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Abstract

The aim of this thesis is to derive a pricing formula for options on leverage exchange-

traded funds (LETFs) with the assumption that the underlying index follows the Heston

model dynamics. In order to price options for LETFs, we first establish a relationship

between the price of an LETF and the value of its underlying index. This relationship is

dependent on the leverage ratio of the LETF and the volatility of the underlying index.

Through empirical analysis, we are able to justify the accuracy of this link between

an LETF and its underlying index. Furthermore, this link provides useful information

on the behaviour of LETFs which is studied in depth. We also use an optimization

technique to provide empirically estimated leverage ratios for various LETFs of VIX

and several equities to understand their behaviour under different market conditions.

The option pricing formula is derived by defining the joint moment-generating

function of the underlying index and its volatility and linking this function to the

characteristic function of an LETF. The Carr-Madan Fourier transform method is

utilized to obtain a closed-form solution of option prices in the form of an integral. We

then numerically calculate the call option prices for specific parameters. We perform

extensive analysis on our model. The call prices calculated from our option pricing

formula are compared with those obtained by Monte-Carlo simulations and the results

are consistent, justifying the use of our model. Finally, we perform sensitivity analysis

to analyze the effect of various parametric changes on our model.
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Chapter 1

Introduction

1.1 Introduction to Exchange-Traded Funds

An exchange-traded fund (ETF) is a type of investment fund, but unlike other index

funds or mutual funds, its purpose is to track a specific index, such as a stock index,

bond or commodity index. ETFs are traded on a public stock exchange similar to a

common stock. An ETF trades roughly at the same price as the net value of the asset in

its portfolio but its price may vary throughout the day as it is bought and sold.

ETFs are regulated by authorized participants (APs) who are market participants

with a high degree of buying power, such as large financial institutions, banks or

investment companies. APs interact with ETF providers in the process of creation or

redemption of ETF shares. During creation, the APs make a portfolio of the underlying

index and hand it over to the ETF providers in exchange for new ETF shares. Similarly,

redemptions occur when APs return ETF shares to the providers in exchange for the

basket of underlying assets. APs use this exchange to ensure that the intra-day ETF

market prices are similar to the net values of the underlying asset.

ETFs were introduced to the US in 1993 and to Europe in 1996 and are extremely

popular among individual investors, generating a large amount of volume daily. Two

1



Chapter 1. Introduction 2

notable ETFs are SPY, which tracks the S&P 500 Index, and the DIA, which tracks the

Dow Jones Industrial Average. Equity ETFs make the largest contributions to assets

under management with $1.3 trillion worth of assets. The popularity of ETFs is largely

due to higher daily liquidity and lower expense fees than mutual funds. Some other

advantages are its ease of access, being able to sell short, the ability to buy on margin

and having no minimum deposit amount, allowing the purchase of as low as one share.

1.2 Introduction to Leveraged Exchange-Traded Funds

A leveraged exchange-traded fund (LETF) is simply an ETF which is designed to

provide an amplified return of the underlying index it is tracking. The purpose of LETFs

is to provide investors with the opportunity to catch short-term momentum bursts in its

underlying index. The high risk that LETFs carry make them unattractive as long-term

investments and traders are likely to hold them for a few days or less. The leverage

ratio is the approximate ratio of returns the LETF attempts to achieve with respect to

its underlying index. An LETF can be both bullish, which provides a positive ratio

in returns, commonly 2 or 3 times the daily index return, or bearish, which provides

negative returns, commonly -1, -2 or -3 times the daily index return. Bearish LETFs

are a popular alternative to short-selling of assets, as they usually have lower expense

fees. Since an ordinary ETF tracks the exact returns of an index, it is considered to

be passively managed, whereas an LETF undergoes daily rebalancing in the form of

borrowing funds to purchase additional shares, or short-selling in the case of bearish

LETFs.

Since their introduction, LETFs have drawn a number of criticisms regarding their

ability to provide the returns they should, especially during financial crises when

volatility is at its peak. LETFs are known to under-perform over longer time horizons

and will usually fall short of their advertised leverage ratio. The daily rebalancing
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mechanism means that despite having accurate returns on a daily basis, LETFs will

slowly diminish in performance as the variance of their underlying index is compounded

over time. This under-performance is also often a result of poorly timed rebalancing

and the replication of returns through derivatives.

Cheng and Madhavan in [7] illustrated the behaviour of LETF prices with respect

to the variance of their underlying index. They showed the variation in the desired

and actual returns of an LETF over a long time period was a consequence of its

daily rebalancing as well as the strong dependence of an LETF on the variance of its

underlying index . This erosion of LETF prices can lead to a bullish LETF having

negative returns when its underlying index has positive returns, or a bearish LETF

having losses when its underlying index returns is also having losses. In August 2009,

the US Securities and Exchange Commission issued a statement regarding the riskiness

of LETFs and investigated a potential feedback loop created by LETFs which could lead

to higher market volatility. Lu, Wang and Zhang in [17] created a discrete-time model

showing the long-term performance of LETFs. This relationship was also modeled by

Avellaneda and Zhang [4] with a continuous-time model. Leung and Santoli [14] and

Mason et al. [18] showed the empirical leverage ratios of certain LETFs and discussed

certain portfolio rebalancing techniques to reduce errors in returns and also illustrated

certain investment strategies for LETFs using these techniques.

The concept of options on LETFs is fairly new and so the research done is limited.

Zhang in [23] stated that the relationship between an LETF and its underlying index is

"path-dependent" and proposed a Heston model framework for options pricing which

was applied to various LETFs tracking the S&P 500 Index. The results showed that

an LETF option can be replicated through a basket of options on the underlying index

with a suitable choice of strike prices. These derivations were influenced by the path-

dependence ideology. The theory was tested empirically and showed a strong correlation

with actual mid-market prices. The findings of Zhang were extended by Ahn et al. [1]
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and applied to the stochastic volatility with jump (SVJ) and the stochastic volatility with

contemporaneous jump (SVCJ) models. They also used the Heston model and showed

that if the underlying index has Heston dynamics, then so does the LETF. They applied

standard transform methods to analytically price both ETFs and LETFs. In the case

that a closed-form expression could not be computed, they discussed some numerical

solutions and approximation methods as proposed by Heston [13].

Since LETFs not only share an underlying index but also the same sources of

risk, the value of these LETFs should have a strong relationship. Therefore it is of

theoretical and practical importance to implement an option pricing framework that is

arbitrage-free and compatible amongst different leverage ratios. Alexander and Kaeck

[3] found better results when modeling the log-value of the VIX and so they proposed a

stochastic volatility model for the log of VIX for pricing options. Leung and Santoli

in [14] proposed a Heston stochastic volatility model with jumps for the underlying

index due its tractability and ability to recreate similar volatility characteristics for

different LETFs. Ahn et al. [1] introduced an approximate pricing method to price

LETF options consistently for various jump-diffusion model. They also explore the

impact of daily rebalancing frequency on the price of an LETF option. This effect

was also noted by Santoli [20]. Deng et al. [10] compared empirical LETF implied

volatilities with implied volatilities simulated from the Heston model. Gehricke and

Zhang [11] were particularly interested in the VXX, and they proposed a model focusing

on the time-varying mean behavior of the VXX. Leung and Sircar [16] used asymptotic

techniques to derive approximations for LETF option prices and its implied volatility

under a stochastic volatility framework. Most recently, Xu [22] discussed several

jump-diffusion models, separating equity and volatility LETFs. Using the Fast Fourier

Transform (FFT) method introduced by Carr and Madan [6], a consistent framework was

developed to obtain a closed-form options pricing formula. The volatility models had

particular interest in the VIX and its ETFs. Xu did not account for the path-dependence
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of LETFs in their model. Furthermore, no numerical analysis was performed to justify

their model’s ability to provide accurate option prices. In our thesis, we extend the

research of Xu [22] and implement the path-dependence of LETFs into our model and

provide numerical results with comparisons to Monte-Carlo simulated call prices.

1.3 Research Questions

The contribution of this thesis can be summarized as the pursuit to answer the following

research questions.

Question 1.1. Can the optimization technique for estimating empirical leverage ratios,

introduced in [15], provide better estimates over traditional methods in different market

conditions?

Question 1.2. How can we create a consistent framework for pricing LETF options

that incorporates its path-dependent property?

Question 1.3. How are the call option prices obtained from our formula affected

by changes in the underlying model parameters? Will our model be able to provide

accurate results under extreme parametric conditions?

1.4 Contributions

Chapter 3 of this thesis presents the mathematical framework of LETFs. In this chapter,

we model the relationship between the price of an LETF and the value of its underlying

index and attempt to explain key characteristics of LETFs using this link. The relation-

ship shows the dependence of an LETF’s price on not only the value of its underlying

index, but also the LETF’s leverage ratio and the volatility of the underlying index. The

volatility coefficient in this model, which is a function of the leverage ratio, is shown

to be negative for any leverage ratio. This explains the volatility decay characteristic
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of an LETF which is a large cause of concern amongst investors. The volatility decay

factor accumulates over time and will have significant negative impact on the returns of

LETFs over longer time horizons. This accumulated volatility over time also leads to

the path-dependence of LETFs.

We use an optimization technique, introduced by Leung and Santoli in [15], to

empirically estimate the leverage ratio of an LETF under different market conditions

and with varying holding period lengths. Results from the optimization method are

compared to those from standard regression analysis, and the optimization method shows

lower errors between the estimated and theoretical leverage ratio values. While this does

not necessarily suggest that the optimization technique produces better results, there

are several drawbacks of using the regression method which makes the optimization

method a credible alternative. The results from our analysis show that longer holding

periods lead to severe under-performance of LETFs due to the volatility decay factor,

as mentioned previously. In bullish markets, the bullish LETFs perform better on

average and bearish LETFs perform slightly worse. In bearish markets, both types of

LETFs perform significantly worse. This conclusion is logical since bearish markets

are generally associated with higher volatility, which in turn leads to larger volatility

decay in LETFs and overall worse performance.

Chapter 4 of this thesis provides the option pricing methodology. The underlying

index of an LETF is modeled under Heston dynamics. Another process is introduced

here to exhibit the path-dependent property of LETFs. Using the joint moment gen-

erating function (MGF) of the underlying index value and its volatility, we are able

to derive a pricing PDE. The joint MGF is assumed to follow an exponential affine

form, and we are able to obtain a closed-form solution to the PDE. We establish a link

between the joint MGF and the characteristic function of an LETF. Finally, we use

the Carr-Madan Fourier transform method to derive our option pricing formula in the

form of an integral. Our submitted research paper [5] highlights the crucial parts of
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this option pricing methodology and further extends this procedure by applying the fast

Fourier transform. More details on this paper are provided in Section 1.4.

Chapter 5 of this thesis presents the numerical analysis of our option pricing model

by comparing the call prices obtained using our formula to the theoretical prices from

Monte Carlo simulations. The results show very low error between our model and

simulations and justifies the accuracy of our option pricing model. This chapter also

analyses the sensitivity in call prices with respect to the Heston model parameters. The

sensitivity analysis provides a necessary understanding of LETF option prices under

various market conditions and also shows the durability of our model to be able to

provide accurate results under extreme parametric conditions.

1.5 Research Ouputs

During the course of this Master’s thesis, the following research paper was completed.

[A] Cao, J., Kapoor, G., Ruan, X., Zhang, W. (2018). Path-dependent leveraged

exchange-traded fund option pricing using the fast fourier transform. Submitted

to Computers and Mathematics with Applications, Elsevier.

The LETF option pricing methodology introduced in this thesis is explained concisely

in the paper [A]. This paper extends the research of this thesis by applying the fast

Fourier transform to our call price integral.



Chapter 2

Mathematical Preliminaries

In this chapter, we introduce some mathematical preliminaries and techniques that are

applied in our thesis. The majority of the material used in this chapter is taken from

textbooks [8], [19] and [21].

2.1 Probability Theory

A probability space is defined as a triple, (Ω,F ,P). Here, Ω is a space of possible

outcomes, F is a σ-algebra on Ω, and P is a probability measure.

Definition 2.1.1. (σ-algebra). A non-empty collection F of subsets of Ω is called a

σ-algebra on Ω if and only if

(i) the null set ∅ ∈ F ,

(ii) A ∈ F ⇒ Ac ∈ F , where Ac denotes the complement of A in Ω,

(iii) the union of a countable collection of sets in F is also in F , i.e. if A1,A2, ... are

in F , then ⋃
n≥1

An ∈ F .

As a result, Ω ∈ F . The pair (Ω,F) is called a measurable space. A probability

measure P on a measurable space (Ω,F) is a nonnegative set function defined on F that

8
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satisfies (i) P(Ω) = 1 and (ii) for any sequence of pairwise disjoint sets A1,A2, ...,An,

P(
∞
⋃
i=1

Ai) =
∞
∑
i=1

P(Ai). (2.1)

To summarize, a probability space (Ω,F ,P) is a measurable space (Ω,F) together

with a probability measure P defined on F . Ω alone is called a sample space, and each

of its elements, denoted ω, is a sample point, every member of F is an event, and P is

the probability measure.

Definition 2.1.2. (Random Variables). Let (Ω,F ,P) denote a probability space. Then

a random variable, denoted X , is a real-valued function defined on the sample space Ω

if it satisfies the property that for every Borel subset B of R, the subset of Ω given by

X−1(B) = {ω ∈ Ω ∶X(ω) ∈ B}. (2.2)

is in F .

For a better understanding of Definition 2.1.2, we must define the Borel subsets of

R. To define the Borel subsets of R, we first consider the closed intervals [a, b] ⊂ R and

then proceed to add all possible sets that are necessary to have a σ-algebra. Therefore,

all possible unions of sequences of closed intervals are Borel sets. Since every open

interval can be defined as a union of sequence of closed intervals, an open interval is

also a Borel set. Furthermore, a union of sequences of open intervals can form an open

set, where an interval may or may not be defined, and so an open set is also a Borel set.

Also, the complement of an open set, a closed set, is also a Borel set. This collection of

Borel subsets in R is called the Borel σ-algebra of R and every subset of R encountered

henceforth is within the Borel σ-algebra.

