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Abstract 

This thesis presents novel multi-layered natural immune system (NIS) inspired 

algorithms in the domain of machine learning. The exploration of biological metaphors 

for developing novel learning algorithms for computation is not new. The contribution 

of artificial neural networks inspired by the human brain, genetic algorithms inspired by 

modern-day genetics, and ant colony algorithms inspired by swarm intelligence is well 

recognized. A relatively new addition is the artificial immune system (AIS) that is 

inspired by an NIS, where micro-level processes and metaphors of NIS are used to 

develop novel computing algorithms.  

In recent years, two main AIS algorithms, namely, CLONALG and aiNet, have been 

developed based on the principles of ‘clonal selection’ and ‘immune network theory’ 

respectively. Both of these algorithms can be regarded as data reduction processes with 

limited learning capability. The role of evolutionary computing in these algorithms is 

restricted to the hypermutation of antibodies in response to pathogens, however. In this 

thesis, the role of evolutionary computing in AIS is broadened significantly to include 

the evolution of learning parameters and an active role of memory cells, as well as a 

population-based approach to AIS. A novel AIS algorithm inspired by the humoral 

mediated immune response (HIR) triggered by the adaptive immune system is 

presented. In humoral immune response, antibodies with hypermutation are secreted to 

mount an appropriate immune response to pathogens. This thesis introduces the concept 

of a layered architecture, where pathogens are identified and captured using different 

layers of cells such as antibodies, memory cells, and B-cells.  

To date, the focus of AIS researchers has been on developing novel AIS algorithms 

using various NIS metaphors and processes. Relatively little research has focused on 

integrating AIS models with other nature-inspired techniques to achieve effective and 

improved learning capabilities. In this thesis, we propose a novel methodology inspired 

by the vaccination process in an NIS, where information contained in the memory of an 

AIS is used to prime learning in a hybrid architecture. We demonstrate the effectiveness 

of this hybrid architecture and explore future directions of AIS. 
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1.1   Research Questions 

We can express the contribution of this thesis by proposing the following two research 

questions: 

Q1: Is it possible to develop an intelligent and biologically plausible learning algorithm 

inspired by the processes and metaphors of the natural immune system (NIS), informed 

by the latest scientific research?  

Q2: Is it possible to incorporate NIS concepts and metaphors with other well-

established nature-inspired techniques to achieve effective and improved learning 

capabilities? 

The effectiveness of a learning algorithm can be measured using quantitative techniques 

based on internal or external evaluation criteria [1]. In this thesis, effectiveness is 

measured by comparing the results obtained by a learning algorithm against true 

results/labels (external criteria). Improvement on the other hand, in learning systems is 

measured by (1) comparing how fast an algorithm can learn (in terms of learning 

cycles), and (2) comparing results of final learned model against other benchmarked 

learning models. 
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The rest of this chapter provides the motivation, scope and organization of this thesis 

and backgrounds the two research questions. 

1.2   Motivation 

Nature, over millions of years has found innovative, robust and effective methods for 

dealing with the challenges faced by living creatures every day. The primary 

mechanism for these methods is ‘neo-Darwinism’, which is evolution by natural 

selection underpinned by modern genetics. This has led to the emergence of a relatively 

recent area of computing called ‘evolutionary computing’, which refers to a collection 

of nature-inspired techniques for solving hard problems in computer science. For 

instance, the contributions of genetic algorithms [2, 3], simulated annealing [4, 5], ant 

colony optimization (ACO) [6, 7], and particle swarm optimization (PSO) [8] 

algorithms in different disciplines are now well recognized. One feature of evolutionary 

computing and nature-inspired techniques so far is their focus on evolutionary methods 

at the level of an individual organism or in populations of organisms. Relatively less 

explored or understood is how the latest advances in our understanding of the genetic 

mechanisms underlying evolution can be used to derive new algorithmic solutions at 

micro-organismic level. The goal of this thesis is to explore how nature-inspired models 

informed by our latest understanding at the genetic or bimolecular level can be used to 

develop novel, nature-inspired algorithms. Our primary focus of interest will be the NIS 

and the inspiration it provides to computational techniques (‘Artificial Immune Systems 

- AIS’) [9-11].  

There is a rapidly growing interest in AIS approaches to machine learning. Of particular 

interest is the way the human body responds to diseases and new pathogens as well as 

adapting to remain immune for long periods after a disease has been combated. Immune 

system processes consist of two phases: recognition of invaders, and response. It has 

been established that the NIS can adequately distinguish between threat and non-threat 

at a basic level. Also of interest is the way that the NIS can identify a self-cell (which is 

not to be reacted to) but which has been subsequently damaged in some way and might 

present a threat to the body (and which must be reacted to). In other words, the NIS is 

dynamic in that it can re-structure (re-classify or re-cluster) in the light of new 

information so that it provides protection against not only outside invaders but also 

inside dangers. All these NIS concepts, if carefully and systematically used, could 
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confer great benefit in the area of machine learning. However, it is currently uncertain 

as to how ‘deep’ one should go into the biological background and still have effective 

algorithms (Q1 and Q2). That is, the deeper one goes into the biology, the more 

complex the mechanisms become from a computational perspective. But these 

complexities could give rise to new algorithms or the application of current techniques 

in a novel way, as well as improved methods for, in our case, learning. 

AISs fall in the group of biologically inspired computing. Biologically inspired 

computing (or bio-inspired computing) is a sub-routine of artificial intelligence (AI), 

where metaphors derived from biology are used to improve on existing computational 

designs and software. This is different from computational biology, where computer 

software and hardware are used to simulate real biological systems. Learning is one of 

the common and most important features of all bio-inspired or nature-inspired 

computing [12].  

The source of nature and biological-inspired computing techniques for learning 

(supervised and unsupervised learning) has its roots in our early and macro-level 

understanding of biological processes. The contribution of artificial neural networks 

(ANNs) [13] inspired by our knowledge of the human brain at the level of the neuron 

and neuronal interconnectivity is now well recognized as providing a number of 

effective supervised and unsupervised algorithms for classification and clustering 

respectively [13-17]. ANNs have been successfully used in the field of pattern 

recognition and other machine learning domains [18-20]. Another example of nature-

inspired computational techniques is genetic algorithms (GAs), inspired by neo-

Darwinian evolutionary principles [21]. Mutation, crossover, natural selection, and 

reproduction are some of the most important features of GA. With GAs, a population of 

solutions are evolved using evolutionary principles such as mutation, crossover and 

natural selection based on some fitness criterion. GAs have also been successfully used 

in optimization, supervised, and unsupervised learning tasks. Again, GAs are largely 

inspired by our understanding of genes and chromosomes at a macro-level. In recent 

years the contributions of ACO and PSO algorithms [22-25] have been well recognized 

in the field of data mining. ACO and PSO are inspired by ‘super-macro’ phenomena 

emerging at the level of populations (colonies and swarms, for instance) rather than at 

the level of individuals in a population.  
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By the start of this century, there had been a paradigm shift in computing researchers 

from macro-level processes to micro-level processes for their inspirations to build new 

computing techniques. The emergence of DNA computing [26, 27], quantum computing 

[28, 29] and NIS-inspired computing [30-33] are a few examples of this shift in focus. 

The main hypothesis, which most researchers work on, is that the deeper into the natural 

systems they go, the more improved their algorithms become. Here, improvement can 

be defined in terms of computational speed, and effectiveness in terms of quality of 

results or any novel information contributing to existing knowledge. In this thesis, we 

will explore NIS concepts, processes and metaphors to develop improved novel learning 

algorithms in the field of machine learning. The task will be to go at least one-level 

‘deeper’ into the biology of immune systems than so far achieved with AISs to see what 

improvements are possible, if any.  

1.3   Scope 

1.3.1   Machine Learning 

Mitchell provided a widely quoted definition of machine learning: “A computer 

program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves 

with experience E.” [34] 

Machine learning is a sub-field of artificial intelligence (AI). The field of machine 

learning studies the design of computer programs, not only to learn from existing 

patterns to make better decisions under current circumstances, but also help in making 

better future decisions by generalizing current experiences. For example, in the case of a 

cancer patient data record, a machine learning algorithm must be able to describe 

relationships between disease and non-disease, and various symptoms. In addition it 

should be able to predict the presence or absence of cancer in future patients effectively. 

The rationale for using machine learning techniques over conventional statistical 

techniques is as follows [35]: 

1. Some tasks are not well defined and can only be acquired through examples. 

2. Machine learning helps to extract hidden patterns from large amount of data, 

which might not be apparent to the naked eye. 
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3. Machine learning characteristics such as adaptation and learning, can handle 

non-deterministic environment in a much more efficient manner. 

4. Machine learning algorithms can adapt in dynamic environments. 

Machine learning techniques can be classified into three groups: supervised learning, 

unsupervised learning, and reinforcement learning [12]. 

Supervised Learning: In supervised learning, a model is built based on mapping input 

patterns to desired output. Data consists of sets of features or variables as well as output 

(desired) variables. The task of any supervised learner is typically to build a model that 

both fits a number of training examples (training data) and predicts the class into which 

new or unseen data falls, where the class of the instance may not be known (test data). 

Over the past few decades many supervised learning algorithms have been proposed and 

published, including classifiers based on information gain (e.g. decision trees and rule-

based classifiers) [36, 37], probabilistic and statistical learning techniques (e.g. 

Bayesian networks, Naïve Bayes classifiers, linear discriminant analysis) [38, 39], 

support vector machines [40], and neural networks [20, 41]. 

Unsupervised Learning: The aim of unsupervised learning is to find groupings in data 

when class labels (desired output) or any other related information is not available. 

Therefore, unsupervised learning algorithms seek to group similar data into clusters 

(groups) so that all data instances within a group have maximum similarity, while 

instances across different clusters have a high degree of dissimilarity. Over the years, 

many different methods of unsupervised learning have been developed ranging from the 

simple K-means algorithm [42] to more sophisticated methods such as expectation 

maximization [43], the neural network-based self-organizing map [14], and spectral 

clustering [44]. It has been applied in a number of different ways in data mining and 

analysis, including visualization [45], dimensionality reduction [46], and as a pre-

processing tool to other data mining methods such as classification and association rule 

mining [47]. 

Reinforcement Learning: These algorithms do not depend on explicit supervision or 

optimization of an objective function, as in the case of supervised or unsupervised 

learning approaches. Reinforcement learning algorithms interact directly with the 

environment. It is the environment that provides the feedback in the form of rewards or 



6 

 

punishments that guide the learning algorithms. Reinforcement learning is the process 

by which an agent learns and adapts its behavior through trial-and-error interactions 

with a dynamic environment [48]. These algorithms tend to be slow in finding solutions. 

However, they perform an exhaustive search, which helps to explore more search space 

to find local optimal solutions. A survey of reinforcement learning methods can be 

found in [48].  

In this thesis, our focus is to develop novel machine learning algorithms in the domains 

of supervised and unsupervised learning by incorporating inspirations from natural 

systems (and more specifically the NIS). 

1.3.2   Natural Systems 

The main motivation for using natural systems as an inspiration for computation is due 

to the fact that natural systems have complex, intelligent and non-linear behaviors, 

which arise from simple, decentralized and linear processes. In our everyday life, we 

have to devise various strategies to survive. These strategies can mainly be classified 

into two basic behaviors or expressions: ‘co-operation’ and ‘competition’ (or 

combination of both). In neo-Darwinism, an evolutionary strategy such as ‘survival of 

the fittest’ is adopted where, based on some environmental fitness function, individuals 

are evaluated and the weaker individuals die out due to natural selection. This 

characteristic in natural systems gives rise to competition among individuals. On the 

other hand, natural systems also encourage co-operation. The formulation of multi-

cellular organisms from single-cell organisms is an example of co-operation that leads 

to the emergence of distributed learning systems. Another example of co-operation is 

the human nervous system that consists of neurons which form a complex network of 

interconnected cells and various signals are inhibited or exhibited for information 

processing. It is these characteristics of co-operation and competition among various 

cells and organs in natural systems that give rise to ‘homeostasis’. Homeostasis is a 

healthy and stable state that any natural system tends to stay in, at all times [33]. This 

homeostatic state is acquired at both intra-system and inter-system levels through the 

interaction of cells in a system and cells across various systems, respectively. The NIS 

achieves an internal state of homeostasis by the interaction of its various organs and 

processes. On the other hand, at the organism level, different systems, such as immune 
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system, nervous system, or respiratory and circulatory systems also maintain a state of 

homeostasis state, to keep us alive.  

Nature exemplifies supervised learning (classification) and unsupervised learning 

(clustering) in effective ways. Classification is dependent on some objectively measured 

value (class value) that can be used to determine the importance of attributes for 

classifying samples, whereas clustering depends only on shared values or patterns of 

similarity among the samples themselves. Some examples of natural clustering and 

classification are given below: 

Flock of birds: A flock of birds in flight changes shape, orientation, and density, as 

well as divides and regroups. Key features of a flock are a relatively clearly defined 

boundary to the flock or sub-flocks in flight, roughly equal distances between all 

members of the flock/sub-flock, and no clear leader or centralized control of the 

flock/sub-flock. These features emerge at the macro-level (organism or population 

levels) [49] due to the interaction between an individual in the flock and its nearby 

neighbors. In other words, individuals belonging to a flock or sub-flock share properties 

between members of the flock. If there is an objective value independent of the 

attributes of the flock, such as one flock heading north and another heading south, this 

value can be used to generate class labels for the two flocks. If there is no independent 

value, one flock can only be distinguished from another flock because of shared 

properties in one flock being sufficiently different from the shared properties of the 

other flock, according to some similarity/dissimilarity function.  

Formation of ant cemetery: Another example is the formation of an ant cemetery. 

Some ant species have the capacity to gather their corpses at the same location (a form 

of clustering) without central knowledge of the location of the cemetery [50]. This 

formation of cemetery by ants is not a collective behavior of a group since each ant 

works independently without the knowledge of the positioning of other ants.  

Natural immune system (NIS): The NIS at an abstract level can differentiate between 

self and non-self (harmless and harmful). Therefore, this is a perfect case of two-class 

classification/clustering problem. This process happens at the micro biology level 

(within and between cell level) [9]. The NIS consists of two subsystems, the innate 

immune system and the adaptive immune system [51]. The innate immune system is 

what inherits and it stays fairly constant throughout our life span. On the other hand, the 



8 

 

adaptive immune system is dynamic and it keeps evolving as new pathogens are 

encountered. 

The NIS helps to protect us from harmful bacteria and viruses. It also provides us with 

protection from cells, which were initially harmless but due to infections or alterations 

become harmful to the body (e.g. cancer cells). Therefore, our immune system not only 

protects us from outside invaders but also from inside invaders. A lot of research has 

been carried out in last couple of decades that has significantly helped our 

understanding of the NIS. For computation researchers, the self-evolving, self-

sustaining, and self-organizing behaviors of the NIS are of great interest. Moreover, it’s 

embedded characteristics such as learning (through adaptation) and memory of past 

encountered pathogens can be helpful in building robust learning algorithms. Over the 

years, many theories have been proposed regarding the functioning of the NIS. Two 

immunology theories, namely, immune network theory and clonal selection theory have 

attracted great interest in the computational community. The immune network theory 

proposed by Jerne [52] suggests that cells in an immune system operate by interaction 

with each other as well with pathogens to form a network of cells and these networks 

act as a memory of network. On the other hand, clonal selection theory states that cells 

in the adaptive immune system that are stimulated by pathogens are transformed into 

memory cells, which is a way of creating memory in an immune system. Both these 

theories explain the formation of memory of previously encountered pathogens in the 

adaptive immune system. This thesis looks closely at both of these theories to derive 

inspiration and also looks into other immune system processes in order to develop a 

novel immune system-inspired learning algorithm. 

1.3.3   NIS for Computation 

The main objective of this thesis is to apply NIS concepts and metaphors in the domain 

of supervised and unsupervised learning. One interesting question that can be asked is: 

Why use the immune system as inspiration for supervised or unsupervised learning 

when thousands of algorithms already exist in the literature to solve these problems? 

The answer lies in the No Free Lunch Theorem [53]. This states that there cannot exist 

an algorithm that, on average, is superior to any other algorithm. Also, according to Jain 

[54], each clustering algorithm is designed to solve a specific task and therefore these 

algorithms implicitly or explicitly impose structural constraints on the data. One of the 
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examples of such constraints is preference bias [55]. Different similarity measures such 

as Euclidean distance, Cosine distance and Hamming distance are examples of 

preference bias. Representation bias is another example of such constraints. This bias 

arises due to the choice of data representation (such as continuous, binary or discrete 

data) [34]. The hypothesis of ‘no best algorithm’ is also explained by the impossibility 

theorem [56], which states that, given the three basic conditions (axioms) of data 

clustering, namely scale invariance, consistency and richness, there is no clustering 

algorithm that can satisfy all these conditions simultaneously. Therefore, all existing 

algorithms make some trade-off on these conditions. In conclusion, there is always a 

need for a new algorithm that can explore the data in novel ways. In this thesis, we will 

try to develop novel learning algorithms (supervised and unsupervised learning 

algorithms) using inspirations from the NIS.   

In 1782 Jenner discovered that a smallpox viral attack can be prevented if people are 

injected with a small amount of the cowpox virus – a weaker form of the smallpox virus 

found in cattle. This is a form of vaccination, where a weaker form of pathogen is 

introduced in living organisms to immunize the body from stronger pathogens of the 

same kind. This process of vaccination highlights important features of the NIS, namely 

adaptation and generalization. Firstly, the NIS can adapt when new viruses are 

encountered. Secondly, once it adapts itself to a weaker form of virus or pathogen, the 

NIS can generalize to stronger viruses and pathogens as well. It is these adaptation and 

generalization characteristics of the NIS that have been the focus of computing 

researchers in recent years. Apart from above mentioned characteristics, NISs also 

demonstrate the following capabilities [57]: 

1. Learning: An NIS continuously learns and adapts from the pathogens to trigger 

an appropriate immune response.  

2. Diversity: An NIS consists of various cells and organs, which help it to function 

and mount an immune response when pathogens are encountered.  

3. Specialization/Generalization: An NIS has capabilities of specialization as 

well as generalization. Specialization is achieved through the presence of 

memory cells whereas generalization is acquired through the generation of 

antibodies. 
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4. Memory: Memory of previously encountered viruses and pathogens is kept in 

the form of memory cells, so that if the same pathogen attacks the immune 

system in the future, it can trigger a fast and more effective response.  

5. Multi-layered: An NIS has various layers. Innate and adaptive immune systems 

are the two main layers in an NIS. Human skin and various secretions also 

provide supplementary layers and form an integral part of an NIS. 

6. Decentralized process: An NIS is decentralized in nature, meaning it does not 

have any central control. Also, it is distributed all over the body and consists of 

various cells and organs. 

7. Noise tolerance: An NIS is tolerant to noise, and a perfect match between 

pathogen and immune cell receptors is not required to trigger an immune 

response.  

8. Dynamic system: An NIS is constantly under attack by new pathogens and 

therefore it is constantly changing and adapting to new pathogens. As pathogens 

and viruses are evolving all the time, an NIS has to be dynamic to trigger an 

appropriate immune response. 

1.4   Thesis Details 

Returning to the two research questions (listed earlier in section 1.1), we have now 

provided the basic motivation underlying these research questions. That is, the main aim 

of this thesis is to go at least one level deeper than previous AIS algorithms, into the 

biological mechanisms that support NISs and to inform our AIS algorithms with 

information and processes found at this deeper level. In the final sections of the thesis, 

we will evaluate whether going deeper has provided any benefit. The following sub-

sections will discuss the contribution of this thesis as well as outline the organization of 

the remainder of the thesis.  

1.4.1   Thesis Contribution 

The contribution of this thesis to existing knowledge can be summarized as follows: 

1. An extensive literature review of existing AIS work is presented and several 

drawbacks of existing AIS approaches are highlighted in chapter 2.  
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2. A multi-layered, immune-inspired unsupervised clustering algorithm we call the 

Humoral-mediated Artificial Immune System (HAIS) is proposed in chapter 3, 

based on the latest biological knowledge. Experiments on simulated and real 

world datasets conclude that the proposed algorithm is efficient at finding 

natural grouping (clusters) and outliers in the data simultaneously.  

3. A detailed analysis of the processes and parameters involved in HAIS algorithm 

is presented in chapters 4 and 5. We demonstrate that our proposed HAIS 

algorithm has learning, data summarization, generalization, and adaptive 

memory capabilities.  

4. A multi-layered immune-inspired supervised learning algorithm is proposed in 

chapter 6. The experiments conducted using the supervised HAIS algorithm 

demonstrates that it has efficient data summarization and generalization 

capabilities using NIS metaphors. 

5. A hybrid architecture is presented in chapter 7, where the integration of immune 

system concepts with artificial neural networks is proposed to achieve a robust 

and improved supervised learning model.   

1.4.2   Thesis Organization 

The rest of the thesis is organized into the following seven chapters: 

Chapter 2: An introduction to the NIS is provided in this chapter. The NIS is a very 

broad area; therefore, we only discuss NIS concepts that are related to the scope of this 

thesis. An extensive literature review of immune system-inspired approaches is also 

presented, with special focus on AIS applied to supervised and unsupervised learning 

domains. This chapter concludes with highlighting some drawbacks of existing 

approaches, which form the basis of our novel immune system-inspired learning 

algorithm.   

Chapter 3: Based on the limitations and drawbacks discussed in the previous chapter, a 

novel AIS clustering algorithm, which we call the Humoral-mediated Artificial Immune 

System (HAIS), is proposed. The HAIS is inspired by the humoral mediated immune 

response (HIR) triggered in the adaptive immune system. The HAIS derives its 

inspirations from the way an adaptive immune system actively produces antibodies once 
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encountered by pathogens. One advantage of the HAIS algorithm is its capability of 

finding natural groupings and outliers (clusters) in the data simultaneously. The 

performance of the novel HAIS algorithm is evaluated against well-known clustering 

methods on simulated and benchmark real world datasets.   

Chapter 4: After looking closely into the behavior of HAIS and evaluating its 

parameters in previous chapter, an extension of HAIS, a population-based HAIS, is 

proposed. In the population-based HAIS, the standard HAIS algorithm coupled with 

genetic algorithm are used to evolve the population of clustering solutions to achieve 

better unsupervised clustering results. Memory cells form the basis of incremental 

learning, i.e. the transfer of knowledge from the current generation to the next 

generations.   

Chapter 5: This chapter looks into the main components of HAIS algorithm and 

evaluates each component separately. A novel methodology based on a variation of the 

HAIS algorithm is designed to evaluate each of the components to observe their 

contribution to the proposed HAIS algorithm to obtain better clustering solutions.  

Chapter 6: A novel supervised HAIS algorithm inspired by HIR is presented in chapter 

6. The performance of HAIS is compared against well-established the Artificial Immune 

Recognition Systems (AIRS) algorithm. The main parameters and components of the 

supervised HAIS learning algorithm are evaluated to explain the behavior of the 

algorithm.  

Chapter 7: A novel approach for integrating AIS concepts (using the HAIS supervised 

learning algorithm) with artificial neural networks (ANNs) is presented in this chapter. 

This chapter demonstrates that the concepts of AIS and ANN can be used closely in a 

novel way to achieve a robust, generalized and efficient supervised learning model.  

Chapter 8: The conclusion is presented in this chapter, followed by the summary of the 

work conducted in this thesis. Finally, ideas for future work are presented.  

1.4.3   Publications 

The following five research papers have been written and published during the course of 

this research thesis [58-62]. 
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The artificial immune system (AIS) paradigm has developed relatively recently in 

comparison to other nature-inspired computing techniques such as evolutionary/genetic 

algorithms, ant colony optimization (ACO) and particle swarm optimization (PSO). The 

main emphasis of this chapter is on the NIS and the inspirations it provides for 

developing AIS computational techniques in the field of machine learning. In order to 

form the basis for developing a novel AIS algorithm, it is necessary to provide a 

background of the NIS. Therefore, this chapter covers the principles, properties, 

functionality and core theories associated with NISs developed in recent years. Our 

understanding of the inner workings of the immune system is still not substantial, as we 
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are still at the exploration stage and it will take some time to establish a reasonably 

good understanding of the biological complexities involved. However, this chapter will 

provide a basic understanding of the NIS.  

The next section (2.1) provides a description of the twined and complex behavior of the 

immune system. Section 2.2 maps some core NIS concepts to computational AIS. The 

main components of designing a framework of any nature-inspired algorithms, and 

especially an AIS, are discussed in section 2.3. Moreover, various immune system-

inspired algorithms proposed in recent years are discussed in the context of our current 

understanding of an NIS. An extensive literature review of existing immune system-

inspired algorithms is presented in section 2.4. The current state of AIS and various 

suggestions on the way forward constitute section 2.5, and finally a summary and 

conclusion of this chapter is provided in section 2.6.   

2.1   Introduction to the Natural Immune System (NIS) 

In 1882, the Russian zoologist Ilya Metchnikoff was strolling along the beach and 

collected a tiny transparent larva of starfish. He pierced the larva with a rose thorn and 

returned home. Next day, while walking on the same path, he noticed that minute cells 

were covering the thorn as if they were trying to engulf the thorn. In fact, those cells 

were attempting to defend the larva by ingesting the invader (thorn). This phenomenon 

later became known as ‘phagocytosis’. In 1908, for his work in this field, Metchnikoff 

was awarded a Nobel Prize in Medicine [63]. His rose thorn ‘experiment’ suggested that 

living organisms possess a mechanism that fights against outside invaders.  

Throughout the life of humans, our body gets exposed to different types of diseases. In 

response to these diseases, humans have evolved a complex system called an immune 

system. Once the body becomes immune to some specific disease, it remains free from 

it almost for the entire life span. On the other hand, our immune system also protects us 

from self-altered cells which can develop from injuries or infections. The immune 

system recognizes those altered cells and destroys them: a good example is cancer cells 

growing inside body. Therefore our immune system not only protects us from the 

outside invaders but also from the inside invaders. An immune system works on two 

major levels one is an innate immune system and the second is acquired or adaptive 

immune system. The multi-layered structure of NISs can be seen in Figure 2.1 (taken 
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from [64]). Our skin provides us with the first layer of defense against invaders. Fluids 

such as saliva, sweat and tears contain detrimental enzymes, constituting the second 

layer, and are called physiological barriers. Innate and adaptive immune systems 

comprise the third and fourth layers (barriers) respectively.  

Antigens are any particle (coats, capsules, cell walls, toxins) of bacteria, viruses and 

other micro-organisms. Simply, antigens are the substances which are detected by 

immune systems and subsequently trigger an immune response. This process is called 

immunogenicity. All immunogenic substances are antigens, but not all antigens are 

necessarily immunogenic. For example, haptens (e.g. penicillin) are antigens but are not 

immunogenic unless coupled to a larger carrier molecule [63]. Antigens are generally of 

two types: exogenous antigens and endogenous antigens. Exogenous antigens are 

microorganisms, pollens, drugs and pollutants that enter the host from the external 

environment. On the other hand, endogenous antigens are found within the host, and 

can trigger an immune response under various circumstances; cancer cells are an 

example of such antigens.   

 

Figure 2.1: Multi-layered structure of the NIS [64] 
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2.1.1   Cells and Organs of the NIS 

Human immune systems consist of various structurally and functionally different organs 

which are dispersed all over the body [63]. Based on their functionality, these organs are 

classified into two types: the primary lymphoid and secondary lymphoid organs. The 

main task of the primary lymphoid is to provide an appropriate environment for 

lymphocyte maturation, whereas the secondary lymphoid traps and presents antigens to 

mature lymphocytes. The thymus and bone marrow constitute the primary lymphoid 

organs, whereas lymph nodes, the spleen, and various mucosal associated lymphoid 

tissues (MALT) constitute the secondary lymphoid organs [63]. The thymus, as seen in 

Figure 2.2, is an example of a primary lymphoid organ and is located just above the 

heart. It is responsible for antigen-independent maturation and development of T-

lymphocytes, which regulate cell-mediated immunity. In mammals, immature B-cells 

proliferate and differentiate in bone marrow through a process called B-cell maturation. 

Secondary lymphoid organs such as lymph nodes, the spleen, adenoids, tonsils and 

lymphoid patches of the guts and appendix are the areas where mature T or B-

lymphocytes may interact with antigens and form the basis of antigen-dependent 

differentiation.       

 

Figure 2.2: Organs of the human immune system [64] 
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2.1.2   Innate Immune System 

The innate immune system is the one we have at birth, and it is likely that it stays the 

same throughout our lifetime. It is non-specific (i.e. not tuned for any particular 

infection) and is the first level of defense. One of the main components of the innate 

immune system is leucocytes, or white blood cells, which move throughout the body 

and capture invading micro-organisms and other foreign particles. Leucocytes are 

formed in the bone marrow from stem cells. Most leucocytes do not divide or 

reproduce. Typical leucocytes are natural killer cells and phagocytes (macrophages, 

neutrophils and dendritic cells). Dendritic cells (DCs) are important not only for their 

location (in contact with the external environment, such as in the skin and mucus) but 

also for their function, since they link the innate and adaptive immune systems. These 

DCs, also known as antigen presenting cells, help to regulate the adaptive immune 

system via the interaction of T-cells (which are also an important component of the 

adaptive immune system). If the innate immune system cannot deal with a pathogen, the 

adaptive system is triggered.  

2.1.3   Adaptive Immune System  

The main components of an adaptive immune system are white blood cells also known 

as lymphocytes. Lymphocytes normally stay in a passive state until they encounter 

specific molecules called antigens. Lymphocytes are normally one of two types:  class T 

or class B. B-lymphocytes secrete proteins that bind to the antigens, helping the immune 

system to destroy antigens, whereas T-lymphocytes perform a variety of functions 

including recognition and killing of cells that are bearing non-self molecules on their 

surfaces, and also kill cancerous cells. Each lymphocyte can recognize only one type of 

antigen. Each antigen leaves genetic blueprints on B- or T-lymphocytes so that if 

similar antigens attack the body in the future they are recognized quickly by the 

lymphocytes. This phenomenon is called immunology memory. Immunity mediated by 

T-lymphocytes is known as cell-mediated immunity. Humoral immunity, on the other 

hand, is mediated by secreted antibodies produced in the cells of B-lymphocytes. 

2.1.3.1   Cell-Mediated Immunity  

Cellular immunity or cell-mediated response is carried out by T-cells, which do not 

produce antibodies. T-cells are produced in the bone marrow but they mature in the 

thymus. During maturation, T-cells express unique antigen-binding receptors. These 
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receptors cannot activate independently on interaction with an antigen – the antigen 

needs to be bound to a specific molecule, known as a class I or II MHC (major histo-

compatibility complex). When a T-cell encounters an antigen with an MHC molecule it 

undergoes differentiation and the production of a memory cell occurs. T-cells can also 

be categorized into T-helper and T-cytotoxic cells. A T-helper cell gets activated when 

an antigen is associated with MHC II class, and when antigen is associated with MHC I 

class T-cytotoxic cells are activated. The typical functions of T-cells are killing tumor 

cells and the rejection of foreign tissue graft.  

Some viruses and bacteria enter the host’s cells and cause infection. Antibodies cannot 

enter these cells. The functionality of an MHC is to interact with these infectious cells 

and bind and display small proteins or fragments from the infecting viruses and 

bacteria. Later, these molecules are presented to T-cell to trigger an immune response. 

Therefore, one of the functions of an MHC is to signal that a cell is infected [63]. If the 

interaction between T-cell receptors and an antigen-MHC is of low affinity, T-cells will 

evolve co-receptors and other membrane molecules to enhance the stimulation level. 

Once T-cells have undergone the process of proliferation and differentiation, they (T-

cells) produce T-memory cells and T-effector cells, just like a B-cell, but different in 

functionality. While the role of T-cells is also important in immune systems, T-cells are 

not discussed further in this thesis since its aim is to explore the inspiration of B-cell 

mediated immunity in machine learning. 

2.1.3.2   Humoral-Mediated Immunity 

Humoral components consist of B-lymphocytes or B-cells. These B-cells produce 

antibodies, which attach/bind to the antigens and destroy them. B-cells are produced in 

bone marrow and reside there until maturation. When they are released, they have a 

unique receptor on their membrane called an immunoglobulin (Ig) receptor, due to its 

link to a specific Ig super-family. When a B-cell encounters an antigen, it reacts in two 

ways: one is the production of a memory B-cell and the other is the production of an 

effector B-cell. The memory B-cell also has the Ig receptor on its membrane and keeps 

looking for more similar antigens. The plasma cell or effector B-cell loses the Ig 

receptor and grows larger in size and starts producing antibodies. These antibodies are 

released into free circulation in order to encounter the antigens (see Figure 2.3). The 

new B-cells that have not encountered any antigens are called naive cells. They have a 
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life span of about a week unless they interact with an antigen. These naive cells 

circulate in the blood and lymphatic system. At this stage, if a B-cell interacts with any 

antigens, this will again lead to the process of proliferation and differentiation, leading 

to the secretion of plasma cells (effector cells) and memory B-cells. The life span of 

memory B-cells is much longer than regular B-cells and they can live on for many 

years. This is one way of keeping track of the diseases (or viruses) we have encountered 

in the past; if they come back, the immune system will be well prepared to act on those, 

due to the presence of the memory cells. If the same pathogens attack the body, due to 

the presence of memory cells the immune response is more direct and faster than the 

first time. 

Antigen
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1 – B cell population

2 – B cell encounters and 

      binds to antigen

3 – B cell response

4 – B cell differentiates into 
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Figure 2.3: A snapshot of humoral-mediated response 

Differentiation of B-cells (cell differentiation) can be of two types: the first is known as 

antigen independent differentiation and second is called antigen dependent 

differentiation. The B-cells that are matured in the bone marrow and then get into the 

blood and lymph are driven by the antigen independent differentiation process. When a 

B-cell encounters an antigen and produces plasma cells and memory cells, this is known 

as antigen dependent differentiation process. The antigen dependent differentiation 

process occurs in two stages: (1) cell activation and (2) proliferation and differentiation. 

In the case of antigen dependent differentiation, cell activation also occurs in two 
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different ways: (1) B-cell activation by T-cell independent antigens – this occurs on the 

surface level as the epitopes of antigens interact with the epitopes of the antibodies – 

and (2) B-cell activation by T-dependent antigens. This occurs when antigen-presenting 

cells interact with T-cells and those T-cells interact with B-cells. The first approach is 

more likely to be a physical interaction which leads to an immune response; the second 

is a chemical interaction between antigens and antibodies, leading to an antibody 

response. 

When the antigen and antibodies interact with each other, they react to form a non-

covalent bond, meaning that they are not involved in the sharing of the pairs of 

electrons. This bonding is considered to be weak and therefore a strong affinity 

interaction must exist in order to make the stable complex. These antibodies have 

multiple binding sites and each antibody can interact with one or more similar antigens. 

As more than one antigen can be attached to one antibody, high avidity compensates for 

low affinity. The interaction between antigen and antibody is very specific in nature, but 

sometimes certain antigens show cross-reactivity with unrelated antibodies and some 

antibodies show cross-reactivity to unrelated antigens, but this may only occur when 

different antigens share the same epitope or unrelated epitopes have similar chemical 

properties. This cross-reactivity can lead from tissue damage to adverse autoimmune 

reaction. As stated earlier, each antibody has more than one antigen-binding site. As the 

number of antigens increases, antigens with less affinity are displaced and replaced with 

antigens with higher affinity. 

Antibodies are produced during the process of proliferation (in plasma cells) and are 

subsequently released into the bloodstream. These antibodies are also called Igs, which 

are classified into five major categories: IgG, IgM, IgA, IgD, and IgE. In the 

experiments of Porter and Edelman in the 1950s, it was revealed that IgG was 

composed of two identical heavy chains (H) and two identical light chains (L). IgG also 

has two regions: the variable region and the constant region. Variable regions (or V 

regions) are responsible for antigen recognition, whereas constant regions (or C regions) 

are responsible for a variety of effector functions such as complement fixation [64].  

Jerne [52] proposed ‘immune network theory’, where antibodies trigger an immune 

response not only when they interact with antigens but also with other antibodies. 

Immune network theory states that the V region in antibodies responsible for antigen 
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interaction can sometimes bind with other V regions to form an interconnected network 

called the idiotype network. According to this model, each arm of antibody molecule 

possesses one paratope (an antibody-combining site) and a small set of idiotopes. 

Lymphocytes may respond positively or negatively to a recognition signal. A positive 

response leads to cell activation and differentiation whereas a negative response leads to 

tolerance or suppression. This process of suppression and activation can be seen in 

Figure 2.4.  

 

Figure 2.4: Suppression and activation phenomena in antibodies [64] 

The immune system works on the phenomenon of negative selection. This is one of the 

ways of differentiating among ‘self’ and ‘non-self’. The immune system destroys all the 

antibodies which are similar to self to avoid a self-destructive immune response and 

keeps anything that is alien or non-self. This record of non-self keeps updating as new 

antigens or viruses are introduced to the immune system. This negative selection 

process takes place in the thymus. The B-cells that bind to self are destroyed and only 

those that do not bind to any of the self-cells are allowed to leave the thymus and 

circulate all over the body to detect and kill the antigens. 

Only those antibodies that interact with antigens are selected for proliferation and 

differentiation and all others remain in an inactive or passive state. The main feature of 

clonal theory is that all the proliferated cells are identical copies of the original antibody 

with a mutation rate which is dependent on the affinity measure (similarity measure) 

between the antigen and the antibody. Again, all the cells that interact with self are 

destroyed.  
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2.1.4   Vaccination 

Edward Jenner and Louis Pasteur were the first to develop vaccination for human 

diseases [63]. Vaccination is considered to be an efficient and low-cost disease 

prevention technique. One of the shining examples of vaccination is the eradication of 

smallpox disease worldwide; there has not been a single case of it reported since 1977. 

Recent advancements in immunology, a better understanding of T-cell and B-cell 

receptors, and their interaction with antigenic determinants and genetic engineering 

have all contributed in improving vaccines to generate maximum immune response.  

Vaccination is a process where inactive or weakened forms of pathogens are introduced 

into healthy human beings to stimulate a defensive response without leading to the 

disease [65]. A vaccine typically activates an immune response in the form of the 

generation of antibodies, which are cloned and hyper-mutated to bind to antigens 

(fragments of pathogens). Vaccines lead to the production of antibodies so that the NIS 

is primed if in the future a stronger version of the pathogen is encountered. Vaccines are 

categorized by composition and formulation (how they are derived, how they are used, 

and how their effects are mediated). For example, the tetanus vaccine is produced from 

the toxic chemicals extracted from the tetanus pathogen, as are the vaccines for hepatitis 

B and diphtheria. There are different ways to obtain vaccines [65], such as: 

1. Live attenuated vaccines: consist of a weakened form of the infectious agent 

itself. The measles, mumps, rubella and some polio vaccines are examples of 

live attenuated vaccines. 

2. Inactivated vaccines: involve inactivating infectious agents by heat or by 

chemicals and later injecting them into healthy people. The influenza (flu), 

rabies, hepatitis A and pertussis are examples of inactivated vaccines.   

3. Acellular and subunit vaccines: typically consist of proteins extracted from 

infectious agents. The hepatitis B and plague immunization are examples of 

acellular and subunit vaccines. 

4. Toxoid vaccines: some pathogens, when invaded, produce toxins that get into 

the bloodstream. The tetanus and diphtheria vaccines are examples of toxoid 

vaccines. 
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2.1.5   Danger Theory 

As stated earlier, immunologists originally believed that the immune system works on 

the principle of distinguishing between self and non-self. However, this model started to 

encounter problems when immunologists recognized that the activation of T-cells also 

depends on signals from other cells called antigen-presenting cells (APCs). In 1994 

Matzinger [66] proposed her ‘danger theory’. This theory states that APCs such as DCs 

are automatically activated through an alarm called a danger signal. These activated 

APCs then provide a co-stimulatory signal to T-cells, which subsequently control the 

activation of adaptive immune system. These danger signals are emitted by cells that are 

damaged due to the attack of antigens. While collecting antigens in the peripheral parts 

of the body, DCs detect these signals and make decisions regarding generating safe or 

danger signals. If DCs detect a dangerous environment, they present collected antigens 

as well as danger signals to initiate an immune response. Danger theory has serious 

consequences for the way we perceive the inner workings of the immune system. The 

generation of a danger signal by the innate immune system as well, controlling the 

activation of T-cells, eliminates the discrimination between the adaptive and innate 

immune systems. Another important impact of this theory is the replacement of the 

notion of self and non-self with the danger and not-danger metaphor.  

2.1.6   Summary 

There are a number of features of the NIS which capture the attention of AIS and 

especially machine learning researchers. Some of these characteristics have been 

highlighted by Hunt and Cook [11]:  

Generation of Antibodies: One of the most outstanding aspects of the NIS is its ability 

to generate millions of antibodies from a few antibody genes. This feature helps humans 

survive various deadly viruses and pathogens which have never been encountered 

before.  

Diversity: The NIS encourages diversity. The functionality of the NIS through 

antibodies and other processes is not to find global optima; instead, it helps evolve 

antibodies, which can bind to a variety of antigens. At the time of proliferation and 

differentiation, the main objective of the NIS is to achieve local best solutions only. 
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Distributed System: The NIS is a distributed system with no central control. The cells 

and organs of the NIS are distributed throughout human body.  

Dynamic System: The NIS is an effective dynamic system which helps mount an 

appropriate response to ever-changing and challenging pathogens. Once an antigen 

enters into the system, the NIS with the help of T helper cells triggers an immune 

response that results in the generation of millions of antibodies to adapt to an invading 

pathogen. The NIS also is equally efficient in identifying and destroying self-altered 

cells.  

Self-Organizing Memory: The NIS possesses a self-organizing memory that is 

maintained through the generation of memory cells. It is one of the stand-out features of 

the NIS and the focus of many machine learning researchers. It is this self-organizing 

memory that helps the NIS recognize and mount an appropriate immune response in the 

event of the same pathogens invading the body again (secondary immune response). 

Noise Tolerance: The NIS is tolerant to noise. The immune system response is only 

triggered if the interaction between antigen and antibodies exceeds a certain threshold. 

In addition, the NIS has the capability to re-classify itself in light of new information 

regarding pathogens.  

