
24

Quantifying TCP Performance for IPv6 in Linux-

Based Server Operating Systems

Burjiz Soorty
School of Computing and Mathematical Sciences

Auckland University of Technology

Auckland, New Zealand

burjizsoorty@hotmail.com

Nurul I Sarkar
School of Computing and Mathematical Sciences

Auckland University of Technology

Auckland, New Zealand

nurul.sarkar@aut.ac.nz

Abstract - Implementing IPv6 in modern client/server operating

systems (OS) will have drawbacks of lower throughput as a result

of its larger address space. In this paper we quantify TCP

performance for IPv6 on two open source systems (OSs), namely,

the Linux based server operating systems - Red Hat Enterprise

Server (RHES) and Ubuntu Server. We measure and evaluate the

key parameters influencing OS behavior and network

performance, including TCP throughput, round trip time (RTT),

CPU usage and jitter by observing OS kernel reactions. Our

findings reported in this paper provide some insights into IPv6

performance with respect to the impact of modern and

commonly used Linux server operating systems. This study may

help network researchers and engineers in selecting better OS in

the deployment of IPv6 on corporate networks.

Keywords: Bandwidth, IPv6, operating systems, packet length,

transmission control protocol (TCP)

I. INTRODUCTION

Transmission Control Protocol and Internet Protocol
(TCP/IP) are the most widely used Internet protocols which are
built into modern MS Windows and Linux OSs. With the
advent of IPv6 and the recent end to IPv4 addresses post-2012,
there is an effort in migrating to IPv6 as is evidenced by
celebrating World IPv6 launch day worldwide. This upgrade to
the next generation Internet protocol has not only established a
secure means of communication across the Internet but also
resulted with a more efficient means to packet processing and
routing due to a more enhanced and simplified packet header.

Deployment of IPv6 is occurring side by side with the
growth of Gigabit Ethernet in commercial networks alongside
the release of the newest Linux and Windows OSs. Therefore it
is important to evaluate IPv6 using the latest OS developments.
Furthermore growing corporate networks tend to prefer open
source systems due to the cost benefit of not spending a
significant amount in licensing [1]. Very limited research has
been carried out on newer OSS systems for evaluating IPv6 on
Gigabit Ethernet test-beds. This thereby motivates us to
contribute in this area and to formulate this paper.

In this paper, we quantify and analyze IPv6 performance by
measuring TCP throughput, RTT, jitter and CPU usage for
various packet lengths. These parameters are in-sync with

industry standards. For instance, packet lengths ranging from
128 to 1408 bytes are considered because standard Ethernet
packet fragmentation occurs at around 1500 bytes as per RFC
1191. The effect of increasing packet length on system
performance is thus also investigated. Furthermore, packet
delay and packet jitter are also measured using TCP timestamp
options carried in TCP headers. This helps determine overall
network performance for TCP traffic over the two OSS
systems. In-order to help optimize bandwidth usage on the TCP
stack, these measurements are compared over IPv6 and IPv4.
Because of the nature of OSS systems where the source code is
open for development to anyone, this paper evaluates the TCP
performance of IPv6 and IPv4 only on the Linux kernel by
evaluating two Linux server operating systems, namely, Red
Hat Enterprise Server 5.5 and Ubuntu Server 10.04 for which
no work is published. The results of this study will be crucial to
primarily those organizations that aim to achieve high IPv6
performance via a system architecture that is based on Linux
OSS operating systems. The analysis of our study further aims
to help researchers working in the field of traffic engineering as
well as network engineers and network designers overcome the
challenging issues pertaining to IPv6 deployment. This study
does not evaluate closed source software such as Microsoft's
(MS) windows suite of operating systems as those are only
open for development to an internal MS team, however, such
studies like [2] can be useful to measure the performance
difference of IPv6 between open and closed source systems
and can often lead to influencing key stages in the performance
engineering phase of system deployment. Further to our
findings in earlier study [2], this paper goes in-depth and
evaluates additional performance metrics such as packet jitter
and CPU Usage (‘System CPU Time’) to measure the
difference in kernel performance between the two Linux OSS
systems.

In the following sections, we review previous work on IPv4
and IPv6 and discuss our contribution towards research in this
field. We describe the test bed and measurement procedure
next where we detail the packet-generation and traffic-
measuring mechanisms along with the evaluation methodology
of our experiment. The results and comparative analysis are
presented in the section entitled 'Experimental Results and

Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications (JSAT), November Edition, 2013
Volume 3, Issue 11

mailto:burjizsoorty@hotmail.com
mailto:nurul.sarkar@aut.ac.nz

25

Performance Analysis'. Following which, we conclude the
paper with a proposal for future work.