A random variable X is then a numerical value determined through an experiment

of choosing ω ∈ Ω, i.e, the value obtained as a result of a specific outcome within the
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set of all possible outcomes. Furthermore, it is of interest to understand the probability

of X taking on each outcome. Since, in most cases, the probability of a single outcome

occurring is 0, it is better to consider the outcome within a certain Borel set, i.e.,

P{X ∈ B}, where B is a Borel subset. With this in mind, the probability distribution of

X can then be defined.

Definition 2.1.3. (Distribution Measure). Let (Ω,F ,P) denote a probability space and

X is a random variable on this space. The distribution measure of X is defined as

a probability measure µX which is assigned to each Borel subset B, where µX(B)

denotes the probability of X being a value within this subset, i.e, µX(B) = P{X ∈ B}.

Pricing financial derivatives by applying knowledge of the no-arbitrage pricing

theory requires a contingency plan. The contingency plan accounts for the initial wealth

necessary to set up a hedging short position which is contingent on the uncertainty

between the present and future time. For continuous-time models, we must create a

sophisticated process to understand the concept of information about an asset at a given

time.

We can express the concept of information in terms of σ-algebras from Definition

2.1.1. A σ-algebra is a collection of subsets of the sample space Ω, i.e, it is a repres-

entation of all possible outcomes of an experiment at a given time. A σ-algebra can be

thought of as the information received about that experiment at a given time. Using the

σ-algebra containing all possible outcomes from the current time, we can express the

σ-algebra of a future time and all its possible outcomes, which includes the outcomes

from the previous σ-algebra. In this manner, we construct a collection of σ-algebras

which provides more information over time. This collection of σ-algebras is called a

filtration.

Definition 2.1.4. (Filtration). Consider a probability space (Ω,F ,P). Let T > 0 and

assume that for every t ∈ [0, T ] there is a σ-algebra F(t). Let s represent a time where
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s ≤ t, and every set within F(s) is also in F(t). Then, the collection of σ-algebras

F(t), 0 ≤ t ≤ T , is called a filtration.

Definition 2.1.5. Consider a probability space (Ω,F ,P) and a random variable X

defined on (Ω,F ,P). The σ-algebra generated by X , denoted by σ(X), is a collection

of all sets of the form X−1(B) where B is a Borel set of R.

Definition 2.1.6. Consider a probability space (Ω,F ,P) and a random variable X

defined on (Ω,F ,P). Denote G a σ-algebra of subsets of Ω. Then if every set within

σ(X) is also in G, we say that X is G-measurable.

Note that, if X is G-measurable, then f(X) is also G-measurable, where f ∶ R→ R

is any Borel-measurable function. If G is able to ascertain the value of X then it can

also do so for f(X).

2.1.1 Expectations and Conditional Expectations

Consider a probability space (Ω,F ,P) and a random variable X defined on (Ω,F ,P).

The mathematical expectation of X , denoted by E[X], is defined as

E[X] = ∫
Ω
XdP = ∫

R
xf(x)dx, (2.3)

where f(x) is the probability density function of X .

Consider a probability space (Ω,F ,P), a random variable X defined on this space

and a sub-σ-algebra G of F . If X is G-measurable, then the information from G is

sufficient to determine the value of X . On the other hand, if G is independent of X ,

then the information from G is of no use. In the median case, the information from G

is able to provide a reasonable estimate for the value of X . In this case, we can say

that the estimate of X is conditional on the information from G. In other words, the

conditional expectation of X given G provides an estimate for the value of X .
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Definition 2.1.7. Consider the probability space (Ω,F ,P), a random variableX defined

on (Ω,F ,P) and a sub-σ-algebra G, where G ⊆ F . The conditional expectation of X

given G, denoted by E[X ∣G], is a random variable that satisfies

(i) (Measurability) E[X ∣G] is G-measurable, and

(ii) (Partial averaging)

∫
A
E[X ∣G](ω)dP(ω) = ∫

A
X(ω)dP(ω) for all A ∈ G. (2.4)

The first property from Definition 2.1.7 ensures that the value of conditional expect-

ation can be ascertained from the information in G. The second property guarantees

that E[X ∣G] is an estimate of X . Note that if the σ-algebra G is generated from another

random variable G, then the conditional expectation would generally be written in terms

of G, i.e, E[X ∣G] rather than E[X ∣G]. Also, there will always exist a unique random

variable that satisfies both properties (i) and (ii).

The following proposition summarizes some fundamental properties of conditional

expectations.

Proposition 2.1.1. Consider the probability space (Ω,F ,P) and denote G a sub-σ-

algebra of F .

(i) (Linearity) Let X and Y denote integrable random variables, and c1 and c2 are

constants, then

E[c1X + c2Y ∣G] = c1E[X ∣G] + c2E[Y ∣G]. (2.5)

(ii) (Taking out known factor) Let X and Y denote integrable random variables,
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and X is G-measurable, then

E[XY ∣G] =XE[Y ∣G]. (2.6)

(iii) (Tower property) Let X denote an integrable random variable, and H is a

sub-σ-algebra of G, i.e, H contains less information than G, then

E[E[X ∣G]∣H] = E[X ∣H]. (2.7)

(iv) (Independence) Let X denote an integrable random variable that is independ-

ent of σ-algebra G, then

E[X ∣G] = E[X]. (2.8)

2.1.2 Moment Generating Functions

In probability theory, the moment generating function (MGF) of a random variable is

another way to define its probability distribution. Its applications to options pricing

theory allow for another method to analytically derive an option pricing formula. Note

that the MGF of a random variable may not always exist.

Definition 2.1.8. Let X denote a real-valued random variable, then its moment generat-

ing function MX(u) is defined as

MX(u) = E [euX] , (2.9)

wherever this expectation may exist, and where u ∈ R. Note that MX(0) always exists

and is equal to 1. The MGF can also be written in terms of the probability density
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function fX(x) of X as

MX(u) = ∫
∞

−∞
euxfX(x)dx. (2.10)

Definition 2.1.9. Consider an n-dimensional vector of random variablesX = (X1, ...,Xn)T

and an n-dimensional fixed vector u, then the joint moment generating function ofX is

MX(u) = E [euTX] , (2.11)

where uT denotes the transpose of u.

2.1.3 Characteristic Functions

The characteristic function (CF) of a random variable X , denoted by φX(u), is closely

related to its MGF, MX(u). The CF is defined as the MGF of iX , i.e, it is evaluated on

the imaginary axis. The CF is able to completely define the probability distribution of a

random variable, and unlike the MGF, it always exists, even if the probability density

function does not.

Definition 2.1.10. Let X denote a real-valued random variable, then its characteristic

function φX(u) is defined as

φXu = E [eiuX] , (2.12)

where i =
√
−1. This definition suggests an immediate link between the MGF and CF

MX(u) = φX(−iu), (2.13)
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or in terms of the characteristic function

φX(u) =MX(iu). (2.14)

Since there is a bijection between the CF and the cumulative distribution function

of a random variable, it is always possible to obtain one of these functions from the

other. Using an inversion theorem, the characteristic function can be linked to the

probability density function (PDF) and cumulative distribution function (CDF) of a

random variable.

Proposition 2.1.2. Consider a random variable X and let fX(x), FX(x) and φX(u)

denote its PDF, CDF and CF, respectively. Then the link between these functions is

fX(x) = F ′
X(x) = 1

2π ∫
∞

−∞
e−iuxφX(u)du, (2.15)

where F ′
X(x) denotes the derivate of FX(x) with respect to x.

Proposition 2.1.2 is an application of the inverse Fourier transform which is dis-

cussed in the next section.

2.2 Fourier Transform

The Fourier transform has many applications in Mathematics. In Chapter 4 of this

thesis, the Fourier transform and inverse Fourier transform methods are applied in an

option pricing environment to derive a European call price function for LETFs. Using

these methods, we are also able to establish a relationship between the PDF and CF of a

random variable, as was shown in the previous section.

Definition 2.2.1. Let f(x) denote a function defined on R. The Fourier transform of f
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is defined as

F(z) ∶= ∫
∞

−∞
f(x)e−izxdx, (2.16)

where i =
√
−1 and z represents the Fourier transform variable.

The operator Φ ∶ f ↦ F is called the Fourier transform operator. In this case, we

write

f(x) = 1

2π ∫
+∞

−∞
F(z)eizxdz, (2.17)

and f = Φ−1(F), where Φ−1 is called the inverse Fourier transform operator. We say

that f(x) and F(z) form a Fourier transform pair.

Using these definitions, we can apply the Fourier transform methods to show the

link between the CF and PDF of a random variable.

Proposition 2.2.1. Consider a random variable X , and let fX(x) and φX(u) denote its

PDF and CF, respectively. Then the CF of X can be defined as the Fourier transform of

its PDF

φX(u) = E [eiuX] = ∫
+∞

−∞
eiuxfX(x)dx. (2.18)

Through the inverse Fourier transform, we can obtain fX(x) as in Proposition 2.1.2

fX(x) = 1

2π ∫
+∞

−∞
e−iuxφX(u)du. (2.19)
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2.3 Stochastic Calculus

2.3.1 Stochastic Processes

In probability theory, a stochastic process is defined as a collection of random variables.

This collection is indexed by a set of numbers, and in most cases this set corresponds to

a time interval. If the index set has finite or a countable number of elements, we refer to

the process as a discrete-time stochastic process. On the other hand, if the index set is

an interval on the real line, we say that it is a continuous-time stochastic process.

Definition 2.3.1. A stochastic process is a collection of random variables defined on a

probability space (Ω,F ,P). The random variables are indexed by a set T . When T is

the set of natural numbers N, we denote a discrete-time stochastic process as

{Xn ∶ n ∈ N}.

When T = [0,+∞), we denote a continuous-time stochastic process as

{Xt ∶ t ≥ 0}.

Definition 2.3.2. Consider a probability space (Ω,F ,P) and an associated filtration

{Ft ∶ t ≥ 0}. Let {Xt ∶ t ≥ 0} denote a stochastic process. We would call {Xt ∶ t ≥ 0} an

adapted stochastic process if, for each t, Xt is Ft-measurable.

2.3.2 Martingales and Markov Processes

Recall that a filtration on (Ω,F ,P) is described as a non-decreasing family {Ft ∶ t ≥ 0}

of sub σ-algebras of F , that is, for 0 ≤ s < t

Fs ⊆ Ft ⊆ F .
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Then, (Ω,F ,P,{Ft ∶ t ≥ 0}) is called a filtered probability space.

Definition 2.3.3. A real-valued stochastic process {Xt ∶ t ≥ 0}, adapted to the filtration

{Ft ∶ t ≥ 0}, is a martingale relative to {Ft ∶ t ≥ 0} if

(i) for each t, E[Xt] <∞, i.e., Xt is integrable,

(ii) for any pair s, t ∈ T where s ≤ t, E[Xt ∣Fs] =Xs.

The process {Xt ∶ t ≥ 0} is called a sub-martingale if E[Xt ∣Fs] ≥ Xs within the

same conditions. Similarly, {Xt ∶ t ≥ 0} is called a super-martingale if E[Xt ∣Fs] ≤

Xs. Therefore, a process which is both a sub-martingale and a super-martingale is a

martingale.

In probability theory, the Markov property is a term used to describe the memoryless

property of a stochastic process. A stochastic process holds the Markov property if its

future value depends only on the present value and is conditionally independent of all

previous values. In other words, the past behavior of a stochastic process is of no use in

predicting its future behavior given the current state of the process. A stochastic process

that possesses this property is known as a Markov process.

Definition 2.3.4. Consider a probability space (Ω,F ,P), let T denote a fixed positive

number and let {Ft ∶ 0 ≤ t ≤ T} be a filtration. Let {Xt ∶ 0 ≤ t ≤ T} denote an adapted

stochastic process. Assume that for all s and t, where s ≤ t, and for every non-negative

Borel-measurable function f , there exists another Borel-measurable function g such

that

E[f(Xt)∣Fs] = g(Xs). (2.20)

Then we say that {Xt ∶ 0 ≤ t ≤ T} is a Markov process.
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2.3.3 Brownian Motion

Definition 2.3.5. Consider a probability space (Ω,F ,P). For each ω ∈ Ω, suppose

there exists a continuous-time process {Bt ∶ t ≥ 0}. This process is called a Brownian

motion if it satisfies the following properties

(i) for all 0 = t0 < t1 < ... < tn, the increments,

Bt1 −Bt0 ,Bt2 −Bt1 , ...,Btn −Btn−1

are independent, with B0 = 0.

(ii) for every s, t, where 0 < s < t, Bt −Bs follows a normal distribution with mean

zero and variance t − s.

Brownian motion can also be defined relative to the filtration {Ft ∶ t ≥ 0}.

Definition 2.3.6. Let (Ω,F ,P) be a probability space on which a Brownian motion

{Bt ∶ t ≥ 0} is defined. A filtration for Bt is a collection of σ-algebras {Ft ∶ t ≥ 0}

which satisfy

(i) For every s, t where 0 ≤ s < t, Fs ⊆ Ft. That is, the information available at a later

time Ft contains all information available at an earlier time Fs.

(ii) For every s, t where 0 ≤ s < t, the increment Bt − Bs is independent of Fs.

Essentially, the increments of Brownian motion after time s are independent of

the information available up to time t.

(iii) For each t ≥ 0 the Brownian motion Bt at time t is Ft-measurable. Therefore, the

information available at time t is sufficient to evaluate Bt at that time.
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Brownian Motion as Martingale

Let {Ft ∶ t ≥ 0} denote a filtration for a Brownian motion {Bt ∶ t ≥ 0}. By definition, Bt

follows a normal distribution with mean zero and variance t, and is therefore integrable

with E[Bt] = 0, thus satisfying Definition 2.3.3 (i). Property (ii) can be proven as

follows. For any time 0 ≤ s < t

E[Bt∣Fs] = E[Bs + (Bt −Bs)∣Fs]

= E[Bs∣Fs] +E[Bt −Bs∣Fs]

= Bs +E[Bt −Bs] = Bs.

Therefore, Brownian motion is a martingale. The second equality of this proof follows

from the independence of increments of Brownian motion property, and the third

equality uses the stationary normal increments property, Definition 2.3.5 (i) and (ii),

respectively.

