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The paper introduces a monotony coefficient as a new measure of the monotone 
dependence in a two-dimensional sample. Some properties of this measure are derived. 
In particular, it is shown that the absolute value of the monotony coefficient for a two-
dimensional sample is between | r | and 1, where r is the Pearson’s correlation coefficient 
for the sample; that the monotony coefficient equals 1 for any monotone increasing 
sample and equals -1 for any monotone decreasing sample. The paper contains a few 
examples demonstrating that the monotony coefficient is a more accurate measure of the 
degree of monotone dependence for a non-linear relationship than the Pearson’s, 
Spearman’s and Kendall’s correlation coefficients. The monotony coefficient is a tool 
that can be applied to samples in order to find dependencies between random variables; it 
is especially useful in finding couples of dependent variables in a big dataset of many 
variables. Undergraduate students in mathematics and science would benefit from 
learning and applying this measure of monotone dependence. 
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1. Introduction 
There are several measures of dependence between two random variables. The best 
known is the Pearson’s correlation coefficient ρ. It measures the degree of linear 
dependence between two random variables. Linear models make quite a narrow class. 
Students in mathematics and science would benefit from studying other types of 
dependence, e.g. monotone dependence. 

Gebelein [1] introduced a measure  ρ′  of dependence between two non-
degenerate random variables  X  and  Y  by the following:  

   
ρ′ (X, Y) = sup ρ [ f (X), g (Y)], 

 
where the supremum is taken over all Borel-measurable functions  f , g, for which   
 

0 < Var f (X) < ∞   and   0 < Var g (Y) < ∞.    
 

Kimeldorf and Sampson [2] introduced the monotone correlation  ρ*  between 
two non-degenerate random variables  X  and  Y  by the following:   

 

ρ* (X, Y) = sup ρ [ f (X), g (Y)], 
 
where the supremum is taken over all monotone functions  f , g, for which   
 

0 < Var f (X) < ∞   and   0 < Var g (Y) < ∞.   
  

ρ*  is a more useful measure of dependence than ρ′.  In particular, Kimeldorf and 
Sampson [2] showed that for non-degenerate random variables  X  and  Y,   



ρ* (X, Y) = 0  if and only if  X  and  Y  are independent. They also showed that if X  
and  Y  are monotone dependent, then  ρ* (X, Y) = 1; but the converse implication is 
false. 

Mayer [3] introduced another monotone correlation coefficient  mxy  (defined in 
terms of a supremum over all monotone functions) and used it to estimate  ρ.  

Thus, the existing monotone correlation coefficients are defined for random 
variables in terms of a supremum, that is in non-constructive (non-algorithmic) way. 
Such coefficients cannot be easily calculated and applied.  

For samples the most common measures of dependence are the Pearson’s sample 
correlation coefficient, Spearman’s and Kendall’s rank correlation coefficients (see, 
for example, [4]). The last two statistics are used for ordinal data and numerical data 
converted to rankings. These two statistics measure the degree of monotone 
dependence between the ranks of the data. We did not find in literature a more 
accurate sample measure of monotony for continuous data. 

In this paper we introduce the monotony coefficient  rm, which measures the 
degree of monotone dependence in a finite two-dimensional sample without 
converting it to rankings. The monotone dependence measured by this coefficient is a 
more general and important relation than the linear dependence measured by the 
Pearson correlation. The monotony coefficient is defined in simple terms and the 
proof of its properties involves only simple algebra. So the monotony coefficient can 
be included in undergraduate statistics courses along with the Pearson correlation. It 
would expand the students’ perspective on statistical dependencies. 

2. Notations 
For a sample x = (x1, x2,…, xn) we will use notations x  for the sample mean and  sx 

for the sample standard deviation. For a two-dimensional sample ⎟⎟
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are two corresponding one-dimensional samples:  x = (x1,…, xn)  and  y = (y1,…, yn), 
 

so in short we denote the two-dimensional sample as ⎟⎟
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The sample  x = (x1, x2,…, xn)   is called constant if  x1 = x2 =…= xn . 

3. Monotone covariance 
First we introduce a new type of sample covariance  sm (where  m  stands for 
monotone). 
Definition 1.  Suppose  x = (x1, x2,…, xn)  is a finite sample.  
 

1)  x* = (x1
*, x2

*,…, xn
*)  denotes the sample of the same numbers in ascending  

 

order:  x1
*≤ x2

*≤ … ≤ xn
*. 

