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Abstract 

This thesis proposes methods employing an evolving Spiking Neural Network (SNN) 

architecture for the analysis of spatio-temporal neuroimaging data. Multivariate Spatio-

Temporal Brain Data (STBD) is intrinsically complex as it contains both time and space 

dimensions that represent the patterns of cognitive processes in the brain. Scrutinising the 

spatio-temporal interactions between variables in such complex data demands incorporating 

the spatial and temporal aspects into the model’s computations.  

To this end, first an SNN architecture was used for modelling, learning, mapping and 

classifying of STBD, including Electroencephalogram (EEG) and Functional Magnetic 

Resonance Imaging (fMRI) data. I designed SNN models that allowed for a better 

understanding of cognitive processes by capturing the spatio-temporal interactions between 

variables when compared with extant reservoir computing systems. The models enhanced 

the classification performance by achieving up to 92% accuracy which represents an average 

improvement of 20% when compared with different machine learning methods. 

Further, I proposed and developed a new dynamic spatio-temporal clustering approach which 

allowed for the assessment of the evolving learning patterns in SNN models. This study led 

to knowledge discovery in SNN evolutionary learning patterns and resulted in feature 

selection that improved the classification accuracy by up to 10%. It also revealed the 
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trajectory of brain areas involved in response to a cognitive task. The proposed clustering 

configuration was evaluated using a validity measurement method based on cohesion and 

separation that represented a high goodness of the clustering structure. 

Finally, I proposed a new personalised modelling approach for integrated static and spatio-

temporal data using SNN models. To build a personalised SNN model (PSNN), I developed 

a new clustering method, named Dynamic Weighted-Weighted Distance K-nearest 

Neighbours (DWWKNN). The developed PSNN improved the classification accuracy by 

12% when compared with the global SNN models. This also resulted in creating a profile for 

an individual.  

Overall, this research has scrutinised the hidden evolutionary learning patterns in SNN 

architecture, which resulted in an identification of neural areas activated by different input 

neurons. Furthermore, it has demonstrated an original personalised modelling that resulted 

in an improvement in classification accuracy.  
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Chapter 1 Introduction 

1.1 Rationale and Motivation 

Large amounts of Spatio-temporal Brain Data (STBD) are being recorded in different areas 

of study including neuroscience, neurology, psychology, and so forth. STBD record 

cognitive brain functions, which are involved in the processing of afferent information 

produced by internal and/or external stimuli. Scrutinising such multivariate data by 

computational approaches has led to the proposal of neuroinformatics, where the models are 

inspired by neural systems. 

The worldwide demand for modelling and understanding the underpinning of functional 

processes in STBD has propelled the development of various analytical methods. The 

majority of current statistical and Artificial Neural Network (ANN) machine learning 

techniques often create models by separately processing the spatial and temporal 

components. This usually results in losing some informative spatio-temporal correlations in 

real-life applications of STBD. Hence, the accuracy of the output prediction/classification 

might not be quite substantial. 

Besides the model accuracy, the model interpretability is also of crucial importance in 

machine learning. This refers to understanding the relationships between the model features 

and the predicted outputs, which has not been investigated in depth. The higher the 

interpretability of a model, the easier it is for someone to comprehend why certain decisions 
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(output predictions) were made. This allows for knowledge discovery in the models and 

contributes to the understanding of interactions in the model that have controlled an output 

to occur. Nevertheless, the extant analytical methods develop models on data without 

investigating the model learning patterns itself. Hence, they act as black-box information 

processing systems that solve a problem without discovering the causal relationships that 

have triggered the output. 

The brain is a highly interactive and deep learning network. Understanding of the STBD is a 

complex task as the temporal features manifest complicated causal relations between the 

spatially distributed neural sources in the brain. To model such interactions, Spiking Neural 

Networks (SNNs) can be considered as suitable models that incorporate both spatial and 

temporal components into an operation. Therefore, their compact representation of space and 

time allows for learning of “hidden” spatio-temporal correlations in STBD.  

This thesis is based on brain-inspired 1 SNN architecture for modelling and analysing of 

STBD towards improving the classification accuracy. This research also contributes to an 

improved level of interpretability of learning patterns in SNN models when compared with 

conventional 2 methods. The STBD case studies here are real-life Electroencephalogram 

(EEG) and Functional Magnetic Resonance Imaging (fMRI) data sets which were measured 

prior to this study by other institutions who are acknowledged in this thesis.   

                                                
1 Brain-inspired refers to the mathematical implementation of a method gets inspiration from neuroscience 

research on brain activity.  
2 Conventional methods refer to methods that have been proposed for data analysis, besides neural network 

techniques. 
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1.2 Aims of this Thesis and Research Questions 

The primary aims of this thesis are summarised as follows: 

1) Feasibility analysis of SNN architecture on case studies of real-life STBD.  

• To design optimal SNN models that can learn from STBD with respect to 

both space and time components. 

• To achieve an improved classification accuracy when compared with 

conventional AI and machine learning methods. 

• To interpret the spatio-temporal interactions, captured during the learning 

process in SNN models. 

2) Development of new methods for knowledge discovery in SNN evolutionary learning 

patterns.  

• To develop a new method for dynamic spatio-temporal clustering of patterns 

generated during unsupervised learning in SNN models. This is to study the 

evolving patterns in SNN models, which has not been interpreted in depth 

(presented in Chapter 5).  

• Knowledge discovery through assessment of dynamic clustering patterns in 

SNN models, which results in detecting a set of discriminative features 

(feature selection). This contributes to improve the model interpretability and 

accuracy (presented in Chapter 6).  

3) Proposal of a personalised SNN model. 
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• To develop a personalised modelling system based on integrated 

computational methods and SNN models, when both static data and spatio-

temporal data from an individual are available.  

• To improve the classification accuracy for an individual’s outcome through 

personalisation of the SNN model. 

During the progression of this thesis, the following research questions (RQ) will be 

addressed: 

RQ 1. How to optimally design SNN architectures to model, learn and analyse different types 

of STBD and to precisely capture both spatial and temporal components?  

RQ 2. How does spatio-temporal clustering of the evolving patterns in SNN models lead to 

knowledge discovery about the “hidden” dynamic behaviour (learning patterns) in SNN 

models during unsupervised learning from spatio-temporal streams over time? 

RQ 3. When both static and dynamic datasets are available for an individual, how SNN 

models can be personalised towards the best possible diagnosis/prognosis outcomes of an 

individual? 

1.3 Thesis Structure  

This thesis consists of eight chapters which are outlined as follows:  

Chapter 1 states the research motivations, goals, and research questions and outlines 

methods to address these questions. 
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Chapter 2 reviews the research about how a biological neuron functions and introduces two 

neuroimaging techniques for measuring the neural activities in the brain. This section is then 

followed by a review on some analytical methods for classification and clustering. 

Chapter 3 discusses how the known mechanisms of neurons can be computationally 

modelled by artificial spiking neurons in machine learning. Next, this chapter introduces a 

brain-inspired SNN architecture, called NeuCube for modelling, learning, and understanding 

of STBD.  

Chapter 4 demonstrates a feasibility analysis of the NeuCube SNN architecture on two case 

studies of cognitive data: fMRI and EEG. In this study, I designed SNN models of STBD 

that resulted in an improvement of the classification accuracy when compared with 

conventional machine techniques. 

Chapter 5 represents an original contribution to the NeuCube SNN architecture by proposing 

a new method for dynamic spatio-temporal clustering of learning patterns in SNN models 

whilst training with STBD streams over time.  

Chapter 6 investigates the proposed clustering approach through an empirical study on EEG 

data. This chapter represents knowledge discovery in SNN evolutionary patterns whilst 

incrementally learning from streaming EEG. The assessment of these evolutionary patterns 

allows us to identify the informative features (STBD variables) in SNN that lead to an 

improvement in classification accuracy. 

Chapter 7 proposes a new personalised modelling system based on SNN architecture and a 

new clustering method for integrated static and dynamic STBD.   
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Chapter 8 summaries the thesis achievements, key findings and contributions, in particular, 

to SNN research. Future directions are also suggested. 

Figure 1-1 illustrates a bird’s-eye view of the thesis and its different components towards 

addressing the research questions. As illustrated here, my contributions are in two steps: (1) 

feasibility study of SNN on STBD and (2) new SNN-based method development. The first 

step is an optimal design of SNN models to better study the complex spatio-temporal 

interactions among the STBD variables. The designed models were tested using two types of 

STBD: EEG and fMRI. The second step refers to my original contributions to the NeuCube 

architecture by proposing two new approaches for scrutinising the SNN learning patterns. 

These approaches are (1) a new dynamic spatio-temporal clustering of the “hidden” learning 

patterns and (2) a new personalised modelling framework when both static and dynamic data 

are available for an individual.
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Figure 1-1 A bird’s-eye view of the thesis structure. 
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Chapter 2 Spatio-temporal Brain Data and 

Analytical Methods  

2.1 Introduction 

This chapter will first review in Section 2.2 what is known in neuroscience research about 

the brain, which performs as a complex information processing system. Then, Sections 2.3 

and 2.4 will review the two important types of STBD measuring techniques, 

Electroencephalogram (EEG) and functional Magnetic Resonance Imaging (fMRI) data that 

are used as case study problems in this thesis. Section 2.5 reviews some classification 

techniques and refers to their limitations when dealing with STBD. Then, clustering is 

discussed as one of the main techniques for understanding of the STBD. 

2.2 Information Processing in the Human Brain 

The brain is the most complex organ in the human body that contains approximately 86 

billion nerve cells, known as neurons (Azevedo, Carvalho, Grinberg, & Farfel, 2009). 

Neurons are the fundamental information processing units that are interconnected to 

construct a complex neural network. Neurons use biochemical reactions to receive, process, 

store and transmit input information. A typical neuron consists of three major parts: the cell 

body, the dendrites and the axon. A neuron’s cell body (also called soma) contains the 

nucleus and most of the main organelle. Soma accomplishes the continuous maintenance of 

the neuron’s functionality. This retains a certain ion concentration in the membrane to 
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actively transfer sodium ( 𝑁𝑎+) ions from intra-cellular fluid to the extra-cellular fluid. 

