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1 Introduction
The second-named author has long been interested in the properties of the Kemeny constant in Markov
chains, see Hunter [1] and citations therein. At the 22nd IWMS Conference in Toronto in 2013 he introduced
the Kemeny constant to the �rst-named author and emphasized especially the lack of reasoned, plausible,
intuitive argument, apart from purely mathematical justi�cations, for why this feature of a Markov chain
should be a constant. Subsequently, in Gialampoukidis, Gustafson, Antoniou [2] we accepted its constancy
and established the relationship of Kemeny Time to a maximummixing time for a two-state Markov chain to
achieve a total variation distance no greater than any chosen tolerance ϵ from the �nal stationary vector π.
Then at the 24th IWMS Conference in Haikou in 2015 the two authors of this paper had further discussions of
various issues surrounding the Kemeny constant. As a result of those discussions we found a new intuition
from which to view the issue. The purpose of this short paper is to present that new perspective and some
reasoned and plausible supporting arguments.

The new intuition is to see the well-known basic mean �rst passage time matrix equation Mπ = Ke as
a change-of-basis procedure. Once that is carefully written out, but as Mπ = k where we call k the Kemeny
vector, and whereM isM with its diagonal deleted, an insistence on viewingM as the change-of-basis matrix
from the M column basis to the natural basis, and M−1 as the change-of-basis matrix from the natural basis
to the M column basis, intuits that one must "end up with equally probable pure states".

For brevity, we will not survey the literature, that having been provided in [1]. Again for brevity and con-
venience we will rely upon that paper for notation and basis facts and previously known interpretations of
the Kemeny constant in Markov chains. However, here is some quick background. The pioneering book Ke-
meny and Snell [3] is the origin of the Kemeny feature: the average mean �rst passage time from any state
i with respect to the equilibrium probability π does not depend on the state i. Here P is the row-stochastic
n × n transition matrix for a regular Markov chain with equilibrium (and stationary) probability π. The most
relevant pages in [3] are pp. 75-82 and we will refer to those. In particular, the Kemeny feature is embodied in
[3, Theorem 4.4.10]:MαT = cζ . This we have written above inmoremodern notation and as in [1] asMπ = Ke,
where e is the column vector e = (1, · · · ; 1)T and M is the matrix [mij] of �rst passage times. K is commonly
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called the Kemeny constant and was shown in [3] to be K = trace(Z) where Z = [I − (P − A)]−1 is a resolvent
operator and A = limPn as n →∞.

In the ensuing years there arose some disquiet about the meanings of this result and those are detailed
in [1]. A small prize was o�ered and eventually given to Peter Doyle who showed that the vector components
ki of Mπ = k satisfy the maximum principle ki = Σipijki and thus must be constant. However, this is more
the way of proof rather than some deeper intuition so the issue remained still somewhat open. An interesting
interpretation of K is the mean number of links a random surfer will encounter when navigating a random
walk on a Markov web until reaching an unknown destination state. See [1] and [3] for further background
information.

We will prefer to present our new intuition with the always-invertible matrixM which isM with it’s diag-
onal elements set to zero. This matrix enters also into the proof in [3] and just reduces the Kemeny constant to
K − 1. To conclude this introduction, let us note that it is quite elementary to see from the original treatment
in [3] that K is a constant. From [3, p. 79] we have P(M − D) = M − E where D is the diagonal matrix with
elements dii = mii = π−1

i and E = eeT is the matrix with all the 1’s. Thus PM = M + D − E and when applied
to π one has

PMπ = Mπ + e − e(eTπ) = Mπ. (1.1)

In other words, Mπ is in the principal eigenspace sp[e] of P and is therefore a constant times e.

2 Why the Kemeny Vector has Equal Coordinates
Our approach starts with no Kemeny constant K at all. As if we were teaching the introductory linear algebra
course, we write the invertible equation Mπ = k is the change of basis:

π1

 0
m21
m31

 + π2

m12
0
m32

 + π3

m13
m23

0

 = Mπ = k =

k1
k2
k3

 = k1

1
0
0

 + k2

0
1
0

 + k3

0
0
1

 . (2.1)

We have written in three dimensions for clarity but the argument is the same in all dimensions. We call the
columns on the left theM column basis and the three columns on the right the natural basis or the pure states
or e1, e2, e3 or s1, s2, s3, whatever be your predilection.

This is why our intuition said: there is an equiprobable pure state assumption somewhere underlying
the fact that k has equal coordinates. Stated another way, in the way physicists like to claim that one should
always work in a "coordinate-free" way: π is "just" k but now expressed in the M column basis rather than
in the pure state "natural" basis. Stated a third way: the stationary probability π, which is the fundamental
measure for the process at equilibrium, is really the equiprobability measure in disguise.

