
Evaluation of Statistical Text Normalisation Techniques for Twitter

Phavanh Sosamphan1, Veronica Liesaputra1, Sira Yongchareon2 and Mahsa Mohaghegh1
1Department of Computer Science, Unitec Institute of Technology, Auckland, New Zealand

2Department of Information Technology & Software Engineering, AUT, Auckland, New Zealand

Keywords: Text Mining, Social Media, Text Normalisation, Twitter, Statistical Language Models, Lexical
Normalisation.

Abstract: One of the major challenges in the era of big data use is how to ‘clean’ the vast amount of data, particularly
from micro-blog websites like Twitter. Twitter messages, called tweets, are commonly written in ill-forms,
including abbreviations, repeated characters, and misspelled words. These ‘noisy tweets’ require text
normalisation techniques to detect and convert them into more accurate English sentences. There are several
existing techniques proposed to solve these issues, however each technique possess some limitations and
therefore cannot achieve good overall results. This paper aims to evaluate individual existing statistical
normalisation methods and their possible combinations in order to find the best combination that can
efficiently clean noisy tweets at the character-level, which contains abbreviations, repeated letters and
misspelled words. Tested on our Twitter sample dataset, the best combination can achieve 88% accuracy in
the Bilingual Evaluation Understudy (BLEU) score and 7% Word Error Rate (WER) score, both of which
are considered better than the baseline model.

1 INTRODUCTION

More than 80% of online data, especially from
Twitter, is unstructured and written in ill-formed
English in such a way that users may not understand
it very well (Akerkar, 2013). Compared to the size
of other online texts (such as comments on
Facebook), tweets are much smaller (< 140
characters). Because of the restriction on the
maximum number of characters that can be sent in a
tweet, tweets are commonly written in shorthand and
composed hastily with no corrections.

Data cleaning has been a longstanding issue.
However, the resultant state-of-the-art methods and
approaches are still missing the mark concerning an
effective solution for cleaning Web data (Han et al.,
2013). The major difficulty is how to enhance the
accuracy, effectiveness and efficiency of the data
cleaning algorithms all at the same time. The more
accurate techniques usually require a larger amount
of time to clean the data.

Existing work on text normalisation is usually
designed to address a specific problem in noisy
texts. For example, Out-of-Vocabulary (OOV)
words and abbreviations have been the focus of most
attempts. Even though there are many methods that

could tackle these problems, some noisy texts still
cannot be identified and normalised. This is mainly
due to misspelling and no contextual features being
accessible for extraction.

In order to produce a correct English sentence
that does not contain misspellings, repeated letters,
abbreviations or OOV words, we studied and
evaluated each of the existing methods and their all
possible combinations to find the best one that can
efficiently correct a tweet at the character level. Our
evaluation is based on the two following criteria:
accuracy and run-time efficiency. Accuracy can be
measured using the BLEU (Bilingual Evaluation
Understudy) score and the WER (Word Error Rate)
values. Run-time efficiency is measured by the time
spent in cleaning noisy tweets.

2 BACKGROUND

Noisy texts can be caused by the use of acronyms,
abbreviations, poor spelling and punctuation,
idiomatic expressions and specific jargon. In this
paper, we discuss existing normalisation techniques
for the noises at the character-level.

Sosamphan, P., Liesaputra, V., Yongchareon, S. and Mohaghegh, M.
Evaluation of Statistical Text Normalisation Techniques for Twitter.
DOI: 10.5220/0006083004130418
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016) - Volume 1: KDIR, pages 413-418
ISBN: 978-989-758-203-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

413

Misspellings. Spelling corrector, developed by
Norvig (2012), defines the conditional probability of
a given word by finding the dictionary entries with
the smallest edit distance from the query term. It
achieved 90% accuracy at the processing speed of at
least 10 words per second.

Abbreviations. Li and Liu (2012) extended the
work of Pennell and Liu (2011) and proposed a two-
stage approach using the Machine Translation (MT)
model. Abbreviations were firstly translated to
phonetic sequences which then translated back to In-
Vocabulary (IV) words by using a dictionary to
eliminate words that were not in the dictionary and
kept N-best candidates. It received 83.11% accuracy
in the top-20 coverage.