Potassium ( 𝐾+) ions flow in the opposite direction from the outside to the inside of the 

soma.  For ion transportation across the soma membrane, several ion channels that contain 

specialised proteins are embedded in the membrane. These channels provide an outward flow 

of potassium to the extra-cellular fluid, while sodium moves inwards into the soma; thus, the 

opposing directions of ions with different strength levels produce an electrical potential 

across the soma membrane. Figure 2-1 illustrates the information flow in a neuron, while 

Figure 2-2 shows a slice of the soma membrane which has several channels for ion 

transportation. As shown in Figure 2-1, at the beginning of the soma, branch-like 

extensions (called dendrites) are positioned to receive chemicals from other neurons via 

synapses. These chemicals are transformed into electrical impulses and then transmitted to 

the soma.  

The firing state of each neuron is controlled by the axon, which is located at the end of the 

soma.  If the total force of the signals entered into a neuron surpasses the limit of the axon, 

the neuron fires and triggers an action potential down to the axon terminals. Synapses are 

embedded to store the neurotransmitter chemicals at the end of the axon terminals. These 

synapses are attached to the dendrites of the neighbour neurons and allow the transmission 

of information from one sending neuron (presynaptic 3 neuron) to other receiving neurons 

(postsynaptic 4 neurons). The sending information contains action potential (approximately 

one millisecond in duration), which is created in the presynaptic neuron’s axon by 

regenerative alterations in membrane potential, and acts as an energy that induces neural 

                                                
3 Presynaptic neuron is delivering the “message” across the synapse to the postsynaptic neuron. 
4 The postsynaptic neuron is the “receiver” of the neurotransmitter “message” from the presynaptic neuron. 
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activity (Hodgkin, Huxley, & Katz, 1952; Hall, 2015). The axon can accelerate propagation 

of electrical signals, if it is covered by myelin sheaths, which perform as insulators and 

prevent the dissipation of the depolarisation wave caused by an electrical spike triggered in 

the soma. 

When a neuron sends a spike to the postsynaptic neuron through the axon, neurotransmitter 

chemicals are diffused into the synaptic cleft (a narrow gap between two neurons) and which 

reacted with receptor proteins of the postsynaptic neurons. The receptor activation allows the 

transfer of ions from the extra-cellular fluid of the presynaptic neuron to the postsynaptic 

cell. Different categories of transmission synapses, named excitatory and inhibitory, control 

the likelihood of the postsynaptic neuron to emit an action potential. Excitatory 

neurotransmitter increases the potential of the postsynaptic neurons to fire, while inhibitory 

neurotransmitters suppress the postsynaptic neuron from firing. Therefore, the efficacy of the 

postsynaptic response is not fixed but adjusted with respect to the released neurotransmitters. 

This principle is so-called synaptic plasticity, which enables learning and memorising in the 

brain. Comprehensive information about neurons can be found in the standard text book on 

the matter by Kandel (Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth, 2000) and (Fuchs, 

et al., 2012). 

Hitherto, this chapter presents how the construction of a neuron enables it to exchange 

electrical signals among a series of interconnected neurons; thus, propagating the 

information. Afterwards, two main neuroimaging techniques for recording such neural 

activities will be discussed. 
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Figure 2-1 Information flows between neurons through the axon, which receives information from a presynaptic 
neuron and generates an action potential that is sent down to the synapses of the postsynaptic neuron. This 

figure is modified from (Marcella, 2011). 

 
Figure 2-2 Sodium 𝑁𝑎+  and potassium 𝐾+ ions move across the soma membrane through ion channels, this 

accomplishes electrochemical powers as a result of the ion exchange through specific channels located along 

the neural membrane (Brady, Siegel, Albers, & Price, 2011). This figure is modified from (Khanacademy, 

2017). 

A variety of techniques has been devised for recording brain dynamics, such as EEG and 

fMRI. An EEG is based on the magnetic and electrical activity of the brain that possesses a 

high temporal resolution (i.e. brain signals are recorded in a sequence of milliseconds) but 

unclear localisation, as the measurement is performed via a limited number of electrodes 

attached to the scalp. In contrast, fMRI data represents brain activity with a high spatial 
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localisation even though it uses a much lower temporal sampling rate. The principle of the 

EEG and fMRI data will be explained in the following Section 2.3 and Section 2.4. 

2.3 EEG Data 

EEG is a method for measuring STBD from cortical activity via a number of electrodes 

attached to the scalp that are connected to a computer interface system (Haas, 2003). The 

history of EEG measuring goes back to the moment that Richard Caton discovered the 

electrical nature of neural activity (Caton, 1875). Caton reported that he had used 

a galvanometer for detecting and measuring the electric impulses from the surface of 

mammalians’ brains (a rabbit and a monkey). In 1924, the first human EEG was recorded by 

Hans Berger (Niedermeyer & da Silva, 2005). By 1938, EEG had expanded as a widespread 

recognition technique by eminent scientists, leading to practical applications in diagnosis 

among many countries (Wiedemann, 1994). Figure 2-3 illustrates an EEG recording 

procedure, which collects brain cortical signals via a number of electrodes (also called 

channels). The EEG signal oscillation is rhythmic; thus, it is typically described in terms of 

bands of different frequencies as follows: 

• Delta band in 0.5-3.5 Hz, at sleep and rest stages. 

• Theta band in 3.5-7.5 Hz, at learning, memory and sensory motor processing. 

• Alpha band in 7.5-12.5 Hz, at meditation. 

• Beta band in 12.5- 30 Hz, at mental calculation, anticipation or tension. 

• Gamma band in 30-60 Hz, at attention of sensory perception. 

https://en.wikipedia.org/wiki/Galvanometer
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Figure 2-3 EEG recording that shows the electrical charges resulting from the activity of the brain cells. 

Figure 2-4 shows the frequency and amplitude of an example of a 14-channel EEG. The 

signal amplitudes in three different frequencies (6 Hz, 10 Hz and 22 Hz) are shown in colour 

maps, where red represents a high power while blue is a low power. 

Figure 2-4 EEG band frequency corresponding to signals recorded from 14 electrodes and scalp maps generated 

by EEGLAB toolbox (Neuroscience, 2016). 
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2.4 FMRI Data 

The spatio-temporal fMRI data is a susceptible indicator of blood flow changes influenced 

by neural activities. This relies on the statement that neural activity and the cerebral blood 

flows are highly correlated. Thus, evoked neurons demand a high level of oxygen carried by 

blood to start processing and firing (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 

2001). FMRI uses the Blood Oxygenation Level Dependence (BOLD) contrast method for 

observing the level of oxygenation in the blood. The BOLD context was first described by 

Ogawa (Ogawa, et al., 1992). It is a type of specialised brain scan that maps neural activity 

through imaging the blood flow changes, also called hemodynamic response rate (HDR), in 

relation to the energy/oxygen consumption within brain cells (Huettel, Song, & McCarthy, 

2004). BOLD represents local increases in blood oxygenation as a direct effect of 

neurotransmitter chemicals that perform local neural signalling.  

In the presence of a magnetic field, BOLD contrast is influenced by the paramagnetic nature 

of deoxyhemoglobin which affects the main magnetic field, leading to a local reduction in 

main field homogeneity. Paramagnetic deoxyhemoglobin in the blood possesses a stronger 

magnetic moment whilst oxyhemoglobin is diamagnetic and has little effect. This 

inhomogeneity of the magnetic field can be measured over time as different illuminations in 

fMRI data. Therefore, a high level of deoxyhaemoglobin decreases the fMRI intensity, while 

little deoxyhaemoglobin increases the image intensity. 

In the context of neurobiology, HDR refers to the fast distribution of blood to activate neural 

tissues. If the brain neurons are constantly active with a high level of processing, cerebral 
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blood flow is vital to retain the neurons, astrocytes, and other cells of the brain. FMRI 

temporal resolution is limited by the slow rate of HDR time.  

FMRI recording occurs over time at many small, three-dimensional areas called “voxels”. 

Each voxel is a numeric cube which represents the BOLD intensity of thousands of neurons 

over time.  FMRI techniques are non-invasive and have been widely used in cognitive science 

and neuroscience, providing insight into brain structures and processes for researchers and 

clinicians (Lindquist, 2008; Liu, et al., 2014; Rodriguez, nderson, Calhoun, & Adali, 2015; 

Siegelmann, 2015; Norman, Polyn, Detre, , & Haxby, 2006; Behroozi & Daliri, 2014).  

There are numerous common objectives pursued in fMRI data analysis, including: localising 

the activated brain regions during a mental task, detecting the brain information pathways 

corresponding to functional activities, diagnosis or prognosis of disease or psychological 

states, and so forth. The next section will discuss some major analytical methods and their 

limitations when dealing with STBD. 

2.5 Analytical Methods for STBD 

Currently there is a huge amount of STBD collected from either healthy subjects or unhealthy 

subjects during and after treatment. EEG and fMRI have been extensively used for brain 

study through applying different computational methods. Some familiar tools to process EEG 

data include: EEGLAB (SCCN, 2017), LORETA (Loreta, 2017), PyEEG (PyEEG Reference 

Guide, 2010), and so forth. A review (Lotte, Ongedo, Lecuyer, Lamarche, & Arnaldi, 2007) 

on classification algorithms for STBD in Brain Computer Interface (BCI) has explored 

different categories, where the most important methods are linear classifiers, non-linear 
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Bayesian classifiers, neural networks and hybrid models. In the following, I present an 

overview on current classification methods for STBD. 

