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Abstract—In this study, the problems of modeling, energy 

dispatching and Photovoltaic (PV) array energy priorities for a 

grid connected residential house with PV array and battery 

storage using model predictive control (MPC) have been 

investigated. Artificial neural network (ANN) based global solar 

radiation forecast was used to plan in advance for periods of low 

sunshine. MPC was able to reduce electricity consumption in the 

house when solar radiation forecast was unfavorable. Quadratic 

programming optimization was used to maximize usage of the PV 

system. Excess energy from the PV array was used to further raise 

hot water cylinder (HWC) temperature, rather than exporting it 

to the utility grid. Performance of the overall model predictive 

control system was verified using simulation results.          

Keywords—Building energy management, model predictive 

control, energy efficiency, photovoltaic energy systems, solar 

radiation forecast 

I.  INTRODUCTION 

Climate changes, diminishing world supplies of the non-
renewable fuels as well as economic aspects are the driving 
factors of current effort to save the energy. Sustainable energy 
sources, such as wind, solar and their hybrid systems are 
becoming attractive options of providing energy globally for 
reasons such as low cost and easy accessibility [1].  Rapid 
development of global economy has remarkably increased 
energy requirements, especially in emergent countries. The 
realization that fossil fuel resources required for the generation 
of energy are depleting and that climate change is related to 
carbon emissions to the atmosphere has also increased interest 
in energy saving and environmental protection. The first strategy 
to reduce dependence on fossil resources is based on reducing 
power consumption by applying energy savings programs 
focused on energy demand reduction and energy efficiency in 
industrial and domestic applications [2].  

To achieve the desired goal, renewable energy sources can 
be utilized, not only for large-scale energy production, but also 
for small-scale residential sector [3]. The employment of 
established passive technologies such as improved building 
insulation or more energy efficient appliances for heating and 
cooling are efficient methods towards the energy efficient 
operation of buildings. Another approach is to improve 
buildings automation by using advanced control concepts [4]. 

Current implementation of control processes in buildings still 
employ rule-based approaches combined with proportional–
integral–derivative (PID) controllers which operates in feedback 
arrangement and are prone to calibration errors and cannot 
handle unpredicted time delays.  Also these PID controllers 
cannot handle nonlinearities in the control process and operate 
only in the predetermined time horizons.  

The building dynamics are slow and the building is subject 
to intermittent disturbances, i.e. the weather as well as the energy 
consumption of building’s appliances as well as the number of 
occupants, who generate heat, CO2, and set demands for 
temperature, illuminance and air quality. This gives rise to a 
constrained control problem and the goal is to use weather 
forecast in order to be able to make appropriate use of the 
thermal storage capacity of a building, electrical appliances and 
energy dispatch strategies. Model Predictive Control is an ideal 
framework to tackle this problem [5]. 

II. LITERATURE REVIEW 

MPC is a method for constrained optimal control, which 
originated in the late seventies and early eighties in the process 
industries (oil refineries, chemical plants, etc.) [6], [7], [8], [9]. 
MPC is a class of control methods with the model of the process 
explicitly expressed in order to obtain a control signal by 
minimizing an objective function subject to some constraints. In 
case of building control, one would aim at optimizing the energy 
delivered (or cost of the energy) subject to comfort and the 
power system constraints.  

Predictive control strategies for hybrid renewable energy 
systems are shown to be more efficient when compared to 
conventional, non-predictive strategies for energy efficient 
building automation [10], [11], [12]. In [13], demand side 
management of PV-battery hybrid systems using MPC approach 
has been discussed, in which the battery was charged from the 
grid during off-peak time and discharged during peak time to 
minimize grid imports during peak hours when electricity prices 
are usually higher. The proposed MPC achieved improved 
control performance in terms of accuracy and robustness. 
Furthermore, it was shown that more cost savings can be 
achieved by using the closed-loop control. The grid-connected 
PV-battery-grid system can help customers, to reduce energy 



imports from the local grid, and also can help utility grid to 
regulate the grid in terms of security and efficiency issues, such 
as peak shaving, direct load control (DLC), and capacity market 
programs [14]. 