Repeated Characters. Saloot, Idris, and Mahmud
(2014) eliminated repeated letters from Malay
tweets by basing them on patterns setup. Extra
letters were eliminated when a token was detected as
a non-standard word by tagging with IV words and a
normalised token label. After a token with repeated
letters was converted to word patterns, the regular
expression module was used as a pattern finder to
determine whether a token fitted into the patterns.
Then repeated letters were deleted based on the
match pattern.

OOV Words. Gouws et al. (2011) constructed an
unsupervised exception dictionary by using
automatically paired OOV words and IV words.
Through similarity functions, OOV words were
identified based on the list of IV words and created
the output as a word mesh that contains the most
likely clean candidates for each word. Then the
model grouped them as a set of confusion lattices for
decoding clean output by using an n-gram language
model from SRI-LM (Stolcke, 2002). This approach
reduced around 20% in the WER score over existing
state-of-the art approaches, such as a Naïve baseline
and IBM-baseline.

3 APPROACH

Based on the existing research on character-level
problems, we have found challenges as well as
opportunities in normalising non-standard words.
First, we have observed that high levels of annotated
training data are required. Furthermore, majority of
the existing methods are specially designed to
handle a specific normalisation problem.

The goal of this research is to find the best
normalization combination in order to 'normalise' an
ill-formed tweet to its most likely correct English
representation with the highest accuracy. We
consider four noisy problems, which cause noisy
tweets, including repeated characters, abbreviations,
OOV words and misspelling words.

Data Preparation. Before we try to normalise the
tweets, five basic steps of data preparation are
deployed. First, we replace all HTML entities to
standard English characters. For instance, “&”
is converted to “&” and “<” is converted to “<”.
All tweets are then encoded into to UTF-8 format.
The third step is the removal of emoticons, URLs
and unnecessary punctuations. “:”, “.”, “,”,”?”,
however, @usernames and #tags are not removed.
Concatenated or run-together words are then split
into individual words. For example, “RainyDay” is
converted to “Rainy Day”. Finally, the tweets are
tokenised into word-level.

Dictionary. Two types of dictionaries are used to
normalise noisy tweets: “en_US” dictionary from
Aspell library (Atkinson, 2004), and abbreviation
dictionary taken from reliable online sources such as
www.urbandictionary.com, www.noslang.com,
www.abbreviations.com & www.internetslang.com.

Abbreviations are expanded by using a simple
string replace method. Each word is converted to
lower case before trying to find it in our abbreviation
dictionary. If it encounters the matching one, the
abbreviation is replaced with its expanded version,
i.e. “u r sooooo gorgeuos 2nite” → “you are sooooo
gorgeuos tonight”.

Repeated Characters are then normalised by first
removing repeated letters found in a word until only
two letters remain (“u r sooooo gorgeuos 2nite” to
“u r soo gorgeuos 2nite”). Next, it utilises J.
McCallum (2014) spell corrector to correct the
word. Hence, “soo” is corrected to “so”.

Misspelled Words are corrected at the last stage of
our approach. In this step, we utilise the Enchant
dictionary (Perkins, 2014) as well as the two
dictionaries mentioned above. Spelling correction is
not necessary if the given word is present in the
dictionary, and the word is returned. But if the word
is not found, it will return a word in the dictionary
with the smallest edit distance. For instance,
“gorgeuos” is corrected to “gorgeous”.

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

414

4 EXPERIMENTS

To evaluate the performance of each of the
techniques and their combinations, we conducted
two types of experiments. The first experiment
contained two stages. Re-implementing existing
normalisation methods represented the first stage in
finding the best cleaning techniques for solving each
problem (misspelled words, abbreviations, and
repeated characters). The second stage involved
combining techniques used to address each problem
in a different order. This experiment was intended to
help us find the best combination of techniques that
could solve all problems. The second experiment
used the same tweets dataset to prove that our best
combination of normalisation techniques found in
the first stage is better than the baseline model, in
terms of accuracy and time efficiency, at
normalising a noisy tweet into a clean and readable
sentence. All techniques were implemented in
Python and NLTK framework. The baseline model
used is Text Cleanser by Gouws et al. (2011).