II. A REVIEW OF LITERATURE

Due to the ubiquity of TCP/IP several similar studies have
been carried out for IPv4 and IPv6, some evaluating over
different operating systems [3, 4] whereas others over cabling
systems [5]. In 2009, IPv4 and IPv6 were evaluated over the
then-draft wireless standard of 802.11n [6]. Throughput and
packet delay were measured over Windows operating systems
such as Windows XP and Windows Vista that were common
at the time. An earlier work prior to that [7] evaluated IPv6
performance over an inter-domain network that implemented
routing across multiple VLAN networks. In 2006, a similar
study to ours evaluated IP performance over open source
systems [8]. This study included OSS systems that were not
particularly limited to Linux as along with Red Hat Server
they also included FreeBSD and Sun Solaris (popular at the
time as server operating systems). Their study measured TCP
throughput and packet delay and evaluated IPv6 performance
however did not provide significant analysis on the evaluated
OSS systems.

Table I provides a brief overview of related work that
focused on TCP performance over IPv6 using different
operating systems and on similar test-beds.

TABLE I: KEY RESEARCHERS AND THEIR MAIN CONTRIBUTIONS IN IPV6

Researchers Year Performance evaluation

B.K. Soorty

et al. [4]
2012

Measured network throughput and packet delay

for UDP over IPv6 on Windows and Linux
client-server networks.

S Kolahi et

al. [3]
2011

Measured network throughput and packet delay

for TCP and UDP over IPv6 on Windows Vista.

Mohammed

et al [8]
2006

Measured network throughput for TCP over

IPv6 using open source systems (OSS) –
FreeBSD, Sun Solaris and RHES.

Tin-Yu Wu

et al. [7]
2005

Measured network throughput and packet delay

for TCP and UDP over IPv6 on an inter-domain

environment using Fedora Core 2.0.

All the papers reviewed in this section considered only
network throughput and packet delay, with the exception of
[4]. Performance metrics such as packet jitter and CPU
utilization were not studied which might impact the
performance of the two IP stacks according to earlier studies
[3-6, 8].

Our contribution in this article is to obtain new results by
investigating the network performance with respect to
additional QoS metrics such as RTT and jitter and to
furthermore investigate it on newer and some of the most
commonly used open-source server operating systems, namely
the Linux operating systems, Red Hat Enterprise Server and
Ubuntu Server. Red Hat Enterprise Server more commonly
known as RHES is significantly popular for commercial use
on server architecture. Ubuntu Server edition being a
comparatively newer server OSS reportedly also appears to
have rapidly gained market popularity as a server OS due to its
strong community support and a well-documented support

setup from its online community. This paper analyzes the
Linux IPv6 protocol stack and TCP implementations
integrated into their stock mainline kernel. Furthermore unlike
earlier literature [4, 6-8], our study also investigates and
analyzes the behavior of the two Linux OSS systems and
states why they perform the way they do and what traffic
engineering techniques can be applied to improve system
performance.

III. TESTBED MEASUREMENT AND PROCEDURE

A. Testbed Configuration

 Topology – The network topology is a peer-to-peer

Gigabit Ethernet setup consisting of server operating

systems that are paired with each other, i.e. RHES

with RHES and Ubuntu Server with Ubuntu Server as

seen in fig. 1. This is because only those specific

server-related OSS systems are evaluated and

therefore it was imperative to not use any other client

OS on the other end of the peer as this would instead

simulate and establish a client-server connection. To

avoid that, each server OS in the peer-to-peer group

was setup independently with the same configuration.

 Connection – No routers, switches or hubs were used

in the experimental setup so as to ensure that there

was no latency over the network. Furthermore this

was primarily done because the IP performance was to

be measured at the network stack of the OS kernel on

the server and not necessarily at the data-link layer

(one that would involve use of a network switch) or at

the network layer (one that would involve routing

across LANs).

 Distance – Each machine was separated from the other

by a distance of approximately one meter as suggested

by key researchers in this field. This was also to

maintain consistency with earlier research [5] and thus

produce results indicative of a fair comparison with

earlier systems. The client and server machines were

connected using a Category 6 Crossover UTP

(Unshielded Twisted Pair) cable maintaining EIA/TIA

568-B wiring configuration (Fig. 1).

