and ability to affect

the network.
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4.4.1 Network Building: the Problem Setup

We first reformulate the definition of an integrated network in terms of one network

and a ’newcomer’ to define network building:

Definition 4.4.1. Let G = (V,E) be a network and u be a node not in V . For

S ⊆ V , denote by ES the set of edges {uv | v ∈ S}. Define G ⊕S u as the graph

(V ∪ {u}, E ∪ ES).

We require that S 6=∅ and thus G⊕Su is a network built by incorporating u into G.

By [109], for a newcomer u to establish herself inG it is essential to identify information

brokers who connect to diverse parts of the network. Following this intuition, we define

a broker set as any S ⊆ V such that ecc(u) = rad(G ⊕S u); namely, linking with S

enables u to get in the center of the network.

Formally, given a network G = (V,E), the problem of network building for u means

selecting a set S⊆V so that the combined network G⊕Su satisfies certain conditions.

Moreover, the desired set S should contain as few nodes as possible. We focus on the

following two key problems:

1. BROKER: S is a broker set.

2. DIAMdm: diam(G⊕Su)≤dm for a given dm ≤ diam(G).

In the network G ⊕V u, ecc(u) = 1 = rad(G ⊕V u) and diam(G ⊕V u) = 2. Hence, a

desired S must exist for BROKER and DIAMdm where dm ≥ 2. In the subsequent

sections we systematically investigate these two problems.

4.4.2 Complexity and Algorithms for BROKER

BROKER can be easily illustrated with an example. Suppose we have a person that

joins a social network and wants to know how many new connections he or she needs

to create in order to become central. We now show that this problem is in fact NP-

complete.

Complexity

We investigate complexity of the problem BROKER(G, k): Given G, k, does G have a

broker set of size k?
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The problem is trivial if G has radius 1, as then V is the only broker set. When

rad(G) > 1, we recall the notion of dominating set, which refers to a set S of nodes

where every node not in S is adjacent to at least one member of S. The domination

number γ(G) is the size of a smallest dominating set for G. The DOM(G, k) problem

concerns testing whether γ(G)≤ k for a given graph G and input k; it is a classical

NP-complete decision problem [46].

More generally, a subset S ⊆ V is called distance k-dominating if every node has

distance at most k with some node in S. We let γk(G) denote the size of a smallest

distance k-dominating set; when k = 1, we simply write it as γ(G).

Theorem 4.4.1. BROKER(G, k) is NP-complete.

Proof. BROKER(G, k) is clearly in NP. Therefore we only show NP-hardness. We

present a reduction from DOM(G, k) to BROKER(G, k). Note that when rad(G) = 1,

γ(G)=1. Hence DOM(G, k) remains NP-complete if we assume rad(G) > 1. Given a

graph G = (V,E) where rad(G) > 1, we construct a graph H. The set of nodes in H

is {vi | v ∈ V, 1 ≤ i ≤ 3}. The edges of H are as follows:

• Add an edge vivi+1 for every v ∈ V , 1 ≤ i < 3

• Add an edge v1w1 for every v, w ∈ V

• Add an edge v2w2 for every edge vw ∈ E

Namely, for each node v ∈ V we create three nodes v1, v2, v3 which form a path.

We link the nodes in {v1 | v ∈ V } to form a complete graph, and nodes in {v2 | v ∈ V }
to form a copy of G. Since rad(G) ≥ 2, for each node v ∈ V there is w ∈ V with

dist(v, w) ≥ 2. Hence in H, dist(v3, w3) ≥ 4, and dist(v2, w3) ≥ 3. As the longest

distance from any v1 to any other node is 3, we have rad(H) = 3.

Suppose S is a dominating set of G. If we add all edges uv where v ∈ D = {v2 |
v ∈ S}, ecc(u) = 3 = rad(H ⊕D u). Hence D is a broker set for H. Thus the size of a

minimal broker set of H is at most the size of a minimal dominating set of G.

Conversely, for any set D of nodes in H, define the projection p(D) = {v | vi ∈
D for some 1 ≤ i ≤ 3}.

Suppose p(D) is not a dominating set of G. Then there is some v ∈ V such that for

all w ∈ p(D), dist(v2, w2) ≥ 2. Thus if we add all edges in {ux | x ∈ D}, dist(u, v3) ≥ 4.
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But then ecc(w1) = 3 for any w ∈ p(D). So D is not a broker set. This shows that

the size of a minimal dominating set of G is at most the size of a minimal broker set.

Then for any v ∈ V there is w ∈ p(D) with dist(v, w) ≤ 1, and thus dist(v3, w2)≤2

and ecc(u) = rad(H⊕D u). Therefore the set D is a broker set for H. On the contrary,

suppose p(D) is not a dominating set of G. Then there exists some v ∈ V with

distance at least 2 from any node in p(D). This means that dist(v3, w) ≥ 3 for all

w ∈ D. Hence ecc(u) ≥ 4 > rad(H ⊕D u). Therefore D is not a broker set for H.

The above argument implies that the size of a minimal broker set for H coincides

with the size of a minimal dominating set for G. This finishes the reduction and hence

the proof.

Efficient Algorithms

Theorem 4.4.1 implies that computing optimal solution of BROKER is computationally

hard. Nevertheless, we present a number of efficient algorithms that take as input a

network G = (V,E) with radius rad(G) and output a small broker set S for G. A

set S ⊆ V is called sub-radius dominating if for all v ∈ V not in S, there exists some

w ∈ S with dist(v, w) < rad(G). Our algorithms are based on the following fact, which

is clear from definition:

Lemma 4.4.1. Any sub-radius dominating set is also a broker set.

We now are ready to present efficient algorithms for solving BROKER:

(a) Four greedy algorithms. In Chapter 2, we presented four greedy algorithms,

Max, Min, Btw, and MinLeaf for finding small distance k dominating sets, i.e., sub-

radius dominating set with rad(G) = k. Therefore, they are also suitable for solving

BROKER.

(b) Simplified greedy algorithms. Recall that algorithms S-Max, S-Btw, S-MinLeaf

act in a similar way as their “non-simplified” counterparts; the difference is that here

the heuristic works over the original network G as opposed to the updated network.

As an example, in Figure 4.4 we run Max and S-Max on the same network and

show how S-Max may output a smaller sub-radius dominating set. The network G

has rad(G) = 4. Iteration 1: Both Max and S-Max add the same green node into S,
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U contains the red nodes. S-Max outputs the green nodes {3, 13}; Max outputs the

red-circled nodes {3, 18, 14, 8, 26}.

We further verify via experiments below (see Section 4.5) that the simplified algo-

rithms lead to much smaller output S in almost all cases.

(a) Pick a node with max degree (green node
3), red nodes are ’not covered’

(b) S-Max outputs the green nodes
{3, 13}; Max outputs the red-circled nodes
{3, 18, 14, 8, 26}

Figure 4.4: Two iterations of Max and S-Max algorithms

(c) Center-based algorithms. The algorithms above can all be applied to find k-

dominating set for arbitrary k ≥ 1. Since our focus is in finding sub-radius dominating

set to answer the BROKER problem, we describe two algorithms that are specifically

designed for this task. When building the network for a newcomer, it is natural

to consider nodes that are already in the center of the network G. Hence our two

algorithms are based on utilizing the center of G:

Algorithm Center. The algorithm finds a center v in G with minimum degree, then

output all nodes that are adjacent to v. Since v belongs to the center, for all w ∈ V ,

we have dist(v, w) ≤ rad(G) and thus there is v′ adjacent to v such that dist(w, v′) =

dist(w, v)− 1 < rad(G). Hence, the algorithm returns a sub-radius dominating set.
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Despite its apparent simplicity, Center returns surprisingly good results in many

cases, as will be shown in the experiments below.

Algorithm Imp-Center. We present a modified version of Center, which we call Imp-

Center.

Procedure 7 Imp-Center: Given G = (V,E) (with radius rad(G) = r)

Pick a center node v in G with minimum degree d
Sort all adjacent nodes of v to a list u1, u2, . . . , ud in decreasing order of degrees
Set S ← ∅ and i← 1
while U 6= ∅ do

Set C as the largest connected component in F
if rad(C) < rad(G)− 1 then

Pick a center node w of C. Set S ← S ∪ {w}
Set U ← U \ {w′ ∈ U | dist(w,w′) < r}

else
Set S ← S ∪ {ui}
Set U ← U \ {w′ ∈ U | dist(ui, w′) < r}
Set i← i+ 1

end if
Set F as the subgraph induced by the current U

end while
return S

The algorithm first picks a center with minimum degree, and then orders all its

neighbors in decreasing degree. It adds the first neighbor to S and remove all nodes ≤
(r−1)-steps from it. This may disconnect the graph into a few connected components.

Take the largest component C. If C has a smaller radius than r, we add the center

of this component to S; otherwise we add the next neighbor to S. We then remove

from F all nodes at distance ≤ (r− 1) from the newly added node. This procedure is

repeated until F is empty. See Procedure 7.

Figure 4.5 shows an example where Imp-Center out-performs Center.

The next theorem follows from Lemma 4.4.1.

Theorem 4.4.2. Any of Algorithms in (a)–(c) outputs a broker set S for G.

4.4.3 Complexity and Algorithms for DIAMdm

Let G = (V,E) be a network and u /∈ V . The DIAMdm problem asks for a set S ⊆ V

such that the network G ⊕S u has diameter ≤ dm; we refer to any such S as dm-
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Figure 4.5: rad(G) = 3. The yellow node 0 is a center with min degree 4. Thus, Center
outputs 4 nodes. The dark green node 29 adjacent to 0 has max degree; Red nodes
are “uncovered” by 29. Thus Imp-Center outputs the 3 blue circled nodes.

enabling.

Preserving the diameter

We first look at a special case when dm = diam(G), which has a natural motivation:

How can an airline expand its existing route map with an additional destination while

ensuring the maximum number of hops between any two destinations is not increased?

We are interested in creating as few new connections as possible to reach this goal.

Let δ(G) denote the size of the smallest dm-enabling set for G. We say a graph is

diametrically uniform if all nodes have the same eccentricity.

Theorem 4.4.3. (a) If G is not diametrically uniform, δ(G)=1.

(b) If G is complete, then δ(G) = |V |.

(c) If G is diametrically uniform and incomplete, then 1 < δ(G) ≤ d where d is the

minimum degree of any node in G, and the upper bound d is sharp.

Proof. For (a), suppose G is not diametrically uniform. Take any v where ecc(v) <
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diam(G). Then in the expanded network G ⊕{v} u, we have ecc(u) = ecc(v) + 1 ≤
diam(G).

(b) is clear.

For (c), Suppose G is diametrically uniform and incomplete. For the lower bound,

suppose γdiam(G)−1(G) = 1. Then there is some v ∈ V with the following property: In

the network G⊕{v} u we have ecc(u) ≤ diam(G), which means that ecc(v) < diam(G).

This contradicts the fact that G is diametrically uniform. For the upper bound,

take a node v ∈ V with the minimum degree d. Let N be the set of nodes adjacent to

v. From any node w 6= v, there is a shortest path of length ≤ diam(G) to v. This path

contains a node in N . Hence w is at distance ≤ diam(G) − 1 from some node in N .

Furthermore as G is not complete, diam(G) ≥ 2 and v is at distance 1 ≤ diam(G)− 1

from nodes in N .