2.5.1 Overview on Classification Methods 

A. Linear Classifiers 

Linear classifiers are based on assigning linear decision boundaries between the samples 

(feature vectors) of different classes. A variety of algorithms has been proposed so far, such 

as Support Vector Machines (SVMs) (Cortes & Vapnik, 1995; Raghavendra & Deka, 2014), 

Linear Discriminant Analysis (LDA) (Manly, McDonald, Thomas, McDonald, & Erickson, 

2002) and regularised LDA (Guo, Hastie, & Tibshirani, 2007) that is adapted for high-

dimensional data space. Both SVM and LDA have been widely used for classification of 

EEG (Costantini, et al., 2009; Subasi & Gursoy, 2010) and fMRI (Peltier, Lisinski, Noll, & 

LaConte, 2009). However, when dealing with complex STBD streams, samples cannot be 

linearly discriminable. This problem is called non-linear classification which cannot be 

handled by drawing straight discriminative lines in the data space. 

The original SVM constructs a hyperplane for linear classification, however, a non-linear 

classification can be performed by applying a kernel (Cristianini & Shawe-Taylor, 2000) to 

the hyperplane that allows to transform the feature space to fit the hyperplane. Examples of 

kernels are polynomial and Gaussian function. 

General Linear Method (GLM) (Friston, et al., 1994; Beckmann, Jenkinson, & Smith, 2003) 

is another type of statistical linear modelling of multivariate data that was used in several 

neuroimaging analytical tools such as Statistical Parametric Mapping (SPM) (Friston K. , 

Statistical Parametric Mapping, 1994). 
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B. Non-linear Classifiers 

Non-linear Bayesian classifiers emerged for modelling the probability distributions of each 

class. Bayesian classifiers are based on probabilities of associated events (dependent) 

according to a conditional probability principle. An example of such a classifier is the Hidden 

Markov Model (HMM) (Eddy S. R., 1996; Chakraborty & Talukdar, 2016), which is a 

probabilistic model for temporal data by assigning probability distributions over sequences 

of observations. Using HMMs, input data can be classified by passing them through several 

states together with their transition probabilities as statistical measurements. 

Several successful applications of HMMs have been developed in the field of speech 

recognition and classification (Katagiri & Lee, 1993; Rabiner, 1989). In the field of STBD 

analysis, research on EEG data classification (Obermaier, Guger, Neuper, & Pfurtscheller, 

2001) has shown that the accuracy of BCI-based HMM outperformed the BCI-based LDA. 

In (Ou, et al., 2015), fMRI data were used for classification of different groups of patients by 

applying HMM, which generated different sequences of observations (states), based on 

which the specific test subject was classified. Research (Argunsah & Cetin, 2010) presented 

that HMMs for EEG classification were improved by using Principle Component Analysis 

(PCA) (Friston, Frith, Liddle, & Frackowiak, 1993), which is a dimensionality reduction 

approach that transfers data samples into a new space with a smaller dimension, where 

different orthogonal principle components preform as linear-subspace representations of the 

data. 

When dealing with samples that are not linearly distributed, PCA transforms result in losing 

some of the information. Independent Component Analysis (McKeown, et al., 1998), 
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(Franchin, Tana, Cannata, Cerutti, & Bianchi, 2013) has been proposed to overcome the 

limitations of the non-linear subspaces in PCA. 

HMMs performed well in various STBD classifications, however, when both spatial and 

temporal information are critical to be preserved and learnt, HMMs do not model the 

integrated spatial-temporal correlations in data. In addition, HMM is a parametric technique 

with a fixed number of states and a fixed topology with respect to the observations. The 

HMM model operates using discrete states and they consider only the previous known state, 

so deep-learning patterns cannot be captured. They are also lacking from brain-inspired 

learning to adjust the interconnections. Some limitations of HMMs are reviewed in 

(Chakraborty & Talukdar, 2016).   

C. Artificial Neural Networks (ANNs)  

ANNs have been proposed for solving classification or regression tasks in computational data 

processing. ANNs are constituted of a set of basic cells (called neurons) performing a defined 

mathematical operation connected and organised in layers, which process input information 

and assign decision boundaries between samples that belong to different classes. According 

to their computational units, they were categorised into three generations. 

Rosenblatt proposed the first generation of ANNs (Rosenblatt, 1957), called perceptron 

which was based on McCulloch-Pitts neurons and was inspired by the concept of 

thresholding in biological neurons. A perceptron neuron is a computational unit with several 

inputs, each is associated with a weight that resembles synaptic efficiency. A perceptron 

integrates the inputs and fires if the synaptic weighted sum of inputs reaches a threshold. This 
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is computed using a step function to perform binary outputs (−1 or 1). This function is time-

independent, meaning that the time in which the threshold is exceeded is not considered.  

A single layer perceptron consists of one layer of neurons that are fully connected to the input 

data by weighted connections. An extended version of the perceptron is the Multilayer 

Perceptron (MLP) (Kruse, et al., 2013) which usually consists of an input layer, one or more 

hidden layers and an output layer. The step function can be replaced by a linear function, 

which produces a range of activations, so it is not limited to a binary output. 

The second generation of ANNs is related to improving the computational units by including 

an activation function. In contrast to a fixed threshold value to determine the output, here an 

activation function (such as non-linear sigmoid) produces outputs which are proportional to 

the inputs; thus, performing non-linear classifications. Figure 2-5 illustrates a block diagram 

of an artificial neuron (right) and a simple small network (left) with two input neurons, two 

hidden layers, and one output neuron.  

Figure 2-5 A block diagram showing components of an artificial neuron. 

Feed-forward ANNs with a back-propagation (BP)-based algorithm can learn time varying 

inputs (Shinde, Samant, Naik, Ghorpade, & Kale, 2017; Yu, Efe, & Kaynak, 2002). Several 
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BP learning algorithms have been proposed, such as an on-line neural-network learning 

algorithm for dealing with time varying inputs (Zhao Y. , 1996; Cilimkovic, 2015) and 

learning algorithms based on gradient descent (Zhou & Si, 1998; Ranganathan & Natarajan, 

2018). 

MLPs with non-linear activation functions have been applied for classification of STBD, 

such as EEG classification related to emotion perception (Yaacob, Abdul, & amaruddin, 

2016) and a motor imagery EEG classification (Chatterjee & Bandyopadhyay, 2016). Some 

other relevant ANN models are Recurrent Neural Networks (RNNs) (Peddinti, Povey, & 

Khudanpur, 2015; Waibel, Hanazawa, inton, Shikano, & Lang, 1989; Mozer, 1993; Che, 

Purushotham, Cho, Sontag, & Liu, 2018) that are suitable for sequential data classifications, 

such as time series. This network is based on back-propagation, meaning that the output of 

one layer can return back as input to the previous layer for tuning the connections. One 

problem with this complex network is a vanishing gradient that happens when the activation 

function cannot make significant change in the output, therefore, the network refuses to learn 

further. 

Although these ANNs are inspired by some properties observed in brain research (Hodgkin, 

Huxley, & Katz, 1952; Hall, 2015), the neuron’s state depends only on the current time of 

inputs, employing an activation function. To enhance this, the third generation of ANNs, 

called Spiking Neural Networks (SNNs) emerged in which accumulated inputs over time 

control an action potential function; thus, it encodes the neuron’s firing-time information.  

Like the first-generation ANN, a spiking neuron integrates the inputs and fires when the firing 

threshold is exceeded. In addition to this, a spiking neuron has an inherent dynamic nature 
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that defines a postsynaptic potential state which changes with time. The postsynaptic 

potential of a spiking neuron changes with time while streaming inputs. A spiking neuron 

fires at the time t in which its internal state exceeds the neuron threshold. Therefore, SNNs 

are considered as brain-inspired computational models that encode properties such as action 

potential, excitatory postsynaptic potential and inhibitory postsynaptic potential (Izhikevich, 

2003).   

D. Deep Structured Learning (DSL) 

In machine learning, DSL methods refer to learning the data representations in a hierarchical 

manner, where each layer in the model extracts a different informative level of representation 

that corresponds to a particular concept in data. The learning procedure can be supervised, 

unsupervised or semi-supervised. So far, different DSL architectures have been introduced 

and examples are as follows:  Deep Neural Network (DNN) (Liu, et al., 2017), Deep Belief 

Neural Network (DBNN) (Goodfellow, Bengio, & Courville, 2016), RNN and Convolutional 

Neural Network (CNN). DNN refers to a network with multiple hidden layers between the 

input and output layers.  In DNNs every layer of neurons extracts informative abstractions 

and transfers them to the next layer to model complex non-linear relationships. DNNs are 

usually feed-forward networks, while the data flow can be in any direction in RNNs making 

them suitable for a wide range of applications (Gers & Schmidhuber, 2001; Sutskever, 

Vinyals, & Le, 2014; Tomavs, Karafiat, Burget, Černocký , & Khudanpur, 2010). 

CNNs (Schmidhuber, 2015) are inspired by the visual cortex, where the firing rate of every 

sensory neuron is affected by a specific region in the retina, called the neuron’s receptive 

field. Neurons have different specific receptive fields, and they are overlapping. CNNs 
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consist of three main layers: input layer, feature learning layer and classifier layer. Each of 

these has several sub-layers. In contrast to MLPs, in CNNs the hidden layers are not fully 

connected. Through a convolution procedure, every region of neurons (receptive field) from 

layer 𝑖 is connected to one neuron in layer 𝑖 + 1, which results in extracting abstractions (i.e. 

some informative features) from layer 𝑖 and transfers them to the next layer. Convolution 

uses a filter (with a specific size) which is sliding over the input values to merge them and 

generates a feature map. Several convolutions are applied on the input data to develop 

different feature maps. Training a CNN is similar to MLP training that can be based on 

backpropagation or gradient descent. CNNs use activation functions, therefor, they can solve 

non-linear classification tasks. 