Dataset. The experiments used a dataset of 1200
tweets containing messages from popular celebrities
in the entertainment area and the replies from their
fans. The dataset contains 489 abbreviations, 152
words with repeated characters, and 375 misspelled
words.

For our evaluation setup, we formed the datasets
for each of our tests by manually normalising those
1200 tweets and creating four reference datasets. In
the first reference dataset, we corrected all the
abbreviations from the original tweets. For instance,
if the original tweet was “That viedo is fuuunnnnyy
LOL”, in the first reference dataset (Ref_AB) the
tweet became “That viedo is fuuunnnnyy laugh out
loud.” In the second dataset (Ref_RC), we corrected
only the repeated characters. Thus, the tweet became
“That viedo is funny LOL”. In the third dataset
(Ref_MSW), we corrected only the misspelled
words, i.e. “That video is fuuunnnnyy LOL”. In the
last dataset (Ref_All), we corrected all of those
cases, i.e. “That video is funny laugh out loud.” To
sum up, the first three reference datasets were used
for evaluating each technique that was used to
address each problem and the fourth reference
dataset was used to evaluate the combined models
against the baseline model, and our combination
model against the baseline model.

Evaluation Metrics. BLEU and WER metrics are
widely used as evaluation metrics for finding a
normalisation method’s accuracy. We use the

iBLEU developed by Madnani (2011) and Gouws et
al. (2011) WER evaluator. The efficiency of a
technique is evaluated by the time that is required by
a normalisation technique to perform a data cleaning
procedure. Furthermore, a paired t-test was used to
examine whether there is a statistically significant
difference between the performances of each
technique at the 95% confidence level.

4.1 Results from Individual Method

A comparison of the techniques that solve the same
noisy problem on the same tweet dataset is required
to find the best technique. The results of the first
experiment are presented according to the type of
noisy problems they are trying to solve and they are
explained in detail as follows.

4.1.1 Detecting Abbreviations

Two techniques for normalising abbreviations are
compared: DAB1 and DAB2. Similar to DAB2,
DAB1 expands abbreviations by performing
dictionary look-up. However, DAB1 did not convert
each word to lowercase prior to the look up. Ref_AB
is used as the reference dataset in the BLEU and
WER score calculations.

Both techniques achieve more than 90% in the
BLEU score, less than 4% WER value and spent
only 30 seconds. However, both are not able to
resolve abbreviations that require context at
sentence-level, which is out of the scope of this
research. For example, “ur” in “I love that ur in” is
currently resolved to “your” instead of “you are”.
Although our abbreviation dictionary has defined
“ur” with two separate meanings, neither technique
can select the right meaning of the given sentence.
There is no significant difference in performance
between DAB1 and DAB2, but DAB1 yields lower
accuracy as it cannot detect an abbreviation that
contains the upper case letter (i.e. “Wld”) due to our
dictionary merely having the reference abbreviations
that have the lower case letters (i.e. “luv”).

4.1.2 Removing Repeated Characters

Three variants of Perkins (2014) techniques for
removing repeated characters are evaluated: RRC1,
RRC2 and RRC3. RRC2 is Perkins (2014) original
approach, where repeated letters in a word are
removed 1 letter at a time. Each time a letter is
deleted, the system performs a WordNet lookup.
RRC2 will stop removing repeated characters if
WordNet recognises the word. Instead of using
WordNet, Enchant dictionary is used in RRC3. In

Evaluation of Statistical Text Normalisation Techniques for Twitter

415

RRC1, repeated letters in a word are removed until
only two letters remain and J. McCallum (2014)
spell corrector is used to correct the resulted word.

Although our best combination model seems
crude compared to the other two methods, on our
Ref_RC dataset, we found that RRC1 (83.65%) is
significantly better than RRC2 (79.76%) and RRC3
(80.13%) in terms of BLEU score. RRC1 (25 sec)
and RRC2 (1 min) are also significantly faster than
RRC3 (22 mins). However, there is no significant
difference in the WER score among the three
methods (9%-11%). We have also noted that
Enchant dictionary contains more words than
WordNet as such in some cases RRC3 performs
better than RRC2.