In [71] calculating the exact value of δ(G) is shown to be complete for W[2], second level

of the W-hierarchy. Hence DIAMdm is unlikely to be in P. On the other hand, we argue

that real-life networks are rarely diametrically uniform. Hence, by Theorem 4.4.3(a),

the smallest number of new connections needed to preserve the diameter is 1.

Reducing the diameter

We now explore the question DIAMdm where 2 ≤ dm < diam(G).

This refers to the goal of placing a new member in the network and creating ties

to allow a closer distance between all pairs of members. We suggest two heuristics

to solve this problem: one is based on connecting two most distant vertices via the

‘external’ node, the other one uses a center of the graph.

The first one is very intuitive: indeed, if we start to connect the most distant

vertices we eventually decrease the diameter of the graph. The second algorithm

instead of taking a pair of the most distant nodes, takes only one node. Since it also

uses the center of the graph, it guarantees that the new path would be r(G) + 1 to the

second node.

Algorithm Periphery. The periphery P (G) of G consists of all nodes v with ecc(v) =

diam(G).

Suppose diam(G) > 2. Then the combined network G⊕P (G)u has diameter smaller

than diam(G). Hence, we apply the following heuristic: The algorithm first adds the
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new node u to G and repeats the following procedure until the current graph has

diameter ≤ dm:

1. Randomly pick a peripheral pair v, w in the current graph

2. Adds the edges uv, uw if they have not been added already

3. Compute the diameter of the updated graph

Note that once v, w are chosen as a peripheral pair and the corresponding edges

uv, uw added, v and w will have distance 2 and they will not be chosen as a peripheral

pair again. Hence, the algorithm eventually terminates and produces a graph with

diameter at most dm.

Algorithm CP (Center-Periphery). This algorithm applies a similar heuristic as

Periphery, but instead of picking peripheral pairs at each iteration, it first picks a node

v in the center and adds the edge uv.

Then, it repeats the following procedure until the current graph has diameter≤ dm:

1. Randomly pick a node w in the periphery of the graph

2. Add the edge uw if it has not been added already

3. Compute the diameter of the updated graph

Suppose at one iteration the algorithm picks w in the periphery. Then, after this

iteration the eccentricity of w is at most r + 2 where r is the radius of the graph.

4.5 Experimental Analysis

In this section, we present experimental results obtained by implementing the proposed

heuristics and algorithms for network integration.

We implemented the algorithms using Sage [100], which provides a variety of tools

for working with graphs, and measured the performance of each algorithm on both

artificial and real networks.



102 CHAPTER 4. INTEGRATING HOMOGENEOUS NETWORKS

(a) BA graph G1: rad(G1) = 3 (b) NWS graph G2: rad(G2) = 4

Figure 4.6: Two examples of generated networks with 100 nodes

Generated networks. We apply two models of random graphs: The first (BA)

is Barabasi-Albert’s preferential attachment model which generates scale-free graphs

whose degree distribution of nodes follows a power law; this is an essential property of

numerous real-world networks [10]. The second (NWS) is Newman-Watts-Strogatz’s

small-world network [85], which produces graphs with small average path lengths and

high clustering coefficient.

Examples of an NWS graph and a BA graph with 100 each nodes are in Figure 4.6.

Real world datasets. We test the algorithms on several real-world datasets: The

Facebook dataset, collected from survey participants of Facebook App, consists of

friendship relation on Facebook [74].

Enron is an email network of the company made public by the FERC [66]. Nodes of

the network are email addresses and if an address i sent at least one email to address

j, the graph contains an undirected edge from i to j.

We present a short summary of the datasets in Table 4.1

Facebook Enron
Number of nodes 4,039 33,969
Number of edges 88,234 180,811
diameter 8 13
radius 4 7

Table 4.1: Facebook and Enron datasets
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Collaboration 1 Collaboration 2
total number of nodes 5,242 9,877
total number of edges 14,496 25,998
number of nodes in the subgraph 4,158 8,638
number of edges in the subgraph 13,422 24,806
diameter 17 18
radius 9 10

Table 4.2: Collaboration 1 and Collaboration 2 datasets

Col1 and Col2 are collaboration networks that represent scientific collaborations

between authors of papers submitted to General Relativity and Quantum Cosmology

category (Col1), and to High Energy Physics Theory category (Col2) [65]. If an author

i co-authored a paper with author j, the graph contains a undirected edge from i to j.

Table 4.2 lists details of these networks. As both networks are initially unconnected,

we considered the giant component in each graph.

4.5.1 Solving Network Integration Problems

In this subsection, we consider algorithms for solving the network integration prob-

lems, namely, NIT\t(G1, G2), NIE\e(G1, G2), and NI∆(G1, G2). The main goals of the

experiments are:

(1) to compare heuristics proposed in Section 4.2;

(2) to get insights into the structural properties of the integrated networks. In par-

ticular, we want to analyze how density of the input networks affects the solutions to

the integration problem;

(3) to apply the heuristics onto real-world datasets and to see whether the results are

consistent with our assumptions.

Experiment 7. Comparing heuristics on networks with fixed τ∃ and τ∀.

In the series of runs, we generated 20 pairs of the Newman-Watts-Strogattz (NWS)

and the Barabasi-Albert (BA) networks with 50, 100 and 200 vertices each. For each

pair we compute a solution for the NIT\t(G1, G2) problem (where \ ∈ {∃,∀}) using

MaxDegree, MinDegree, MaxBtw, Random as well as MinLeaf (when \ = ∃) and CtrPer

(when \ = ∀). Using each of these heuristics, we add edges to the set E until the

integrating network G1 ⊕E G2 satisfies a certain given parameter.

Figure 4.7 and Figure 4.8 display the average number of new edges in the solution
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sets for the NWS and BA networks, respectively. Results show how the number of

edges increases with increasing τ∃ and τ∀.

(a) Networks with 50 nodes

(b) Networks with 100 nodes

(c) Networks with 200 nodes

Figure 4.7: Comparing heuristics: average numbers of edges required to integrate two
NWS networks with fixed τ∃ (on the left) and fixed τ∀ (on the right)

Furthermore, for small togetherness (τ∃ ≤ 0.17 for NWS and τ∃ ≤ 0.25 for BA, and

τ∀ > max{d(G1), d(G2)}−1), different types priorities do not significantly affect the size

of the resulting sets. However, the difference increases as togetherness increases. We

conclude also that, in general, the MinLeaf and CtrPer algorithms output much smaller

edge sets.
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(a) Networks with 50 nodes

(b) Networks with 100 nodes

(c) Networks with 200 nodes

Figure 4.8: Comparing heuristics: average numbers of edges required to integrate two
BA networks with fixed τ∃ (on the left) and fixed τ∀ (on the right)

Experiment 8. Comparing heuristics for solving NIE\e(G1, G2).

To perform this experiment, we generate BA and NWS networks with 50 nodes

each . We set the numbers of edges e to values 1, 10, 20, 50, and then we compute the

average togetherness in the integrated networks by applying different heuristics.

Figure 4.9 and Figure4.10 plot the results for NWS and BA networks, respectively.

The best performance is given by MaxBtw. In general, MinDegree gives the worst

performance when e is small. However, its performance catches up with other heuris-

tics when e becomes larger. On the contrary, Random has an opposite behavior:

togetherness grows slower as more edges are randomly added.
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Figure 4.9: Integrating NWS networks by establishing 1, 10, 20 and 50 edges

Figure 4.10: Integrating BA networks by establishing 1, 10, 20 and 50 edges

Experiment 9. Integrating real networks with equally privileged nodes.

We use two real datasets to reconfirm the results obtained for the synthesized

datasets. Col1 and Col2 are networks that represent scientific collaborations in General

Relativity, Quantum Cosmology (Col1), and in High Energy Physics Theory (Col2) [65]

(See Table 4.2).

We first apply the MinLeaf and CtrPer algorithms. Structurally Col1 and Col2
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resembles the small-world networks of NWS models. Thus, we expect that when

integrating these two networks, despite the large number of nodes and edges, the

number of new edges would be relatively small.

In Figure 4.11, we show how the togetherness measures τ∃ and τ∀ change with the

number of added edges. The weaker togetherness notion, τ∃, grows faster than τ∀:

decreasing the ∀-togetherness is harder. Consistent with our expectation, we notice

that very few edges are required when integrating these large collaboration networks.

Figure 4.11: Integrating two collaboration networks with τ∃ and τ∀ constraints

Decreasing diameter: solving NI∆(G1, G2)

We now compare the algorithms for solving NI∆(G1, G2) network integration problem:

we consider Integratedm(G1, G2) algorithm and the Naive∆(G1, G2) algorithm and test

their performance in terms of running time and size of the output solutions. We

analyze our algorithms on synthesized as well as real-world datasets.

We also analyze how density of the input networks affects the solutions to the

integration problem. Indeed, consider the following example:

Example 9. As an example, we integrate two NWS graphs as well as two BA graphs

using the Integratedm(G1, G2) algorithm. The statistics for each graph is shown in

Table 4.3.

In Figure 4.12 and Figure 4.13, we integrate two NWS and two BA graphs, respec-

tively, using the Integratedm(G1, G2) algorithm. For the NWS graphs, we set parameter

dm ranges from 6 to 11, while for the BA graphs, dm ranges from 4 to 7.
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NWS Graph 1 NWS Graph 2 BA Graph 1 BA Graph 2
Number of nodes 50 50 50 50
Number of edges 77 78 141 141
Diameter 7 8 4 4
Radius 5 5 3 3

Table 4.3: Two pairs of generated BA and NWS random networks

(a) dm = 11, 1 new edge (b) dm = 10, 3 new edges

(c) dm = 9, 5 new edges (d) dm = 8, 7 new edges

(e) dm = 7, 11 new edges (f) improved diameter,
dm = 6, 29 new edges

Figure 4.12: Integrating two NWS networks with different diameter dm

Both figures show how with decreasing parameter dm the networks gradually dis-

solve in each other: when very few edges exist between the networks, the initial struc-
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(a) dm = 7, 1 new edge (b) dm = 6, 3 new edges

(c) dm = 5, 10 new edges (d) dm = 4, 30 new edges

Figure 4.13: Integrating two BA networks with different parameter dm

ture of the graphs is clearly visible, however, the more edges we create the more united

the networks become.

One may also notice from these examples that the number of edges to decrease the

diameter by one grows faster for Barabasi-Albert networks. We indeed will show this

tendency in the experiments below.

In Section 4.2, we computed bounds on the running time of Naive∆(G1, G2) and

Integratedm(G1, G2) algorithms. We now show experimental results by executing and

applying these heuristics on generated networks.
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Experiment 10. Naive∆(G1, G2) and Integratedm(G1, G2): comparing running

times.

We implement both algorithms Naive∆(G1, G2) and Integratedm(G1, G2) and record

their running times on 300 generated NWS and BA networks. The results indicate that

Integratedm(G1, G2) outperforms Naive∆(G1, G2) significantly, with the former runs

more than 3000 times faster on networks with 1000 nodes to add a single edge in

the solution set.

Figure 4.14 plots how much longer (on average) Naive∆(G1, G2) takes to add a

single edge to the solution set compared to Integratedm(G1, G2), against the number

of nodes in the networks. As one may see, on graphs with 1000 nodes, this difference

becomes significant.

Figure 4.14: The number of times Naive∆(G1, G2) runs slower than Integratedm(G1, G2)

Experiment 11. Naive∆(G1, G2) and Integratedm(G1, G2): comparing solution

size.