 

2)  x′ = (x1′, x2′,…, xn′)  denotes the sample of the same numbers in descending  
 

order:  x1′ ≥ x2′ ≥ … ≥ xn′.                                                                             • 



Definition 2.  Suppose  ⎟⎟
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Definition 3.  Suppose ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

n

n

y
x

y
x

y
x

,...,,
2

2

1

1  is a two-dimensional sample. 

 

1)  The sample is called monotone increasing if both samples x and y are not 
constant and for any  i, j = 1, 2,…, n,  

 

xi < xj     ⇒    yi ≤ yj . 
 

2)  The sample is called monotone decreasing if both samples x and y are not 
constant and for any  i, j = 1, 2,…, n,  

 

xi < xj     ⇒    yi ≥ yj . 
 

3)  The sample is called monotone if it is monotone increasing or decreasing.   • 
Obviously the Definition 3 is symmetrical with respect to  x  and  y. 
To study properties of the monotone covariance, we need the following lemmas. 

 

Lemma 1.  s (x*, y*) = s (x′, y ′). 
 

Lemma 2.  s (x*, y ′) = s (x′, y*). 
 

Lemma 3.  Suppose  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
v
u

 is a two-dimensional sample. 

1) If  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
v
u

 is monotone increasing,  0
1

=∑
=

n

i
iu

  
and  0

1
=∑

=

n

i
iv , then .0

1
>∑

=

n

i
ii vu   

 

2) If  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
v
u

  is monotone decreasing,
  

0
1

=∑
=

n

i
iu

  
and  0

1
=∑

=

n

i
iv , then .0

1
<∑

=

n

i
ii vu

 
 

Lemma 4.  Suppose  ⎟⎟
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 is monotone increasing, then  s (x, y) > 0. 
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  is monotone decreasing, then  s (x, y) < 0. 

 
Lemma 5.  If the samples x  and  y  are not constant, then  

 
s (x*, y*) > 0  and  s (x*, y ′) < 0. 



Lemma 6. 1)  s (x, y) ≤ s (x*, y*). 
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Lemma 7. 1)  s (x*, y ′) ≤ s (x, y). 
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 is monotone decreasing     ⇔     (s (x, y) < 0 and s (x*, y ′) = s (x, y)). 

 
The proofs for these lemmas are given in [5]. They involve only basic algebra 

and mathematical induction; each lemma follows from the previous ones.  

Theorem 1. Properties of the monotone covariance. For the two-dimensional  
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 the following holds. 

 

1)  | s (x, y) | ≤  | sm (x, y) |  ≤ yx ss ⋅ . 
 

2)  sm (x, y) = 0     ⇔     s (x, y) = 0. 
 

3)  sm (x, y) > 0     ⇔     s (x, y) > 0. 
 

4)  sm (x, y) < 0     ⇔     s (x, y) < 0. 
 

5)  
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 is monotone   ⇔   (s (x, y) ≠ 0 and  sm (x, y) = s (x, y)). 

 
Proof: 1)  First we prove the left inequality. If  s (x, y) = 0, then it is obvious.  Assume  
 

s (x, y) ≠ 0. If   s (x, y) > 0, then by Lemma 6.1),  0 < s (x, y) ≤ s (x*, y*) = sm (x, y).  If   
 

s (x, y) < 0, then  sm (x, y) = s (x*, y ′) ≤  s (x, y) < 0  by Lemma 7.1). In both cases    
 

| s (x, y) | ≤  | sm (x, y) |.  
  

Now we will prove the right inequality. Obviously, yyyxx
sssss === '** ,  . By a 

well-known property of the covariance, |s (x*, y*)| ≤ yx ss ⋅  and |s (x*, y ′)| ≤ yx ss ⋅ , 
which proves  | sm (x, y) |  ≤ yx ss ⋅ . 

 

2)  ⇒  Suppose  sm (x, y) = 0. By 1),  | s (x, y) | ≤  | sm (x, y) | = 0, so  s (x, y) = 0.    
 

⇐  Suppose s (x, y) = 0. Then by the definition  sm(x, y) = 0.  
 

3)  ⇒  Suppose sm (x, y) > 0. Then by 2),  s(x, y) ≠ 0  and the samples x and y are 
 



not constant. If  s (x, y) < 0, then sm (x, y) = s (x*, y ′) < 0  by Lemma 5; contradiction.  
 