CNNs supported tremendous achievements in computer vision systems, including image 

classification (Krizhevsky, Sutskever, & Hinton, 2012), image segmentation (Liang-Chieh, 

George, Iasonas, Kevin, & Alan L, 2018; Wachinger, Reuter, & Klein, 2018) and object 

detection (He, Hang, Ren, & Sun, 2016). One of the common issues with CNNs is overfitting 

that may happen due to the presence of layers which model irrelevant dependencies. CNNs 

were also used in several applications of STBD, for instance, emotion classification using 

EEG data (Tripathi, Acharya, Sharma, Sudhanshi, & Bhattacharya, 2017) and the result has 

shown that CNN outperformed MLP. In research (Rezaei Tabar & Halici, 2016) a motor 

imagery EEG classification task was performed, and the results suggested that deep learning 

CNN improved classification performance by at least 9% compared to other conventional 

approaches. In this section, I reviewed methods that have been applied so far for STBD 

classifications. The next section reviews data clustering which is an important approach for 

understanding relationships in STBD. 
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2.5.2 Overview on Clustering Methods 

Clustering aims at objectively organising data samples into homogenous groups where data 

samples within a group are similar in some sense. So far, many clustering methods have been 

developed to identify structures in different data types, such as static and temporal data. Data 

are static when the feature values do not change over time, and they are time series (temporal) 

if the features comprise values that change over a continuous time interval. With respect to 

different data types, clustering methods differ significantly in the notion of 

similarity/distance measures. In the following, I present a review on clustering methods 

applied to different data domains: (A) static data clustering, (B) time series clustering and 

(C) dynamic evolving clustering. 

A. Clustering Approaches for Static Data 

Clustering methods for various static data are classified into five major categories: 

hierarchical methods (Johnson, 1967), partitioning methods, density-based methods (Ester, 

Kriegel, Sander, & Xu, 1996), grid-based methods, and model-based methods.  

Partitioning clustering divides datasets into k distinct partitions, where samples in each 

partition share similar characteristics of this cluster. Most of the partitioning clustering 

algorithms are based on minimising an objective function, which usually refers to the 

distance between samples and the cluster centre. A typical objective function is as follows: 

 ∑ ∑ 𝐷𝑖𝑠𝑡(𝑥𝑗, 𝑐𝑒𝑛𝑡𝑒𝑟(𝑖))          

|𝐶𝑖|

𝑗=1

𝑘

𝑖=1

 (2-1) 
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where |𝐶𝑖| denotes the number of samples belonging to cluster i and function 𝐷𝑖𝑠𝑡 computes 

the distance between sample 𝑥𝑗 to the centre of cluster i.  A partition is hard if each sample 

belongs to only one cluster, or fuzzy if one sample is allowed to be in more than one cluster 

up to a different membership degree, e.g. fuzzy c-means (Bezdek, Ehrlich, & Full, 1984; Rai, 

Bajaj, & Kumar, 2015). Numerous hard partitional clustering methods have been proposed, 

in which one of the most popular ones is the K-means algorithm (Hartigan & Wong, , 1979; 

Prabhakar & Rajaguru, 2015). The K-means algorithm classifies a given data set into K 

centroids, which are pre-defined a priori. The procedure is to assign each sample to the 

nearest centre and form K clusters. Afterwards, new centroids will be computed with respect 

to the mean value of each cluster. Over a number of iterations in the algorithm, the K 

centroids change until they converge to certain locations (which means that no more changes 

are done) through minimising an objective function, which follows here as a square error 

function: 

 

∑ ∑‖𝑥𝑗 − 𝑐𝑒𝑛𝑡𝑒𝑟(𝑖)‖
2

|𝐶𝑖|

𝑗=1

𝐾

𝑖=1

 (2-2) 

With respect to different clustering algorithms, the similarity/distance can be measured 

through different equations as reported in Table 2-1. 

Table 2-1 Different techniques for measuring the distance. 

Method Formula 

Euclidean distance  

‖𝑎 − 𝑏‖2 = √∑ (𝑎𝑖 − 𝑏𝑖)
2

𝑖
 

Squared Euclidean distance ‖𝑎 − 𝑏‖2
2 = ∑ (𝑎𝑖 − 𝑏𝑖)

2

𝑖
 

Manhattan distance ‖𝑎 − 𝑏‖1 = ∑ |𝑎𝑖 − 𝑏𝑖|
2

𝑖
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Maximum distance ‖𝑎 − 𝑏‖∞ = 𝑚𝑎𝑥𝑖|𝑎𝑖 − 𝑏𝑖|
Mahalanobis distance √(𝑎 − 𝑏)𝑇𝑆−1(𝑎 − 𝑏) 

S is a covariance matrix 

Hierarchical clustering represents groups of data samples using a tree of clusters, in which 

the similarity is measured according to a pairwise distance matrix of samples. Every two 

similar samples can be merged to represent a cluster and then the most similar pair of clusters 

can merge their members to represent a higher level of clusters (known also as a parent 

cluster). This procedure will be repeated until all the data samples fall into one cluster, which 

is the root of the tree. Hierarchical clustering algorithms are either bottom-up (also called 

agglomerative clustering) or top-down (also called divisive clustering).  

Figure 2-6 represents an example of bottom-up hierarchical clustering for 11 alphabetic 

samples, illustrating how it organises the data space through merging similar pairs of letters. 

A deficiency of the hierarchical clustering is that the computational complexity is 𝑂(𝑛2) 

subject to the number of 𝑛 samples. 
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Figure 2-6 A tree diagram of a data space with 11 samples of letters (right) and the corresponding nested clusters 

(left). 

In density-based clustering, unlike the K-means, the number of clusters is not predefined. 

Clustering is initiated from a set of points, continuously growing as long as the density in the 

neighbourhood surpasses a threshold.  

In grid-based clustering, the sample space is quantised into a finite number of cells, where 

the operations for clustering are performed. A common example of the grid-based approach 

is Statistical Information Grid-Based method (STING) (Wang, Yang, & Muntz, 1997).  

Model-based clustering undertakes a model for each cluster and aims at creating the best fit 

of the data to the model. One major method of model-based clustering is the neural network 

approach. Prominent clustering methods of the neural network field are defined by 

competitive learning, including Self-organizing Maps (SOM) (Carpenter & Grossberg, 1987; 

Baig, Ayaz, Gillani, Jamil, & Naveed, 2015; Kohonen, 1998).  

B. Clustering Approaches for Time Series 

A massive amount of temporal data (time-series data) has been recorded so far in various 

fields, such as electronic, video/audio, biology, neurology, and so forth. In cases of clustering 

such data, given a set of time series, the objective is to group similar temporal patterns into 

the same cluster. This task demands a specific notion of distance measured to estimate the 

level of similarity between time series distributions. However, the Euclidean distance and 

other typical measures (used for non-temporal data) are unsuitable measures to evaluate the 

similarity between time series. In the literature of time series clustering, various methods 

have been introduced of which some are briefly discussed as follows: 
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Biclustering (Mirkin, 1998) is a pattern-based clustering technique which simultaneously 

clusters both rows and columns of a dataset represented by 𝑚 samples and n-dimensional 

features as a matrix (𝑚, 𝑛). Every sample vector can represent a pattern with multi features, 

and biclustering can find a relationship between patterns in such datasets. Biclustering has 

been used for clustering time series gene expression data (Tanay, Sharan, & Shamir, 2002). 

Since the biclustering can detect the direction of changes in data variables among samples, it 

has been considered as a promising technique for clustering time series. However, when 

dealing with spatio-temporal data, where both space and time need to be integrated and 

involved in the clustering algorithm, biclustering approaches cannot perform sufficiently as 

the spatial relationship between features is not incorporated in the analysis.  

SOM is a clustering approach, utilising the ANN underpinning unsupervised learning. SOM 

is performed in two phases: (1) training, which creates a map using input training samples 

through a competitive procedure and (2) mapping, which classifies a new input sample 

vector. During the training phase, for every input sample vector, the distance between sample 

variables and all the nodes in the map will be computed (usually by means of Euclidean 

distance). Then, with respect to the principle of competitive learning, the node with the 

smallest distance will win as the best matching unit. The winning neuron and its 

neighbourhood (within a radius) will be pulled towards the current input sample. The learning 

procedure will be iteratively performed for all the training samples, and the final network 

performs a similar response to certain input patterns. Thus, SOM shapes a semantic map 

where similar sample vectors are mapped close together and dissimilar ones apart. 



 

       

28 

 

SOM has been widely used for clustering of EEG data (Hamdoun & Usman, 2016; 

Joutsiniemi, Kaski, & Larsen, 1995; Orjuela-Caon, et al., 2017), where each EEG spatio-

temporal sample was first transformed into one feature vector and then passed on to SOM 

for learning.   

C. Dynamic Evolving Clustering Approaches  

The concept of dynamic or evolving clustering differs from the wide spectrum of clustering 

approaches that attempt to measure the distance/similarity within the whole data space. It 

rather refers to clustering of a data stream environment which continuously evolves with 

time. As a result, evolving clustering methods represent the incremental growth of clusters 

and the creation of new clusters from a stream of vector-based data. So far, several methods 

for dynamic evolving clustering have been proposed. While SOM in an entire data space 

assigns similar input vectors into topologically close neurons, Evolving Self-organizing 

Maps (ESOM) (Deng & Kasabov, 2000) and the DENFIS evolving clustering method 

(Kasabov & Song, 2002) were introduced for online dynamic clustering of data streams. 

When dealing with STBD, both ESOM and DENFIS successfully detect the temporal 

changes in data streams and incrementally assign them into the already generated clusters or 

develop new clusters for them. However, the temporal components of each data sample are 

transposed into one feature vector (static vector), where the time is hidden, and no temporal 

interaction can be extracted anymore. Also, the spatial relationships between the features are 

not considered in these models. 

Aggarwal (Aggarwal, 2003) has proposed a framework for dynamic evolving clustering of 

spatio-temporal streams. The clustering method considers both spatial and temporal 
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relationships in data space, however, it creates separately two spatial and temporal models. 

Therefore, the integrated spatial-temporal similarity in the data is not properly measured and 

this is a crucial lack for clustering of STBD streams.  

It can be concluded from the literature that classification and clustering of STBD have often 

been done using conventional machine learning methods such as the SVM (Cortes & Vapnik, 

1995), MLP, Multiple Linear Regression (MLR), linear regression, or deep learning 

architectures. Now the question is: what is missing in the current technologies for STBD 

analysis?  