2.2   Basic Concepts of an Artificial Immune System (AIS) 

We have explained in section 2.1 some of the main processes involved in NISs. In order 

to map processes and information available in an NIS to an AIS, a few considerations 

are necessary, regardless of the area of application: 

1. How to represent antigens, antibodies and B-cells? 

2. What are memory cells in computational AISs? 

3. How to calculate affinity between antigen and antibody receptors? 

4. How to perform clonal selection?  

5. What does hypermutation mean? 

In this section we answer these questions in the context of AISs in a machine learning 

paradigm. All the unseen data instances are usually considered as antigens. In the 

example of a cancer dataset, the task is to classify all data instances/records into either a 

normal group or cancer group, with or without seeing an original class label. Regardless 
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of biological differences, there is little to distinguish in the use between antibodies and 

B-cells in the literature. Antibodies are data items which we have already seen and 

classified, whereas B-cells can be regarded as data clusters. Memory cells are also data 

items which we have already seen. The main difference between antibodies and 

memory cells is that the former are generalized forms of already seen data and the latter 

are specializations of seen data instances. More discussion regarding AIS antibodies and 

memory cells will be provided in the coming chapters. The antigens and antibodies 

must be represented in the same way, e.g. as a number of continuous or discrete 

variables or features. 

The affinity or similarity measure is one of the most important factors in designing an 

AIS and it depends on the representation scheme of antigens and antibodies. For 

example, consider an antigen = [1 1 0 0 1] and an antibody = [0 1 0 1 1]. There is a 

similarity score of 3 as there are three matching indices. If the representations of data 

items are real variables, various other distance measures can also be applied such as 

Euclidean distance, Manhattan distance, Mahalanobis distance and Hamming distance. 

Essentially, these measures return a magnitude of similarity or dissimilarity, which can 

be considered as the affinity between an antigen and an antibody.  

Mutation in an AIS is the same as that performed in genetic algorithms. For example, 

for binary string, one or more bits are randomly flipped, and in real-value string, one or 

more values are changed to other values. There are different ways that mutation can be 

implemented in an AIS. For example, the mutation rate can be higher or lower 

depending on the affinity between antigen and antibodies. When a new data instance is 

introduced into an AIS, it is compared against all existing antibodies, and those 

antibodies with a threshold higher than some specified level (affinity) get stimulated 

and activated. Once an antibody is activated it undergoes clonal selection. Clonal 

selection is the process of generating more antibodies by activated antibodies to achieve 

a higher affinity level between antigen (new data instance) and antibodies. The process 

of fine-tuning antibodies receptors (moving of antibodies towards new data instance) 

towards an antigen is called affinity maturation.  
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2.3   AIS Framework 

Put simply, a framework is a specific set of instructions which help design any 

computational algorithm. De Castro and Timmis [67] proposed a framework for AIS. In 

the case of other nature-inspired computational techniques (e.g. neural networks and 

genetic algorithms) frameworks already exist which can help considerably in the 

development of AIS systems. For instance, one framework for designing an artificial 

neural network [13, 18] consists of artificial neurons, interconnecting weights on 

neurons, and a learning algorithm [18, 67]. An artificial neural network can be designed 

by arranging together artificial neurons in various layers (input layer, hidden layer and 

output layer). During the training or learning process, the artificial neurons undergo an 

adaptive process by which weights associated with those artificial neurons are adjusted 

and quantified and finally knowledge is acquired from the system. In the case of 

genetic/evolutionary algorithms, an initial population of chromosomes is generated, 

which during the learning process undergoes reproduction, genetic variations and 

selection. As a result of this learning process a population of evolved chromosomes 

(individuals) arises. In summary, the framework for designing an evolutionary 

algorithm is the generation of an initial population of chromosomes, and the procedures 

for reproduction, genetic variations and selection. The authors [67] derived some simple 

rules for designing any nature-inspired algorithm. It must have: 

 “A representation of the components of the system 

 A set of mechanisms to evaluate the interaction of individuals with the 

environment and each other. The environment is usually simulated by a set of 

input stimuli, one or more fitness function(s), or other mean(s) and  

 Procedures of adaptation that govern the dynamics of the system, i.e. how its 

behavior varies over time” [67]. 

 

The framework for designing AIS algorithms is represented as a layered approach in 

Figure 2.5. The AIS system consists of three components: representation, affinity 

measure, and immune algorithms [67]. To build an AIS, the first step is to know the 

application domain. The application knowledge will help the representation of the AIS 

system. The affinity measure also depends on the representation of AIS system. One or 

a combination of distance measures can be used for the affinity measure. Each of these 
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distance measures have their own biases [54, 55] and an affinity measure must therefore 

be selected with great care as it can affect the final solution obtained by the system. 

Finally, the final layer is the selection of appropriate immune system-based algorithms. 

Some of the proposed AIS algorithms are negative selection, positive selection, clonal 

selection, and the immune network algorithm [10]. The details regarding these 

algorithms are presented the next section.      

 

Figure 2.5: AIS layered framework [10] 

The ‘Representation’ and ‘Affinity Measures’ steps in the above framework can be 

considered as being part of the ‘Immune Algorithms’ step. According to Jain [54], each 

algorithm is designed to solve a specific task and therefore these algorithms implicitly 

or explicitly impose structural constraints on the data. In addition, each algorithm has 

parameters which needed to be optimized to obtain desired solutions. Therefore, the 

above framework presented in Figure 2.5 can be revised into that presented in Figure 

2.6. 

The NIS is a complex and interconnected system comprising of various micro-level 

processes. Some of the main features currently believed to be important in the NIS are: 

negative selection, clonal expansion, affinity maturation, immune network theory, and 

danger theory. AIS researchers have drawn inspiration from these processes and 

developed various algorithms inspired from one or a combination of them. An in-depth 
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examination of the existing literature reveals that AIS algorithms can generally be 

classified into five distinct groups. These algorithms, their inspiration, and other related 

details are discussed in the following section.  

Parameters

Immune Algorithms

Application Domain

Solution

AIS

 

Figure 2.6: Revised AIS framework 

2.3.1   Negative Selection Algorithm 

One of the earliest AIS algorithms was proposed by Forrest et al. [68] and was inspired 

by the negative selection occurring in the thymus on T-cells during the T-cell 

maturation process. This algorithm is tested on anomaly detection data and can be 

divided into two separate phases: training and testing. The generation of valid detectors 

using self data constitutes the training phase, whereas the evaluation of those generated 

detectors on unseen data instances constitutes the testing phase. In the first phase, the 

algorithm generates detector strings, which are a complement of self strings. The self 

strings can be seen as the normal state of the system, and generated detectors would 

capture/detect only the deviations from the self state. The first phase ideally finishes 

when all the generated detectors have not been able to detect self strings. In the second 

phase, new and unseen self and non-self strings are introduced into an already learned 

system, comparing them against already generated detectors to assess the quality of 

generated detectors. The basic components of negative selection algorithm can be seen 

in Figure 2.7, where (a) and (b) represent the training and testing phases respectively. 
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Figure 2.7: The two phases of the negative selection algorithm proposed by Forrest [68] 

In recent years, a series of theoretical studies conducted by Stibor et al. [69-73] on the 

negative selection algorithm have highlighted a number of drawbacks, which include its 

poor performance in comparison to well-established statistical models, as well as the 

difficulties and challenges the negative selection algorithm faces in generating non-self 

detectors in high-dimensional space.   

2.3.2   Clonal Selection Algorithm 

CLONALG [74] is an example of a clonal selection algorithm which was originally 

specified for binary character recognition and engineering optimization but which can 

be adapted for unsupervised learning. This algorithm is inspired by the B-cell activation 

process, which results in the generation of plasma cells and antibodies that are 

subsequently released into the bloodstream to capture similar antigens. The main 

components of this algorithm are antibodies, cloning and hypermutation, and affinity 

measure and selection. An overview of this algorithm can be seen in Figure 2.8. 

CLONALG can be described as follows, where antibodies are regarded as cells [75]:  
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Initialize: Prepare an initial random antibody pool.  

Loop: Present the antigens to the antibodies and calculate affinity values for each antibody 

depending on the similarity between the antibody and the antigens. 

Select: A set of antibodies are selected from the entire antibody pool that have the highest 

affinity with the antigen. 

Clone: This set of selected antibodies is cloned in proportion to their affinity (the higher the 

affinity, the more an antibody is cloned).  

Mutate (affinity maturation): Mutate the clones in direct inverse proportion to their affinity 

(the lower the fitness, the more a cloned antibody is mutated).  

Measure clonal affinity: Calculate affinity values for each cloned antibody depending on the 

similarity between the cloned antibody and the antigens. 

Select candidates: The antibodies (original and cloned) with the highest affinity are selected for 

survival in the next generation.  

Diversify: Add a number of newly generated random antibodies.  

Return: to Loop until some termination condition is satisfied.  

 

Figure 2.8: Overview of CLONALG [75] 
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This generic algorithm can be fine-tuned depending on the problem being dealt with. 

For instance, if binary classification is sought, the class of antigen can be used in the 

affinity measure to produce just two antibodies that are highly tuned to their respective 

antigens. The algorithm reflects several NIS principles, including the match between 

antigens and antibodies and the somatic hypermutation and clonal selection of those 

antibodies that match antigens. CLONALG shares many similar features with 

evolutionary algorithms such as mutation and the selection mechanisms performed in 

evolving a population of antibodies. Therefore, theoretical approaches applicable to 

evolutionary algorithms can also be applied to clonal selection algorithms [76]. Clark et 

al. [77] proposed the Markov Chain Model of the clonal selection algorithm called B-

cell algorithm (BCA) for function optimization, proving its convergence. 

2.3.3   Immune Network Algorithm 

In his landmark paper, Jerne [78] proposed that antibodies trigger an immune response 

not only when they interact with antigens but also with other antibodies. This immune 

response is known as the idiotype network. Antibodies may respond either positively or 

negatively to a recognition signal. A positive response leads to cell activation and 

differentiation whereas a negative response leads to tolerance or suppression. De Castro 

and Zeben [79] proposed an AIS algorithm based on immune network theory called 

aiNet. The main difference between this algorithm and other AIS algorithms is the idea 

that the components of an AIS not only interact with antigens but also with each other 

to form stable network, in the form of memory cells. The main characteristic of this 

algorithm is that it can be used for data reduction as well as cluster analysis. Data 

reduction is achieved through generation of memory cells and clustering is performed 

on the obtained memory cells using a minimum spanning tree (MST). This is a two-step 

algorithm where immune system concepts are used to obtain a set of memory cells and 

those memory cells are later used for cluster analysis. This algorithm is a modified 

version of the clonal selection algorithm discussed earlier. RAIN is another example of 

immune network algorithms and was proposed by Timmis and Neal [80]. Figure 2.9 

presents a flowchart showing the main steps of the immune network algorithm. 
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Figure 2.9: Flowchart of the immune network algorithm [33] 

One of the major drawbacks of both aiNet and CLONALG for unsupervised learning is 

their inability to discriminate self patterns from non-self patterns at the learning stage. 

For example, aiNet only uses the first phase (learning phase) to generate memory cells, 

which are regarded as an abstraction of input data patterns and only to be seen as data 

reduction process. It is in the second phase where cluster labels (in terms of binary 

classification: self and non-self labels) are attached to those memory cells by 

performing a minimum spanning tree (MST) process. Put simply, these approaches only 

recognize the structural features of the data, and are unable to recognize and extract data 

partitioning.    

2.3.4   Danger Theory Algorithm 

Matzinger’s [66] danger theory has received much attention from researchers. As noted 

above, it suggests that the immune system does not differentiate self from non-self, but 

what is harmful and what is not harmful to the body. According to this theory APCs 
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have the capability to activate an alarm signal called a ‘danger signal’ when harmful 

invaders enter the body. These APCs stimulate T-cells, which subsequently control an 

adaptive immune response. Secker et al. [81] proposed an algorithm to explore the 

relevance of danger theory to web mining by investigating the use of danger signals. 

This has been extended by Greensmith and her team with the dentritic cell algorithm 

(DCA) [82-86], using the concepts of the danger theory: danger signals, safe signals, 

and pathogen-associated molecular pattern (PAMP) signals. The importance of this 

work is that it removes the need to define what self or non-self is, although it is 

necessary to define what the danger, safe, and PAMP signals are. The basic DCA is 

shown below [87]:  

input: S = Data to be labelled safe or dangerous 

output: D = Data labelled as safe or dangerous 

begin 

Create an initial population of dendritic cells (DCs), D, and a set M to contain migrated 

DCs   

 Forall  data instances in S, do:   

  Create a pool of P, randomly selected from D 

  forall  DCs in P, do:  

           Add data item to DCs collected list 

           Update danger, PAMP and safe signal concentrations 

           Update concentrations of output cytokines 

Migrate the DC from D to M and create a new DC in D if: concentration of 

co-stimulatory molecules is above a threshold 

  end      

 end  
    forall  DCs in M, do: 

Set DC to be semi-mature if output concentration of semi-mature cytokines is 

greater than mature cytokines otherwise, set as mature      

    end 
    forall data instance in S, do:  

Count number of times data instance is presented by both mature DC and a semi-

mature DC. 

Label data instance safe if presented by more than semi-mature DCs than mature 

DC's, otherwise label as dangerous 

       Add data instance to labelled set M  

     end 

end  
 

2.3.5   Artificial Immune Recognition System (AIRS) 

The leading work in AIS supervised learning algorithms is associated with the Artificial 

Immune Recognition System (AIRS) of Watkins and Timmis [88], which uses the 

concepts of artificial recognition balls (ARBs), resource limitation, memory cells, and 

hypermutation. ARBs are essentially B-cells supplemented with information on the 
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resources available in the system. The idea of ARBs in AIS was initially proposed by 

Timmis et al. [89] and further fully utilized in [80]. AIRS adopts a one-shot approach in 

that learning patterns (antigens) are allocated to the closest matching ARB in the pool of 

ARBs, followed by a competitive stage in which the ARBs either survive or die 

depending on their fitness with regard to capturing antigens of the right class. Resources 

are re-allocated throughout the ARBs depending on which ARBs survive or die. 

Memory cells are produced from the surviving ARBs. At the end of the one-shot 

approach, the memory cells adopt a k-nearest neighbor (KNN) voting method by 

presenting test samples to all memory cells and reporting the stimulation values 

returned by each memory cell. The AIRS algorithm is presented below [88]: 

1. Initialization: Create randomly memory pool (M) and the ARB pool (P).  

2. Antigenic Presentation: for each antigen do: 

a) Clonal Expansion: For each element of M calculate their affinity to antigen from the 

same class as antigen. Select highest affinity memory cell (mc) and clone mc in 

proportion to its affinity and add it to the set of ARBs (P)  

b) Affinity Maturation: Perform mutation on each of mc in ARB of this highest 

affinity. Place each mutated ARB into P. 

c) Metadynamics of ARBs: Process each ARB through the resource allocation 

mechanism. Calculate the average stimulation for each ARB, and check for 

termination condition.  

d) Clonal Expansion and Affinity Maturation: Clone and mutate a randomly selected 

subset of the ARBs left in P based in proportion to their stimulation level.  

e) Cycle: While the average stimulation value of each ARB class group is less than a 

given stimulation threshold repeat from step 2.c.  

f) Metadynamics of Memory Cells: Select the highest affinity ARB of the same class 

(as antigen). If the affinity of this ARB is greater than the previously selected best 

memory cell mc, then add the candidate (mc-candidate) to memory set M. And, if 

the affinity of mc and mc-candidate is below the affinity threshold, then remove mc 

from M. 

3. Cycle: Repeat step 2 until there are no antigens left.  

 

AIRS adopts several immune system concepts and the results reported are competitive 

with other traditional supervised learning algorithms. The AIRS uses some of the core 

concepts of immune system such as clonal selection, affinity maturation, hypermutation, 

antibodies and memory cells. It is generally regarded and classified as a clonal selection 

algorithm, as both the AIRS and clonal selection algorithms share inspirations from 
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common principles of the NIS. But it is important to describe the AIRS separately as it 

is a specialized supervised learning algorithm that is inspired by the NIS.  

McEwan and Hart [90], evaluated some of the parameters used in AIS algorithms 

(clonal selection, affinity maturation, memory cells) and discussed their defects using 

the AIRS algorithm. In their experimental work, clonal selection is replaced with a 

deterministic search operator. The authors’ experimental results proved that 

deterministic search operators can perform as well as clonal selection and affinity 

maturation. They ran experiments on the data reduction capabilities of AIRS and 

concluded that a simple k-means algorithm appeared to have better data reduction 

capabilities than AIRS. Moreover, another flaw of the AIRS algorithm mentioned in 

their work is its inability to generate memory cells from data without following the 

density structure present in the original data.  

2.4   AIS Algorithm Groupings 

The early researchers of AIS considered that an immune system-inspired algorithm can 

only work in the pattern recognition domain due to its alignment with the human 

immune system and its pathogen recognition and elimination capabilities. The 

researchers have been using AIS algorithms on a number of different application 

domains such as computer security [86, 91], clustering/classification [67, 74, 88, 89, 

92], optimization [74, 93] and robotics [94-97]. Hart and Timmis [10] presented a 

general review of application areas where AIS has been applied. The authors, based on a 

natural grouping of published work, classified AIS application areas into 12 distinct 

groups (Table 2.1) [10]. A reflection of these groupings can also be found in [98]. 

Table 2.1: Main application areas of AIS 

Major Minor 

Clustering/Classification Bio-informatics 

Anomaly Detection Image Processing 

Computer Security Control 

Numeric Function Optimization Robotics 

Combinatorial Optimization Virus Detection 

Learning Web Mining 
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With careful observation it can be seen that some of these groups can be merged to 

make a super-group. As discussed by the authors [10], some of the groups such as virus 

detection and computer security can be considered as a part of anomaly detection. 

Numeric function optimization and combinatorial optimization can both be regarded as 

‘Optimization’. Image processing and web mining can be regarded as 

clustering/classification, which can further be grouped into the super-group of 

‘Learning’. Therefore, based on this discussion, these 12 groupings can be re-classified 

into 3 main groups, namely Anomaly Detection, Optimization and Learning [10].   

2.4.1   Anomaly Detection 

Anomaly detection has been a favorite domain for AIS researchers. Normally, only a 

single class is available to train the network. The main objectives of such immune-

inspired clustering algorithms are to learn from the example of one class (usually what 

is considered to be the normal behavior of the system) and generate a set of detectors 

that can identify any deviation in the system (deviation from the normal functionality of 

the system). The early work of Forrest et al. [68] provides the basis for using AIS 

algorithms for intrusion detection. This work was further extended by Kim and Bentley 

in [99], who incorporated a clonal selection algorithm with a negative selection 

algorithm to reduce false positive rates. Dal et al. [100] proposed an AIS intrusion 

detection algorithm based on negative clonal selection (generating non-self detectors 

based on self detectors). This is an online learning algorithm, where memory cells are 

used at the testing phase, when unseen data is presented to the trained model. The 

closest stimulating detectors undergo cloning and mutation to select best affine detector 

as a memory cell. Yue et al. [101] proposed an AIS algorithm for filtering spam e-

mails. In this algorithm, a modified version of aiNet [79] is used to handle an 

incremental clustering problem as well as mining spam data streams. In the same 

domain, Secker et al. [102] proposed an AIS-based algorithm (AISEC) for the online 

classification of e-mails into two categories: interesting and non-interesting. The 

proposed algorithm has performed as well as naive Bayesian systems. An extension and 

further evaluation of AISEC (e-mail classification system using AIS) is presented in 

[103].  

A multi-level AIS algorithm for detecting anomalies in data is presented by Dasgupta et 

al. [104], which integrates different immune system concepts such as negative selection, 
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antigen presenting cells (APCs), B-cells, plasma cells and memory B-cells. The 

algorithm is divided into four phases, namely the initialization, recognition, 

evolutionary, and response phases. In its initialization phase, self and non-self detectors 

are generated as well as a population of T helper cells, T suppressor cells and B-cell 

detectors. The rationale of generating self and non-self detectors is to detect both 

‘normal’ and ‘known’ anomalies in the data. In phase 2, T-cells, B-cells and APCs 

perform recognition of the antigen and are activated if the signal is stronger than a 

threshold value. Phase 3 generates memory B-cells using clonal selection and affinity 

maturation. Finally, phase 4 generates a primary or secondary immune response 

depending on initial or subsequent exposure of the antigen, which is determined by the 

strength of the generated signal. Time series data is used to evaluate the performance of 

this algorithm. Ji and Dasgupta [105] proposed a real-valued negative selection 

algorithm that can generate variable-sized non-self detectors. These variable-sized 

detectors can cover more non-self space as well as avoiding overlapping of generated 

detectors on self space more efficiently. A similar approach is used in [106], where a 

negative selection algorithm is developed and applied for an aircraft fault detection 

system. Shulin et al. [107] demonstrated the feasibility of a negative selection algorithm 

for online fault detection of rotary machinery. Schulze et al. [108] extended the ideas 

presented in [104-106] and applied the algorithm to detecting aerodynamic instabilities 

in centrifugal compressors to build an early warning system using compressors sound 

signals. 

A hybrid model for immune-inspired network intrusion detection called NetTRIIAD 

was proposed by Fanelli [109]. Greensmith et al. [83] proposed a novel AIS algorithm 

based on the functionality of DCs as well as using the concepts of danger theory. Zeng 

and Zeng [110] proposed an AIS anomaly detection algorithm to improve the efficiency 

of matured detectors by reducing the number of detectors as well as enhancing the 

coverage of non-self space. The authors used both the innate and adaptive immune 

systems. In the innate immune system, traditional information security methods are used 

to generate danger signals, and a population of T-cells are evolved to trigger an immune 

reaction. This hybrid model is used to achieve high positive prediction values when 

compared with other similar approaches. Ma et al. [111] introduced an antigen feedback 

mechanism to generate efficient detectors to overcome the problem of random 
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generation of useful detectors within an acceptable time. A review of the various 

negative selection algorithms present in the literature can be found in [112]. 

2.4.2   Optimization 

The NIS, by its very nature, does not perform optimization. The goal of any 

computational optimization is to find an optimal solution. On the other hand, the 

objective of an NIS is to evolve to find the best possible response (solution) under 

existing conditions [10], and sometimes it has to work under contradicting conditions. 

This does not stop AIS researchers using AIS in an optimization domain, however. AIS 

has produced a number of optimization algorithms on the clonal selection principles 

such as CLONALG [74], opt-aiNet [113], B-cell algorithm (BCA) [114], and opt-IA 

[115]. Al-Sheshtawi [116] used CLONALG, opt-IA and BCA on numerical 

optimization problems and found that the results obtained were comparable with other 

state-of-the-art optimization techniques. All these approaches use cloning, mutation and 

selection to build a population of solutions. The authors of aiNet [79] stated some of the 

benefits AIS can provide while doing optimization: it (a) performs exploration and 

exploitation of search space through memory cells and antibodies, (b) finds multiple 

local optimal solutions, (c) maintains many local optimal solutions and (d) has a 

predefined stopping criteria. An advanced version of opt-aiNet was proposed by Xuhua 

and called mopt-aiNet, which uses several novel operators such as multi-population, a 

dynamic hypermutation operator and dynamic memory cell formation [117]. An AIS 

model for numerical constraint optimization problems based on CLONALG was 

proposed by Aragon et al. [118]. A new mutation operator was introduced that used two 

different methods for mutation (low and high mutation rates) based on feasibility or 

non-feasibility of the clones produced. The low mutation of feasible clones helps in 

exploitation, whereas the high mutation of infeasible clones is useful in exploration of 

the search space. In recent work, Wang [119] adopted a cluster mechanism to divide a 

single population into sub-populations for hypermutation and selection. The author also 

uses a hybrid mutation operator consisting of Gaussian mutation and Cauchy mutation 

to obtain diversity in antibodies and affinity maturation. This was done to achieve better 

fitness on the population of antibodies as well as to obtain a global optimal solution. El-

Wahed [120] proposed an AIS and neural network hybrid optimization algorithm for 

finding better solutions near the pareto-optimal frontier. Castro and Zuben introduced a 

Bayesian artificial immune system optimization algorithm [121] and later upgraded it to 
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multi-objective optimization (MOBAIS) [122]. The authors replaced traditional cloning 

and mutation operators with a Bayesian network representing a joint distribution of 

promising solutions. Another advantage of MOBAIS is its ability to automatically 

control the population size. The algorithm showed comparative results with other 

benchmarked multi-objective optimization approaches.   

An AIS algorithm inspired by the functionality of T-cells was proposed by Aragon et al. 

[123] for solving optimization problems. This algorithm consists of four components, 

namely virgin cells (VC), effector cells (CD4 and CD8), and memory cells (MC). The 

main objective of this algorithm was to explore possible solution space using local and 

global search operators. An extensive and global search is performed using CD4 and 

CD8, whereas fine-tuning of candidate memory cells is performed by exploring 

neighborhood operators (with low mutation rate). An extension of this work for 

dynamic optimization problems is presented in [124] and called the Dynamic T-cell 

(DTC) algorithm. 

2.4.3   Learning – Clustering/Classification 

The earliest AIS algorithm for unsupervised clustering was proposed by De Castro and 

Zuben [79] and called the artificial immune network (aiNet). It utilizes the concepts of 

memory cells, clonal selection and hypermutation. This is a two-stage clustering 

algorithm. In stage 1, a number of memory cells are generated from the original data 

and then in stage 2 MSTs are used to obtain the number of clusters in the data. Qing et 

al. [125] used a hybrid of aiNet and k-means to perform unsupervised clustering. The 

authors used aiNet to obtain memory cells which were then used to obtain data 

partitioning using k-means. And finally, based on obtained data partitioning, the 

original data was classified.   

CLONALG [74, 75] is based on the principles of clonal selection. It was originally 

designed for engineering optimization but can be adapted for clustering. The algorithm 

reflects several immune system principles, including the match between antigens and 

antibodies and the somatic hypermutation and clonal selection of those antibodies that 

match antigens. Another example of AIS clustering approaches is [126]. Based on 

CLONALG, this requires a pre-reading of the data to calculate an appropriate threshold 

for the Euclidean distance metric needed to allocate samples to clusters. The process of 

clonal selection is also replaced by a random generation of new clusters rather than 
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adaptation to and specialization for antigens. The concept of genuine evolution of 

solutions is therefore not fully exploited. A similar AIS algorithm for data clustering 

was proposed by Liu et al. [127], which used the concepts of antibodies and 

hypermutation to obtain an optimal set of antibodies that can capture antigens (data 

instances). Timmis et al. [89] proposed an AIS algorithm for data analysis which used 

the concepts of B-cells, hypermutation and network suppression. In their AIS algorithm, 

B-cell stimulation (learning) is performed at three levels: (1) affinity between antigens 

and B-cells, (2) affinity of B-cell to neighboring B-cells, and (3) affinity of B-cell to 

loosely connected neighbors (B-cells). 

Knight and Timmis [128] proposed MARIA, an immune system-inspired algorithm for 

unsupervised learning. This algorithm consists of three layers, namely the free 

antibodies layer, the B-cells layer and the memory cells layer. It is an iterative algorithm 

where in each iteration antigens with some probability are selected and exposed to the 

first two layers (free antibodies layer and B-cells layer respectively). Firstly, an antigen 

is presented to a free population of antibodies where antibodies are attached to the 

antigen according to the affinity criteria. Secondly, an antigen and attached antibodies 

are presented to the B-cells layer. At this stage the following actions can take place: the 

generation of new memory cells, the generation of a number of free antibodies, or both. 

If a new memory cell is produced then it is added to the existing memory cell pool, or if 

new antibodies are generated then they are included into already existing free 

antibodies. The output of this algorithm is in the form of memory cells, which can be 

used to cluster unseen data instances. Timmis and Neal (2001) [80] proposed a resource 

limited AIS approach for unsupervised clustering. The population control mechanism 

ARBs (mentioned above) is presented to control the exponential growth of B-cells. 

Nasraoui et al. [129] further enhanced the idea of controlling the population of B-cells 

and proposed a scalable AIS model for unsupervised learning for dynamic and evolving 

data. The authors proposed an AIS model based on dynamic weighted B-cells and 

dynamic stimulation and suppression of B-cells.  

All the above mentioned algorithms focus only on recognizing the structure (structural 

feature) of the data and not extracting data partitioning. Li et al. [130] proposed an 

immune system-inspired algorithm for incremental learning called ICAIS. This 

algorithm generates either of two responses (primary or secondary) when an antigen is 
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presented. In the secondary response, an antigen is allocated to existing patterns 

(clusters) whereas in the primary response a new cluster is generated to accommodate 

new and unseen data patterns. Liu et al. [131] proposed a clustering algorithm based on 

an AIS and a fuzzy system called FAISC and the obtained results on benchmark 

datasets are claimed to have superior performance than the k-means clustering 

algorithm.  

Hart and Timmis [10] proposed that AISs be incorporated with other biologically 

inspired techniques, such as neural networks, swarm algorithms and genetic algorithms, 

to realize their full potential. Rabbani and Panahi [132] proposed a hybrid clustering 

algorithm based on AIS and bacterial optimization. The algorithm was tested on Iris and 

Wine datasets. Results were compared against ant colony optimization [6, 25], genetic 

algorithm [133], tabu search [134], and simulated annealing [5]. It was found that 

results obtained by an AIS-inspired algorithm were superior to other techniques. Chiu 

and Lin [135] proposed a hybrid AIS and ant colony optimization algorithm for cluster 

analysis. Woolley and Milanovic [136] developed a hybrid algorithm based on AIS and 

a Support Vector Machine (AIS-SVM), to identify voltage collapse-prone areas and 

overloaded lines in the power system network. In the hybrid approach, the AIS 

algorithm was used to optimize SVM parameters. The experimental results were 

compared against simple SVMs. The results obtained using hybrid approach were far 

superior to simple SVMs in terms of classification accuracy. 

2.5   Current State of AIS Research 

Hart and Timmis [10] make some suggestions as to the way forward for AIS 

researchers. The authors believe that AIS systems have had reasonable success in 

solving the problems of various domains (as mentioned above), but do not provide 

sufficient advantages over other paradigms. To address current limitations and exploit 

the available potential of AIS, they identify three key components worth exploring: (1) 

the innate immune system, (2) the interaction of AIS with other nature-inspired systems 

and (3) life-long learning. 

2.5.1   Innate Immune System 

The NIS mainly consists of two sub-systems, namely the innate and adaptive immune 

systems. AIS research has so far focused mainly on the adaptive side of an NIS due to 
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its self-evolving, self-sustaining and self-adapting capabilities. Over the years, AIS 

researchers have dismissed and overlooked the innate immune system and the part it 

plays in fighting viruses and pathogens, as well as helping to regulate an adaptive 

immune system. Recently, however, there has been interest in modeling the innate 

immune system and incorporating it with the adaptive immune response. The work of 

Greensmith and colleagues [83-85] using DCs to generate danger signals to activate T-

cells has identified a promising new direction in AIS research. The full richness of AIS-

based algorithms can only be exploited when the adaptive immune system is 

incorporated with the innate immune system [10].   

2.5.2   Interaction of AIS with Other Nature-Inspired Systems 

Hart and Timmis [10] proposed that the immune system must be embodied, since 

natural systems do not work in isolation. It is only through the interaction of the 

immune system, the neural system and the endocrine system that living organisms can 

achieve a steady internal state in a dynamically changing environment. The authors 

suggested integrating AIS with other nature-inspired approaches such as neural 

networks, swarm algorithms and genetic algorithms to find out the true potential of 

immune system-based algorithms. However, the way that such integration should occur, 

taking into account the problem domain, was left open. 

2.5.3   Life-Long Learning 

One of the prominent features of an NIS is life-long learning. Most of the AIS 

algorithms proposed to date use static data from standard data repositories and little 

emphasis is put on building systems which can show life-long learning capabilities. For 

example, most of the immune system-inspired clustering algorithms proposed in the 

literature foresee this feature only working in static mode. In summary, Hart and 

Timmis, outlined a list of features which effective AISs require: 

1. “They will be embodied. 

2. They will exhibit homeostasis. 

3. They will benefit from interactions between innate and adaptive immune 

systems. 

4. They will consists of multiple, heterogeneous interacting, communicating 

components. 
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5. Components can be easily and naturally distributed. 

6. They will be required to perform life-long learning.” [10] 

 

AIS researchers have noted the comparisons that can be made between machine 

learning principles and the adaptive immune system, such as antigens which are 

considered as data samples and antibodies or B-cells which are used to represent data 

clusters. The interaction of the antigens and the antibodies can be modeled with a 

normalized Euclidean distance measure. Then random mutation is performed to evolve 

a population of antibodies. These antibodies provide another representation of the 

antigens or samples as they evolve to match actual antigens. CLONALG and aiNet 

reflect all the above-mentioned characteristics. One of the major drawbacks of both 

aiNet and CLONALG towards unsupervised learning however is their inability to 

discriminate self patterns from non-self patterns at the learning stage. Put simply, these 

algorithms do not attach labels (self or non-self) at the learning stage. These approaches 

need standard statistical techniques to extract meaningful clusters in the data. Therefore, 

these approaches are considered to only recognize the structural feature of the data in 

the form of memory cells, and are unable to extract data partitioning on their own. 

These approaches work in two stages; at the first stage memory cells are generated from 

data and in second stage clustering is performed on memory cells.  

The output of these approaches is in the form of memory cells which can be seen as an 

exemplar of seen data. According to current approaches, antigens are trapped through 

antibodies and during this process memory cells are generated. However, the role and 

functionality of these generated memory cells is not aligned with an NIS. In current AIS 

approaches, the role of memory cells is static and is only to classify unseen data, 

whereas in the NIS memory cells are responsible for mounting a faster response 

(secondary immune response) if the same kind of antigens attack the body. A more 

efficient and robust AIS algorithm needs to be developed which can incorporate data 

partitioning capabilities as well as a more active role of artificial memory cells.   

In addition to the above-mentioned issues with current AIS approaches, McEwan and 

Hart [90] evaluated the performance of the AIRS algorithm and core concepts such as 

clonal selection, affinity maturation and memory cells. The authors demonstrated with 

experimental results that affinity maturation could be replaced with deterministic 

operators. They argued that in AIS algorithms, antibodies are the current state of the 
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system and antigens can be regarded as the final state of the system. Given the current 

and the final (destination) states, any deterministic approach can produce much faster 

results than using an AIS operator such as random mutation. Their work removes the 

need for using a clonal selection process for performing affinity maturation. Most of the 

algorithms stated in section 2.3 (e.g. CLONALG, aiNet and AIRS) are mainly based on 

clonal selection process to obtain affinity maturation. The work done in [90] raises the 

following important questions:  

1. Is the clonal selection process for affinity maturation really required in AIS? 

2. Can we replace affinity maturation process in AIS with a deterministic 

approach?  

3. Can an AIS algorithm be developed that can remove the need for affinity 

maturation and still can use clonal selection in novel way? 

Given the research questions and motivation of this thesis, and this background review 

of the research, the remainder of the thesis will demonstrate: 

a. A basic humoral-mediated clustering algorithm called the Humoral-mediated 

Artificial Immune System (HAIS) which shows how biological inspirations can 

give rise to novel learning algorithms that can be appropriate for variety of 

benchmarked applications. 

b. How this HAIS algorithm, with suitable biologically inspired modifications, can 

deal with supervised learning. 

c. The processes and metaphors that occur at micro level (or cellular level) can 

inspire an improved learning algorithm. How will these micro level concepts 

hold together in a macro level framework? 

d. Vaccination is an effective learning technique in the NISs. How can we 

incorporate artificial vaccination in our existing algorithms, and can it provide 

improved learning capabilities? 

2.6   Summary 

In section 2.1, the principles of an NIS along with its main organs and cells were 

discussed, and shown to form the basis of AIS research. Two main processes, namely 

the innate immune system and the adaptive immune system were discussed, with special 
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focus on the adaptive immune system. Furthermore, processes such as cell-mediated 

immunity and humoral-mediated immunity, which constitute the adaptive immune 

system, were discussed. The components and processes of humoral-mediated immunity 

such as B-cells, antibodies, negative clonal selection, memory cells, differentiation and 

proliferation, immune network theory and affinity maturation were also outlined in 

section 2.1. This section explained vaccination and danger theory phenomena, which are 

other important learning features of an NIS. Finally, the section ended by listing a 

number of features of the NIS which are important for AIS and especially machine 

learning researchers.   

The mapping of some of core concepts of the NIS to an AIS was discussed in section 

2.2. In section 2.3, a generic framework of an AIS, which consists of representation, 

affinity measure and immune algorithms, was presented [67]. Then the main AIS-based 

algorithms (the negative selection algorithm, clonal selection algorithm, immune 

network algorithm, danger theory, and the AIRS algorithm) were discussed. The 

inspirations of these algorithms along with some of the limitations presented by each 

one were also discussed in section 2.3. The main groupings of AIS algorithms based on 

their application domains in the literature were presented in section 2.4. An extensive 

review of the work published in these groups was also conducted. The current state of 

AIS and suggestions as a way forward for future researchers were presented in section 

2.5. It is clear from the discussion of Hart and Timmis [10] that AIS has been able to 

achieve success and obtain good results in a variety of areas, and we believe that AIS 

has potential to achieve even better results. Some researchers believe that AIS is not 

bringing novelty to already exiting techniques, while others believe that AIS is one of 

the ways forward and has a lot to offer. To overcome these issues, Hart and Timmis 

[10] proposed a list of properties (section 2.3) which an AIS should possess to explore 

the true potential hidden in AIS research. This list is not a complete list by any means, 

but definitely can be considered a good starting point. Section 2.5 concluded by 

highlighting some of the drawbacks in existing AIS machine learning approaches, 

which will form the basis of this research thesis.  
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This chapter presents a novel artificial immune system (AIS) clustering algorithm called 

the Humoral-Mediated Artificial Immune System (HAIS) that is based on the latest 

knowledge of the biology underlying natural immune systems (NISs).     
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The HAIS is inspired by the humoral-mediated response triggered by the adaptive 

immune system. The key humoral-mediated features of the algorithm include B-cells, 

antibodies, and memory cells produced through plasma cells. Affinity threshold, 

network threshold, death threshold, and negative clonal selection threshold are also used 

to derive intra-cluster and inter-cluster distance metrics that result in the merging of 

similar clusters, removal/identification of less significant clusters, and segregation of 

any anomalies in the data. The AIS clustering algorithm proposed here adopts aspects of 

NISs that have not been previously explored in detail, namely, humoral-mediated 

responses, as a way of dealing with unsupervised learning as well as the outlier 

detection problem.  

This chapter is divided into two parts. Part I explains the initial HAIS algorithm for 

unsupervised clustering and part II provides further clarification of the original HAIS 

algorithm and evaluates its outlier detection capabilities. Section 3.1 briefly explains 

some of the core NIS concepts employed in developing the HAIS algorithm. These 

concepts are discussed in more detail in chapter 2 (section 2.1). This is followed by a 

description of the HAIS algorithm (section 3.2). A detailed explanation of the HAIS 

algorithm and some of the core parameters are presented in section 3.3. The 

experimental results on synthetic and benchmark real-world datasets are presented in 

section 3.4. Section 3.5 concludes part I by describing the novelty and contribution of 

the HAIS algorithm in the context of existing AIS literature. Part II of this chapter starts 

with section 3.6, which describes outlier detection in general and its significance in 

cluster analysis, which is followed by a literature review of existing outlier detection 

techniques (section 3.7). The proposed HAIS approach and parameter settings for 

outlier detection are discussed in section 3.8. Section 3.9 presents the experimental 

results from the HAIS algorithm on simulated and benchmark real-world datasets. Part 

II and hence chapter 3 concludes with highlighting main characteristics of the HAIS 

algorithm and directions for further work.  
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Part I 

There is a growing interest in AIS approaches to unsupervised learning. Such interest is 

the outcome of increased awareness of computational paradigms that can be inspired by 

natural processes (‘nature-inspired computing’). Of particular interest is the way that 

our body responds to diseases and new pathogens as well as adapting to remain immune 

for long periods after a disease has been combated. Immune system processes consist of 

two phases: recognition of invaders or pathogens, and response. The NIS not only 

provides protection from outside invaders such as viruses and bacteria but also from 

inside invaders, e.g. cancer cells. Therefore, k=2 clusters that must at least exist in the 

immune system will be self and non-self. 

An efficient and robust unsupervised AIS algorithm must separate samples/pathogens 

into different classes based on information available in the sample/pathogen and shared 

across samples/pathogens. Once such assignments are made, due to the presence of 

memory of past assignments, when new samples/pathogens enter the system that are 

similar to previously encountered samples/pathogens it can assign them to the same 

class/classes as before. One advantage of immune systems is that they respond to brand 

new pathogens and, for the most part, assign them to new categories to mount the 

appropriate response. On the other hand, if samples/pathogens are assigned to a new 

class and later, in the light of new available information (introduction of new 

samples/pathogens), AIS should be able to re-classify those samples to already existing 

classes. It is this flexibility and plasticity of immune systems that make them attractive 

to machine learning researchers. 

3.1   Natural Immune System (NIS) 

To prepare the ground for introducing the algorithm, we need to describe the human 

NIS in a way that may not be the most accurate from a bio-molecular perspective but 

which nevertheless captures the essential features of the NIS, which subsequently 

inspired our algorithm. The NIS consists of two parts: the innate immune system (IIS) 

and the acquired/adaptive immune system (AAIS). The IIS is what we have at birth; it 

remains constant through our lifetime and is our first level of defense. One of the main 

components of the IIS is leucocytes, or white blood cells, which move through the body 
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and capture invading micro-organisms and other foreign particles. If the IIS cannot deal 

with a pathogen, the AAIS is triggered. In what follows, antigens are the equivalent of 

data samples that are to be clustered.  