We compare the output of Integratedm(G1, G2) against the Naive∆(G1, G2) algo-

rithm. While Naive∆(G1, G2) may output smaller solutions when dm is large, Integratedm(G1, G2)

is more likely to produce smaller solutions as dm decreases.

Figure 4.15 plots the percentage of the cases where Integratedm(G1, G2) returns

smaller sets.

Note that Integratedm(G1, G2) almost always returns smaller sets whenever dm <

max{diam(G1), diam(G2)}. Figure 4.16 plots the average output size of Integratedm(G1, G2)

and Naive∆(G1, G2), against absolute and relative values of dm. Here, each graph con-

sists of 100 nodes. Even though Naive∆(G1, G2) may outperform Integratedm(G1, G2)

when dm is large, the difference is not very significant; as dm decreases, the advantage

of Integratedm(G1, G2) becomes increasingly significant.
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Figure 4.15: The probability that Integratedm(G1, G2) outputs smaller sets with varying
dm ∈ {d− 2, . . . , d+ 5} where d = max{diam(G1), diam(G2)}

(a) Merging two NWS networks with 100 nodes

(b) Merging two BA networks with 100 nodes

Figure 4.16: Comparing the Integratedm(G1, G2) algorithm and the Naive∆(G1, G2)
algorithm: average number of edges with different parameter dm

.

Experiment 12. Solving NI∆(G1, G2): structural analysis.

The BA networks are usually dense and have smaller diameter compared to the

NWS networks with the same number of nodes. We would like to understand how this
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difference affects network integration.

Figure 4.17 plots the average output size of Integratedm(G1, G2) on both types of

random networks with different dm. It shows that less edges are needed to reduce the

diameter of the integrated network to a certain dm ≥ max{diam(G1), diam(G2)} for BA

graphs than for NWS graphs. On the other hand, if dm < max{diam(G1), diam(G2)},
the number of edges required for NWS graphs becomes significantly less than that for

BA graphs. e.g., when dm = max{diam(G1), diam(G2)} − 1, the BA graphs requires

about ten times more edges than NWS graphs.

(a) Merging two NWS networks

(b) Merging two BA networks

Figure 4.17: The average number of edges for integrating networks with n nodes:
applying Integratedm(G1, G2)

Experiment 13. Applying Integratedm(G1, G2) on real world datasets.

To reconfirm results obtained for random networks, we integrate two real world col-

laboration networks, which represent paper co-authorship between scientists in physi-

cal science [65]. Both networks are initially unconnected. For the sake of experiments,

we considered the largest connected components (see Table 4.2).

Note that the networks are rather sparse: their diameters are 17 and 18, and the

radiuses are 9 and 10. The networks that satisfy the small-world principles, satisfy

also the six degrees of separation principle, that is every person is six or fewer steps

away from any other person in the network.

We assume that Col1 and Col2 are more similar to the Newman-Strogatz-Watts
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rad(G1)+rad(G2) max{diam(G1), diam(G2)}
Diameter dm 20 19 18 17 16 15
new edges 1 4 8 20 26 84

Table 4.4: Integrating two collaboration networks: applying Integratedm(G1, G2)

graphs. Thus we expect that when merging these two networks, despite the large

number of nodes and edges, the number of resulting edges would be relatively small.

We set the bounds for dm as following: min{diam(G1), diam(G2) − 2} ≤ dm ≤
rad(G1) + r(G2) + 1, or that is 15 ≤ dm ≤ 20. As proved earlier, when dm ≥ 20, i.e.

dm > rad(G1) + rad(G2), a unique edge between two centers allows to create a desired

network.

Then, we run the Integratedm(G1, G2) algorithm, and got the following results: when

dm = 19, we create only 4 new edges, when dm = max{diam(G1), diam(G2)} = 18,

the algorithm returns 8 new edges. When dm = max{diam(G1), diam(G2)} − 1 = 17,

i.e. we improve the diameter by one, only 20 edges are required. For dm = 16, one

needs 26 edges, and to make the diameter dm = 15, one needs 84 edges. In Table

4.4, we collected the results on connecting two collaboration networks with different

diameters.

Surprisingly, the results show that very few edges are required when merging these

large collaboration networks. Even when the diameter is improved by three, i.e. dm =

max{diam(G1), diam(G2)} − 3, we still need relatively few edges. Thus, we conclude

that results support our proposition that on sparse graphs one needs relatively small

number of edges to improve the diameter.

4.5.2 Priority Based Methods

In this subsection, we compare performance of priority based heuristics for integrating

two homogeneous networks. We consider both, generated and real-world datasets.

Experiment 14. Comparing the performance of the priority based methods.

As MinLeaf and CtrPer algorithms in general give small solution sets for the inte-

gration problems, we first apply them and use the resulting solution size as benchmarks

to test the performance of the priority based methods.

For each value of ∃- and ∀-togetherness, we calculate the average number e of edges

in the output solution sets. Then, we apply the priority based heuristics to compare



114 CHAPTER 4. INTEGRATING HOMOGENEOUS NETWORKS

the result of these methods against the benchmarks. The resulting togetherness (as

well as the benchmarks) are plotted in Figure 4.18 and Figure 4.19.

(a) Average values of τ∃ for NWS networks

(b) Average values of τ∀ for NWS networks

Figure 4.18: Integrating NWS networks with 50 nodes (on the left) and 100 nodes (on
the right)

The results show that, when we add a small number of edges, the priority based

heuristics perform well: the MaxBtw method results in the same togetherness as the

benchmark. The MinDegree method, as in Experiment 3, proves to be the worst for

small number of edges, however performs better when more edges are added.

Rather surprisingly, integrating networks with the random strategy often produce

solutions that are comparable with the other strategy.

Experiment 15. Integrating real networks: priority based heuristics

We then apply the priority based methods to the networks Col1 and Col2. Similarly

to Experiment 9, we fix the number of added edges according the benchmarks provided

by MinLeaf and CtrPer and then apply the different priority based methods. The results

are plotted in Figure 4.20.

Here again, we conclude that in general, the Random method gives comparable

performance against other priority based strategies.
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(a) Average values of τ∃ for BA networks

(b) Average values of τ∀ for BA networks

Figure 4.19: Integrating BA networks with 50 nodes (on the left) and 100 nodes (on
the right)

Figure 4.20: Integrating two collaboration networks: comparing different strategies

4.5.3 Solving BROKER and DIAM

(a) Experiments for BROKER

For each algorithm we are interested in two indicators of its performance:
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1. Output size: The average size of the output broker set (for a specific class of

random graphs).

2. Optimality rate: The probability that the algorithm gives optimal broker set

for a random graph. To compute this we need to first compute the size of an

optimal broker set (by brute force) and count the number of times the algorithm

produces optimal solution for the generated graphs.

Experiment 16. Comparing greedy algorithms: output sizes.

We generate 300 graphs whose numbers of nodes vary between 100 and 1000 using

each random graph model. We compute averaged output sizes of generated graphs by

their number of nodes n and radius rad. The results are shown in Figure 4.21.

We make two main conclusions following this experiment:

(a) The simplified algorithms produce significantly smaller broker sets compared to

their unsimplified counterparts. This shows superiority of the simplified algo-

rithms. For instance, applied to the Barabasi-Albert graphs with 1000 nodes

and radius 3, Max results in 168 new ties on average while S-Max only results in

56; Min results in 199 new ties while S-Min improves this to 41.

(b) BA graphs in general allow smaller output set than NWS graphs. This may

be due to the scale-free property which results in high skewness of the degree

distribution.

Experiment 17. Comparing algorithms for solving BROKER: optimality rates.

For the second goal, we compute the optimality rates of algorithms when applied

to random graphs.

The results are shown in Figure 4.22. For BA graphs, the simplified algorithm

S-MinLeaf has significantly higher optimality rate (≥ 85%) than other algorithms. On

the contrary, its unsimplified counterpart MinLeaf has the worst optimality rate. This

is somewhat contrary to Duckworth and Man’s work showing MinLeaf gives very small

solution set for regular graphs [38]. The second efficient algorithm for Barabasi-Albert

graph is Imp-Center.

For NWS graphs, several algorithms have almost equal optimality rate. The three

best algorithms are S-Max, S-Btw and S-MinLeaf which have varying performance for

graphs with different sizes (See Figure 4.23).
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Figure 4.21: Comparing results: average performance of the Max, Min, Btw and
MinLeaf algorithms versus their simplified versions on randomly generated graphs (BA
graphs on the left; NWS on the right)

Experiment 18. Experiment 12. Solving BROKER on real-world datasets.

Results on the datasets are shown in Figure 4.24. Btw and S-Btw become too

inefficient as it requires computing shortest paths between all pairs in each iteration.
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Figure 4.22: Optimality rates for different types of random graphs

Figure 4.23: Optimality rates when graphs are classified by sizes: BA on the left and
NWS on the right

Moreover, S-Max also did not terminate within reasonable time for the Enron dataset.

Even though the datasets have many nodes, the output sizes are in fact very small

(within 10). For instance, the smallest output sets of the Enron, Col1 and Col2 contain

just two nodes.

In some sense, it means that to become in the center even in a large social network,

it is often enough to establish only very few connections.

Among all algorithm Imp-Center has the best performance, producing the smallest

output set for all networks. Moreover, for Enron, Col1 and Col2, Imp-Center returns

the optimal broker set with cardinality 2. A rather surprising fact is, despite straight-

forward seemingly-naive logic, Center also produces small outputs in three networks.
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Figure 4.24: The number of new ties for the real-world networks

This reflects the fact that in order to become central it is often a good strategy to

create ties with the friends of a central person.

(b) Experiments for DIAMdm

We implement and test the performance of the algorithms for solving DIAMdm.Their

performance are measured by the number of new ties created.

Experiment 19. Solving DIAMdm for generated graphs.

We generated 350 graphs and considered the case when dm = diam(G)−1, i.e. the

aim was to improve the diameter by one.

For both types of random graphs (fixing size and radius), the average number of

new ties are shown in Figure 4.25.

The experiments show that Periphery performs better when the radius of the graph

is close to the diameter (when radius is > 2/3 of diameter), whilst CP is slightly better

when the radius is significantly smaller than the diameter.

Experiment 20. DIAMdm on real-world datasets.

We run both Periphery and CP on the networks Col1 and Col2 introduced above,

setting dm = diam(G) − i for 1 ≤ i ≤ 4. The numbers of new edges obtained by

Periphery and CP are shown in Figure 4.26; naturally for increasing i, more ties need

to be created.

We point out that, despite the large total number of nodes, one needs less than

19 new edges to improve the diameter even by four. This reveals an interesting phe-
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Figure 4.25: Comparing two methods for improving diameter applied to BA (left) and
NWS (right) graphs

nomenon: While a collaboration network may be large, a few more collaborations are

sufficient to reduce the diameter of the network.

On the Facebook dataset, Periphery is significantly better than CP: To reduce the

diameter of this network from 8 to 7, Periphery requires 2 edges while CP requires 47.

When one wants to reach the diameter 6, the numbers of new edges increase to 6 for

Periphery and 208 for CP.