So  s (x, y) > 0. 
 

⇐  Suppose   s (x, y) > 0.  Then  the  samples   x   and   y   are  not  constant  and   
 
sm (x, y) = s (x*, y*) > 0  by Lemma 5. 
 

4) follows immediately from 2) and 3). 
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and  sm (x, y) = s (x*, y*) = s (x, y). 
 

⇐  Suppose  s (x, y) > 0  and  sm (x, y) = s (x, y). Then  s (x*, y*) = s (x, y)  and  
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 is monotone decreasing. Then by Lemma 7.2), s (x, y) < 0  

and  sm (x, y) = s (x*, y ′) = s (x, y). 
 

⇐  Suppose  s (x, y) < 0  and  sm (x, y) = s (x, y). Then  s (x*, y ′) = s (x, y)  and  
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decreasing. In both cases  s (x, y) ≠ 0  and  sm (x, y) = s (x, y)  by 5) and 6). 
 

⇐  Suppose  s (x, y) ≠ 0  and  sm (x, y) = s (x, y). If  s (x, y) > 0, then  ⎟⎟
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Part 5) of Theorem 1 says, in particular, that  s(x, y) > 0 for any monotone 

increasing sample ⎟⎟
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. It is a well-known property of the covariance, but it is hard to 

find proof for it in literature. A similar, but a non-strict inequality is proven for the 
population covariance in [6] and [7]. 

4. Monotony coefficient 
Next we introduce a normalized measure of monotony.  
Definition 4.  The monotony coefficient  rm  is defined by: 
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The definition is valid due to Theorem 1.2). 
When the coefficient  rm (x, y) is closer to 1, then the sample covariance  s(x, y)  

is closer to the covariance  s(x*, y*)  of an increasing sample, hence the sample ⎟⎟
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is  

more monotone increasing. Similarly, when the coefficient rm (x, y) is closer to −1, 
 

the sample covariance  s(x, y) is closer to the covariance  s(x*, y ′) of a decreasing  
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is more monotone decreasing.  

 

Theorem 2. Properties of the monotony coefficient.  For the two-dimensional 
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 the following holds. 

 

1)  | r (x, y) | ≤ | rm (x, y) | ≤ 1  when  r (x, y)  is defined. 
 
2)  rm (x, y) = 1  if and only if the sample is monotone increasing. 
 
3)  rm (x, y) = −1 if and only if the sample is monotone decreasing. 
 

Proof:  1) If  s (x, y) = 0, then  sm (x, y) = 0  and  r (x, y) = rm (x, y) = 0. 
 

Assume  s (x, y) ≠ 0. By Theorem 1.1),  0 < | s (x, y) | ≤  | sm (x, y) |  ≤ yx ss ⋅ .    
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which gives  | r (x, y) |  ≤  | rm (x, y) |  ≤  1. 
 

2)  ⇒  Suppose  rm (x, y) = 1. Then  s (x, y) ≠ 0,  sm (x, y) = |s (x, y) |, so  
 

sm (x, y) > 0  and by Theorem 1.3),  s (x, y) > 0. Therefore  sm (x, y) = s (x, y)  and by 
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3)  ⇒  Suppose  rm (x, y) = −1. Then  s (x, y) ≠ 0,  sm (x, y) = − | s (x, y) |, so  
 

sm (x, y) < 0  and by Theorem 1.4),  s (x, y) < 0. Therefore  sm (x, y) = s (x, y)  and by  
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Example 1.  We will calculate the monotony coefficients for the following two-
dimensional samples.   
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s (x, y) = 0.5 > 0.   x* = (−1, −1, 0, 0, 2),  y* = (−2, 0, 0, 1, 1),  sm (x, y) = s (x*, y*) = 1. 
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s (x, y) = − 0.4 < 0.      x* = (−1, −1, 0, 0, 1, 1),      y ′ = (1, 1, 1, −1, −1, −1),  
   
sm (x, y) = s (x*, y ′) =  −0.8. 
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The sample a) is positively correlated, hence mostly increasing, and the sample b) 

is negatively correlated, hence mostly decreasing.                      ■ 
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is monotone decreasing. So  

 

rm (x, y) = −1. But r (x, y) ≈ − 0.35099 and the coefficient of determination  r 2 (x, y) ≈ 
≈ 0.12 = 12%. The traditional analysis of these data that uses the Pearson’s coefficient 
will not recognize the dependence between the two variables, since the value of 
0.35099 is small. But the monotony coefficient reflects the dependence; this 
dependence can be modelled by the function  xy 1=  . The relationship becomes 

linear after a logarithmic transformation but it is a non-trivial task to find a suitable 
transformation.                  ■ 
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Figure. 
 