The main components of the AAIS are also white blood cells, called B-cells and T-cells 

(lymphocytes). Lymphocytes normally stay in a passive state until they encounter 

antigens. Each lymphocyte recognizes one type of antigen. Each antigen leaves a 

genetic blueprint on B or T lymphocytes so that the next time a similar antigen is 

presented it is recognized quickly by lymphocytes and a fast response mounted. This 

phenomenon is called immunological memory. If immunity is mediated by T 

lymphocytes, this is cell-mediated immunity. Humoral immunity, on the other hand, is 

mediated by secreted antibodies produced in the cells of the B lymphocytes. Secreted 

antibodies bind to antigens on the surfaces of invading viruses or bacteria and trigger 

their destruction. The way that antibodies adapt and bind to antigens through a process 

of ‘affinity maturation’ (a form of fine-tuning) and ‘somatic hypermutation’ (a form of 

constrained search through random mutation) provided the inspiration for the novel 

clustering algorithm described below. 

Very roughly, immature B-cells are produced in the bone marrow and migrate to the 

spleen, where they are called transitional B-cells which then mature and differentiate 

into mature B lymphocytes. After maturation, they have a unique B-cell receptor (BCR) 

on their membrane called an immunoglobulin (Ig) receptor, in the form of an antibody 

molecule. The BCR recognizes and binds to only one particular antigen. When a B-cell 

encounters its specific antigen through its Ig receptor and receives additional signals 

from a helper T-cell (to help prevent the immune system from inadvertently turning on 

its own body cells), it further differentiates into an effector cell, known as a plasma cell, 

and a memory cell. Plasma cells, instead of having Ig receptors, start producing and 

releasing antibodies, which are released to lock onto the antigens, triggering the B-cell 

into plasma cell differentiation. In other words, Ig receptors have turned into free-

floating antibodies through plasma cell versions of the original B-cell.  

T-cells are also produced in the bone marrow but mature in the thymus. They too 

express unique antigen-binding receptors (T-cell receptors or TCRs). As noted above, 

T-cells are an essential part of cell-mediated immunity. A TCR needs not only an 

antigen to bind to its receptor but also an antigen attached to a specific major histo-
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compatibility complex (MHC) molecule.  When a TCR encounters an antigen with an 

MHC molecule it undergoes division as well as the production of memory cells. Two 

types of T-cell are T-helper and T-cytotoxic. T-helper cells get activated on contact with 

antigens and become effector cells [9]. T-cell-mediated immunological response may 

itself form the basis of a biologically inspired clustering algorithm but this is not the 

inspiration behind our algorithm, which instead draws inspiration from the B-cell 

humoral-mediated immunity response described above in approximate detail. The actual 

human AAIS is in reality more complex than described here. Nevertheless, our 

approximate description is sufficient to demonstrate a novel approach to clustering. 

3.2   Humoral-Mediated Artificial Immune System (HAIS) 

An overview of the proposed HAIS is now provided (a full explanation follows the 

algorithm). HAIS has taken its inspiration from the humoral-mediated immune response 

triggered in the NIS. A more detailed understanding of humoral immune response can 

be found in section 2.1.3.2 of chapter 2. Abbreviations used are: B-cell antibodies 

produced through plasma cell (b-Abs); affinity measure threshold (AT); network 

threshold (NT); death threshold (DT); memory B-cell antibodies (m-Abs); and negative 

clonal selection threshold (NST). An antigen is a data sample to be clustered and will 

consist of specific feature/attribute values. An antibody that ‘captures’ an antigen will 

also consist of feature/attribute values that are sufficiently similar to that antigen’s 

values. A B-cell consists of Ig receptors on its surface that are also feature/attribute 

values. B-cells will form the final set of clusters when the algorithm terminates, with all 

antigens sticking to at most one B-cell (all data samples falling in at most one cluster). 

A. Initialize 1: Create a unique B-cell for every member of an initial set of antigens (Ags) (typically 10% 

of all Ags) with Ig receptor values matching that antigen. 

B. Initialize 2: For each B-cell, produce respective b-Abs, which are similar to, but not identical with, 

the Ig receptors that matched the antigen.    

C. Initialize 3: all the parameters (AT, NT, DT)  

D. Repeat 

While the pool of Ags is not empty, do: 

(1) Label 1: Get an Ag randomly from the pool.  

(2) Calculate the affinity measure between Ag and any m-Abs. 

(3) If the similarity measure is less than AT , then the stimulated m-Ab will do following: 

(a) Bring the captured Ag to its respective B-cell, which will hold it (Ag) until the end of this 

cycle 

(b) Go back to Label 1 

(4) Else  

Label 2: calculate the affinity measure between Ag and b-Abs; 

If the similarity measure is less than AT, then the stimulated b-Ab will do following: 

(i) Label 3: Bring the captured Ag to its respective B-cell, which will hold it (Ag) until the end 

of this cycle 
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(ii) The B-cell will be stimulated to produce a memory cell with Ig receptors that are an exact 

match for Ag 

(iii) The memory cell will also produce m-Abs with a small random mutation to capture more 

Ags that are similar 

(iv) The B-cell will also be stimulated to make a plasma cell that produces hyper-mutated b-Abs 

(random evolution)   

(v) If any of the newly generated b-Abs is too similar to the existing b-Abs, it will be 

eliminated through NST and go to Label 4 

Else 

(vi) Create a new B-cell with an Ig receptor specifically for that Ag and go to Label 3 

(5) Label 4: Look for the affinity measure among B-cells (centroids of B-cells – see Step F) and if 

two B-cells are more similar than NT, then the two B-cells stick together to form an inter-

connected cluster (Immune Network Theory).      

End while 

E. If the size of any B-cell is less than DT, remove that particular B-cell (simulating natural T killer 

cells) and put back the captured Ags into the Ag pool for the next cycle 

F. All B-cells will adjust their centroids according to the sub-population of Ags sticking to them. Also, 

B-cells calculate the local variance of features of captured Ags to update their mutation range for the 

next generation of Abs. Only a certain percent of Ags closest to the centroids of their B-cell are kept 

and the remaining Ags will be set free to rejoin the antigen pool for the next cycle 

G. M% of the memory B-cells will go into the next cycle (the M% nearest to the centroids of the 

surviving B-cells) 

H. All b-Abs are killed and a new population of Abs generated from the surviving B-cells. 

I. Update all the thresholds parameters (AT, NT, DT) for the next cycle 

J. Until termination condition. 

 

An overview of the HAIS algorithm is provided in Figure 3.1 below and a description 

of the stages follows: (1) Antigens are released from the antigen pool. (2) Some 

antigens stick to the Ig receptors in the surface of B-cells, which then differentiate into 

plasma cells and memory B-cells. (3) Plasma cells produce and release antibodies that 

are (a) identical to the Ig receptors of their parent B-cell so that more identical antigens 

are captured, and (b) slightly different so that almost identical antigens are captured. If 

any of the mutated antibodies are too similar to the original antibodies, they are 

eliminated through negative selection. (4) Memory cells have receptors that are both 

identical to their parent B-cell receptors to capture identical antigens and slightly 

mutated receptors to capture slightly different antigens. (5) If an antigen sticks to no B-

cell or antibody, a new B-cell is generated with Ig receptors specifically for capturing 

that antigen. (6) If B-cells do not attract a sufficient number of antigens (death 

threshold) through their receptors, they are destroyed by natural T-killer cells and their 

antigens released for recirculation back to the antigen pool. (7) All B-cells adjust their 

centroids depending on the antigens sticking to their receptors. When two or more B-

cells have centroids that are closer than a network theory threshold, they are merged 

into one B-cell. 
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Figure 3.1: Humoral-mediated B-cell immunity, from an organizational perspective 

3.3   HAIS Algorithm Explanation 

The mapping of AIS expressions to classical clustering concepts is shown in Table 3.1. 

The algorithm starts with generating a small number of B-cells from the initially and 

randomly presented antigens (Step A). No pre-reading of the entire set of antigens is 

required to calculate parameter values. This initial number of B-cells can be any 

reasonable number higher than zero and less than the number of total antigens present in 

the antigen pool. Our experiments so far indicate that a random 10% of the dataset is 

sufficient as a reasonable initial number of B-cells for successful clustering of all 

samples in the dataset. This figure of 10% is used throughout the experiments reported 

here (unless otherwise stated) as a fixed point in the experimental method. The 

similarity measure between an antigen and Ig or antibody (Step D.3) is calculated 

through squared Euclidean distance:  
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where D is the similarity measure, c is the number of features (number of columns in 

the data if the antigens are stored as rows), and Ai and Bi are the Ig/antibody and antigen 

features respectively.   

Table 3.1: Mapping of AIS expressions to classical clustering concepts 

NIS Expressions Clustering Concepts 

Antigens Samples 

B-cells Clusters 

Antibodies Mutated copies of captured samples 

Interaction between antibodies and antigens Pair-wised comparison 

Similarity measure Normalized Euclidean distance 

Mutation Creation of diverse population of solutions 

Memory cells Already known patterns 

Affinity threshold Similarity criterion 

 

If the minimum of the similarity measure is less than the affinity measure threshold 

(AT), the closest matched Ig will be stimulated. But if the similarity measure is more 

than the AT then a new B-cell and associated Ig are generated to capture the loose 

antigen (Step D.4.vi). In the process of generating new antibodies, the process of 

negative selection is used to increase the diversity of antibodies in the system. Each 

newly generated antibody is checked against all the existing antibodies, and if the newly 

generated Ab is too similar to any of the existing ones then the newly generated Ab is 

eliminated (Step D.4.v). This negative selection (similarity measure) is controlled by a 

parameter NST, which can be changed.  

AT and Network Threshold (NT) start with the same value but the former decreases as 

the number of cycles increases whereas the latter increases with the increase in the 

number of cycles (Step I). The direct and inverse proportion of these parameters with 

the number of cycles is designed to obtain convergence. As the number of cycles 

increases, the algorithm discourages the formation of new clusters as well as the merger 

of already existing clusters. This is to allow the AIS to settle on a stable number of 

clusters (convergence). Below are the two equations used to set the initial AT and NT 

values based on the initial selection of antigens: 
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In (2), c is the number of features in the data and   is the standard deviation of each 

feature. Equation 2 is useful when the data is normalized whereas (3) is useful when the 

data is not normalized. The parameter α is a scalar value, which controls the tightness of 

boundaries among the clusters. AT and NT are updated as follows: 
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where   is the number of clusters.  

Each B-cell (cluster) is evolved according to the parameters β and γ (Equation 5). If β is 

set to 1, the affinity measure for each cluster will be updated equally. If γ is set to 1, 

each cluster is updated separately depending on the instances it captures at the end of 

each cycle. In the case of 0.5 for both β and γ, the AT update will consider both as static 

increments as well as increments based on the clustering obtained at the end of each 

cycle. If the user is not sure, 0.5 is recommended for both parameters. The parameter 

values β and γ can be changed appropriately in the light of any prior knowledge 

available regarding the structure of data. If β is set to 1, the HAIS algorithm might not 

be able to detect outliers as each cluster will increases its AT at the same rate. But if γ is 

set to 1, then larger-sized clusters can evolve more rapidly, thereby discouraging natural 

competition among clusters (B-cells). The effects of β and γ will be discussed in the 

experimental section.  

Death threshold (DT) is used to encourage competition in the immune system where 

each existing cluster (B-cell) fights for its survival and, if at the end of the cycle, a 

cluster (cluster size) is less than the threshold value, it is eliminated. DT is directly 

proportional to the number of cycles: as the number of cycles increase, so does the DT 
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parameter. DT is bounded between X and Y positive integers,       . The DT 

parameter is used to capture outliers in the data. Negative selection threshold (NST) is 

used to increase the diversity among antibodies. This parameter is set so that there is 

enough diversity present at all the times in the system. Setting this value too high will 

put too much survival pressure on the newly generated antibodies. Setting it too low 

will make the size of the antibody population too high in the system, resulting in the 

algorithm becoming computationally expensive.  

Memory cells are more specialized for specific kinds of antigen. When comparing the 

similarity measure between antigens and memory cells through memory cell receptors, 

the memory cells need a higher affinity to get stimulated as a response to the antigen. 

For the experiments undertaken here, antigen to memory cell Ig affinity is set 10 times 

higher than the antigen to antibody affinity. At the end of each cycle only a specified 

percentage of the memory cells will go into the next cycle, and that ratio is set to 40% to 

provide direction and momentum to the clustering. At the end of each cycle, each B-cell 

calculates its centroid and, for the next generation, it will keep k-nearest neighbor (k-

NN) of antigens closest to the centroid, with the remainder sent back to the antigen 

pool. This k-value can be static or dynamic (increasing with the increase in number of 

cycles). Here, the value is kept static at 1-NN from the centroid of each B-cell. In other 

words, only one nearest neighbor is kept at the end of each iteration. Memory cells will 

eventually represent the essential similarity between the numbers of samples that belong 

to a cluster. 

Mutation is based on the directed evolution principles of [137], where B-cells adapt 

their Ig and Ab production mechanisms for generating features that reflect the local 

variation found in the antigens collected so far. Different features can have the same 

mutation rate or all the features in the data can have different mutation rates. Mutation is 

designed in such a way that each selected feature can mutate both ways (positively and 

negatively) at random, rather than just in one direction. While the mutation is 

constrained by the variance in the collected antigens, the choice of feature to mutate is 

random within B-cells. If the mutation rate is too high the clusters may start to overlap, 

which results in cluster over-fitting. On the other hand, if the mutation rate is set too 

low the clusters may under-fit.  
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3.4   Experimental Results 

A two-part experimental technique was adopted. In the first part, three synthetic datasets 

were produced with varying numbers of clusters. The aim of the first part of the 

experiments was to test whether the HAIS algorithm could find clusters known to exist 

in the synthetic data. The second part of the experiments describes the results obtained 

when the HAIS clustering algorithm was run a number of times on datasets that are 

commonly used for testing the behavior of new clustering algorithms. The results of the 

HAIS algorithm are compared with classical (i.e. non-stochastic) results where 

appropriate to determine whether the new algorithm offers any advantages over 

standard clustering techniques. Three benchmark datasets, namely Iris, Breast Cancer 

and Network Intrusion, are used. More details regarding these datasets can be found in 

appendix A. The HAIS algorithm was executed in MATLAB and all experiments 

performed on an Intel i7 CPU 2.93GHz with 3 GB RAM. 

3.4.1   Synthetic Data 1 

The data consist of four well-separated clusters with clearly defined cluster boundaries. 

Each cluster consists of 50 samples/antigens (total 200 instances), each consisting of 

two features (Figure 3.3 [L]). The HAIS algorithm converged to the correct clusters 

within 20 presentations of the antigens (Figure 3.2). The final instance-wised 

classification of synthetic data 1 can be seen in the Figure 3.2 (R) which shows that the 

algorithm has been able to classify all the samples accurately. The process was repeated 

a further 9 times with different random initial sample sets, with correct convergence 

each time.  

The 2-D projection of the synthetic data 1 (four clusters) can be seen in Figure 3.3 (L) 

where each cluster is identified separately with unique color and shape. As noted earlier, 

memory cells constitute a distinguishing feature of humoral-mediated immunity and in 

the HAIS algorithm perform the role of data summarization. The memory cells obtained 

by the algorithm are shown in Figure 3.3 (R) and can be used for clustering new 

samples as they appear. Memory cells represent all four clusters with fewer samples and 

also keep intact the original shape and structure. The mutation rate was set to 5% and 

alpha to 1 for this dataset.  
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Figure 3.2: L: Cluster formation (y-axis) against samples (x-axis, 20 antigens/samples initially presented, 

180 left in pool), showing that within two cycles (vertical bars) the clustering had converged, satisfying 

the termination condition of no change in two consecutive cycles (vertical bars on x-axis). R: 

Classification (test of accuracy of clustering) showing the instance-wise classification of the synthetic 

data, with all instances correctly classified (no overlap of instances on the x-axis) against their clusters (y-

axis). 
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Figure 3.3: L: Clustering obtained of synthetic data 1, showing clear separation on the two features. R: 

Final set of memory cells obtained for synthetic data 1, showing data capture and reduction. 

3.4.2   Synthetic Data 2 

Synthetic data 2 has 1000 instances, with two features forming 14 clusters. In this 

particular case, because of the large number of antigens, 10% of the initial antigens 

were used to calculate the AT and MT and only 10 B-cells initially produced. Also, for 

this dataset the number of instances in each cluster and size of each cluster are different 

(ranging from 60-80 per cluster). All the clusters are slightly elongated in shape. The 2-

D projection of the data can be seen in Figure 3.4 (L). The HAIS algorithm finds the 

correct number of clusters in the first cycle after an initial growth to 16 clusters. The 
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final number of clusters obtained by the algorithm can be seen in the Figure 3.4 (R) and 

demonstrates that the algorithm both merges and generates clusters as needed while still 

in the process of analyzing the samples as they enter the system (Figure 3.4 [R], cycle 

1).  
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Figure 3.4: L: 2-D projection of the clustering obtained, using different colors as clusters (14 clusters). R: 

Instance-wised cluster formation for synthetic data 2, showing three cycles. 

3.4.3   Synthetic Data 3 

The data consist of three well-separated clusters with clearly defined cluster boundaries 

along with some outliers consisting of a cluster-outlier and four single-point outliers 

(Figure 3.5). Each cluster consists of varying samples/antigens, each consisting of two 

features. The        and        (Equation 4 and 6) are set at 0.90 and 1.10, respectively. 

Mutation rate is set at 5% for both features, DT is 15 and β and γ are set at 0.25 and 0.75 

respectively. The final instance-wised cluster formation of synthetic data 3 can be seen 

in Figure 3.6 (L) which shows that the HAIS algorithm has been able to find three main 

clusters. As can be seen in Figure 3.6 (R) the algorithm does not converge due to the 

presence of outliers. At the end of each cycle the algorithm finds 8 clusters but, due to 

the setting of DT at 15, the remaining clusters die out and the algorithm finds three 

clusters at the end of each cycle. The HAIS algorithm was run for 6 cycles with each 

cycle showing the same behavior.  
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Figure 3.5: Projection of synthetic data 3, showing various clusters as well as outliers 
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Figure 3.6: L: Clustering (test of accuracy of clustering) showing the instance-wise class association of 

the synthetic data 3, with three main clusters and remaining outliers. R: Instance-wised cluster formation 

for the synthetic data 3, for six cycles. 

Synthetic data 3 was tested for different values for β and γ. Table 3.2 presents the B-cell 

(cluster) AT at the end of each cycle when β and γ are set at 0.25 and 0.75 respectively. 

Each B-cell starts with the same AT value but gradually converges on its local AT 

value, depending on the antigens trapped by the respective B-cell. These β and γ 

parameters are used to assign each cluster its own AT parameter value as real-world 

clusters vary in sizes and shapes. It can be seen in Figure 3.6 (L) that the HAIS 

algorithm was able to find 3 clusters and 5 outlier clusters in the first cycle, but the 
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algorithm was run for another 5 cycles to demonstrate the non-converging and 

interesting oscillatory behavior of the algorithm in the presence of outliers in the data.  

Table 3.2: AT parameter at the end of each cycle with                   

Index Cluster 1 Cluster 2 Cluster 3 

Cycle 1 0.6038 0.6038 0.6038 

Cycle 2 0.7634 0.6414 0.7207 

Cycle 3 0.9438 0.6531 0.7572 

Cycle 4 1.0002 0.6568 0.7687 

Cycle 5 1.0178 0.6580 0.7722 

Cycle 6 1.0233 0.6583 0.7733 

 

On the other hand, when β and γ are set at 1.0 and 0.0 respectively, the B-cell affinity 

values found at the end of each cycle can be observed in Table 3.3. By using these 

parameters for β and γ, the AT for each cluster increases with the same rate after every 

cycle.   

Table 3.3: AT parameter at the end of each cycle with                 

Index Cluster 1 Cluster 2 Cluster 3 

Cycle 1 0.6038 0.6038 0.6038 

Cycle 2 0.7547 0.7547 0.7547 

Cycle 3 0.9434 0.9434 0.9434 

Cycle 4 1.1793 1.1793 1.1793 

Cycle 5 1.4741 1.4741 1.4741 

Cycle 6 1.8426 1.8426 1.8426 

 

In conclusion, running the HAIS algorithm on synthetic data demonstrates the 

feasibility and effectiveness of the humoral-mediated clustering approach. The next task 

is to evaluate the effectiveness of the algorithm on well-known datasets that have been 

extensively studied in the past.  

 3.4.4   Iris Data 

When the HAIS algorithm is run on Iris data, the number of clusters in each cycle and 

also instance-wised cluster formation is shown in Figure 3.7. At the end of the first 

cycle, the HAIS algorithm found four clusters in the data. Cluster 4 was below the 
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threshold (DT) value and removed by the algorithm before the start of the next cycle. 

The second cycle started with three clusters and the algorithm converged after one more 

cycle. Equation 2 was used for this dataset. 
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Figure 3.7: Instance-wised cluster formation for the Iris data for three cycles 

The clustering results based on each instance are shown in Figure 3.8 (L). There are 14 

errors in this case. Clustering is dependent on the order of presentation of instances and 

also on the initial B-cells selected. The final 2-D projections of the clusters from the 

HAIS algorithm are shown in Figure 3.8 (R). The algorithm works better than classical 

2-step clustering (automatic clustering using the Bayesian Information Criterion (BIC): 

20 errors) and k-means (k=3) using Euclidean distance (16 errors). Standard 

hierarchical clustering (agglomerative) [138] produced 15 errors. Different runs of our 

algorithm can produce different cluster formations and also number of clusters due to 

the initial random 10% of samples and order of instance presentation. Nevertheless, the 

algorithm found the correct number of clusters (and correct allocation of samples to 

clusters) 7 times in 10 separate runs. On a majority vote criterion (7 out of 10), the 

three-cluster solution wins over other cluster solutions for the Iris data using the HAIS 

algorithm.  

To demonstrate the stochastic behavior of the HAIS algorithm, 50 runs of HAIS 

algorithm using the Iris data were performed and the results (clustering errors) are 

shown in Figure 3.9, which shows oscillation between good and bad clustering results. 

The average outcome of these 50 runs is 16.46 errors. The best error obtained was 7, 

which was at run 12, and the worst error was at run 2, which was 27.     



63 

 

Data Instance Index

C
lu

st
er

 I
n
d
ex

F
ea

tu
re

 4

Feature 3  

Figure 3.8: L: Instance-wised classification of the Iris data showing 14 errors. Misclustering of samples 

in one class is represented by circles in the vertical column of another class. The figure shows that 13 

samples of cluster 2 fall in cluster 1 and 1 sample of cluster 1 falls in cluster 2. R: 2-D projection of the 

clustering obtained for the Iris data using different shapes and colors as clusters 
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Figure 3.9: HAIS clustering algorithm, final clustering results (3 clusters) for Iris data. The x-axis 

represents number of runs while the y-axis shows number of errors against true class labels. 

3.4.5   Breast Cancer Wisconsin 

This dataset was normalized between -1 and +1, and Equation 3 used with alpha set at 

3. This dataset was selected to demonstrate that a higher number of features does not 

affect the outcome of the HAIS clustering algorithm. The HAIS algorithm started with 

20 randomly selected data instances and converged to the right number of clusters after 

six cycles (Figure 3.10). The algorithm initially found 14 clusters in the data but the DT 

forced most of the clusters to be eliminated by the end of cycle 3. The algorithm finally 

converged to two clusters after the fourth cycle. 
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The HAIS algorithm was run 10 times. One of the final classifications obtained is 

shown in the Figure 3.11 (L) where the total number of misclassification was 36 out of 

569. The distribution of objects with respect to each cluster at the end of first cycle can 

be seen in Figure 3.11 (R) showing that at the end of the first cycle the algorithm found 

two major clusters in the data, with the remaining clusters being eliminated through the 

DT. The breast cancer dataset was also clustered using standard k-means (k=2) and 36 

classification errors were also returned. When the data was analyzed with hierarchical 

model based clustering [138], 68 errors were returned. Hence, the HAIS algorithm 

appears to be no worse than existing clustering algorithms when performing at its best 

for this dataset.  
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Figure 3.10: Instance-wise clustering formation for the Breast Cancer Wisconsin data for 6 cycles 
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Figure 3.11: L: Instance-wised classification of the Breast Cancer Wisconsin data at the end of a run, 

showing 36 errors. R: Instance-wised clustering at the end of the first cycle for the Breast Cancer 

Wisconsin dataset showing 14 clusters. 
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3.4.6   KDD Intrusion Detection Dataset 

So far we have demonstrated through experiments that the HAIS has the capability of 

finding natural groupings in data where datasets have variable spatial dimensions. 

However, the number of instances in all these datasets were not more than a few 

hundred. The KDD intrusion detection dataset is used to demonstrate that the HAIS can 

work effectively with large-scale datasets. This dataset has 5 classes but in this 

experiment the HAIS algorithm was used on two classes only: Normal and DOS. 

Random 10% samples of the Normal and DOS classes, resulting in 9,728 and 39,146 

instances respectively, were selected for the experiment. The continuous features were 

normalized (between -1 and +1). For continuous features a 4.5% mutation range was 

used, whereas categorical data instances were mutated by randomly flipping one bit. 

The DOS super-class is divided into six classes: Back, Land, Neptune, Pod, Smurf and 

Teardrop. More detail about this dataset can be found in [139]. 

The original projection of both Normal and DOS class objects is shown in Figure 3.12 

(L) where spherical-blue objects represent the normal class and triangle-red objects the 

DOS class. Figure 3.12 (R) shows the 4 clusters found by the HAIS algorithm after one 

typical run. 

The Normal instances (dark blue in Figure 3.12 [L]) are nearly always captured by one 

cluster (Group 1) across all runs, whereas DOS instances are typically sub-clustered into 

three groups of different sizes. The confusion matrix obtained by the HAIS algorithm 

for this run is shown below, where the cluster index shows the true clusters labels. The 

group index shows the three sub-clusters of the mostly DOS instances found by the 

algorithm.  

                     Group1    Group2    Group3    Group4 

Cluster 1       9280         6          4            438  

Cluster 2        243        8710        28189       2004 
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Figure 3.12: L: Original two projections of the Normal and DOS classes of the KDD dataset. R: Final 

obtained clustering using HAIS algorithm showing 4 clusters, using different colors and shapes. 

These results can be simplified using the ‘Normal/Non-normal’ binary (i.e. Group 1 vs. 

the rest) to: 

                     Group1    Group2     

Cluster 1        9280           448          

Cluster 2        243           38903      

Accuracy ((TP+TN)/(TP+FP+TN+FN), where ‘T’=true, ‘F’=false, ‘P’=positive and 

‘N’=negative) across 10 runs on a binary clustering metric (i.e. all non-normal are 

counted as DOS) is 98.18%, with sensitivity (TP/(TP+FN)) of 94.37% and specificity 

(TN/(TN+FP)) of 99.12%.  

When re-running the data using standard (and deterministic) k-means clustering (setting 

k to first 2 then 4), the confusion matrix for k=2 is: 

                     Group1            Group2   

Cluster 1       9562                166            

Cluster 2      11025             28121        

The overall accuracy of 77%, sensitivity of 98.2%, and specificity of 71.9% are due to 

the large number of DOS instances classified as Normal. For k=4 means analysis, the 

confusion matrix shows a better grouping and fewer classification errors:           
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                   Group1    Group2    Group3    Group4 

Cluster 1       9197         3          4             524  

Cluster 2        353       8683         28107        2003 

Accuracy is 98.19%, sensitivity 94.54% and specificity 99.55%. These figures (single 

run) are almost identical to the overall figures returned by the (stochastic) HAIS 

algorithm over 10 runs. However, the main difference is that the HAIS algorithm is 

strictly unsupervised (no class or cluster information of any sort is entered into the 

system), whereas k-means analysis requires the user to enter a desired or expected 

number of clusters.  

In comparison to previous clustering approaches to this difficult dataset, our AIS is by 

no means the worst. For instance, Gaussian classifiers, incremental radial basis function, 

and fuzzy adaptive resonance theory, among others, return sensitivity figures ranging 

from 73% to 97.3% and specificity figures ranging from 99% to 99.7% (all for Normal 

vs. Dos only) [139]. The HAIS algorithm sensitivity is therefore at the high end and its 

specificity in the middle range of what has been published previously. 

3.5   Summary 

We have described a novel humoral-inspired artificial immune system-based clustering 

algorithm (HAIS) inspired by memory cells, plasma cells, Ig receptors and antibodies. 

In contrast to other approaches [74, 79, 126, 131], the HAIS algorithm requires no pre-

reading of the data. The experimental results indicate that dynamic growth and 

reduction of the number of clusters within and across cycles, together with merging of 

clusters, achieve effective clustering. The methods for merging and removing clusters 

through humoral-mediated techniques are novel. Results on synthetic and real-world 

data demonstrate the feasibility of the approach when clusters are known to exist in the 

data. In synthetic dataset 3 we have demonstrated that the HAIS has the capability to 

identify clustering and outliers in the data. Later in this chapter we will focus on 

extending the algorithm further to deal with more complex outlier detection problems. 

Also, future emphasis will be on constructing a better dynamic framework for 

reinforced memory transfer between cycles. The HAIS algorithm was originally devised 

to achieve continuous or online learning; so far its performance has only been tested on 

static datasets.  



68 

 

The HAIS algorithm is similar in many respects to other AIS clustering algorithms in 

the literature that use B-cells and memory cells. However, the HAIS algorithm does not 

allow direct mutation of antibodies. Mutation is instead through the B-cells that produce 

the antibodies. Also, our AIS includes an explicit reference to plasma cells during the 

clustering process as well as Ig receptors for matching. Do these differences matter? 

It has been almost 9 years since the review by Dasgupta et al. [9], where it was noted 

that AIS systems at that time used immune systems ‘piecemeal’ due to the bio-

molecular complexity of what was then known of the NIS. In particular, the reliance on 

just three immunological principles (immune network theory, negative selection, and 

clonal selection) was identified. That review concluded with recommendations on how 

an AIS could be made more useful as a problem-solving technique, including 

enhancement of representation and the introduction of other mechanisms as necessary.  

The HAIS explicitly incorporates the process of antibodies mutating not by themselves 

but within plasma cells that then release the antibodies to capture antigens. In other 

words, our algorithm is more faithful to the principle of new antigens not previously 

encountered being matched against Ig receptors on the surface of B-cells. When 

antigens stick to the Igs, the B-cell evolves into a plasma cell, which releases antibodies 

that are both faithful copies of the original Igs as well as mutated versions of those Igs. 

Also, the original, triggered B-cell makes a memory cell so that if the same antigen 

reappears in the future, it can be more quickly captured by the system. Our algorithm 

also uses the concept of natural killer cells to remove any B-cells that are not activated 

by antigens. The HAIS therefore introduces new mechanisms not previously used in 

AIS algorithms as well as novel representations of Igs and antibodies.  

There are computational advantages in being more faithful to the biology. For 

computational antibodies to mutate directly means that every antibody must now 

contain the evolutionary mechanisms required for mutation as well as building the 

modified receptors. This is redundancy on a grand scale, especially if the antibodies are 

not successful at capturing antigens and must therefore be destroyed. It is conceptually 

more elegant and efficient to stick with what we know about how the NIS produces 

antibodies, which is through B-cells and their plasma equivalents. These cells now 

contain the necessary mutation and bio-molecular machinery to produce antibodies of a 

possibly infinite variety. On the other hand, being more faithful to biology brings with it 
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a few disadvantages: (1) it brings possibly unnecessary algorithmic complexity by 

adding biological details; (2) a reasonably good understanding of biological processes is 

required to deeply understand the algorithm; and (3) computing algorithms can only 

establish an abstract level of mapping with true biological processes.  
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Part II 

In section 3.4.3, a synthetic dataset consisting of three distinct clusters as well as some 

outliers was used to depict the behavior of the HAIS algorithm in the presence of 

outliers in the data (see Figure 3.5). Due to the presence of outliers in the dataset, the 

algorithm did not converge to a stable number of clusters (Figure 3.6 [R]). This non-

convergence is in contrast to the normal HAIS behavior that converges on a stable 

number of clusters after a number of iterations. In the experiment conducted in section 

3.4.3, at the end of each iteration the HAIS algorithm found 8 clusters, out of which 

three were normal clusters and due to the implementation of DT parameter, the 5 

clusters having fewer instances were removed. Therefore, after applying the DT 

parameter the HAIS algorithm produced three clusters. This behavior can be observed 

in Figure 3.5 (R). It was concluded from the experiment discussed in section 3.4.3 that 

the HAIS algorithm has the capability to find natural groupings as well as outliers in the 

data simultaneously. In other words, the presence of outliers does not affect the 

capability of the HAIS algorithm of finding natural groups in the data. Here, in part II, 

this oscillatory (non-converging) behavior of the HAIS (illustrated in Figure 3.6) is 

further explored using synthetic and real-world benchmark datasets for dealing with 

outliers.    

3.6   Outlier Detection 

Data mining has been used extensively for discovering hidden or implicit patterns in 

data. Clustering is an exploratory data analysis technique that involves grouping data 

instances together in such a way that members within each group have maximum 

within-group similarity and groups have maximum between-group dissimilarity. 

Identifying natural groupings of patterns in the data is one of the key aims of any data 

clustering technique. However, in some real-world applications, it is also important to 

find outliers in the data. Outliers are objects in the data which are significantly different 

from the rest of the data. Outlier detection is the process of finding such anomalies in 

the data. It has many real-world applications, such as detecting fraud or criminal 

activities in e-business, identifying potential attacks on computer systems through 

intrusion detection systems and, generally, finding interesting or significant exceptions 

in the data. An example of an exception in the area of performance evaluation is the 
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issue of how to identify a very small number of underperforming employees in a large 

employee database in such a way that such cases are clearly identified as separate from 

other cases.  

In unsupervised learning, outliers are typically considered as noise and, because they 

can severely affect the results of clustering, are removed from analysis. This is because 

of the fundamental clustering principle, which is that objects within a group/cluster 

should have more in common with each other than any single object in a group has with 

any other object in another group. An outlier, by its very definition, is an object that has 

very little in common with any other object. In clustering, such outliers are usually 

given a cluster all to themselves because of their distance or separation from other 

clusters. This can significantly affect the way that other ‘normal’ (non-outlier) objects 

are clustered, since normal samples will now be forced into a cluster with each other 

due to the distance they all have from the outlier cluster. Subtle differences between 

normal objects, which would otherwise lead to separate clusters, will be dwarfed by the 

large distance from the outlier cluster that they all share. Since one of the aims of 

clustering can also be to find the minimal number of clusters in the data, the presence of 

one extreme outlier out of 100 samples could lead to all other 99 samples being located 

in just one cluster. Removing the outlier to enable the other 99 samples to be properly 

clustered could lead to the identification of yet another outlier that causes the same 

problem for the remaining 98. While the distances between outliers and ‘normal’ 

clusters will reduce with each iteration, there is currently very little understanding of 

when to stop the outlier removal process. In addition, there is a danger that continuation 

of the outlier removal will lead to not just noisy cases being excluded but also 

‘interesting’ cases that are genuine outliers being lost. The adoption of arbitrary 

thresholds for the removal of outliers can also raise questions about the validity of the 

clustering. In other words, there is currently very little understanding in clustering of 

how to separate noisy and therefore faulty data from genuine outliers that are not 

consistent with the underlying patterns in the data.  

Outliers can exist in the form of single point or as a small cluster [140]. Outlier 

detection approaches can mainly be divided into four categories: distribution-based, 

distance-based, density-based, and cluster-based approaches [141, 142]. Outlier 

detection is assumed to be a side-product of clustering methods [143-145]. Overall, 

current approaches are characterized by the use of post-filtering of samples and 
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repetition of clustering with ‘noisy’ or ‘erroneous’ data removed. The aim of this work 

is to explore an alternative approach where outliers and normal clustering can take place 

together without the need for post-filtering. In other words, whereas the approach of 

current outlier detection techniques is to regard outliers as noisy and faulty until proven 

otherwise, the aim of our work here is to explore an alternative approach, where outliers 

are regarded as genuine until proven otherwise. The main problem for this alternative 

approach is to find ways of allowing normal clustering to occur in the presence of 

outliers and without post-filtering. 

As noted earlier, the task of any clustering algorithm is to find natural clusters and 

patterns in the data, but in the presence of outliers clustering algorithms show poor 

results. Most of the classical clustering methods are not designed to find outliers in the 

data. These algorithms need to be modified to attain anomaly-detection capabilities. For 

example, a simple k-means clustering algorithm [42] does not account for outliers and 

performs clustering with the assumption that no outliers exist in the data. Therefore, k-

means performs poorly in the presence of noise or outliers in the data, especially if these 

objects (noise or outliers) are located very distantly from normal data. In the process of 

capturing those distant outliers, k-means tends to group all other objects in the 

remaining required clusters. One of the ways to overcome this problem is to generate a 

large number of small clusters and then iteratively remove and merge those clusters 

until the desired number of clusters is reached [140, 141]. It is usually left to the user to 

determine when such removal and merging are affected by the presence of outliers. In 

other words, the question of the automatic identification of outliers, while at the same 

time automatically generating natural groupings that are not affected by the outliers is 

unresolved in clustering.   

In first part of this chapter, the HAIS algorithm was proposed to automatically find 

clusters and outliers in the data simultaneously. However, the main focus of part I was 

on the clustering aspects of the algorithm alone. The aim of part II of this chapter is to 

extensively evaluate the HAIS for outlier detection on simulated and real-world 

datasets. The HAIS is based on the humoral immune response that secretes antibodies 

when triggered by the NIS. As far as we know, this is the first attempt to add outlier 

detection capabilities to nature-inspired clustering algorithms. The motivation here is to 

extend the HAIS algorithm to outlier detection and to show that it has the capability of 

finding clusters as well as outliers in the data simultaneously. 
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3.7   Outlier Detection – Literature Review 

Outlier detection is an important area of research in data mining and is the process of 

detecting data objects which are significantly different from the rest of the data. Outliers 

can exist in the form of a single point or as a small cluster with significantly few objects 

associated with it. As mentioned earlier, outlier detection approaches can be classified 

into four main groups: distance-based, distribution-based, density-based, and cluster-

based approaches [141, 142].  

Distance-based approaches [146, 147] identify an object as an outlier if it is at least 

     distance away from g percent of objects in the data. The user has to specify g 

and     ; these parameters could be difficult to determine a priori. The number of 

outliers detected by this method is highly dependent on      as different values of 

      can produce different numbers of outliers. Another distance-based approach 

presented in [148] is to rank each object with respect to its distance from g percent of 

objects in the data and the top k percent of objects in this list would be considered as 

outliers. 

In the distribution-based approach a statistical model is developed based on the data and 

then an object is considered to be an outlier if it deviates too much from the underlying 

probability distribution [149-151]. One of the main drawbacks of both these approaches 

is that they are univariate in nature, whereas many real-world tests are multivariate. 

Prior knowledge of the underlying distribution is required, which makes these 

approaches inappropriate for most real-world data applications.        

Distribution-based approaches consider the statistical distribution of attributes while 

ignoring the spatial relationship among objects. Density-based methods have been 

developed to find outliers in spatial data by considering attribute values and their spatial 

relationships together. In these approaches, the density of regions is calculated and 

objects in low density are considered to be outliers [152, 153]. A local outlier factor 

(LOF) [154] is used to identify objects as outliers relative to their local neighborhood 

densities. The LOF can find outliers more efficiently regardless of sparseness of data 

clusters, since it is based on the densities of a local neighborhood.  

Despite previous research in outlier detection in data mining, the relationship of these 

four approaches to (unsupervised) clustering is still not fully understood. In cluster-
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based approaches, small clusters are considered as outliers [140]. A two-phase outlier 

detection approach is presented in [155]. In the first phase, a modified k-means 

clustering algorithm is used to cluster data and then in the second phase a minimum 

spanning tree (MST) is constructed. The small clusters (trees with fewer nodes) are 

selected and considered as outliers. Almeida [156] proposed an outlier detection 

approach based on a hierarchical clustering algorithm. This method uses three steps. 

First, expected outliers and noise are removed from the data based on some density 

function, then clustering is performed using hierarchical methods with single linkage, 

and then finally (and optionally), the removed outliers and noise objects are allocated to 

clusters found earlier. Almost the same method is used by Loureiro [157], where cluster 

size is used as an indicator of outliers. The method uses hierarchical clustering and 

makes two basic assumptions: outliers are located far from normal clusters and their 

size is much smaller. Al-Zoubi [141] proposed a three-step methodology for outlier 

detection. In the first step the partitioning around mediods (PAM) algorithm [158] is 

used for data clustering and small clusters are considered to be outliers. In the second 

step, clusters obtained are fine-tuned further based on within-cluster distance measures. 

Finally, more remote outliers are removed from the existing clusters until a termination 

condition is met. A similar approach is reported in [159]. All current approaches to 

identifying outliers as part of a clustering process require a multi-stage approach. There 

has been no attempt, as far as we know, to integrate the identification of outliers with 

normal clustering in such a way that normal clustering is not affected but outliers are 

still identified. 

3.8   Proposed Approach and Parameter Settings 

The basic functionality of the HAIS algorithm used here is the same as previously 

explained in section 3.3, but a few parameters and most importantly the termination 

condition are changed. It was shown earlier (section 3.4.3) that in the presence of 

outliers the algorithm does not converge. The HAIS outlier algorithm makes use of this 

lack of convergence, or oscillation. We have fixed the termination condition of the 

algorithm at 15 cycles for all datasets. At the end of the first cycle 10% of memory cells 

were transferred to the next cycle and then in all cycles 10% more memory cells from 

the last cycle were carried forward. This is a form of incremental learning: as the 

number of cycles increases the number of memory cells transferred to the next cycle 
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(generation) also increases. Memory cells contain the information learned during the 

current cycle and transferring those memory cells represents the transferring of 

knowledge from the current generation to future generations. At the end of the 

algorithm, the memory cells can be used for validation or testing purposes. These 

memory cells also perform the role of data reduction by capturing the essential aspects 

of many samples in the form of a few exemplars.  

The HAIS algorithm uses normalized squared Euclidean distance as a similarity 

measure, which can be biased towards higher-scaled data features. Therefore, all 

datasets used in the experiments are normalized (scaled between 0 and 1) to assign 

uniform weights to each feature. A constant uniform mutation rate of 5% is used for 

each feature. Negative clonal selection (the removal of antibodies that are too similar to 

each other) plays an important role in keeping down computational time while 

maintaining diversity in antibodies. A negative clonal selection threshold (NegT) of 

0.0075 was used for all datasets; α was set to be variable depending on the dataset, 

whereas β and γ were set to 0.75 and 0.25 respectively. 