 Software – All services (running on default on RHES

and Ubuntu Server) consuming network bandwidth

and/or CPU resources were disabled to get unbiased

and more accurate results. No third-party applications

were used to optimize or influence network

performance in any way.

 Hardware – The hardware benchmark consisted of

four workstations, all of which surpassed the

minimum and recommended settings for the

applicable server operating systems tested on them.

Machines one and two had identical hardware

specifications: Intel® Core™ 2 Duo processors with 4

GB 800 MHz DDR-2 Corsair® RAM modules. All

four machines had Gigabit Ethernet (GBE) network

26

interface cards. To eliminate the effect of network

performance associated with hardware process and

design, we benchmarked the hardware and used the

same setup for all experiments conducted. Several

repeated tests revealed that the native hardware

configuration met the recommended OS settings.

B. Measurement Tools and Metrics

The data-generating tool used to craft and send TCP
packets across the network test-bed was a modified version of
Iperf [9]. Iperf is an open source packet-generating tool
written in C++ that allows users to measure network
performance over several platforms including Linux. Although
for the purposes of this experiment, a minor part of the code
had to be appended using C++, in-order to enable the set
parameters on RHES. Iperf was used to measure TCP
throughput, RTT (delay) and jitter. A configuration of ‘1 run’
was set to one million packets from the source to destination
nodes. Ten such runs were carried out for each observation
and a standard deviation of less than 10% was maintained to
record accurate results.

D-ITG was used to measure CPU utilization on the two
OSS systems.

Fig. 1. Network Testbed

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

Throughput is a measure of system’s capacity (i.e. actual
data rate as opposed to theoretical data rate) and is the most
crucial metric in terms of core system performance. Fig. 2
displays and compares TCP throughput (in Mbps) for IPv6
and IPv4 on RHES and Ubuntu Server OSS for packet lengths
of 128, 384, 640, 896, 1152, and 1408 bytes. We observe an
increase in throughput with the increase in packet length. This
is because larger packets can carry more payloads and require
less number of transfers to move the data from the source to
the destination. Thus a higher throughput is achieved through
means of lower packet fragmentation by effectively increasing
the MTU (Maximum Transmission Unit) and customizing the

kernel to force fragmentation to occur at higher-packet sizes.
Such form of packet crafting would be efficient for services
and applications involving data transfer.

We also observe that for IPv4 Red Hat Enterprise Server
handles larger packets more efficiently than the IPv4 packet
handler in Ubuntu Server. For example, Red Hat server
achieves a higher throughput (812 Mbps) compared to Ubuntu
Server (750 Mbps) at the packet length of 1408 bytes. The
throughput difference being approximately 7.6% better using
Red Hat server.

For IPv6, the reversal holds true of what was observed for
IPv4. Here, we observe Ubuntu Server processing packets
with a higher payload more efficiently. For example, Ubuntu
server achieves a higher throughput (799 Mbps) than Red Hat
Server (698 Mbps) at a packet length of 1408 bytes. The
throughput difference being significantly 12.6% better using
Ubuntu server.

The higher throughput on IPv4 over Red Hat server and
the higher throughput on IPv6 over Ubuntu server may be a
result of the high TCP send/receive buffer in the kernel
respective to each OS. This buffer size can be modified to
accommodate more packets based on the type and length of a
packet. Customizing the send/receive buffer in the kernel
accordingly can enable TCP segments to be sent/received
faster per unit of time in-order to gain good client-server
communications in achieving higher throughput.

By looking at Fig. 2, one can observe that TCP link
throughput is overall slightly higher for IPv4 than IPv6 for
both OSS systems at packet length smaller than 896 bytes.
Perhaps IPv6 deteriorates throughput as a result of its high
transmission overhead (i.e. larger header), however the IPv6
header though larger is much simpler compared to the IPv4
header which explains its higher throughput on larger packets
(Higher payload transfer per packet) wherein the difference in
TCP throughput is fairly low between the two IP versions.
Previous studies have shown that IPv4 performs significantly
better than IPv6 on an older version of client/server Windows
and Linux networks [8]. This trend seems to be continuing
with the release of newer operating systems such as Windows
7 and Ubuntu 10.04 [4]. Now we observe a similar trend here
with Ubuntu Server and Red Hat server. The main conclusion
is that IPv6’s TCP throughput is lower than IPv4 for both OSS
systems and for most packet lengths however this degradation
is insignificant with smaller packets but significant on larger
packets. This observation is critical in-terms of packet crafting
OSS applications that are bandwidth intensive. When the two
OSS systems are compared Ubuntu server performs
significantly better overall (i.e. higher throughput) to Red Hat
server. Interestingly though, we observe Red Hat server to
achieve a similar throughput to that of Ubuntu for packets
smaller than 640 bytes and Ubuntu Server achieving a higher
throughput for packets larger than 640 bytes. This is largely
due to the kernel implementations unique to the respective OS.