2.3.4 Itô’s Lemma

Definition 2.3.7. Consider a probability space (Ω,F ,P), let {Bt ∶ t ≥ 0} denote a

Brownian motion process on (Ω,F ,P) and let {Ft ∶ t ≥ 0} be its associated filtration.

An Itô process {Xt ∶ t ≥ 0}, is an adapted stochastic process of the form

Xt =X0 + ∫
t

0
µ(s,Xs)ds∫

t

0
σ(s,Xs)dBs, (2.21)

where X0 is defined, and µ(s,Xs) and σ(s,Xs) are adapted stochastic processes.

Definition 2.3.8. The Itô differential equation stems from the definition of an Itô process
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and satisfies the stochastic differential equation

dXt = µ(t,Xt)dt + σ(t,Xt)dBt. (2.22)

An important result of Itô processes is the derivation of Itô’s lemma, which is used

in stochastic calculus to find the differential of a time-dependent function.

Proposition 2.3.1. (Itô’s lemma for Brownian motions). Consider a twice-differentiable

scalar function f(t, x) of two real variables t and x, and let {Bt ∶ t ≥ 0} denote a

Brownian motion process. Then, for every t ≥ 0,

df(t,Bt) =
∂f(t,Bt)

∂t
dt + ∂f(t,Bt)

∂x
dBt +

1

2

∂2f(t,Bt)
∂x2

dt. (2.23)

Proposition 2.3.2. (Itô’s lemma for Itô processes). Consider a twice-differentiable

scalar function f(t, x) of two real variables t and x, and let {Xt ∶ t ≥ 0} denote an Itô

process. Then, for every t ≥ 0,

df(t,Xt) = (∂f(t,Xt)
∂t

+ µ(t,Xt)
∂f(t,Xt)

∂x
)dt + 1

2
σ(t,Xt)2∂

2f(t,Xt)
∂x2

dt

+ σ(t,Xt)
∂f(t,Xt)

∂x
dBt. (2.24)

2.3.5 Discounted Feynman-Kac Theorem

The discounted Feynman-Kac theorem provides a link between stochastic processes

and partial differential equations (PDEs). It provides a solution for pricing PDEs and is

instrumental in options pricing theory.

Proposition 2.3.3. (One-dimensional case). Consider a probability space (Ω,F ,P) and

suppose that {Xt ∶ t ≥ 0} is a stochastic process that satisfies the stochastic differential
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equation

dXt = µ(t,Xt)dt + σ(t,Xt)dBt, (2.25)

where Bt is a standard Brownian motion. Let f(t,Xt) denote a twice-differentiable

function of t and Xt that satisfies the following PDE

∂f(t, x)
∂t

+ µ(t, x)∂f(t, x)
∂x

+ 1

2
σ(t, x)2∂

2f(t, x)
∂x2

− rf(t, x) = 0, (2.26)

subject to the terminal condition f(T,XT ) = h(XT ). The constant r denotes a discount

factor and h(X) denotes a Borel-measurable function. Then according to the discounted

Feynman-Kac theorem, f(t,Xt) has the solution

f(t, x) = E [e−r(T−t)h(XT ) ∣Xt = x] . (2.27)

The discounted Feynman-Kac theorem can be applied in both possible scenarios. In

the first case, if the process of Xt is known and a function f(Xt, t) is given along with

its terminal condition f(XT , T ) = h(XT ), then the solution for f(Xt, t) can be easily

obtained. In the second case, if the process Xt is known, and we know the solution of

f(Xt, t) from the definition, then we can be sure that f(Xt, t) satisfies the PDE given

in the definition.

The multi-dimensional discounted Feynman-Kac theorem is a general extension of

the one-dimensional case.

Proposition 2.3.4. (Multi-dimensional case). Consider a probability space (Ω,F ,P)

and suppose {Xt ∶ t ≥ 0} denotes an n-dimensional stochastic process that satisfies the
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n-dimensional stochastic differential equation

dXt = µ(t,Xt)dt +σ(t,Xt)dBt, (2.28)

whereBt is anm-dimensional standard Brownian motion, µ(t,Xt) is an n-dimensional

vector and σ(t,Xt) is an n × m matrix. Let f(t,Xt) denote a twice-differentiable

function of t and Xt that satisfies the following PDE

∂f(t,x)
∂t

+
n

∑
i=1

µi(t, x)
∂f(t,x)
∂xi

+ 1

2

n

∑
i=1

n

∑
j=1

[σ(t,x)σ(t,x)T ]
ij

∂2f(t,x)
∂xi∂xj

− rf(t,x) = 0,

(2.29)

subject to the terminal condition f(T,XT ) = h(XT ). Then according to the discounted

Feynman-Kac theorem, f(t,Xt) has the solution

f(t,x) = E [e−r(T−t)h(XT ) ∣Xt = x] . (2.30)



Chapter 3

Price Dynamics of LETFs

This chapter presents the discrete and continuous time models that relate the price of

an LETF to the value of its underlying index. The continuous-time model undergoes

empirical analysis and is tested for consistency among various equity and volatility

LETFs with different leverage ratios. LETFs of the S&P 500, NASDAQ 100 and

DJIA equity indices are used for testing, along with a few LETFs of the VIX. The

pricing model that links an LETF to its underlying index exhibits a volatility decay

factor which is studied in depth. Another study involves long-term empirical leverage

ratio estimation by applying an optimization technique, which uses historical data to

minimize the leverage ratio of various LETFs. The results are compared with leverage

ratio values obtained through linear regression.

3.1 Modelling Returns of Leveraged ETFs

The theoretical return of an LETF is illustrated as

Ln = L0

n

∏
j=1

(1 + βRj), (3.1)

24
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where Ln is the price of an LETF on day n, β is the leverage ratio and Rj is the daily

return of the reference index. Equation (3.1) is known as the leverage benchmark and is

used in empirical analysis to test the consistency of existing LETFs, to compare pricing

models and to test portfolios replicating LETFs.

The popularity of LETFs stems from their ability to amplify short-term returns for

investors. Intuitively, if an asset or index is bullish, investors would like to hold a bullish

LETF with a strong ratio. Similarly, a bearish index will provide highest returns with

a highly negative bearish LETF. Mathematically, this can be explained by taking the

derivative of the log of Equation (3.1) with respect to β

d

dβ
[ ln(Ln

L0

)] =
n

∑
j=1

Rj

1 + βRj

. (3.2)

Equation (3.2) mathematically illustrates the instinctive use of LETFs under different

market conditions. For a bullish LETF β > 0, if Rj > 0 for all j, then log(LnL0
), and

therefore the value of Ln, is increasing in β. In other terms, a larger positive leverage

ratio is necessary for higher returns when the reference asset is increasing in value. On

the other hand, if Rj < 0 for all j, and β < 0, a more negative β increases log(LnL0
) and

thus Ln. Therefore, when the reference asset is decreasing in value, a larger negative

bullish LETF is preferred to yield higher returns.

Day ETF Return (%) 2x LETF Return (%) -2x LETF Return (%)
0 100 - 100 - 100 -
1 95 -5% 90 -10% 110 10%
2 99.75 5% 99 10% 99 -10%
3 94.76 -5% 89.10 -10% 108.90 10%
4 99.50 5% 98.01 10% 98.01 -10%
5 94.53 -5% 88.21 -10% 107.81 10%
6 99.26 5% 97.03 10% 97.03 -10%

Table 3.1: Daily rebalancing of LETFs.

Despite both long and short LETFs being designed to move in opposite directions
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to one another, it is possible for both LETFs to have a negative cumulative return over

a long holding period. Table 3.1 illustrates this for a 6-day holding period where the

return column indicates the percentage return on a given day. Notice that after 6 days,

all three portfolios are at a loss, despite the -2x LETF portfolio having the opposite

return on any given day. You would think that if the bullish LETF is at a loss after 6

days, the bearish LETF would be in profit, but this is not the case. This is the effect of

daily rebalancing. In fact, the underlying ETF loses 0.74% of its value after 6 days, but

both its bullish and bearish LETFs are at a loss of 2.97%, more than four times larger.
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Figure 3.1: Cumulative log-return of SPVXSTR (blue) and SVXY (red).

Figure 3.1 illustrates this point visually by comparing the cumulative returns of the

VIX short-term futures index return, SPVXSTR, and an inverse (-1x) LETF of this

index, SVXY, over a two-year holding period. The figure shows multiple occasions

when both the inverse LETF and its reference index are significantly in losses. There is

a constant decay in the performance of SVXY and it is larger when the reference index

is losing value and also during periods of high volatility. This phenomenon is a result

of daily portfolio rebalancing and is a strong argument against holding LETFs for long

periods.
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Figure 3.2: Empirical and theoretical returns comparison for various holding periods of
±2x LETFs.

As mentioned earlier, the value erosion becomes larger as the holding period in-

creases and also impacts higher absolute leverage ratios more, due to higher deviance

from the reference asset being amplified over a long time horizon. Figures 3.2 and 3.3

illustrate this by looking at the empirical returns of four S&P 500 LETFs over different

holding periods. The LETFs have leverage ratios of 2, -2, 3 and -3. These figures

illustrate the correlation between these LETFs and SPY, the largest traded ETF of S&P

500. The SPY returns are scaled with respect to the leverage ratio of the LETF it is
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Figure 3.3: Empirical and theoretical returns comparison for various holding periods of
±3x LETFs.

paired with. Theoretically, without any expense fees and volatility decay, the returns

should spread evenly along the dotted red line. The figures shows an increase in spread

with a longer holding period as expected, but the returns are also below the theoretical

value in almost all 15-day and 60-day holding periods, illustrating the volatility decay

for longer holding periods. The figures also show significantly higher volatility decay

for inverse LETFs, and also for larger absolute leverage ratio values.
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3.1.1 Continuous-Time Model

Denoting the reference index as {St ∶ t ≥ 0}, its price evolution is modeled by the

stochastic differential equation

dSt = St(µtdt + σtdBt), (3.3)

where {Bt ∶ t ≥ 0} is a standard Brownian motion term under the physical measure

P. The stochastic drift {µt ∶ t ≥ 0} represents the time-varying mean rate of return,

and {σt ∶ t ≥ 0} is the instantaneous stochastic price volatility. To simply illustrate the

relationship between LETFs and its underlying index, this chapter does not specify a

parametric stochastic volatility model, although Chapter 4 introduces an extension of

the Heston stochastic volatility model which accounts for the path-dependent property

of an LETF, for the purpose of options pricing.

Using the reference index St, a long LETF Lt with β ≥ 1 is constructed through a

portfolio where βLt is invested in the reference index St and (β − 1)Lt is borrowed at

the interest rate r. An expense fee, f , is charged for the purchase of shares. Similarly,

a short LETF with β ≤ −1 is constructed by entering a short position of ∣βLt∣ in St

and holding (1 − β)Lt at the risk-free rate. Short LETFs in general also incur a fee

proportional to the rate of borrowing, when short selling. This extra charge is omitted

in our model.

With knowledge of this constant proportion trading strategy, we can mathematically

illustrate the price dynamics of a β-LETF in terms of its underlying index as

dLt = Ltβ
dSt
St

+Lt((1 − β)r − f)dt. (3.4)
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Proposition 3.1.1. (Relationship between LETF and underlying index). Based on the

price dynamics of an LETF from Equation (3.4), the price of an LETF Lt is linked to

its reference index St as follows

ln(Lt
L0

) = β ln(St
S0

) + β − β
2

2 ∫
t

0
σ2
udu + ((1 − β)r − f)t (3.5)

Proof. Equation (3.5) is derived by applying Itô’s lemma to (3.3) and (3.4).

d lnLt =
dLt
Lt

− 1

2
⟨dLt
Lt

,
dLt
Lt

⟩

= βdSt
St

+ ((1 − β)r − f)dt − β
2

2
⟨dSt
St
,
dSt
St

⟩

= βdSt
St

+ ((1 − β)r − f)dt − β
2

2
σ2
t dt.

Similarly, we get

d lnSt =
dSt
St

− 1

2
σ2
t dt⇒

dSt
St

= d lnSt +
1

2
σ2
t dt.

Substituting for dSt
St

into d lnLt gives

d lnLt = β d lnSt +
β

2
σ2
t dt + ((1 − β)r − f)dt − β

2

2
σ2
t dt

= β d lnSt +
β − β2

2
σ2
t dt + ((1 − β)r − f)dt.

Finally, integrating both sides with respect to t from 0 to t gives the desired result

ln(Lt
L0

) = β ln(St
S0

) + β − β
2

2 ∫
t

0
σ2
udu + ((1 − β)r − f)t.



Chapter 3. Price Dynamics of LETFs 31

It is important to note the second term in (3.5)

β − β2

2
< 0 for β ≠ 0 or β ≠ 1,

which illustrates that the value erosion in LETF log-returns is proportional to the realized

variance of the underlying index ∫
t

0 σ
2
udu. This erosion, or volatility decay, affects both

positive and negative leverage ratios and is significantly stronger for short LETFs of

the same magnitude as their long counterparts. With variance increasing over time, this

volatility decay also increases in absolute value over longer time periods, as previously

illustrated.

3.1.2 Empirical Validation

This section attempts to justify the relationship between an LETF and its underlying

index as modeled in Equation (3.5). The empirical study includes 15 different LETFs

of the S&P 500, NASDAQ 100 and DJIA indices as well as 2 VIX LETFs. The data

sample for each index was procured from Thomson Reuters Datastream package, and

contains the closing prices from 2nd January 2013 to 29th December 2017.

Table 3.2 lists the LETFs used for empirical analysis along with their β values and

expense ratio. While the option pricing model in Chapter 4 disregards this expense

ratio, this chapter compares the model in Equation (3.5) with the expense ratio to get a

fair analysis of the model.

The VIX LETFs chosen for this study are designed to track the VIX Short-Term

Futures Total Return Index (SPVXSTR). The inverse LETF, SVXY, has gained major

criticism since February 2018, when the value of its shares, and the value of similar

inverse LETFs, dropped by up to 90% during after-hours trading on February 5th, 2018.

This depreciation of value was caused by a large, unprecedented spike in the VIX.