In the original HAIS approach, at the end of every cycle a specific number of memory 

cells are transferred to the next cycle and all their antibodies deleted before starting a 

new cycle. In the case of incremental learning, the transfer of memory cells from one 

cycle to another increases with the number of cycles. This can lead to two variations: (a) 

no transfer of antibodies between cycles and, (b) before starting the next cycle 

antibodies are generated based on knowledge learnt in the previous cycles (memory 

cells). Memory cells depict a specialization of encountered instances and require higher 

affinity with antigens to trigger an immune response, whereas antibodies are 

generalizations of encountered data and can be activated upon relatively low affinity. In 

the context of outlier detection in data, if no antibodies are transferred between cycles 

(case ‘a’) the obtained outliers are identified based on affinity measure threshold (AT) 

of memory cells. On the other hand, if antibodies are also transferred between cycles 

(case ‘b’) the final outliers obtained are identified based on the AT of the B-cell 

antibodies (b-Abs).  



76 

 

3.9   Experimental Results and Discussion 

Two simulated and four real-world datasets were used to test the outlier detection 

capabilities of the HAIS. The simulated data is used to test whether the algorithm can 

find clusters and outliers known to exist in the data. Three benchmark datasets, namely 

Iris, Breast Cancer Wisconsin, and Boston were used. While these datasets are relatively 

old, they are also well understood in terms of effects on clustering algorithms, allowing 

comparison between the outliers and clustering results obtained by the HAIS algorithm 

against other approaches from the literature. Finally, a new dataset consisting of medical 

doctor performance evaluations is used in an attempt to identify possible under-

performing doctors.  

3.9.1   Simulated Data 1 

Simulated data 1 had three main clusters of varying sizes and shapes. There were a total 

of 197 instances with two features. The three main clusters constitute 178 instances 

while the remaining 19 instances are noise or outliers. The 2-D projection of this data 

can be seen in Figure 3.13. A mutation rate of 5.0% was set for all features and α was 

set at 20. The Ag to m-Abs stimulation level is set to be 10 times higher than Ag to b-

Abs stimulation level. Various parameter values were tested and those mentioned above 

produced consistently better clustering results. The same rationale for parameter 

selection was used for the rest of the experiments in this thesis. The final clustering and 

outliers detected by the HAIS algorithm can be seen in Figure 3.13, where three major 

clusters are shown with different shapes and colors and outliers are identified by ‘+’ and 

‘*’ signs. Solid marks within clusters are memory cells generated by the algorithm from 

the data that can be used for data summarization as well as determining membership of 

new and unseen Ags. A total of 57 memory cells were generated out of 178 instances by 

the algorithm, which represents a 68% data reduction. The DT parameter was set to 10. 

Due to the five outlier cases (in the upper right of Figure 3.13) forming a pseudo-

cluster, three memory cells were also formed that summaries these five outliers. 

At the end of the algorithm, a total of 16 clusters were found. Instance-wise cluster 

formation can be seen in Figure 3.14 (L), which clearly identifies the three main clusters 

and a relatively smaller fourth cluster that has only 5 instances (cluster-based outliers). 

All other clusters contain only one object (single point outliers). 
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The algorithm was run for 15 cycles and the total number of clusters obtained at the end 

of each cycle before removal of insignificant clusters (applying DT parameter) are 

shown in Figure 3.14 (R). It can be seen there that the algorithm found 12 clusters at the 

end of first cycle; that the lowest number of clusters were obtained in the fifth cycle (11 

clusters); and finally, that the algorithm stopped at 16 clusters. This experiment 

indicates that the HAIS can clearly separate the outliers from the non-outlying cases 

(clusters/natural grouping) and can even cluster outliers if they are sufficiently similar to 

each other.  
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Figure 3.13: Final clustering obtained by the HAIS algorithm for simulated data 1, where three main 

clusters are shown using round, square and triangular shapes to represent the samples in the clusters. 
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Figure 3.14: L: Instance-wised cluster formation of simulated data 1. R: Number of clusters obtained at 

the end of each cluster before applying the DT parameter. 
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3.9.2   Simulated Data 2 

Simulated data 2 had two features and three distinct clusters, as shown in the Figure 

3.15. The purpose of this experiment was to demonstrate the effectiveness of β and γ 

parameters in finding outliers in the data. Three experiments were run using the β and γ 

values of 0.75, 0.25; 0.5, 0.5; and 0.25, 0.75 respectively (Figure 3.16). The results 

shown in Figure 3.16 also demonstrate that the final number of memory cells obtained 

by the HAIS algorithm is dependent on the AT parameter. AT and number of final 

memory cells have an inverse relationship, such that if AT is high, the number of 

memory cells generated would be low and vice versa.  
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Figure 3.15: Original 2-D representation of simulated data 2, showing three distinct clusters 

It can be seen in Figure 3.16 that when β and γ are 0.75 and 0.25 respectively (case A), 

the AT does not converge and keeps increasing with an increasing number of cycles. 

When β and γ are 0.5 and 0.5 respectively (case B) it takes more cycles to converge than 

when β and γ are 0.25 and 0.75 respectively (case C). Cases A, B and C in Figure 3.16 

converge at final approximate average values of 0.25, 0.0425 and 0.025 respectively. If 

AT does not converge or converges at a higher value of AT, there is a chance that some 

of the outliers in the data will go unnoticed. The purpose of these experiments was to 

find outliers in the data, therefore β and γ are set to 0.25 and 0.75 respectively here. 

From this experiment, it can be concluded that β and γ play an important role in finding 

the final number of outliers in the data. 
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(B):  β =  0.50,  γ = 0.50 

(A):  β =  0.75,  γ = 0.25 

Final AT values, at the end of each cycle Final number of memory cells generated at the end of 

each cycle

(C):  β =  0.25,  γ = 0.75 

 
Figure 3.16: L: The behavior of various β and γ parameter values (the convergence of the AT parameter) 

is shown. R: The number of memory cells generated using the HAIS at the end of each cycle, is shown, 

for 15 cycles. 
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3.9.3   Iris Data 

A mutation rate of 5% was set for all features and α was set to 15. The Ag to m-Abs 

stimulation level was set to be 10 times higher than the Ag to b-Abs stimulation level. 

The HAIS algorithm evolves as it gets exposed to Ags and pathogens. Therefore, the 

number of clusters as well as outliers is dependent on the order of Ag presentation. The 

distance similarity measure (AT) in the HAIS algorithm is dependent on the clusterings 

obtained. Therefore, the number and types of outliers detected are also dependent on the 

clusterings obtained. The results are shown in Table 3.4. The AT index represents the 

final affinity measure threshold obtained for each cluster, and the number of outliers for 

each cluster and total number of outliers obtained are also shown in the corresponding 

columns. Table 3.4 suggests that outlier identification is strongly dependent on the AT 

measure. The AT parameter has an inverse relationship with the total number of 

outliers: as the final AT value increases, the number of outliers decreases. The number 

of outliers for each AT value and in total are also provided in Table 3.4. The total 

number of outliers varied from 4 to 9 in the five runs using the same parameter settings. 

In the case of the Iris data, index (run) 4 was chosen to further explain the results, which 

indicate a total of 6 outliers in the Iris data.  

Table 3.4: Five runs with the same parameter (α=15) for the Iris data 

Index AT-1 AT-2 AT-3 Outliers Total 

1 0.0167 0.0210 0.259 3, 1, 5 9 

2 0.0167 0.0211 0.0273 3, 0, 3 6 

3 0.0168 0.0215 0.0265 3, 0, 4 7 

4 0.0167 0.0217 0.0268 3, 0, 3 6 

5 0.0178 0.0222 0.0270 1, 0, 3 4 

 

The results are explained using the confusion matrix. In a confusion matrix, each 

predicted class represents a column of the matrix, whereas each row represents 

instances of an actual class. The confusion matrix obtained for the Iris data using the 

HAIS clustering algorithm is shown in Table 3.5, which indicates 3 outliers each in 

class one and class three. The clusters obtained through the HAIS are labeled C1 to C6, 

whereas G1 to G3 represent the original class labels. It can be seen from Table 3.5 that 

the HAIS found three main clusters (C1, C2 and C3) containing 57, 47 and 40 instances, 
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respectively. In addition, it found three outlier clusters (C4, C5 and C6) containing 1, 3 

and 2 instances, respectively.  

Table 3.5: Confusion matrix for the Iris data 

 C1 C 2 C 3 C 4 C 5 C 6 

G1 0 47 0 1 0 2 

G2 12 0 38 0 0 0 

G3 45 0 2 0 3 0 

 

Cluster centroids for all six clusters (including outliers) obtained by the HAIS algorithm 

are shown in Table 3.6, along with the average cluster centroids (Cluster Avg.). The Iris 

data has four features and the HAIS has found 6 clusters (3 true clusters and 3 outlier 

clusters). The mean value of each feature of each cluster, as well as cluster average, is 

provided in the last row of Table 3.6.  

Table 3.6: Cluster Avg. for each feature for the Iris data 

 cluster 1 cluster 2 cluster 3 cluster 4 cluster 5 cluster 6 

Feature 1 0.6187 0.1921 0.3825 0.0556 0.9167 0.3611 

Feature 2 0.4032 0.5895 0.2619 0.1250 0.7222 0.9583 

Feature 3 0.7291 0.0790 0.5215 0.0508 0.9153 0.0763 

Feature 4 0.7453 0.0594 0.4798 0.0833 0.8889 0.0833 

Cluster Avg. 0.6241 0.230 0.4114 0.0787 0.8608 0.3698 

 

Table 3.7 shows the number of clusters obtained as well as the numbers of instances 

captured by each cluster, which indicates three main clusters and three outlier clusters. 

The averages of each cluster centroid and final AT measures for each cluster are also 

displayed in Table 3.7. Each cluster starts with the same AT value, but it is only updated 

if a cluster has been able to survive to the next cycle and not been killed by the DT 

parameter. It can be observed that all outlier clusters (clusters 4, 5 and 6) have the same 

AT value. This behavior arises due to the presence of the DT parameter, as by the end 

of each cycle all clusters below the DT value are deleted and the AT values are only 

updated if a cluster can survive. This indicates that all three outlier clusters are 

formulated in the current cycle. Previous work [159] using the PAM algorithm reported 

8 outliers: 1 from class 1 and 4 and 3 from classes 2 and 3 respectively. The HAIS 
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algorithm found 6 outliers: 3 each from classes 1 and 3. The outliers (instance indices) 

detected by the HAIS algorithm in the Iris data are: 16, 34, 42, 110, 118, 132. 

Table 3.7: Information regarding clusters and outliers obtained for the Iris data 

Cluster 1 2 3 4 5 6 

Instances 57 47 40 1 3 2 

Cluster Avg. 0.6241 0.230 0.4114 0.0787 0.8608 0.3698 

AT 0.0268 0.0167 0.0217 0.0171 0.0171 0.0171 

 

Final clustering along with the outliers is shown in the 2-D projection in Figure 3.17, 

where different shapes and colors represent distinct clusters and outliers are shown by 

‘+’. Solid round marks represent memory cells obtained by the algorithm. There are in 

total 81 memory cells, which indicates 46% data reduction.  

This compression in the data in the form of memory cells is achieved when the Ag to m-

Abs stimulation level was set to be 10 times higher than Ag to b-Abs stimulation level. 

Our experiments suggested that this data reduction percentage increases with the 

decrease in the Ag to m-Ab stimulation level. It is also dependent on the α parameter. 

The data reduction percentage increases with a decrease in α. Data reduction was 60% 

when α was set to 12 as compared with 46% for α=15. 

F
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Figure 3.17: Final 2-D clustering obtained by the HAIS algorithm for Iris data, indicating 6 outliers 

identified by the ‘+’ symbol. 
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3.9.4   Breast Cancer Wisconsin Data 

A mutation rate of 5% was set for all features and α was set to 9. The Ag to m-Abs 

stimulation level was set to be 7 times higher than the Ag to b-Abs stimulation level. 

The algorithm generated 284 memory cells out of 569 instances obtained, which 

indicates 50% data reduction. The algorithm was run 5 times and the outliers detected in 

each run as well as the final AT parameter values obtained for the two main clusters can 

be seen in Table 3.8. The outliers’ memberships to original cluster labels as well as the 

total numbers of outliers are also shown in Table 3.8. Index (run) 2 was selected to 

further explain the results for this dataset. 

Table 3.9 shows the numbers of clusters obtained and also the number of instances 

captured by each cluster, which suggests two main clusters and seven outlier clusters. 

All outlier clusters are single point outliers except cluster 3 which has two instances. 

The average of each cluster centroid and final AT measure for each cluster are also 

shown in Table 3.9, which suggests that all outliers obtained are much closer to cluster 

2 than cluster 1, even though 4 outliers originally belonged to cluster 1.  

Table 3.8: Five runs with same parameter for the Breast Cancer Wisconsin data 

Index AT-1 AT-2 Outliers Total 

1 0.0391 0.0258 2, 4 6 

2 0.0387 0.0266 4, 4 8 

3 0.0374 0.0259 3, 8 11 

4 0.0388 0.0262 3, 6 9 

5 0.0384 0.0264 3, 4 7 

 

Table 3.9: Information regarding clusters and outliers obtained from the Breast Cancer Wisconsin data) 

Cluster 1 2 3 4 5 6 7 8 9 

Instances 347 214 2 1 1 1 1 1 1 

Cluster Avg. 0.1801 0.3280 0.3010 0.3387 0.4833 0.3605 0.4306 0.4696 0.5829 

AT 0.0266 0.0368 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 0.0156 

 

The confusion matrix obtained by the HAIS clustering on the main two clusters is 

shown in Table 3.10, which indicates 28 classification errors in the dataset. While there 

are no direct comparisons with previous outlier analysis on this specific dataset, Duan et 
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al. [140] report four single point outliers using a different version of this dataset (699 

instances, 9 attributes). The average of 8 outliers per run using the HAIS is within an 

acceptable range for these datasets, given the differences in attribute numbers and 

instances.  

Table 3.10: Confusion matrix for Breast Cancer Wisconsin data 

 C1 C2 

G1 197 11 

G2 17 336 

3.9.5   Boston Data 

The algorithm was run on this dataset with a mutation rate of 5% and with α=5. The 

memory cell stimulation was set at 7 times higher than that for b-Abs. The algorithm 

was run 5 times, and outliers detected in each run as well as final AT parameter values 

obtained for the two main clusters can be seen in Table 3.11. The outlier clusters with 

numbers of instances as well as the total numbers of outliers are also shown in Table 

3.11. The total number of outliers ranges from 14 to 21. The experiment with 15 outliers 

(index 1) was selected to explain the results. 

Table 3.11: Five runs with the same parameter (α=5) for the Boston data 

Index AT-1 AT-2 Outliers Total 

1 0.0478 0.0963 1, 8, 2, 2, 2 15 

2 0.0478 0.0948 5, 2, 8, 4, 2 21 

3 0.0472 0.0946 8, 2, 1, 3 14 

4 0.0488 0.0963 3, 5, 3, 2, 1 14 

5 0.0472 0.0948 3, 8, 1, 2, 2, 2, 2 20 

 

The HAIS algorithm found two main clusters with 118 and 373 instances in each (Table 

3.12) and it also found 5 outlier clusters. Only one cluster is a single point outlier while 

four clusters have multiple outliers. Cluster averages are shown in Table 3.12 and 

indicate that outlier clusters 4, 5, 6 and 7 are located closer to the main cluster 1, 

whereas cluster outlier 3 is positioned closer to the main cluster 2. The algorithm 

generates 110 memory cells out of 491 instances (not considering outlier clusters), 

which indicates a 78% data reduction. Duan et al. [140] found 18 outliers in the Boston 

data whereas the HAIS algorithm found 15. Seven of the 15 outliers found by our 
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algorithm are also reported by Duan in [140]. The data indices obtained from the 15 

outliers are as follows: 284, 357, 358, 358, 364, 365, 370, 371, 373, 413, 415, 369, 372, 

411, 419. 

Table 3.12: Information regarding clusters and outliers obtained from the Boston data 

Cluster 1 2 3 4 5 6 7 

Instances 118 373 1 8 2 2 2 

Cluster Avg. 0.498 0.344 0.401 0.601 0.482 0.530 0.473 

AT 0.048 0.096 0.046 0.046 0.046 0.046 0.046 

 

3.9.6   Doctor Questionnaire Data 

The UK Chief Medical Officer’s response to the fifth report of the Shipman inquiry 

[160] led to the UK Government endorsing periodic revalidation of all the UK’s 

200,000 doctors [161, 162]. Revalidation is seen as comprising the two strands of 

relicensing (confirming that doctors practice in accordance with the UK’s General 

Medical Council’s (GMC) generic standards) and recertification (confirming that 

doctors on the specialist/GP registers conform to standards appropriate for their 

specialty of medicine). The Peninsula College of Medicine & Dentistry located at the 

Universities of Exeter and Plymouth was commissioned to examine the potential utility 

of patient and colleague questionnaires in providing suitable evidence regarding the 

validation of doctors. This research has resulted in a number of publications [163-167].
 
 

There is an urgent need to consider another problem that is now starting to surface; how 

do we identify under-performing doctors who may warrant further scrutiny by the 

GMC, given the great reluctance of colleagues and patients to provide a negative rating 

due to the high stakes involved? 

The final dataset used here is from a UK pilot study involving over 17,000 colleague 

responses (questionnaires) for 1050 doctors (average of 16 colleague responses per 

doctor). The questionnaire consists of 18 items (features) that ask colleagues to rate 

doctors on clinical ability, interpersonal skills and professional standards. Missing 

values (about 5% of all responses) are replaced by item means. Colleague responses 

were aggregated by doctor and the task is to identify doctors for possible further 

scrutiny and separate such doctors as outliers from those who do not require further 

scrutiny. Also, it is important to identify doctors whose performance does not warrant 
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placing them in the ‘further scrutiny’ category but nevertheless is a possible cause for 

concern (‘at risk’). Remedial measures, such as improved personal development on 

specific aspects of performance, may then be discussed with doctors. Since it can be 

expected that the vast majority of doctors perform well, the aim here is to cluster 

satisfactory doctors in a group, or in groups, that are separate from individual 

underperforming/at-risk doctors or groups of underperforming/at-risk doctors based on 

similarity and dissimilarity measures calculated from their scores on the 18 items. More 

information on the UK pilot study can be found in [165]. 

To compare the results of our HAIS clustering algorithm against a norm, a statistical 

measure for adequate performance was calculated as follows. First, the data was 

normalized (scale between 0 and 1), and the average of all the features was calculated 

for each doctor. Figure 3.18 shows the range of doctors’ data, where the y-axis shows 

the score of each doctor (average over all features). The satisfactory performance 

threshold is set at 0.5, meaning that all the doctors who score 0.5 or more are labeled 

‘normative satisfactory’ (20 doctors, or approximately 2% of the cohort, fall below this 

threshold). 

 

Figure 3.18: The average of all the feature values (mean score) of each doctor is represented by each blue 

circle (y-axis) 

The task is to determine whether the HAIS is sensitive to two small but distinguishable 

groups (‘underperforming and worthy of further scrutiny’ and ‘at risk and worthy of 

further development’) in the context of the vast majority of doctors being satisfactory. 

The experiments were conducted with varying values of α parameter ranging from 8 to 
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15. The experimental result obtained using α=10 is shown in Figure 3.19. The HAIS 

algorithm found two clusters and six outlier clusters (single point outliers) in the data. It 

was also observed that when the value of 15 was used for the α parameter, the algorithm 

found 14 outlier clusters along with 2 normal clusters, which suggests that number of 

outliers detected is dependent on the value of α parameter selected. 

 

Figure 3.19: Mean score of each instance (y-axis) in the doctor dataset. The red and blue lines are 

clusters 1 and 2 respectively, whereas green circles indicate outliers found by the HAIS algorithm. 

To explain the effectiveness of outlier detection (in this data), a two-step methodology 

was devised, where the HAIS algorithm was used to detect and eliminate outliers in 

Step 1 and a simple hierarchical clustering algorithm is used on the remaining data to 

find natural groupings in the data in Step 2. This approach was compared against 

standard hierarchical clustering on the complete doctors’ data. In hierarchical cluster 

analysis (HCA), agglomerative clustering first assigns each case to its own cluster, 

followed by an iterative process whereby the two most similar clusters form a new 

cluster until one overall cluster results. Clusters that are added to each other can consist 

of single cases or multiple cases. The output is in the form of a taxonomy or hierarchical 

tree called a dendrogram. 

When HCA is run on the complete dataset, 1032 (out of 1050) doctors are allocated to 

cluster one, and clusters two and three have only 15 and 3 doctors, respectively. This 

clustering behavior suggests that the data contains some outliers, because one cluster is 

assigned with more than 98% of the data. When these outliers are removed from the 

data using the HAIS algorithm and the HCA is performed on the remaining data (after 

removing 6 outliers), the three clusters obtained have 867, 165 and 12 instances 
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respectively. These results indicate three main groupings in the data: cluster 1 has 867 

instances (satisfactory performance); cluster 2 has 167 doctors with possible cause of 

concern; and cluster 3 contains 12 under-performing doctors.  

3.10   Summary 

Experiments on simulated and real-world datasets suggest that the HAIS has the 

capability of detecting single point as well as cluster-based outliers. One advantage of 

the HAIS over other techniques is that it can find automatic clusters and outliers in the 

data simultaneously. The HAIS is an iterative algorithm, where clustering is performed 

first and then those clusters are evaluated for significance with the small-sized clusters 

removed. In the next cycle, those removed objects are again considered in the clustering 

step. Small-sized clusters are removed at the end of each cycle but outliers stay in the 

system until the end of the algorithm. The experimental results show that the proposed 

approach gives effective results when applied to different real-world datasets. They also 

demonstrate that removing outliers from the data can help find better clustering 

outcomes (e.g. in doctor questionnaire data).   

Non-convergence is represented by the oscillation of the HAIS as the DT and NT 

parameters reduce the number of clusters at the end of each cycle (Figure 3.5 [R]). That 

is, during one cycle of the HAIS, 8 clusters were found. These 8 clusters consisted of 

the three main clusters (Figure 3.5 [L]), one cluster consisting of 7 samples, and four 

outlier clusters of one sample each. At the end of each cycle, DT and NT reduce the 

number of clusters and the process of finding 8 clusters is repeated during the next 

cycle. This is in contrast to normal HAIS behavior, which converges on a stable number 

of clusters after a number of iterations. In other words, lack of convergence is a possible 

indicator of the presence of outliers in the data. It is possible that further analysis, such 

as using a specially adapted discrete Fourier transform, could reveal components of 

different frequency (e.g. clusters of different density) that could help to identify outliers. 

Oscillation, or lack of convergence, is not considered a desirable feature in machine 

learning, but for the identification of outliers in the data it could well be.  

In this chapter we have presented a novel unsupervised clustering algorithm inspired by 

the human NIS. Some of the salient features of the HAIS algorithm are as follows: 
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1. Multi-Layered Approach: The proposed HAIS algorithm works on three distinct 

layers: (1) the memory cells layer, (2) the antibodies layer, and (3) the B-cell layer, in 

that order. The first two layers try to capture a new antigen, but if both layers cannot 

capture the invader, a new B-cell is generated to mount an appropriate response. 

2. Discriminates Self from Non-Self at Learning Stage: Unlike CLONALG and 

aiNet, the HAIS explicitly labels antigens at the learning stage by allocating them to 

respective B-cells. In the absence of assigning labels to antigens, an unsupervised 

algorithm is only useful for screening the data. But this class association can be changed 

within the same or different cycles.    

3. More Active Role of Memory Cells: Previous approaches only expose antibodies to 

antigens and memory cells remain hidden from antigens. However, the HAIS uses both 

antibodies and memory cells to capture antigens. This feature is important since in the 

NIS memory cells play a more active role and help the immune system to capture 

antigens. Memory cells are more specialized cells and therefore they require more 

stimulation than antibodies to be activated. 

4. Outlier Detection Capabilities: While devising a novel cluster analysis technique, 

researchers usually completely ignore the role and importance of outliers. The HAIS 

algorithm has the capability of performing cluster analysis as well as outlier detection. 

The presence of outliers does not affect the performance of the HAIS clustering results.  

5. Specific Reference to Plasma Cells: The HAIS algorithm makes specific reference 

to plasma cells in the generation of antibodies and memory cells.   

6. A Step towards Online Learning Algorithm: A key characteristic of the NIS that 

appeals to machine learning researchers is its ability to perform life-long and online 

learning. We do not claim that the HAIS in its current state is an online learning 

algorithm. However, some characteristics such as mergence and removal of clusters 

certainly suggest that the HAIS can be modified into an effective online learning 

algorithm. 

7. Evolving Affinity Threshold (AT) Parameter: Most of the algorithms in the 

literature use an iterative approach, but keep the affinity threshold measure (AT) 

constant, meaning an extra step is required to perform extensive statistical methods to 

select a reasonably good AT value. By contrast, the HAIS updates its AT value at the 
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end of each cycle. Also, it was shown in the experimental section that convergence of 

AT can be achieved through the β and γ parameters. 

8. Role of Negative Selection Threshold (NST): NST is used to control antibody 

populations. This concept was originally used in negative selection algorithms (see 

section 2.3.1 for details) for generating non-self receptors from self-receptors. In the 

HAIS, negative selection is performed on antibodies of the same cluster (group) to 

increase natural selection pressure on other clusters. It is also important to only perform 

intra-cluster negative selection to accommodate overlapping clusters. 

9. Incremental Learning: Knowledge learnt in previous generations must be 

transferred to the following generations. The HAIS algorithm uses a form of 

incremental learning where a percentage of the memory cells formed in a previous cycle 

is carried forward to the next cycle, and this percentage increases with the number of 

cycles. This transfer of memory cells provides momentum and direction to clustering.   

In this chapter, a novel HAIS algorithm inspired by the concepts of the adaptive 

immune system has been proposed. It was demonstrated via experimental results on 

simulated and benchmarked real-world datasets that effective clustering and outlier 

detection capabilities can be obtained simultaneously by remaining faithful to immune 

system metaphors. Section 3.4 (experimental results) showed that the HAIS is a 

stochastic algorithm and its average performance is no worse than the standard 

statistical methods such as k-means and hierarchical clustering algorithms. The 

stochastic nature of the HAIS algorithm is mainly due to its random selection of a 10% 

data sample as a starting point and random order of antigen presentation in each cycle. 

In the HAIS, each random order of presentation can potentially produce different 

clustering solutions, even by keeping all remaining parameters constant. In the next 

chapter, it will be shown that how different models (clustering solutions) could be built 

from the random order of antigen presentation, and how we can select and evolve 

different local models to construct a global model in order to improve clustering results. 

Another core component of the HAIS algorithm is mutation, which has not been 

extensively studied in this chapter. Later chapters will look closely into mutation 

parameter, which helps immunoglobulin receptors to proliferate, and differentiate to 

capture similar antigens, as well as be responsible for affinity maturation in the HAIS 

algorithm.   
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In the previous chapter, we proposed a novel artificial immune system (AIS) algorithm 

called the HAIS, which was inspired by humoral-mediated immunity and uses 

hypermutation to simulate the way natural immune systems (NISs) refine their B-cells 

and antibody receptors in response to pathogens. The HAIS algorithm is a stochastic 

algorithm (see section 3.4 and Figure 3.8), meaning it produces variable clustering 

results in different runs. The outputs (final clustering results) are highly influenced by 

the order of antigen presentation. The HAIS, like other AIS algorithms, is a 

decentralized process where antigens are trapped by antibodies based on local affinity 

information. Antigens are picked up from the antigen pool purely at random. In 

addition, B-cells generate a new population of antibodies based on already seen 

antigens, to trap future antigens. It has been suggested in chapter 3 that the final 

structure of B-cells (clusters) greatly depends on the order of antigen presentation, given 

a certain affinity threshold (similarity measure) criterion. The main motivation of this 

chapter is to explore this characteristic (various orders of antigen presentation) of the 
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HAIS algorithm using a population-based approach in the problem domain of 

unsupervised learning. The proposed population-based approach can be regarded as a 

metapopulation, as here we are incorporating a micro-level process (an AIS) with a 

macro-level population-based approach. At the micro-level, a population consists of 

antibodies, memory cells and B-cells; at the macro-level, different clustering solutions 

constitute the population which are generated using different antigen presentation 

orders. The rest of the chapter is structured as follows.   

The rationale and basis for adopting a population-based approach is discussed in section 

4.1. A descriptive two-step population-based approach and its algorithmic explanation 

is then presented in section 4.2, where the number of clusters is obtained in Step 1 using 

the HAIS and then in Step 2 an evolutionary (population-based) approach is used to 

further enhance the cluster quality. Convergence in the fitness of populations of 

individuals (clustering solutions) is achieved through transferring memory cells from 

one generation to another, as explained in chapter 3. Section 4.3 demonstrates the 

feasibility of the proposed approach by performing experiments on benchmarked real-

world datasets. Additional results show the effectiveness of the crossover operator at the 

population level. The summary of this chapter is provided in section 4.5.  

4.1   Introduction 

The main purpose of cluster analysis is to discover patterns in data samples and separate 

those samples into groups in such a way that each group has maximum within-group 

similarity and, ideally, maximum between-group dissimilarity. Clustering is a form of 

‘unsupervised learning’ in that metrics for estimating similarity and dissimilarity are not 

dependent on an objective top-level measure of which group or cluster a sample should 

belong to. Nature-inspired computing researchers have noted the similarities between 

unsupervised learning and decentralized, bottom-up processes in nature, with many 

nature-inspired clustering algorithms being proposed over the years based on genetic 

algorithms (GAs), ant colony optimization, and particle swarm optimization [21-24]. 

Such approaches typically derive their inspirations from macro-level biological 

phenomena, i.e. at the level of individual organisms (ants, particles) or populations of 

individuals (GAs). As our understanding of nature has grown, researchers have started 

to focus their attention on much deeper natural processes for designing and developing 

new computational algorithms. One such example is the NIS, where micro-level 
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interactions between antibodies and antigens lead to the macro-level property of an 

organism remaining alive by distinguishing between pathogens (which must be reacted 

to) and self (which must not be reacted to), with no macro-level or micro-level 

executive control, as far as we are aware. Some of the principles of an immune system, 

such as mutation and fitness thresholds, are also shared by other biologically inspired 

computational methods such as GAs, genetic programming and evolutionary computing 

in general.   

The HAIS algorithm proposed in chapter 3 is inspired by the humoral-mediated 

response that is triggered by the adaptive immune system. It is a stochastic algorithm, so 

different runs of this algorithm using the same parameters can produce different 

clustering results. Previously reported results (see chapter 3, Figure 3.8) of the HAIS 

algorithm indicate that its average performance in terms of clustering solutions found is 

no worse than classical k-means and hierarchical clustering algorithms. Clustering 

results obtained by the HAIS are largely dependent on the order of data presentation. 

Given a dataset of   objects, there are    ways the data can be presented to the HAIS. 

This stochastic indeterminacy is typically addressed in two ways. The first way is to fix 

the pathogen presentation order, which means that the final model is acknowledged to 

be just one possible model out of all the models that can exist. A second way is to 

accept different presentation orders of data and construct a number of models that, by 

and large, return the same result. Rigorous statistical measures can also be used in 

inductive arguments to show that the result is, to as high a degree of probability as one 

wishes, the best. A feature of both methods is that no attempt is usually made to merge 

the many models that result into a ‘super-model’ which preserves the best aspects of the 

various individual models. Also, no attempt is made to separate objects that are not a 

problem for analysis from objects that are a problem for analysis. In other words, each 

model that is constructed typically does not ‘learn’ or evolve from the previous models 

that were constructed.  

Hart and Timmis [10] proposed that an immune system must be embodied, since natural 

systems do not work in isolation, and made suggestions for integrating AIS with other 

natural-inspired approaches such as neural networks, swarm algorithms and GAs to find 

out the true potential of immune system-based algorithms. However, the way that such 

integration should occur, taking into account the problem domain, was left open. In the 

experiments to be described below, we attempt to improve the performance of the HAIS 
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algorithm by integrating micro-level processes of cluster formation with macro-level 

processes of allocation of samples to clusters, where the micro-level consists of initial 

humoral-mediated cluster formation and the macro-level of GAs that optimize 

allocation of samples to clusters. To achieve this integration of micro- and macro-level 

processes, a two-step algorithm is proposed in this chapter. In Step 1 initial data 

partitioning and the appropriate numbers of clusters are obtained using the the HAIS 

algorithm, and in Step 2 those obtained groupings are optimized in terms of data 

allocation using an evolutionary approach. The convergence in population of solutions 

is obtained by the incremental transfer of memory cells (knowledge acquired through 

interaction with pathogens) from one generation to another.  

The idea of hybridizing AIS algorithms with evolutionary approaches is not new [168-

170]. Potter et al. used the co-evolutionary approach to evolve a population of 

antibodies for concept learning [168]. Ahmadi and Maleki [169] used a similar 

approach to evolve AIS for network security applications. In separate research, Louis 

and McDonnell [171] incorporated a GA with case-based memory (of past knowledge) 

to obtain better performance and fast convergence on problems such as combinational 

circuit design, asset allocation and job shop scheduling. This approach is called CIGAR 

that periodically injects previously solved problems into a GA’s population (random 

population). In our proposed population-based HAIS approach, we integrate concepts of 

[168, 169] with [171] in a novel way, where memory cells are used for reinforcement 

learning and a GA for adaptability. The aim is to combine the advantages of both 

paradigms so that (a) the HAIS acquires knowledge through interaction with antigens, 

which are stored in the form of memory cells for faster convergence; and (b) the GA 

provides enhanced search capability and adaptation [171].  

In the population-based HAIS approach, the evolved immune system of each individual 

(here called a clustering solution) is tested against evaluation criteria (environmental 

factor/s) and only the fittest and best individuals (solutions) are carried forward to the 

next generation, while all remaining individuals are discarded. Reinforcement learning 

is performed at both micro and macro levels. Elitism is adopted as the selection 

strategy: copying the best individuals into the next generation for the purpose of 

preserving the best solutions obtained so far (‘survival of the fittest’). Elitism ensures 

that the fitness of the next population can never reduce from the population of the 

previous generation. This phenomenon helps in the rapid convergence of the population. 
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An external clustering validation criterion is used to evaluate the fitness of each 

individual in the population. Our aim in this chapter is not to compare the results 

obtained using the population-based HAIS approach with existing state-of-the-art 

clustering techniques. Instead, we attempt to establish that micro-biological nature-

inspired models such as HAIS can be incorporated with macro-biological processes at 

the population level to develop novel nature-inspired clustering algorithms, and also to 

demonstrate that the performance of the HAIS algorithm can be improved using a 

population-based approach.  

4.2   HAIS Algorithm: An Overview 

In this section, a brief summary of the HAIS algorithm is presented. A full explanation 

of this algorithm can be found in chapter 3. The main components of the HAIS are B-

cells, antigens (Ags), memory cells, antibodies (Abs), and the affinity threshold (AT). 

The algorithm starts with 10% of data instances and considers each instance as an 

individual B-cell. B-cells are clusters for storing data and these B-cells generate 

memory cells (a ‘synopsis’ of data so far captured) as well as Abs. An Ab is an array of 

values, one for each attribute present in the data. Samples are captured or trapped by the 

Ab that is closest in value to their attributes (subject to a threshold of proximity). Two 

types of Abs are produced: one is generated by B-cells (b-Abs) while others are 

generated by memory cells (m-Abs). The similarity between an Ag and Abs is 

calculated by the pair-wise square normalized Euclidean distance.  

The HAIS algorithm works mainly on three layers, as shown in Figure 4.1. At the first 

layer, m-Abs try to capture Ags. If the capture is successful (subject to satisfying the 

proximity threshold), the stimulated m-Ab brings the Ag to its respective B-cell. If not, 

the Ag goes to the second layer, where it is compared against existing b-Abs. If an Ag is 

captured at this level, the stimulated b-Ab will bring the Ag to its respective B-cell, 

which holds on to it until the end of the cycle. Moreover, after capture the B-cell 

produces a memory cell that further generates an m-Ab which is an exact copy of the 

captured Ag. B-cells also produce mutated b-Abs, which are non-identical copies of the 

captured Ag to allow the B-cell to capture other Ags that have similar but not identical 

attribute values. If even this layer fails to capture the Ag, a new B-cell is generated just 

for this particular Ag which will generate b-Abs. After each successful capture of an 

Ag, similarities between B-cells are calculated using a between-cluster metric and, if the 
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similarity between two B-cells is greater than the network measure threshold (NT), both 

B-cells form an inter-connected cluster (cluster mergence).  
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Figure 4.1: A snapshot of the HAIS algorithm proposed in chapter 3 

This is an iterative algorithm: at the end of each iteration, B-cells are evaluated and less 

stimulated B-cells (small clusters) are removed and their Ags are released, based on a 

threshold criterion called DT. Surviving B-cells update their centroids according to the 

samples captured. All the Abs generated by B-cells or memory cells are also released, 

whereas M percent of memory cells near to the centroid of B-cells are carried to the 

next cycle. All the parameters – AT, NT and DT – are updated before the start of the 

next cycle. This whole process is repeated until there is no change in the number of 

surviving B-cells for two consecutive cycles. The AT parameter is used to capture 

similar Ags whereas the NT parameter is used to merge B-cells that are close to each 

other. The algorithm starts with the same value for AT and NT. The NT parameter 

decreases whereas AT increases with iterations. At the end of each cycle AT and NT are 

updated. More details about these parameters can be found in chapter 3, section 3.3. 
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4.3   Population-Based HAIS Algorithm 

A descriptive overview of the proposed algorithm is provided below; a full explanation 

follows the algorithm. 

1. Initial population of clustering solutions is obtained from HAIS (initial populations of clusters 

and their antibodies) 

2. Generate new population (of clustering solutions) by exposing individual clustering solutions to 

random order of pathogens 

3. Next population := existing population + new population 

4. Generate off-spring population (of clustering solutions) by performing crossover on Next 

population 

5. Total population := Step 3 + Step 4 (Next population + off-spring population) 

6. Evaluate and select ‘H’ clustering solutions 

7. Go back to Step 2 until termination condition 

4.3.1   Initial Population 

The original HAIS algorithm is run k times and out of those H clustering solutions are 

selected as the initial population. Once H clustering solutions are selected, just as in any 

standard HAIS algorithm cycle, all Abs are killed, the B-cells readjust to the new 

centroid position, and 10% of the memory cells closest to centroid of B-cells are kept 

while all remaining memory cells are discarded. New Abs are generated from surviving 

memory cells. The initial population of clustering solutions is then exposed to all Ags 

(using different order of presentation) one at a time (at random), to generate new 

population of clustering solutions (Step 2).  

4.3.2   Generating New Populations 

The main difference between the standard HAIS algorithm and the population-based 

HAIS algorithm described above is that mutation of Abs by B-cells after the successful 

capture of an Ag is now complemented by a crossover (see section 4.3.3) involving the 

population of clustering solutions formed at the first step. The subsequent steps (Steps 

2-6) constitute optimization of the initial clustering solutions. After Step 1 the number 

of clusters stays constant (although clustering solutions can evolve through mutation of 

their Abs) and only the membership of samples (Ags) changes. Layer three of the 

original HAIS algorithm is now revised to take into account the two-phase approach 

(see Figure 4.2) which is a one-shot approach. If an Ag within a clustering solution 

cannot be trapped at the first two levels, instead of generating a new B-cell (cluster) the 

Ag is put back into the pool for re-selection later. This revision to the original HAIS 
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algorithm ensures that the number of clusters is kept constant within each solution after 

the initial decision on number of clusters at Step 1.  
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Figure 4.2: An overview of the revised one-shot HAIS algorithm and revised layer 3, for keeping 

population of B-cells constant 

In chapter 3, in the standard HAIS algorithm, an Ag was randomly selected and exposed 

to the population of memory cells as well as the population of Abs to be captured and 

brought to the appropriate B-cell. Once an Ag is exposed, two scenarios can arise: (1) 

the new Ag is captured and assigned to the appropriate B-cell; or (2) if the new Ag is 

not captured; a new B-cell is generated to mount an appropriate immune response to the 

Ag. However, in this chapter, we have implemented the HAIS algorithm for a fixed 

(pre-defined) number of clusters. This means that there is no need to generate new B-

cells. An Ag is selected at random and presented to the population of memory cells and 

Abs. If an Ag is not trapped by memory cells or Abs, it is put back into the Ag pool for 

re-selection later. This process is repeated until all Ags are captured by B-cells.  

At the start of each generation during the second phase of the algorithm, a new 

population of clustering solutions is generated through a random order of pathogen 
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exposure (Step 2) and crossover (Step 4). The population at the start of new generation 

carries B-cells position (centroids) and selected memory cells from the last generation. 

At the end of each generation all Ags are set free for fresh random selection.  

4.3.3   Crossover Operator 

Two clustering solutions were randomly chosen as parents for crossover. In this HAIS 

algorithm, B-cells represent data clusters; therefore, a B-cell at random was picked and 

swapped between the two selected parents to generate two new offspring clustering 

solutions through a single-point crossover (see Figure 4.3). At the point of crossover, it 

is made sure that the same B-cells (the same cluster index) are swapped between parents 

to generate valid offspring. For example, assume there are two parents, each having 

‘safe’ and ‘danger’ class labels. While performing crossover, a constraint must be 

applied so that swapping can only take place between the same classes (i.e. one can only 

swap a ‘safe’ of one parent with a ‘safe’ of another parent and vice versa). A complete 

transaction of generating offspring from two randomly selected parents can be seen in 

Figure 4.3. The single-point crossover is sufficient for the experiments performed in this 

chapter, as one (whole) cluster is exchanged between two clustering solutions and the 

datasets used in this chapter do not have more than three classes/clusters.   