27

We now quantify the throughput of IPv6 on the two OSS
systems (see Table II). Table II compares TCP throughput for
the highest packet length of 1408 bytes for IPv6 and IPv4 over
the two OSS systems. We found that IPv6 achieves a 15%
lesser throughput than IPv4 using RHES. In comparison, IPv6
achieved a 6.17% higher throughput than IPv4 using Ubuntu
Server. By comparing both OSS systems, one can observe that
Ubuntu Server achieved approximately 13.41% higher
throughput than Red Hat Server for IPv6 albeit Red Hat server
achieved a 7.85% higher throughput gain over Ubuntu server
for IPv4. Based on these empirical findings, our readings find
the Ubuntu server kernel more efficient in-terms of overall
IPv6 throughput. Potential to increase the gain in throughput
on Red Hat server does exist via means of customizing the IP
handler to define and accommodate larger packets for services
pertaining to TCP segments.

TABLE II: TCP THROUGHPUT COMPARISON OF IPV6 AND IPV4 FOR RED HAT

ENTERPRISE SERVER AND UBUNTU SERVER.

Open Source

Software (OSS)

Throughput

(Mbps)

IPv4 IPv6

Red Hat

Enterprise Server
812.23 698.26 15.09% IPv4 is better

Ubuntu Server 750.85 798.67 6.17% IPv6 is better

7.85% 13.41%

 RHES

better

Ubuntu

is better

Recall that RTT is a measure of latency or packet delay
from a sending node to a destination node across the network.
Figure 3 compares TCP RTT for IPv6 and IPv4 using Ubuntu
and Red Hat servers. For IPv4, the lowest RTT (1.65 ms) was
recorded for Red Hat Server at packet length of 128 bytes. In
contrast, Ubuntu Server obtained RTT of 1.73 ms at packet
length of 128 bytes. The RTT difference is about 4.7% (Red
Hat Server is better in achieving lower RTT). The highest
RTT for Ubuntu and Red Hat Servers at packet length of 1408
bytes are 5.56 ms and 2.07 ms, respectively. Again Red Hat
Server performs better in achieving about 91.5% lower RTT
than Ubuntu Server at packet length of 1408 bytes. Based on

these readings, our findings show that the kernel for Red Hat
server is far significantly optimized for TCP throughput and
RTT on IPv4 compared to Ubuntu server.

For IPv6, the lowest RTT (1.38 ms) was recorded for
Ubuntu Server at packet length of 128 bytes. In contrast, Red
Hat Server had RTT of 1.58 ms at packet length of 128 bytes.
The difference in RTT between the two server OSS systems is
about 13.5% (Ubuntu Server is better). The highest RTT for
Ubuntu Server and Red Hat Server at packet length of 1408
bytes are 7.53 ms and 3.11 ms, respectively. One can observe
that Ubuntu Server offers about 83% lower RTT than Red Hat
Server at packet length of 1408 bytes.

Now let us discuss how IPv6 RTT reacts with packet
lengths. As shown in Fig. 3, the RTT increases with packet
length for IPv6 and it becomes more significant at packet
length greater than 640 bytes. For example, IPv6’s RTT
difference for the lowest (128 bytes) and the highest (1408
bytes) packet lengths is about 138% for Ubuntu Server. In
contrast, the IPv6’s RTT difference between the lowest and
the highest packet lengths is 65% for Red Hat Enterprise
Server.

Fig. 3. TCP Round-Trip Time (RTT) for IPv6 and IPv4. We measured
RTT for both protocols comparing Red Hat Enterprise Server with Ubuntu

Server OSS.