Due to the controversy, the LETF was altered to provide -0.5x the return, reducing its
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Reference Index LETF Ticker Leverage Ratio Expense Ratio (%)

S&P 500 (^GSPC)

SSO +2 0.90
SPXL +3 1.04

SH -1 0.89
SDS -2 0.89

SPXU -3 0.90

NASDAQ (^NDX)

QLD +2 0.95
TQQQ +3 0.95
PSQ -1 0.95
QID -2 0.95

SQQQ -3 0.95

Dow Jones Industrial
Average (^DJI)

DDM +2 0.95
UDOW +3 0.95
DOG -1 0.95
DXD -2 0.95

SDOW -3 0.95
VIX Short-Term Futures

Total Return (^SPVXSTR)
UVXY +2 1.65
SVXY -1 1.38

Table 3.2: Data description.

risk during market instability, but also its potential reward. The data accumulated for

analysis is prior to this incident, and therefore we consider SVXY to provide 1x the

return, as it did.

On 12 January 2017, UDOW reverse-split its shares 1-for-4, increasing its price

from approximately $10 to $40. Since this split would falsely impact the returns of any

holding periods containing this split, it would provide inconsistent empirical results.

Therefore, the data prior to this split was altered by amplifying its daily closing prices

prior to the split by four times. Since our analysis uses the log-return of closing prices

and not the daily closing values, this alteration would only affect one data point.

The empirical verification of Equation (3.5) is done by approximating the tracking

error between the empirical LETF log-returns using our data sample, and the theoretical
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log-returns from the model

εt = ln
Lt
L0

− β ln
St
S0

+ β − β
2

2
Vt + ((1 − β)r − f)t, (3.6)

where t = 1
252 represents one day, and the realized variance, Vt, at time t is computed

as the accumulated variance from each day up to the current time. The theoretical

LETF prices are simulated using reference index prices from 2nd January 2013 to 29th

December 2017. The respective expense ratios from Table 3.2 are applied to each LETF.

The interest rate is set at 1.7% as per the 3-month LIBOR rate published by the Federal

Reserve Bank. In the case of short LETFs, the rate of borrowing is ignored.
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Figure 3.4: Correlation in log-returns of SPY and the ±2x and ±3x LETFs with their
respective theoretical values.

Figure 3.4 illustrates the three-way correlation between SPY, an ETF of S&P 500,

and different leveraged ETFs of the S&P 500 with their theoretical values determined

using Equation (3.5). As expected, the LETFs and their theoretical counterparts show



Chapter 3. Price Dynamics of LETFs 34

strong positive correlation, in the case of bullish LETFs, and strong negative correlation,

for bearish LETFs, with their underlying ETF. Furthermore, there is a consistently

strong positive relationship between the theoretical and empirical log-returns of the

LETF in each sub-figure. The minor deviancies are calculated using Equation (3.6) and

shown in Table 3.3 below.

Reference
Index LETF Ticker

Average
Tracking Error (%)

Standard
Deviation (%)

^GSPC

SSO 1.43 6.84
SPXL 0.83 24.96

SH -1.45 4.33
SDS -2.37 7.76

SPXU -3.37 12.52

^NDX

QLD 0.68 6.74
TQQQ 0.77 10.83
PSQ -1.30 4.49
QID -2.41 8.63

SQQQ -3.87 11.88

^DJI

DDM 1.62 11.05
UDOW 2.85 17.91
DOG -1.52 7.85
DXD -2.76 11.91

SDOW -3.94 12.58

^SPVXSTR
UVXY -9.15 205.19
SVXY -10.17 113.52

Table 3.3: Tracking error (%) of theoretical and empirical LETF returns.

Table 3.3 lists the average tracking error of each LETF along with its standard devi-

ation. As the table shows, the tracking error in most cases is minute and illustrates the

accuracy of the LETF pricing model. The VIX LETFs in the last two rows show higher

errors than the equity LETFs and this can be attributed to the higher unpredictability

of their underlying index as well as their tendency to fluctuate during periods of high

volatility. Both VIX LETFs have an average tracking error of approximately 10%,

with extremely large deviations from the mean, as their standard deviation values are

205.19% and 113.52%, for UVXY and SVXY, respectively. On the other hand, the
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model responds fairly well to equity LETFs. The average tracking error for bullish

LETFs is generally lower than those for bearish LETFs. Across the table, the NASDAQ

bullish LETFs fit the model the best as QLD and TQQQ provide the closest results to

their theoretical values with tracking errors of 0.68% and 0.77%, respectively. We can

conclude from these results that Equation (3.5) provides a reasonable estimate of an

LETF price based on the price of its underlying index, regardless of the leverage ratio.

3.2 Empirical Leverage Ratio Analysis

In the previous section, the leverage ratio β has been assumed to be accurate as ad-

vertised. Though ETF providers attempt to target a given leverage ratio, there can be

certain discrepancies between the advertised and empirical ratios. This section uses a

method introduced by Leung and Santoli [15] to track empirical ratios and provides a

replication technique to achieve a precise ratio.

In discrete time, with ∆t = 1
252 , the n-day log-return of the LETF is given by

ln
Lt+n∆t

Lt
= β ln

St+n∆t

St
+ θV (n)t + ((1 − β)r − f)n∆t, (3.7)

where the realized variance is computed as

V
(n)
t =

n−1

∑
i=0

(RS
t+i∆t − R̂S

t )2, with R̂S
t =

1

N

N−1

∑
i=0

RS
t+i∆t, (3.8)

where RS
t is the daily return of the reference index at time t. The theoretical value of θ

is

θ = β − β
2

2
.

The discretized LETF log-return from Equation (3.7) has a linear regression of the
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form

ln
Lt
L0

= β̂ln
St
S0

+ θ̂Vt + ĉ + ε, (3.9)

where Vt = ∫
t

0 σ
2
udu and ε ∼ N(0,1).

Historical LETF prices and reference index prices can be applied to this regression

to estimate the constant coefficients β̂, θ̂ and ĉ. However, the coefficient estimates

provided through this approach may not be reliable due to the strong dependence

between Vt and lnSt. This issue of collinearity was studied and illustrated using various

LETFs by Guo and Leung [12].

There is another problem that arises with the use of this model. Estimates for

the coefficients β̂ and θ̂ can be found through regression, but θ also has a theoretical

value in terms of β i.e, θ = β(1 − β)/2, with no guarantee that θ̂ from the regression

would be equal to the theoretical value using β̂. This essentially leads to two sets of

results for θ̂ and β̂ with no appropriate way to confirm the correct estimates aside from

empirical accuracy. Guo and Leung [12] illustrated this dilemma, and their results

showed significant deviation in the two sets of estimates, which led to doubt about the

reliability of this method.

The drawbacks of the linear regression method led Leung and Santoli [15] to search

for an alternate technique to estimate the empirical leverage ratio with the objective of

finding a single optimized estimate. With this in mind, an optimization technique was

used to minimize the sum of squared differences between the realized and theoretical

LETF log-returns using the discrete model in Equation (3.7). The optimization problem

is formulated as

min
β∈R

n

∑
i=1

(yi − fi(β))2, (3.10)
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where y1, ...yn are the empirical log-returns of the LETF, and fi(β), ...fn(β) are the

theoretical returns given by

fi(β) = βxi −
β(β − 1)

2
vi + ((1 − β)r − f)∆t

= β(xi − (r − f)∆t) − β(β − 1)
2

vi + (r − f)∆t, (3.11)

where each fi(β) requires the log-return of the reference xi, and the realized variance vi

over the same period of length ∆t. The optimal leverage ratio can be found by applying

the first-order optimality condition

n

∑
i=1

(yi − fi(β))(xi − (r − f)∆t − βvi +
1

2
vi) = 0. (3.12)

Expanding the left-hand side gives

n

∑
i=1

(yi − fi(β))(xi − (r − f)∆t − βvi +
1

2
vi)

=
n

∑
i=1

(yi − β(xi − (r − f)∆t) + β
2

2
vi −

β

2
vi − (r − f)∆t)(xi − (r − f)∆t − βvi +

1

2
vi)

=
n

∑
i=1

(yi − (r − f)∆t − β(xi − (r − f)∆t + vi
2
) + β

2

2
vi)(xi − (r − f)∆t − βvi +

1

2
vi)

= ( −
n

∑
i=1

v2
i

2
)β3 + (

n

∑
i=1

3

2
(xi − (r − f)∆t)vi + v2

i )β2

+ (
n

∑
i=1

−((xi − (r − f)∆t) + 1

2
vi)2 + vi((r − f)∆t − yi))β

+ (
n

∑
i=1

(yi − (r − f)∆t)((xi − (r − f)∆t) + 1

2
vi)).

The optimality condition then reduces to the cubic equation

Aβ3 +Bβ2 +Cβ +D = 0, (3.13)
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where the constant coefficients are given by

A = −
n

∑
i=1

v2
i

2
,

B =
n

∑
i=1

3

2
(xi − (r − f)∆T )vi + v2

i ,

C =
n

∑
i=1

−((xi − (r − f)∆T ) + 1

2
vi)2 + vi((r − f)∆T − yi),

D =
n

∑
i=1

(yi − (r − f)∆T )((xi − (r − f)∆T ) + 1

2
vi).

The cubic polynomial from Equation (3.13) is solved numerically using MATLAB

for our LETFs from Table 3.2. Table 3.4 displays the empirical β estimates from both

methods along with the absolute error of these values calculated for 5-day holding

periods. For the most part, both methods provide reasonably close estimates to the

advertised β values, with the exception of the VIX LETFs in the last three rows,

which produced significantly larger errors, possibly due to their unpredictable behavior

compared to equity LETFs. The optimization estimates, βcub, generally produced

lower errors compared to βreg, justifying its reliability over regression, considering

the other drawbacks of regression as discussed previously. The table shows no real

pattern in errors with respect to β values, but in most cases, negative LETFs have higher

errors than their positive counterparts, especially with the regression method. Figure

3.5 illustrates the absolute errors from both methods as a bar chart for better visual

representation.

Equation (3.5) shows the dependence of LETF returns on not only the underlying

asset returns but also the accumulated variance of the underlying asset. Therefore, to

estimate the leverage ratio, we must partition our full sample into n-day subintervals

and compute the realized variance for each subinterval. This method leads to serious

disadvantages while using the linear regression, since a short sample period, for example,

one or two years, would yield an insufficient amount of data points for regression. This
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LETF Ticker β
Empirical β Absolute Error
βcub βreg βcub βreg

SSO +2 2.0014 1.9963 0.0014 0.0037
SPXL +3 3.0016 2.9972 0.0016 0.0028

SH -1 -1.0017 -0.9946 0.0017 0.0054
SDS -2 -1.9965 -1.9874 0.0035 0.0126

SPXU -3 -2.9927 -2.9768 0.0063 0.0232
QLD +2 2.0005 1.9987 0.0005 0.0013

TQQQ +3 3.0076 3.0035 0.0076 0.0035
PSQ -1 -1.0002 -0.9939 0.0002 0.0061
QID -2 -1.9950 -1.9847 0.0050 0.0153

SQQQ -3 -2.9907 -2.9726 0.0093 0.0274
DDM +2 2.0028 2.0017 0.0028 0.0017

UDOW +3 3.0045 3.0001 0.0045 0.0001
DOG -1 -0.9999 -0.9930 0.0001 0.0070
DXD -2 -1.9978 -1.9870 0.0022 0.0130

SDOW -3 -2.9853 -2.9725 0.0147 0.0275
UVXY +2 1.9032 1.8816 0.0968 0.1184
SVXY -1 -0.9704 -0.9778 0.0296 0.0222

Table 3.4: Empirical β estimates from optimization (βcub) and regression (βreg) methods.

LETF Ticker
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Figure 3.5: Visual representation of estimation errors of βcub and βreg.
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issue is mostly relevant to LETFs that were introduced recently. If we create subintervals

of longer periods, for example, yearly quarters, this can also impact LETFs with longer

history.

A major strength of the optimization technique in this section, compared to the

linear regression method, is that a large sample period is not necessary to provide

accurate empirical results. This is mainly due to the fact that the optimization technique

finds a single variable βcub by minimizing a univariate quadratic function. And the

other variable, θcub, can be instantly found using the relationship θcub = (βcub − β2
cub)/2,

which guarantees a consistent result. As discussed previously, the linear regression

technique provides two different sets of results and then requires us to find the optimal

set, which is not a consistent technique. For example, for one LETF, the optimal set

may be created by solving βreg through regression and using the relationship between

βreg and θ to solve for the latter, whereas another LETF’s optimal set could be found by

solving for both variables, βreg and θreg, through regression.

Another important empirical test relating to leverage ratios would be to examine

how they react to different market conditions. In other words, investors would like to

know how the returns of their LETF portfolios will vary when the underlying asset

is bullish or bearish. To test this, we can separate our sample into n-day intervals as

before and further divide the sample into two groups, according to whether the n-day

returns are positive or negative. We can then apply the same cubic root-finding method

for each group individually and get an accurate estimate for β values conditioned on

the sign of the returns.

Table 3.5 shows the variation in estimated β values depending on market conditions.

β+cub estimates β values when the underlying index has positive returns over a 5-day

holding period. Similarly, β−cub estimates β when the underlying index has negative

returns. The absolute error in this case measures the absolute difference between the new

estimates dependent on market conditions and the previous estimate βcub. In general,
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LETF Ticker β βcub β+cub Absolute Error β−cub Absolute Error
SSO +2 2.0014 2.0792 0.0078 1.9221 0.0793

SPXL +3 3.0016 3.1783 0.1767 2.8312 0.1704
SH -1 -1.0017 -1.0176 0.0159 -0.9752 0.0265

SDS -2 -1.9965 -1.9743 0.0222 -1.9940 0.0025
SPXU -3 -2.9927 -2.8960 0.0967 -3.0480 0.0553
QLD +2 2.0005 2.0456 0.0451 1.9472 0.0533

TQQQ +3 3.0076 3.1151 0.1075 2.8872 0.1204
PSQ -1 -1.0002 -1.0145 0.0143 -0.9738 0.0264
QID -2 -1.9950 -1.9846 0.0104 -1.9765 0.0185

SQQQ -3 -2.9907 -2.9321 0.0587 -2.9952 0.0045
DDM +2 2.0028 2.0848 0.0820 1.9165 0.0863

UDOW +3 3.0045 3.2019 0.1974 2.8129 0.1925
DOG -1 -0.9999 -1.0192 0.0193 -0.9664 0.0335
DXD -2 -1.9978 -1.9756 0.0222 -1.9906 0.0072

SDOW -3 -2.9853 -2.8940 0.0913 -3.0278 0.0425
UVXY +2 1.9032 1.9112 0.0080 1.9467 0.0435
SVXY -1 -0.9704 -0.9104 0.0600 -0.9828 0.0124

Table 3.5: Comparison of empirical β estimates during positive and negative return
periods.