Some attempts have been made to test MPC for small scale 
distributed power generation systems including the work of [15], 
which proposed a supervisory control system using MPC. The 
controller focused on the optimal management and operation of 
the small-scale hybrid wind-solar energy systems. Two local 
controllers were used to drive the two subsystems to the power 
references and MPC capability to reduce the peak values of 
inrush or surge currents was discussed.  

To achieve maximum efficiency out of photovoltaic systems 
using small-scale batteries and flexible thermal loads, [16] 
proposed four rule-based control algorithms and calculated the 
building energy flows and PV self-consumption ratios on an 
annual basis. Battery capacities that maximize the savings over 
the investment lifetime for different combinations of battery 
capital costs and PV feed-in tariffs have been investigated. 

In [17], a model predictive control strategy was utilized to 
maximize PV self-consumption, exploiting the flexible demand 
of an electric water heater. Solar irradiance forecast and real PV 
production data was used to test the system. Simulations showed 
the ability of MPC to move the consumption of the heater to a 
time when there was energy production from the PV system.  

To find a generalized DSM strategy based on load shifting, 
a heuristic-based evolutionary algorithm was developed in [18]. 
In [19], neural network based approach was used to schedule and 
coordinate distributed generations for active demand side 
management.   

In [20], an optimal load management strategy for residential 
households was studied, which utilized the communication 
infrastructure of the future smart grid. Prediction of electricity 
prices, energy demand, PV production and consumer’s power-
purchase of energy were utilized to determine the optimal 
relationship between hourly electricity prices and the use of 
different household appliances for a typical smart house. Results 
showed that the proposed model allowed users to reduce their 
electricity bill between 8% and 22% for the typical summer day 
analyzed and adapt the electricity bill to their actual economic 
situation. An advance control strategy for a smart home was 
developed in [18], to enable consumer economic saving and 
automate the demand side management for domestic users. 
Another event driven controller was developed in [21], for the 
optimal scheduling of household appliances using binary linear 
programming. 

Another attempt to use linear predictive control approach to 
reduce the use of auxiliary energy demand and increase solar 
yields by using weather forecast data, was made by [22], which 
demonstrated the feasibility of the proposed approach for a solar 
thermal water tank with auxiliary heating elements for a 
residential house. 

MPC has been widely used in the closed-loop control for 
adaptively changing control variables according to external 
disturbances and is applied in this work because of its ability to 

explicitly handle constraints and to adjust the energy flows when 
disturbances occur. 

III. METHODOLOGY 

The proposed controller will be able to forecast the 
availability and magnitude of the solar resource to plan in 
advance for periods when the solar radiation magnitude is small 
or unavailable and should be adaptable to a range of timescales 
and locations.  

A. Global solar radiation forecast 

In [23], several forecasting techniques were analyzed: 
NARX, MLP, ARMA and persistence. Hourly time series data 
for nine historic weather variables recorded over a three-year 
period were used to train and test the forecasting methods for 
New Zealand’s largest city, Auckland. Results from forecasts 
based on the NARX were compared with an ANN based 
Multilayer Perceptron (MLP) method, a statistical approach 
using auto regressive moving average (ARMA) and a reference 
persistence approach. Predicted values of hourly global solar 
irradiation were compared with the measured values, and it was 
found that the root mean squared error (RMSE) was 0.243 
MJ/m2 for the NARX method as compared to 0.484 MJ/m2, 
0.315 MJ/m2 and 0.514 MJ/m2 for the MLP, ARMA and 
persistence approaches respectively. Subsequently the NARX 
approach was used to forecast global solar irradiation for other 
major cities across New Zealand. The results demonstrated the 
ability of the NARX approach to forecast irradiation values at a 
later time and across a number of different locations. 

Figure 1 shows a randomly selected one week forecast of 
global solar irradiation in Auckland using hourly time series data 
for nine historic weather variables recorded over a three-year 
period using the proposed NARX approach. It can be seen that 
over this single week, that the NARX forecasts the solar 
irradiation with a high degree of accuracy.  