Table III compares TCP RTT for the highest packet length
of 1408 bytes for IPv6 and IPv4 over the two OSS systems. We
found that IPv4 achieved about 40.15% and 30.09% lower
RTT than IPv6 for RHES and Ubuntu server, respectively. By
comparing RTT for both OSS systems, one can observe that
Red Hat Enterprise Server achieved about 83% and 91.5%
lower RTT than Ubuntu Server for IPv6 and IPv4, respectively.
Based on these findings, our results conclude Red Hat
Enterprise Server effectively maintains a lower RTT and
therefore less packet delay to Ubuntu Server. It can be
hypothesized that this significant difference in packet delay on
RHES may be attributed to the fact that Ubuntu Server
produces a significantly higher throughput (13.41% higher
throughput as shown in table III) compared to the throughput
achieved on RHES. The RHES kernel would be therefore more
geared towards network applications and web services
involving use of secure delay-sensitive data.

Fig. 2. TCP throughput comparison for IPv6 and IPv4. We measured

throughput for both protocols comparing Red Hat Enterprise Server with
Ubuntu Server OSS systems.

28

TABLE III: TCP RTT COMPARISON FOR IPV6 AND IPV4 USING RED HAT

ENTERPRISE SERVER AND UBUNTU SERVER.

Open Source

Software (OSS)

TCP RTT (ms)

IPv4 IPv6

Red Hat Enterprise

Server
2.07 3.11 40.15% IPv4 is better

Ubuntu Server 5.56 7.53 30.09% IPv4 is better

IPv4 and IPv6 –

RHES is better
91.5% 83.0%

Both Jitter and CPU utilization are important measures of
network performance. Jitter is an important performance metric
for delay-sensitive traffic such as VoIP. It is a measure of
packet delay variance. Figure 4 compares TCP jitter of IPv6
and IPv4 for Red Hat Enterprise Server and Ubuntu Server.
Recall that TCP jitter was measured (in millisecond) at the
receiving node for both OSS systems. We observe that Red Hat
Enterprise Server achieves about 30% lower jitter on the
average (across all the packet lengths considered) than Ubuntu
Server for both IPv6 and IPv4. This may explain why the
overall packet delay was lower on RHES than it was on
Ubuntu Server. Another observation is that TCP jitter of IPv4
is slightly better (e.g. lower jitter) than IPv6, especially for
packet length greater than 640 bytes for both server operating
systems. Furthermore our results indicate an increase in TCP
jitter with the increase in packet length. As observed with both
OSS systems, TCP jitter increases with packet length and
becomes saturated at packet length of 1408 bytes for IPv6. The
difference in TCP jitter for IPv6 between the lowest (128
bytes) and the highest (1408 bytes) packet length is about 53%
on RHES and Ubuntu Server.

Fig. 4. TCP jitter comparison for IPv6 and IPv4 using Red Hat Enterprise

Server and Ubuntu Server.

Table IV compares the mean TCP packet jitter for IPv6
and IPv4 over the two OSS systems. As observed there is no
difference in packet jitter for IPv4 and IPv6 using RHES and a
very insignificant difference that is low enough to be
discounted using Ubuntu Server. It is however noteworthy to
observe that RHES has a lower packet-drop by 27% for IPv4
and by 31.5% for IPv6 when compared with Ubuntu Server.
Thus in conclusion, the RHES kernel handler is more efficient
in-terms of packet jitter similar to how it is in packet delay
with comparison to Ubuntu Server.

TABLE IV: MEAN TCP JITTER COMPARISON FOR IPV6 AND IPV4 USING RED

HAT ENTERPRISE SERVER AND UBUNTU SERVER.

Open Source

Software (OSS)

Mean TCP Jitter

(ms)

IPv4 IPv6

Red Hat Enterprise

Server
0.16 0.16 0% No Difference

Ubuntu Server 0.21 0.22 0.01% IPv4 is better

IPv4 and IPv6 –

RHES is better
27% 31.5%

CPU utilization is an important resource that should be
managed to run OSs efficiently. Fig. 5 compares the CPU
processing resources consumed by sending node to transfer
TCP segments over IPv6 and IPv4 networks. We observe that
CPU utilization is higher on the smaller packets than larger
packets. This is due to the smaller packets carrying a smaller
payload of data and therefore requiring more transfers per
TCP session. Comparatively larger packets have a higher
payload thereby requiring fewer transfers per TCP session and
a smaller TCP window. Packet processing is therefore much
higher with smaller packets thereby in-turn resulting in higher
CPU utilization on smaller packets as observed in Fig. 5.

Fig. 5. CPU Usage comparison for IPv6 and IPv4 using Red Hat Enterprise
Server and Ubuntu Server.