4.1.3 Correcting Misspelled Words

To find out the best technique for spelling
correction, we have compared SC1 with Norvig
(2012) spelling corrector (SC2) and TextBlob (SC3)
Python’s library for correcting misspelled words.

On our Ref_MW dataset, SC1 (79.88% BLEU
and 12.40% WER) is significantly better than SC2
(68.47% BLEU and 17.97% WER) and SC3
(69.39% BLEU and 16.68% WER) in terms of
BLEU and WER scores. SC1 utilizes edit distance
method to replace the misspelled word with the
word in the Aspell or Enchant dictionary that has the
lowest edit distance to the misspelled word. Hence,
it can handle words written in a plural form, e.g.
“skills” will not be resolved to “skill”.

There is no significant difference between SC2
and SC3 in both BLEU and WER scores, but the
run-time performance is significantly different.
While SC2 spends only 4 minutes correcting
misspelled words, SC3 spends 21 minutes. Given a
large amount of input, SC3 will take considerably
longer to process the whole input.

4.2 Results from Combination of
Techniques

From the previous section, we know that the best
techniques for resolving abbreviations, misspelling
and repeated characters are DAB2, SC1 and RC1
respectively. Next, we set up an experiment to
identify the best combination of DAB, SC and RRC
cleaning techniques and the best order to execute
those techniques. Thus, we know which type of
problems should be addressed first and which ones
should be addressed last.

We have set up and evaluated a total of 108
combinations using the BLEU, WER, and time

criteria. Ref_All is the reference dataset used for
calculating the BLEU and WER score for each
combination of techniques. The results of this
experiment are organised according to the execution
order of each technique. As such, there are six
groups of combinations.

4.2.1 RRC  DAB  SC

Overall, this group performs well with promising
results in the BLEU, WER and time. The
outstanding combination is RRC1 → DAB2 → SC1.
This combination achieves the highest BLEU score
(88.51%), the lowest WER value (7.14%), and
spends only 2 minutes and 55 seconds. On the other
hand, some techniques (i.e. RRC3 → DAB1 → SC3
and RRC3 → DAB2 → SC3) spend a long period of
time normalising noisy tweets, due to fact that they
combine the techniques (RRC3 and SC3) that
individually consume a lot of time cleaning repeated
letters and misspelled words. Furthermore, RRC2 →
DAB1 → SC2 and RRC2 → DAB1 → SC3 are the
combinations that achieve the lowest BLEU score
(~73%) and the highest WER values (>14%).

4.2.2 RRC  SC  DAB

The outstanding combination in this group is RRC1
→ SC1 → DAB2, which achieves the highest BLEU
score (84.41%), the lowest WER value (9.60%), and
spends only 2 minutes and 55 seconds. However,
RRC1 → SC1 → DAB2 still achieves low accuracy
when compared with RRC1 → DAB2 → SC1. In
RRC1 → SC1 → DAB2, SC1 considers some of the
abbreviations as misspelled words. For example,
SC1 corrects “deze” to “daze” instead of “these”,
“whatchu” to “watch” instead of “what are you”.
Some techniques (i.e. RRC3 → SC3 → DAB1 and
RRC3 → SC3 → DAB2) are very slow in
processing normalisation and their accuracy is still
not high enough.

4.2.3 DAB  RRC  SC

The outstanding combination is DAB2 → RRC1 →
SC1, which achieves the highest BLEU score
(88.55%) and the lowest WER (7.10%) and spends
only 2 minutes and 55 seconds. DAB1 → RRC2 →
SC3, DAB1 → RRC2 → SC3, DAB1 → RRC3 →
SC2 and DAB1 → RRC3 → SC3 are the
combinations that achieve the lowest BLEU score
(~74%) and the highest WER values (>14%). On the
other hand, the combination that spends the longest
time processing normalisation in this group is DAB2
→ RRC3 → SC3 (43minutes and 30seconds).

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

416

When comparing this group with the previous
ones, we observe that handling abbreviations as a
first step can ensure that all given abbreviations have
been checked and replaced by their formal format.
For example, “deze” to “these” and “whatchu” to
“what are you”. Then, the elimination of repeated
characters has made sure that words containing
repeated characters are addressed thoroughly.
Consequently, when these types of noisy tweets are
cleaned, they have been returned to the normalised
tweets dataset without any spelling correction from
SC1. These first two steps have not only increased
the capacity of the spell corrector to deal with only
incorrect words, but also can normalise the final
output with the highest accuracy. Hence, DAB2 →
RRC1 → SC1 is better than RRC1 → SC1 → DAB2
and RRC1 → DAB2 → SC1.