 

 

Figure 1. One-week measured and predicted solar radiation 
values using NARX approach 

Further, the NARX architecture was used to successfully 
forecast global solar irradiation in ten major cities across New 
Zealand. These results have demonstrated the generalization 
capability of this approach and its ability to produce accurate 
forecasts for global irradiation that can be translated to a number 
of diverse locations. On this basis it is conceivable that such a 
NARX ANN forecasting approach could be embedded into 
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model predictive controllers to better manage the energy 
generated by solar energy systems. 

B. Structure of the photovoltaic based power generation 

system 

Figure 3 shows the overall structure of the proposed grid 
connected house with PV array and battery storage. Electrical 
loads of the house are divided into critical (hot water cylinder, 
lighting, power sockets, fridge and cooking range) and non-
critical (dish washer, washing machine and dryer) loads.  

 

Figure 1. Structure of the photovoltaic-battery-grid system for a 

residential house 

One-hour ahead global solar radiation forecast is calculated 
as discussed in the previous section. This forecast is made 
available to the MPC to activate or deactivate non-critical loads 
of the house to adjust energy demand according to the 
availability or unavailability of the PV energy. MPC uses the PV 
array production as reference signal and attempting to minimize 
the difference between electricity consumption in the house and 
PV energy production. The objective of the controller was to 
maximize the usage of PV energy within the house rather than 
exporting all available excess energy to the grid.  

Figure 4 shows energy dispatching for the proposed grid 
connected house with PV array installation and battery storage. 
Energy from the PV array, battery bank and grid are shown to 
satisfy energy demand of the house. The arrows in Figure 4 show 
direction of energy flow in the system. The output energy of the 
PV array is used to satisfy energy demand of the house and 
charge the battery bank. At any given hour, 80% of PV energy 
(𝐸𝑃𝑉1) flows to satisfy energy demand of the house and 20% of 
PV energy (𝐸𝑃𝑉𝑏) to charge the battery bank. When the battery 
bank is fully charged and excess PV energy is available, the hot 
water temperature in the hot water cylinder is increased to the 

maximum threshold using 𝐸𝑃𝑉2. Further, if PV array is still 
producing more energy at any given hour, it is exported to the 
grid as a last priority represented by 𝐸𝑃𝑉3. If energy demand of 
the house is larger than the PV array production, the deficient 
energy can be covered by the battery bank using 𝐸𝑏  or the grid 
energy 𝐸𝑔 in the case where the battery bank is fully depleted. 

 

 

Figure 4. Configuration of the photovoltaic-battery-grid energy 

system 

 

Several priorities are specified in the MPC design for the PV 
array energy. 𝐸𝑃𝑉1 is the PV energy to satisfy energy demand of 
the house with first priority, 𝐸𝑃𝑉2 is the PV energy to increase 
hot water cylinder temperature to its maximum threshold with 
second priority and 𝐸𝑃𝑉3 is the PV energy flowing to the grid 
with third priority. 𝐸𝑃𝑉𝑏 is the PV energy to charge the battery 
bank, 𝐸𝑏  is battery bank energy to satisfy energy demand of the 
house when energy from the PV array is not sufficient and 𝐸𝑔 is 

the energy flowing from the grid whenever, energy from both 
the PV array and the battery bank is not sufficient to satisfy 
energy demand of the house. 

 

IV. MODEL PREDICTIVE CONTROL DESIGN 

MPC systems are designed based on a mathematical model 
of the plant. In this work multi input multi output (MIMO) state-
space model has been used for the MPC design. By using a state-
space model, the current information required for predicting 
ahead is represented by the state variable at the current time. 

 

A. MIMO state-space model of the proposed system 

The proposed plant has five inputs, 3 outputs and four states. 
The number of outputs are less than the number of inputs, 
therefore, each measured output can be controlled independently 
with zero steady-state errors. Taking the disturbance into 
consideration, the predictive control problem can be formulated 
as 

𝑥𝑚(𝑘 + 1) = 𝐴𝑚𝑥𝑚(𝑘) + 𝐵𝑚𝑢(𝑘) + 𝐷𝑚𝜔(𝑘) (1) 

𝑦(𝑘) = 𝐶𝑚𝑥𝑚(𝑘) (2) 
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Where 𝜔(𝑘) is the measured input disturbance which 
essentially represent the ANN based one-hour ahead solar 
radiation forecast. 𝑢 is the manipulated variable or input 
variable; 𝑦 is the process output; and 𝑥𝑚 is the state variable 
vector. 𝐴𝑚 is the state matrix, 𝐵𝑚 is the input-to-state matrix, 𝐶𝑚 
is the state-to-output matrix and 𝐷𝑚 is the direct feed-through 
matrix of the state-space model.  