Neither of the samples is monotone but intuitively Sample 1 has more monotony 
than Sample 2. After converting both  x  and  y  values to ranks we get the same table 
for both samples: 

 

 

 

 

 

Table. 
 

The Spearman’s correlation coefficient for each sample equals  (31)/(35) ≈ 0.886. 
The Kendall’s correlation coefficient for each sample equals (11)/(15) ≈ 0.733. So 
these coefficients do not reflect the difference in the monotony of the samples. But the 
monotony coefficient  rm  does: for the first sample  rm  is approximately 0.991 and 
for the second sample rm  is approximately 0.766. Both samples are mostly increasing 
but the monotony coefficient of the first sample is closer to 1 showing that the first 
sample is more monotone.                                      ■ 

The relation between the monotony and Pearson coefficients is described in 
Theorem 3 below. 
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The samples  x  and  y  are said to have a linear relation if for some numbers  a 
and  b, the following holds:  

 
yi = a + b xi  for all  i = 1, 2,…, n    or    xi = a + b yi  for all  i = 1, 2,…, n. 
 

This linear relation is called positive if  b > 0 and negative if  b < 0.   • 
 

Theorem 3. Relation to the Pearson correlation.  For the two-dimensional sample 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

 the following holds. 

1)  If  s (x, y) > 0, then 
 

rm (x, y) = r (x, y)   ⇔   x* and  y*  have a positive linear relation. 
 

2)  If  s (x, y) < 0, then 
 

rm (x, y) = r (x, y)   ⇔   x* and  y′  have a negative linear relation. 
 

3)  If  s (x, y) = 0, then  rm (x, y) = r (x, y) = 0. 
 

Proof:  1) Suppose  s (x, y) > 0. Then  ( ) ( )
( )

( )
( )**,

,
,

,
,

yxs
yxs

yxsm
yxs

yxrm == .   So 

 

rm (x, y) = r (x, y)  ⇔  ( )
( )

( )
yx ss

yxs
yxs
yxs

⋅
=

,
,
,

**  ⇔ s (x*, y*) = yx ss ⋅  ⇔  s (x*, y*) = ** yx ss ⋅   
 

⇔ r (x*, y*) = 1 ⇔ x* and y* have a positive linear relation, according to the property  
 
of the Pearson correlation. 

2) Suppose  s (x, y) < 0. Then   ( ) ( )
( )

( )
( )yxs

yxs
yxsm

yxs
yxrm

′
−

==
,
,

,
,

, * .    So 

 

rm (x, y) = r (x, y)     ⇔     ( )
( )

( )
yx ss

yxs
yxs
yxs

⋅
=

′
− ,

,
,

*

  
   ⇔     s (x*, y′) = yx ss ⋅−     ⇔ 

   
⇔   s (x*, y′) = yx ss ′⋅− *    ⇔   r (x*, y′) = −1   ⇔   x* and  y′  have a negative linear  
 

relation, according to the property of the Pearson correlation.  
 

3) If  s (x, y) = 0, then by the definitions  rm (x, y) = 0  and  r (x, y) = 0.         ■ 
 

Theorem 3 shows that the monotony and Pearson coefficients of  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
y
x

  are equal 

when the ordered versions of  x  and  y  have a linear relation, and in the trivial case of 
no correlation. 

5. The population monotony coefficient 
In the previous sections we dealt with a sample measure of monotony. Here we 
briefly describe the population version of this measure. 

In this section we fix a probability space. For random variables  X  and  Y  denote  
F X  the distribution function of  X,  Cov (X, Y)  the covariance and  ρ (X, Y)  the 



Pearson correlation coefficient of  X  and  Y. Denote  U  a random variable with the 
uniform distribution on [0, 1]. 
Definition 6. For the random variable X  denote  X *= 1−

XF (U)  and  X ′= 1−
XF (1 − U).   

                                                                                                                                 • 
The random variables  X, X * and  X ′  have the same distribution function. 

Definition 7. Suppose  X  and  Y  are random variables.  
 