Figure 4.26: Applying algorithms for improving diameter to Collaboration 1 and Col-
laboration 2 datasets



Chapter 5

Integration of Two Organizational

Networks

When two social groups merge, new relations need to be set up, which are often weak

ties between these groups [49]. Integrating two companies is a process of the similar

nature: take as an example a merger between two companies. As discussed by the

authors of [1], the success of mergers and acquisitions of companies often hinges on

whether firms can socialize employees effectively into the merged new entity. Therefore,

a big challenge faced by the top managers of both companies is how to establish links

between the two companies to ensure coherence and efficient communication.

In this chapter, we consider organizational networks with two types of ties that

represent formal hierarchical relations and informal non-hierarchical relations such as

collaboration or friendship. Motivated by different scenarios, we define two approaches:

collaborative and dominant integration. The vital difference between the approaches

is that the collaborative integration is established by informal ties only. As a result,

the networks are still independent. On the other hand, in the process of the domi-

nant integration, one of the networks becomes the other network’s subnetwork. Such

integration is established by one formal and several informal ties.

To evaluate the effect of integration, we revisit our notion of togetherness. We

argue that all edges, regardless of their type, serve as channels of communication

between people [94]. Formal organizational structure is designed to perform a function

of delivering commands; commands can also go through informal networks taking the

form of advice [61]. However, a directive would unlikely pass from a subordinate to his

121
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or her manager: indeed, information may travel in any direction, while the presence

of authority suggests that orders may not go up the hierarchical structure.

Universal, existential, and diametric togetherness, as defined in Chapter 4, are

designed to capture the proximity of two networks; in the context of organizations

these measures could be used to indicate how fast information gets from one network

to the other. To capture how fast a command can reach individuals in a certain

department, we introduce a new level of togetherness, hierarchical togetherness.

Finally, we extend the applicability of togetherness measures to reveal how well a

certain department is “integrated” in the entire organization. Thus, togetherness in

this chapter is considered as a measure of interaction between a certain unit with the

rest of the network, or more generally, between two organizational networks after they

establish some new relationships.

5.1 Understanding of Network Integration for Or-

ganizations

In Chapter 4, we considered interaction and integration of two homogeneous ’flat’

networks – networks that are represented by connected undirected graphs with a single

type of relationships. In general, given two networks G1 = (V1, E1) and G2 = (V2, E2),

an integrated network G1⊕E G2 = (V1 ∪ V2, E1 ∪E2 ∪E) is built by establishing edges

E ⊆ V1⊗V2 between the two networks. To extend this idea to organizational networks,

one needs to define the set of edges E, bearing in mind the traits of organizations.

Our model of organizational structures takes into account formal and informal re-

lations between individuals. Formal ties reflect organizational hierarchy and serve as

channels to transfer commands and directives. If two individuals are connected by a

formal link, it means that one of them has authority over the other one. Informal ties,

on the other hand, represent mutual relationships such as collaboration or friendship;

these relations are symmetrical. Through informal channels individuals communicate

as equal and exchange knowledge, ideas, and experience. The presence of formal hier-

archical structure is what makes organizational networks different from homogeneous

networks considered in Chapter 4. Indeed, if we ignore the formal hierarchy, the

integration problem would be exactly the same as in the previous chapter.
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All edges, regardless of their type, serve as channels of communication between

people [94]. If vertices u and v are connected by a formal edge
−−−→
(u, v), not only it

means that u has authority over v, but also that these two nodes communicate with

each other. On the other hand, formal organizational structure is designed to perform

a function of delivering commands; moreover, commands can also go through informal

networks taking the form of advice [61]. Thus, we keep in mind these two functions:

communication and transmission of directives.

Similarly, two organizations may be connected by interorganizational ties that serve

as channels of communications, or signify that both organizations become two parts of

a single entity with a smooth distribution of orders. We, thus, explore two scenarios.

Imagine we have two companies. The reasons to initiate an integration may be

broadly split into two parts:

(1) Mergers and acquisitions: one of the companies becomes the other one’s

unit. As it is very hard to model an actual merger, we stick to the rule that both

organizations preserve their initial structure: all existing relations are kept, only

new one can be added.

(2) Collaboration: the companies want to establish new working relations but no

actual consolidation occurs.

Following these scenarios, we define dominant and collaborative integration.

The main difference between these two types of integration is the resulting inte-

grated network. Informally, collaborative integration may be regarded as establishing

temporary project connections (informal edges), while dominant integration involves

more serious structural changes. Indeed, in the course of dominant integration, one of

the networks (dominated network) becomes the other network’s (dominating network)

subnetwork. To preserve the property of having only one manager, we link the root

of the dominated network with a node in the dominating network by a formal edge.

Then, we create as many informal edges as required to satisfy certain conditions.

We now give formal definitions of collaborative and dominant integration. Suppose

we have two organizational networks G1 = (V1, r1, E1) and G2 = (V2, r2, E2) such that

the sets of edges E1, E2 contain both formal and informal edges.

Definition 5.1.1. Let G1⊕E G2 = (V1∪V2, E1∪E2∪E) be an integrated network. We

say that the integration is dominant if there exists exactly one formal edge
−−−→
(u, v) ∈ E
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where u ∈ V1, v ∈ V2, and the set of edges E ⊆ V1 ⊗ V2. Moreover, we say that G1 is

the dominating subnetwork, and G2 is the dominated subnetwork in G1 ⊕ G2.

Clearly, a dominant integrated network G1 ⊕E G2 is a new organizational network

with root r1.

On the other hand, a collaborative integration signifies establishing new links in

order to encourage interaction and cooperation between two organizational networks.

However, the networks are still independent, and their formal and informal structures

are preserved. Thus, we do not create formal edges; however, we create as many

informal edges as required to satisfy certain conditions.

Definition 5.1.2. Let G1⊕E G2 = (V1∪V2, E1∪E2∪E) be an integrated network. We

say that the integration is collaborative if all edges in set E ⊆ V1 ⊗ V2 are informal.

As the result of collaborative integrating, none of the given networks stands out

in the hierarchy. Moreover, a collaborative integrated network G1 ⊕E G2 is not an

organizational network according to our definition as it has two roots (See Remark 1

in Chapter 2.)

Thus, we reason that the collaborative integration should be treated the same as

integration of homogeneous networks with a single type of relationships. In this case,

formal ties should be regarded as ordinary channels of communication rather than

sources of directions.

Remark 1. We acknowledge that mergers and acquisitions usually result in rather

more significant changes, such as restructuring or downsizing, than just creating new

interorganizational ties [98]. However, in this chapter our primarily goal is to develop a

model that considers a simpler case with preserving initial structures including formal

and informal relationships.

5.2 Togetherness in Organizational Networks

In this section, we revisit the notion of togetherness, which we defined in Chapter 4.

Universal, existential, and diametric togetherness, as defined in Chapter 4, are

designed to capture the proximity of two network; in the context of organizations

these measures could be used to indicate how fast information gets from one network
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to the other. To capture how fast a command can reach individuals in a certain

department, we introduce a new level of togetherness, hierarchical togetherness.

The first level, universal togetherness, reflects the principle of six degrees of separa-

tion, also known as the ’small-world’ phenomenon. We argue that the same reasoning

could be applied with respect to two departments (or two companies) that desire to

establish collaboration: this measure captures how close all members of one network

are to all members in the other network.

There also could be a different scenario: suppose workers in one of the departments

possess a certain resource, which all (or some) other employees want to be able to easily

acquire. Then, the first network contains the ’target’ subset of vertices: we want to

make sure that each node in the second network is able to reach one of the vertices

in the subset within small number of steps. Then, existential togetherness should be

applied.

These two measures could be used for any organizational network as well as any

other connected (homogeneous) network. Moreover, to define a collaborative integra-

tion, all edges including formal may be regarded as undirected. Indeed, any commu-

nication is a mutual relationship, regardless how much authority one individual has

over the other one.

On the other hand, we also need a measure that captures how fast a directive

from a manager can reach his or her subordinates. We thus introduce a new level of

togetherness, which is suitable for organizational networks only.

We note that directed edges reflect the formal structure of an organization, build-

ing the managerial hierarchy. As most of the social networks have bounded diameter

(small-world properties), any organizational network has a bounded hierarchical height

[113]. Moreover, the diameter may not be important at all in organizational networks:

indeed, managers does not want to be too far from their subordinates, but subordinates

may not necessarily be close to each other. Some of the departments (subnetworks)

may require more control from the top manager (the root). Thus, to commend the

traits of organizational networks and to define another level of togetherness, we con-

sider the distances from any node in the subnetwork to the root.

In contrast to Chapter 4, we propose a more universal approach to togetherness:

it is suitable not only to measure the proximity of two networks, but also to evalu-

ate the effect of interaction between a connected subnetwork (for example, a single
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department) and the entire organization.

5.2.1 Togetherness as a Local Measure of Proximity

Let G = (V, r, Efml ∪Einf) be an organizational network with root node r ∈ V . We call

connected graph G ′ = (V ′, r′, E ′fml ∪ E ′inf) a subnetwork of G if V ′ ⊂ V , E ′fml ⊂ Efml,

and E ′inf ⊂ Einf .

As we discussed above, we need measures to evaluate 1) the proximity of a sub-

network to other members of the network, and 2) the proximity of a manager to

the subnetwork. The first approach is based on measuring communication, while the

second one approximates how quick commands reach this subnetwork.

Suppose we have an organizational network G = (V, r, Efml ∪ Einf). We build an

undirected copy of this network by creating the set of undirected edges E such that

(u, v) ∈ E if either (u, v) ∈ Einf , or (u, v) ∈ Efml, or (v, u) ∈ Efml. We say that

the graph Gcom = (V,E) is a communication network of G. Indeed, this undirected

graph reflects all channels of communication between individuals, based on formal and

informal relationships.

Definition 5.2.1 (Togetherness as a measure of communication). Let G = (V,Efml ∪
Einf) be an organizational network, and let V ′ ⊂ V be a subset of vertices that form

the subnetwork G ′. Then, we define following measures of togetherness τ \:

1. Existential togetherness ∃ of G ′ is the smallest positive number 0 < τ∃ ≤ 1

such that for any u ∈ V \ V ′ there exists v ∈ V ′: (dist(u, v))−1 ≤ τ∃ in the

communication network Gcom.

2. Universal togetherness ∀ of G ′ is the smallest positive number 0 < τ∀ ≤ 1 such

that for any v ∈ V ′, for any u ∈ V \V ′ : (dist(v, u))−1 ≤ τ∀ in the communication

network Gcom.

On the other hand, taking into account the direction of formal ties, may reveal

insights into how a directive from the root node reaches individuals in the subnetwork.

Definition 5.2.2 (Togetherness as a measure of control). Let G = (V, r, Efml∪Einf) be

an organizational network where Efml are directed edges and Einf are undirected. Let

G ′ be the subnetwork of G with set of vertices V ′ ⊂ V .
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Hierarchical togetherness h of G ′ is the smallest positive number τh such that for

any v ∈ V ′ : (dist(r, v))−1 ≤ τh.

We illustrate these measures with a real-world example.

Example 10. We consider a small real world dataset, Krackhardt and Hansons hier-

archy [61]. Krackhardt and Hansons studied a high-tech company with 21 managers.

They used a formal hierarchy as well as reconstructed two social networks by inter-

viewing the managers - one is the advice network (based on criterion ”To whom do you

go for advice?”), and the other one is the friendship network (”Who is your friend?”).

We combine the formal hierarchy and the friendship network to obtain Krack-

hard organizational network. Then, we compute togetherness with respect to different

subnetworks on this organizational network.