Currently, many types of STBD have been collected that capture complex temporal patterns, 

which need to be modelled and analysed. Various techniques have been developed to analyse 

the brain’s activation, functional connectivity (Tana, Bianchi, Sclocco, Franchin, & Cerutti, 

2012; Aggioni, Tana, Arrigoni, Ucca, & Bianchi, 2014) or effective connectivity (Buchel & 

Friston, 1997). Learning dynamic patterns of spatio-temporal data is a challenging task, as 

temporal features may manifest complex interactions that may also change dynamically over 

time. Therefore, the relationship between the spatial and temporal components needs to be 

considered and learnt. In addition, the spatial information of the temporal sources needs to 

be learnt both topologically and computationally. To address these needs, developing new 

analytical methods that can capture interactions among multivariate data is of crucial 

importance. 

Compared to conventional ANNs (first and second generations as explained in Section 2.5.1) 

SNNs have emerged to integrate space and time components of data into the computation. 
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SNN models and their neuromorphic 5 highly parallel implementations are advancing quickly 

(Furber, Galluppi, Temple, & Plana, 2014; Indiveri, et al., 2011). The challenge now for 

information science and AI is to develop new SNN algorithms and methods for the efficient 

learning of STBD and for their efficient neuromorphic implementations (Kasabov, 2014). 

2.6 Chapter Summary 

This chapter reviews two main techniques for recording STBD that have been widely studied 

in cognitive science and neuroscience research. Then, a historical review on classification 

and clustering approaches was presented. In the next chapter, SNN principles, models and 

applications are discussed. 

                                                
5 Neuromorphic refers to a kind of a “dynamical” machine with processors (e.g. neurons and synapses) in which 

the algorithms simulate complex spatio-temporal dynamics on the computing hardware.  
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Chapter 3 Spiking Neural Networks  

3.1 Introduction 

As discussed in the previous chapter, the first and second generation ANNs were developed 

based on activation functions, which determine the neuron’s firing state according to the 

current inputs at time t. However, neuroscience research indicated that the behaviour of a 

biological neuron is influenced by the dynamics of the membrane potential over a period of 

time. This means that the membrane potential fluctuates dynamically while the neuron 

receives streaming inputs. When the membrane potential suppresses a certain capacity, it 

generates an action potential (signal) and sends it out. Therefore, the action potential 

corresponds to the intensity of communication between neurons. 

In the third generation ANNs (Maass, 1997), the inherent nature of the spiking neuron is 

inspired by the principle of action potential to incorporate the previous accumulated inputs. 

This is much similar to how a biological neuron functions (Izhikevich, 2006; Brette, et al., 

2007; Scott, Kasabov, & Indiveri, 2013). The action potential here can be computationally 
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encoded by binary values (-1 or 1) with a precise timing, called spikes 6. A sequence of spikes 

represents the times in which a neuron emitted action potentials.   

SNNs are computational models that consist of spiking neurons as processing elements, 

connections between them, and algorithms for learning from data (Thorpe & Gautrais, 1998; 

Verstraeten, Schrauwen, D’Haene, & Stroobandt, 2007; Masquelier, Guyonneau, & Thorpe, 

2009). They transpired as potential means to learn time, space and frequency of complex 

STBD. In addition to considering the neural synaptic state, SNNs include the timing of spikes 

in the computation. This means that the current activation level of a spiking neuron depends 

on the incoming spikes, pushing this value higher and then either firing (if exceeding a 

threshold) or decaying over time.  

So far, numerous methods of SNNs have been schemed such as spatio-temporal pattern 

recognition (Humble, Denham, & Wennekers, 2012; Kasabov, 2012b), encoding time-series 

data such as speech data into spike sequences (Van Schaik & Liu, 2005; Delbruck & 

Lichtsteiner, 2007; Lichtsteiner, Posch, & Delbruck, 2008; Lichtsteiner & Delbruck, 2005; 

Indiveri, et al., 2011), computational neuro-genetic modelling (Benuskova & Kasabov, 

2007), spatio-temporal data learning (Maass, Thomas, & Henry, 2002; Song, Miller, & 

Abbott, 2000; Dhoble, Nuntalid, Indiveri, & Kasabov, 2012), SNN reservoir computing and 

liquid state machines (Verstraeten, Schrauwen, D’Haene, & Stroobandt, 2007), classification 

systems (Kasabov, 2007), neuromorphic design and implementation (Izhikevich, 2006; 

                                                
6 A Spike is a binary value (-1 or 1) at time t, which represents a certain upward or downward change in the 

signal.  
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Furber, Galluppi, Temple, & Plana, 2014; Indiveri, et al., 2011) and neuro-computational 

perspective of brain pathology (Reggia, Ruppin, & Glanzman, 1999). 

Many applications of SNNs have been developed, including: multimodal audio-visual 

information processing (Wysoski, Benuskova, & Kasabov, 2010), STBD modelling 

(Kasabov, 2014), Brain-Computer Interfaces (BCI) (Anderson, Stolz, & Shamsunder, 1998), 

moving object recognition (Kasabov, Dhoble, Nuntalid, & Indiveri, 2013), cognitive data 

modelling (Kasabov & Capecci, 2015), finite automata modelling (Natschlager & Maass, 

2002), predictive systems (Tu, et al., 2014). These applications are structured based on the 

SNN models, which process input stimuli across different evoked cognitive states, acting as 

an ultimate spatio-temporal data processing machine (Kasabov, 2014; Kasabov, 2010).  

3.2 Computational Model of a Spiking Neuron 

In a biological neuron structure (as explained in Chapter 2), when the overall power of input 

signals reaches a certain threshold, an output signal is generated and sent to other neurons 

connected to it. Therefore, neurons receive and transmit information by means of signals 

exchanged via synapses. 

This procedure can be computationally simulated by artificial spiking neurons as 

information-processing units that accomplish non-linear processing (Anderson, Stolz, & 

Shamsunder, 1998; Maass, Thomas, & Henry, 2002). A collection of interconnected spiking 

neurons creates an SNN, where neighbour neurons are influenced by their spiking activities. 

Figure 3-1 illustrates a biological neuron and an artificial spiking neuron which resembles 

the behaviour of a biological neuron’s cell. It can be seen that the inputs and outputs in a 
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spiking neuron are in the form of spike sequences with a precise timing. With respect to 

different mathematical neuron models introduced in the literature, a spiking neuron can 

dynamically process the input spikes over time to compute its membrane potential. Incoming 

spikes make change in a neuron potential and when this exceeds a threshold value, the neuron 

emits an output spike. Similar to the axons, artificial neurons are interconnected through 

simulated paths, which are initially established with random weights. Then the connection 

weights between neurons are modified by transferring spikes across synapses. Numerous 

computational models of SNNs have been developed so far, some well-known models are 

listed in the following and discussed afterwards. 

• Lapicque  

• Integrated-and-Fire  

• Leaky Integrated-and-Fire 

• Izhikevich  

• Thorpe’s Model 

• Probabilistic Spiking Neural Model  
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Figure 3-1 (a) Structure of a biological neuron, figure was modified form (Pearson , 2005); (b) Artificial spiking 

neuron which receives input spike trains, processes them and produces output spikes. 

Lapicque Model. One of the earliest models of the neuron was the Lapicque model (Brunel, 

van, & Mark, 2007), which was constructed according to the mechanism of an electric circuit 

with a parallel resistor. This model captures the leakage resistance and capacitance of the cell 

membrane, but the concept of action potentials was not known. In this model, the action 

potential was set as a constant with different time of occurrence.  

Integrated-and-Fire Model. In (Abbott, 1999) the Lapicque has been further developed to 

incorporate the principle of action potential, in which once the membrane capacitor reaches 

(a) 

 

 

 

 

 

 

(b) 
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to a certain threshold, an action potential is produced and then the membrane potential is 

reset. This model is called the integrated-and-fire model of a neuron. The integrate-and-fire 

model of a neuron can be defined by its membrane potential 𝑣 and capacitance C as follows. 

𝐶
𝑑𝑣

𝑑𝑡
= −

1

𝑅
(𝑉(𝑡) − 𝑣𝑟𝑒𝑠𝑡) + 𝐼(𝑡) (3-1) 

𝑣(𝑡(𝑓)) = 𝜃      𝑤ℎ𝑒𝑛  𝑣′(𝑡(𝑓)) > 0
(3-2) 

where resistor is denoted by R, input current is 𝐼(𝑡) and 𝑡(𝑓) is the time at which a neuron

fires when its membrane potential 𝑣(𝑡(𝑓)) exceeds the firing threshold 𝜃, while 𝑣′(𝑡(𝑓)) is

its derivative. 

Leaky Integrated-and-Fire Model (LIFM). In this model also called “forgetful” (Knight, 

1972), the membrane potential 𝑣(𝑡) increases with every input spike at a time t, multiplied 

by the synaptic efficacy (strength), until it reaches a certain threshold θ. After that, an output 

spike is emitted, and the membrane potential is reset to an initial state. Like a biological 

neuron performs, when the simulated neuron emits a spike, it does not produce a new spike 

within a refractory period and its membrane potential 𝑣(𝑡) leaks. The membrane potential 

can have certain leakage between spikes, which is defined by a parameter τ. A schematic 

representation of the LIFM is illustrated in Figure 3-2 and the neuron action potential is 

defined as follow: 

𝜏𝑚

𝑑𝑣

𝑑𝑡
= 𝑣𝑟𝑒𝑠𝑡 − 𝑣(𝑡) + 𝑅𝐼(𝑡) (3-3) 
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The 𝜏𝑚 is the membrane time constant, 𝑣𝑟𝑒𝑠𝑡  is the resting potential, I is the input current and 

R is the resistance.  

 

Figure 3-2 The LIFM of a spiking neuron. (a) Schematic representation; (b) Showing an input train of spikes 

(top row), the emitted output spikes (second row) and the membrane potential changes over time. Figure from 

(Kasabov, 2014). 