LETF Ticker
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β+cub exceeds βcub for bullish LETFs and underperforms with bearish LETFs. On the

other hand, β−cub seems to mostly underperform relative to βcub. While the absolute error

seems to be low in most cases, for positive LETFs the error seems to increase for higher

leveraged ETFs, for both β+cub and β−cub. For negative LETFs, there is no conclusive

pattern in errors. Figure 3.6 provides a bar chart for better visual representation of these

errors.



Chapter 4

LETFs Option Pricing

This chapter provides an analytical solution for the price of a European call option of

an LETF. The value of an LETF’s underlying index, St, is assumed to follow Heston

dynamics and an additional process is created to account for the LETF’s path-dependent

property. After deriving the pricing PDE of the underlying index, the characteristic

function of an LETF is obtained. Using this, we apply the Carr-Madan Fourier transform

method to obtain our call price function.

4.1 Heston Stochastic Volatility Model

This section introduces the Heston stochastic volatility model and provides the joint

MGF of the underlying index, its volatility and the path dependent process. The joint

MGF, which is given an exponential affine form, is derived analytically in Section 4.2.

The joint MGF is essentially a link to the characteristic function of an LETF, which is

necessary to formulate a call price model for LETFs.

Under a risk-neutral probability measure Q, assume that St follows the Heston

43
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dynamics

dSt = (r − q)Stdt +
√
vtStdB

(1)
t ,

dvt = κ(θ − vt)dt + σ
√
vtdB

(2)
t ,

(4.1)

where, corr(dB(1)t , dB
(2)
t ) = ρdt, r is the risk-free rate, q is the dividend yield, κ is

the mean-reverting speed, θ is the long-term mean of variance, σ is the volatility of

volatility and vt, the variance of the underlying index, is a Cox-Ingersoll-Ross (CIR)

process [9].

The path-dependant property of an LETF implies another variable to describe the

evolution of the volatility vt

dyt = vtdt, (4.2)

where yt = ∫
t

0 vudu and y0 = 0.

Suppose xt = lnSt. Using Itô’s lemma we can obtain its process

dxt = d lnSt =
∂ lnSt
∂t

dSt +
1

2

∂2 lnSt
∂t2

< dSt, dSt >

= 1

St
[(r − q)Stdt +

√
vtStdB

(1)
t ] − 1

2S2
t

[vtS2
t dt]

= (r − q − 1

2
vt)dt +

√
vtdB

(1)
t . (4.3)
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Combining (4.1), (4.2) and (4.3), we get the following system which defines the log-

price and variance dynamics of the underlying index

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxt = (r − q − 1
2vt)dt +

√
vtdB

(1)
t ,

dvt = κ(θ − vt)dt + σ
√
vtdB

(2)
t ,

dyt = vtdt.

(4.4)

Suppose [xt, vt, yt]T is a vector, where t is the present time and all information up

to time t is known for these processes, then its joint MGF is

f(t, x, v, y; z1, z2, z3) = EQ[ez1xT+z2vT+z3yT ∣xt = x, vt = v, yt = y], (4.5)

where z1, z2 and z3 are constants. Note that the joint MGF at time T is

f(T,x, v, y; z1, z2, z3) = EQ[ez1xT+z2vT+z3yT ∣xT = x, vT = v, yT = y]

= ez1x+z2v+z3y.

4.2 Derivation and Solution of Pricing PDE

This section uses Itô’s lemma to derive a pricing PDE using the exponential form of the

joint MGF. The PDE is separated into four ODEs with known terminal conditions and

closed-form solutions are obtained for each ODE.

Before obtaining a pricing PDE we must prove that the joint MGF is a martingale.

The process {f(t, xt, vt, yt; z1, z2, z3) ∶ t ≥ 0} is proven to be a martingale with respect

to the filtration {Ft ∶ t ≥ 0}, associated with the Brownian motions {B(1)t ∶ t ≥ 0} and
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{B(2)t ∶ t ≥ 0}. Then, for any s < t, we have

EQ[f(t, xt, vt, yt; z1, z2, z3)∣Fs] = EQ[EQ[ez1xT+z2vT+z3yT ∣Ft]∣Fs]

= EQ[ez1xT+z2vT+z3yT ∣Fs]

= f(s, xs, vs, ys; z1, z2, z3).

Therefore, f is a martingale with respect to {Ft ∶ t ≥ 0}, and a pricing PDE can be found

by applying Itô’s lemma and finding the expectation, which removes the Brownian

motion terms from the Heston model processes and simply leaves the deterministic part,

the expectation of which is equal to zero. For a review of information processes and

σ-algebra, refer to Chapter 2.

Applying Itô’s lemma for the joint MGF, we have

df = ∂f
∂t
dt + ∂f

∂x
dxt +

∂f

∂v
dvt +

∂f

∂y
dyt

+ 1

2
[∂

2f

∂x2
< dxt, dxt > +

∂2f

∂v2
< dvt, dvt > +

∂2f

∂y2
< dyt, dyt >

+ 2
∂2f

∂x∂v
< dxt, dvt > +2

∂2f

∂x∂y
< dxt, dyt > +2

∂2f

∂v∂y
< dvt, dyt > ].

After making the appropriate substitutions from Equation (4.4), we get

df = ∂f
∂t
dt + ∂f

∂x
[(r − q − 1

2
vt)dt +

√
vtdB

(1)
t ] + ∂f

∂v
[κ(θ − vt)dt + σ

√
vtdB

(2)
t ] + ∂f

∂y
vtdt

+ 1

2
[∂

2f

∂x2
vtdt +

∂2f

∂v2
σ2vtdt + 2

∂2f

∂x∂v
ρσvtdt].

Note that dt × dt = dt × dB(1)t = dt × dB(2)t = 0, and therefore, some terms are omitted
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above. Grouping the dt terms gives

df = [∂f
∂t

+ ∂f
∂x

(r − q − 1

2
vt) +

∂f

∂v
κ(θ − vt) +

∂f

∂y
vt +

1

2

∂2f

∂x2
vt

+ 1

2

∂2f

∂v2
σ2vt +

∂2f

∂x∂v
ρσvt]dt +

∂f

∂x

√
vtdB

(1)
t + ∂f

∂v
σ
√
vtdB

(2)
t .

Since {f(t, xt, vt, yt; z1, z2, z3) ∶ t ≥ 0} is a martingale, EQ[df] = 0. As mentioned

previously, taking the expectation also removes the Brownian motions terms. By setting

the dt term to 0, we obtain the following pricing PDE

∂f

∂t
+ (r − q − 1

2
v)∂f
∂x

+ κ(θ − v)∂f
∂v

+ v∂f
∂y

+ 1

2
v
∂2f

∂x2
+ 1

2
σ2v

∂2f

∂v2
+ ρσv ∂

2f

∂x∂v
= 0,

(4.6)

with the terminal condition f(T,x, v, y; z1, z2, z3) = ez1x+z2v+z3y.

We assume that f has the following exponential affine form

f(t, x, v, y; z1, z2, z3) = eA(t)+B(t)x+C(t)v+D(t)y. (4.7)

We can obtain the terminal conditions A(T ),B(T ),C(T ) and D(T ) by observing the

joint MGF at time T

f(T,x, v, y; z1, z2, z3) = ez1x+z2v+z3y = eA(T )+B(T )x+C(T )v+D(T )y.

The conditional expectation of xT , vT and yT at time T is simply, x, v and y, respectively.

Therefore, we have A(T ) = 0,B(T ) = z1,C(T ) = z2 and D(T ) = z3 as the terminal

conditions.

In order to solve this PDE, we must first convert it into a set of four ODEs. The

partial derivatives of f with respect to x, v and y in (4.6) can be substituted into our
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PDE (4.7) to give

f(A′(t) +B′(t)x +C ′(t)v +D′(t)y) + (r − q − 1

2
v)fB(t) + κ(θ − v)fC(t) + vfD(t)

+ 1

2
vfB2(t) + 1

2
σ2vfC2(t) + ρσvfB(t)C(t) = 0,

removing f from each term, we get

A′(t) +B′(t)x +C ′(t)v +D′(t)y + (r − q − 1

2
v)B(t) + κ(θ − v)C(t) + vD(t)

+ 1

2
vB2(t) + 1

2
σ2vC2(t) + ρσvB(t)C(t) = 0.

We may now convert our PDE into four ODEs by grouping all terms containing x, v, y

and the constants and setting them equal to zero

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A′(t) + (r − q)B(t) + κθC(t) = 0,

B′(t) = 0,

C ′(t) − 1
2B(t) − κC(t) +D(t) + 1

2B
2(t) + 1

2σ
2C2(t) + ρσB(t)C(t) = 0,

D′(t) = 0.

Since B′(t) and D′(t) are equal to zero, the functions B(t) and D(t) are constants.

We know the terminal conditions of these functions and so we get

B(t) = z1, (4.8)

D(t) = z3, (4.9)
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which leaves two ODEs to be solved

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A′(t) = −κθC(t) − (r − q)z1,

A(T ) = 0.

(4.10)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

C ′(t) = −1
2(z2

1 − z1 + 2z3) −C(t)(ρσz1 − κ) − 1
2σ

2C2(t),

C(T ) = z2.

(4.11)

Equation (4.11) is recognized to be a Ricatti equation and can be solved analytically

using the substitution

C(t) = 2

σ2

g′(t)
g(t) . (4.12)

The purpose of this substitution is to obtain a homogeneous second order differential

equation which can be solved in a straightforward manner. Finding C ′(t) from Equation

(4.12) and making the appropriate substitutions into Equation (4.11) gives

2

σ2

g′′(t)g(t) − (g′(t))2

g2(t) = −1

2
(z2

1 − z1 + 2z3) −
2

σ2

g′(t)
g(t) (ρσz1 − κ) −

2

σ2

(g′(t))2

g2(t) .

Further simplifying leads to the homogeneous second-order differential equation

g′′(t) + (ρσz1 − κ)g′(t) +
σ2

4
(z2

1 − z1 + 2z3)g(t) = 0. (4.13)

We assume the general solution of g(t) = eλt. From this, we get g′(t) = λeλt and

g′′(t) = λ2eλt. Substituting into (4.13) and removing eλt from each term gives

λ2 + (ρσz1 − κ)λ +
σ2

4
(z2

1 − z1 + 2z3) = 0.
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Solving for λ yields

λ1,2 =
−(ρσz1 − κ) ±

√
∆

2
, (4.14)

where

∆ = (ρσz1 − κ)2 − σ2(z2
1 − z1 + 2z3).

The general solution of g(t) is

g(t) = c1e
λ1t + c2e

λ2t,

therefore, C(t) can then be written in terms of λ1 and λ2 as

C(t) = 2

σ2

λ1c1eλ1t + λ2c2eλ2t

c1eλ1t + c2eλ2t
.

To remove the unknown coefficients c1 and c2 from C(t), we find the ratio c1
c2

, which is

denoted by ω. But first we must apply the boundary condition C(T ) = z2, then we have

ω ∶= c1

c2

= e
λ2T (σ2z2 − 2λ2)
eλ1T (2λ1 − σ2z2)

.

We obtain the analytical solution for C(t) by dividing the numerator and denominator

by c2 and using the ratio ω

C(t) = 2

σ2

λ1c1eλ1t + λ2c2eλ2t

c1eλ1t + c2eλ2t
= 2

σ2

λ1ωeλ1t + λ2eλ2t

ωeλ1t + eλ2t . (4.15)

The solution toA(t) is found by substitutingC(t) from (4.12) into (4.10) and integrating
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with respect to t from t to T

A(T ) −A(t) = −2κθ

σ2
ln(g(T )

g(t) ) − (r − q)z1(T − t).

By applying the terminal condition A(T ) = 0, we can remove A(T ). Furthermore,

plugging in the general solution of g(t) and g(T ) and simplifying leads to the closed-

form solution for A(t)

A(t) = 2κθ

σ2
ln(g(T )

g(t) ) + (r − q)z1(T − t)

= 2κθ

σ2
ln(c1eλ1T + c2eλ2T

c1eλ1t + c2eλ2t
) + (r − q)z1(T − t)

= 2κθ

σ2
ln(ωe

λ1T + eλ2T
ωeλ1t + eλ2t ) + (r − q)z1(T − t). (4.16)

The following proposition summarizes the derivations from this section.

Proposition 4.2.1. (Moment generating function). Given a pricing PDE of the form

∂f

∂t
+ (r − q − 1

2
v)∂f
∂x

+ κ(θ − v)∂f
∂v

+ v∂f
∂y

+ 1

2
v
∂2f

∂x2
+ 1

2
σ2v

∂2f

∂v2
+ ρσv ∂

2f

∂x∂v
= 0.

where f(t, x, v, y; z1, z2, z3) represents the joint MGF and has the form

f(t, x, v, y; z1, z2, z3) = eA(t)+B(t)x+C(t)v+D(t)y,
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the closed-form solutions for A(t),B(t),C(t) and D(t) are derived as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(t) = 2κθ
σ2 ln(ωeλ1T+eλ2T

ωeλ1t+eλ2t ) + (r − q)z1(T − t),

B(t) = z1,

C(t) = 2
σ2

λ1ωe
λ1t+λ2eλ2t

ωeλ1t+eλ2t ,

D(t) = z3.

4.3 Option Pricing

In this section, we introduce a link between the joint MGF f(t, x, v, y; z1, z2, z3) and

the characteristic function of an LETF. This link is necessary to provide an analytical

solution for the call price of an LETF. Once the characteristic function is defined, the

Carr-Madan Fourier transform method [6] is used to derive the final call price function.

The Carr-Madan approach introduces a modified call price function with a dampening

factor α in order to make the call price function square-integrable.