In Figure 5.1, we show the formal hierarchy, the friendship network, and the re-

sulting organizational network.

(a) Reporting hierarchy

(b) Friendship network

(c) (Communication) organizational network: combining formal and informal relations

Figure 5.1: Different levels of Krackhardt and Hansons dataset

Consider subnetwork G1 ⊂ G such that V1 = {20, 7, 16, 5, 11}. Then, τ∃ = 1
3
,

τ∀ = 1
4
, τh = 1

2
. Comparing these results with togetherness of the other departments

(depicted in different colors in Figure 5.1), we found that all other departments are

equally located and have the same values of togetherness as G1.
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However, a single edge could change this for the department led by 17: it is easy to

see that for G2 with V2 = {17, 9, 10}, the universal togetherness could be improved by

establishing a new edge (17, 13): then, τ∀ = 1
3

for G2 with respect to G. This suggests

an approach of improving togetherness of a certain department by creating additional

informal links.

A well-known phenomenon in sociology, called homophily, explains that people tend

to make connections with those who are similar to them. Workplace homophily may

be interpreted as the fact that employees are more likely to establish social connections

with people in the same unit (i.e. department, office, etc.) as well as at the same level

[76]. However there might exist some informal links that connect people from different

levels. To capture this phenomenon and to define some of the bounds on togetherness,

we introduce the notion of shortcuts.

Definition 5.2.3. Let G = (V, r, Efml ∪ Einf) be an organizational network. For any

two nodes v, u such that u is a non-direct subordinate of v, we call a geodesic path

from u to v a shortcut if its length smaller than the path from v to u using edges from

Efml only.

Example 11. In Figure 5.2, consider a simple organizational network. The subnet-

work G ′ ⊂ G (depicted in red) has τh = 1
3
. The universal togetherness of G ′ is τ∀ = 1

4

since the distances dist(4, 9); and the existential togetherness is τ∃ = 1
2
. Moreover,

there is a single shortcut, the edge (1, 10) ∈ Einf .

r

1 2 43

5 6 7 8

109 11

Figure 5.2: Togetherness of the subnetwork G ′ (red): τh = 1
3
, τ∀ = 1

4
, τ∃ = 1

2
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Clearly, if an organizational network contains only formal ties, there are no short-

cuts.

Theorem 5.2.1 (Bounds on togetherness for subnetworks). Let G = (V, r, Efml∪Einf)

be an organizational network. Then for any subnetwork G ′ of G:

(a) height(G)−1 ≤ τh ≤ ∞;

(b) diam(G)−1 ≤ τ∃ ≤ 1;

(c) diam(G)−1 ≤ τ∀ ≤ rad(G)−1

Proof. (a) For h, the lower bound is the hierarchical height of the organizations, i.e.

the largest path from the root r to any vertex using only edges from Efml. Indeed, for

any node u ∈ V , there exists a path from r such that dist(r, u) ≤ height(G).

The case when G ′ contains only one node, the root r, is meaningless, as the distance

dist(r, r) = 0. Then, we say that τh =∞.

(b) If subnetwork G ′ contains all but one node from G ′, then τ∃ = 1; however, if

dist(u, v) = diam(G), and u ∈ V ′ and v 6∈ V ′, then G ′ has τ∃ = diam(G)−1

Similarly for (c), the lower bound is defined as diam(G)−1. The upper bound

τ∀ = rad(G)−1 when G ′ contains a single node u, which is a center of G, and thus

ecc(u) = rad(G).

5.2.2 Using Togetherness to Evaluate Integration

A measure of togetherness could be applied to evaluate the effect of integration.

Dominant integration. A dominant integration comprises a new organizational

network such that the dominated and the dominating networks are part of its struc-

ture. Thus, one may apply existential, universal, and hierarchical levels of togetherness

of the dominated network G2 with respect to the whole network G1 ⊕E G2.

Collaborative integration. To evaluate the proximity of two organizational

networks in this case, we regard all edges as undirected, that is we consider their com-

munication networks. Then, the problem is equivalent to the problem of integrating

two communication homogeneous networks as in Chapter 4.
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Definition 5.2.4. Let G = G1⊕EG2 be a collaborative integration of two organizational

networks G1 = (V1, r1, E1) and G2 = (V2, r2, E2). We define togetherness of G1 and G2

in G as follows:

1. The ∃-togetherness (or existential togetherness) is the smallest positive number

0 < τ∃ ≤ 1: for any u1 ∈ V1 there exists v1 ∈ V2 such that (dist(v1, u1))−1 ≤ τ∃,

and for any v2 ∈ V2 there exists u2 ∈ V1 such that (dist(v2, u2))−1 ≤ τ∃ in the

communication network Gcom.

2. The ∀-togetherness (or universal togetherness) is the smallest positive number

0 < τ∀ ≤ 1: for any v ∈ V1, for any u ∈ V2, the (dist(v, u))−1 ≤ τ∀ in the

communication network Gcom.

Collaborative integration could also be considered through the prism of bringing

two certain departments together (not the entire organizations). We will consider this

problem separately.

5.3 Dominant Integration of Two Organizational

Networks

Let G1,G2 be two organizational networks. We say G1⊕E G2 is the dominant integrated

network if there exists exactly one directed edge
−−−→
(u, v) ∈ E such that u ∈ V1, v ∈ V2.

To evaluate the effect of integration, we define optimal set of edges:

Definition 5.3.1. Let G = G1⊕E G2 be an integrated organizational network. We say

that the set of edges E is optimal for \ ∈ {∃,∀, h} if τ \ is greater or equal than τ ′\ of

G1 ⊕E′ G2 for any set of edges E ′ 6= E of the same cardinality.

In other words, an optimal set is the smallest set of edges to satisfy given parameter

\ ∈ {∃,∀, h}.

The dominant network integration problem could be stated as following:

Given two networks G1, G2, with capacities c1, c2, respectively, build a dominant inte-

grating network such that G1 is dominating and G2 is dominated, and the togetherness

of G2 with respect to G1⊕E G2 satisfies certain requirements. Moreover, the number of

edges is as small as possible. By our assumption, each node has exactly one incoming
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edge. Thus, the only way to integrate networks is to link the root of the dominated

network with one of the nodes in the other network.

INPUT Two organizational networks G1, G2 with capacities c1, c2, respectively, and

t ∈ (0, 1] is the desired value of togetherness.

OUTPUT A set E ⊆ V1 ⊗ V2 such that the togetherness τ \(G2,G1 ⊕E G2) ≥ t. An

optimal solution E of this problem is one that has the smallest cardinality.

Clearly, one needs to carefully choose which vertices to connect, as this choice

would affect the togetherness. We illustrate this with an example:

Example 12. Suppose we have two networks G1 and G2 with V1 = {0, 1, 2, 3, 4, 5, 6}
and V2 = {a, b, c}. Both networks contain only directed edges, and, thus, form trees.

In Figure 5.3, we show two possible ways to build a dominant integrating network

using single directed edge. In Figure 5.3a, the resulting network has the same value

of h as in Figure 5.3b, however, τ∀(G2,G1⊕E G2) > τ∀(G2,G1⊕E′ G2) and τ∃(G2,G1⊕E
G2) > τ∃(G2,G1 ⊕E′ G2). To make the values of universal and existential togetherness

equal, one needs to create an additional undirected edge, for example e = (5, a), i.e.

E ′′ = {(3, a), (5, a)}.
In this example, |E| = |E ′|; however, set E is optimal for any togetherness ∃, ∀

and h assuming that the capacity c = 4 – which means that the root r = 0 does not

have free capacity: three units are spent on communicating with direct subordinates,

and one unit is used by the hidden self-loop (See Chapter 2); while E ′ is optimal only

for h.

Suppose we have two organizational networks G1, G2.

Theorem 5.3.1. Let G1 ⊕E G2 and G1 ⊕E′ G2 be dominant integrated networks. If

τ∃(G2,G1 ⊕E G2) > τ∃(G2,G1 ⊕E′ G2), then τ∀(G2,G1 ⊕E G2) > τ∀(G2,G1 ⊕E′ G2).

Proof. Let u1 ∈ V1, v1 ∈ V2 be two nodes such that (distG(u1, v1))−1 = τ∃(G2,G1⊕EG2);

then for any u ∈ V1, for any v ∈ V2: distG(u1, v1) ≥ distG(u, v).

On the other hand, let u2 ∈ V1, v2 ∈ V2 be two nodes such that (distG′(u2, v2))−1 =

τ∃(G2,G1 ⊕E′ G2); then for any u ∈ V1, for any v ∈ V2: distG′(u2, v2) ≥ distG′(u, v).

By Definition 5.2.1, since τ∃(G2,G1 ⊕E G2) > τ∃(G2,G1 ⊕E′ G2), we imply that

distG(u, v) ≤ distG(u1, v1) < distG′(u2, v2). Thus, for any u ∈ V1, for any v ∈ V2,

distG(u, v) < distG′(u2, v2), and hence τ∀(G2,G1⊕EG2) > τ∀(G2,G1⊕E′G2) by definition.
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54 a

b c

(a) Integrated network G1 ⊕{(1,a)} G2:

τh(G2,G1 ⊕E G2) = 1
3 ,

τ∀(G2,G1 ⊕E G2) = 1
4 ,

τ∃(G2,G1 ⊕E G2) = 1
3

0

21 3

4 5 a

b c

(b) Integrated network G1 ⊕{(3,a)} G2:

τh(G2,G1 ⊕E′ G2) = 1
3 ,

τ∀(G2,G1 ⊕E′ G2) = 1
5 ,

τ∃(G2,G1 ⊕E′ G2) = 1
4

Figure 5.3: Dominant integration of two networks

This theorem shows that universal and existential togetherness are closely related:

increasing one of the parameters, the other value would be eventually increased as

well.

Since the capacity is limited, there are some undecidable problems: no matter

how many edges one creates, it is not possible to reach a certain togetherness. Thus,

given any two organizational network, we can compute the limits on each parameter

of togetherness.

Claim 5.3.1 (Condition of existence.). Let G1, G2 be two organizational networks. A

dominant integrating network G1 ⊕E G2 exists only if the relative degree of the root in

G2 is smaller than the relative capacity: deg(r2) < c.

Note that in the claim above we have no restrictions over the values of togetherness

nor the final number of edges.
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5.3.1 Dominant Integration with a Single Node

We first mention a simple case when, given a dominating organizational network G1 =

(V, r1, Efml, Einf) we integrate it with a dominated network that contains a single node

v: G2 = ({v}, v, ∅, ∅). The resulting dominant integration network would be G =

(V ∪{v}, r1, Efml∪{(u, v)}, Einf ∪E). E = ∅ implies that we only create a formal edge.

Clearly in this case, the closer v is placed to the root r1, the larger the hierarchical

togetherness τh of G2.

If we can establish several undirected edges as well, some other strategies could

be applied in order to gain a better position. In Section 4.4, we consider the case

when a single node is added to a social network. The same ideas can be applied for

organizational networks: in order to make v central (that is to gain higher values of

existential and universal togetherness), we need to place it closer to the center of G1.

5.3.2 Dominant Integration of Two Hierarchies

In this subsection, we consider another special case (“pure hierarchies”) when orga-

nizational networks are represented by tree structures, i.e. there known only formal

relationships between employees. This case helps better understand the nature of

dominant integration.