 

B. Solution of the predictive control 

Output vectors 𝑌 and input vectors ∆𝑈 are defined in 
Equations (3) and (4) respectively. 

∆𝑈 = [
∆𝑢(𝑘𝑖)

𝑇∆𝑢(𝑘𝑖 + 1)𝑇∆𝑢(𝑘𝑖 + 2)𝑇 … . .

∆𝑢(𝑘𝑖 + 𝑁𝑐 − 1)𝑇 ]

𝑇

(3) 

𝑌 = [
𝑦(𝑘𝑖 + 1 |𝑘𝑖)

𝑇 𝑦(𝑘𝑖 + 2 |𝑘𝑖)
𝑇 

𝑦(𝑘𝑖 + 3 |𝑘𝑖)
𝑇 … …𝑦(𝑘𝑖 + 𝑁𝑝 |𝑘𝑖)

𝑇]

𝑇

(4) 

 Now from the state-space model (A, B, C, D), the predicted 
state variables are computed sequentially using the set of future 
control parameters as: 

𝑥(𝑘𝑖 + 1 |𝑘𝑖) = 𝐴𝑥(𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖) + 𝐵𝑑𝜖(𝑘𝑖) 

𝑥(𝑘𝑖 + 2 |𝑘𝑖) = 𝐴𝑥(𝑘𝑖 + 1 |𝑘𝑖) + 𝐵∆𝑢(𝑘𝑖 + 1)
+ 𝐵𝑑𝜖(𝑘𝑖 + 1 |𝑘𝑖) 

 . 

 . 

With the assumption that 𝜖(𝑘) is a zero-mean white noise 
sequence, the predicted value of 𝜖(𝑘𝑖 + 𝑖 |𝑘𝑖) at future samples 
𝑖 assumed to be zero. For notational simplicity, above equations 
can be collected together in a compact matrix from as 

𝑌 = 𝐹𝑥(𝑘𝑖) + 𝛷∆𝑈 (5) 

where 

𝐹 =

[
 
 
 
 

𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝]

 
 
 
 

;  

 

Φ =

[
 
 
 
 

𝐶𝐵
𝐶𝐴𝐵
𝐶𝐴2𝐵

⋮
𝐶𝐴𝑁𝑝−1𝐵

   

0
𝐶𝐵
𝐶𝐴𝐵

⋮
𝐶𝐴𝑁𝑝−2𝐵

    

0
0

𝐶𝐵
⋮

𝐶𝐴𝑁𝑝−3𝐵

  

⋯
⋯
⋯
⋯
⋯

  

0
0
0
⋮

𝐶𝐴𝑁𝑝−𝑁𝑐𝐵]
 
 
 
 

 

 

where dimensions of 𝑌 is 𝑁𝑝𝑝 × 1, 𝑥 is 𝑛 × 1, 𝐹 is 

𝑁𝑝𝑝 × 𝑛,Φ is 𝑁𝑛𝑝 × 𝑁𝑐𝑚 and ∆𝑈 is 𝑁𝑐𝑚 × 1. The control 

calculations are based on minimizing the predicted deviations 
between the predicted output and the reference trajectory. The 
predicted error vector is defined as 

𝐸̂(𝑘𝑖 + 1) = 𝑌𝑟(𝑘𝑖 + 1) − 𝑌(𝑘𝑖 + 1) (6) 

This is 𝑁𝑝𝑝 × 1 vector. The objective of the control 

calculations is to determine the control moves ∆𝑈(𝑘𝑖) for the 

next 𝑁𝑐 time intervals. The 𝑁𝑐𝑚-dimentional vector ∆𝑈(𝑘𝑖) is 
calculated such that an objective function is minimized. Also the 
predicted error over the prediction horizon 𝑁𝑝 and the size of the 

control move over the control horizon 𝑁𝑐 is minimized. 