4.3.1 LETF Characteristic Function

As mentioned in Chapter 3, the price dynamics of an LETF is linked to its reference

index by

dLt
Lt

= βdSt
St

+ (1 − β)rdt, (4.17)

where Lt is the LETF price, St is the underlying index price and β is the LETF leverage

ratio.

As we proved in Chapter 3, using Itô’s lemma, Lt can be expressed in terms of St
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as follows

ln(Lt
L0

) = β ln(St
S0

) + β − β
2

2 ∫
t

0
vudu + (1 − β)rt,

or, equivalently

lnLt = lnL0 + β ln(St
S0

) + β − β
2

2 ∫
t

0
vudu + (1 − β)rt. (4.18)

Note that, unlike in Chapter 3, the expense ratio f has been omitted from Equation

(4.18) for the purpose of simplicity. The expense ratio can be added later for specific

cases if necessary.

We denote lt = lnLt and use xt = lnSt and yt = ∫
T

0 vudu, and rewrite Equation

(4.18) at time T as

LT = eβxT+β−β
2

2
yT+l0−βx0+(1−β)rT . (4.19)

Then the characteristic function of lt can be written in the form

φ0(u) = EQ
0 [eiulT ] = EQ

0 [eiu(l0+β(xT−x0)+β−β
2

2 ∫ T0 vudu+(1−β)rT )]

= EQ
0 [eiu(l0−βx0+(1−β)rT )eiuβxT+iuβ−β

2

2 ∫ T0 vudu] . (4.20)

Since EQ
0 [eiu(l0−βx0+(1−β)rT )] = eiu(l0−βx0+(1−β)rT ), we can take this term outside the

expectation. The remaining term inside the expectation is simply the joint MGF from

Equation (4.5) with the coefficients z1 and z3 defined in terms of i, u and β and z2 = 0.

We can then rewrite the characteristic function of lt in terms of the joint MGF

φ0(u) = eiu(l0−βx0+(1−β)rT ) f (0, x, v, y; iuβ,0, iu
β − β2

2
) . (4.21)
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4.3.2 Carr-Madan Fourier Transform Method

First, we determine the theoretical call price of an LETF as the discounted expectation

of the payoff at maturity time. Using Equation (4.19), we can rewrite this call price as a

function of the two processes, xT and yT . Denoting, C0 as the price of a European call

option at time 0 and K as the strike price, we obtain the call price at time 0 as

C0(K) = EQ
0 [e−rT (LT −K)+] = EQ

0 [e−rT (eβxT+β−β
2

2
yT+l0−βx0+(1−β)rT −K)

+
]

= EQ
0 [ea(T ) (ed1xT+d2yT −K ′)+] , (4.22)

where a(T ) = l0 − βx0 − βrT , K ′ =Ke−(l0−βx0+(1−β)rT ), d1 = β, d2 = β−β2

2 . Since a(T )

is a constant, we can move it outside the expectation parentheses.

Denoting k = lnK ′, we can then rewrite the call price function as the joint cumulative

distribution function of x and y

C0(k) = EQ
0 [ea(T )(ed1xT+d2yT − ek)

+]

= ea(T )∫
∞

−∞
∫

∞

−∞
(ed1x+d2y − ek)+dF (x, y). (4.23)

At this point, we would have to evaluate the call price integral from −∞ to d1x + d2y,

since that is the range for the call option to be exercised. But this call price function is

not square-integrable and therefore we will not be able to obtain an analytical solution.

Instead, we introduce a modified call price c0(k) using a dampening factor α

c0(k) = eαkC0(k). (4.24)

As we will see later, α must be strictly positive for the call price function to be square-

integrable.

With the introduction of Equation (4.24), we denote Fc(z) the Fourier transform
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of the modified call price. We substitute Equations (4.23) and (4.24) into the Fourier

transform function to evaluate it in terms of our modified call price

Fc(z) = ∫
∞

−∞
eizkc0(k)dk

= ∫
∞

−∞
eizkeαkC0(k)dk

= ∫
∞

−∞
e(iz+α)k[ea(T )∫

∞

−∞
∫

∞

−∞
(ed1x+d2y − ek)+dF (x, y)]dk

= ea(T )∫
∞

−∞
∫

∞

−∞
[∫

∞

−∞
e(iz+α)k(ed1x+d2y − ek)+dk]dF (x, y)

= ea(T )∫
∞

−∞
∫

∞

−∞
[∫

d1x+d2y

−∞
e(iz+α)k(ed1x+d2y − ek)dk]dF (x, y)

= ea(T )∫
∞

−∞
∫

∞

−∞
[∫

d1x+d2y

−∞
(ed1x+d2ye(iz+α)k − e(iz+α+1)k)dk]dF (x, y)

= ea(T )∫
∞

−∞
∫

∞

−∞
[e

d1x+d2ye(iz+α)k

(iz + α) − e(iz+α+1)k

(iz + α + 1)∣
d1x+d2y

−∞
]dF (x, y). (4.25)

As mentioned earlier, we choose an α > 0 in order to evaluate the integral and we get

e−(iz+α)∞ = 0 and e−(iz+α+1)∞ = 0. Further simplification allows us to write the Fourier

transform in terms of our joint MGF, which is known analytically

Fc(z) = ea(T )∫
∞

−∞
∫

∞

−∞
[e

d1x+d2ye(iz+α)(d1x+d2y)

(iz + α) − e
(iz+α+1)(d1x+d2y)

(iz + α + 1) ]dF (x, y)

= ea(T )∫
∞

−∞
∫

∞

−∞
[e
(iz+α+1)(d1x+d2y)

(iz + α) − e
(iz+α+1)(d1x+d2y)

(iz + α + 1) ]dF (x, y)

= ea(T )∫
∞

−∞
∫

∞

−∞

e(iz+α+1)(d1x+d2y)

(iz + α)(iz + α + 1)dF (x, y)

= ea(T )∫
∞

−∞
∫

∞

−∞

ei(z−iα−i)d1x+i(z−iα−i)d2y

(iz + α)(iz + α + 1) dF (x, y)

= ea(T )

(iz + α)(iz + α + 1)f(0, x, v, y; i(z − iα − i)d1,0, i(z − iα − i)d2). (4.26)

By applying the inverse Fourier tranform to the second equality in Equation (4.25),

we can evaluate our call price C0(k) in terms of the Fourier transform Fc(z), and
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therefore our joint MGF

C0(k) =
1

2π ∫
∞

−∞
e−izke−αkFc(z)dz

= e
a(T )

2π ∫
∞

−∞

e−(iz+α)kf(0, x, v, y; i(z − iα − i)d1,0, i(z − iα − i)d2)
(iz + α)(iz + α + 1) dz

= e
a(T )

π ∫
∞

0

e−(iz+α)kf(0, x, v, y; (iz + α + 1)d1,0, (iz + α + 1)d2)
(iz + α)(iz + α + 1) dz,

where

f(0, x, v, y; (iz + α + 1)d1,0, (iz + α + 1)d2) = eA(0;z1,z2,z3)+(iz+α+1)d1x0+C(0;z1,z2,z3)v0 ,

d1 = β, d2 =
β − β2

2
, z1 = (iz + α + 1)β, z2 = 0, z3 = (iz + α + 1)β − β

2

2
,

and the exact solutions of A(0; z1, z2, z3) and C(0; z1, z2, z3) are found in Section 4.2.1.

Note that the y term is disregarded since y0 = 0.

Finally, we make the following substitutions to evaluate our call price function

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(T ) = l0 − βx0 − βrT,

k = lnK ′ = lnK − a(T ) − rT,

l0 = lnL0,

and simplify to get

C0(K) = 1

π ∫
∞

0

e−(iz+α)(lnK−rT )e(iz+α+1)(l0−βx0−βrT )eA(0;z1,z2,z3)+(iz+α+1)βx0+C(0;z1,z2,z3)v0

(iz + α)(iz + α + 1) dz

= 1

π ∫
∞

0

e−(iz+α)(lnK−rT )e(iz+α+1)(lnL0−βrT )eA(0;z1,z2,z3)+C(0;z1,z2,z3)v0

(iz + α)(iz + α + 1) dz

= 1

π ∫
∞

0

e(iz+α+1)(lnL0−βrT )−(iz+α)(lnK−rT )+A(0;z1,z2,z3)+C(0;z1,z2,z3)v0

(iz + α)(iz + α + 1) dz.

(4.27)
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Notice from Equation (4.27) that the call price is a function of L0, the LETF price at

time 0, and v0, the variance of the underlying index at time 0. It is not dependent on the

underlying index value, S0.

The following proposition summarizes the findings from this section.

Proposition 4.3.1. (Option pricing formula). Given the LETF dynamics in Equation

(4.19), the price of a European call option on an LETF, based on the Carr-Madan Fourier

transform method is given by

C0(K) = 1

π ∫
∞

0

e(iz+α+1)(lnL0−βrT )−(iz+α)(lnK−rT )+A(0;z1,z2,z3)+C(0;z1,z2,z3)v0

(iz + α)(iz + α + 1) dz,

(4.28)

where

A(0; z1, z2, z3) =
2κθ

σ2
ln(ωe

λ1T + eλ2T
ω + 1

) + (r − q)z1T,

C(0; z1, z2, z3) =
2

σ2
(λ1ω + λ2

ω + 1
) ,

ω = e
λ2T (σ2z2 − 2λ2)
eλ1T (2λ1 − σ2z2)

,

λ1,2 =
−(ρσz1 − κ) ±

√
∆

2
,

∆ = (ρσz1 − κ)2 − σ2(z2
1 − z1 + 2z3),

z1 = (iz + α + 1)β, z2 = 0, z3 = (iz + α + 1)β − β
2

2
.
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Numerical Analysis

This chapter is split into two sections with different purposes. Section 5.1 compares

the call prices obtained from the pricing formula in Equation (4.28) to the call prices

generated from Monte-Carlo simulations for different leverage ratios. The Monte Carlo

simulations of LETFs are generated using the Euler discretization of the Heston model

to acquire values for St, and then applying Equation (4.19) to obtain values for Lt.

The comparison is illustrated in terms of the relative percentage error between the

results. This section also computes call prices with respect to different time-to-maturity

and moneyness levels and compares the values with those obtained from Monte Carlo

simulations.

Section 5.2 performs sensitivity analysis on the Heston model parameters. The

sensitivity analysis displays the change in call price with varying parameters and justifies

the robustness of our option pricing model in terms of its ability to provide reasonable

call prices under extreme parametric conditions.

58
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5.1 Analysis of Option Pricing Formula

This section attempts to test the accuracy of our option pricing formula from Equation

(4.28). The at-the-money call price obtained from our formula is compared to Monte

Carlo simulations. To be able to simulate option prices, the Heston model in Equation

(4.1) must first be discretized to solve for St at each time point from t = 0 to T , where

T is the time to maturity, through which we can determine the LEFT price Lt using

Equation (4.19). The discretization is achieved using the Euler scheme which gives

St+∆ = St + (r − q)St∆ +
√
vt∆StZS,

vt+∆ = κ(θ − vt)∆ + σ
√
vt∆Zv,

(5.1)

where ZS and Zv are standard normal variables with correlation ρ and can be computed

as

Zv = Φ−1(z1),

ZS = ρZv +
√

1 − ρ2Φ−1(z2),

where Φ−1 is the inverse cumulative normal distribution function, z1 and z2 are independ-

ent uniform samples in the interval (0,1), and ∆ is taken as 1
252 or 1-day increments

from time 0 to maturity date.

A problem with this discretization of vt is the possibility of vt to have a negative

value. An easy fix that provides minimal discretization bias is to apply a constraint

v+t = max(vt,0)

St+∆ = St + (r − q)St∆ +
√
v+t ∆StZS,

vt+∆ = κ(θ − v+t )∆ + σ
√
v+t ∆Zv,

(5.2)

Essentially this process creates a sample path for the underlying index price from
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t = 0 to maturity date. Using this dataset, the LETF price can also be simulated using

Equation (4.19)

Lt = elnL0+β ln
St
S0
+β−β

2

2 ∫ t0 vudu+(1−β)rt.

After gathering a sample path for Lt, the simulated call price is obtained as

Ĉ(T ) = e−rT (LT −K)+.

Running multiple simulations and finding the mean call price gives us an estimate of

the call price of an LETF, which is then compared with the result obtained by using our

model.

The parameter values obtained from [2], are as follows

κ θ σ ρ α v0 r
5.07 0.0457 0.48 -0.767 1.5 0.25 0.05

Table 5.1: Parameter values used to generate call option prices.

We take S0 = L0 = 100, and since we are considering ATM options, K = 100. The

time to maturity T is taken as 0.25 or approximately 90 days. This section looks at

LETF β values from −3 to 3. The Monte Carlo simulation creates a 90-day sample

path for the underlying index and the LETF, which is then simulated 1,000, 10,000 and

100,000 times and compared with the results from our option pricing model.

Figures 5.1 and 5.2 show possible sample paths generated from Monte Carlo simu-

lations of an LETF price process for β values of 2 and 3, respectively. The simulations

are generated using the parameter values from Table 5.1. Note that the three sample

paths in each figure do not differ in parameters and only deviate from each other due to

the presence of Brownian motion in the Heston model. The sample paths illustrated in

both figures are not correlated in any way and have different underlying index values,
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Figure 5.1: Three sample paths of an LETF with β = 2 generated using Monte Carlo
Simulations for 1000 trading days.

although S0 = 100 in both scenarios. As you would expect, the paths for β = 3 show

larger exaggeration in price changes. In Figure 5.1, the lowest price level reached is

approximately $65 and the highest is about $130. On the other hand, prices in Figure

5.2 almost reach a high of $160 and a low of $20.

Table 5.2 displays the call option prices determined by our model for different values

of β and also the Monte Carlo simulation with varying number of paths. The table also

lists the computation time, given in seconds, for the different number of simulations

and β values, and the relative percentage error, η, which is defined as

η = 100% × ∣CallModel −CallMC ∣
CallModel

. (5.3)

Looking at the model prices, we can see the call prices for LETFs with the same

absolute β values are similar, although bearish LETFs have a higher call price than
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Figure 5.2: Three sample paths of an LETF with β = 3 generated using Monte Carlo
Simulations for 1000 trading days.