à P1C3P1C2

P1C1

Parent 1

P2C1

P2C3P2C2
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P1C3P1C2

P2C1
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à 

 

Figure 4.3: Single-point crossover between two parents producing two offspring. Parent 1 and Parent 2 

(P1 and P2) are two randomly chosen clustering solutions, consisting of three clusters (C1-C3). Shown 

here is P2’s C1 swapped with P1’s C1 to produce two new clustering solutions as offspring. All Ags, 

memory cells and Abs attached to a cluster involved in crossover are also transferred to the offspring 

clustering solution. 
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4.3.4   Fitness Function   

Clustering solutions obtained in each generation were evaluated using a cluster validity 

criterion. Several cluster validity measures have been proposed in the literature [172-

174]. Cluster validity techniques can be classified into three groups: external criteria, 

internal criteria, and relative criteria [173]. External criteria are used to compare the 

clustering results with pre-defined partitions or class labels. The Rand index, Jaccard 

coefficient and Fowlkes-Mallows index [1] are examples of external cluster validity 

criteria. Internal criteria only consider the information within data to produce a 

quantitative measure about obtained clusters. The Davies-Bouldin index, Dun index, 

silhouette index and SD validity index [172, 175] are examples of internal cluster 

validity criteria. With relative criteria, clustering solutions obtained by the same 

algorithm using different parameters are compared with each other to find optimal 

clustering. Here, the number of clustering errors found by each individual clustering 

solution against true class labels are used to calculate fitness of each individual (external 

criteria). Therefore, the objective function used here minimizes clustering errors. All the 

datasets used in this chapter have class information along with original data, which 

makes it possible to use this criterion.  

4.3.5   Population Evaluation 

The selection strategy that follows crossover is rank selection. The population of 

clustering solutions at any stage consists of (1) the best clustering solutions found in 

previous generation; (2) the population of clustering solutions generated by the 

exposure of a random order of Ags during the current generation; and (3) offspring 

clustering solutions generated by crossover (from current generation). The H best 

solutions are selected for the next generation from the existing population of solutions. 

Here, our population-based approach adopts elitism to preserve the best clustering 

solutions generated. Therefore, at the selection stage, the best clustering solutions from 

the previous generation are also considered for re-selection. 

4.3.6   Termination Condition 

The termination condition is user-defined and, in the experiments below, is fixed at 12 

generations. As explained earlier, incremental learning through the transferring of 

memory cells is performed as the number of generation increases. The algorithm starts 
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with an initial 10% transfer of memory cells with a 10% increment in subsequent 

generations, which means there would be 100% transfer of memory cells at the end of 

10th generation. After that point there would be no more change in cluster membership 

of Ags. Therefore, the termination condition was set at 12 generations.  

4.3.7   Reinforcement Learning through Memory Cells 

Nature-inspired algorithms are characterized by reinforcement learning. For example, 

GAs select chromosomes for the next generation from the whole population of parents 

and offspring to provide the best opportunity for evolving globally best solutions. Ants 

in ant colony optimization perform reinforcement by attaching a pheromone to the 

travelled path; the more frequently used paths therefore have more pheromone to attract 

more ants. Particle swarm optimization algorithms achieve reinforcement learning by 

directing their movements through the local and global best solutions found so far. The 

standard HAIS approach performs reinforcement learning through transfer of memory 

cells from one generation to the next. Here, an incremental reinforcement learning 

technique is used, where the number of memory cells transferred to the next generation 

increases as the number of generations increases. In the experiments below, 10% 

incremental transfer of memory cells is used, which means that in the first generation 

10% of memory cells are transferred to next generation and in second generation 20% 

are and so on (see Table 4.1). This is a form of transfer of knowledge from a previous 

generation to the next generation. Once the transfer of memory cells reaches 100%, 

there will be no further change in Ag allocation to B-cells, which helps in achieving 

convergence. The last two generations in Figure 4.4, for example, show that the 

algorithm finds local optimum solutions with no changes in value of fitness function. 

One advantage of such an approach is that not only the population of best selected 

individual converges but also the whole population of solutions converges as well. 

Here, before the start of generating a new population of clustering solutions, new Abs 

are generated based on existing memory cells in the system (transferred from the 

previous generation). These steps are important to provide convergence and direction to 

clustering solutions. 
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4.4   Experimental Results 

The experiments were conducted on datasets with varying sizes and clusters. Five real-

world datasets namely Iris, Wine, Thyroid, Breast Cancer Diagnostic and Breast Cancer 

Wisconsin Original (see appendix A) were used to show the effectiveness of the 

proposed algorithm. All these datasets are normalized and scaled between 0 and 1. The 

HAIS algorithm is dependent on three parameters: α, β and γ. The parameter α is a 

scalar value which controls the tightness of boundaries among the clusters whereas β 

and γ helps the AT parameter to converge. β and γ are set at 0.25 and 0.75, respectively, 

in the experiments below. A mutation rate for evolving Abs of 5.0% is used for the Iris, 

Wine and Breast Cancer Diagnostic datasets, and a 10.0% mutation rate is used for 

Thyroid and Breast Cancer Wisconsin Original datasets. The termination condition was 

set at 12 generations, since this was found sufficient to lead to convergence across all 

the datasets. The initial population was set at 10 (i.e. the number of runs of the standard 

HAIS algorithm). The population size (clustering solutions) was set at 100 with 

subsequently another 100 offspring generated through crossover. At the end of each 

generation, the 10 best clustering solutions were selected and carried to the next 

generation, as can be seen below.  

1. Initial population = 10 

2. New population (Population size) = 100 

3. Next population = 110 (sum of Step 1 (or 6) and 2) 

4. Offspring population size = 100 

5. Total population = 210 (sum of Steps 3 and 4) 

6. Best population selected = 10 

Table 4.1: The map of memory cell transfer in each generation 

Generations 1 2 3 4 5 6 7 8 9 10 11 12 

M-cells transfer (%) 10 20 30 40 50 60 70 80 90 100 100 100 

 

The Iris data has three classes consisting of 50 instances each. The dataset has four 

features (Sepal Length, Sepal Width, Petal Length and Petal Width) and three classes 

(Setosa, Versicolor and Virginica). The standard HAIS algorithm was run 10 times on 

the Iris data to generate the initial population. This initial population had an average 
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error (average fitness of initial population) of 21.90, as can be seen in Figure 4.4 (L) 

(along the x-axis at zero index) and indexes 1 to 12 represent the 12 generations. The 

average error among the best selected individuals at the end of first generation decreases 

to 6.4, with more gradual decrease in error subsequently. The error curve decreases until 

the 9th generation and then stabilizes at 3. The same trend can be observed in the 

average error curve of the whole population (Figure 4.4 [R]). The convergence on the 

whole population of the clustering solution is slower and steadier than any best solution. 

The slow convergence on the whole population of solutions depicts the exploration of 

search space to find better clustering solutions.     
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Figure 4.4: Average number of errors (y-axis) obtained at the end of each generation (x-axis), L: Average 

number of errors obtained for best selected individuals at the end of each generation. R: Average number 

of errors obtained for the whole population for each generation. 

The 2-D projection of the Iris data can be seen in Figure 4.5, with different colors and 

shapes representing different clusters and solid marks within those shapes showing the 

memory cells generated. This is a projection of one of the clustering solutions obtained 

at the end of the algorithm. Fifty-one memory cells were used to store 150 instances, 

which represents 66.0% data reduction. 

For comparison, the standard HAIS algorithm was run 50 times using the Iris data and 

the results (clustering errors) showed oscillation between good and poor clustering 

results. The average outcome of these 50 runs was 16.46 errors. The best error obtained 

was 7, and the worst 27 (see Table 4.2). The population-based HAIS (see Figure 4.4) 

found better clustering solutions than the standard HAIS for the Iris dataset. 
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Figure 4.5: 2-D projection of the Iris data using features 1 and 2. Three clusters are shown with different 

colors and shapes. Memory cells are represented with solid marks. 

Table 4.2: Results of the standard HAIS algorithm  

Dataset Min. Error Max. Error Avg. Error 

Iris 7 27 16.46 

 

Crossover is performed on randomly selected individuals. If no crossover is introduced, 

the population-based approach can be regarded as simple hill-climbing. An experiment 

was conducted on the Iris data to justify the use of crossover. The experiment was run 

15 times with and without crossover and the average results are shown in Figure 4.6. It 

can be seen that both curves (best population curve and whole population curve) show 

the same convergence behavior, but the algorithm with crossover found better solutions 

in terms of fewer clustering errors. It can also be seen from Figure 4.6 (R) that the 

convergence curve of population-based HAIS approach with crossover is smoother than 

without crossover. The minimum, maximum and average results obtained by running 

this algorithm over 15 runs can be seen in Table 4.3.  

The main emphasis of this chapter is to demonstrate that Ag presentation order can 

affect the HAIS clustering results by keeping all other parameters the same. Different 

values for parameter AT can produce different clustering results. Therefore, in Step 2 of 

the algorithm, β and γ of 0.25 and 0.75 respectively were used to achieve fast 

convergence in the AT parameter value. The values shown in Figure 4.7 are also 
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averaged over 15 runs using the Iris data. It can be seen from Figure 4.7 (L) that there is 

not much fluctuation in the AT parameter among different generations. Three AT values 

representing three clusters in the data are shown using different colors. Figure 4.7 (R) 

shows the number of memory cells produced against the AT parameter. A clear trend 

can be seen: as the value of AT, which is a similarity measure, decreases, the final 

population of memory cells increases and vice versa. Three curves representing the 

three clusters and their respective ATs and number of memory cells generated for the 

Iris data are shown in Figure 4.7.   
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Figure 4.6: Average number of errors (y-axis) obtained at the end of each generation (x-axis). L: Average 

number of errors obtained for the best selected individuals at the end of each generation, with and without 

crossover. R: Average number of errors obtained for the whole population for each generation, with and 

without the crossover operator. 

Table 4.3: Results for the best population obtained using population-based HAIS, with and without 

crossover operator, for 15 runs 

Index Min. Error Max. Error Avg. Error 

With crossover 3 4 3.267 

Without crossover 3.7 5 4.147 

 

The average error over the best population selected at the end of each generation is 

shown in the Figure 4.8 (L) for four of the dataset datasets (Wine, Thyroid, Breast 

Cancer Diagnostic and Breast Cancer Wisconsin Original). All error curves show the 
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same convergence behavior, starting from a high number of errors and gradually 

converging to some stable local optimum. For the Breast Cancer Wisconsin Original 

data, convergence was achieved in the 9th generation; for both the Wine and Thyroid 

data, in the 10th generation; and for the Breast Cancer Diagnostic in the 11th 

generation. It appears that as the number of features and instances increases, the 

algorithm takes more generations to settle on local optima.  
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Figure 4.7: L: Average AT for all three clusters of the Iris data obtained at the end of each generation over 10 best 

selected individuals. R: Average number of memory cells produced at the end of each generation over the 10 best 

selected individuals. 

The average error over the whole population at the end of each generation is shown in 

Figure 4.8 (R) for the same four datasets. The population error curve also converges as 

the number of generations increases. This convergence behavior in both the best 

selected population and the whole population is due to the reinforcement incremental 

learning of memory cells. That is, the number of memory cells transferred to the next 

generation increases through the generations to provide a cumulative reward for the 

system through exploration and exploitation of the environment. The final local optima 

obtained by the algorithm are dependent on population size and incremental learning 

through transfer of memory cells. The experiments also show that sometimes the best 

population and whole population do not converge to the same error, due to differences 

in population size as well as the presence of a crossover operator. The population-based 

HAIS algorithm was run for 10 times on the above-mentioned datasets, and the results 

in terms of minimum, maximum and average errors achieved are shown in Table 4.4.  
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An interesting observation in Figure 4.8 (R) is that the average errors in the first 

generation are higher than the average errors in the initial population (population at 

index zero). In the initial population, the standard HAIS algorithm is used which runs 

until the termination condition is achieved whereas in the first generation only one Ag 

presentation order (one shot) is used to obtain clustering solutions. This explains why 

the average population error in the first few generations is higher than the initial 

population. However, as the number of generations are increased, as well as the transfer 

of memory cells from one generation to another, the average errors also followed 

decreasing error trends and finally settled at the local optima.  

Number of Generations

C
lu

st
e
ri

n
g
 E

rr
o
rs

Number of Generations

C
lu

st
e
ri

n
g
 E

rr
o
rs

C
lu

st
e
ri

n
g
 E

rr
o
rs

A
v
e
ra

g
e
 c

lu
st

e
ri

n
g
 e

rr
o
r

Number of generationsNumber of generations

A
v
e
ra

g
e
 c

lu
st

e
ri

n
g
 e

rr
o
r

Best Selected Individual Whole Population

 

Figure 4.8: Average number of errors obtained (y-axis) in each generation (x-axis) for Wine, Thyroid, 

Breast Cancer Diagnostic and Breast Cancer Wisconsin Original datasets. L: Average number of errors 

obtained for best selected individuals at the end of each generation. R: Average number of errors obtained 

for whole population for each generation 

Table 4.4: Average results over 10 runs using population-based HAIS algorithm on benchmark real-

world datasets 

Index Min. Error Max. Error Avg. Error 

Iris 3 4 3.2 

Wine 3 5 4.0 

Thyroids 6 9 7.2 

Breast cancer (diagnostic) 16 21 18.2 

Breast cancer (original) 13 16 14.1 
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4.5   Summary 

The main focus of this chapter was to integrate the micro-level processes of an AIS with 

a macro-level process of a population-based approach to deal with the problem of 

variable Ag presentation order, which has been found to affect the behavior of the 

original HAIS algorithm. A population-based approach was incorporated with the 

standard HAIS that made use of different Ag orders of presentation to achieve local 

optimal clustering solutions. Section 4.1 covered the motivation and rationale for using 

a population-based approach. A brief summary and overview of the standard HAIS 

algorithm was provided in section 4.2. A population-based HAIS algorithm and its 

detailed explanation were presented in section 4.3. In addition, an adaptive version of 

HAIS algorithm was also presented, which was important for the proposed population-

based HAIS algorithm. The experimental results were presented and discussed in 

section 4.4. The experimental results demonstrated that the HAIS can benefit from a 

population-based approach to achieve better clustering outcomes. In addition, crossover 

was shown to give better clustering solutions than simple mutation of Abs for the 

datasets used in the experiments here (see Figure 4.6).  

In a population-based HAIS algorithm, reinforcement learning is implemented at both 

micro and macro levels to aid exploitation and exploration of the search space with 

incremental rewards. Selecting only the fittest (best) individuals forms a basis for 

macro-level reinforcement learning and incremental reinforcement learning 

(incremental transfer of memory cells) is performed at the micro-level by selecting only 

the most affine memory cells. In addition, it has been shown that the population-based 

approach is not sensitive to data presentation order, as many different Ag presentation 

orders are used to construct global solutions. That is, the number of errors across runs is 

stabilized through transfer of the best clustering solutions (as well as memory cells) to 

the next generation as a result of the elitism strategy adopted. Finally, while 12 

generations were sufficient for convergence in our chosen datasets, other datasets may 

require more generations, means more subtle transfer of memory cells between 

generations.  

In summary, we have shown that Ag presentation order can vary in AIS models and that 

integrating micro-level AIS processes with macro-level GAs can lead to a benefit that 

the HAIS by itself cannot achieve. There is a need to investigate the relationship 
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between hypermutation and crossover to determine closer coupling of micro- 

(hypermutation) and macro- (crossover) level processes in the context of reinforcement 

learning. In particular, the relationship between different mutation rates and their effects 

on optimal allocation of samples to cluster needs to examined. Finally, further work is 

required to evaluate different population sizes in relation to data size, crossover 

strategies and numbers of generations for convergence. This chapter has been focused 

on the importance of Ag presentation order for achieving better clustering results and 

the experimental results in section 4.4 have clearly shown the importance of this. If 

different Ag presentation orders can be utilized for effective clustering, then the 

following questions needs to answered:  

1. What is the role of the AT parameter?  

2. Can we remove the AT parameter and assign each new Ag according to its 

closest match to Abs?  

3. What is the role of mutation (hypermutation)? 

4. Does mutation play any part in achieving effective clustering? 
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In recent years, several artificial immune system (AIS) approaches have been proposed 

for unsupervised learning [11, 102, 130, 131, 136]. Generally, in these approaches 

antibodies (or B-cells) are considered as clusters and antigens are data samples or 

instances. Moreover, antigens are trapped through free-floating antibodies or 

immunoglobulins. In all these approaches, hypermutation plays an important role. 

Hypermutation is the process of producing cloned but mutated copies of stimulated 

antibodies to capture similar antigens with high affinity. We presented one such 

algorithm in chapter 3, namely the Humoral-Mediated Artificial Immune System 

(HAIS) that is inspired by the role of immunoglobulin in the adaptive immune system. 

In the previous chapter, we investigated the effects of antigen presentation order in the 

HAIS algorithm by introducing a population-based approach. However, there is 

currently little understanding about the effectiveness of hypermutation operator in AIS 

approaches. In this chapter, we investigate the role of the hypermutation operator as 

well as affinity threshold (AT) parameters in order to achieve efficient clustering. The 
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AT in the HAIS algorithm is used to find the degree of similarity between antigen and 

antibodies. Based on this local similarity measure new antigens are then assigned to 

either existing B-cells or new B-cells are formed to mount an appropriate immune 

response. Here, we propose a three-step methodology to examine the importance of 

hypermutation and the AT parameter in AIS approaches to clustering using HAIS 

algorithm. The clusters’ starting point and antigen presentation order are kept fixed to 

evaluate the effectiveness and functionality of the hypermutation operator. In addition, 

the role of mutation in under-fitting and over-fitting the data will be discussed. 

The rest of the chapter is structured as follows. Section 5.1 explains the rationale and 

motivations for adapting a three-step methodology to evaluate AT and hypermutation 

parameters in the HAIS. Section 5.2 describes in detail the proposed three steps: (1) 

initial clustering; (2) finding antigen presentation order; and (3) effects of different 

mutation rates. Section 5.3 presents the experimental results obtained using 

benchmarked real-world datasets. The role of AT and hypermutation in HAIS is also 

discussed in terms of entropy in this section. Finally, section 5.4 summarizes this 

chapter. 

5.1   Introduction 

Clustering is one of the most intensively researched areas in the unsupervised learning 

and data mining disciplines. Clustering seeks to group similar data into clusters (groups) 

so that data instances within a group have maximum similarity while instances across 

different clusters have a high degree of dissimilarity. Clustering also depends on the 

nature of the data and the desired results or intuition [1]. Therefore many clustering 

algorithms exist which use different induction principles. Recently, researchers have 

turned to natural phenomena for inspiration to develop new clustering algorithms. 

Underpinning this interest is an inclination with the nature and the emergence of 

complex learning behaviors and intelligence out of unstructured, unsupervised and 

decentralized processes, such as those in natural immune systems (NISs). 

Biological evolution started billions of years ago and has produced highly complex and 

efficient organisms. Evolution is, according to the dominant paradigm, driven by natural 

selection given the constraints of entropy law. Entropy is a measure of the disorder in a 

system. In simple terms, higher entropy means a higher degree of disorder or 
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randomness in a system and vice versa. Energy efficiency, processes of recycling, and 

rewards for co-operation, diversity and decentralization are some of the main 

characteristics of natural systems [176]. Many nature-inspired clustering algorithms 

have been proposed in recent years, and the AIS is one such example.  

One of the key components of AIS clustering algorithms is hypermutation, which is the 

process of generating cloned but mutated copies of antibodies (Abs) so that antigens 

(Ags) can be captured and dealt with more effectively by the immune system. This 

process maximizes the chances of producing an Ab that is even closer in approximation 

to the Ag, resulting in: (1) a more efficient handling of the current Ag; and (2) better 

capturing capabilities for future Ags that could be variants of currently captured one. 

The biological mechanism underlying this process is referred to as ‘affinity maturation’. 

Most of the AIS clustering algorithms assume that mutation (hypermutation) plays an 

important role in deciding class memberships of instances of data. One such example is 

the HAIS described in chapter 3. HAIS is inspired by the role of immunoglobulins (Igs) 

and Abs in the humoral-mediated response triggered in NISs. However, despite the 

importance of hypermutation in AIS approaches to clustering, there is relatively little 

understanding of its effects on clustering algorithms. The initial starting point of 

clustering (the initial set of Abs and the order in which data samples (Ags) are presented 

can be expected to play an important role in AIS clustering solutions, along with 

hypermutation. In the last chapter, we discussed the effects of different Ag presentation 

order using a population-based approach. In this chapter, the initial clustering starting 

point and Ag presentation order are kept fixed to evaluate the effects of different 

mutation rates on the algorithm and therefore shed some light on how hypermutation 

can affect clustering solutions. Here, we propose a three-step methodology to evaluate 

the effectiveness of hypermutation in the HAIS clustering algorithm. In Step 1, a 

hierarchical clustering method is used to get initial data partitioning. The centroids of 

each cluster are then used as a starting point for the HAIS algorithm. Step 2 evaluates 

different Ag presentation orders based on the initial starting point (obtained in Step 1). 

Different affinity threshold (AT) parameters produce different Ag presentation orders. 

The Ag presentation order that gives the best clustering is selected and used in the third 

step. Finally, in Step 3, the initial starting point and Ag presentation order selected in 

the previous steps are respectively used to observe the effects of different mutation 

rates. Different mutation rates are used to demonstrate the effectiveness of the mutation 
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operator. Consequent over-fitting and under-fitting by the mutation operator will also be 

discussed in this chapter in the context of the HAIS clustering approach.  

5.2   Proposed Three-Step Methodology 

For our AIS, the similarity measure based on the affinity between Ag features and Ab 

feature receptors is calculated using the following normalized Euclidean expression: 
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where   is a number of features in the data and    and    are the absolute values of the 

Ag and Ab features respectively. 

The methodology is divided into three steps. In Step 1, initial clustering is obtained 

using hierarchical clustering. Step 2 is performed to select an Ag presentation order, 

ideally giving the lowest clustering error without using any mutation. Finally, Step 3 is 

used to perform mutation at different rates to achieve a better clustering solution on the 

Ag presentation order obtained in Step 2.  

5.2.1   Step 1: Initial Clustering 

In generative clustering approaches, a good starting point plays a very important role in 

finding good groupings in the data. The model-based Gaussian hierarchical clustering 

algorithms approach [138], which is a well-established hierarchical model-based 

method, is used for the initial partitioning. In this method, at each step in the algorithm 

pairs of clusters are merged so as to maximize the likelihood function 
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where X represent the data,    and       enote the mean and covariance respectively of 

the k
th

 cluster. 

Three different clustering algorithms, namely hierarchical Euclidean distance, K-means 

clustering, and hierarchical model-based clustering algorithms were tested for the initial 

partition of the data, from which the hierarchical model-based approach was chosen on 

account of its superior performance (see appendix C). 
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5.2.2   Step 2: Finding Antigen Presentation Order 

A variant of the HAIS was used to demonstrate the effectiveness of the algorithm using 

datasets where numbers of clusters and class membership of instances are already 

known. HAIS is a stochastic algorithm, so that different runs can produce different 

outcomes. A detailed description of the HAIS algorithm can be found in sections 3.2 

and 3.3. The motivation for Step 2 is to get an established Ag presentation order that 

gives better clustering outcomes based on minimum error against true class labels. 

Furthermore, in this step no mutation is used, which means that Abs are true data 

instances without any variation. This step is helpful in investigating the effects of 

different AT parameters in the HAIS algorithm.  

With the number of clusters and initial starting points now being obtained from 

hierarchical clustering, the third layer of the original HAIS algorithm that deals with 

generations of new clusters was removed and replaced with a temporary storage unit 

(TEMP) which is shown in Figure 5.1. TEMP only stores Ags that cannot be trapped at 

an existing affinity value (AT). These Ags are subsequently put back into the Ag Pool 

for re-selection after updating the AT parameter. 

Step 2 of the algorithm operates on two layers (see Figure 5.1). At the first layer (Layer 

1) any memory cell Abs (m-Abs) that already exist trap Ags that are similar as they are 

released from the Ag Pool and present them to their respective B-cells ([3] in Figure 

5.1). The second layer (Layer 2) gets activated if the first layer fails to trap the Ag. At 

this second layer, the stimulated B-cell Abs (b-Abs) bring the captured Ag to its 

respective B-cell and also perform certain actions ([5] in Figure 5.1), such as generating 

a memory cell which results in the generation of further m-Abs, generating k numbers 

of b-Abs and also performing a negative clonal selection on the newly generated b-Abs. 

The stimulation level of Ag to m-Ab is set 10 times higher than that of b-Abs to Ag. If 

the second layer fails to capture the Ag, it is stored at TEMP ([7] in Figure 5.1), which 

later dumps all Ags back to the Ag Pool ([8] in Figure 5.1). After each successful 

capture, the algorithm goes back and randomly selects another Ag from the Ag Pool ([6] 

in Figure 5.1). If there is no selection of an Ag for one complete cycle, the AT 

parameter is increased appropriately (discussed in next section). This whole process is 

repeated until all Ags are captured by B-cells. 



115 

 

If Trapped

Bcells

Bcell 1

Bcell 2

Bcell N

L a y e r 1

L a y e r 2

Else

If Trapped

Else

T E M P

bAbs

 mAbs

Mcell

 mAb

bAb

NST

Ag Pool

Mcells

Bcells

 mAb

bAbs

 

 

 

  

8

3

2

6

1

7

4

5

 

Figure 5.1: Overview of the two-layered algorithm 

The above algorithm is highly dependent on the AT parameter, which controls the 

convergence of the algorithm. The algorithm starts with a small value of AT and, as the 

immune system matures, the value of AT is increased by some pre-defined quantity to 

attract and capture Ags with relatively less similarity. This parameter will be discussed 

in depth in the next section. 

In Step 2, no mutation (0% mutation) is used, which means that m-Abs and b-Abs are 

exact copies of captured Ags. This stage is used to select the Ag presentation order that 

gives the best clustering results without the influence of a mutation operator. This AT 

increment continues until all Ags are allocated to their respective B-cells (clusters). The 

importance of this step is to obtain the best Ag presentation order. Then, in Step 3, the 

same Ag presentation order is used to allocate Ags to respective B-cells using different 

mutation rates.  

5.2.3   Affinity Threshold (AT) Parameter 

In clustering, data instances that are situated closer to the centroids of the clusters 

should be assigned first and the data instances further away can be left until the size of 
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the cluster gradually increases and those instances come within range of the cluster. 

Each cluster can acquire only the data instances that are in its calculated neighborhood 

radius. Once there are no more data instances within that radius, the radius is increased 

by some pre-defined quantity to capture the data instances which were out of reach 

earlier. The same idea is used here in this algorithm, which initially subjects Abs to a 

very high AT value to get stimulated in order to capture Ags that are highly similar to 

the Abs. As the clustering process progresses, the affinity threshold is reduced to 

capture Ags with less, but still enough, similarity to warrant inclusion in the cluster. 

A

B

D

E

C

Cluster 1

Cluster 2

Antigen

 

Figure 5.2: Importance of distance measure in cluster analysis 

Consider the data instances/points in Figure 5.2. In the case of the cluster containing 

rectangular-shaped data, Cluster 1 should commit to Ags A and C first. The same 

principle applies to Cluster 2, which should first acquire Ags D and B rather than 

committing to Ag E, which is located quite far from both clusters and at this point can 

belong to either. The initial value of the AT is defined by the expression: 
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where   is the standard deviation and    is the i
th 

data feature, f is the number of 

features, and N is the total number of instances in the data.  

Standard deviation is the square root of variance and is a widely used measure of 

dispersion and variability. Sums of standard deviation calculated across all the features 
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represent the total variation or dispersion in a dataset, which when divided by the total 

number of instances gives the average dispersion of an instance and generates a small 

starting value of AT. This AT does not stay the same but it changes (increases) as the 

algorithm proceeds. AT increases when no data instances are captured by Abs in one 

complete cycle and there are still Ags left to be captured.  

The updating of AT can be done in many ways. The simplest is to increase the         

by a fixed amount each time when necessary. That technique is not very effective on 

sparse data, where the algorithm will be forced to perform many redundant cycles. 

Another approach is to increase it dynamically, and this is the approach adopted here. 

The AT is incremented by:  

          (        )   (
 

 
 ∑ (  )

 

   

)              ( )         

where affinity is the distance measured between b-Abs and Ags and   is another user-

defined parameter.  

      has two parts: the first finds the next closest distance from Abs to Ags and the 

second is the initial    (Equation 3) value with different increasing factor ( ), which is 

to ensure that more than one instance gets selected in the next cycle. The parameters   

and   control the rate of convergence. If the values of   and   are set too high then the 

algorithm converges too quickly. Similarly, if the value is set too low, the algorithm 

may not converge quickly enough. 

5.2.4   Step 3: Effect of Different Mutation Rates 

The initial cluster centroids (starting points) were obtained from Step 1, and Step 2 

provided a fixed Ag presentation order. Now, in Step 3, a one-shot approach is used to 

allocate all Ags to B-cells, in the same order as that obtained in Step 2. Many runs can 

now be performed using variable mutation rates, with a fixed Ag presentation order and 

fixed initial clustering. Finally, different mutation rates were used to find and evaluate 

different clustering solutions.  

The only difference at this stage from Step 2 is that there are only two layers are 

activated and any selected Ag must be assigned to one of these two layers, and no 

TEMP is used (Figure 5.3). At this level b-Abs are generated with different mutation 
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rates to evaluate the effects of different mutations while generating Abs to capture Ags. 

Fifty runs (cycles) were performed for each mutation rate. The mutation rates used 

varied from 5% to 50%. We allowed each feature to mutate within a given specified 

upper and lower limit. Mutation was designed in such a way that each selected feature 

could mutate both ways (positively and negatively) at random, rather than just in one 

direction.  
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Figure 5.3: A one-shot modified HAIS algorithm using fixed B-cell centroids and fixed Ag presentation 

order. 

In Step 3, the algorithm starts by generating a number of B-cells. The number of B-cells 

is equal to the known number of clusters in the data. Those B-cells are placed at the 

centroids of the clusters obtained by Step 1. The B-cells then capture g of the nearest 

neighbor Ags (data instances). The value of the g parameter depends on the number of 

clusters and total number of instances in the data. Now, these B-cells generate k 

numbers of cloned and mutated copies of captured b-Abs to capture similar Ags in the 

future. The k Abs produced are dependent on two main factors. Firstly, the number of 

features in the data: the higher the number of features, the higher the number of Abs 

generated should be to find good enough samples to attract similar Ags. Secondly, the 

mutation rate: the higher the mutation rate, the higher the number of Abs should be to 

ensure sufficient diversity in the system. This k parameter directly influences the time 
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the algorithm takes to run. The Ag captured by each B-cell is considered the memory 

cell, and this stimulated memory cell will generate respective m-Abs with a very small 

mutation rate to capture similar Ags. For the experiments done in this chapter, the m-

Abs are exact copies of captured Ags.  

5.3   Experimental Results and Discussion 

Four well-known datasets, namely Iris, Wine, Thyroid and Breast Cancer Wisconsin 

(see appendix A) were used to show the effectiveness of the proposed methodology. 

Each of the datasets selected shows different degrees of data complexity, which 

demonstrates the feasibility of the methodology. The hierarchical clustering was 

performed on normalized data whereas Steps 2 and 3 were performed on raw data 

except for the Wine data, where normalized data was used in all three steps. 

When the hierarchical model-based clustering algorithm was used on the Iris data, it 

produced 15 clustering errors. The confusion matrix obtained can be seen below: 

Group1    Group2   Group3 

Cluster 1 50       0  0 

Cluster 2  0      49  1 

 Cluster 3   0       14  36 

In Step 2 (with variable Ag presentation orders), the algorithm was run for 50 times, 

each time with different   and   parameters. The results obtained using different   and 

  parameters can be seen in the Figure 5.4 (without mutation). The lower values of   

and   mean fewer ways to present Ags or less randomness in the Ag presentation order. 

On the other hand, the higher values of   and   mean more ways to present Ags to the 

algorithm. 

In the legend of Figure 5.4, AB21 denotes   and   values of 1 and 2 respectively. It can 

be observed from Figure 5.4 that with AB21 the number of clustering errors oscillates 

between 4 and 6. The second-best set of parameter values was obtained by using AB22, 

which gave a minimum of 6 clustering errors. Out of the   and   parameters listed in 

Figure 5.4, it can be seen that AB21 consistently gave better clustering results (meaning 

fewer clustering errors) without using any mutation rate. Figure 5.4 also shows the 

importance of different data presentation orders for clustering solutions given AT 
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parameter, which was the basis of using a population-based approach in a chapter 4. 

Figure 5.4 demonstrates that a lower AT parameter produces less fluctuations in terms 

of variations obtained in clustering results, whereas a higher AT parameter produces 

higher fluctuation is clustering results.   
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Figure 5.4: : Iris data clustering errors using various   and   values with 0% mutation (Step 2), with the 

x-axis representing the number of runs and the y-axis the number of clustering errors obtained. 

A summary of the experimental results given in Figure 5.4 in terms of minimum, 

maximum and average clustering errors found using different   and   parameters is 

given in Table 5.1. These results suggest that AB21 has the least errors and that its error 

average is also the lowest. The worst average of clustering errors of 15.288 was 

obtained from AB43. The experiments were also performed using other values of   

and  , but only four are shown here. The purpose of conducting these experiments is to 

show that even without using mutation,   and   influence the final clustering solution 

and that the AT parameter plays an important role in AIS clustering algorithms. Another 

aspect of these results is that running the algorithm for 50 times with the same AB21 

and the same initial clustering mean produces different clustering outcomes. This 

underlines the importance of the way Ags are presented to the system for selection (Ag 

presentation order). The purpose of this three-step methodology is to fix the cluster 

starting point as well as the order of presentation in order to observe the effects of 

different mutation rates on the clustering outcome. 
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Table 5.1: Summary of Figure 5.4 

 Min. Errors Max. Errors Avg. Errors 

AB21 4 6 4.8846 

AB22 6 15 13.75 

AB33 9 20 14.577 

AB43 9 20 15.288 

 

To explain the behavior of mutation rates, the Ag presentation order showing 15 

clustering errors was selected (Step 2). Here, a fixed Ag presentation order was used 

that has been obtained by using AB22 parameter values (see Figure 5.4). The mutation 

rates of 5%, 10%, 15%, 20%, 30% and 40% were used and each was run 50 times, as 

shown in Figure 5.5. Different colors and shapes represent different mutation rates, 

defined in the legend of Figure 5.5. A summary of Figure 5.5, in terms of minimum, 

maximum and average clustering errors, can be seen in the Table 5.2. When the 

mutation rate was 5%, the oscillation was minimal but as the mutation rate increased the 

oscillation in the clustering solutions increased also. The clustering error without 

mutation was 15, therefore 15 can be considered as the mean point or point of reference 

for this experiment. It can be seen that for mutation rates of 5%, 10%, 15% and 20%, 

the oscillation is around the mean point, whereas in the case of mutation rates of 30% 

and 40% the clustering errors are much higher and away from the mean point. More 

specifically, with a mutation rate of 5% the error curve is not too far from 15 (the 

average is 15.67 in Table 5.2).  

The best and worst clustering solutions were 14 and 18 errors, respectively, for the 5% 

mutation rate. However, with a 10% mutation rate the oscillation becomes higher and it 

had best and worst clustering solutions of 5 and 19 errors respectively. The lowest 

clustering error of 4 was found with a mutation rate of 15%. The clustering results 

gradually degrade from this point onwards for all the remaining mutation rates. This 

experiment suggests that mutation plays an important role in finding better clustering 

solutions. When the mutation rate is kept too low, it cannot generate a diverse enough 

population of Abs to match the Ags as they are introduced to the system; as a 

consequence the results are not much different from 0% or no mutation. On the other 

hand, in the case of too high a mutation rate the Abs cover too much feature space, 

which results in bad clustering solutions. Abs not only represent already seen samples 
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but also ‘predict’ future samples that should belong to the same cluster. Hence, low 

mutation rates suffer from under-fitting when predicting future samples based on 

existing samples, whereas too high a mutation rate cause over-fitting.   
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Figure 5.5: Various mutation rates M5 to M40 (5% to 40%) are applied to an Ag presentation order with 

15 clustering errors 

Table 5.2: Summary of Figure 5.5 

Mutation Min. Errors Max. Errors Avg. Errors 

M5 14 18 15.67308 

M10 5 19 12.23077 

M15 4 19 9.596154 

M20 6 48 19.48077 

M30 21 50 40.82692 

M40 31 68 44.21154 

 

Using   and   values of 2 and 1 respectively returned the minimum number of 

clustering errors (4) in the previously explained experiment. The same Ag presentation 

order can be used to investigate the effects of mutation rates on clustering error. In 

particular, it will be possible to determine whether different mutation rates using the Ag 

presentation order show the same behavior as in Figure 5.5 (using an Ag presentation 

order with 15 clustering errors). The results obtained using mutation rates of 5%, 10%, 
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15%, 20% and 30% can be seen in Figure 5.6. The same trend can be seen as for the 

previous experiment (with 15 clustering errors). The role of mutation can now be clearly 

seen in Table 5.3, which is a summary of Figure 5.6. A minimum clustering error of 2 

was found when a mutation rate of 15% was used as compared with 4 clustering errors 

without mutation. This experiment suggests that including mutation rate in the HAIS 

clustering algorithm does provide extra benefit in terms of reducing clustering error, if it 

is tuned correctly.   

The 2-D projection of the final clustering on the Iris data can be seen in Figure 5.7 (L), 

where each cluster is represented by different colors and symbols. The 2-D projection of 

the final Abs (b-Abs) obtained is also shown in Figure 5.7 (R).  
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Figure 5.6: Various Mutation rates M5 to M30 (5% to 30%) are applied to an Ag presentation order with 

4 clustering errors 

Table 5.3: Summary of Figure 5.6 

Mutation Min. Errors Max. Errors Avg. Errors 

M5 4 10 5.173077 

M10 4 13 6.788462 

M15 2 12 7.230769 

M20 5 32 12.26923 

M30 14 50 39.42308 
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The negative clonal selection threshold (NegT) plays an important role in the HAIS as it 

deletes similar Abs and creates empty spaces (in terms of feature space) that 

subsequently could be occupied by the same or different class of Abs. Reinforcement 

learning can also be performed at the NegT parameter level depending on whether 

negative selection is performed at the generation of Abs level or at the B-cell. If 

negative selection is performed at the level of Abs creation, the same class of Abs can 

also occupy the empty feature spaces in the future (i.e. after further Ag presentation). 

This would not be possible if negative clonal selection is performed at the B-cell level 

because then only Abs from different classes can occupy the gaps in the future. In this 

chapter, negative clonal selection at the level of generation of Abs is performed to allow 

reinforcement learning in terms of generating Abs. 
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Figure 5.7: L: Three clusters of the Iris data obtained at the end of the algorithm. R: Abs produced at the 

end of the three-step algorithm with 15% mutation rate. 

The best results found using the proposed methodology on all datasets can be seen in 

Table 5.4. The   and   parameters were obtained manually, by trying various 

combinations, while 50 runs were performed against each mutation rate to get the best 

results. 

The comparison of clustering errors found at the end of each step is shown in Table 5.5, 

which suggests improved results at Step 3 from both the previous steps. Note that in the 

results obtained at the end of Step 3 (after applying sub-optimal AT and mutation rates) 

for all four real-world datasets, the final clustering results are superior only when 

applying the hierarchical clustering algorithm (Step 1). These results were obtained 

using only 50 runs in Step 3; much better results can be obtained if Step 3 is repeated 
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for more iterations (explained below). One of the reasons for the observed oscillations at 

Step 3 is the use of intra-cluster B-cell negative selection (negative selection of Abs for 

each cluster or B-cell separately) and allowing Abs to enforce natural selection pressure 

across all clusters. This approach was applied under the assumption that clusters can 

overlap in Euclidean space, which forms the basis of using intra-cluster (and not inter-

cluster) B-cell negative selection. All these fluctuations (in clustering results) at the 

level of AT and hypermutation in Figures 5.4, 5.5 and 5.6 can also be explained using 

the norm of entropy. 

Table 5.4: Datasets information (three-step methodology) 

Datasets     Mutation Min. 

Errors 

Max. 

Errors 

Avg. 

Errors 

Iris Data 2 1 15% 2 12 7.23 

Thyroids Data 15 5 40% 11 44 22.19 

Wisconsin Data 15 7 50% 17 29 23.09 

Wine Data 3 2 15% 6 22 13.26 

 

Table 5.5: Step-wise errors information 

Datasets Step-1 Step-2 Step-3 

Iris Data 15 4 2 

Thyroids Data 23 20 11 

Wisconsin Data 23 29 17 

Wine Data 7 9 6 

 

The various mutation rates can also be explained in terms of the entropy of a system. 

Entropy is defined as a number of ways the constituents of a system can be re-arranged, 

in such a way that a change would not be noticed [179]. Different systems can vary 

from a low entropy state to a high entropy state. Low entropy means there are fewer 

possible arrangements existing (the system is more organized), whereas in a high 

entropy state many possible arrangements exist (less organized system). Entropy can be 

explained using the simple example shown in Figure 5.8, where (a) shows some 

randomly located gas molecules in a box. The system is considered to be a closed 

system and gas molecules move around in the box. There are many ways the system in 

(a) can re-arrange itself so that no difference is noticeable. Therefore, it can be said that 
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the system in (a) is in a high entropy state. On the contrary, the system in (b) is said to 

be in a low entropy state as there are fewer arrangements existing. According to Sean 

Carroll [179], a low entropy state can be achieved from a high entropy state, but it takes 

a much longer time. Therefore, if the system in high entropy (a) is left for a long time, 

due to the random motion of gas molecules all the configurations attainable will be 

attained and it is possible that the molecules with re-arrange themselves into the 

configuration shown in (b), which is a low entropy state. Entropy is defined as: 

      ( )                 ( ) 

                                                          .  

a b

 

Figure 5.8: Fluctuations in a closed system (gas molecules) occasionally lead from a high entropy state 

(a) to a low entropy state (b) 

Now the question requiring an answer is: How can clustering be related to entropy? 