Izhikevich Model. The model was introduced by Eugene M. Izhikevich (Izhikevich, 2003), 

combines the computational efficiency of the integrate-and-fire neurons and the biologically 

plausible principle of the Hodgkin–Huxley model. The Izhikevich model is implemented by 

means of a two-dimensional system of ordinary differential equations as follows: 

 

𝑑𝑣

𝑑𝑡
= 0.04𝑣(𝑡)2 + 5𝑣(𝑡) + 140 − 𝑢(𝑡) + 𝐼(𝑡) (3-4) 

 

𝑑𝑢

𝑑𝑡
= 𝑎(𝑏𝑣(𝑡) − 𝑢(𝑡))  (3-5) 

Once the neuron membrane potential 𝑣 exceeds a fixed threshold 𝜃 = 30 mV , a spike will 

be emitted and 𝑢 and 𝑣 will be reset according to the following rule:   
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 𝑖𝑓 𝑢 ≥ 𝜃 𝑡ℎ𝑒𝑛 {
𝑣 ← 𝑐         
𝑢 ← 𝑢 + 𝑑

 (3-6) 

where 𝑢 denotes a membrane recovery variable that models feedback to 𝑣 and 𝑎, 𝑏, 𝑐 and 𝑑 

are dimensionless parameters. The Izhikevich model has been extended and developed in 

(Izhikevich, 2006), and (Izhikevich & Edelman, 2008).  

Thorpe’s Model. A variation of LIFM has been proposed by Thorpe (Thorpe S. J., 1990) in 

which a neuron membrane potential 𝑣(𝑡) is only influenced by the order of incoming spikes, 

when the earlier spikes have higher effects than the next upcoming ones. In this model, when 

neuron i receives input spikes from the presynaptic neuron j, (𝑗 = 1,2, … , 𝑁) the postsynaptic 

potential of neuron i, 𝑃𝑆𝑃𝑖(𝑡), is increased according to the order of incoming spikes from N 

synapses. The earlier the spikes are received from the presynaptic neuron, the greater the 

impression on the neuron’s postsynaptic potential.  In this model, connection weights (𝑊𝑗𝑖 ,

𝑗 = 1,2, … , 𝑁) are established as follow:   

 𝑊𝑗𝑖= ∑ 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑗)𝑁
𝑗=1  

(3-7) 

where 𝑊𝑗𝑖  denotes to the connection weight between neurons j and i, mod is a modulation 

factor within [0, 1] and order(j) is the time order of the following spikes to the presynaptic j 

from all the connected neurons to j. 

Probabilistic Spiking Neural Model (pSNM). In 2010, Kasabov proposed the pSNM 

(Kasabov, 2010) in which information is stored in the form of connection weights calculated 

with respect to Thorpe’s model plus inclusion of three new probabilistic parameters to the 
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synaptic connection weight 𝑤𝑗𝑖(𝑡). A pSNM is schematically shown in Figure 3-3. The 

probabilistic parameters are 𝑝𝑐𝑗,𝑖(𝑡),  𝑝𝑠𝑗,𝑖(𝑡) and 𝑃𝑆𝑃𝑖(𝑡), described as follows:

- 𝑝𝑐𝑗,𝑖(𝑡) is a probability parameter that neuron i receives a spike from neuron j at time t

via connection  𝑤𝑗𝑖 between j and i. Here the connections are not created and pruned as

in other ANN models (Kasabov, 2007), but a probability parameter is assigned to each

connection to represent its structural and functional uncertainty. If 𝑝𝑐𝑗,𝑖(𝑡) = 0, then this

means that there is no connection and no spike propagation between j and i, while

𝑝𝑐𝑗,𝑖(𝑡) = 1 represents a 100% probability of spike propagation.

- 𝑝𝑠𝑗,𝑖(𝑡) represents a probability for the synapse 𝑠𝑗,𝑖 to be involved in the computation of

𝑃𝑆𝑃𝑖(𝑡) after receiving a spike from neuron j.

- A probability parameter 𝑝𝑖(𝑡) that neuron i emits an output spike at time t when its

𝑃𝑆𝑃𝑖(𝑡) has surpassed a certain threshold.

Figure 3-3 Representation of one synaptic connection in a pSNM. 

The 𝑃𝑆𝑃𝑖(𝑡) is calculated using the following formula:

𝑷𝑺𝑷𝒊(𝒕) = ∑ ∑ 𝒆𝒋𝒈 (𝒑𝒄𝒋,𝒊(𝒕 − 𝒑)) 𝒇 (𝒑𝒔𝒋,𝒊(𝒕 − 𝒑))  𝒘𝒋,𝒊(𝒕) + 𝜼(𝒕 − 𝒕𝟎)

𝒋=𝟏,…,𝑵𝒑=𝒕𝟎,…𝒕 
(3-8) 

where 𝑒𝑗 equals to 1, if neuron j emitted a spike, and 0 otherwise; 𝑔(𝑝𝑐𝑗,𝑖(𝑡)) is 1 with  a

probability  𝑝𝑐𝑗,𝑖(𝑡), and 0 otherwise; 𝑓(𝑝𝑠𝑗,𝑖(𝑡)) equals to 1 with a probability  𝑝𝑠𝑗,𝑖(𝑡), and
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0 otherwise; 𝑡0 is the time of the last spike emitted by neuron i; 𝜂(𝑡 − 𝑡0) expresses decay in 

the PSP. The pSNM is simplified as the LIFM, when all the probability parameters are fixed 

to be 1. 

The parameters  𝑝𝑐𝑗,𝑖(𝑡),  𝑝𝑠𝑗,𝑖(𝑡) and 𝑃𝑆𝑃𝑖(𝑡) were optimised using a quantum-inspired 

evolutionary algorithm to maximise the network’s accuracy. This algorithm searches for the 

best parameter values to calculate the neuron’s response in the presence of the stimuli. 

Further information about how to modify these probability parameters is given in (Kasabov, 

2010). 

3.3 Information Encoding in a Spiking Neuron 

As explained in chapter 2, biological neurons send information by sudden and short increases 

in their electrical energy which generates an action potential or spike as encoded spatio-

temporal information. When SNNs are used for learning the spatio-temporal patterns 

“hidden” in STBD, such data first need to be encoded into sequences of spikes, which are 

then transferred into the SNN via input neurons. Now the question is what kind of codes can 

be considered for transmitting information in SNNs? 

Rate codes and pulse codes are two main techniques in neural encoding. In the first two 

generations of artificial neural networks, rate coding has been used to calculate the neurons’ 

output signals based on only the frequency transmission. However, coding in SNNs is based 

on precise timing of spikes as computed in pulse coding (Maass & Bishop, 2001; Gerstner & 

istler, 2002). 
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A simple SNN is composed of an input layer, a hidden layer, and an output layer. Like a 

biological neuron’s dendrites, the input layer receives the original input information and 

encodes it into a new number of features which are then transferred into the hidden layer’s 

neurons. The input encoding procedure transfers the real value of input information to 

discrete sequences of spikes as new format of inputs to SNN models. 

Different spike encoding algorithms have been proposed so far, some popular ones are: 

Temporal Contrast (Threshold-based Representation—TBR) (Delbruck T. , 2007; Dhoble, 

Nuntalid, Indiveri, & Kasabov, 2012), Ben’s Spikes algorithm (BSA) (Schrauwen & Van 

Campenhout, 2003), Population Rank Coding (Bohte S. M., 2004), and Rank Order Coding 

(Thorpe & Gautrais, 1998). Two important encoding algorithms are explained here: 

Temporal Contrast (TBR). This method was originally proposed in 2007 for information 

encoding in artificial silicon retina (Delbruck & Lichtsteiner, 2007). The method encodes 

substantial changes in signal amplitude over a given threshold, where the OFF and ON 

commands of the hardware were dependent to the sign of the changes. However, for dramatic 

changes in the signal amplitude, it is almost impossible to reconstruct the signal from spike 

trains generated by TBR. Therefore, TBR has been improved as follows:  

For a given signal 𝑆(𝑡), where 𝑡 = 1,2, … , 𝑛, the signal amplitude variation over time t is 

denoted by 𝐵(𝑡), with a baseline B(1) = S(1). At the next time point 𝑡, if the upcoming signal 

amplitude 𝑆(𝑡) is greater than 𝐵(𝑡 − 1) plus a threshold θ, then a positive spike is generated 

at time 𝑡 and 𝐵(𝑡) will be replaced by 𝐵(𝑡 − 1). The encoding of positive and negative spikes 

is defined as follows: 
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𝑠𝑝𝑖𝑘𝑒(𝑡) = {
1 𝑎𝑛𝑑 𝐵(𝑡)  ←  𝐵(𝑡 − 1) +  𝑇ℎ           𝑖𝑓 𝑆(𝑡) ≥ 𝐵(𝑡 − 1) + 𝜃

−1 𝑎𝑛𝑑 𝐵(𝑡) ←  𝐵(𝑡1 − 1) −  𝑇ℎ      𝑖𝑓 𝑆(𝑡) < 𝐵(𝑡 − 1) + 𝜃
0                                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 (3-9) 

Rank Order Coding (RO). With respect to the order of neuron firing times, a higher rank 

will be given to the earlier fired neuron (Thorpe & Gautrais, 1998).  RO has been successfully 

applied in modelling audio visual systems in visual pattern recognition (Wysoski, 

Benuskova, & Kasabov, 2006) and speech recognition (Loiselle, Rouat, Pressnitzer, & horpe, 

2005) applications. 

3.4 Learning in SNN Models 

Different types of learning rules in SNNs have been explored in the literature. The most 

popular ones are supervised and unsupervised learning as explained in the following: 

Supervised learning. In this learning, the input data and the anticipated outputs are known. 

For instance, in the classification problem the class labels of samples are known and in a 

regression problem the real values for regression are given. SNN learns the input data patterns 

to produce an exact output when a new unknown input is presented. RO learning rule and 

error-backpropagation (Bohte, Kok, & La Poutre, 2002) are two popular supervised learning 

examples. 