Leverage Ratio
2 3 -1 -2 -3

CallModel 16.107 23.444 8.554 16.566 24.555
Call1,000 16.673 23.948 9.276 18.069 21.871

Time 3.041 3.025 3.120 3.188 3.120
η (%) 3.512 2.150 8.440 9.073 10.931

Call10,000 16.316 23.305 8.581 16.982 26.4899
Time 29.843 30.309 29.990 30.109 30.596
η (%) 1.298 0.593 0.316 2.511 7.880

Call100,000 15.905 23.422 8.531 16.796 24.8181
Time 308.194 299.398 310.861 306.781 301.493
η (%) 1.254 0.094 0.269 1.388 1.071

Table 5.2: ATM call option prices from model and Monte Carlo simulations with 1,000,
10,000 and 100,000 paths.

their bullish counterpart, possibly due to the larger volatility decay which adds to the

uncertainty of its price at maturity time. The Call100,000 prices provide results accurate

to the model, with the highest error being only 1.388% for β = −2. The average error
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for 1,000 simulated paths is 6.821%, for 10,000 paths is 2.520% and for 100,000 paths

is 0.815%. In general, the Monte Carlo simulated prices show higher deviations from

the model for bearish LETFs. For 1,000 paths, the average error for bullish LETFs

is 2.831% and for bearish LETFs is 9.481%. For 10,000 paths, the average error is

0.946% and 3.569% for bullish and bearish LETFs, respectively. Finally, in the case of

100,000 paths, the average error is 0.674% and 0.909%, for bullish and bearish LETFs,

respectively. Comparing the call prices from our model with those of Monte Carlo

simulations, we are able to justify the use of our model for pricing ATM call options for

LETFs.

The table shows that the relationship between the computational time and the number

of simulated paths is approximately linear. The average computational time for 1,000

paths is 3.099s, for 10,000 paths is 30.169s, and for 100,000 paths is 305.345s. With an

increase in the number of simulations, the simulated call prices converge to the prices

from our option pricing formula, since the error is decreasing. Therefore, our option

pricing formula provides an accurate result without the large computational times of

running simulations and is therefore a better alternative to the Monte Carlo method.

5.1.1 Varying Time-to-Maturity

This section analyzes our option pricing formula with varying time-to-maturity levels,

T , from 0 to 1. As mentioned earlier, T is specified in terms of years. Observing the

simulation results from Table 5.2, we see that Call10,000 and Call100,000 provide similar

results but with the latter having around ten times larger computational times. In this

regard, the Call10,000 values are preferred. But for the sake of accuracy, we perform

further analysis using the Call100,000 values.

The prices obtained from our formula are compared with results from Monte Carlo

simulations of 100,000 paths. The results are summarized in Table 5.3. The table
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shows an increase in call prices for higher values of T , as expected. The error between

CallModel and CallMC , calculated from Equation (5.3), is fairly acceptable, and it is

observed that bearish LETFs have a larger error in most cases. From the table, we also

observe that the average error amongst all the leverage ratios increases for higher values

of T . The maximum error observed was 4.630% for an LETF with a leverage ratio of -1

and a time-to-maturity of 1 year.

Table 5.3 also shows the computational time for each value of T as an average

amongst the leverage ratios. The computational times vary with T because T dictates

the number of days that are simulated to create a single path, which is then replicated

100,000 times. Therefore, the computational times will increase with larger T values.

We can see from the table that the relationship between computational times and T

values is linear, although a line plot provides a better visual representation as we see

later in this section.
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Figure 5.3: Comparison of error between CallModel and CallMC with varying time-to-
maturity.
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T
Leverage Ratio Average

Time2 3 -1 -2 -3

0.1
CallModel 11.516 17.002 5.953 11.680 17.396
CallMC 11.445 17.012 5.897 11.716 17.653 110.101
η (%) 0.617 0.059 0.941 0.308 1.477

0.2
CallModel 14.957 21.862 7.881 15.325 22.749
CallMC 14.930 21.884 7.824 15.441 23.166 226.376
η (%) 0.181 0.101 0.723 0.757 1.833

0.3
CallModel 17.051 24.722 9.119 17.590 26.036
CallMC 16.957 24.413 9.091 17.604 26.257 348.743
η (%) 0.551 1.250 0.307 0.080 0.849

0.4
CallModel 18.549 26.716 10.043 19.219 28.366
CallMC 18.254 26.551 9.970 19.202 28.689 459.227
η (%) 1.590 0.618 0.727 0.088 1.139

0.5
CallModel 19.745 28.277 10.801 20.507 30.180
CallMC 19.509 27.835 10.593 20.496 30.233 580.963
η (%) 1.195 1.563 1.926 0.054 0.176

0.6
CallModel 20.774 29.603 11.468 21.601 31.694
CallMC 20.275 29.144 11.188 21.581 32.181 694.373
η (%) 2.402 1.551 2.442 0.093 1.537

0.7
CallModel 21.706 30.794 12.080 22.578 33.025
CallMC 21.359 30.116 11.713 22.338 33.021 819.753
η (%) 1.599 2.202 3.038 1.063 0.012

0.8
CallModel 22.577 31.900 12.659 23.480 34.239
CallMC 22.261 31.933 12.384 23.122 34.084 928.190
η (%) 1.400 0.103 2.172 1.525 0.453

0.9
CallModel 23.407 32.949 13.216 24.332 35.371
CallMC 22.554 32.430 12.787 23.667 35.324 1010.237
η (%) 3.644 1.575 3.246 2.733 0.133

1
CallModel 24.206 33.954 13.758 25.149 36.445
CallMC 24.578 32.924 13.121 24.721 36.450 1147.744
η (%) 1.537 3.034 4.630 1.702 0.014

Table 5.3: Call prices generated from model and Monte Carlo simulations for various
time-to-maturity levels.

Figure 5.3 illustrates the call price data from Table 5.3 for the various leverage ratios.

This figure provides a better visual representation of the error between CallModel and

CallMC . We can see from the figure that this error is negligible in most cases and is

usually higher for larger T values, as was mentioned earlier. In regards to the sensitivity

of call prices with respect to T , we observe that the call prices are more sensitive to



Chapter 5. Numerical Analysis 66

change with lower T values.
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Figure 5.4: Change in computational time and η with time-to-maturity.

Finally, Figures 5.4a and 5.4b present the computational time and the error in call

prices for different values of T . From Figure 5.4a we can see that the computational time

and time-to-maturity have an approximately linear relationship, with slightly deviation

when T = 0.9. This linearity is to be expected, since the calculations do not change

and only the number of simulations are increased. In Figure 5.4b we can see that the

error between CallModel and CallMC is roughly increasing with higher values of T . A

possible reason for this could be the fact that larger T values simulate more daily prices

for a single path. For example, T = 0.25 simulates a 3-month sample path, whereas for

T = 1, a 1-year sample path is simulated. The longer path could imply more randomness

at each time step which would accumulate and cause a larger error over time.
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5.1.2 Varying Moneyness

We now examine the sensitivity of call prices from our model to changes in moneyness.

The simple moneyness scale is defined as M = L0

K , where L0 is the initial spot price of

an LETF and with M = 1 being an at-the-money (ATM) call option, M > 1 being an

in-the-money (ITM) call option, and M < 1 an out-of-the-money (OTM) call option.

Note that we are working with initial spot prices rather than the price at maturity time

and therefore the moneyness levels are at time 0. ITM implies the call option will be

exercised at maturity, and if a call option is OTM on the maturity date, it will not be

exercised. We choose specific moneyness levels between 0.85 and 1.15 and vary the

strike price K, while holding L0 constant at 100.

Table 5.4 presents the call prices from our model and Monte Carlo simulations for

different moneyness levels and β values. As with prior analysis, the MC call prices

consists of 100,000 sample paths. We re-introduce the relative percentage error η from

Equation (5.3). The table shows that the η values are consistently low in most cases

with no significant pattern in errors. Overall, the CallModel and CallMC are relatively

similar and we can conclude that our model is consistent with varying moneyness.

Figure 5.5 provides a better visual representation of the call prices from Table 5.4.

From the figure we can see that call prices within our range of moneyness seem to be

linear with moneyness for all leverage ratios except β = −1. Another important note is

that, at a certain moneyness level when the call option is ITM, the β = −2 call prices

intersect with β = 2 call prices and become lower than the latter. If we expanded our

range of moneyness, we would see that the same effect applies to β = 3 and −3.
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Moneyness
Leverage Ratio

2 3 -1 -2 -3

0.85
CallModel 9.369 16.940 3.277 10.957 19.249
CallMC 9.264 16.838 3.299 11.001 19.424
η (%) 1.121 0.602 0.671 0.402 0.909

0.90
CallModel 11.543 19.138 4.712 12.754 21.029
CallMC 11.407 19.102 4.701 12.903 21.349
η (%) 1.178 0.188 0.233 1.168 1.522

0.95
CallModel 13.802 21.311 6.477 14.630 22.800
CallMC 13.594 21.179 6.406 14.650 22.507
η (%) 1.507 0.619 1.096 0.137 1.285

1.00
CallModel 16.107 23.444 8.554 16.566 24.555
CallMC 15.944 23.336 8.414 16.585 24.824
η (%) 1.012 0.461 1.637 0.115 1.095

1.05
CallModel 18.426 25.527 10.901 18.546 26.290
CallMC 18.129 25.622 10.792 18.829 27.023
η (%) 1.612 0.372 1.000 1.526 2.788

1.10
CallModel 20.731 27.553 13.459 20.552 27.998
CallMC 20.572 27.391 13.347 20.630 28.051
η (%) 0.767 0.588 0.832 0.380 0.189

1.15
CallModel 23.002 29.517 16.158 22.570 29.677
CallMC 22.865 29.389 16.170 22.716 29.879
η (%) 0.600 0.434 0.074 0.647 0.681

Table 5.4: Call prices generated from model and Monte Carlo simulations for various
moneyness levels.

5.2 Sensitivity Analysis

In the previous section we observed the change in call prices from our formula with

variation in time-to-maturity and moneyness levels. The purpose of this section is to

illustrate the sensitivity of call prices from our model with respect to the Heston model

parameters in Equation (4.4). We have already justified the accuracy of our model by

performing extensive analysis alongside Monte Carlo simulations, and therefore, we

will not compare our results to simulations in this section.

The parameter sensitivity analysis procedure follows two steps. First, we illustrate

the call price values while varying the parameter within a specific range. Then, to better

understand the sensitivity of call prices, we illustrate the rate of change of call prices
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Figure 5.5: Comparison of error between CallModel and CallMC with varying money-
ness.

when we vary the parameter. We do this by partitioning the parameter range into 100

discrete, evenly spaced points. We determine the call price at each point, and illustrate

the difference in call prices between two adjacent points. Essentially, we calculate

the change in call prices with small changes in parameter values. We use a simple

change in call prices rather than a percentage change, since the results from the latter

are too similar across different β values for some parameters, which makes it difficult

to identify behaviour patterns.

5.2.1 Long-Run Variance Mean θ

The long-run variance mean, θ, is a strictly positive parameter. Also, it is rare for a

financial asset to reach a variance greater than 100%. Therefore, we perform sensitivity

analysis on θ within the range [0,1].

Figure 5.6 shows the call price for various values of θ. From the figure we can see



Chapter 5. Numerical Analysis 70

θ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
al

l P
ric

e

5

10

15

20

25

30

35

40

45
Sensitivity of Call Prices with θ

β = 2
β = 3
β = -1
β = -2
β = -3

Figure 5.6: Sensitivity of call option prices with θ.

larger absolute β values have a higher call price, as expected. We also observe that

bullish LETFs have a lower call price than their bearish counterparts.

Figure 5.7 better illustrates the sensitivity of call prices with θ. A positive value

for the change in call price indicates that the call price is increasing with θ, but the

curves themselves have negative slopes which means the call prices are increasing at

a decreasing rate. The call prices of LETFs with larger absolute values of β are more

sensitive to changes in θ, and bearish LETF call prices are more sensitive than bullish

LETF call prices.

5.2.2 Initial Variance v0

The initial variance v0, is similar to θ and is also a strictly positive parameter. Therefore,

we perform the sensitivity analysis within the range [0,1].

Figure 5.8 illustrates the call prices with various values of v0. Comparing Figures
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Figure 5.7: Rate of change of call option prices with θ.
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5.8 and 5.6, we see that the call price reacts similarly to changes in θ and v0. The call

prices are higher for bearish LETFs and also for LETFs with larger absolute β values.
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Figure 5.9: Rate of change of call option prices with v0.

Figure 5.9 shows the changes in call prices with varying v0. Comparing this figure

to Figure 5.7, we notice that the call prices are initially more sensitive to changes in

v0 than θ. The slopes of the curves in Figure 5.8 are also negative, and therefore, the

call prices are increasing at a decreasing rate with changes in v0. If we compares the

slopes in Figures 5.6 and 5.8, we can tell that Figure 5.8 has much steeper slopes and

therefore, the rate of change of call prices is decreasing at a faster rate with v0.

5.2.3 Variance Mean Reversion Rate κ

The variance mean reversion rate parameter, κ, is another non-negative parameter.

Theoretically, κ can take any positive value but we restrict the parameter to practical

values within the range [0,10].
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Figure 5.10: Sensitivity of call option prices with κ.

Figure 5.10 shows the LETF call prices with changes in κ. We can see that the call

price is higher for bearish LETFs and also for LETFs with larger absolute values of β.

Also, the call price decreases with increasing values of κ.

Figure 5.11 illustrates the change in call prices with varying κ values. We can see

that the change in call prices is larger for bearish LETFs and LETFs with larger absolute

β values. All five curves in Figure 5.11 have upward slopes, and therefore, the call price

is decreasing at a decreasing rate for all β values.

5.2.4 Volatility of Variance σ

We consider the volatility of variance, σ, to be less than or equal 100%. Since σ is also

a non-negative parameter, the range for σ is [0,1].

Figure 5.12 shows the call prices with changes in σ. Again, we can see the call

prices are larger for bearish LETFs and this difference in call prices between bearish and
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Figure 5.11: Rate of change of call option prices with κ.
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Figure 5.12: Sensitivity of call option prices with σ.
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bullish LETFs increases for larger values of σ. Interestingly, the call price of bearish

LETFs is not very sensitive to changes in σ.
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Figure 5.13: Rate of change of call option prices with σ.