Clustering algorithms can mainly be classified into deterministic and stochastic 

algorithms. In deterministic algorithms, different runs of the same algorithm using the 

same data produce the same clustering results. One example of such algorithms is 

hierarchical clustering algorithms (Step 1, section 5.2.1). On the other hand, stochastic 

algorithms produce variable clustering results across different runs. Therefore, in the 

light of the entropy definition explained earlier, deterministic algorithms can be 

categorized into systems (algorithms) having a low or zero entropy state and stochastic 

algorithms, which oscillate between different clustering solutions, can be regarded as 

systems having a high entropy state. The HAIS algorithm is a stochastic algorithm, 

meaning it can produce different clustering outcomes on various runs, which suggests it 

has high entropy. The important question here is to consider what are the most 

important factors or parameters in the HAIS that make it such a stochastic algorithm.  
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In this chapter, the two most important features of the HAIS are investigated, namely 

the AT parameter and hypermutation. The results shown in Figure 5.4 indicate that a 

low AT is equivalent to a low entropy state and a high AT equivalent to a high entropy 

state. A low AT parameter such as that of AB21 has only two possible arrangements (4 

and 6 clustering errors), but as the AT parameter value is increased, the system showed 

many more possible arrangements (more fluctuations in clustering results). The 

minimum errors obtained on the Iris data at AB21 and AB43 were 4 and 7 respectively 

when only 50 runs are used. Now, an interesting experiment would be to see whether a 

system with higher AT (e.g. AB43) that is left for a longer time (more runs) randomly 

fluctuates to a low entropy state that corresponds to a low clustering error configuration. 

The experiment was run using AB43 for 1000 iterations. The results can be seen in 

Figure 5.9 below and suggest a higher level of fluctuations (meaning high entropy) in 

the clustering results. The four clustering errors earlier obtained using AB21 were 

obtained many times in the 1000 iterations using AB43, which proves that a low 

entropy state can be obtained from higher entropy state but, due to the random 

fluctuations, it can take a longer time. Another important feature of this experiment was 

that it achieved a minimum of 3 clustering errors, which also demonstrates the HAIS’s 

capacity to find better clustering solutions while exploring wider search space by 

increasing the AT parameter. This experiment also showed that there is a trade-off 

between local search and global search for finding optimal clustering solutions. AB21 

was consistently able to find 4 and 6 clustering errors, but even though AB43 on 

average found fewer efficient clustering solutions, it did find a clustering solution with 

3 errors, i.e. better than those of AB21. Therefore, we can characterize algorithms (or 

algorithmic settings) that produce more fluctuations as systems with high entropy, and 

vice versa. The same behavior can be observed in hypermutation. As the rate of 

mutation is increased, the system is transformed from a low entropy state to a high 

entropy state (see Figure 5.10). An Ag presentation order of 4 clustering errors was used 

to demonstrate this idea. The same setting was run for 1000 iterations using 5% to 30% 

mutation rates. A 15% mutation rate has found the lowest number of clustering errors 

(clustering error of 1). 
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Figure 5.9: Iris data clustering errors using AB43 (Step 2). The x-axis represents the number of runs and 

the y-axis the number of clustering errors obtained. 

Here we are interpolating the idea of the number of possible states N (which is 

proportional to the entropy value E) to the range of clustering solutions (fluctuation in 

clustering errors) obtained. In these experiments, N is equivalent to AT as well as N is 

equivalent to mutation rate. 

From the experiments conducted here, it can be concluded that a low AT or low 

mutation rate describes a low entropy state and a high AT or high mutation rate 

characterizes a high entropy state. 
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(a): 5% Mutation rate  
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Figure 5.10: Various mutation rates (5% to 30%) with 4 clustering errors at Step 2. The x-axis represents 

the number of runs whereas y-axis the number of clustering errors obtained. 
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(c): 15% Mutation rate 
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(d): 20% Mutation rate 
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5.4   Summary 

Both affinity measure (AT) and hypermutation play critical parts in any AIS algorithm. 

The aim of this chapter was to determine the effects of both parameters on unsupervised 

clustering while using the HAIS algorithm. AT is a similarity criterion that is very 

important in defining the boundaries of Ab receptors (in terms of shape space) and the 

vicinity they interact in (put another way, AT helps to distinguish self, known and seen 

search space from unknown, non-self and unseen search space). Hypermutation is 

another critical component of the AIS and getting the mutation rate right is important 

for effective Ag-Ab match and capture.  

There are three main parameters that can influence the clustering outcomes in the HAIS 

algorithm: (1) initial B-cell placement; (2) similarity measure (AT); and (3) mutation 

rate. The main focus of this chapter was to investigate the effects of different affinity 

measures and mutation rates on the HAIS algorithm. We have demonstrated with 

experimental results on real-world datasets that both AT and mutation play an important 

role in finding better clustering solutions. The experimental results indicate that 

mutation, along with the AT parameter and the initial B-cell starting point, helps the 

HAIS algorithm produce better clustering results. The implications are not clear for 

other AIS approaches to clustering given that they have other parameters. Nevertheless, 

the role of mutation can be expected to play a key part in other AIS approaches to 

clustering. For example, the aiNet and CLONALG algorithms use similarity thresholds 

to select strong affinity Abs. These similarity thresholds act in a similar manner to our 

mutation rate. We have also tried to map the behavior of two core parameters of the 

HAIS algorithm, namely AT and mutation, onto entropy. In this chapter we have argued 

that a low AT or mutation rate can be linked to a low entropy state and a high AT or 

mutation rate to a high entropy state. 

So far, we have demonstrated the capabilities of the HAIS with regard to unsupervised 

learning. In the coming chapters, we will focus on developing a variant of the HAIS 

algorithm that can be applied to supervised learning. 
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Two critical natural mechanisms in evolutionary processes are variation and selection 

and these form the basis of what is called evolutionary computing (EC). EC has proved 

successful when dealing with complex problems, such as classification, clustering and 

optimization. In recent years, as our knowledge of microbiology has deepened, 

researchers have turned to micro-level biology for inspiration to help solve complex 

problems, and one such example is the natural immune system (NIS). In previous 

chapters, we have presented the Humoral-Mediated Artificial Immune System (HAIS) 

algorithm which was inspired by the humoral-mediated immune response for 

unsupervised clustering and outlier detection. This chapter extends this idea and 

describes a novel supervised learning algorithm inspired by the humoral-mediated 

response triggered by the adaptive immune system. The proposed HAIS supervised 



133 

 

learning algorithm uses core immune system concepts such as memory cells, plasma 

cells and B-cells, as well as parameters and processes inspired by our knowledge of the 

microbiology of immune systems, such as negative clonal selection and affinity 

thresholds.   

The rest of the chapter is structured as follows. Section 6.1 explains the motivation and 

introduction of the novel supervised HAIS algorithm proposed in this chapter. Section 

6.2 presents a literature review of existing AIS supervised learning approaches. Some 

NIS concepts employed in our new proposed AIS algorithm are discussed in section 6.3. 

Section 6.4 then describes the novel AIS algorithm for supervised learning and an 

explanation of the algorithm is presented in section 6.5. Extensive experimental results 

conducted on benchmarked real-world datasets are presented in section 6.6. Parameters 

and processes used in the HAIS supervised algorithm are explained in section 6.7, and a 

discussion regarding the HAIS supervised learning algorithm forms section 6.8. Finally, 

a summary of the chapter is presented in section 6.9.         

6.1   Introduction 

The goal of any supervised learning algorithm is to build a model that can accurately 

predict unseen data instances by learning from existing patterns consisting of predictor 

features and class labels.  

Supervised learning is one of the most frequently used techniques in the machine 

learning domain. A large number of techniques based on various induction principles 

can be found in the literature. Supervised learning techniques are generally classified 

into the following five main groups [180].  

1. Logic-based algorithms, including symbolic learning methods. Examples include 

decision trees and classification rules. The most well-known algorithm for building a 

decision tree is the C4.5 [37], which is an extension of the ID3 algorithm [181]. 

RIPPER is a well-known example of a rule-based algorithm [182]. An extensive 

overview of various rule-based algorithms can be found in [183].  

2. Neural networks or perceptron-based techniques. These approaches range from 

single-layered perceptrons to multi-layered perceptrons and redial-basis function 

networks [184]. Single-layer perceptrons consist of only two layers namely, input 

and output layers, whereas multi-layer perceptrons consist of an input layer and an 
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output layer with an additional hidden layer [15, 18, 185]. An overview of existing 

work in artificial neural networks can be found in [13, 41, 186].  

3. Statistical learning algorithms. These models are built on the basis of probability 

modeling of the data. Examples are Naive Bayes classifiers [39] and Bayesian 

networks [38, 187].  

4. Instance-based learning algorithms are also called lazy-learning algorithms [34] in 

which the induction or generalization process is delayed until classification is 

performed. The k-nearest neighbors (k-NN) method is an example of this group of 

algorithms. A review of instance-based learning algorithms can be found in [188].  

5. Support Vector Machines (SVMs) are a relatively new addition to supervised 

machine learning algorithms [189]. ‘SVMs revolve around the notion of a 

“margin”—either side of a hyperplane that separates two data classes’ [180]. SVMs 

construct a hyperplane (or hyperplanes) in a high-dimensional space that is later used 

for classification tasks. A survey of SVMs can be found in [40]. More details 

regarding these supervised machine learning groupings can also be found in [180].    

Nature-inspired techniques for classification have their roots in our early and macro-

level understanding of biological processes. The contribution of various nature-inspired 

techniques such as of artificial neural networks (ANNs), genetic algorithms (GAs), ant 

colony optimization (ACO) and particle swarm optimization (PSO) is well established 

in machine learning. However, as our knowledge of biology has deepened, another 

trend has emerged in nature-inspired systems, which is to go further into the 

microbiology. This trend is based on the view that if nature has found ‘algorithms’ for 

solving complex problems, where such algorithms have arisen because of particular 

types of bio-molecular machinery we possess, we may be able to inform our own 

computational algorithms by including aspects of such machinery in their design and 

development. In other words, hardware, or in this case ‘wetware’ (artificially created 

cellular processes), matters when it comes to biological inspiration. A relatively recent 

example of deeper biological inspiration is the AIS. What distinguishes an AIS from 

other nature-inspired techniques is its assumption that going deeper into the biology 

may provide new computational paradigms not obvious if one remains at the macro 

level.  
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AIS researchers are therefore interested in the behavior and functionality of AISs due to 

the fact that they can address some important questions that other classifiers also have 

to deal with, such as:  

1. Has the particular pathogen/data sample been encountered before? 

2. How certain are we about the identity/class of a certain pathogen/data sample? 

3. Do the pathogens/data samples share features that could be useful for 

identification/classification? 

The aim of the work presented in this chapter is to develop a new AIS supervised 

learning algorithm which can enhance our understanding of patterns in the data. The 

proposed algorithm incorporates the latest knowledge of how the humoral-mediated 

parts of the NIS work. This chapter also addresses, with a novel perspective, issues of 

over-fitting and under-fitting of data while building an AIS classifier. The novelty of the 

proposed algorithm is discussed in the context of an existing immune system based on 

supervised learning algorithms. The performance of the proposed algorithm is tested on 

well-known benchmarked real-world datasets and the results indicate performance no 

worse than existing techniques in most cases and improvements over previous reported 

results in some.   

6.2   Literature Review 

Some work has already taken place in AIS supervised and unsupervised learning 

algorithms [11, 89, 126, 190]. The fundamental principle is to represent data samples as 

antigens and classes/clusters as antibodies or B-cells so that antigens are attracted to 

those antibodies/B-cells that are most similar. Similarity is typically measured through 

standard metrics, such as the Euclidean distance between the attribute values of a 

sample and the centroid of a class or cluster of samples, with samples being allocated to 

the closest class or cluster. Other standard metrics for calculating similarity (e.g. 

squared Euclidean distance, Pearson correlation) between samples and dissimilarity 

(e.g. between groups, within groups) between classes/clusters can also be used.  

CLONALG [74], a clonal selection algorithm originally specified for binary character 

recognition and engineering optimization, has also been adapted for unsupervised 

clustering. Recently, a revised version of CLONALG, called CLONAX [191], was 

presented that was designed for supervised learning and the obtained results were 
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compared against other benchmarked techniques. CLONAX is functionally very similar 

to CLONALG. Many of the processes such as affinity calculation, cloning of 

antibodies, and affinity maturation are similar in both approaches. However, there are 

also a few differences in these approaches. Firstly, the user can define the size of the 

final set of memory cells obtained by the CLONAX algorithm. Secondly, CLONAX 

evolves memory cells separately for each class of antigens with the objective of 

minimizing classification errors on seen data or antigens. Finally, CLONAX performs 

noise filtering by considering memory cells from the opposite class while building a 

final model. The k-NN approach is applied to evaluate the performance of generated 

memory cells.  

The main work on the AIS supervised learning algorithm is the Artificial Immune 

Recognition System (AIRS) of Watkins et al. [88], which uses the concepts of artificial 

recognition balls (ARBs), resource limitations, memory cells and hypermutation. ARBs 

are essentially B-cells supplemented with information on the resources available in the 

system. AIRS adopts a one-shot approach in that learning patterns (antigens) are 

allocated to the closest matching ARB in the pool of ARBs, followed by a competitive 

stage, where the ARBs either survive or die depending on their fitness with regard to 

capturing antigens of the right class. Resources are re-allocated throughout the ARBs 

depending on which ARBs survive or die. Memory cells are produced from the 

surviving ARBs. At the end of the one-shot approach, the memory cells (two or more of 

which can represent one class) adopt a k-NN voting method by presenting test samples 

to all memory cells and reporting the stimulation values returned by each memory cell.  

AIRS adopts several immune system concepts and the results reported are competitive 

with other traditional supervised learning algorithms. However, there is nothing to stop 

the number of ARBs, and hence memory cells, from proliferating beyond the number of 

classes of data, which is why a final k-NN approach is required. In addition, while the 

concept of memory cells is used in AIRS, its functionality is different. In an NIS, once 

the memory cell is generated by a B-cell, it stays in the body almost indefinitely, but in 

AIRS memory cells can be replaced by more affine or more active memory cells. In an 

NIS memory cells form the first line of defense in the recognition of pathogens after 

affinity maturation so that a faster response to already seen pathogens can be mounted 

in the future. In the AIRS algorithm, however, pathogens/antigens are not exposed to 

memory cells at the training stage. Instead, each pathogen goes through a recognition 
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cycle through ARBs. Finally, the affinity threshold (AT) in AIRS is calculated as the 

average distance between all pathogens in the system. In AIRS each class (memory cell) 

has the same AT value, which is based on the assumption that all classes are 

homogenous in the structure. This may limit the effectiveness of AIRS for other types 

of real-world data. The AT proposed in the AIRS algorithm can lead the model to 

under-fit or over-fit the data on this assumption. In other words, AIRS essentially is a 

cluster-based approach to supervised learning, supplemented with a k-NN stage for 

allocating antigens and their associated pathogens into classes and a resource-based 

fitness model to reduce the number of candidate memory cells.  

Another critical issue is generalization. The purpose of generating memory cells is not 

only to represent the whole dataset with fewer instances but also to keep information on 

the original structure of data and classes. A model (final set of memory cells) which 

does not truly represent the whole data can suffer from under-fitting. A model that 

contains memory cells that do not represent the full variety of potential pathogens that 

belong to that memory cell class can therefore lead to under-fitting. On the other hand, a 

model that contains too many memory cells to represent pathogens can suffer from 

over-fitting. Therefore, lack of generalizability to new samples, where the model is a 

poor representation of the data, can lead to higher classification error, and hence results 

may not be much better than k-means or k-NN classifiers on test data. These problems 

of over-fitting and under-fitting can be addressed through the use of appropriate AT 

measure, as will be seen later. 

Nearly all other AIS supervised learning algorithms, as far as we are aware, are based 

on AIRS or its variants, and include ARBs, some form of k-NN voting, and resource 

limitation as part of a fitness measure. This chapter presents an immune system-based 

classifier which is more closely inspired by the NIS. The proposed algorithm works on 

two layers to capture free-floating pathogens. The first layer consists of memory cells to 

represent the first line of defense in the adaptive immune system, whereas the second 

layer is based on antibodies produced by B-cells. The role of negative clonal selection, 

which is omitted by the AIRS, is also used in our algorithm. Negative clonal selection is 

used here to generate and keep a diverse population of antibodies in the repertoire at all 

times. The concepts of local mutation and hypermutation are used by AIRS and are also 

used in our algorithm to explore wide search spaces. Two similarity measures, namely 
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global AT (same AT for all classes) and local AT (a different AT measure for each 

class), are proposed in this chapter to avoid over-fitting.  

6.3   Immune System Concepts Employed 

In our proposed algorithm, B-cells represent the classes and have unique receptors for 

the binding of pathogens (samples). The functionality of B-cells is to hold the pathogens 

until the end of the algorithm as well as produce antibodies once an antigen is presented 

to a B-cell via other associated memory cells or antibodies. Once an antigen is presented 

to a B-cell, the process of affinity maturation takes place and the B-cell further divides 

into two cells: a plasma cell and a memory cell. The plasma cell subsequently produces 

antibodies, which are hypermutated copies of the matured stimulated antibody, whereas 

the memory cell is an exact copy of the matured stimulated antibody. This memory cell 

now stays in the system to capture similar antigens. The interaction between antigen and 

antibodies or antigen and memory cell is measured using a standardized Euclidean 

distance calculation: a comparison is made between antigen and antibodies or memory 

cells and the antibody/memory cell and whichever shows the highest affinity (match) 

captures the antigen. When an antibody captures an antigen, the antigen leaves a genetic 

blueprint on the antibody, which is called affinity maturation. During this process the 

stimulated antibody fine tunes its receptors towards the captured antigen.  

Negative clonal selection is an important concept in an NIS and is also a key component 

in our algorithm. This concept is very important for keeping a diverse population of 

antibodies in the repertoire at all times, as well as for removing redundant antibodies. 

Negative clonal selection is undertaken against its own class of antibodies. In addition, 

if two generated antibodies are too similar to each other, only one copy is kept while the 

other is removed. After generating the final set of antibodies and undertaking initial 

negative clonal selection, another check is made against the newly created antibodies 

with already existing antibodies in a specific class. At this stage, if a newly generated 

antibody is too similar to an already existing antibody, the newly generated antibody is 

removed from the repertoire. More detail regarding negative clonal selection can be 

found in the experimental section (section 6.6). Two kinds of mutation are used here in 

the proposed HAIS algorithm, namely hypermutation and local mutation. Generation of 

new antibodies is achieved through hypermutation while local mutation is used for the 

affinity maturation process (fine tuning of the stimulated antibody). Memory cells are 
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another important component of this algorithm; it is these memory cells that are used 

for classifying test data. More details regarding memory cells are discussed later in 

section 6.6. The mapping between NISs and data mining concepts used in this chapter is 

shown in Table 6.1.  

Table 6.1: Mapping of NIS expression to AIS concepts 

NIS Expressions Data Mining Concepts 

Antigens/pathogens Samples 

B-cells Classes 

Antibodies Variations of already existing instances 

Antigens to Antibodies interaction Pair-wise comparison between new and existing 

instances 

Similarity measure Normalized Euclidean distance 

Mutation Creates diverse population of solutions 

Negative Clonal Selection Controlling antibodies’ population 

Memory Cells Capture the essence of already seen patterns 

Affinity threshold Similarity criterion 

Affinity maturation Learning from new patterns 

 

6.4   HAIS Supervised Learning Algorithm 

An overview of the proposed HAIS algorithm for supervised learning is now provided 

(a full explanation follows the algorithm). Abbreviations used are: B-cell; antibodies 

produced through plasma cells (Abs); affinity threshold (AT); memory cell (M-cell); 

antigen (Ag); negative clonal selection threshold (NST); affinity maturation threshold 

(AMT). All the data instances are regarded as Ags; hence the term Ag Pool is used, 

where all Ags are placed for random selection one at a time. 

1) Set parameters: AT, Local Mutation, Hypermutation, AMT  

2) Start with generating as many B-cells as classes in the data 

3) Randomly select a data instance from each class, assign them to B-cells, create M-cells and Abs 

4) Run until no Ags left in the pool 

5) Randomly pick an Ag from the pool 

6) Get Ag’s label and brings it to respective B-cell 

7) Compare it with existing M-cells in the system and select the most stimulated M-cell 

8) If  difference between stimulated M-cell and Ag is less than AT, do: 

i) The respective B-cell captures Ag, and go back to step 5 

9) Else 
a) Compare Ag with the existing Abs generated by same B-cell, and select the most stimulated Ab 

b) If difference between stimulated Ab and Ag is less than AT, do: 

i) B-cell will capture Ag 

ii) Stimulated Ab will undergo affinity maturation process to get its receptor tuned with Ag 
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iii) The tuned Ab produces Abs 

iv) B-cell generates an M-cell  

v) Negative clonal selection is performed on all Abs in selected B-cell 

vi) Go back to step 5 

c) Else (if existing Abs can’t capture Ag) 

i) Mutate the most stimulated Ab until the required affinity maturation is achieved 

ii) B-cell captures the Ag 

iii) M-cell is generated  

iv) Generate Abs 

v) Negative clonal selection is performed 

vi) Go back to step 5 

d) End if 

10) End if 

11) End main 

6.5   Explanation of Algorithm 

As noted earlier, the algorithm uses normalized Euclidean distance to calculate the 

similarity between Ags and Abs/M-cells. As an initialization phase, the data is 

normalized between zero and one to give each feature equal weight, and the distance 

calculated as: 

   
 

 
 √∑ (      )

  
           (1) 

where D is the similarity measure, f is the number of features (number of columns in the 

data if Ags are stored in rows), and       are Ab and Ag features respectively.  

If the minimum of the similarity measure is less than the AT, then the Ab/M-cell gets 

stimulated (Steps 8 and 9a, b and c in the algorithm above). In this chapter two separate 

measures of calculating AT are discussed which can be used depending on the structure 

of the data. Equation (2) below calculates a global AT for each class (in the data) by 

considering the sum of the standard deviation of each feature in the data and then 

dividing it by the number of features in the data. The resulting value is then divided by a 

user-defined parameter α, to make the affinity measure stronger or weaker among Ags 

and Abs while calculating similarities.  

    

 
 
 ∑  (    )

 
                  ( ) 

where σ is the standard deviation of the data and α is the user-defined parameter which 

must be a non-negative and greater-than-zero value. 
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On the other hand, in Equation (3) each class is assigned a different (local) AT 

depending on its own standard deviation. In other words, the sum of the standard 

deviation of data related to each class is calculated separately, and then divided by the 

number of features to calculate a local AT value for each class. The effects of α on the 

production of final model (M-cells) is discussed in section 6.6. 

 

    

 
 
 ∑  (     )      

   

 
          ( ) 

where σ is the standard deviation of the data, and      
 
 is all data instances associated σ 

with class label  .  

The stimulated Ab brings the captured Ab to the B-cell, which holds it till the end of the 

algorithm. The B-cell then undergoes a process of affinity maturation and produces a 

plasma cell and a M-cell. Affinity maturation is the process by which the stimulated Ab 

fine-tunes its receptors in the direction of the antigenic receptors. This affinity 

maturation is controlled by another user-defined parameter called the AMT.  

     
  

 
                     ( ) 

The AT is the value calculated in Equation (2) or Equation (3), and β is a user-defined 

parameter that depends on the data structure and also on the value of AT. 

There are two mutation rates used in this chapter, namely local mutation and 

hypermutation. Hypermutation is used to cover a wider search space, whereas local 

mutation is used for the purpose of fine-tuning the Abs to attain affinity maturation. For 

the purpose of the experiments here, a hypermutation rate of 10% to 20 % and local 

mutation rate of 5% was used. In short, Abs are created by using hypermutation and 

they then fine-tune their receptors in the direction of Ags through local mutation.  

Negative clonal selection is one of the key ideas used in this algorithm. During the 

process of producing plasma cells and consequently releasing Abs into the system, 

negative selection is performed to remove too similar Abs. Negative clonal selection is 

conducted at two levels. At the first level, when the new Abs are generated, a 

comparison is made among all newly generated Abs and if two are too similar to each 

other, one of them is removed. At the second level, just before releasing the newly 
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created Abs into the system, they are also compared against the already existing Abs in 

the system (against their own class), and again if two are too similar then the newly 

generated Ab is removed from the system. Negative clonal selection is performed 

against its own class of Abs and not against Abs of another class to encourage natural 

competition.  

6.6   Experimental Results 

The proposed algorithm was tested on a number of benchmarked datasets to assess the 

classification accuracy. This section will explain the results obtained on various datasets 

and then discuss the behavior and functionality of some of the parameters used in this 

algorithm. The datasets Iris, Ionosphere, Pima Diabetes, Sonar and Thyroid (see 

appendix A) were used. The algorithm’s performance is compared against AIRS and 

AIRS2 [88], which are well known AIS- based classifiers. 

After training the algorithm the final set of M-cells obtained was used for classification, 

which was achieved using k-NN. Different values of k were tried and finally 3-NN was 

selected (majority voting between M-cells) for all datasets. These results were obtained 

from averaging over 5 to 10 runs and using different methods of cross-validation. For 

comparison purposes the same scheme of cross-validation used by Watkins in AIRS 

[88] was used here. For example, in the case of the Iris data 5-fold cross-validation was 

employed with averaging over 10 runs on the same data division as reported in [88]. 

The k-fold schemes of all other datasets are explained in Table 6.2. All the datasets use 

a k-fold scheme except the Ionosphere dataset, where the first 200 data instances were 

regarded as training data and the remaining 151 instances as testing data.  

The experimental results shown in Table 6.3 suggest that our algorithm performs as 

well as the AIRS and AIRS2 algorithms, and for Thyroids and Sonar datasets it 

produces better results.  

One of the interesting features of AIS algorithms in general is their capability of data 

summarization or data reduction through the process of M-cell production. These M-

cells are then used to classify any unlabeled data. Table 6.4 presents a comparative 

analysis of the data summarization of our algorithm against AIRS and AIRS2. The 

results indicate that HAIS produces equal to or sometimes better than AIRS2 data 

summarization for the Sonar, Ionosphere and Thyroid datasets, whereas its performance 
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is relatively poor on the Iris and the Pima Diabetes datasets. However, overall the 

capability of data reduction of the proposed algorithm is competitive against AIRS2. 

The parameters used in these experiments are given in Table 6.5. Various parameters 

were tested; however, only parameter values that gave consistently better classification 

results are stated. 

Table 6.2: k-folds scheme used in this chapter 

Dataset k-folds Runs 

Iris 5 10 

Ionosphere 200 Training/151 Testing 10 

Pima Diabetes 10 5 

Sonar 13 10 

Thyroids 10 10 

    

Table 6.3: Comparison of accuracy of the HAIS algorithm against other AIS classifiers using 

benchmarked data 

Dataset Avg. Acc. 

(%) 

Best Acc. 

(%) 

M-cells AIRS1 

% 

AIRS2 

% 

Iris 96.00 97.33 56/120, 53% 96.7 96.0 

Ionosphere 95.36 96.67 99/200, 51% 94.9 95.6 

Diabetes 74.13 75.21 315/692, 46% 74.1 74.2 

Sonar 86.54 88.46 128/192, 33% 84.0 84.9 

Thyroids 96.05 97.21 112/192, 41% 94.82 --- 

 

Table 6.4: Comparison of M-cell formation (data reduction) 

Dataset Size HAIS AIRS1 AIRS2 

Iris 120 53% 65% 74% 

Ionosphere 200 51% 30% 52% 

Diabetes 691 46% 32% 60% 

Sonar 192 33% 25% 7% 

Thyroids 194 41% --- --- 
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Table 6.5: Parameters used in the experiments 

Dataset Alpha Beta NST Mutation (%) 

Iris 4.5 10 0.02 15 

Ionosphere 9 10 0.015 15 

Diabetes 5.5 10 0.025 15 

Sonar 12 10 0.015 15 

Thyroids 5 10 0.025 15 

 

When there are homogenous class structures in the data, it is easy to avoid over-fitting 

and under-fitting of data while building a predictive model. However, in real-world 

datasets where classes within a set vary in structure, over-fitting and under-fitting can be 

very difficult to deal with. This can be explained with the help of the diabetes data taken 

from [177]. This dataset has three classes (Normal, Chemically Diabetic and Overtly 

Diabetic). It was selected here to observe the behavior of over-fitting when each class 

has a different degree of sparseness. The dataset was used to test the effects of local and 

global AT measures proposed in this chapter, and the results were then compared with 

AIRS1 and AIRS2. 

In Table 6.6, the original data had a total of 145 instances, where 76 instances belonged 

to class 1 (normal), and 36 and 33 instances to classes 2 and 3 respectively. The global 

AT in HAIS was able to perform approximately 54% data summarization in comparison 

to the original data. That is, the variation in 145 samples has been reduced to 67 M-

cells, which represents a 54% reduction. But it can be clearly seen that classes 2 and 3 

together only achieved 28% of data reduction for a global AT (the average of 23 and 26 

M-cells obtained from 36 and 33 original data instances). Furthermore, the same trends 

can also be noticed when AIRS1 and AIRS2 are used; they over-fit classes 2 and 3. This 

is in comparison to a local AT, where the total data reduction is about 60% and classes 

2 and 3 show almost the same (59%) data reduction. The 3-D projection of original data 

showing the three classes with different colors and symbols, and the M-cells (black 

marks) obtained at the end of the HAIS algorithm using a global AT and local AT are 

shown in Figure 6.1. The evidence of over-fitting for classes 2 and 3 (square- and 

triangle-shaped classes) can be seen in Figure 6.1. In Figure 6.2, where a local AT 

measure is used, this issue has been resolved and the data reduction in all three classes 

is almost equal. 
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It can be concluded from this experiment that global AT only works well when classes 

are known to be homogenous. Homogeneous classes are where the data making up the 

class possess homoscedasticity (the samples making up the class have the same finite 

variances and distributions across attributes) and are uniform in composition and 

character. The local AT, which uses variable AT values for each class, can be used to 

avoid over-fitting or under-fitting issues.     

Table 6.6: M-cell formation in diabetes data for each class with data summary capability 

 Class1 Class 2 Class 3 Total Errors 

Original 76 36 33 145 - 

Global AT 18 23 26 67 (53.7%) 2 

Local AT 31 15 12 58 (60.0%) 3 

AIRS1 34 27 26 87 (40.0%) 7 

AIRS2 23 24 29 76 (47.6%) 2 

 

 

Figure 6.1: 3-D projection of original data and M-cells generated by the HAIS algorithm using a global 

AT measure 
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Figure 6.2: 3-D projection of original data and M-cells generated by the HAIS algorithm using a local 

AT measure 

As explained in the previous section, negative clonal selection is very important in 

controlling the population of Abs. The results of applying a simple negative clonal 

selection process are shown in Figure 6.3. A simulated data point x = [0.25 0.75] is 

created and using 10% hypermutation 200 Abs are then generated. Blue circles 

represent Abs generated using data point x. Then negative selection is performed using 

various values of NST ranging from 0.005 to 0.020. The final sets of Abs obtained are 

shown as black spots in Figure 6.3. It is clear that negative clonal selection and 

especially the NST parameter can be used to obtain diverse and non-similar population 

of objects. For the purpose of these experiments, NST ranged from 0.010 to 0.020, 

depending on the dataset used.   

M-cells are one of the core components in the HAIS algorithm and are used to classify 

new instances. Figure 6.4 presents the original 2-D projection of the Iris dataset, and 

each class is shown using different shapes and colors. Solid-colored marks are the final 

sets of M-cells obtained at the end of the algorithm. Class-wise allocation of M-cells is 

explained in the caption to Figure 6.4. The α (for AT) and β (for AMT) are set at 4.0 

and 10 respectively. The complete dataset was used here to demonstrate production of 

the final set of M-cells, which is 71 out of 150 instances. These M-cells can be used for 

validation or testing data when class labels are missing or hidden. 
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Figure 6.3: Negative clonal selection of Abs using various NST parameters 
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Figure 6.4: Final M-cells produced by the HAIS algorithm using α = 4.0 (M-cells = 71/150) 

As mentioned earlier, α controls the stimulation level of Abs/M-cells during the 

interaction of B-cells and M-cells with Ags. A higher α means that an Ab/M-cell needs 

a greater level of similarity with Ags for the appropriate B-cell to be stimulated, and 



148 

 

vice versa. The relationship between the final set of M-cells and α can be seen in Figure 

6.5, where the number of M-cells show a positive linear relationship with the α 

parameter. In other words, as the value of α increases, the number of M-cells also 

increases.  
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Figure 6.5: Average number of M-cells (y-axis) obtained at various values of α (x-axis) 

6.7   Parameters Evaluation 

The experiments conducted so far have focused only on the classifier’s accuracy on 

unseen data (test data) and data reduction capabilities on seen data (training data). There 

has been little attention given to the effects of various parameters such as α and β, or 

how various Ag presentation orders can affect classification results. The following 

experiments conducted in this section were designed to serve four main purposes:  

1) Highlight the effects of different Ag presentation orders in the HAIS supervised 

learning algorithm. 

2) Illustrate the role of affinity maturation in the HAIS supervised learning algorithm. 

3) Demonstrate the effect of the α parameter on classification accuracy. 

4) Demonstrate the effect of the β parameter on classification accuracy. 

6.7.1   Antigen Presentation Order 

The Iris dataset is divided into 5-folds and the same 5-fold distribution of data instances 

was maintained for all the experiments reported on here. The effects of different Ag 

presentation orders in achieving better clustering solutions have been discussed for 



149 

 

unsupervised clustering in previous chapters. The supervised version of the HAIS also 

faces the same challenge, in that its performance is affected by the Ag presentation 

order (the way M-cells are formulated). The training phase of the HAIS algorithm 

produces M-cells which can be used in the testing phase to assign labels to unseen and 

unlabeled data instances. The different Ag presentation order produces different sets of 

M-cells. This problem is highlighted in Figure 6.6, where different sets of M-cells are 

generated, hypothetically, based on the different order of Ag presentation.  

In the proposed HAIS algorithm, data instances (Ags) are selected purely at random to 

be captured by their respective B-cells, therefore the position of M-cells are also random 

in the HAIS algorithm. These sets of M-cells (b, c and d in Figure 6.6) are all valid 

summarized representations of the original data. The behavior of M-cell formulation 

becomes even more complicated when these M-cells are used to predict test data (data 

instances with no class labels). These M-cells occupy a different feature space and the 

arbitrary presence of these M-cells can greatly affect the class association of unseen 

data. This problem becomes more interesting when data has increasing dimensions and 

as a result class members are overlapping in the feature space.    

(d)

(a)

(c)

(b)

 

Figure 6.6: Ag presentation order and function of M-cells: (a) simulated data, (b) first set of M-cells 

(marked), (c) second set of M-cells (marked), (d) third set of M-cells (marked) 
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6.7.2   Affinity Maturation 

One main difference between the unsupervised version of HAIS and the supervised one 

is the presence of an affinity maturation phase in the supervised HAIS algorithm. In 

unsupervised HAIS, once an Ag is recognized by Abs or M-cells, it is returned to the 

appropriate B-cell and the B-cell receptor adapts to the captured Ag completely. This 

means that the B-cells produce further Abs based on the captured Ag, not on the 

stimulated Ab that has captured an Ag. In other words, in unsupervised HAIS a perfect 

100% learning of Ab from Ag is performed and this standpoint removes the need of 

fine-tuning or adapting B-cell receptors towards Ag receptors to generate a further 

population of Abs. Here, in the HAIS supervised learning algorithm, once an Ag is 

recognized by an Ab the Ab adapts or fine-tunes its receptor in the direction of captured 

Ag, using a random generation of Abs via a local mutation operator.  

Two different sets of experiments were performed in order to observe the effects of 

using affinity maturation processes (as used in the HAIS supervised learning algorithm) 

in comparison to 100% learning (as performed in HAIS unsupervised algorithm). In the 

first set of experiments, the original HAIS supervised learning algorithm as explained in 

section 6.4 was used, with a β value of 10 (see Equation 4). In the second set of 

experiments, once an Ab captures an Ag, the Ab completely fine-tunes its receptors 

towards the Ag (e.g. Ab := Ag). This removes the need of the affinity maturation 

process in the original HAIS supervised algorithm in steps 9-b-ii and 9-c-i. Each set of 

experiments was repeated 50 times and the results are shown in Figures 6.7 and 6.8. The 

results are shown using 1-NN, 3-NN and 5-NN. Figure 6.7 shows the results when a 

stimulated Ab 100% adapts to Ag receptors while Figure 6.8 shows the results when a β 

value of 10 is used for the calculation of the AMT parameter (Equation 4) for the 

affinity maturation of the stimulated Abs. One simple observation to be made from 

Figures 6.7 and 6.8 is that 3-NN performs better than 1-NN or 5-NN.      
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Figure 6.7: 100% adaptation of Ag receptors by stimulated Abs. Results of 50 runs using 1-, 3- and 5-NN 

are shown.  

 

Figure 6.8: An β of 10 is used for affinity maturation to adapt Ag receptors by stimulated Abs. Results of 

50 runs using 1-, 3- and 5-NN are shown.  

Table 6.7 summarizes the results obtained in Figures 6.7 and 6.8. The mean, standard 

deviation, minimum and maximum classification errors obtained are given and Table 

6.7 demonstrates that using the extra steps of affinity maturation (9-b-ii and 9-c-i) does 

not add any additional benefits to the performance of the algorithms. The performance 

of the algorithm ‘without affinity maturation’ is as good as with the algorithm ‘with 

affinity maturation’. This experiment eliminates the need to use the standard affinity 

maturation process in the HAIS algorithm.    
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Table 6.7: Summary of Figures 6.7 and 6.8 

    Ab := Ag     β = 10   

  1-NN 3-NN 5-NN 1-NN 3-NN 5-NN 

Mean 8.06 5.36 7.12 8.20 5.42 7 

Std. 1.078 1.2081 1.2395 1.2617 1.1622 1.2122 

Min. 6 3 5 7 3 5 

Max. 10 8 10 11 8 9 

 

6.7.3   The Role of the α and β Parameters 

There are two main parameters used in the HAIS supervised learning algorithm, namely 

α and β; the former controls the stimulation level of Abs/M-cells during interaction with 

Ags and the latter is known as the degree of learning of stimulated Abs from Ags. We 

used the same 5-fold Iris data configuration, as explained in section 6.7, to understand 

the influence and role of various α and β parameters on the final classification results 

obtained. The results are shown using 1-NN, 3-NN and 5-NN. The first value in each 

cell of Tables 6.8 and 6.9 is an average classification error obtained over 50 runs and is 

followed by the standard deviation in parentheses.  

We have already shown in Figure 6.5 that the number of M-cells obtained by the 

algorithm is directly influenced by the α parameter. The value of α and the final number 

of M-cells have a positive linear relationship. When the α parameter value is set to be 

one or two, the average lowest classification error of 12.0 was obtained using 1-NN, as 

there were not many M-cells; also those M-cells are very distant from each other and 

adding the majority voting system (3- or 5-NN) can seriously affect the class association 

of unlabeled instances. Therefore, 1-NN was able to produce better classification results 

than 3- or 5-NN. However, for α values of 3 or 4, there was around 40% to 50% data 

summarization and 3-NN achieved a better classification result than 1- or 5-NN. The 

trend continued; for an α value of 6 to 10, 5-NN gave superior classification results. 

This is because, there are many more final sets of M-cells obtained at the end of a 

training phase, so more accurate class labels can be assigned using a majority vote from 

more than 3 M-cells; in this case 5 M-cells are sufficient. The reason for using an α 

value of 4 earlier in the experiments is that at this value we obtained a minimum 

classification error of 3 (see Figures 6.7 and 6.8). Furthermore, the task of HAIS is not 

only to find a better classification but also to achieve a higher degree of data 
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summarization. Therefore we selected an α value of 4, where errors are relatively lower 

and data reduction capabilities are good (approximately 50%).  

The β parameter is also very important in HAIS, as it controls the degree of learning: 

how much a stimulated Ab can learn from a captured Ag. The learning values are 

acquired by using Equation 4. The experiment was run 50 times each using different β 

parameter values ranging from 1 to 8 and the results are shown in Table 6.9. It can be 

seen that the β value with 3-NN produced better classification results throughout. 

Another thing to learn from this experiment is that the average classification error 

reduces as the β parameter value increases. Here we have only shown experiments with 

β values of 1 to 8. Earlier in Figures 6.7 and 6.8 we showed that a β value of 10 gives 

almost same results as a 100% transfer of information from Ag to Ab. Therefore, we 

can conclude from this experiment that a reasonably high learning ratio of Abs from 

Ags is required to achieve improved classification accuracy.  

Table 6.8: Average classification errors obtained on various α parameter values 

           Alpha (α)       

  1 2 3 4 6 8 10 

1-NN 12.0       

(0) 

12.34 

(2.370) 

9.90 

(1.474) 

8.60 

(1.229) 

7.180 

(0.388) 

7.0      (0) 7.0 (0) 

3-NN 38.48 

(0.505) 

10.32 

(2.142) 

7.880 

(1.944) 

5.560 

(1.0721) 

5.520 

(0.505) 

6.0      (0) 6.0 (0) 

5-NN 59.440 

(0.501) 

10.36 

(1.925) 

7.90 

(1.764) 

7.560 

(1.417) 

5.380 

(0.567) 

4.0      (0) 4.0   (0) 

 

Table 6.9: Average classification errors obtained on various β parameter values 

         Beta (β)     

 1 2 3 4 6 8 

1-NN 8.140 

(1.841) 

8.240 

(1.721) 

8.260 

(1.536) 

8.240 

(1.422) 

7.940 

(1.420) 

8.040 

(1.538) 

3-NN 6.340 

(1.560) 

6.480 

(1.529) 

5.920 

(1.243) 

5.920 

(1.085) 

5.820 

(1.3702) 

5.720 

(1.196) 

5-NN 7.360 

(1.467) 

7.240 

(1.623) 

7.000 

(1.294) 

7.140 

(1.726) 

7.080 

(1.209) 

7.400 

(1.370) 
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6.8   Discussion 

An interesting question to be asked here is: Why should we want to construct a 

supervised AIS algorithm, given that it is not biologically plausible to assume that 

viruses and other pathogens come with labels that clearly identify them as dangerous or 

non-dangerous? First of all, we don’t really know how an NIS works. Initially 

immunologists believed that the immune system differentiates between self and non-self 

(external labels). Recently, there has been another theory gaining a lot of attention: 

‘danger theory’ (discussed in previous chapters). According to this theory, the immune 

system recognizes invaders based on an internal immune response generated in the form 

of danger and non-danger signals. Secondly, and more importantly, we do not yet know 

much about the kind of learning performed in an NIS: is it supervised learning or 

unsupervised learning? It cannot be purely unsupervised, as the system has to be 

validated with some external objective function (the ultimate test of our immune system 

is whether we live or die). On the other hand, it cannot be purely supervised, as 

pathogens clearly do not come with labels (self, non-self) that can guide an immune 

system to trigger an appropriate immune response. Therefore, we strongly believe that 

the immune system performs semi-supervised learning. In semi-supervised learning the 

learning is performed using a hybrid of both supervised and unsupervised learning 

techniques, as data consists of both labeled and unlabeled instances (examples). 