1) The monotone covariance Covm of  X  and  Y  is defined by:  
  

                    Covm (X, Y) = 

( ) ( )
( )

( ) ( )⎪
⎪
⎩

⎪⎪
⎨

⎧

<′

=

>

.0,,

,0,0
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*

**

YXCovifYXCov

YXCovif
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                              • 

 
2) The monotony coefficient  ρ m  of  X  and  Y  is defined by:   
 

                       
( )

( )
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⎩

⎪
⎨

⎧

≠

=

=
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,
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Thus, the population and sample versions of the monotony coefficient are defined 

in similar ways. 
Theorem 4. Relation to the population Pearson correlation.  For the random 
variables  X and Y  the following holds. 
 

1)  If  Cov (X, Y) > 0, then 
 

ρm (X, Y) = ρ (X, Y)    ⇔   there exist numbers  a  and  b > 0, such that for all  x ∈ R, 
   

          F X  (x) = F Y  (a + bx).   
 

2)  If  Cov (X, Y) < 0, then 
 

ρm (X, Y) = ρ (X, Y)    ⇔   there exist numbers  a  and  b < 0, such that for all  x ∈ R,  
  

          F X  (x) = 1 − F Y  (a + bx).      
    

3)  If  Cov (X, Y) = 0, then   ρm (X, Y) = ρ (X, Y) = 0.                     ■ 
 
In particular, Theorem 4 implies the equality of the monotony and Pearson 

coefficients when each of the variables X and Y  has a normal distribution. This is 
consistent with one of the seven postulates stated in [8] for a measure of dependence 
of two random variables. 

For the uniform distribution on the unit triangle these coefficients are different as 
the following example shows. 
Example 4. Suppose the joint density function of the random variables X and Y  is  
 

given by:     ( )
⎩
⎨
⎧ ≤≤≤

=
.0

,102
,

otherwise
yxif

yxf
 

 



Then the Pearson correlation  ρ (X, Y) = 0.5 and the population monotony 

coefficient  ρm (X, Y) = 
π932

2
−

 ≈ 0.5368.                                                   ■ 
 

Example 5. Suppose  X and ε  are independent random variables, each with the 
standard normal distribution, and  Y = (X +ε) 3. 
 

Then ρ (X, Y) =
30
3

 
≈ 0.5477 and  ρm (X, Y) = 

2
1

 
≈ 0.7071.              ■ 

6. Discussion 
The Pearson’s correlation coefficient measures only linear dependence. In order to 
apply it, one needs to check the scatterplot for the data first. For example, if one is 
looking for relationships between 50 random variables, there are (50×49)/2 = 1225  
scatterplots to check, which is quite time consuming. Besides conclusions from a 
scatterplot can be subjective: some people will see a linear relationship and others will 
not.  

To apply the monotony coefficient  rm, one does not need to look at the 
scatterplot. In the example with 50 random variables it is enough to compare 1225 
numbers and select the ones with large absolute values (a computer can quickly do 
that); they will correspond to the pairs of random variables with high degrees of 
monotone dependence. The monotony coefficient applies to a larger class of 
dependencies than the class of linear dependencies.  

The monotony coefficient is a tool that can be applied to samples in order to find 
dependencies between random variables; it is especially useful in finding couples of 
dependent variables in a big dataset of many variables. It helps stating hypotheses 
about data but not testing hypotheses, since the distribution of the monotony 
coefficient is unknown. 

Comparison of the monotony coefficient  rm  with the Spearman’s and Kendall’s 
correlation coefficients shows that  rm  more accurately describes the degree of 
monotony in a relationship and it is more appropriate for continuous data, since it 
does not use ranks. 

The population monotony coefficient  ρm (X, Y)  is also more appropriate for 
continuous random variables. It is defined in a more constructive way than the 
measures  ρ*  and  mxy  described in the introduction. For some bivariate distributions  
ρm  can be calculated explicitly as in Examples 4 and 5. Such explicit calculation is 
not possible when the product  1−

XF (u) ⋅ 1−
YF (u)  cannot be integrated explicitly. In this 

case it still can be integrated by numerical methods and  ρm  can be evaluated 
approximately. 

The authors are planning to do further research on the population monotony 
coefficient and present the results in next paper, which will potentially describe 
properties of the population monotony coefficient (similar to the ones in Theorem 2), 
more examples of the monotony coefficients for bivariate distributions and proofs of 
Theorem 4 and Examples 4, 5. 
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