Unsupervised learning. In this learning approach, the desired outputs are not provided, and 

a training process is performed with unlabelled input data patterns. Hitherto, several 

unsupervised learning algorithms have been developed in SNN models, the majority of them 

are constructed to adapt the synaptic weights according to the temporal relation between pre- 

and postsynaptic action potentials as similarly implemented in Hebbian learning (Song, 
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Miller, & Abbott, 2000; Hebb, 1949). One example of Hebbian learning is Spike Time 

Dependent Plasticity (STDP) learning rule which depends on the relative timing of pre- and 

postsynaptic action potentials (Song, Miller, & Abbott, 2000). The STDP learning rule is 

defined using the following relation: 

 
𝐹(∆𝑡) = {

  𝐴+exp (∆𝑡/𝜏+)                  𝑖𝑓 ∆𝑡 < 0 
−𝐴−exp (−∆𝑡/𝜏− )             𝑖𝑓 ∆𝑡 ≥ 0

 (3-10) 

where 𝐹(∆𝑡) defines the synaptic modification elicited from a single pair of pre- and 

postsynaptic spikes separated by a time interval ∆𝑡 = 𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡. The parameters A+ and 

A- define the maximum quantities of synaptic modification, which transpire when ∆𝑡 ≈ 0. 

The parameters 𝜏+ and 𝜏− determine the ranges of pre-to-post-synaptic inter spike intervals 

over which the synaptic strengthening and weakening occurs.  

3.5 SNN Reservoir Computing Systems 

Reservoir computing systems are constituted of a group of recurrent connected neurons that 

form a computational framework, where the input signals are mapped into a higher 

dimension, called dynamical reservoir. The reservoir’s neurons are non-linear information 

processing units which are typically connected randomly. The neural activities are triggered 

by the input dynamics and are also influenced by the past. Therefore, for online learning of 

continues input streams, reservoir computing allows for real-time computation in parallel. 

One example of the reservoir methods is Liquid State Machines (LSMs), proposed by Mass 

(Maass, 2010; Maass, Thomas, & Henry, 2002) that employ LIFM of spiking neurons. The 

general architecture of LSM includes the following main layers:  
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- An input layer is randomly connected to the neurons in the reservoir. 

- A reservoir of randomly interconnected neurons, each of which fires over time when its 

action potential value exceeds a certain threshold. Therefore, patterns of spikes are 

captured after 𝑇 time-steps.  

- An output layer is a simple deterministic readout layer that receives the spike patterns for 

classification.   

The readout for LSMs is typically a multilayer feed-forward NN or linear regression that 

reads the states of the reservoir and maps them into the desired output. In several application 

domains, LSMs have shown better performance when compared with conventional ANN 

models. For instance, in pattern recognition (Verstraeten, Schrauwen, & Stroobandt, 2005), 

LSM was applied to recognise an isolated word and the results were compared with HMM 

models. In contrast to the HMM, the LSM has shown to be robust to noise. In (Pape, De 

Gruijl, & Wiering, 2008; Ju, Jian-Xin, & Antonius, 2010), sound data were transferred into 

64 static vectors of frequencies using the Fast Fourier Transformation (FFT) which were 

further processed through normalisation. Then the pre-processed data were used to 

demonstrate real-time applicability of the LSM for music recognition. For the classification 

tasks, readout functions such as Recurrent NN, K-nearest Neighbours (KNN) and perceptron 

were often used. It can be concluded from these studies that LSMs perform well for the 

classification of spatio-temporal data. Now the fundamental question is: what was missing in 

the current LSMs?  

- The LSMs do not preserve and learn the correlation between the spatial and temporal 

components in one model. 
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- LSMs are not developed based on an entirely spike-time constructed computational 

approach. The readout functions are usually implemented according to conventional 

machine learning algorithms. However, neurons in LSMs are spiking neurons and they 

produce patterns of spikes. Therefore, the performance of LSMs can be improved by 

employing SNN-based classifiers, which results in directly processing the reservoir’s 

spikes in an online- one-pass mode. This suggests a better applicability of SNN models 

for real-life information processing.   

- LSMs benefit from LIFM of neurons which try to model real neurons, however, brain-

inspired learning is lacking to capture the spatio-temporal interactions in the form of 

adaptive connections in the reservoir.    

- As a result of random connections in the reservoir, LSMs cannot be spatially interpreted. 

The spatial information of the temporal variables are not topologically and 

computationally considered. 

In view of both characteristics and limitations of LSMs, SNN features were employed for 

developing a special type of an LSM, a Spatio-temporal Data Machine (STDM), called 

NeuCube that is an evolving spiking neural network (eSNN) for better modelling and 

understanding of STBD (Kasabov, 2007; Kasabov, Dhoble, Nuntalid, & Indiveri, 2013; 

Kasabov, 2012b). The following Section 3.6 introduces the NeuCube architecture, which will 

be used in this thesis for development of new methods for STBD analysis. 

3.6 NeuCube for STBD Modelling  

NeuCube is a generic evolving STDM based on the SNN for modelling, learning, 

classification/regression, clustering, visualisation and interpretation of spatio-temporal data, 
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it was first introduced for STBD (Kasabov, 2012b). The NeuCube development system is 

illustrated as an integrated configuration for spatio-temporal data pattern recognition and it 

includes the following ten modules: 

• Module M1: Generic prototype and testing. 

• Module M2: A pySNN simulator for small- and large-scale applications. 

• Module M3: A neuromorphic hardware for real-time execution. 

• Module M4: A 3-D visualisation and mining. 

• Module M5: Exchanging of input/output information. 

• Module M6: A neuro-genetic and prototyping testing. 

• Module M7: Personalised modelling. 

• Module M8: A multi-model brain modelling. 

• Module M9: Data encoding and event detection. 

• Module M10: Online learning. 

In this thesis, Module 1 is explained in the current chapter, while the development of Module 

7 is proposed by me as presented in Chapter 7. Figure 3-4 illustrates a diagram of the 

NeuCube multinodular development architecture for modelling of STBD. The NeuCube 

Module 1 was initially proposed in (Kasabov, 2012b) for STBD modelling and then further 

developed in (Kasabov, 2014). Module 1 consists of the following five sub-modules and it is 

depicted in Figure 3-4 and Figure 3-5: 

• Input data mapping and encoding.  

• Unsupervised learning in a 3-dimensional (3-D) SNN reservoir, called SNN model. 

• Supervised learning and classification in an evolving SNN. 
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• Parameter optimisation. 

• Model visualisation and interpretation. 

 

Figure 3-4 The multinodular development architecture of the NeuCube. Figure from (Kasabov, et al., 2016). 
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Figure 3-5 A functional diagram of the NeuCube SNN architecture, consisting of: input spatio-temporal data 

encoding module, 3-D SNN model and the STDP learning, output module for classification/regression, and 

gene regulatory network (GRN) module. Figure is modified from (Kasabov, 2012b). 

3.6.1 Input Data Mapping 

The NeuCube mapping sub-module is created as a 3-D SNN structure of a suitable size that 

maps spatially a brain template, such as the Talairach (Talairach & Tournoux, 1988), the 

Montreal Neurological Institute (MNI) template (Brett, Christoff, Cusack, & Lancaster, 

2001) or coordinates of individual brain data. 

If the spatial information of STBD variables is given, I can spatially map these variables into 

the pre-designed SNN model (the Talairach-based mapping) with respect to the coordinates 

of these variables as positioned in the Talairach. For instance, the location of each EEG 

channel (input variable) can be used for localising the input neuron in the SNN model. The 

size of the SNN model is scalable and controlled by three parameters: 𝑛𝑥 , 𝑛𝑦, 𝑛𝑧 representing 

the numbers of neurons along x, y and z directions. This model is used to map the (x, y, z) 

coordinates of an STBD; so that, the spatial information of the data is preserved. The 

prominent attitude of spatially mapping the input variables are: (a) construction of accurate 

spatial models for STBD collected from these variables and (b) better understanding and 

interpretation of the STBD models, as models are labelled by different functional areas in the 

Talairach or other templates. 

If such spatial information is not available for some datasets, temporal variables can be 

efficiently mapped to the SNN models with respect to their temporal correlation. The 

temporal patterns of 𝑣 variables are first encoded into 𝑣 spike trains, and then correlation 

between these spike trains is measured. Variables are then mapped; so that, highly correlated 
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variables (highly time-dependent) will be mapped to nearby input neurons in an SNN model. 

Every neuron in an SNN model is a computational unit that can be simulated according to 

different models of a spiking neuron as described in Section 3.2. As being implemented, the 

LIFM is used here in NeuCube SNN model. LIFM is commonly used by neuroscientist in 

the literature (Eugene, 2004; Sterratt, Bruce, Andrew, & David, 2011) and has been also used 

in this thesis as a brain-inspired and efficient model for a proof-of-concept.  

3.6.2 Input Data Encoding 

The continuous time series of STBD variables that measure functional activity in the brain 

were encoded into spike trains. The timing of the spikes corresponds to the time of the 

changes in the STBD. A spike train, obtained after the encoding process, represents new input 

information to the SNN model, where the time unit might be different from the real time of 

the data acquisition (machine computation time versus data acquisition time). The spike 

trains were transferred into the SNN model via input neurons which are spatially allocated 

using the same (x,y,z) coordinates as positioned in a brain template. 

The existing implementation of the NeuCube is sustained by four different spike encoding 

algorithms including: 

• Ben’s Spiker Algorithm (BSA).

• Temporal Contrast (Threshold-based representation—TBR).

• Step-Forward Spike Encoding Algorithm (SF).

• Moving-Window Spike Encoding Algorithm (MW).

The above spike encoding methods have different features when demonstrating input data. 

For encoding high frequency signals, it is more suitable to use BSA as it is based on the finite 
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impulse response technique and the original signal reconstruction is also easy. The BSA 

method produces only positive (excitatory) spikes, whereas using the other methods 

mentioned above, negative (inhibitory) spikes can be produced along with the positive spikes. 