Dominant integrating consists of two steps: we first create a directed edge and

then add undirected edges.

Step 1. Creating a single directed edge. Suppose we have two trees T1 =

(V1, E1) and T2 = (V2, E2) with roots r1 ∈ V1 and r2 ∈ V2, and heights height(T1),

height(T2). Suppose that we integrate the trees such that T1 is dominating.

Technically, when we integrate two networks that contain only directed edges (i.e.

directed rooted trees), we obtain a new directed rooted tree where the root is the root

of the dominating network. Note that by Claim 5.3, root r2 must have free capacity.

Given two trees T1 = (V1, E1) and T2 = (V2, E2), create an edge e such that T1⊕ET2

with E = {e} is a dominant integrating network. In fact, we do not have choice, which

node to pick from V2 as it must be the root r2; we only choose the most suitable node

v ∈ V1, i.e. e =
−−−→
(v, r2).

To evaluate the effect of integration, we compute a togetherness of the dominated
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tree T2 with respect to T1 ⊕E T2, that is we need to compute τ \(T2, T1 ⊕E T2).

Existential and Universal togetherness. As we noted, we do not have freedom to

choose a vertex in V2. Thus, to maximize both, universal and existential togetherness,

one needs to pick node v ∈ V1 that would be as close to a center of the tree T1 as

possible (or be a center itself). If v is a center, than for any u ∈ V1, dist(v, u) ≤ rad(T1);

however, center nodes may not be available due to capacity restrictions.

By creating edge
−−−→
(v, r2), we make the single path available from nodes in V1 to

V2 and back, which always goes through v. Existential togetherness τ∃ is the inverse

of the largest distance from any u ∈ V1 to v plus one, that is τ∃ = (ecc(v) + 1)−1.

Similarly, τ∀ = (ecc(v) + height(T2) + 1)−1

Thus, we make the following observation:

Proposition 5.3.1. In a dominant integrating network T1⊕E T2 with E = {
−−−→
(v, r2)}, if

v is a center of T1 then the set E is optimal for ∃ and ∀. Moreover, τ∃ = (rad(T1)+1)−1

and τ∀ = (rad(T1) + height(T2) + 1)−1.

This proposition follows directly from the reasoning above.

Hierarchical togetherness. Suppose we pick the vertex v ∈ V1 to be connected

with r2 ∈ V2. Then, hierarchical togetherness of the resulting integrated network

T1 ⊕E T2 where E = {
−−−→
(v, r2)} is τh = (dist(r1, v) + height(T2) + 1)−1.

Moreover, if height(T1) < dist(r1, v) + height(T2) + 1, then τh is the inverse of the

height of the resulting rooted tree, i.e. τh(T2, T1 ⊕E T2) = (height(T1 ⊕E T2))−1.

Thus, to maximize the hierarchical togetherness h, one needs to place the domi-

nated subnetwork T2 as close to the root r1 as possible. If there is no other requirements

and constrains, we then make the following simple conclusion:

Proposition 5.3.2. Let T1⊕ET2 be a dominant integrating network with E = {
−−−→
(v, r2)},

and S ⊆ V1 be the set of nodes with free capacity. The set E is optimal for h iff for

any u ∈ S, dist(v, r1) ≤ dist(u, r1). Moreover, τh = (dist(r1, v) + height(T2) + 1)−1.

Clearly, if root r1 has free capacity, the lemma guarantees that the only optimal

set for h is set E = {
−−−−→
(r1, r2)}.

We conclude that the key difference is that we want to be as close to the top man-

ager as possible to maximize h, and to be as close to the center of the network as



5.3. DOMINANT INTEGRATION OF ORGANIZATIONS 135

possible to maximize ∀ (∃).

Step 2. Creating undirected edges. Suppose we have created a directed edge
−−−→
(v, r2), however, the togetherness \ = {h,∀, ∃} in the resulting dominant integrated

network is not as desired.

Note that T1 ⊕E T2 at this stage is T = (V1 ∪ V2, E1 ∪ E2 ∪ {
−−−→
(v, r2)}).

Existential togetherness. The second step of dominant integration with the aim

of reaching a certain existential togetherness, is the same as for any homogeneous

networks as in Chapter 4. However, tree structure makes computations of distance k

dominating sets significantly easier.

If the desired value of ∃-togetherness ε is smaller than current value τ∃ of T1⊕E T2

with E = {
−−−→
(v, r2)}, one needs to find a distance k dominating set DV1 ⊂ V1 such that

v ∈ DV1 and k = 1
ε
− 1.

This can be done using the following procedure: Fix k = 1
ε
− 1, and let DV1 = {v}.

Let set S ⊂ V1 be the set of vertices such that for any w ∈ S there does not exist

u ∈ DV1 such that dist(w, u) ≤ k. Take a vertex l ∈ S of the largest depth, and find

n ∈ V1 such that dist(n, l) = k − 1 (up the tree). Add n to the set DV1 , and check if

it is a distance k dominating set for V1. See Procedure 8.

Procedure 8 Computing distance k dominating set for tree T = (V,E); Output DV

Given v ∈ V , DV := {v}
Set S := {u | dist(u, v) ≤ k for all v ∈ DV }
while S 6= V do

l = leaf(T, S) . Pick l of the largest depth such that l 6∈ S
n = parent(T, l, k) . Find n ∈ V such that dist(n, l) = k − 1
DV = DV ∪ {n}
Update S = {u | dist(u, v) ≤ k for all v ∈ DV }

end while

When the distance k dominating set DV1 is built, connect each node in this set

with some nodes in V2; the number of edges in E would coincide with the cardinality

of the set DV1 . Then, the existential togetherness in the dominated integrated network

T1 ⊕E T2 is τ∃ = (k + 1)−1. Note that for existential and universal togetherness we

consider communications networks, i.e. the trees are treated as undirected.
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Universal togetherness. Let σ be the desired ∀-togetherness, τ∀ is the current

togetherness of T1 ⊕E T2. We need to make sure that all nodes in V1 are at distance

smaller than given σ from all nodes in V2. Below we present sketches for developing

an approach to solve the problem:

• Connect periphery vertices: Suppose x, y ∈ V1 ∪ V2 are nodes that are fur-

thest apart in the integrated network, they share the “weakest channel”. Hence,

it makes sense to connect x, y by an edge. Thus, a simple approach is to find

two most distant vertices and connect them by an edge, then recompute the

distances, and repeat the operation until the desired τ∀ ≥ σ. This approach

does not take into account the tree structure of the networks, moreover, as soon

as we create a single undirected edge, the network does not have a tree structure

anymore. Thus, as the number of paths between vertices increases, recomputing

distances becomes more time consuming. For more details, see Chapter 4.

• Find a distance l dominating set DV1 ⊂ V1, and a distance m dominating set

DV2 ⊂ V2 such that v ∈ DV1 , r1 ∈ DV2 , and m + l = 1
σ
− 1. Then, create m × l

edges by connecting each vertex in DV1 with each vertex in DV2 . The problem

here is that with limited capacity, vertices in the dominating sets may not be

able to maintain all required connections. Moreover, there is no clear knowledge

how to properly choose m and l.

• Mix these two approaches: find distance dominating sets; then, connect each

vertex in the set with at least one in the other set (we assume that distance

dominating sets contain vertices with some free capacity) until no edges between

the sets can be established. Finally, recompute the ∀- togetherness, and, if

needed, create more edges by linking two most distant vertices. This approach

is to be used with limited capacity.

Hierarchical togetherness. If the desired value of the hierarchical togetherness h

is larger than the current value τh = (dist(r1, v)+height(T2))−1, then we need to create

a number of undirected edges to decrease dist(r1, u) for some u ∈ V2. This could be

done by creating shortcuts.

Proposition 5.3.3. Let T1 ⊕E T2 be a dominant integrating network with |E| > 1. If

the set E is optimal for h then there is at least one edge in E that is a shortcut.
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The proof follows from the definition of shortcuts and reasoning above. Indeed,

shortcuts provide vertices with alternative paths that are shorter than a path that

uses formal edges only.

5.3.3 Solving the Dominant Integration Problem with Fixed

Hierarchical Togetherness

Let h be the desired value of togetherness,and τh is the current togetherness of the

network (we assume that the directed edge is already established). The idea is follow-

ing: to make τh ≥ h, connect closest to the root r1 vertices to the vertices in V2 such

that the new edges provide the root r1 with short access to as many nodes in V2 as

possible.

The problem may seem very similar to the problem of finding a distance k domi-

nating set, which is soluble in polynomial time on trees. However, restricting capacity

is what makes it hard.

Example 13. Consider dominant integration of two trees as in Figure 5.4. Suppose

we want to reach hierarchical togetherness τh = 1
4
. Let

−−−→
(0, 7) be the directed edge

created at the first stage of integration. Without any undirected edge, the integrated

network T1 ⊕{−−→(0,7)} T2 has τh = 1
5

because dist(0, 14) = dist(0, 15) = 5. Creating, for

example, an edge (2, 10) could improve the hierarchical togetherness (See Figure 5.4a),

but this may not be possible if we assume that only vertices at the bottom {5, 6} in

T1 have free capacity. Then creating two shortcuts through one of them, for example,

edges (6, 7) and (6, 12) would also increase τh (See Figure 5.4b)

Creating undirected edges between hierarchies quickly deprives us of having single

paths in the network. For example in Figure 5.4b, creating an edge that connects 6 and

12 leads to creating a new path from the root 0 to 12: (0, 7, 8, 10, 12) and (0, 1, 3, 6, 12).

T1 ⊕E T2 is no longer a tree, thus, more options should be considered when creating a

next undirected edge.

The LeafToRoot Paradigm

Reaching a desired value of togetherness h implies that all leaf nodes in V2 are at most

at distance 1
h

from r1 in the resulting network. We propose an approach, called the
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(a) one undirected edge if at least one of
{1, 2, 3, 4} has free capacity

(b) two undirected edges if only 5 and 6
have free capacity

Figure 5.4: Integrating two hierarchies T1 and T2 with τh = 1
4
: capacity affects the

cardinality of an optimal set of edges

LeafToRoot paradigm, that is focused on “covering” nodes in V2 by following up the

tree (and therefore, covering leaf-nodes first). This approach has always three main

steps:

Step 1 Find a node n ∈ V1 with free capacity that is as close to the root r1 as possible.

Step 2 Find a node w ∈ V2 with free capacity that is as far from leaves as possible

and/or covers as many leaves as possible.

Step 3 Create undirected edge (n,w). Recompute togetherness τh; if needed, repeat the

procedure.

The pseudocode is presented in Procedure 9.

Example 14. To illustrate how this paradigm works, suppose we have two balanced

trees: T1 with branching factor 3 and height 2 (thus, it has 12 nodes in total), and T2

with branching factor 2 and height 4 (30 nodes in total). We want to integrate these

networks such that T1 is dominating and T2 is dominated. For simplicity, suppose

also that each vertex has exactly one unit of free capacity. Fix the desired value of

togetherness h = 1
4
.