Figure 5 furthermore provides an indicative overview of
CPU usage to Linux networking. As observed, when the two
OSS systems are compared the kernel for the Ubuntu server
utilizes higher processing in handling the TCP/IP stack
compared to the RHES kernel. We also observe the CPU
utilization to be lower with IPv6 on smaller packets however it
is found to be slightly higher to IPv4 with a larger payload and
higher packet-length.

‘System Time’ can be defined as the percentage of time
the CPU spends executing kernel threads and interrupts. Table
V compares TCP CPU usage for IPv6 and IPv4 using the two
OSS systems. We observe that Red Hat Enterprise Server
consumes about 4.5% less system time than Ubuntu server for
IPv6 and 8% less system time for IPv4. Another observation is
that the CPU usage on IPv6 is about 2.5% lower than IPv4 for
Ubuntu Server and an insignificant 0.5% lower for IPv4.
Overall, IPv6 handles CPU usage more efficiently on Ubuntu

29

Server, as the source code for its socket creation time appears
to record a higher number of TCP connections in play at the
time of measurement.

TABLE V: MEAN TCP CPU USAGE: SYSTEM TIME FOR IPV6 AND

IPV4 USING RED HAT ENTERPRISE SERVER AND UBUNTU SERVER.

Open Source

Software (OSS)

Mean TCP Jitter

(ms)

IPv4 IPv6

Red Hat Enterprise

Server
20 20 0% No Difference

Ubuntu Server 28% 24.5% 3.5%
IPv6 uses less

CPU power

IPv4 and IPv6 –

RHES is better
8% 4.5%

V. COMPARATIVE ANALYSIS

In the earlier section, our empirical results provided an
overview of IPv6 performance at the network stack of the
Linux kernel. Based on these measurements our paper aims to
shed some insight into IPv6 performance on two of the
evaluated OSS systems, namely Red Hat Enterprise Server
(kernel 2.6.18) and Ubuntu Server (kernel 2.6.32) and the
choice of server OS best configured for IPv6. Furthermore the
earlier section also delved into deeper analysis of where, why
and how the system performance could be tuned and improved
for IPv6. Table VI summarizes the performance of IPv6 with
IPv4 for TCP over the two OSS systems.

TABLE VI: SUMMARY OF IPV6 EVALUATION FOR TCP - OVERALL PERFORMANCE BETWEEN OOS SYSTEMS.

Open Source Software (OSS)

Throughput RTT Jitter CPU Usage

IPv6 IPv4 IPv6 IPv4 IPv6 IPv4 IPv6 IPv4

Red Hat Enterprise Server Better Better Better Better

Ubuntu Server

We observe the following system performance
characteristics:

1. Throughput (IPv6 vs. IPv4): For RHES, IPv6
achieved 15% lower throughput than IPv4 (IPv4 is
better). For Ubuntu Server, IPv6 achieved about 6%
higher throughput than IPv4 (IPv6 is better). When
the performance of the two OSS systems was
compared, TCP throughput was higher for IPv4 on
RHES (by 8%) and higher for IPv6 on Ubuntu
Server (by 13%).

2. RTT (IPv6 vs. IPv4): For RHES, IPv6 achieved
about 40% higher TCP delay than IPv4 (IPv4 is
better). For Ubuntu Server, IPv6 achieved about
30% higher delay than IPv4 (IPv4 is better). When
the performance of the two OSS systems was
compared, RTT for TCP was lower for IPv4 on
RHES (by 91.5%) and lower for IPv6 also on RHES
(by 83%).

3. Jitter (IPv6 vs. IPv4): For RHES, there was no
difference observed in overall TCP packet jitter
between IPv4 and IPv6, the same could be stated for
Ubuntu server where IPv4 produced a slightly lower
drop by 0.01%. When the performance of the two
OSS systems was compared, TCP Jitter was lower
for IPv4 on RHES (by 27%) and lower for IPv6 also
on RHES (by 31.5%).

4. CPU Usage (IPv6 vs. IPv4): For RHES, there was
no difference observed in TCP system time between
IPv6 and IPv4. For Ubuntu Server, CPU usage on
IPv6 was 2.5% lower than IPv4 (IPv6 is better).
When the performance of the two OSS systems was
compared, CPU usage was lower for IPv4 on RHES
(by 8%) and lower for IPv6 also on RHES (by
4.5%).