This is a strong claim and a new outcome that we will support in the rest of this paper.
To begin, our new intuition originated from thinking of (2.1) from the change-of-basis procedure as im-

plemented by Gauss row reduction, e.g. see Lay[4, Section 4.7 ]. To invert a matrix equation Ax = b one forms
the tableau [A|I] and row reduces that to [I|A−1]. This is a special case of a general change of basis procedure
[C|B] → [I| P

C←B
] where P

C←B
transforms any vector from representation in the B column basis to its representa-

tion in the C column basis. In the special case one can say that x is merely b changed from its representation
in the natural basis to it’s representation in the A column basis.

We will illustrate this in the next section by explicitly carrying it out for the Land of Oz example of [3].
Of course the change-of-basis matrix inversion perspective applied to Mπ = k and the π = M̄−1k is just a

special case of representing any vector b written as usual in the natural basis to changing it’s representation
to x = A−1b where x is now its coordinates in the A column basis. The key here is that π is a very special
equilibrium probability measure.
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3 The Change-of-Basis Picture
Because our new intuition arose out of insisting that we view the remarkable Kemeny-Snell equation Mπ =
Ke as a change-of-basis statement, we elaborate by speci�c example here. A good elementary reference is
the book [4, Section 4.7 pp 239-242]. We may immediately get into the spirit by doing the key example used
throughout [3]: the Land of Oz example

P =

R N S
R
N
S

1
2

1
4

1
4

1
2 0 1

2
1
4

1
4

1
2

 . (3.1)

We know that Pe = e, PTπ = π = (π1, π2, π3)T = ( 2
5 ,

1
5 ,

2
5 )T , and as computed in [3] via the resolvent operator

Z, the mean �rst passage time matrix M is

M =

 5
2 4 10

3
8
3 5 8

3
10
3 4 5

2

 . (3.2)

To calculate M−1 by the Gauss procedure, one row reduces the tableau as follows: 0 4 10
3 1 0 0

8
3 0 8

3 0 1 0
10
3 4 0 0 0 1

 →

M1 M2 M3 s1 s2 s3

1 0 0 −3
20

3
16

3
20

0 1 0 1
8

−5
32

1
8

0 0 1 3
20

3
16

−3
20

 . (3.3)

This is a special case of the more general change-of-basis in which one drives the tableau:
[C1 C2 · · · Cn |B1 B2 · · · Bn] → [I| P

C←B
].

Thus the Land of Oz Markov chain Mean �rst passage time matrix M−1on the right side of (3.3) exactly
changes the representation of vectors in the natural basis {s1, s2, s3} of pure states into representations in
terms of the mean �rst passage time column basis {M1,M2,M3}. In particular, M−1 transforms the equally
probable measure e

3 = ( 1
3 ,

1
3 ,

1
3 )T to a multiple of the stationary measure (π1, π2, π3). Generally for the n × n

case where Mπ = (K − 1)e, we make the right side of measure one by dividing both sides by n(K − 1) a factor
which can be absorbed byM and its inverse. One easily calculates that K −1 = 32

15 for the Land of Oz chain so
the normalizing factor is 32

5 .
While this change-of-basis picture brings to the fore that the right side of (2.1) is actually a representation

of the Kemeny-Snell vector k in terms of the pure states s1, s2, s3, it does not prove that k1 = k2 = k3. That fact
was already established in [3] and has been shown other ways, see [1]. We gave a very simple proof at the end
of Section 1. Here is another one, which we wish to mention in order to bring us to the point we emphasized
at the end of Section 2: π is a very special vector measure-theoretically.

Just apply Pn to both sides of the change-of-basis equation (2.1) and go the limit as n → ∞. The left side
is invariant since Pn(Mπ) = Mπ as we showed in Section 1. The right converges to

k1eπT

1
0
0

 + k2eπT

0
1
0

 + k3eπT

0
0
1

 = (k1π1 + k2π2 + k3π3)e (3.4)

so that left side Mπ = k is a constant multiple (K − 1) of e. Here we have used the fact that lim Pn = A in the
Kemeny-Snell notation [3] is the rank-one oblique projection given by A = eπT .

For the Perron convergence theory see Hunter [5, Chapter 7] and Horn and Johnson [6, Chapter 8] and
especially their wonderful Lemma 8.2.7 on pages 497-498. In their notation lim Pn is L = xyT = eπT here and
we sometimes like to go further, see Gustafson [7, p. 206] to regard the normalized version xyT

yTx as the oblique
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projection onto the span of x from the direction perpendicular to y. That L2 = L projection view provides a
strictly geometrical new view of K: the amplitude of the oblique rank-one projection L(Mπ) onto sp[e].