First, we create the formal tie that connects both roots
−−−−→
(0, 13) (that is to min-

imize current τh value). In the resulting integrated network at this stage we have
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Procedure 9 Algorithm LeafToRoot for dominant integration with fixed hierarchical
togetherness h; Output E

E = {
−−−→
(v, r2)} . Create a directed edge between T1 and T2

T = T1 ⊕E T2

τh = computeHierarchicalTogetherness(T )
while τh < h do

n = closestAvailable(V1, r1) . n should have free capacity
distToRoot = dist(r1, n) . Step 1 ends
L = getLeaves(T, V2) . Step 2
Find W ⊂ V2: dist(w, l) ≤ 1

h
−m, and dist(r2, w) is minimal; l ∈ L, w ∈ W

Choose w according to chosen heuristics . w should have free capacity
Create edge e = (w, n)
E = E ∪ {e}; update T = T1 ⊕ T2

Recompute τh = computeHierarchicalTogetherness(T )
end while

τh = (dist(r1, r2) + height(T2))−1 = 1
5
. Since the desired value h > τh, we apply the

LeafToRoot paradigm.

First, we pick vertex 1 as the closest to root 0 vertex with free capacity (the root

itself if not available as we created edge (0, 13)), and fix m = dist(0, 1) = 1. Then, we

found leaf 28 that is at distance 5 from the root. Node 16 is at distance 1
h
−m− 1 = 2

from 28, thus, we create an edge (1, 16).

Repeating this procedure, we create four more edges as shown in Figure 5.5.

Figure 5.5: Dominant integrating of two balanced trees with τh = 1
4

However, if we fix h = 1
3

for this example, the solution would not exist: see

Figure 5.6. We again create edges one by one until we run out of vertices with free

capacity in V1. However, node 43 is still at distance 5 from the root 0, and thus,

τh = 1
5
.

This example allows us to make the following observation. Suppose we have two
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(a) Creating one edge

(b) Creating four edges

(c) Creating twelve edges

Figure 5.6: Integrating two balanced trees: no solution exists with τh = 1
3

balanced perfect trees: one has root degree a and height height(T1), and the other one

has root degree b and height height(T2). To reach a desired value of togetherness, we

need to make sure that all leaves in V2 are at distance not larger than 1
h

from the root.

Clearly, there are bheight(T2) leaves in this tree.

Let h2 = height(T2) and h1 = min{height(T1), 1
h
}. Root r1 can be attached to a

vertex at the level h1 − 1, and thus would ‘cover’ bh1 leaves. (Assuming it has free

capacity). Nodes in V1 that are at distance k from r1 (k < h1) can ‘cover’ bh1−k leaves

each. Under assumption that each vertex has exactly one unit of free capacity, we get
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the following condition:

[bh1 ∗ 0] + bh1−1 ∗ a1 + bh1−2 ∗ a2 + · · ·+ b0 ∗ ah1 ≥ bh2

[bh1 ∗ 0] means that we may need to exclude the root r1 if its unit of free capacity was

used on maintaining the formal tie between T1 and T2.

In our example above, we have b = 2, a = 3, h1 = 2, h2 = 4, which implies

21 ∗ 31 + 20 ∗ 32 = 15 < 24 = 16. Thus, the solution does not exist – as it was earlier

also shown experimentally.

This observation suggests that capacity limitations cause limits on the number of

edges that can be established between the networks, and thus on the smallest hierarchical

togetherness that could possible be reached.

Let T1 = (V1, r1, E1), T2 = (V2, r2, E2) be two trees.

Theorem 5.3.2. Assume that any v ∈ V1 ∪ V2 has unlimited capacity and consider

T1 ⊕E T2. The set E =
m⋃
i=1

{(r1, wi)} is optimal for given h iff W = {w1, w2, . . . wm} is

a minimum distance k dominating set with k = 1
h
− 1.

Proof. Suppose E is optimal for h. Since each edge to the root r1 goes through r1

itself, the path from each wi to any node in V2 is not larger than 1
h
− 1, i.e. for any

u ∈ V2, there exists w ∈ W such that dist(w, u) ≤ 1
h
− 1. Thus, W is a distance k

dominating set where k = 1
h
− 1. Suppose there exists another distance dominating

set W ′ of cardinality r such that |W ′| < |W |. Then the set E ′ =
r⋃
i=1

{(r1, w
′
i)} with

each w′i ∈ W ′ would also be a solution for h; moreover r < m implies that E is not

optimal. Hence, W must be a minimum distance k dominating set.

Suppose W ⊂ V2 is a minimum distance k dominating set where k = 1
h
− 1.

By definition of distance dominating sets, for any v ∈ V2 there is u ∈ V2 such that

dist(v, u) ≤ k. Thus, if we connect each w ∈ W to the root r1, for any v ∈ V2

dist(r1, v) ≤ k + 1. Hence τh = 1
k+1

= h. E is optimal as there does not exists a

dominating set W ′ ⊂ V2 such that |W ′| < |W |.

The theorem suggests also that to solve the integration problem for h without

capacity restrictions, one should find a minimum distance dominating set for the dom-

inated tree T2. For trees, this could be done using Algorithm 8.
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Remark 2. Theorem 5.3.2 also holds with weaker restrictions of capacity: if r1 ∈ V1

has unlimited capacity, and all v ∈ V2 have at least one unit of free capacity. Indeed,

any edge in E connects the root r1 and some node in V2.

Moreover, the theorem can naturally be extended into the following proposition. If

T1 have nodes with free capacity only at a specific hierarchical level lev < 1
h
, then the

problem of dominant network integration for h is equivalent to the problem of finding

distance k dominating set Dk for V2 where k = 1
h
− lev − 1 and r2 ∈ Dk.

Using the LeafToRoot paradigm, we develop three algorithms. Step 1 stays the

same: let a node n ∈ V1 with free capacity such that for any node n′ ∈ V1 that also

has free capacity dist(r1, n) ≤ dist(r1, n
′). Let m = dist(r1, n) + 1.

At Step 2, we choose a node from V2 to be connected with n ∈ V1 such that all

its subordinates are no further than at a desired distance from the root r1. Limited

capacity is what makes solving the integration problem complicated. Under different

assumptions, we need to apply different strategies to choose the proper node. There

are several ways to find this node, and the choice of heuristics shapes several (greedy)

algorithms:

ANY LEAF. Take a leaf u ∈ V2 that is the furthest vertex from r1, i.e. dist(u, r1) =

(τh)−1. Find a node w ∈ V2 with free capacity that is as close to the node r2 as possible,

and the distance dist(w, u) ≤ 1
h
−m, i.e. such that for any other w′: dist(w′, u) ≤ 1

h
−m

with free capacity, dist(w, r2) ≤ dist(w′, r2) . Create undirected edge (n,w), and add

it to the set E.

Proposition 5.3.4. Given two perfect balanced trees T1 and T2 with capacities c1, c2,

respectively, the algorithm AnyLeaf returns an optimal set of edges E.

The proof follows from the structural properties of balanced trees: all nodes at

each hierarchical level are identical to each other in terms of units of free capacity,

and the number of predecessors/ancestors. Moreover, in a balanced tree, the number

of nodes at each level grows exponentially.

Regardless from which leaf to start, the AnyLeaf paradigm would return sets of

the same size. Moreover, at each step we cover the largest possible number of vertices

(the greedy approach), thus the resulting set is optimal. See Example 14.
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MAX Degree. Find set of leaves L ⊂ V2 that are at largest distance from r1, i.e.

dist(u, r1) = (τh)−1. Find a set W ⊂ V2 such that for any l ∈ L there exists w ∈ W :

1) w has free capacity;

2) dist(w, l) ≤ 1
h
−m;

3) there does not exists w′ ∈ V2 with free capacity such that dist(w′, l) ≤ 1
h
−m and

dist(r2, w
′) < dist(r2, w).

Choose node w ∈ W that has a largest degree.

This greedy algorithm is suitable when we assume that at least one node at each

hierarchical level has at least one unit of free capacity, and thus at each cycle of the

algorithm, mi ≤ mi−1 + 1.

Example 15. Suppose we are integrating two trees as in Figure 5.7a; the desired

hierarchical togetherness is h = 1
3

and each node has exactly one unit of free capacity.

The “any Leaf” strategy may lead to creating edge (1, 14) at the first step, then (2, 15)

at the second, and (3, 16) at the third. Nodes (26, 27, 28, 29) are still at distance 4

from the root 0. Thus, in total the algorithm would output 7 undirected edges plus

one directed.

However, a better choice of nodes to be connected could result in a smaller set

E: In Figure 5.7b, there is an alternative way: creating edges (2, 17) and (1, 15) first

would lead to the smaller set of edges E at the end of the run – there would only be

created 5 undirected and one directed edges.

Keep best, remove worst. Consider T1 = (V1, E1). Let C0, C1 . . . Ch−1−1 be the

sum of free capacities at each hierarchical level, i.e. C0 represents how many edges

can go directly to the root r1, C1 indicates how many edges can go the nodes that are

at distance one from the root r1, etc.

Let j = 0, . . . , h−1 − 1, m = h−1 −m. Consider T2 = (V2, E2). Find set of leaves

L ⊂ V2. Find a set W ⊂ V2 such that for any l ∈ L there exists w ∈ W :

1) w has free capacity;

2) dist(w, l) ≤ j;

3) there does not exists w′ ∈ V2 with free capacity such that dist(w′, l) ≤ j and

dist(r2, w
′) < dist(r2, w).

Among all nodes in W , choose the subset W+ ⊆ W such that w1 ∈ W+ but

w2 6∈ W+ implies that deg(w1) ≥ deg(w2) for any w1, w2 ∈ W .
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(a) T1 ⊕E T2 after four steps of the LeafToRoot algorithm (ANY LEAF): three more edges
will be created

(b) T1 ⊕E T2 after four steps of the Greedy LeafToRoot algorithm (MAX Degree): only one
more edge will be created

Figure 5.7: LeafToRoot: Choosing between ANY LEAF and MAX Degree

Then, create edges that link each node in W+ with a node at distance j from the

root in T2.

5.3.4 Generalization

In this subsection, we summarize our findings about dominant integration and consider

a general case when both organizational networks have formal and informal ties. The

main difference with the previous section is that now we operate with networks that

are not trees, thus, all computations are more complex and time consuming.

Existential and universal togetherness. The first step, when we create a formal

edge between the networks, is the same as for trees: we want to be as close to a

center in G1 as possible. The second step should guarantee that we bring the networks

together by establishing additional ties. Existence of informal ties does not change the

main ideas, however it makes the algorithms for finding distance k dominating sets
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computationally harder.

Thus, when adding undirected edges, with focus on existential togetherness ∃, we

can use one of the algorithms to find a small distance k dominating set for G1 (See

Chapter 2). Then, connect each vertex in this set to any vertex in V2.

For ∀ togetherness, we also combine three methods:

(1) Periphery: Connect two most distant vertices from V1 and V2 (See Chapter 4 for

details.)

(2) CtrPer: Connect two most distant vertices in V1 to a center node in V2 (See

Chapter 4 for details.)

(3) Find distant dominating sets using MinLeaf for G1 and G2, connect vertices from

these sets as long as capacity allows it. Then use (1) or (2), to reach desired

togetherness.

Hierarchical togetherness. Again, the first step is to create a directed edge e =
−−−→
(v, r2) with v ∈ V1 and the root node r2 ∈ V2. This step is motivated as for the case

with trees: we want to place G2 as close to the root node r1 ∈ V1 as possible in order

to minimize togetherness τh.

The resulting value is τh = (dist(r1, v) + dist(r2, u) + 1)−1 for any u ∈ V2. Note

that undirected edges may lead to the case when dist(r2, u) < height(T2) when there

are shortcuts.