 

C. Optimization 

The objective of the predictive control system for a given 
reference signal 𝑟(𝑘𝑖) at sample time 𝑘𝑖, within a prediction 
horizon 𝑁𝑝 to bring the predicted output as close as possible to 

the reference signal. To find the optimum control parameter 
vector ∆𝑈, the objective is translated into a design such that the 
error function between the reference signal and the predicted 
output is minimized as shown in Equation (a16). The cost 
function 𝐽 which reflects the control objective is defined as 

𝐽 = (𝑅𝑠 − 𝑌)𝑇(𝑅𝑠 − 𝑌) + ∆𝑈𝑇𝑅̅∆𝑈 (7) 

where the first term is linked to the objective of minimizing 
the errors between the predicted output and the reference signal 
while the second term reflects the consideration given to the size 
of  ∆𝑈 when the objective function 𝐽 is made to be as small as 
possible. 

 

D. Constraints for the MIMO state-space model 

Constraint variables are parametrized using the same 
parameter vector ∆𝑈 as the one used in the predictive control 
design. Therefore, the constraints are expressed in a set of linear 
equations based on the parameter vector ∆𝑈. Constraints are 
categorized as follow. As the cost function is quadratic and 
constraints are linear inequalities, the solution for the optimal 
predictive control is similar to finding an optimal solution for a 
standard quadratic programming problem. For compactness of 
expression, Equation (a33) can be expressed as 

𝑀∆𝑈 ≤ 𝛾 (8) 
Where 𝑀 is a matrix representing constraints. The number 

of rows and columns in the matrix 𝑀 is equal to the number of 
constraints and the dimension of ∆𝑈 respectively. 

𝑀 =

[
 
 
 
 
 
 
 
 
 
 
 
−1 0 0
0 −1 0
0 0 −1

0 0
0 0
0 0

0 0 0
0 0 0
1
1
1
0
0
0
0

−1

1
1
0
1
0
0
0

−1

0
1
0
0
1
0
0
0

−1 0
0 −1
0
1
0
0
0
1
0
0

1
0
0
0
0
0
1

−1]
 
 
 
 
 
 
 
 
 
 
 

,  

 

𝛾 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

0
0
0
0
0

𝐸𝑑(𝑘)

𝐸𝑃𝑉(𝑘)

𝐸𝑃𝑉1
𝑚𝑎𝑥

𝐸𝑃𝑉2
𝑚𝑎𝑥

𝐸𝑃𝑉3
𝑚𝑎𝑥

𝐸𝑃𝑉𝑏
𝑚𝑎𝑥

𝐸𝑔
𝑚𝑎𝑥

𝐸𝑔
𝑚𝑎𝑥 − 𝐸𝑑(𝑘)]

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



Constraints for the state-of-charge of the battery should be in 
the form similar to the predictive control vector 𝑈(𝑘). Predicted 
values of 𝑥𝑚 for the SOC can be calculated by 

𝑆𝑜𝑐(𝑘 + 𝑖|𝑘) = 𝑆𝑜𝑐(𝑘) + 𝑏𝑚 ∑ 𝑢(𝑗)

𝑗≤𝑘+𝑖−1

𝑗=𝑘

(9) 

where 𝑆𝑜𝑐(𝑘 + 𝑖|𝑘) is the predicted value of 𝑆𝑜𝑐  from 
sampling time 𝑘. 

To avoid charging and discharging the battery 
simultaneously, 𝐸𝑃𝑉𝑏 = 0 can be set for charging and 𝐸𝑏 = 0 
can be set for discharging. The procedure mentioned above are 
for charging. For discharging row 4 is replaced by 

 

𝑀 = [0 0 0 1 0],  

 

𝛾 = [0] 

 