As shown in table VI, implementing IPv6 on Gigabit
Ethernet networks will have drawbacks, such as lower
bandwidth (throughput) and higher latency (RTT). IPv6
obtained about 15% lower throughput than IPv4 on Red Hat
Enterprise Server, however IPv6 obtained a 6.17% higher
throughput compared to IPv4 on Ubuntu Server. This
thereby validates our research question 1 that not every OSS
system is optimally configured for IPv6 at the kernel level
of the network stack. This leads us to answer the research
question 2 posed earlier as to which modern, commonly
used, open-source, server operating system is geared for
high IPv6 performance. Based on empirical results carried
out through this experimental research we can now state that
the Linux based Ubuntu Server is optimized for IPv6
performance as it achieves a higher TCP throughput over
IPv6 (see Table II) however this does include a citation and
one stating that it is so for the highest packet-length of 1408
bytes. Red Hat Enterprise Server achieved excellent system
performance over IPv4, but not necessarily for IPv6
networks. Our third research question poses the analytical

30

question as to why the OSS systems perform the way they
do and what modifications can be applied to the OS kernel
to help improve TCP performance over IPv6. The answer
although covered in earlier sections can be justified and
summarized as follows. On both OSS systems mean TCP
throughput was lower on IPv6 than it was on IPv4. This
observation was noted in earlier studies evaluating IPv6
performance over Windows systems. This trend continues
with newer Linux OSS systems as evident from empirical
results gained through our experiment. This degradation
over IPv6 was proposed in earlier studies to be attributed
due to the larger overhead of IPv6. Our study can now
confirm this as we observe IPv6 to have a significantly
lower throughput to IPv4 on smaller packets however, this
difference decreases with the increase in packet-length. This
observation can be noted on both the Linux operating
systems. One means of increasing IPv6 throughput is by
reducing packet overhead. This enables the kernel to craft
larger packets enabling them to carry a higher payload over
each session. This change can be significant to bandwidth
intensive applications that operate over an IPv6 network. In-
terms of packet delay and jitter, our results show an average
of 30% lower jitter on RHES compared to Ubuntu (across
all packet lengths). This is likely the reason why RHES also
achieves a significantly lower RTT than on Ubuntu. The
low RTT on IPv4 compared to IPv6 is a direct co-relation to
the higher throughput achieved over IPv4. In terms of
packet jitter, there was no notable difference between IPv4
and IPv6. CPU usage i.e. the ‘system time’ for processing
packets was also lower over IPv6 when compared to IPv4
on RHES and similar on both over Ubuntu. Furthermore it
can also be noted that with both operating systems, the CPU
utilization was higher on smaller packets than it was on the
larger packets. This is due to the smaller packets having a
smaller payload and therefore requiring more packet
generation and more transfers per TCP session. There can
be an increased efficiency in packet processing when
packets are crafted to carry a higher payload. This results in
lower CPU utilization and higher throughput. When we
compare the two OSS systems, we find IPv6 handles CPU
usage more efficiently on Ubuntu server compared to
RHES. This, as justified earlier is because the source code
for its socket creation time appears to record a higher
number of TCP connections in play compared to RHES.

VI. PRACTICAL IMPLICATIONS

In this paper, we investigated the data performance on
TCP for IPv6 over two Linux based open-source server
operating systems. The aim of our research was to not only
evaluate and investigate the performance of those systems
but also to analyze and report what changes could be made
to help improve system performance. Our research
evaluated the performance in-order to help network
engineers, network architects and network administrators
deploy the right server OS. Our research furthermore
analyzed the limitations in the newer operating systems to
justify the performance degradation over IPv6 and what
approach software developers and system engineers could
take to rectify and improve IPv6 performance by
implementing the above mentioned kernel level

modifications. For instance, to gain an increase in IPv6
throughput, system engineers could craft packets by
increasing payload data and setting the packet-length to the
size of 1408 bytes. This would result in a slight increase in
packet delay, however, also result in a significant gain in
throughput. Since most network applications relate to delay
insensitive data, unless the network appliance used requires
a form of secure authentication, most system engineers
would be benefitted to make this change and experience a
gain in overall IPv6 performance. This study can also enable
developers working on open source projects for the Linux
kernel implement suggested changes to further improve
IPv6 efficiency. For instance, by increasing buffer-size in
the socket and thereby accommodating more packets the
performance of IPv6 on RHES can be increased similar to
that noticed on Ubuntu Server.