Thus the change-of-basis equation (2.1) by the invariance of its left side Mπ under the Markov chains
transition matrix iterates Pm as shown in equation (1.1) has led us to the fact (3.3) that the Markov process
must "end up with equally probable pure states". The later are the essence of the at-�rst seemingly harmless
eigenvector e. The fact this occurs rests principally upon the stationary probability π.

4 Discussion
Our new perspective raises a number of interesting implications. Some of these may be worthy of further
study but we can only mention a couple of them here in this brief paper.

Why equi-probability? The reply: Kemeny-Snell’s [3] remarkable equation Mπ = Ke is only a statement
at equilibrium. Everyone knows that one can start a regular Markov chain with any initial probability and
iterate until you get to the limit distribution π. This is generalized in the famous Perron Theorem, e.g, [6, p.
499], and the point is that the L∞ limit of Pn is L = xyT = eπT in our case. L is a rank-one oblique projector
and in fact it itself represents an independent trials process with transition matrix

L = eπT =

π1 π2 π3
π1 π2 π3
π1 π2 π3

 (4.1)

with Perron eigenvector Le = e and stationary equilibrium probability LTπ = πeTπ = π.
An MCMC implication? The widely acclaimed Markov Chain Monte Carlo, see e.g Antoniou, Christidis,

Gustafson [8], assumes you can �nd an initial distribution π0 which after a su�cient number of interations is
close to the invariant distribution π which is believed to represent the physical process being modeled. One
then performs Monte Carlo simulations on the latter. Our interpretation in [8] is that the iterations generate
su�cient mixing so that the subsequent sampling stage represents adequately the regular probability distri-
bution of the application.We go further [8] and hope that there exists a deeper underlying physical dynamics.
Here we say: do your Monte Carlo equiprobably.

Next, we mention that we became curious about how Kemeny-Snell [3] somehow were able to move ef-
fortlessly between P and PT , or if you wish between M and MT , viz, between [3, Theorems 4.4.9 and 4.4.10].
The technical secret seems to lie in the second term in equation (1.1) in our introduction. Namely, the sym-
metric operator D−E has null space sp{π}. One could go a bit further intuitively and assert that D represents
the probability of the self loops of the pure states s1, s2, s3 and E represents random equiprobable noise and
the two are canceled on the stationary distribution π.

Wemay ask how our column bases (the columns ofM) behave as the Markov process progresses. That is,
we expect Kemeny time K to ’decrease’ as we step forward in the chain P, P2, · · · . To make this precise, recall
K = 1 +

∑n
2(1 − λmi )−1, and let us make the additional assumption that P is primitive so that all the |λi| < 1

for all of i > 1. The Kemeny-Snell equation Mmπ = km = Kme at the mth step in the Chain has Kemeny time
Km = 1 +

∑n
i=2(1 − λmi )−1 which converges down to KL = n as the |λi|m all go to zero. The column bases ofMm

converge to those of ML which for n = 3 are

ML =

π−1
1

1
1
1

 π−1
2

1
1
1

 π−1
3

1
1
1


 = e[π−1

1 , π−1
2 , π−1

3 ]. (4.2)

Notice that for the Land of Oz examples (see Section 3) this means that some of the mean �rst passage times
mij increasewhile others decrease as theMm converge towardML = e[ 5

2 , 5, 5
2 ]. The latter is a rank-onematrix,

so its columns are no longer a basis even if those of the Mm were, but there is no problem with ML which
conserves our change of basis picture MLπ = 2e in this and all examples.
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5 Conclusions
In the recent paper [1] and before that it has been emphasized that there was still needed a better reasoned,
plausible intuitive argument, apart from purely mathematical justi�cations, for why the Kemeny feature of a
Markov chain should be constant. Here we have shared with you a new intuition, reasoned arguments sup-
porting that intuition, and a perhaps unexpected plausible fundamental outcome. The intuition was to insist
on viewing the remarkable Kemeny-Snell �rst passage time equationMπ = k as anM-column basis represen-
tation of k, then wonder why the new coordinates k1, k2, k3 of the natural basis representation of π need to
be equal. Of course that perspective holds for arbitrary dimension n. The resulting reasoned arguments fol-
lowed closely the original treatment in [3] and, by the way, completely avoided the machineries of operator
resolvents or generalized group inverses. The other perspective in our reasoned arguments was the Perron
Theorem and especially its limit oblique projection eπT . The plausible outcome was that the Markov chain
in the limit must converge to equally probable pure states. This equiprobability measure is hidden within the
equilibriummeasure π. In important applications it is postulated to represent a deeper underlying chaos [8].
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