MPC is developed for the closed-loop control, in which the 
objective function for the plant model is to maximize the 
utilization of PV energy within the house and differ usage of 
non-critical loads in the house to periods when excess PV energy 
is available by utilizing solar radiation forecast. The objective 

function over the prediction horizon 𝑇𝑁 = [𝑘, 𝑘 + 𝑁𝑝], (𝑘 ≥ 0 

is an integer) is given by 

𝐽(𝑘) = ∑ {[
𝐸𝑃𝑉(𝑘) − 𝑤2𝐸𝑃𝑉1(𝑘) − 𝑤2𝐸𝑃𝑉2(𝑘)

−𝑤2𝐸𝑃𝑉3(𝑘) − 𝑤2𝐸𝑃𝑉𝑏(𝑘)
]
2

}

𝑘+𝑁𝑝

𝑘

(10) 

where 𝑁𝑝 represent hours over the prediction horizon for the 

MPC design.   

V. SIMULATION RESULTS AND DISCUSSION 

In this section, simulation results of the proposed system are 
presented. The simulation was undertaken using a 24 hours 
measurements of PV array production (𝐸𝑃𝑉(𝑘)) and energy 
demand (𝐸𝑑(𝑘)) taken from a real house, as shown in Figure 5. 
Total energy demand in Figure 5 represent critical loads (hot 
water cylinder, lighting, power sockets, fridge and cooking 
range) and non-critical loads (dish washer, washing machine and 
dryer) combined.  

 

Figure 5. PV array production and total energy demand of the house 

 

Figure 6 shows switching behavior of the MPC in the 
presence of positive or negative disturbance. If forecasted PV 
energy differs significantly than the current PV energy 
production, non-critical loads remain off to reduce total load of 
the house. To avoid switching due to small weather variations, a 
weighting factor is added to reduce switching sensitivity. For 
example, if predicted PV energy at any hour is 1.5 times more 
than the current PV energy, non-critical loads are turned off.  

 

Figure 6. MPC performance in the presence of disturbance (PV 

energy prediction) (On=1, Off=0) 

 

Further, the performance of the proposed MPC was tested by 
analyzing how closely the output of the controller followed the 
reference signal. From the objective function, it can be deduced 
that minimizing the difference between the controller output and 
the reference signal is equivalent to maximizing PV energy 
usage within the house.  In Figure 7 it can be seen that the MPC 
is attempting to minimize the difference between the controller 
output signal and the reference signal. which is equivalent to 
maximizing the usage of the PV array energy within the house 
and consequently helping reduce grid imports.  

 

Figure 7. Controller output signal 2 vs reference signal 2 

 

To analyze the cost saving potential of the proposed MPC 
approach, one houses with the same PV array installation, 
battery storage and grid connection is using the proposed 
controller with solar radiation forecast and the other house is 
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using the same setup without the controller. Table 1 show grid 
import/export for both the houses. It can be seen that the 
proposed controller imports less energy from the grid and 
consequently saving cost on electricity for the user.  

TABLE I.  ONE WEEK SAVING COMPARISON FOR THE HOUSE WITH MPC 

CONTROL AND A HOUSE WITHOUT CONTROL 

House with 

MPC. Grid 

Exports (kWh) 

House with 

MPC. Grid 

Imports (kWh) 

House with No 

Control. Grid 

Exports (kWh) 

House with No 

Control. Grid 

Imports (kWh) 

89.28 165.53 73 198 

 

CONCLUSION 

In this study, adaptive MPC strategy was developed for 
energy dispatching of a grid connected residential house with 
PV array installation and battery storage. Artificial neural 
network based solar radiation forecast was used as a measured 
disturbance, to plan in advance for periods of low sunshine, 
which represents lower PV energy production. The model 
predictive controller was found to be capable of operating non-
critical loads when excess PV energy was available and also was 
able to dispatch energy to and from the battery storage when 
needed. Excess energy from the PV array was utilized to further 
raise hot water temperature in the tank, rather than exporting it 
to the utility grid. Two houses with the same PV array 
installation and battery storage, but one with the proposed 
controller and another without a controller were used to compare 
the cost saving potential of the proposed approach. It was 
observed that, the MPC approach imports 32.47 kWh less 
energy from the grid within a one-week period as compared to 
the house without a controller. Also, MPC approach managed to 
export 16.28 kWh more energy to the grid as compared to a 
house without a controller using the same PV production and 
energy demand data. 
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