VII. CONCLUSION

The findings based on our empirical study revealed that
IPv6 throughput was 13% higher on the Ubuntu Server
architecture compared to RHES. Comparing the kernel’s
TCP/IP stack on each OS, we found that the Ubuntu kernel
processed IPv6 packets more efficiently compared to RHES,
which maintained higher throughput and packet delays over
IPv4. With respect to packet delays, jitter and CPU
utilization, the kernel structure in RHES is better handled for
performance. This is no surprise as the RHES and Fedora
Core kernel comparatively have been longer under
development and use as a server OS. Ubuntu Server OS
being relatively new still managed to gain higher throughput
on IPv6 and had lower system time in processing IPv6
packets. We further quantified the degradation on
performance for both OSS systems by each metric that was
evaluated and produced our analysis on the bottlenecks and
changes that could be implemented in the kernel stack such
as packet handling writes on the socket based on the type of
traffic desired on a network, and modifying packet reception
by increasing the queue buffer in RHES.

A lower packet delay on Ubuntu Server could similarly
be achieved by through means of lower packet fragmentation
by decreasing the MTU (Maximum Transmission Unit) limit
and customizing the kernel to force fragmentation to occur at
lower-packet sizes. Such form of packet crafting would be
efficient for services and applications involving delay
sensitive information such as voice and video authentication.

Future works on TCP could include measuring memory
(RAM) usage by the kernel and further behavioral analysis
of TCP structures over IPv6. Other methods of TCP tuning
could also be investigated.

31

REFERENCES

[1] StatOwl. (2010). Operating System Version: Usage. Available:

http://statowl.com/operating_system_market_share_by_os_version.ph
p?1=1&timeframe=last_6&interval=month&chart_id=4&fltr_br=&flt

r_os=&fltr_se

[2] N. Sarkar and B. Soorty, "Evaluating IPv6 in Peer-to-Peer Gigabit
Ethernet for TCP using Modern Windows and Linux Systems,"

International Journal of Business Data Communications and

Networking, vol. 9, pp. 50-63, 2013.
[3] S. S. Kolahi and B. K. Soorty, "Evaluation of Gigabit Ethernet Local

Area Networks in Windows Vista-Server 2008 Environment," in 2011

IEEE Workshops of Int. Conf. Advanced Information Networking and
Applications (AINA), pp. 308-312.

[4] B. Soorty and N. I. Sarkar, "Evaluating IPv6 in peer-to-peer Gigabit

Ethernet for UDP using modern operating systems," in 2012 IEEE
Symp. Computers and Communications (ISCC), Cappadocia Turkey,

pp. 534-536.

[5] B. K. Soorty, S. S. Kolahi, N. Chand, and Z. Qu, "Performance
Comparison of Category 5e vs. Category 6 Cabling Systems for both

IPv4 and IPv6 in Gigabit Ethernet," in 10th IEEE Int. Conf. Computer

and Information Technology (CIT), Bradford, West Yorkshire, UK,
2010, pp. 1525-1529.

[6] S. S. Kolahi, Z. Qu, B. K. Soorty, and N. Chand, "The Impact of

Security on the Performance of IPv4 and IPv6 Using 802.11n
Wireless LAN," in 3rd Int. Conf. New Technologies, Mobility and

Security (NTMS), Cairo, Egypt, 2009, pp. 1-4.

[7] T.-Y. Wu, H.-C. Chao, T.-G. Tsuei, and Y.-F. Li, "A measurement
study of network efficiency for TWAREN IPv6 backbone,"

International Journal of Network Management, vol. 15, pp. 411-419,

2005.
[8] S. S. Mohamed, M. S. Buhari, and H. Saleem, "Performance

comparison of packet transmission over IPv6 network on different

platforms," IEE Proc. Comm., vol. 153, pp. 425-433, June 2006.
[9] NLANR/DAST. (2012). Iperf. Available: http://iperf.sourceforge.net/

http://statowl.com/operating_system_market_share_by_os_version.php?1=1&timeframe=last_6&interval=month&chart_id=4&fltr_br=&fltr_os=&fltr_se
http://statowl.com/operating_system_market_share_by_os_version.php?1=1&timeframe=last_6&interval=month&chart_id=4&fltr_br=&fltr_os=&fltr_se
http://statowl.com/operating_system_market_share_by_os_version.php?1=1&timeframe=last_6&interval=month&chart_id=4&fltr_br=&fltr_os=&fltr_se
http://iperf.sourceforge.net/