Supervised and unsupervised learning algorithms are two ends of a very wide spectrum 

of machine learning techniques. Semi-supervised learning covers the rest of the 

spectrum. In this research, we have investigated AIS-based unsupervised learning 

approaches in previous chapters and now we have proposed a supervised AIS learning 

approach to cover the other end of the spectrum. At present, we are not completely 

aware of the degree of semi-supervised learning performed in an NIS. Therefore, in this 

research we are trying to cover both extremes of the spectrum.    

6.9   Summary 

The focus of this chapter was to develop a novel supervised learning algorithm inspired 

by NISs. Watkins [88] showed with experimental results that AIRS is more than 

comparable with other traditional supervised learning techniques, such as neural 

networks, k-NN and C4.5. This chapter has shown that our proposed HAIS algorithm 
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performs as well as AIRS and on some datasets actually outperforms it. Some of the 

important concepts of an NIS, such as B-cells, M-cells, negative clonal selection and 

affinity maturation were used to build our AIS and we argue that this adds a greater 

degree of biological plausibility to the HAIS. A more active role for M-cells is proposed 

and used in the HAIS. Negative clonal selection, which is replaced by ARBs in AIRS, is 

also used in our algorithm. Two separate affinity threshold measures, namely global AT 

and local AT were introduced in order to avoid over-fitting, and the experimental results 

were presented to demonstrate its effectiveness. In particular, the local AT that we 

introduced can help to deal with datasets that have non-homogeneous class structures.  

The general behavior of the parameters of the HAIS supervised learning algorithm was 

investigated and the results reported in this chapter. The arbitrary formulation of M-

cells due to the random Ag presentation order was also examined. The role of M-cells in 

achieving better classification accuracy was also investigated and reported. We found 

that various Ag presentation orders can produce different classification results. We also 

extensively discussed the roles of affinity maturation process and M-cells and 

concluded from our experimental results that it is the spatial positioning of M-cells 

which contributes most profoundly towards achieving low classification error on unseen 

data. 

The final M-cells obtained by the HAIS algorithm and k-NN method were then used to 

validate the HAIS algorithm. It was also demonstrated with experimental results that the 

value of k in k-NN is dependent on the α parameter value selected. A more robust 

validation method must be considered that can also take care of outliers in the 

testing/validation data. This may be achievable by using a mutation strategy that is more 

sophisticated in the final M-cells.  

In summary, the chapter reported on novel work that is situated at a very early stage of 

our understanding of the NIS and of the advantages that can accrue through adding 

greater biological plausibility to AIS algorithms as our understanding of micro-level 

processes in NISs grows. This chapter has opened up more avenues of research than it 

has closed down, which bodes well for future AIS research.  

AIS algorithms including HAIS are known to possess data reduction capabilities 

through M-cells. However, there is currently very little understanding of how effective 

M-cells are at reducing the data (i.e. for generalizing to important structural properties 
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of the data) while at the same time preserving critical class information. Furthermore, it 

would also be interesting to see whether the introduction of M-cells aids or hinders the 

artificial learning process at a suitable learning stage. Vaccination is another very 

important learning process in NIS which has not been discussed or explored so far. 

Vaccination is the process of stimulating the immune system by using a weaker 

infectious agent or extracting proteins from an infectious agent. The immune system can 

mount a response against the partial virus or bacteria. This process provides immunity 

from even more harmful pathogens of the same kind in the future and the body becomes 

immune to such pathogens for almost the rest of its life. In the next chapter, the role of 

Abs/M-cells will be discussed in the context of vaccination of an artificial learning 

system. 
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Once the body gains immunity to a specific disease, it generally remains free from it 

almost for life. One way to build such immunity is through vaccination. Vaccination is 

the process of stimulating the immune system by using an infectious agent in a weaker 

form or proteins extracted from an infectious agent [65]. A vaccine typically activates 

an immune response by generating antibodies, which are cloned and hypermutated to 

bind to antigens (fragments) of pathogens. The main aim of this chapter is to explore the 

effectiveness of the artificial vaccination of learning systems by injecting vaccination 

material into the learning system to improve its learning capabilities.  

In previous chapters, we have introduced the Humoral-Mediated Artificial Immune 

System (HAIS) supervised learning algorithm, which is inspired by the way an adaptive 

immune system can recognize and trigger an immune response through generations of 

antibodies. The HAIS supervised learning algorithm, like other artificial immune 

system (AIS) algorithms, produces memory cells which are used to classify unseen data 

patterns. Memory cells are regarded as a summarized form of the original data. 

Therefore, the final set of memory cells can also be seen as a form of vaccine (proteins 
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extracted from pathogens) that can be used in a learning system to enhance its learning 

capabilities. Artificial neural networks (ANNs) are used to model the learning process 

together with the HAIS to synthesize the vaccination material for injecting into the 

learning process. Put simply, the primary objective of this chapter is to demonstrate that 

effective and improved learning can be achieved by applying the concept of 

vaccination. Two other interesting phenomena of natural immune systems (NISs) are 

immunosuppression and autoimmune diseases. These phenomena are also explored and 

discussed in terms of the hypermutation of antibodies. 

The rest of this chapter is structured as follows. Section 7.1 explains the motivation of 

the chapter and highlights the importance of a vaccination process in building a 

supervised learning model. Section 7.2 explains the proposed methodology which 

involves a hybrid architecture consisting of the HAIS and an ANN. Section 7.3 

demonstrates the feasibility of the proposed methodology with experimental results 

conducted on simulated and real-world datasets. Finally, a summary of the chapter is 

presented in section 7.4. 

7.1   Introduction 

The immune system can deal with previously unseen pathogens and viruses based on 

existing knowledge and can also trigger much faster responses to already seen 

pathogens (if in the future same pathogen attacks again) because of the immune 

memory attained by an NIS during the previous attack. Therefore, once an NIS is 

exposed to a disease and new pathogens, it adapts and remains immune for long periods 

after the disease has been combated. One very successful method of learning in the 

adaptive immune system is vaccination, where inactive or weakened forms of the 

pathogens are introduced into the NIS to stimulate a defensive response without leading 

to the disease [65]. Vaccines lead to the production of antibodies so that the NIS is 

primed should the strong version of the pathogen be encountered in the future. Vaccines 

are categorized by composition and formulation (how they are derived, how they are 

used, and how their effects are mediated). For example, the tetanus vaccine is produced 

from the toxic chemicals (antigens) extracted from the tetanus pathogen, as are the 

vaccines for hepatitis B and diphtheria [65].  
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Two of the main components of an adaptive immune system are memory cells and 

antibodies, which help the NIS fight pathogens and subsequently eradicate them (with 

the help of other NIS components). Memory cells encourage specialization by keeping 

track of already encountered pathogens and, if the same pathogen attacks the body in 

the future, the presence of memory cells can trigger a faster response to eliminate these 

pathogens by producing the relevant antibodies. Once released by memory cells, 

antibodies circulate in the body and help recognize and eliminate similar pathogens by 

binding to pathogenic antigens. Even as memory cells proliferate to produce antibodies, 

the paratope of the antibodies (that is, the sequence of amino acids that binds to the 

epitope on an antigen) can mutate with high frequency so that they are able to bind 

better with the antigens. This mutation, called hypermutation, is commonly used in AIS 

clustering/classification approaches to find improved solutions on the assumption that 

pathogens/antigens are data samples and antibodies and their cells are classes or 

clusters. But despite the importance of hypermutation in AIS, there is relatively little 

understanding of its behavior or of how to use it most effectively in learning. This 

chapter explores immunosuppression and autoimmune disease in the context of 

hypermutation within AIS. Immunosuppression refers to reduced activation of the 

immune response, whereas an autoimmune disease arises from an over-activated 

immune response of the body [65]. One of the most significant potential benefits of 

using memory cells in AIS is their data reduction/generalization capability. The 

objective of data reduction is to simplify the representation of the data while keeping the 

core information of the original data intact. This chapter will demonstrate that memory 

cells obtained using the HAIS algorithm can also provide effective data reduction 

capabilities. 

Hart and Timmis [10] proposed that AISs be incorporated with other biologically 

inspired techniques such as neural networks, swarm algorithms and genetic algorithms 

to realize their full potential. The aim of this chapter is to bring together two existing 

strands of research, namely AIS and ANNs to form a new hybrid architecture, where the 

AIS is embedded in an ANN to help the ANN learn through memory cells and 

hypermutated antibodies. Learning capabilities, highly specialized cells, diversity and 

memory are some of the common features of both systems [64]. ANNs are inspired by 

the structural and functional aspects of the biological neural networks in the human 
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brain. They are very well established in the fields of classification and machine learning 

in general [14, 20].  

The task of any classifier (in supervised learning) is not only to build up a model that 

can produce minimum classification errors on training data, it is also to generate a 

model that can classify unseen and future patterns efficiently and accurately, i.e. a 

model that generalizes to unseen data. Typically, a k-fold technique is used to assess the 

generalization capabilities of a classification algorithm. The main objective of this 

chapter is to demonstrate that vaccination of an ANN through memory cells and 

antibodies does not reduce the ANN’s learning capability and in some cases can 

improve on it. Our hypotheses in this chapter are as follows:  

H1: Training an ANN with memory cells prior to exposure to the original data leads to 

improved and effective learning (i.e. memory cells as data reduction are effective).  

H2: Effective learning of unseen pathogens and the classes to which they belong can be 

achieved by vaccination of learning systems.  

7.2   Proposed Methodology 

The main objective of the proposed methodology in this section is to investigate 

whether the introduction of memory cells at a suitable stage of learning (a form of 

vaccination) aids or hinders the learning process in an ANN. Memory cells are 

considered to be a subset of the original data or, in this case, proteins extracted from 

pathogens (referred to as acellular vaccines). The HAIS algorithm proposed for 

supervised learning is used to extract memory cells (vaccine) from the data which are 

then used to generate antibodies with different mutation rates, which can be seen as 

various levels of activated immune response. In this chapter, the mutation rate of 

antibodies varies from 5% to 40% depending on the dataset used. Negative clonal 

selection (a salient feature of the HAIS algorithm) is performed on generated antibodies 

to maintain diversity and to avoid over-population. The ANN is used to model the 

effectiveness of the memory cells/antibodies.  

The ANN used here can be considered to be a virtual learning organism that may be 

experimented on, and the HAIS as a subpart of the ANN to produce the vaccination 

material. A simple back propagation and logistic activation function-based ANN was 



161 

 

used for the experiments. JavaNNS (a version of SNNS) [192] was used to implement 

the ANN. Further details regarding ANN architecture, back propagation and various 

activation functions can be found in [41]. The vaccination experiment proposed here has 

two stages:  

A. There is no prior immune system in the ANN.  

B. There is a prior immune system in the ANN.  

Stage A is achieved by using all the data to train the ANN after exposure to the vaccine 

(there is no test phase), and Stage B by separating the full data into training and test data 

and then initially training the ANN on the training data only prior to checking the 

generalization capabilities on the test data. Therefore, vaccines (memory cells) are 

extracted either from the whole dataset (in the case of Stage A) or only from test data 

(in the case of Stage B). The complete methodology can be explained in three phases 

which are shown in Figure 7.1. It is necessary to prove three main conditions to validate 

our proposed hypotheses:  

a. The effectiveness of memory cells in learning systems. 

b. The effectiveness of antibodies obtained from memory cells in learning systems, 

where no prior immune system exists.  

c. The effectiveness of both memory cells and/or antibodies when a prior immune 

system exists. 

Therefore, we devised three sets of experiments (or conditions) to systematically test the 

effectiveness of our proposed methodology. These sets of experiments or conditions are 

explained in Figure 7.1. 

7.2.1   Condition 1 - C1  

It is assumed that no prior immune system exists in the ANN learning system. All the 

data is assumed to be a pathogen attack. The vaccination is produced in the form of 

memory cells from the data using the HAIS supervised learning algorithm. The obtained 

vaccine (memory cells) is injected into the learning system (ANN) before the ANN is 

exposed to full pathogen attack (the complete data). In simple terms, memory cells are 

used to train the ANN and once learning is completed (convergence is achieved), the 

whole dataset is then used to further train the ANN. This process is shown in Figure 7.2. 
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Phase I (P-I) of the proposed methodology is missing as we are assuming that no prior 

immune system exists.  

7.2.2   Condition 2 - C2  

As explained earlier, once a vaccine is injected into the human body (learning system), 

it triggers an immune response by generating antibodies using hypermutation. In C1, a 

vaccine (memory cells generated by the HAIS algorithm) is introduced into the system 

and the effectiveness of that vaccine is observed. Here, in C2, separate population sets 

of antibodies are generated from memory cells using different mutation rates. These 

generated antibodies are used to train the ANN (separately), prior to training the ANN 

on the original data to observe the effectiveness of a vaccination process in the learning 

systems. This process is shown in Figure 7.3.  

7.2.3   Condition 3 - C3  

Here we consider the circumstance where a prior immune system exists. To demonstrate 

this we have divided the original data into a training set and test data. Memory cells and 

antibodies are generated from the test data. Now, in the ANN learning system, initial 

learning is performed on the training set (P-I). In the second phase (P-II), memory cells 

or antibodies along with the training data are used to train the ANN. Finally, the test 

data is used to again train the ANN. The entire process is shown in Figure 7.4.  

Initial phase (P-I): Train ANN on Training data if primary immune system exists,     

or skip this phase

Vaccination phase (P-II): Use vaccination (memory cells or antibodies) as well as      

training data to train the ANN. 

Pathogen exposition phase (P-III): Once the ANN has converged during the 

vaccination phase, expose original pathogens (or testing data) to the ANN. 

 

Figure 7.1: The three principal phases of the proposed methodology 
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H A I S  A l g o r i t h m A r t i f i c i a l  N e u r a l  N e t w o r k  ( A N N )

Train: 

à P-II  :  M-cells

à P-III :  Data

M-cells*Data

* M-cells à  Memory cells

 

Figure 7.2: C1: Memory cells are obtained from the data using the HAIS algorithm. The ANN is 

primarily trained (until convergence is achieved) on memory cells. Once the model converges, (the 

original) data is introduced and training of the model is performed again until convergence 

H A I S  A l g o r i t h m Artificial Neural Network (ANN)

Train: 

à P-II  :  Abs

à P-III :  Data

M-cells

Antibodies – Abs

Abs05 – 5% mutation rate

Abs10 – 10% mutation rate
.
.
.

Data

 

Figure 7.3: C2: Memory cells are obtained using the HAIS algorithm from the data. Antibodies with 

different mutation rates are generated and stored separately. ANN models are generated using different 

mutation rates of antibodies prior to introduction of (the original) data. 
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H A I S  A l g o r i t h m

B: Artificial Neural Network (ANN)

Train: 

à P-I  :  Training

à P-II :  Training + M-cells

à P-III:  Testing
M-cells

Antibodies – Abs

Abs05 – 5% mutation rate

Abs10 – 10% mutation rate
.
.
.

Testing

A:     Data = Training + Testing

C: Artificial Neural Network (ANN)

Train: 

à P-I  :  Training

à P-II :  Training + Abs

à P-III:  Testing

 

Figure 7.4: C3: Vaccination of learning systems where a prior immune system exists. (A): Data is split 

into training and test data. Only the test data is used to obtain memory cells, and then antibodies using 

different mutation rates are generated separately. (B): The ANN model is trained using training data and, 

after convergence, training + memory cells are used to train it again until convergence. Then the test data 

is used for training the ANN model. (C): Here, the same process as in (B) is performed but antibodies are 

used instead of memory cells to train the ANN.    

7.3   Experimental Results 

One simulated and four well-known real-world datasets, namely Iris, Breast Cancer 

Wisconsin, Parkinson’s Disease and Statlog (Heart) (see appendix A) were used. All 

four of the real-world datasets are available from the machine learning repository at 

UCI [193]. The simulated dataset was used to test whether the proposed method can 

find perfect classification when both classes are linearly separable. The main purpose of 

this chapter is not to compare our results against existing state-of-the-art techniques, but 

to demonstrate that memory cells and the information they contain can be exported to 

other techniques (in this case, ANNs) to produce models that are more robust and 

generalized than using those techniques alone. The ANN architecture for the simulated 

dataset was 2x(6x10)x1 (two input nodes, a hidden layer of 60 nodes configured 6 by 

10, and one output node); for the Iris dataset 4x(3x10)x3; Breast Cancer Wisconsin 

dataset 30x(4x15)x1; for the Parkinson’s Disease dataset 22x(3x15)x1; and for the 

Heart dataset 13x[(1x15), (1x15)]x1. The Statlog (Heart) dataset has two hidden layers 

of 15 nodes each. The following experiments were conducted in the order of the 

conditions specified above, namely C1, C2 and C3.  
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7.3.1   Experiments with C1 

The Iris data was used for the following experiment to demonstrate C1. The HAIS 

supervised learning algorithm produced 66 memory cells out of 150 data instances 

(56% data reduction). The α and β parameters were set 4 and 5 respectively. The ANN 

converged to 2 errors (error sum of square [ESS]) after about 7,000 cycles when the 

original and full Iris dataset (i.e. without memory cells) was used to train the network, 

as can be seen in Figure 7.5 (Black). However, in another experiment, when memory 

cells were used to train the ANN it converged to zero error after about 25,000 cycles. 

Later, when original and full Iris dataset was introduced the error curve converged at 2 

errors again (Figure 7.5 [Blue]). The ANN in both cases converged to exactly the same 

error, which indicates that data reduction in the form of memory cells did not affect the 

ANN. The results indicate that memory cells possess excellent data 

summarization/reduction capabilities for fitting the data. Memory cells prime the ANN 

in such an efficient manner that when the real data (pathogens) attack the ANN, it is 

well prepared to handle those pathogens and takes comparatively fewer iterations than 

the original data to converge. 
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Figure 7.5: Learning error curves of both the original data and memory cells + original data. The x-axis 

represents learning cycles (iterations) and the y-axis the error sum of square (ESS) obtained for the Iris 

data. This experiment demonstrates that there is no information loss while generating memory cells, as 

both (Black and Blue) experiments converge to the same ESS. 
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In the previous chapter, we demonstrated the effects of the HAIS parameters, namely, α 

and β, on classification accuracy using real-world datasets. Here, we are examining the 

effects of the same parameters on achieving effective learning in our hybrid 

architecture. The β parameter is the degree of learning of the HAIS algorithm when 

antibodies capture new pathogens. In the previous chapter, we empirically showed that a 

high degree of learning (by antibodies from antigens) is necessary for effective 

classification results. Here, experiments were conducted using the C1 configuration. 

Ten independent runs were performed to obtain memory cells for different β values and 

constant α value of 4. These memory cells were later used to vaccinate the ANN. The 

results from using β values of 5%, 10% and 100% learning are shown in Table 7.1. 

Again, it was found that better results (in terms of effective learning) were obtained 

using a β value of 10 and using a 100% learning rate.    

Table 7.1: Learning errors (ESS) obtained by using various β parameters. Indexes 1-10 refer to the 10 

separate runs 

 Index 1 2 3 4 5 6 7 8 9 10 Average 

β  = 5 2 0 2 2 2 0 2 2 2 2 1.6 

β = 10 0 0 0 0 0 2 2 2 2 0 0.8 

Ab:=Ag (100%) 0 2 0 0 0 0 2 2 0 0 0.6 

 

The other HAIS parameter is α, which controls the stimulation level of antigen/antibody 

interaction. In the previous chapter, the effects of the α parameter on classification 

accuracy were investigated and it was shown empirically that the α value play an 

important role in achieving good classification results. A too low or too high α value 

reduced classification accuracy. The effect of the α parameter was again investigated on 

the effectiveness of learning systems here. The results are shown in Table 7.2, where 10 

independent runs were performed using a 100% learning rate for β and for various α 

values. It can be seen from Table 7.2 that the performance when the α value is 4 is 

superior to others on average. Observe that for ‘very low’ or ‘very high’ values of α (in 

this case α of 2 or 5), the learning system consistently produced 2 errors from the data.   
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Table 7.2: Learning errors (ESS) obtained by using various α parameters. Indexes 1-10 refer to the 10 

separate runs 

Index 1 2 3 4 5 6 7 8 9 10 Average 

α = 2 2 2 2 2 2 2 2 2 2 2 2 

α = 3 0 2 2 2 2 2 2 2 2 2 1.8 

α = 4 0 2 0 0 0 0 2 2 0 0 0.6 

α = 5 2 2 2 2 2 2 2 2 2 2 2 

 

The general trend of using different α parameters for C1 can be seen in Figure 7.6. It is 

interesting to see that for α values of 2 and 4, when memory cells were used to train 

ANN they converged to zero error. The convergence of α = 2 was more rapid than that 

of α = 4. However, when the original Iris data was introduced, the ANN learning system 

with an α value of 2 took a much longer time to converge than with an α value of 4. In 

fact, an α value of 4 took only a few iterations to converge. In the case of α of 5, there 

were around 95 memory cells produced by HAIS. The ANN using memory cells took 

almost the same number of iterations to converge as the original data (to 2 learning 

errors) and once the original data is introduced, it takes a few iterations to converge to 2 

errors. When the memory cells were obtained using an α value of 2 and the original data 

was introduced, the ANN took a longer time to learn (converge to) from the patterns, 

which suggests there were inadequate memory cells to generalize the original data. But 

when α was set to 5, the ANN took no time to converge. These experiments suggest that 

the α and β parameters play a very important role in achieving effective learning.    

In the next experiment the Parkinson’s Disease dataset was used. The dataset produced 

zero classification errors using both the ANN on the complete dataset and C1. To 

demonstrate the effectiveness of our proposed method, we randomly divided the whole 

dataset (195 instances) into 45 training data and 150 test data. Here, we run C1 on test 

data. When only the test data was run, the ANN converged to 6 classification errors. 

When memory cells were used to train the ANN prior to introducing the original test 

data, the ANN converged to zero classification/learning errors (ESS). The results can be 

seen in Figure 7.7, where a learning curve on the original test data is shown in black and 

C1 in blue. 
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Figure 7.6: Learning error curves of the Iris data with α values of 2, 3, 4 and 5 using C1. (a): When only 

the Iris data was used to train the ANN, it converged to 2 ESS. (b): Memory cells were obtained using the 

HAIS supervised algorithm, where the α parameter was set to 2. Initially, the ANN was trained using the 

memory cells and when the model converged the Iris data was used to train the ANN again. The model 

finally converged at 2 ESS (with a high degree of learning required when the Iris data was introduced in 

the ANN). (c): Memory cells were obtained using the α value of 4 and the ANN used to train memory 

cells before the Iris data was used. The model finally converged at 0 ESS (with very little learning 

required when the Iris data was introduced in the ANN). (d): Memory cells were obtained using an α of 5 

and the ANN used to train memory cells before the Iris data was used to train the ANN again. The model 

converged at 2 ESS (with minimal learning required when Iris data was introduced in the ANN).    



169 

 

6

2

4

8

10

12

14

16

18

20

0                       1,000                 2,000                 3,000                 4,000                5,000

Testing data

Testing data

Memory cells

Learning Cycles

E
rr

o
r 

S
u

m
 o

f 
S

q
u

a
re

 (
E

S
S

)

 

Figure 7.7: Learning error curves of the Parkinson’s Disease data, with and without the introduction of 

memory cells. The ANN using the Parkinson’s Disease data (test data only) converged to 6.0 ESS. 

However, when memory cells were used to train the ANN, it converged to zero ESS and when the 

Parkinson’s Disease data was introduced into the learning model the ANN finally converged to zero ESS. 

In the following experiment the Statlog (Heart) dataset is used (for a description of this 

dataset see appendix A). The ANN using the original data converged to 6 learning 

errors. On the other hand, when C1 was used, the final learning error dropped down to 

2. The learning curves can be seen in Figure 7.8, where the black curve represents the 

original data and the blue curve C1.  

In the next experiment the Breast Cancer Wisconsin dataset was used (for a description 

of this dataset see appendix A). The learning error curves, using the original data and 

C1 respectively, can be seen in Figure 7.9, where the ANN using only the original data 

found 3 classification errors and C1 found 2 classification errors. 
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Figure 7.8: Statlog (Heart) learning curve for the original data as well as for C1. The ANN using the 

Statlog (Heart) data converged to 6.0 ESS. However, when memory cells were used to train the ANN, it 

converged to zero ESS. When the Statlog (Heart) data was then introduced into the model the ANN 

finally converged to 2.0 ESS. 
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Figure 7.9: Breast Cancer Wisconsin learning curve for the original data as well as for C1. The ANN 

using Breast Cancer Wisconsin data converged to 3.0 ESS. However, when memory cells were used to 

train the ANN, it converged to 1.0 ESS and when Breast Cancer Wisconsin data was then introduced into 

the learning model, the ANN finally converged to 2.0 ESS. 
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So far we have demonstrated with experimental results that improved and effective 

learning can be achieved by introducing memory cells in the ANN prior to the original 

data (C1). The experiments conducted above show that vaccination (memory cells) does 

help in building an efficient learning model on seen data, when only the vaccine is used 

to train the ANN prior to exposing it to the original data. However, in the vaccination 

process, once a vaccine is injected into the body it starts to produce antibodies and this 

helps to effectively generalize the learning of the immune system on seen and 

subsequently on unseen data.  

7.3.2   Experiments with C2 

In the above experiments, we have demonstrated that memory cells (vaccination 

material) possess excellent learning capabilities. In the following experiments we will 

try to establish that the vaccination process also helps to improve the performance (in 

terms of learning capabilities) of the ANN. ‘Vaccination process’ here means generating 

antibodies with varying mutation rates from memory cells. Put simply, we are 

investigating the effects of the introduction of antibodies prior to the original data into 

learning systems (described above in C2). 

To demonstrate the effectiveness of a vaccination process and hence the generation of 

antibodies, we selected the memory cells that produced 2 final learning errors in C1 

using the Iris data (see Table 7.2). These memory cells were used to produce a separate 

population of antibodies using different mutation rates. For example, a population of 

antibodies was produced using a maximum mutation rate of 5% and named Abs05; then 

a population of antibodies was produced using a maximum  mutation rate of 10% and 

named Abs10, and so on. The results obtained from the exposure of the antibodies to the 

ANN before and after the original Iris data can be seen in Figure 7.10. It can be seen 

from that a learning system generating antibodies with 10% mutation converged to zero 

learning errors when the original data was introduced. The results of the 5% mutation 

rate were no different to those of the unmutated memory cells at the final stage. The 

final classification results also deteriorated when a 15% mutation rate was used. 

Another observation here is that as the mutation rate increased, the learning error on the 

antibodies also increased. It can be argued that this is because we are using random 

mutation on each feature to generate antibodies and more generalization of data is 

taking place at the price of higher learning errors on the antibodies (seen data). Here, we 
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can see a trade-off between the generalization of data and learning error. Perhaps a 

controlled or specialized mutation function could be helpful in reducing learning errors. 

In this chapter we do not introduce a sophisticated mutation function as the main 

objective here is to show that efficient and improved learning can be achieved using a 

vaccination process.  
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Figure 7.10: C2: Effects of introducing antibodies prior to the original data using the Iris data in an ANN 

learning system. (a): Memory cells were used to train the ANN before introducing the Iris data and the 

model finally converged to 2.0 ESS, which is the same as result from the ANN using only the Iris data. 

(b): When a 5% mutation was used to generate antibodies and the ANN was trained on them before 

introducing the Iris data, the ANN model converged to the same 2.0 ESS. (c): When a 10% mutation rate 

was used to generate antibodies and the ANN was trained on those antibodies before introducing the Iris 

data, the ANN model converged to 0.0 ESS. (d): When a 15% mutation rate was used to train the ANN 

before introducing the Iris data, the learning errors increased to 2.0 ESS again.   

Next a simulated dataset with two distinct classes was used next to further demonstrate 

the effectiveness of antibodies and hence the C2 method, as well as to verify the 
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learning results obtained in earlier experiments (Figure 7.10). The simulated data had 

two features and consisted of 153 instances. The 2-D projection of the simulated data 

can be seen in Figure 7.11 (R). A total of 34 memory cells were produced using HAIS: 

16 were from class 1 and 18 from class 2, resulting in 78% data reduction. The memory 

cells were introduced into the ANN and the ANN run until convergence was achieved 

(3,000 iterations). The original data was then introduced into the trained ANN as shown 

in Figure 7.11 (L). The ANN’s errors momentarily went higher and then rapidly 

converged to zero error ESS. This experiment indicated that the memory cells extracted 

from HAIS are an accurate representation of the data in reduced form for the purpose of 

supervised learning (C1). In other words, the structural properties of the data are kept 

intact in the memory cells.       

Learning Cycles

E
rr

o
r 

S
u
m

 o
f 

S
q
u
ar

e 
(E

S
S

)

0.3

0.1

0.2

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0           1,000     2,000     3,000     4,000     5,000     6,000

Memory cells

Original data

Feature 1

F
ea

tu
re

 2

 

Figure 7.11: L: ESS curve, where the x-axis represents learning cycles (iterations) and the y-axis ESSs 

obtained for the simulated data. R: The original projection of two-class data. 

The main purpose of any vaccine is to trigger production of antibodies (secondary 

response). The role of this secondary response is evaluated in the following experiments 

using the same simulated data. The memory cells generated in the above experiment 

were used to generate antibodies with different mutation rates ranging from 5% to 40% 

(C2). Separate ANNs were then trained using these antibodies and after convergence the 

original data was introduced to the trained ANNs. In Figure 7.12 (a) it can be seen that 

when mutation of 5% and 10% of antibodies was used, the ANN took 5000 iterations to 

converge. When original data was then introduced, the ANN stayed stabilized and the 

ESS stayed at zero. The same behavior can be seen in Figure 7.12 (b), where 20% 

mutation was used to generate antibodies. An interesting behavior started to emerge 
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when a 25% mutation rate was used to generate antibodies (in (see Figure 7.12 [c]). 

Once the ANN converged to zero after 320,000 iterations, on exposure to the original 

data the ANN learning error curve increased and then stabilized at 2 ESS. Exactly the 

same behavior was observed for a 40% mutation rate (Figure 7.12 [d]). In this case, the 

final learning error on the original data stabilized at 4 ESS. These experimental results 

suggest that there was an over-generalization of the antibodies. Also, as the rate of 

mutation increases, the ANN needed more iterations to converge. This is because the 

antibodies started to overlap in feature space, which means more time (iterations) was 

required for convergence to the minimum error. This was in turn due to a reduction in 

linear separability and over-generalization of data leading to an increased 

classification/learning error.   

As noted at the start of the chapter, immunosuppression refers to under-activation of 

immune response and an autoimmune disease arises from an over-activation of the 

immune response. In our experiments, generations of antibodies with different mutation 

rates can be regarded as activations of immune response at different levels and 

magnitudes. Lower mutation rates can be considered as under-activations of immune 

response or immunosuppression, whereas higher mutation rates can be seen as over-

activations of immune response or autoimmune disease. In the case of Figure 7.12, 

antibodies with 5% and 10% mutation rates can be regarded as immunosuppression and 

antibodies with 25% and 40% mutation rates can be seen as autoimmune disease.  

The above sets of experiments were repeated 10 times for each mutation rate and the 

overall averages are reported in Table 7.3. For antibodies with mutation rates of 5%, 

10% and 20%, the ANN always found zero errors on the original data.  
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Figure 7.12: Learning error curves of antibodies with different mutation rates. (a): Antibodies with 5% 

and 10% mutation rates prior to exposure to full simulated data (final convergence at 0.0 ESS). (b): 

Antibodies with a 20% mutation rate (final convergence at 0.0 ESS). (c): Antibodies with a 25.0% 

mutation rate (final convergence at 2.0 ESS). (d): Antibodies with a 40% mutation rate (final convergence 

at 4.0 ESS). 

Table 7.3: 10 runs of antibodies (Abs) using different mutation rates on simulated data 

Index 1 2 3 4 5 6 7 8 9 10 Avg. Min. Max. 

Abs 5% 0 0 0 0 0 0 0 0 0 0 0 0 0 

Abs 10% 0 0 0 0 0 0 0 0 0 0 0 0 0 

Abs 20% 0 0 0 0 0 0 0 0 0 0 0 0 0 

Abs 25% 3 1 1 1 3 1 0 1 1 3 1.5 0 3 

Abs 40% 4 2 0 2 4 3 2 1 3 4 2.5 0 4 
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So far we have successfully demonstrated the effectiveness of the vaccination process in 

achieving better learning capabilities when no prior immune system is present. We still 

have to investigate the effectiveness of vaccination in cases where some sort of immune 

system already exists. This is our first step towards providing vaccination in online 

learning systems. For this purpose, we have divided the datasets into two groups, 

namely training data and test data. The test data is used to generate vaccination (i.e. 

generations of both memory cells and antibodies). The steps used to implement C3 are 

listed in Figure 7.4. In P-I training data was used directly to train the ANN, which 

represents a form of a primary (or existing) immune system. In P-II memory cells or 

antibodies along with training data were introduced into the ANN for learning. Once the 

ANN converged, the test data was introduced to determine the learning capabilities of 

the ANN. The results obtained using C3 were tested using the same three phase 

methodology, but without using memory cells or antibodies. When no memory cells 

were used in the three phase methodology (non-vaccinated three-phase methodology), 

in P-I the training data was used to train the ANN and in P-II both the training and test 

data were used to train the ANN. Once there was convergence in P-III, only the test data 

was used to determine learning capabilities.  

7.3.3   Experiments with C3 

The original Iris data was randomly divided into two groups: training data and test data 

(75 instances each). Figure 7.13 (a) shows what happens in a non-vaccinated ANN. 

Three phases – training data, followed by training + test data, and finally test data – 

were used. The ANN converged to zero for the training data, but when both the training 

and the test data were used, the error curve converged to 2. Finally, when only the test 

data was used, the ANN stayed at 2 errors without any oscillation. Figure 7.13 (b) 

shows what happens when memory cells are used along with the training data in P-II; 

the ANN converged to zero error. However, once the test data was introduced, the error 

curve converged to 2 again.  
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Figure 7.13: Learning error curves of C3. (a): Training and test data are used (final convergence at 2.0 

ESS). (b): Memory cells are used instead of training data in P-II to train the ANN (final convergence at 

2.0 ESS).  

The same experiment was conducted by replacing memory cells with antibodies with 

different mutation rates. The final results can be seen in Figure 7.14. Antibodies with a 

5% mutation rate produced 2 errors on the test data, whereas antibodies with a 10% 

mutation rate produced zero errors on the test data. The errors increased with antibodies 

of 15% and 20% mutation rates.  

The Breast Cancer Wisconsin data was divided into 369 training and 200 test instances. 

A test error of 3 was recorded when the non-vaccinated ANN comprising training data 

(P-I), training + test data (P-II) and test data (P-III) were used (Figure 7.15 [a]). The 

same test error of 3 was obtained when the ANN was vaccinated with a combination of 

training data + the memory cells used in P-II (Figure 7.15 [b]). 
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Figure 7.14: Training data (Breast Cancer Wisconsin data) was used to train the ANN in P-I; antibodies 

with different mutation rates were used along with the training data in P-II; and finally test data was 

introduced in P-III. (a): The 5% mutation rate converged to 2.0 ESS. (b): The 10% mutation rate 

converged to 0.0 ESS. (c): The 15% mutation rate converged to 2.0 ESS. (d): The 20% mutation rate 

converged to 2.0 ESS. 
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Figure 7.15: (a): Training and test data used in P-II (final convergence of ANN was at 3.0 ESS). (b): 

Training and memory cells were used in P-II (final convergence of ANN was at 3.0 ESS). 

The same experiment was conducted with antibodies produced using different mutation 

rates in P-II along with the training data (see Table 7.4). Antibodies with a 5% mutation 

rate produced 3 errors (on average) on test data, whereas 10% mutation resulted in 1.6 

errors (on average). Antibodies with 15% and 20% mutations produced 1 and 2 errors 

on average, respectively, on test data. The results of all 10 runs with different mutation 

rates can be seen in Table 7.4, where the same population of antibodies was used in 

each run. The results indicate that the best mutation rate for antibodies is 15% and any 

other mutation rate above or below results in more learning errors.  

Table 7.4: 10 run of antibodies (Abs) using different mutation rates for the Breast Cancer Wisconsin data 

Index 1 2 3 4 5 6 7 8 9 10 Avg. Min. Max. 

Abs 5% 3 3 3 3 3 3 3 3 3 3 3.0 3 3 

Abs 10% 1 1 3 3 1 1 3 1 1 1 1.6 1 3 

Abs 15%  1 1 1 1 1 1 1 1 1 1 1.0 1 1 

Abs 20% 2 2 2 2 2 2 2 2 2 2 2.0 2 2 

 

For the Parkinson’s Disease dataset, the same configuration of 45 training and 150 test 

data instances was used. A learning error of 4 was recorded when a non-vaccinated 

ANN comprised of training data (P-I), training + test data (P-II) and test data (P-III) was 

used (see Figure 7.16 [a]). Improved learning was observed when a lower classification 

error of 1 was obtained when a vaccinated ANN with the combination of training data + 
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memory cells was used in P-II (Figure 7.16 [b]). No further improvement was observed 

when antibodies with 5% and 10% mutation rates were used (Figure 7.16 [c] and [d]). 

Finally, a zero learning error on test data was obtained when antibodies with a 15% 

mutation rate were used (Figure 7.16 [e]). 
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Figure 7.16: Training data was used to train the ANN in P-I. (a): Test data along with training data in P-

II; final convergence of ANN when test data was introduced was at 4.0 ESS. (b): Memory cells along 

with training data in P-II; final convergence of ANN when test data was introduced was at 1.0 ESS. (c, d 

and e): Antibodies with different mutation rates (5%, 10%, 15%) were used along with training data in P-

II; when the test data was then introduced in P-III the final ESSs were 1.0, 1.0, and 0.0 respectively. 
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7.4   Summary 

AIS is said to contribute novelty in at least two ways: data reduction through memory 

cells and vaccination through antibodies derived from memory cells, with varying rates 

of hypermutation. The aim of this chapter was to explore these claims for novelty 

through a systematic series of experiments using an ANN as a ‘virtual learning 

organism’ in which a particular AIS algorithm – the HAIS algorithm for supervised 

learning – is embedded, resulting in a novel hybrid architecture. We have shown by 

experiments that activation of immune responses can be explained through the mutation 

rates by which antibodies are generated. If the mutation rate is too low, antibodies 

cannot adapt to the full range of pathogens in their scope and will suffer from under-

generalization in terms of memory cells. On the other hand, if the mutation rate is too 

high, the immune response is over-activated and antibodies start to overlap in feature 

space, resulting in over-generalization of data. In this chapter, we have proposed that 

under-generalization and over-generalization of data can be understood in 

immunological terms as immunosuppression and autoimmune disease respectively.  

Memory cells are an essential part of any AIS algorithm; in our experiments we have 

shown that memory cells possess excellent data summarization/reduction capabilities 

for fitting the data. Memory cells prime the ANN in such an efficient manner that when 

the real data (pathogens) attack the ANN, it is well prepared to handle those pathogens. 

The main focus of this chapter was to integrate two nature-inspired techniques, an ANN 

and an AIS in a novel hybrid architecture, where the ANN is the virtual learning 

organism and the AIS is the embedded immune system engine that both primes and, for 

the most part, vaccinates the ANN against possible future attack by pathogens. The 

ANN is originally passive: it only learns what the AIS primes or vaccinates it. The next 

stage of this work will be to allow the ANN to feed back the results of its learning to the 

AIS to fine-tune the immune system further, thereby directing the AIS to find even 

better solutions when confronted by hard-to-categorize samples.  

In addition, it was shown through empirical findings that there is a trade-off between 

high degrees of generalization of data through the random generation of antibodies and 

the final learning error obtained. A more sophisticated mutation function could be added 

to help decrease learning error and at the same time improve data generalization. We 

have shown in this chapter that random mutation through generation of antibodies can 
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help find more generalized classification results. A more directed mutation function 

could be devised which takes into consideration the current state of the data (memory 

cells). An advanced mutation function that can integrate knowledge learnt from existing 

data patterns as well as some degree of randomness in building antibodies is worth 

exploration. The AIS algorithm used in this chapter is for supervised learning.  
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8.1   Overview 

In order to establish the basis and underlying scope of this thesis, which proposes a 

novel artificial immune system (AIS) algorithm, background information regarding the 

natural immune system (NIS) – its important principles, properties, functionalities and 

the core theories developed in recent years from a computational perspective – was 

presented in chapter 2. An extensive literature review based on existing immune 

system-inspired algorithms was also presented in the same chapter. The current state of 

AIS and the way forward as proposed by Hart and Timmis [10] were also discussed. 

Then some of the drawbacks of existing AIS algorithms were highlighted before NISs 

were outlined at a more detailed biological level (the relationship between 

immunoglobulins (Igs) and antibodies, the role of memory cells and plasma cells). It 

was this that led us to the development of a novel AIS algorithm we call the Humoral-

Mediated Artificial Immune System (HAIS), inspired by the adaptive immune system 

and presented in chapter 3. HAIS derived its inspiration from the way adaptive immune 

system actively produces antibodies once it encounters a pathogen. One advantage of 

the HAIS algorithm is its capability of finding natural groupings in the data (clusters) as 

well as outliers. Chapter 3 was divided into two parts: part I demonstrated the 

effectiveness of the HAIS clustering algorithm using simulated and real-world datasets 

and part II investigated the capabilities of HAIS towards finding outliers. The 

parameters of the HAIS algorithm were also evaluated in chapter 3.  
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The behavior of the HAIS algorithm is stochastic as its clustering results are highly 

influenced by antigen presentation order. One advantage of going into more detail is 

that it allows the introduction of other existing evolutionary techniques in a novel way 

to represent processes that would otherwise be superficially presented. In chapter 4, a 

population-based HAIS algorithm was proposed to evolve a population of clustering 

solutions and hence to obtain better clustering solutions. At the micro-level the HAIS 

algorithm was used to generate clustering solutions while at the macro-level a genetic 

algorithm (GA) was used to evolve those clustering solutions towards a user-defined 

fitness function. We demonstrated in chapter 4 that an effective clustering solution can 

be evolved using HAIS and a standard GA, where incremental transfer of memory cells 

is used to transfer knowledge from one generation to another (a form of reinforcement 

learning). 