4.2.4 DAB  SC  RRC

DAB2 → SC1 → RRC1 performs better than other
combinations in this group, with an 83.50% in the
BLEU score and 9.69% in the WER value. DAB1 →
SC2 → RRC3, DAB1 → SC3 → RRC2 and DAB1
→ SC3 → RRC3 are the combinations that achieve
the lowest BLEU score (~69%) and the highest
WER values (>16%). In addition, the DAB2 → SC3
→ RRC3 technique spends nearly 44 minutes
normalising noisy tweets.

However, the performance of DAB2 → SC1 →
RRC1 is not good enough in comparison to DAB2
→ RRC1 → SC1. After expanding abbreviations
into their formal form, some words containing
repeated characters initially have been corrected by
SC1 before sending to RRC1. For example, “sooo”
will be corrected to “soon” instead of removing
repeated letters to get “so”. Hence, most of the
words that contain repeated characters have been
transformed into another word, which causes a
change in the final output of normalised tweets as
well as having an effect on the accuracy.

4.2.5 SC  RRC  DAB

The outstanding combination is SC1 → RRC1 →
DAB2, which achieves the highest BLEU score
(86.94%) and the lowest WER value (8.30%) and
spends 2 minutes and 55 seconds processing
normalisation.

However, we are surprised by the results of this
combination when we compare it with DAB2 →
SC1 → RRC1. We find that the ill-formed words
identified as abbreviations are not treated by SC1 at
the first stage; only misspelled words are corrected.
Thus, abbreviations and repeated letters are

normalised by the proper techniques. The
normalised results contradict with the fourth
combination group, especially, the normalised result
from the DAB2 → SC1 → RRC1 technique. It
indicates that the original format of some words
containing repeated letters has been changed by
SC1.

While SC1 → RRC1 → DAB2 is the best
combination in the group, SC3 → RRC2 → DAB1
and SC3 → RRC3 → DAB1 are the techniques that
achieve the lowest BLEU score (~70%) and the
highest WER values (>16%). On the other hand, the
combinations of SC3 → RRC3 → DAB1 and SC3
→ RRC3 → DAB2, which spent the longest run-
time in normalising than any other combination,
perform better than SC3 → RRC2 → DAB1 on both
BLEU score and WER value.

4.2.6 SC  DAB  RRC

The outstanding combination of this group is SC1 →
DAB2 → RRC1. This combination achieves 87.90%
in the BLEU score and 7.40% in the WER. Based
on the normalised result generated from SC1 →
DAB2 → RRC1, we find that both abbreviations and
repeated characters are not identified as misspelled
words and corrected by SC1 at the first stage. Thus,
noisy words that have been ignored by SC1 are
detected and normalised by DAB2 and then RRC1
as a latter technique.

SC3 → DAB1 → RRC2 and SC3 → DAB1 →
RRC3 are the combinations that achieve the lowest
BLEU score (~71%) and the highest WER values
(>15%). In addition, both SC3 → DAB1 → RRC3
and SC3 → DAB2 → RRC3 have spent nearly 44
minutes normalising noisy tweets.

4.3 Comparison to Baseline Model

Based on our experiment results presented in Section
4.2 and shown in Table 1, we can see that the best
normalisation techniques and their order is DAB2 →
RRC1 → SC1. To examine how well the best
combination found can detect and convert a noisy
tweet into an accurate English sentence, we compare
its performance with the performance of Text
Cleanser (TC) developed by Gouws et al. (2011).
We chose TC as the baseline model because it
claimed that the system can handle all the types of
noisy words that we are trying to normalise, which
they consider as OOV words, and because the
system is open source.

As can be seen in Table 2, our best combination
performs better than TC in terms of achieving higher

Evaluation of Statistical Text Normalisation Techniques for Twitter

417

Table 1: The group of the best combinations.