We need to create additional undirected edges when there exists u ∈ V2 such

that dist(r1, u)−1 < h. Unlike the case with the trees, u may not be at the bottom

hierarchical level.

To integrate two organizational networks, we propose an algorithm that has a very

similar idea to the algorithm S-MinLeaf [80], and the paradigm LeafToRoot presented

above:

Step 1 Let set S ⊂ V2 be the subset of vertices such that for any s ∈ S, dist(s, r1) > 1
h
.

If S = ∅, G has already hierarchical togetherness greater or equal h.

Step 2 Take a node n ∈ V1 with free capacity such that for any node n′ ∈ V1 that also

has free capacity dist(r1, n) ≤ dist(r1, n
′). Let m = dist(r1, n).
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Figure 5.8: Collaborative integration of two organizational networks: τ∀ = 1
3
, τ∃ = 1

2

Step 3 Among all nodes in S, find a node s with a smallest degree. Then find a node

w ∈ V2 such that dist(w, s1) = m− 1 and it has free capacity (at each iteration

we choose the node with the largest current degree).

Step 4 Create edge (n,w), recompute set S, and repeat the procedure if needed.

5.4 Collaborative Integration of Two Organizational

Networks

In this section, we consider collaborative integration of organizational networks. We

are no longer interested in hierarchical togetherness as directions of ties are ignored for

collaboration. The collaborative network integration problem could be stated

as following: Given two networks G1, G2, with capacities c1, c2, respectively, build

a collaborative integrated network such that togetherness of G1 and G2 in G1 ⊕E G2

satisfies certain requirements.

INPUT Two organizational networks G1, G2 with capacities c1, c2, respectively, and

t ∈ (0, 1] is the desired value of togetherness.

OUTPUT A set E ⊆ V1 ⊗ V2 such that the togetherness τ \(G1,G2) ≥ t. An optimal

solution E of this problem is one that has the smallest cardinality.

In Figure 5.8, we present a simple collaborative integrated network with τh = 1
3
,

τ∀ = 1
3
, τ∃ = 1

2
.

The problem of finding small sets of edges in organizational networks with fixed

parameters of existential and universal togetherness, τ∃ and τ∀, is equivalent to the
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same problem on networks with undirected edges; this problem has been considered in

great detail in Chapter 4. Indeed, direction does not matter in this case (we assume

that there is a backflow from a subordinate to her manager).

We, however, mention two special cases for organizational networks:

(1) there is only a formal hierarchy: organizational networks in question do not have

informal undirected ties; they are represented by tree structures.

(2) collaborative integration of subnetworks: we are only interested in bringing to-

gether members of certain departments

Both these cases are considered below.

5.4.1 Collaborative Integration of Two Hierarchies

Suppose we have two organizational networks T1 = (V1, E1), T2 = (V2, E2) such that

they both have only directed edges (formal hierarchies).

The problem of finding a minimal set of edges with a given existential togetherness

ε is equivalent to the problem of finding distance k- dominating sets on trees. In [107],

the authors propose a distributed algorithm to determine a minimum (connected)

distance-k dominating set of a tree T. It terminates in O(height(T )) rounds and uses

O(log k) space.

Existential togetherness. Let ε be the desired value of ∃-togetherness. One needs

to find two distance k dominating sets: DV1 and DV2 for T1 and T2, respectively, where

k = 1
ε
−1. Then create max{|DV1|, |DV2|} edges by connecting each vertex in DV1 with

at least one vertex DV2 and vice verse.

Universal togetherness. Let σ be the desired value of ∀-togetherness.

This case is, in fact, very similar to dominant integration, except we do not need to

create a directed edge, and thus simply skip Step 1. To solve collaborative integration

problem for ∀-togetherness, one may use approaches for homogeneous networks in

Chapter 4.
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5.4.2 Collaborative Integration of Subnetworks

When dealing with two large organizational networks, defining their togetherness on

the entire collaborative integrated network may be too restrictive. Indeed, collabora-

tion between two organization often means establishing new connections only between

certain departments.

Let Gsub1 and Gsub2 be subnetworks of G1 and G2 with S1 ⊆ V1 and S2 ⊆ V2,

respectively. We say that:

• ∃-togetherness of Gsub1 and Gsub2 in G1 ⊕E G2 is the smallest positive number

0 < τ∃ ≤ 1: for any u1 ∈ S1 there exists v1 ∈ S2 such that (dist(v1, u1))−1 ≤ τ∃,

and for any v2 ∈ S2 there exists u2 ∈ S1 such that (dist(v2, u2))−1 ≤ τ∃ in the

communication network Gcom.

• ∀-togetherness of Gsub1 and Gsub2 in G1 ⊕E G2is the smallest positive number

0 < τ∀ ≤ 1: for any v ∈ S1, for any u ∈ S2, the (dist(v, u))−1 ≤ τ∀ in the

communication network Gcom.

Example 16. Consider a simple example. Suppose we have two organizational net-

works G1 = (V1, r1, E1) and G2 = (V2, r2, E2) with V1 = {0, 1, 2, 3, 4, 5, 6, 7, 8} and

V2 = {a, b, c, d, e}. Let G = G1 ⊕E G2 be a collaborative integrated network where

E = {5, b}. See Figure 5.9.

As the result of integration, G1 and G2 have τ∀(G1 ⊕E G2) = 1
6

because the length

of a largest shortest path is dist(3, c) = 6; τ∃(G1 ⊕E G2) = 1
4

because the distance

dist(3, b) = 4. However, suppose that dist(3, c) is not important; we want to make

sure instead that two certain departments are close to each other. Let S1 ⊂ V1, and

S2 ⊂ V2 such that S1 = {5, 6, 7, 8} and S2 = {b, d, e}. In this case, τ∀sub = 1
3
, τ∃sub = 1

2
.

The collaborative integration problem of subnetworks could be stated as

following:

INPUT Two organizational networks G1, G2 with capacities c1, c2, and subsets S1 ⊆
V1, S2 ⊆ V2 that form the subnetworks Gsub1 , Gsub2 , respectively; t ∈ (0, 1] is the

desired value of togetherness.

OUTPUT A set E ⊆ V1 ⊗ V2 such that the togetherness τ \(Gsub1 , Gsub2) ≥ t in

G1 ⊕E G2.
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Figure 5.9: Collaborative integration of two organizational networks G1 ⊕{5,b} G2.
Togetherness of the networks: τ∀(G1 ⊕E G2) = 1

6
, τ∃(G1 ⊕E G2) = 1

4
; togetherness of

the subnetworks: τ∀sub(G1 ⊕E G2) = 1
3
, τ∃sub(G1 ⊕E G2) = 1

2

From the algorithmic point of view, there are two possible ways to approach this

problem:

1. Suppose subgraphs Gsub1 ⊆ G1, Gsub2 ⊆ G2 represent the desired subnetworks.

Then, the set of edges E that form integrated network Gsub1 ⊕E Gsub2 would

also form collaborative integrated networks G1⊕E G2 with desired parameters of

togetherness.

2. Edges in the set E that form the integrated network G1⊕E G2 may connect some

vertices that are not in the subnetworks Gsub1 ,Gsub2 . This may be especially

useful when integrating networks under capacity restrictions.

The first approach would result in the same algorithms as to solve the collaborative

integration problem; while the second approach build a new problem setup. We leave

this question for future works (See Chapter 6).



Chapter 6

Conclusion and Future Works

Understanding how different departments and employees of an organization inter-

act with one another leads to comprehension of how well the organization operates.

Studying an organizational structure often reveals critical positions – both most in-

fluential and impotent – that may require additional attention. Moreover, it is the

organizational structure from which one may extract hidden clues about concealed

communication obstacles.

In this thesis, we studied organizational structures from the network perspective.

To define an organizational network we considered both formal and informal relations

between employees. We noticed that:

1. there is a lack of mathematical analysis on the dual-structure of formal and

informal organizations; and

2. existing formal definitions of power only deal with networks whose edges have

a single interpretation of social links, while not incorporating formal roles and

levels.

Our aim, therefore, was to develop a mathematical model that sits at the confluence

of the two directions above. Our organizational network model is simple, elegant

and novel in the sense that it unifies existing studies. Our experimental results are

consistent with the knowledge that informal relations significantly affect individual

power in an organization. Moreover, we demonstrate that our mathematical model

has the potential to provide an explanation to complex phenomena such as flattening

and leadership style.
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The significance of this thesis lies mainly in theoretical models, simulations and

analysis. Nevertheless, we would like to mention that the model is ready to be applied

to field works where the hypotheses are verified in an empirical setting. Carefully

designed experimentations are required on a real organization to collecting data about

formal and informal relations and analyze the internal structures. This would be a

natural and crucial next step of our research.

There are several obvious ways in which the model can be enriched:

(1) As argued in Chapter 2, a company may be led by a board of directors rather

than a single person. Hence, one may allow several nodes in the network making

the reporting hierarchy a forest rather than a single tree.

(2) Our model can be extended by allowing more flexible assignment of weights. It is

an interesting direction of future works to explore how enabling different types

of informal ties affects the distribution of power in an organization. Indeed,

different types of informal ties (such as friendship,advice, or collaborations) may

result in different impacts on power. Hence, one may allow several informal ties

(undirected or directed) with different correlation coefficients and k.

(3) The capacity of individuals are different, and therefore, one may assign different

capacities to different individuals.

(4) The current model only applies to functional or divisional structural type of

organization, while other types, such as team-based or matrix-organizations are

not captured. A model that incorporate the above considerations will provide

more realistic analysis. Hence the current work is a first step towards building

a generally applicable organizational network analytical tool set.

Another interesting future direction is to add an extra layer of complexity to the

model by incorporating different roles which specify tasks an individual perform in

the organization. We note that different roles may rely on each other (with common

interests) or be in conflict with each other (with conflicting interests). The type

of effects that arises due to such interactions is different and hence requires a more

complex definition of power.

Network integration amounts to the fundamental question that arises in numerous

social, political and physical domains. In this thesis, we applied a formal framework
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and employed various heuristics to tackle the problem. The key conceptual contri-

bution is in proposing four measures of togetherness (three measures for informal

networks in Chapter 4, and one for capturing authority in Chapter 5), which are use-

ful indication of proximity between sub-networks. We believe that togetherness will

be helpful not only in this context, but in any problem domains where solidarity and

distances are of concern.

Contrary to intuition, our experiments demonstrate that the random strategy for

building links between two social networks performs comparable to other heuristics in

a few situations; It would be an interesting future work to explore the mathematical

reason behind this phenomenon, e.g., what is the expected togetherness if we connect

two random graphs using k random edges.

It would also be interesting to incorporate node characteristics in surrounding con-

texts and apply other principles, e.g., homophily, to guide the establishment of links.

Another future work is to incorporate directed or weighted edges in the networks. A

potential application is to develop technology that advise potential links or collabora-

tions (say, in an online social platform) to members of two social groups.

Finally, we acknowledge that Chapter 5 could be significantly extended by per-

forming a number of experiments on the collaboration and the dominant integration.

This would be interesting to pin down what happens with individual power across

organizations when they establish new links between their agents. Power could also

be used as a base for priority based heuristics when edges are established between

individuals with higher priorities.

Overall, we believe that our approaches to power and the network integration

problems represent promising areas for future research. There are still many open

questions to answer and interesting problems to solve, and we hope that the ideas

posed in this thesis would be inspiring and exciting for future investigators.
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