In the HAIS algorithm, one of the most important components is the population of 

antibodies. Normally, antibodies are cloned and hypermutated copies of already 

captured antigens. The HAIS algorithm followed a decentralized process, where 

antigens or the data samples were trapped through generated antibodies, using a local 

affinity measure between the antigens and the most stimulated antibodies. In chapter 5 

we investigated the effectiveness of a hypermutation operator in generating antibodies 

as well as affinity measures in the context of proposed HAIS algorithm. A three-step 

methodology was developed to investigate the effects of various mutation rates, where 

cluster starting points and antigen presentation order were kept fixed and the 

effectiveness and functionality of the hypermutation operator was evaluated. The 

experimental results demonstrated that both affinity measure and hypermutation play an 

important role in finding better clustering solutions.       

Chapter 6 extended the idea of the humoral-mediated inspired AIS unsupervised 

clustering algorithm (HAIS) by applying it to supervised learning. The supervised 

learning version of HAIS also uses core immune system concepts such as plasma cells, 

memory cells, antibodies and B-cells, as well as parameters such as the affinity measure 

and negative clonal selection thresholds. It is a one-shot algorithm where antibodies 

perform two main functions: (a) capture future antigens (patterns) based on already 

captured antigens (existing patterns) and (b) stimulated antibodies can learn and update 

the existing state of learning as new antigens are introduced. The final output of the 

HAIS supervised learning algorithm was a set of memory cells where the k-nearest 
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neighbors (NN) method was used to predict class labels on unseen data instances. The 

work reported in chapter 6 showed that various antigen presentation orders can produce 

different classification results.    

AIS algorithms including HAIS are known to possess data reduction capabilities 

through memory cells. However, there is currently very little understanding of how 

effective the memory cells are at reducing the data (i.e. for generalizing to important 

structural properties of the data) while at the same time preserving critical class 

information. Again, by going into more detail, we have found that it is possible to 

introduce novelty in the form of a hybrid architecture to reflect the more complex 

processes (in this case, the role and function of memory cells) for increased learning. In 

chapter 7, we demonstrated using a hybrid architecture (HAIS and an artificial neural 

network [ANN]) that memory cells obtained using HAIS have excellent data reduction 

capabilities. Furthermore, we successfully established that effective learning can be 

achieved in an artificial learning system such as an ANN through an artificial 

vaccination process. Vaccination material is extracted from the original data using the 

HAIS algorithm in the form of memory cells, which subsequently produces antibodies. 

These antibodies are used to train the ANN prior to training it on original the data. 

Learning through vaccination is a novel concept that only came about in our research 

because of our deeper exploration of the biological role of memory cells.  

8.2   Contribution of This Thesis 

We began this thesis by proposing the following two research questions: 

Q1: Is it possible to develop an intelligent and biologically plausible learning algorithm 

inspired by the processes and metaphors of a NIS, informed by the latest scientific 

research? 

Q2: Is it possible to incorporate NIS concepts and metaphors with other well-

established nature-inspired techniques to achieve efficient and improved learning 

capabilities? 

These research questions are expressed in general terms. We have developed two 

immune system-inspired learning algorithms based on a deeper exploration of immune 

systems. Furthermore, we have coupled immune system metaphors and processes with 
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well-established ANNs in a novel way to improve learning capabilities. The detailed 

contribution of this thesis and research therein is: 

1. An immune system-inspired unsupervised clustering algorithm called the 

Humoral-Mediated Artificial Immune System (HAIS) was developed with which 

natural clusters and outliers can be identified simultaneously. The HAIS algorithm 

was inspired by NIS components such as B-cells, memory cells, antibodies and it 

therefore has biological plausibility.  

2. A multi-layered AIS model has been developed that provides a more effective 

memory cell role. In our proposed unsupervised clustering algorithm, memory 

cells play an active role in capturing antigens (data samples), rather than only 

being used to classify unseen data. 

3. In the HAIS algorithm, learning is mainly performed through antibodies. 

Antibodies learn from existing patterns (captured antigens) to fine-tune their 

response in case the same antigens attack again in the future, and future patterns 

are predicted based on the existing information. In this thesis we have 

demonstrated with experimental results that conventional affinity maturation 

(random fine-tuning of antibody receptors to the antigen) is not required. A more 

deterministic approach such as 100% learning of stimulated antibody receptors to 

the antigen can be implemented for both supervised and unsupervised HAIS 

algorithms.  

4. In most of the existing AIS models, a static affinity measure is used to build the 

model. In our proposed HAIS algorithm, we have introduced a dynamic affinity 

measure which is based on the information present in B-cells.  

5. A population-based AIS algorithm is proposed by integrating the standard HAIS 

and a GA. The incremental transfer of memory cells from one generation to 

another is helpful in achieving convergence on population of solutions and also 

leads to better clustering solutions. 

6. We have demonstrated that artificial vaccination can help in the learning process. 

AIS can help (through generation of antibodies) to generalize data which in turn 

can help to build a more robust and efficient model. 
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7. It has also been demonstrated that AIS models can be integrated with other 

nature-inspired approaches to achieve efficient results in building a more 

generalized model. 

The main contribution of the HAIS algorithm and hence this thesis can be explained in 

the following statement, where antibodies and antigens are considered to be the current 

and final state of the AIS system respectively: 

‘Given the current state of the system, the HAIS algorithm tries to predict a future state, 

in comparison to other AIS algorithms, where, given a (random) current state of the 

system, the goal is to adjust the AIS system to the final state.’ 

In the light of the above statement, the main difference between HAIS and other AIS 

algorithms (e.g. CLONALG, aiNet) is that HAIS tries to evolve or predict future 

antigens by considering already captured antigens, whereas in other AIS approaches the 

current state of the system (antibodies) is evolved in the direction of new antigens.  

8.3   Limitations of Our Work 

HAIS is a decentralized approach as it captures data samples through the interaction of 

antibodies with data samples. These antibodies are generated using random mutation 

with the purpose of efficiently capturing future pathogens and covering more search 

space. The random mutation is a very basic way of searching the feature space for 

efficient optimal solutions. One limitation of the work presented in this thesis is that no 

efforts were made to devise a robust and effective directed mutation strategy that can 

explore search space more efficiently. 

In the experiments conducted (with both the unsupervised and supervised HAIS) the 

maximum number of features used was no more than 50 (approximately). In this thesis 

no substantial work is presented that could demonstrate the scalability of the HAIS 

algorithm to very large datasets with thousands of features and millions of instances. 

Furthermore, the thesis has not covered issues such as feature selection and feature 

weighting, which are critical problems in the field of machine learning. 

Mutation plays an important role in the HAIS algorithm, as exploration and exploitation 

of the search space are carried out using different mutation rates. A strategy comprising 

of static mutation rate (pre-defined mutation rate) was used throughout the thesis to 
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explain the role of the mutation operator in the HAIS algorithm. This thesis does not 

develop any adaptive and self-evolving mutation strategy that possesses the capabilities 

of finding a balance between exploration and exploitation and identifying the most 

effective mutation rate.  

In chapter 7, random mutation was used to generate antibodies from memory cells. This 

random mutation was able to find better classification results due to data generalization. 

But the problem of data over-generalization arose when a higher mutation rate was used 

and the classification accuracy of the final generated model deteriorated (see Figure 

7.12). The work presented in this thesis does not address this data over-generalization 

issue.    

The question of how to extract information or knowledge from B-cells or memory cells 

is also not addressed in this thesis. 

8.4   Future Work 

In a standard HAIS algorithm (chapter 3), directed mutation based on the sum of the 

variance of each feature is used to find the mutation rate for each feature. A more robust 

mutation strategy is required that can consider the trade-off between exploration and 

exploitation (as well as the same exploration/exploitation balance among iterations). A 

potential mutation strategy could be based on a hybrid of both within-cluster variation 

(or feature weighting) and random mutation. 

In a population-based HAIS approach (chapter 4), we used uniform mutation and a 

crossover operator at micro- and macro-level processes respectively. We have 

demonstrated that better clustering results can be achieved using both mutation and 

crossover operators. An interesting investigation for future work would be to examine 

the relationship of these two operators to see if by using higher mutation rates only 

(removing the crossover operator altogether) we can achieve the same clustering results. 

Further work is also required to evaluate appropriate population size in comparison to 

data size or the number of clusters found. Various crossover strategies can also be 

implemented to analyze and optimize the convergence of the HAIS algorithm. In 

addition, it would be interesting to investigate various memory cell incremental rates to 

find an appropriate incremental rate required to achieve fast and efficient clustering 

results. 
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An affinity threshold (AT) based on the internal structure of each cluster was proposed 

chapters 3 and 6 for unsupervised and supervised learning algorithms respectively. The 

method used is justifiable on the grounds that each B-cell in an AIS must evolve 

according to the internal environment and should not be static throughout. A more 

sophisticated AT calculating measure needs to be considered in the future, one that can 

converge automatically to produce better clustering solutions.  

In chapter 7 we proposed a hybrid architecture that incorporates two nature-inspired 

techniques, ANN and HAIS, where the ANN is the virtual learning organism and the 

AIS is the embedded immune system engine that both primes and vaccinates the ANN 

against possible future attack by pathogens. The ANN in its current (original) state is 

passive; it only learns what the AIS primes it or vaccinates it. Future work should 

investigate enabling the ANN to feed back the results of its learning to the AIS to fine-

tune the immune system further, thereby directing the AIS to find even better solutions 

when confronted by hard-to-categorize samples. 

In chapter 7 the role of antibodies in terms of various levels of immune response to 

captured pathogens (using various mutation rates) was extensively discussed. It was 

concluded that if the mutation rate is too low, antibodies cannot adapt to the full range 

of pathogens in their scope and will suffer from under-generalization (or over-

specialization) in terms of memory cells. On the other hand, if the mutation rate is too 

high, the immune response is over-activated, resulting in over-generalization of data. 

Future work is required to select a more robust mechanism that can generate a self-

evolving and self-organizing immune response by generating a population of antibodies 

that can remove the need of manually selecting a mutation rate. A more directed 

mutation function could be devised which takes into consideration the already seen data 

instances (memory cells) and randomness (or bias) in the current state of a learning 

system. In short, we are suggesting that a directed mutation operator that can integrate 

knowledge learnt from existing pathogens (data patterns) as well as some degree of 

randomness in order to generate a population of antibodies is worth exploration. 

In the future, rigorous analysis will be required on the different parameters proposed in 

the HAIS unsupervised and supervised algorithms. For example, the effects on the 

populations of B-cells, antibodies (produced by B-cells) and memory cells by the 

different HAIS parameters need further investigation. The variations in experimental 
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results and comparisons of the effects of different parameter values can be analyzed 

using t-tests, analysis of variance (ANOVA) and non-parametric quartile testing (box 

and whisker plots) [194]. For the comparison of the HAIS supervised algorithm with the 

Artificial Immune Recognition System (AIRS) and other AIS-inspired algorithms, 

extensive experiments are required, and these should include not only accuracy 

comparisons, but other statistical measures such as sensitivity and specificity analysis as 

well [195]. Furthermore, the Kappa statistic (or Kappa coefficient) [196] can be used to 

evaluate the performance of different AIS-inspired classifiers with the HAIS supervised 

algorithm. To determine the empirical computational complexity of the HAIS 

algorithms, the CPU time taken to generate a model can be investigated and then 

compared with existing AIS and non-AIS classifiers. These experiments must be done 

under the same conditions using the same datasets to preserve comparability.  

Supervised and unsupervised learning is a very narrow domain for the applications of 

these kinds of nature-inspired, evolvable algorithms. Such algorithms can also be used 

for other hard problems such as optimization and subset selection. A broader scope of 

such research work in the future may include wetware, or synthetic biology (artificially 

created cellular processes). That is, sometime in the future, wetware technologists may 

be able to create their own synthetic immune systems using different principles from 

existing NISs in order to keep the wetware systems self-organized and self-sustaining.   

Finally, we have left unexplored the question of what going into more detail with regard 

to immune systems actually means. We are still not at the level of biochemical 

reactions, nor do we as computer scientists wish to go down to that level. Instead, our 

task has been to devise novel algorithms based on a ‘deeper understanding’ of the 

biology of immune systems. But it is not clear what the principles and limits are of a 

‘deeper understanding’, given the absence of a standardized and formal framework for 

describing AISs. The final part of this chapter will attempt to explore the notion of 

‘deeper understanding’ in terms that a computer scientist may understand, that is, in 

terms of a theoretical framework. We will also attempt to demonstrate the benefit of this 

‘deeper understanding’ through a final set of experiments in a domain of great 

importance to theoretical researchers: optimization.  
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8.5   Theoretical Advances 

8.5.1   Variable AT for Each B-cell 

In previous AIS approaches to clustering, the AT parameter is calculated beforehand 

and remains fixed throughout the clustering process. In addition, all clusters (B-cells) 

are assigned with the same AT. In chapter 3 of this thesis, we proposed a dynamic and 

self-evolving AT for each of the B-cells. As far as we are aware, this is the first 

demonstration of an evolving AT measure and shows that B-cells can be interpreted as 

independent ‘agents’ that can learn from their environment. Another parameter used in 

the HAIS algorithm is network threshold (NT) which is responsible for the mergence of 

similar B-cells (clusters). Both AT and NT started with the same value but AT 

increases, whereas NT decreases, with increasing numbers of iterations. Below is the 

equation used to set the initial AT and NT values based on the initial selection of 

antigens. 
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where c is the number of features in the data and   is the standard deviation of each 

feature. The parameter α is a scalar value which controls the tightness of boundaries 

among the clusters. AT and NT are updated as follows: 
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where L is the number of clusters.  

In other words, the above equations express a mechanism whereby learning in a B-cell 

through AT is initially performed uniformly but later, upon each complete exposure of 

antigens, the AT is updated according to the interaction of the B-cell with captured 

antigens and NT is decreased based on       . One of the advantages of this mechanism 
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is that outlier detection becomes possible. That is, instead of forcing antigens to be 

allocated to a predefined number of B-cells (clusters), B-cells only capture antigens that 

are within their neighborhood. Therefore, HAIS can recognize meaningful clusters as 

well as outliers in the data simultaneously. 

New B-cells that are released into the body are called naive B-cells. The life span of 

these naive B-cells is very short. They circulate in the body and any cell that cannot 

stimulate or capture antigens is removed from the immune system. Our HAIS approach 

to unsupervised learning also uses this principle to evaluate the stimulation or activation 

level of all existing B-cells. In the HAIS algorithm we introduced a death threshold 

(DT) parameter to simulate this process. At the end of each cycle, B-cells are evaluated 

based on the number of antigens each has captured. Any B-cell that has captured fewer 

antigens than a certain threshold (DT) is removed. This is helpful in promoting natural 

competition among B-cells for capturing antigens more effectively, so that they can 

survive (through natural selection) into the next generation. A B-cell that does not 

attract enough antigens is disposed of, but there is no restriction on the generation of 

new B-cells during the next generation. As far as we are aware, this is the first time that 

the relationship between DT and effective clustering has been demonstrated. 

8.5.2   More Effective Role of Memory Cells 

In a NIS, the presence of memory cells plays a significant role in fighting against 

infections and diseases. NISs can mount a more effective and faster response to already 

seen antigens due to the presence of memory cells. In previous AIS approaches, 

memory cells, if used at all, are used for finding a class belonging of unseen data (test 

data) and for data compression/abstraction purposes. In this thesis, we have proposed a 

more effective role for memory cells in both HAIS supervised and unsupervised 

learning models. In our approach, memory cells play an active role, not only at the test 

phase but also during the training phase, where memory cells are used to capture 

already seen antigens (data instances).    

In AIS approaches, memory cells represent information learned during the current 

learning cycle and transferring that knowledge is essential for incremental learning. In 

our population-based HAIS approach, the concept of incremental learning is re-

expressed through incremental transfer of memory cells from one generation to another 

(chapter 4).  
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In most AIS approaches, a fixed repertoire (pool) of antibodies is kept, and stimulated 

antibodies are evolved in the direction of newly invading antigens. If learning is one-

dimensional, the AIS ‘forgets’ previously learnt antigens if the antibody repertoire is 

kept fixed [64]. But in machine learning this aspect can have serious repercussions, 

especially since new clusters develop and grow in size constantly. In our HAIS 

algorithm, knowledge learned previously is not ‘forgotten’: the population of antibodies 

and memory cells increases as new pathogens are encountered. On the other hand, this 

ever-increasing size of the population of antibodies also has computational 

disadvantages. Here, the important question for future AIS research is: Is it better to 

completely ‘forget’ something learned in the past (past experience) or do we somehow 

keep some information already gained? The former may be better for computational 

efficiency and the latter for computational effectiveness.   

8.5.3   Homeostatic State 

All natural systems tend to stay in a stable state called homeostasis [33]. This 

homeostatic state is achieved through the interaction of various organs and cells 

constituting the natural system (intra-system homeostasis). On the other hand, inter-

system homeostasis is achieved when various systems interact with each other to 

perform various complex tasks to keep the organism alive and healthy. In this thesis, we 

have shown that intra-system and inter-system homeostasis can be maintained using the 

HAIS algorithm and the population-based HAIS algorithm respectively. In chapter 3, 

the HAIS algorithm starts with a random numbers of clusters and after a certain number 

of iterations converges to a stable and fixed number of clusters; this can be seen as a 

state of intra-system homeostasis. On the other hand, in the population-based HAIS 

approach (chapter 4), the whole population converges to stable and local optimal 

clustering solutions after a number of generations through the transfer of knowledge 

from one generation to another. This process can be seen as inter-system homeostasis, 

where the evolutionary approach in conjunction with AIS concepts is used. More work 

is required in the future to relate AIS stability and steady states with homeostasis theory 

and concepts, since it is likely that formal models of AIS computability will need to 

refer to dynamic and stable AIS states.  
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8.5.4   Effects of Various Antigen Presentation Orders 

In previous AIS approaches, a learning algorithm generally consists of two phases. 

Phase 1 consists of generating candidate memory cells based on recognizing randomly 

presented antigens. In Phase 2 those candidate memory cells compete for the final pool 

of memory cells. In other words, in Phase 2 the spatial positioning of the generated 

memory cells is optimized based on already seen antigens. Therefore, memory cells are 

not allowed in the capturing of pathogen at the training phase. In our approach, we have 

assigned a more active role to memory cells, which capture antigens at the training 

phase. We have removed the memory cell optimization phase at the micro level. This 

removal of the memory cell optimization phase has presented a different challenge in a 

way that now random order of pathogen presentation have started to construct the final 

learning model differently. To address this issue we have proposed a population-based 

AIS approach that optimizes the spatial positioning of memory cells by allowing 

various orders of antigen presentation. With this technique we have successfully 

constructed a state of homeostasis at the population level, where the population of 

solution given number of generations started to converge to local optimal solutions. 

In addition, in previous unsupervised learning approaches, the focus has been to extract 

a summary of the original data in the form of memory cells, and later those memory 

cells are allocated to different clusters or classes based on some similarity or 

dissimilarity measure [74, 79]. In our HAIS unsupervised learning algorithm, we have 

assigned cluster association (a label) to antigens at the point of capture. In an NIS, when 

an antigen enters the body, the NIS performs two actions: (1) recognition of pathogen 

and (2) mounting of an appropriate immune response. Therefore, our HAIS algorithm is 

more ‘faithful’ to an NIS in that it assigns a label to any antigen once it is recognized as 

belonging to a certain cluster.     

8.5.5   Behavior of AT and Mutation  

AT and mutation are important parameters of any AIS algorithm. There has not been 

much research in the behavior of these parameters or on how much these parameters 

affect the learning of AIS algorithms. In chapter 5 we demonstrated that given a fixed 

starting point of each cluster (B-cell), AT and mutation follow the same behavior (in 

terms of clustering accuracy). The higher the mutation rate or AT parameter, the greater 

the oscillation in the clustering results (accuracy), and vice versa. Here, greater 
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oscillation in clustering results means high fluctuations in the clustering accuracy when 

the obtained class labels are compared against the true class labels.  

Given a fixed number of B-cells (clusters), for a B-cell to capture fewer similar antigens 

there exist two options: (1) increase the AT measure; or (2) increase the mutation rate. 

Option 1 would decrease the similarity criteria so that even fewer similar antigens are 

accepted. Option 2 generates antibodies with a higher mutation rate that can cover more 

feature space and can capture antigens located further from the cluster center. To 

implement Option 2, various mutation rates are used (for more details see chapter 5). 

On the other hand, to implement Option 1, we start with an initial value of the affinity 

threshold that is defined by the following expression: 
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where   is the standard deviation and    is the i
th 

data feature, f is the number of features 

and N is the total number of instances in the data. 

Once all antigens associated with the AT are captured and there are no more antigens 

left in the antigen pool, then the AT parameter is increased. To allocate fewer similar 

antigens, AT is incremented as follows:  
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where affinity is the distance measure between B-cell antibodies and antigens and   is 

another user-defined parameter.  

Our experimental results showed that both the AT and the mutation rate parameters play 

an important role in finding improved clustering results (higher clustering accuracy). 

Using only the AT parameter, one can find reasonably good clustering results. 

However, the mutation rate plays an important role in further improving the clustering 

results obtained given a certain AT parameter (for more details see chapter 5). Future 

work is needed to explore the relationship between antigen-to-antigen similarity and its 

relationship to cluster-to-antigen similarity in more detail so that appropriate parameter 
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values can be set for different datasets. We explored this aspect to some extent in this 

thesis, and this is discussed in the next section. 

8.5.6   Variable AT Measure HAIS Supervised Algorithm  

Watkins [197] stated that a variable mutation rate can be used in supervised learning 

models to obtain a generalized AIS supervised model by keeping the AT constant. In 

chapter 5 we showed with experimental results that both AT and mutation rate behave 

in a similar fashion. Therefore, in chapter 6 we proposed a HAIS algorithm for 

supervised learning that uses a variable AT parameter value while keeping the mutation 

rate constant. The experimental results in chapter 7 suggest that the final results 

obtained – in terms of both classification accuracy as well as capabilities of data 

summarization – are as good as those for the AIRS algorithm.  

Both the equal and variable AT parameter values calculated in HAIS are described 

below. Equation (8) below calculates equal AT for each class (in the data) by 

considering the sum of the standard deviation of each feature in the data and then 

dividing it by a number of features in the data. The resulting value is then divided by a 

user-defined parameter α to make the affinity measure stronger or weaker among 

antigens and antibodies while calculating similarities. On the other hand, in Equation 

(9) each class is assigned a different AT depending on its own (class) standard 

deviation. In other words, the sum of the standard deviation of the data related to each 

class is calculated separately, and then divided by the number of features to calculate 

the local AT value for each class.  
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where σ is the standard deviation of the data and α is the user defined parameter which 

must be a non-negative and greater-than-zero value. 
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where σ is the standard deviation of the data, and     
 
 is all data instances associated σ 

with class label  .  
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8.5.7   Affinity Maturation 

In previous AIS approaches, a random mutation of an antibody receptor is used to 

achieve affinity maturation. In this thesis, we demonstrated with experimental results 

that the higher the affinity maturation, the better the results (chapter 6). Therefore, we 

proposed the removal of the random fine-tuning of antibody receptors towards antigenic 

receptors. Instead, we performed 100% transformation (fine-tuning) of antibody 

receptors towards the captured antigen. In other words, we have demonstrated that a 

form of directed evolution can work effectively and efficiently in an AIS.  

8.5.8   HAIS for Optimization 

The objective of this thesis, as explained in chapter 1, is to develop novel supervised 

and unsupervised learning algorithms using inspiration from the humoral-mediated 

immune response triggered by an adaptive immune system. Put another way, this thesis 

investigates AISs for optimization purposes. That is, HAIS is essentially a set of 

optimization mechanisms and techniques that refine B-cells to capture data in an 

increasingly optimal way. It should therefore not be surprising if HAIS can also be used 

to deal with classical optimization problems. Although not part of the thesis itself, we 

include some work that demonstrates that this interpretation of HAIS has some merit in 

appendix B. An HAIS-optimization algorithm, generally speaking, has the following 

characteristics: 

 Performs effective local search by the evolving population of B-cells through 

generation of antibodies (affinity maturation) 

 Help to find global optimal solutions by generating the random population of B-

cells and adding it to the existing population of B-cells 

 Keeping track of already explored paths through the help of memory cells that 

can avoid repeatedly searching the same search space 

Readers are referred to appendix B for details of experiments conducted under this 

interpretation of HAIS (as an optimization algorithm). This work is not finished, but we 

have shown that the HAIS has applicability in optimization. Therefore, it can be 

considered as a topic for future work. 
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8.5.9   Final Thoughts 

To summarize, this thesis has explored several aspects of AIS, rather than just one. In 

particular, the thesis has taken a humoral-mediated approach to AISs, developing this to 

the extent that new algorithms (which may be seen as refinements of existing AIS 

algorithms) have been shown to be effective in the learning domain. Our humoral-

inspired clustering algorithm explicitly incorporates the process of antibodies mutating, 

not by themselves, but within plasma cells that then release the antibodies to capture 

antigens. In other words, our algorithm is more faithful to the principle of new, not 

previously encountered antigens being matched against Ig receptors on the surface of B-

cells. When antigens stick to the Igs, the B-cell evolves into a plasma cell which 

releases antibodies that are both faithful copies of the original Igs as well as mutated 

versions of those Igs. Also, the original, triggered B-cell makes a memory cell so that if 

the same antigen reappears it can be more quickly captured in future. Our approach also 

uses the concept of natural killer cells (not explicitly included in our algorithms) to 

remove any B-cells that are not activated by antigens. Our algorithm therefore 

introduces new mechanisms not previously used in AIS algorithms as well as novel 

representations of Igs and antibodies.  

In developing novel AIS algorithms that reflect humoral mediation to a greater or lesser 

extent, we have extended our knowledge of affinity thresholds, the power of memory 

cells, convergence and stability, the effects of different antigen presentation orders, 

mutation rates of antibodies, and affinity maturation. Also, we have provided some 

pointers as to where we believe future research in AIS is heading: computability, formal 

theory, and optimization.  

This thesis probably raises more questions than it answers, since we did not know at the 

start how open-ended the research would become once humoral mediation was adopted 

as a driving and inspiring concept. While our understanding of various AIS concepts 

has been extended, so has the number of unanswered questions. This is a healthy sign 

that this area is worthy of further exploration and debate. AIS is still a small area of 

computing research and there may be a tendency for researchers outside this area to 

consider AIS as a ‘solution looking for a problem’, given that other machine learning 

techniques already cover many of the areas covered in this thesis.  
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There are computational advantages in being more faithful to the biology. For a 

computational antibody to mutate directly means that every antibody must now contain 

the evolutionary mechanisms required for mutation as well as building the modified 

receptors. This is redundancy on a grand scale, especially if the antibodies are not 

successful at capturing antigens and must therefore be destroyed. It is conceptually 

more elegant and efficient to stick with what we know about how the NIS produces 

antibodies, which is through B-cells and their plasma equivalents. These cells then 

contain the necessary mutation and biomolecular machinery to produce antibodies of a 

possibly infinite variety.  

It is 8 years since Garrett asked whether AIS actually offered anything useful over 

existing nature-inspired approaches, including GAs and neural networks [198]. Garrett 

provided a number of ways in which ‘useful’ could be defined in terms of being 

‘distinctive’ and ‘effective’. An AIS is distinctive if unique symbols, novel expressions 

and unique processes result from the inspiration. An AIS is effective if its methods 

provide a unique means of obtaining a set of results, or produces results that are better 

than existing results, or produces results more quickly than other methods (at least one 

of these must be true, according to Garrett, if an AIS is to be effective). Garrett’s answer 

to these questions in 2005 was that AISs were likely to become more useful over the 

next few years but that there were few applications for which ‘it is indisputably the most 

effective method’.  

Our humoral-inspired algorithm satisfies both of Garrett’s requirements. It is distinctive 

in that new symbols are used for representing Igs and antibodies as well as plasma cells. 

Our algorithm contains novel expressions for matching antigens and Igs on the one 

hand, and antigens and antibodies on the other. Novel processes include an activated B-

cell producing both plasma and memory cells. Our algorithm is stochastic and any 

stochastic algorithm will be hard-pressed to satisfy Garrett’s firm requirement that an 

AIS produce results better than existing results obtained by deterministic algorithms. 

However, our experiments so far indicate that the results compare favorably with 

classical, non-stochastic clustering techniques. An overview of our AIS clustering 

architecture was provided in Figure 3.1. 

One useful side-effect of our approach is that, by sticking more faithfully to the biology, 

we can now deal with outliers. Visual representations of experimental results in chapter 
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3 (see Figure 3.6) reveal the presence of outliers and show that outlier detection is a 

form of oscillatory behavior in our algorithm. The presence of these outlying clusters 

did not affect the way that the rest of the objects were clustered, which provides an 

important advantage of our method over other methods. There is no reason to remove 

these outliers to get better clustering behavior among the remaining objects.  

Finally, the importance of our work in the long term may not lie in applications to 

clustering but in possible use in synthetic cell construction. That is, with increasing 

interest in both industry and academia concerning functional aspects of systems biology 

and rational synthesis/engineering of novel cellular structures for gene and cell-based 

therapies, at some point suitable defense mechanisms will need to be built into synthetic 

cells used in immunotherapy to protect them from attack, either by the body’s own 

immune system or outside invaders. There is currently very little understanding of how 

to build suitable defense mechanisms into synthetic cells to ensure their effectiveness in 

the face of hostile self-defense and external attacks. The possibility of viruses or other 

pathogens taking over the cellular machinery of synthetic therapeutic cells is strong, 

given that such cells will typically contain the minimum amount of genetic material to 

serve their purpose. AIS approaches currently offer the best way to explore novel 

mechanisms for incorporation in, for example, monoclonal antibodies (cells designed to 

identify and help destroy antigens and other foreign substances) so that they receive 

some protection without the need to close down or reduce the efficiency of the NIS.   
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Appendix A 

A brief description of the real-world datasets used in this thesis is given in this 

appendix. For further information regarding these datasets, please go to the UCI 

machine learning data repository [193].  

A.1   Iris Data 

This is the most commonly used dataset in machine learning literature. The Iris data is a 

multivariate dataset and has three classes, with each class consisting of 50 instances. 

The properties of the Iris data are [193] as follows: 

Attributes: 

Sepal Length in cm 

Sepal width in cm 

Petal length in cm 

Petal width in cm 

Classes: 

Iris Setosa 

Iris Versicolor 

Iris Virginica 

A.2   Breast Cancer Wisconsin (Diagnostic) Data 

This dataset has 569 instances and 32 Features including a class label. All 31 features 

are real-valued data features. This dataset has two classes labeled ‘Malignant’ and 

‘Benign’. Class distributions are 357 Benign and 212 malignant.   

A.3   Boston Data 

This dataset contains 506 instances and 14 features. 

A.4   Wine Data 

The Wine data has 13 features and 3 clusters with a total of 178 instances. All three 

clusters vary in size. The attributes of this dataset consists of the results of a chemical 

analysis of wine grown in same region in Italy. The attributes are alcohol, malic acid, 
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ash, alkalinity of ash, magnesium, total phenols, flavanoids, non-flavanoid phenols, 

proanthocyanins, color intensity, hue, OD280/OD315 and proline.  

A.5   Thyroids Data 

This dataset contains 215 instances, five attributes and three classes.  

A.6   Breast Cancer Wisconsin (Original) Data 

This dataset has 699 instances with 16 missing values, and these instances are removed. 

It has 10 features including class labels (‘Benign’ and ‘Malignant’). Samples arrive 

periodically as Dr. Wolberg reports his clinical cases. The database therefore reflects 

this chronological grouping of the data. The grouping information appears below [199].  

Group 1: 367 instances (January 1989)  

Group 2: 70 instances (October 1989)  

Group 3: 31 instances (February 1990)  

Group 4: 17 instances (April 1990)  

Group 5: 48 instances (August 1990)  

Group 6: 49 instances (updated January 1991)  

Group 7: 31 instances (June 1991)  

Group 8: 86 instances (November 1991)  

Total: 699 points  

A.7   KDD Intrusion Detection Data 

This is a very large dataset. The KDD intrusion data samples for 5 classes: Normal, 

Denial of Service (DOS), Probe, User-to-Root and Remote-to-Local. The dataset has 

both continuous and discrete features. More detail about this dataset can be found in 

[139]. 

A.8   Parkinson’s Disease Data 

This dataset has 197 instances each with 22 real-valued attributes. The two class labels 

are ‘Normal’ and ‘Disease’. This dataset is composed of a range of biomedical voice 

measurements. The main objective of this dataset is to discriminate healthy/normal 

people from those with Parkinson’s disease. 
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A.9   Statlog (Heart) Data 

This dataset has 13 features and 270 real-valued instances. The two classes are absence 

and presence of heart disease. The 13 attributes [200] are: 

1. Age 

2. Sex 

3. Chest pain type (4 values) 

4. Resting blood pressure 

5. Serum cholestoral in mg/dl 

6. Fasting blood sugar > 120 mg/dl 

7. Resting electrocardiographic results (values 0,1,2) 

8. Maximum heart rate achieved 

9. Exercise induced angina 

10. Oldpeak = ST depression induced by exercise relative to rest 

11. The slope of the peak exercise ST segment 

12. Number of major vessels (0-3) colored by flourosopy 

13. Thal: 3 = normal; 6 = fixed defect; 7 = reversible defect 
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Appendix B 

B.1   HAIS for Optimization 

In this thesis we implemented the HAIS algorithm in the domains of supervised and 

unsupervised learning. The main motivation of this appendix is to extend the HAIS 

algorithm for numerical function optimization.  

Casstro and Timmis [113] presented an optimization version of aiNet, which was 

originally proposed for information compression and data clustering. The main 

characteristics of the proposed algorithm are its ability to find and store multiple local 

optimal solutions. CLONALG [74] is an example of clonal selection algorithm, 

originally specified for binary character recognition and engineering optimization. More 

detail regarding AIS optimization algorithms can be found in chapter 2. 

AISs are local search algorithms where hypermutation is used to explore neighboring 

search space. The random population of solutions are inserted during the course of the 

algorithm to encourage global search. One of the drawbacks of introducing a randomly 

generated population of B-cells is that the algorithm can tend to repeat local searches 

due to the presence of a basis of attraction. Basis of attraction can be defined as follows: 

‘Given any local optima, consider the set of all points in the search space that have the 

property that starting local search from there, finishes at that local optima.’  

Most of the approaches in the literature do not address this problem, with the exception 

of ‘tabu search’ [201]. Tabu search does this by keeping a memory (the tabu list) of 

recent moves, which are disallowed for a certain period.  

The generation and presence of memory cells is a salient feature of an NIS. In the 

context of AIS approaches, memory cells are points in a search space that have been 

visited in the past and there is no need to revisit them. Existing AIS optimization 

approaches do not utilize this feature. The salient feature of our proposed HAIS-

optimization in comparison with existing AIS optimization algorithms is its more 

effective and novel role for memory cells. 
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Our proposed algorithm (HAIS-optimization) keeps track of all the points visited and 

when new B-cells are generated a negative selection is performed against the existing 

memory cells. The proposed HAIS-optimization algorithm is described below. 

B.2   HAIS-Optimization Algorithm 

Select parameters: NegT, N, g, n, Mut 

NegT – negative clonal selection    N – B-cell population size   g – most affine 

antibodies selected    n – number of antibodies generated    Mut – mutation rate 

 

a) Randomly select ‘N’ number of B-cells 

b) Generate Memory cells pool, and M cells := B-cells 

c) Repeat: 

d) For each B-cell 

e) Generate ‘n’ antibodies based on ‘Mut’ mutation rate 

f) Select antibodies with higher fitness than parent B-cell 

g) Select antibody with highest affinity (b-Ab)  

h) If not empty (antibodies) 

i) Perform negative selection between antibodies 

ii) Perform negative selection between M-cells and selected antibodies 

iii) Select maximum of ‘g’ antibodies  

iv) If not empty (antibodies) 

(a) Evolve parent B-cells towards b-Ab 

(b) Generate new B-cells for each of the antibody 

(c) M cells = M cells + new B-cells 

v) Else 

(a) If fitness of b-Ab is better than B-cell 

1. Evolve parent B-cell towards b-Ab 

2. Evolve related M cell receptors towards b-Ab 

(b) Else 

1. Remove B-cell 

i) Else 

i) Remove B-cell 

j) End For loop 

k) If size of B-cell population is less than ‘N’ 

(a) Generate new B-cells (Add them into the B-cell population after performing 

negative selection with M cells)  

l) Until termination condition 

B.3   Algorithm Explanation 

The algorithm starts by generating a random number of B-cells (‘N’). These B-cells are 

also placed into the pool of memory cells (M-cells). Each of the B-cells in the system 

generates ‘n’ number of antibodies using a pre-defined mutation rate. Now, all 

antibodies with affinity (fitness) greater than the parent B-cell are selected. The 

antibody with highest affinity is kept separated and called b-Ab. At this step (Step h), if 

the antibody pool is not empty, we perform a negative selection. A negative selection is 

first performed between newly generated antibodies and subsequently between 

antibodies and existing M-cells. After performing a negative selection, if the antibody 
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pool is not empty then we perform three tasks: (a) evolve the parent B-cell receptor 

towards the b-Ab; (b) generate new B-cells for each of the antibodies left in the pool; 

and (c) assign all these newly generated B-cells to M-cells. However, if the antibody 

pool is empty and the fitness of the b-Ab is higher than that of the parent B-cell, the B-

cell and M-cell receptors are evolved towards the b-Ab. Otherwise the parent B-cell is 

removed from the population of B-cells. At the end of each generation, the size of the 

population of B-cells is calculated and if it is below ‘N’, new B-cells are generated. 

However, before introducing new B-cells into the population of existing B-cells, a 

negative selection (against existing M-cells) is performed.  

The outcome of this algorithm is in the form of a set of evolved M-cells. These M-cells 

are points explored in a search space and subsequently a set of best memory cells can be 

selected from them. 

B.4   Experimental Results 

Following are the two functions used to evaluate the performance of our proposed 

HAIS-optimization algorithm.  

       (        (   ))   (        (   ))              (1) 

     (      )                                                                           (2) 

The parameters used for these experiments are as follows: 

Gen = 25   % no. of generations 

N = 20   % B-cell population size 

g = 10   % most affine antibodies selected 

n = 100   % no. of antibodies generated per B-cell 

NegT = 0.15   % negative selection threshold 

Mut = 12.0   % mutation rate 

peaks = 16  % how many best M-cells are required 

In Figure B-1 below, the black and red marks are the M-cells obtained by the HAIS 

algorithm. The red peaks are 16 best memory cells obtained from the pool of all 

obtained memory cells.   
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Figure B-1: M-cells obtained using the HAIS algorithm on Equation 1 
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Figure B-2: Size of B-cell population, average fitness and best fitness of M-cells obtained at the end of 

each generation 
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The original 16 points, as well as the corresponding fitness values obtained by the 

algorithm are shown in Table B-1.  

 

Table B-1: List of obtained best M-cells 

x y f 

1.5041 -1.5022 34.7145 

1.5012 1.5054 34.7138 

-1.5195 -1.5054 34.6942 

-1.4863 1.5575 34.1533 

1.5068 0.501 32.7121 

-1.5078 0.4999 32.7114 

0.5008 -1.5025 32.7069 

0.5041 1.5139 32.7047 

1.5084 -0.496 32.7042 

-1.5064 -0.4944 32.6993 

-0.5103 1.5125 32.6961 

-0.5184 -1.5048 32.6617 

0.4969 0.5007 30.6956 

-0.5028 -0.5129 30.6813 

-0.5023 0.4908 30.6752 

0.4888 -0.4887 30.6281 
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Figure B-3: M-cells obtained using the HAIS algorithm on Equation 2 
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Figure B-4: Size of B-cell population, average fitness and best fitness of M-cells obtained at the end of 

each generation 
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Table B-2: List of obtained best M-cells 

x y f 

-1.1845 -0.4096 1 

1.0449 -0.6921 1 

0.8333 0.9362 1 

-1.0623 -0.6651 1 

-0.2284 1.2324 1 

1.1659 0.4594 1 

0.7325 -1.0167 1 

-0.8247 -0.9434 1 

1.2178 -0.2949 1 

-1.1534 0.4913 1 

-0.6507 1.0706 1 

1.2435 0.1602 1 

-0.1789 -1.2399 1 

0.3037 1.2152 1 

0.3849 -1.1938 1 

1.0775 0.6379 1 

 

Here, we have demonstrated with simple two numeric function optimization functions 

that the HAIS algorithm can also be fine-tuned to solve optimization problems. In the 

HAIS-optimization algorithm, the population of B-cells is evolved towards local 

optimum solutions and randomly generated B-cells are introduced into the existing 

population of B-cells when the total size of the population decreases to a pre-defined 

threshold. 

 

 

 

 

 

 

 

 

 

 



223 

 

Appendix C 

The data partitioning results in terms of clustering errors against the true class labels 

obtained on three datasets using hierarchical Euclidean distance measure clustering, k-

means clustering and hierarchical model-based clustering algorithms are shown in Table 

C-1. The features of all three datasets are normalized between -1 and +1. 

 

Table C-1: Clustering errors obtained using various clustering algorithms 

 Hierarchical Euclidean 

Distance Clustering 

k-means 

Clustering 

Hierarchical 

Model-Based 

Clustering 

Iris 51 17 18 

Wine 109 9 7 

Diabetes 69 41 36 

 

 

 

 

 