Model BLEU
(%)

WER
(%)

RRC1 → DAB2 → SC1 88.51% 7.14%

RRC1 → SC1 → DAB2 84.41% 9.60%

DAB2 → RRC1 → SC1 88.55% 7.10%
DAB2 → SC1 → RRC1 83.50% 9.69%

SC1 → RRC1→ DAB2 86.94% 8.30%

SC1 → DAB2 → RRC1 87.90% 7.40%

Table 2: Comparison between the best combination model
and the baseline model.

Model BLEU
(%)

WER
(%)

Time

Baseline (TC) 63 38.22 3mins

Our best
combination
model

88.55 7.10 2mins55sec

accuracy on our Ref_All dataset. Our model
achieves 88.55% of the BLEU score and 7.10% in
the WER score, while TC achieves 63% in the
BLEU score and 38.22% in the WER score. In terms
of time efficiency, although both models spend a
short amount of time on normalisation in the
different operating systems, our best combination
model is faster than the baseline model. The paired-
t-test showed that the best combination’s BLEU and
WER values are statistically significant when
compared with TC.

TC was unable to resolve some abbreviations
and misspelled words, and incorrectly replaced an
already correct word with another word. For
example, “worst” to “wrest” “deez” to “diaz”, and
“conections” to “conditions”. A run-on word such
as “im” being replaced with “i am” – is another
problem that could not be detected and handled.

Despite its positive side, our best combination
found cannot correctly normalise tweets when there
is a white space in a given word (e.g. “I’ m”). The
best combination recognises it as a noisy word due
to its absence in the dictionary lookup and reference
text. The “I’ m” is transformed into “I’ million”
instead of “I’ m”. The best combination’s tokenising
algorithm treats a white space as a token separator.
Hence, the “I” is recognised by dictionary lookup
while the “m” is not. The “m” is recognised as an
abbreviated term which means “million” according
to our abbreviation dictionary. Therefore, this minor
issue is another factor that reduces the accuracy of
our combination model’s performance.

5 CONCLUSION

It has been established that data cleaning is a crucial
part of text pre-processing. Therefore, a noisy tweet
needs to be normalised to a cleaned sentence to
provide high quality data. Three main issues in noisy
tweets have been considered in text normalisation.
Existing techniques have been evaluated with the
same dataset in order to identify and select the best
combined techniques to deal with abbreviations,
repeated characters, and misspelled words. Based on
our experiments, our best combination not only
provides the highest score of the BLEU score and
the lowest WER, but also generates sentences with
minimum efficiency; thus the cleaned texts can be
effectively used in sentiment analysis and other NLP
applications.

REFERENCES

Akerkar, R. (2013). Big data computing. Florida, USA:
CRC Press.

Atkinson, K. (2004). GNU Aspell. Retrieved from
http://aspell.net/

Gouws, S., Hovy, D., & Metzler, D. (2011). Unsupervised
mining of lexical variants from noisy text. Proc. of the
First workshop on Unsupervised Learning in NLP (pp.
82-90).

Han, B., Cook, P., & Baldwin, T. (2013). Lexical
normalization for social media text. ACM Trans.
Intell. Syst. Technol., 4(1), 1-27.

Li, C., & Liu, Y. (2012). Normalization of Text Messages
Using Character-and Phone-based Machine
Translation Approaches. In INTERSPEECH (pp.
2330-2333).

Madnani, N. (2011). iBLEU: Interactively debugging and
scoring statistical machine translation systems. Proc.
for the ICSC Conf. on (pp. 213-214).

McCallum, J. (2014). Python 3 Spelling Corrector. From
https://pypi.python.org/pypi/autocorrect/0.1.0

Norvig, P. (2012). How to Write a Spelling Corrector.
From http://norvig.com/spell-correct.html

Perkins, J. (2014). Python 3 Text Processing with NLTK 3
Cookbook. Birmingham, UK: Packt Publishing.

Saloot, M. A., Idris, N., & Mahmud, R. (2014). An
architecture for Malay Tweet normalization.
Information Processing & Management, 50(5), 621-
633.

Stolcke, A. (2002). SRILM-an extensible language
modeling toolkit. In Proc. Intl. Conf. on Spoken
Language Processing (pp. 257-286). INTERSPEECH.

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

418