Figure 5.13 shows the changes in LETF call prices with varying σ. Immediately

we see that the three bearish LETFs are initially increasing as σ is decreasing, but

eventually start to decrease. Overall, the bearish LETF call prices are, at first, increasing

at a decreasing rate, and eventually, decreasing at an increasing rate, signified by their

constant downward slope. The bullish LETF call prices are constantly decreasing at an

increasing rate.

5.2.5 Stock Price and Variance Correlation ρ

The correlation between the stock price and its variance is generally considered to

be negative. On many occasions, when the financial market crashes, volatility spikes

upwards. However, it may be interesting to visualize a positive correlation and for this
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reason we consider the full range of ρ as [-1,1].
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Figure 5.14: Sensitivity of call option prices with ρ.

Figure 5.14 illustrates the call prices with varying ρ values. We observe that the call

price is relatively less sensitive to changes in ρ than with other parameters. Interestingly,

for ρ < 0, bearish LETFs have a higher call price than their bullish counterparts. On the

other hand, for ρ > 0, bullish LETFs have a higher call price. We can see that bullish

LETF call prices are constantly increasing with increasing ρ values, and bearish LETF

call prices are constantly decreasing.

Figure 5.15 provides an interesting visualization of the change in call prices as ρ

varies. Notice that for LETFs with β = 2,−1 and 2, we have an approximately constant

rate of change of call prices, with bullish LETF prices having a positive change and

bearish LETFs having a negative change in option prices. It is evident from the β = −3

curve that bearish LETF prices are decreasing at a slower rate as ρ increases, especially

at lower levels of ρ. On the other hand, observing the β = 3 curve shows that bullish
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Figure 5.15: Rate of change of call option prices with ρ.

LETF prices are increasing at a faster rate as ρ increases, especially for larger ρ values.

From this figure we can state that the change in call option prices is approximately

linear with respect to a change in ρ.



Chapter 6

Conclusion and Future Research

Firstly, this thesis introduces a model to link the price of an LETF with its underlying

asset. This model is successfully verified by using empirical data of 3 major US equity

indices and several of their LETFs as well as two VIX LETFs. The validation of this

model consists of determining the variation between the theoretical and empirical LETF

prices, and the results show consistently low errors for our chosen LETFs with several

different leverage ratios. The justification of this model is of significant importance,

since we use this link to define the characteristic function of an LETF and also to obtain

Monte Carlo simulations to evaluate call option prices.

We also use an optimization technique [15] as an alternative to linear regression to

estimate the empirical leverage ratio values for our LETFs. The drawbacks of using

regression are discussed in depth in Chapter 3, but its main disadvantage is its inability

to provide a consistent result for the leverage ratio. The results of each method are

compared, and the optimization technique provides closer leverage ratio estimates to

the advertised leverage ratio values, and considering the other drawbacks of regression,

it is justified as a better approach to empirical leverage ratio estimation. We use the

optimization method to obtain empirical leverage ratios of LETFs in bullish and bearish

markets to better understand their investment potential.
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The main purpose of this thesis is to build an option pricing model for an LETF

when its underlying asset follows the dynamics of the Heston stochastic volatility model.

An additional process is introduced in our model to incorporate the path-dependant

variance of LETFs. We use the joint MGF of the log-asset price, its variance and the new

path-dependent process to derive a PDE. This PDE is converted into a set of four ODEs,

for which we derive a closed-form solution. We then obtain the characteristic function

of an LETF using the relationship between LETFs and their underlying asset, which

was modeled earlier. We derive a link between the CF and the joint MGF which allows

us to use standard transform methods to obtain an option pricing formula. Applying

the Carr-Madan formula for option pricing [6], which introduces a dampening factor

to make our call price function square-integrable, we are able to derive a suitable call

option price formula in the form of an integral.

We numerically solve our call price integral to obtain call prices for specific para-

meters. To compare our results, we simulate theoretical LETF call prices using an

Euler discretization scheme for the Heston model. This process involves using the

discretized Heston model to create a time series for the value of the underlying index

and its variance. These values then allow us to obtain a time series of LETF prices

using the established link between an LETF and its underlying index. We then discount

the final LETF price in our time series to time 0, which is essentially the call price of

an LETF at time 0. This process is repeated numerous times and averaged to obtain an

accurate approximation for the theoretical call price of an LETF. Our option pricing

formula compared with Monte Carlo simulations provides reasonably low errors for

various β-LETFs.

Finally, sensitivity analysis is conducted to test the performance of our model for

different time-to-maturity, T values, various moneyness levels and with varying model

parameters. This analysis is done for leverage ratios ranging from −3 to 3 to incorporate

all types of LETFs which are popular in the financial market. Our formula provides
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results consistent to that of Monte Carlo simulations with varying parameters, and

validates the accuracy of our model.

We are able to successfully create an option pricing framework for LETFs which

incorporates its path-dependence. A possible extension to our research would be to

explore different dynamics for the underlying index. We priced LETF options under

Heston stochastic volatility dynamics but it would be interesting to observe results

with the addition of jumps in the underlying asset. Using a jump-diffusion process

could certainly provide better results for VIX LETF options, since the underlying asset

is prone to instability and large movements. Experimenting with different dynamics

could provide useful insight for the behavior of LETFs in different financial sectors and

lead to more consistent pricing methods. As such, possible future work could involve

analyzing LETFs from various financial sectors and optimizing the dynamics of their

underlying asset to adapt to the specific characteristics in their relevant sector.
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Appendix A

MATLAB Codes

A.1 LETF Data and Calculating Returns

m = length(date);

n = 1000;

ndate = date(m-n+1:m);

% 'database' matrix contains all data. Columns 1, 8, 15, 22 refer

% to underlying indices. Columns 2-7, 9-14, 16-21, 23-25 refer to

% LETFs of the indices from columns 1, 8, 15 and 22, respectively

database = zeros(n,25);

for i = 1:n

database(i,1:7) = datasnp(m-n+i,1:7);

database(i,8:14) = datandx(m-n+i,1:7);

database(i,15:21) = datadji(m-n+i,1:7);

database(i,22:25) = datavix(m-n+i,1:4);

end

% calculating log-returns
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logreturn = zeros(n,25);

for i = 2:n

logreturn(i,:) = log(database(i,:))-log(database(i-1,:));

end

% calculating cumulative returns

cumulreturn = logreturn;

for i = 1:n-1

cumulreturn(i+1,:) = cumulreturn(i,:) + logreturn(i+1,:);

end

% varying holding period

holdlength = 60;

holdreturn = zeros(n,25);

for i = holdlength+1:n

holdreturn(i,:) = log(database(i,:))-log(database(i-holdlength,:));

end

A.2 Empirical Validation of LETFs

% ref_index and letf_index used to reference different columns

% in database

ref_index = 2;

letf_index = 7;

expense_fee = 0.009;

beta = -3;

r = 0.017;

variance = zeros(n,1);
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emp_letfprice = zeros(n,1);

emp_letfprice(1) = database(1,ref_index);

emp_letfreturn = zeros(n,1);

% theoretical LETF price calculation

for i = 2:n

mean_refreturn = mean(logreturn(1:i,ref_index));

variance(i) = sum((logreturn(1:i)-mean_refreturn).^2);

emp_letfprice(i) = exp(log(emp_letfprice(1)) + ...

beta*log(database(i,ref_index)/database(1,ref_index))+ ...

((beta-(beta^2))/2)*variance(i) + ...

((1-beta)*r-expense_fee)*(i/n));

emp_letfreturn(i) = log(emp_letfprice(i)/emp_letfprice(i-1));

end

emp_cumulreturn = zeros(n,1);

for i = 2:n

emp_cumulreturn(i) = emp_cumulreturn(i-1) + emp_letfreturn(i);

end

% error between theoretical and empirical returns

error = zeros(n,1);

for i = 1:n

error(i) = exp(logreturn(i,letf_index))-exp(emp_letfreturn(i));

end

error_mean = mean(error);

error_std = std(error);
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A.3 Empirical Leverage Ratio Estimation - Optimiza-

tion Method

A = zeros(n,1);

B = zeros(n,1);

C = zeros(n,1);

D = zeros(n,1);

ref_index = 22;

letf_index = 25;

holdperiod = 5;

expense_fee = 0;

dt = holdperiod/252;

variance = zeros(n,1);

meanholdperiod_return = zeros(holdperiod,1);

holdperiod_refreturn = zeros(n,1);

holdperiod_letfreturn = zeros(n,1);

% calculating hoding period return and variance

for i = holdperiod+1:n

meanholdperiod_return(i) = ...

mean(logreturn(i-holdperiod+1:i,ref_index));

variance(i) = ...

sum((logreturn(i-holdperiod+1:i)-meanholdperiod_return(i)).^2);

holdperiod_refreturn(i) = ...

log(database(i,ref_index)/database(i-holdperiod+1,ref_index));

holdperiod_letfreturn(i) = ...

log(database(i,letf_index)/database(i-holdperiod+1,letf_index));

positivereturn = zeros(n,25);

for j = 1:n
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if holdperiod_refreturn(j)<0

positivereturn(j)=holdperiod_refreturn(j);

else

positivereturn(j)=0;

end

end

A(i) = -(variance(i)^2)/2;

B(i) = (3/2)*(holdperiod_refreturn(i)-(r-expense_fee)*dt)*variance(i)...

+ variance(i)^2;

C(i) = -(holdperiod_refreturn(i)-(r-expense_fee)*dt+(1/2)*variance(i))^2...

+ variance(i)*((r-expense_fee)*dt-holdperiod_letfreturn(i));

D(i) = (holdperiod_letfreturn(i)-(r-expense_fee)*dt)* ...

(holdperiod_refreturn(i)-(r-expense_fee)*dt+(1/2)*variance(i));

end

% polynomial coefficients

a = sum(A);

b = sum(B);

c = sum(C);

d = sum(D);

polynomial = [a b c d];

empirical_beta = roots(polynomial)

A.4 Empirical Leverage Ratio Estimation - Regression

Method

regressX = zeros(n-1,3);

regressY = zeros(n-1,1);
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for i = holdperiod+1:n-1

holdperiod_variance = zeros(holdperiod,1);

holdperiod_return = mean(logreturn(i-holdperiod:i,ref_index));

for j = i-holdperiod:i

holdperiod_variance(j) = (logreturn(j,1)-holdperiod_return)^2;

end

regressY(i) = ...

log(database(i,letf_index)/database(i-holdperiod,letf_index));

regressX(i,1) = ...

log(database(i,ref_index)/database(i-holdperiod,ref_index));

regressX(i,2) = sum(holdperiod_variance);

regressX(i,3) = 1;

end

regression = regress(regressY,regressX)

A.5 Option Pricing Formula

% initializing parameters

L_0 = 100;

S_0 = 100;

moneyness = 1;

K = L_0/moneyness;

alpha = 1.5;

k_0 = log(K);

l_0 = log(L_0);

v_0 = 0.25;

kappa = 5.07;

q = 0;
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theta = 0.0457;

sigma = 0.48;

rho = -0.767;

beta = -3;

r = 0.05;

f = 0.0095;

t = 0;

T = 0.25;

im = sqrt(-1);

% option pricing model

z_1 = @(u) (im*u + alpha +1)*beta;

z_3 = @(u) (im*u + alpha +1)*(beta-(beta^2))/2;

delta = @(u)(z_1(u).*rho*sigma-kappa).^2 - ...

(sigma^2)*(z_1(u).^2-z_1(u)+2.*z_3(u));

lambda1 = @(u) (-(z_1(u).*rho*sigma-kappa)+sqrt(delta(u)))./2;

lambda2 = @(u) (-(z_1(u).*rho*sigma-kappa)-sqrt(delta(u)))./2;

omega = @(u) (exp(lambda2(u).*T).*(-2.*lambda2(u)))./ ...

(exp(lambda1(u).*T).*(2.*lambda1(u)));

A = @(u) (2*kappa*theta/(sigma^2))*log((omega(u).*exp(lambda1(u).*T)+ ...

exp(lambda2(u).*T))./(omega(u)+1)) + (r-q).*z_1(u).*T;

simcall = @(u) (2/(sigma^2))*((lambda1(u).*omega(u)+lambda2(u))./ ...

(omega(u) + 1));

final = @(u) (exp((im*u+alpha+1)*(l_0-beta*r*T)- ...

(im*u+alpha)*(k_0-r*T)+A(u)+simcall(u).*v_0))./ ...

((im*u+alpha).*(im*u+alpha+1));

hestonCall = (1/pi)*integral(final,0,1000);

hestonCall
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A.6 Option Pricing Monte Carlo Simulation

N = round(T*252);

m = 1;

N = 10000;

dt = T/N;

beta = 3;

S_m=zeros(N,m);

v_m=zeros(N,m);

L_m = zeros(N,m);

log_return = zeros(N,m);

variance = zeros(N,m);

S_m(1,:)=S_0;

v_m(1,:)=v_0;

L_m(1,:) = L_0;

C = zeros(m,1);

% simulating paths using discretized heston model

for j = 1:m

for i=2:N

e1 = normrnd(0,1);

e2_temp = normrnd(0,1);

e2 = e1*rho + e2_temp*sqrt(1-(rho^2));

S_m(i,j) = S_m(i-1,j) + r*S_m(i-1,j)*dt+ ...

sqrt(max(v_m(i-1,j),0))*sqrt(dt)*S_m(i-1,j)*e1;

v_m(i,j) = v_m(i-1,j)+kappa*(theta-max(v_m(i-1,j),0))* ...

dt+sigma*sqrt(max(v_m(i-1,j),0))*sqrt(dt)*e2;

log_return(i,j) = log(S_m(i,j)/S_m(i-1,j));

variance(i,j) = sum((log_return(1:i-1,j)- ...

mean(log_return(1:i,j))).^2);
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L_m(i,j) = exp(log(L_m(1,j)) + beta*log(S_m(i,j)/S_m(1,j))+ ...

((beta-(beta^2))/2)*variance(i,j) +((1-beta)*r-f)*i*dt);

end

% theoretical call price

C(j) = exp(-r*T)*max(L_m(N,j)-K,0);

end

mc_call = mean(C);

mc_call
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