As an example, the TBR encoding method was applied to a time series of one EEG channel 

data to transfer it into a sequence of spikes as shown in Figure 3-6. 

 

Figure 3-6 An example of encoding EEG data into sequence of positive (black) and negative spikes (red) using 

the TBR algorithm that is the format of the input data into the NeuCube SNN architecture. The image shows 

the first 500 data points of one EEG channel (the Cz channel) from (Capecci, et al., 2016). 

NeuCube learning is a two-phase process: (1) an unsupervised learning stage in an SNN 

model, where spatio-temporal relations from the input data are learnt and connection weights 

are evolved, and (2) a supervised learning stage, where the class information is associated 

with each training spatio-temporal samples. These learning processes are explained in 

Section 3.6.3 and Section 3.6.4 respectively. 

3.6.3 Unsupervised learning in SNN Models 

After mapping the spatial components of STBD to the SNN model, the neuron connectivity 

is initialised using the small-world connectivity as shown in (Tu, et al., 2014), which is a 

phenomenon observed in biological systems (Bullmore & Sporns, 2009; Braitenberg & 
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Schuz, 1998). In this rule, each neuron in the SNN model is connected to its nearby neurons 

which are within a radius 𝑑. These connections are later modified based on the learning of 

new incoming spikes in time during unsupervised learning which is performed based on the 

STDP learning rule (Song, Miller, & Abbott, 2000).   

STDP learning is performed through transferring spikes (in time) across spatially located 

synapses and modifying the synapses over time. In this learning, a neuron’s postsynaptic 

potential (PSP) increases by every input spike at time t to reach the firing threshold. Once 

the PSP exceeds this threshold, the neuron fires and sends a spike to the other neurons that 

are connected to it. In STDP learning, if neuron i fires before neuron j, the connection weight 

from i to j will increase, otherwise it will decrease. As a result, STDP adjusts the connection 

weights between neurons based on the relative timing of a particular neuron’s output and 

input spikes. In this study, the unsupervised learning allows for the SNN model to evolve its 

connections; so that, they capture spatio-temporal associations between STBD variables 

representing consecutive brain activities.  

3.6.4 Supervised Learning and Classification in Evolving SNN 

After the unsupervised learning is completed, for data classification/regression, dynamic 

evolving SNN (deSNN) (Kasabov, Dhoble, Nuntalid, & Indiveri, 2013) is used to train an 

output classifier based on an association between class labels and training samples. For each 

training sample, an output neuron is created and connected to each neuron in the trained SNN 

model. The initial connection weight between a neuron i from the SNN model and an output 

neuron j is defined by using the RO learning rule. After establishing the initial connection 

weights, the same data that have been used for unsupervised learning will be propagated 
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again through the trained SNN model, sample by sample. The spatio-temporal pattern of 

activation in the trained SNN model, evoked by each particular sample, will be used as input 

data to train an output neuron for recognising this pattern. The PSP of neuron j at time t is 

calculated as follow: 

𝑃𝑆𝑃(𝑗, 𝑡) = ∑ 𝑚𝑜𝑑𝑜𝑟𝑑𝑒𝑟(𝑖) 𝑊𝑖𝑗
(3-11) 

where mod is a modulation factor (a parameter between 0 and 1) and order(i) is the time 

order of the following spikes to the connection between neurons i and j. Through this learning 

rule, the first spike that arrives at the output neuron j will have the highest value. Then, the 

connection weight 𝑊𝑖𝑗  will be further modified according to the spike driven synaptic 

plasticity learning rule using a drift parameter, which is used to modify 𝑊𝑖𝑗 to take into 

account the occurrence of the following spikes at neuron j at time t, denoted by 𝑠𝑝𝑖𝑘𝑒𝑗(𝑡),

i.e. if there is a spike arriving from neuron i at time t after the first one was emitted, the

connection weight increases by a small drift value; otherwise, it decreases by drift as shown 

in the following: 

𝑊𝑖𝑗(t)= {
𝑊𝑖𝑗(𝑡 − 1) + 𝑑𝑟𝑖𝑓𝑡  𝑖𝑓 𝑠𝑝𝑖𝑘𝑒𝑗(𝑡) = 1

𝑊𝑖𝑗(𝑡 − 1) − 𝑑𝑟𝑖𝑓𝑡   𝑖𝑓 𝑠𝑝𝑖𝑘𝑒𝑗(𝑡) = 0 
(3-12) 

The NeuCube classification accuracy is evaluated through cross-validation for different sets 

of parameter values and the best accuracy model is saved for recall purposes, for further 

analysis and adaptation on new data. The use of deSNN allows for a further adaptation of the 

NeuCube model on new data in an incremental way without re-training the model on old 

data. 
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3.6.5 NeuCube Parameter Optimisation  

The output classification accuracy depends on the combination of parameters’ values. This 

combination can be optimised using different algorithms, such as: grid-search (exhaustive 

search), genetic algorithm, and quantum inspired evolutionary algorithm (Schliebs & 

Kasabov, 2013). Important parameters of a NeuCube model are:  

- 𝑇𝐵𝑅𝑡ℎ𝑟: A self-adaptive bi-directional threshold for STBD encoding to spike trains. 

- d: Radius threshold for the initialisation of the SNN connectivity in small-world 

connectivity rule. 

- STDP learning rate (α): A parameter used to modify the connection weights according 

to repetitively arriving spikes to the synapses. If a neuron i fires before a neuron j, then 

its connection weight increases, otherwise it decreases with respect to the STDP learning 

rate (α).  

- (𝑇ℎ𝑜): Threshold of firing for the neurons in the SNN model. 

- deSNN classifier parameters: These parameters are: mod and drift.  

The trained NeuCube model of STBD can be dynamically visualised in a 3-D virtual reality 

space for the analysis of brain activities and for a better understanding of spatio-temporal 

relationships in the data (Kasabov, et al., 2016).  

3.7 Chapter Summary 

This chapter exposes an overview on computational models of SNNs and introduced the 

NeuCube SNN architecture for modelling STBD. A NeuCube model supports a meaningful 

mapping of spatial variables, modelling, learning and model visualising. In the NeuCube 
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architecture, the random connections in the LSM are replaced by meaningful brain-inspired 

connections and the learning procedure is based on STDP which captures the spatio-temporal 

interactions. These features make a NeuCube model meaningful in terms of its interpretation 

for a better understanding of spatio-temporal characteristics of data. The next chapter will 

demonstrate a feasibility analysis of the SNN for modelling of real-life STBD.   
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Chapter 4 SNN Feasibility Study on STBD  

4.1 Introduction  

In this chapter, I present the feasibility study of the NeuCube SNN architecture using two 

types of STBD, which are here real-life fMRI and EEG datasets. For each of these studies, I 

designed an empirical scenario which includes both pattern analysis and classification tasks. 

I constructed optimal SNN models and trained them with STBD samples. The trained models 

demonstrate the spatio-temporal interactions between the input data variables in a 

computational SNN model, rather than an exact structure of the brain’s physical neural 

connectivity. The SNN models are then used for classification of STBD samples with respect 

to different pre-defined mental activities. The models are also visualised in a 3-D space and 

statistically analysed to evaluate the level of significance. In addition, I performed a 

comparative analysis to illustrate how the designed SNN models resulted in an improvement 

of classification accuracy when compared with conventional methods.   

4.2 NeuCube Architecture for STBD Analysis 

NeuCube has been used to analyse several STBD such as EEG and fMRI to expose 

meaningful spatiotemporal patterns while different mental activities are performed. For 

examples, classifying EEG data for music versus noise perception (Kasabov, Hu, Chen, 

Scott, & Turkova, 2013); classifying EEG data with respect to different arithmetic tasks 
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(Kasabov & Capecci, 2015); classifying EEG data in relation to different levels of dementia 

(Capecci, et al., 2016; Capecci, et al., 2015); and fMRI data mapping and classifying to 

investigate how a reading task is processed in the brain (Murli, Kasabov, & Handaga, 2014).   

Now in this chapter, employing the NeuCube framework, I designed a new empirical study 

for pattern analysis and classification of STBD. The designed framework allows for 

measuring the level of confidence in the SNN models and this is accomplished according to 

the following steps (graphically illustrated in Figure 4-1):  

A) Pattern analysis: 

1. Design the experimentations. 

2. Preparation and sampling of the STBD according to the designed experiments. 

3. Encoding of the STBD into spikes. 

4. Spatial mapping of STBD into a 3-D SNN model. 

5. Unsupervised learning in SNN models, visualisation and interpretation of spiking 

activity and connectivity in the trained SNN models. 

B) Classification: 

1. Supervised learning and classification. 

2. Parameter optimisation.  

3. Statistical analysis of the SNN models. 
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Figure 4-1 A schematic representation of the NeuCube framework for STBD mapping, learning, visualising, 

and classifying. 

The above steps are performed for two feasibility studies on STBD: (1) a new study on fMRI 

data using SNN models; and (2) an SNN application on EEG data. In both studies, in order 

to evaluate the level of significance in the trained SNN models, I performed the following: 

I created one SNN model per class of data (each class contains n samples) and trained it 

through an iterative procedure of leave-one-out as follows (shown in Figure 4-2): 

1. The SNN model is initialised. 

2. The initialised SNN model is trained with (𝑛 − 1) samples (one sample is excluded from 

the training). 

3. The average of the spatio-temporal connection weights in the trained SNN model is 

computed. 

4. The hold-out sample is replaced by another sample, then go to step 1 until all the samples 

are excluded from the training set, one by one (it means that a set of SNN models are 

initialised and trained with different folds of samples). 
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Figure 4-2 Unsupervised training iterations in SNN models by the leave-one-out method. For 𝑛 samples, the 

SNN model is initialised 𝑛 times, and trained by a fold of different (𝑛 − 1) samples.  
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4.3 A New SNN Study on fMRI 

In this section, I demonstrate a new study on fMRI data modelling using SNN architecture 

by designing two experiments related to cognitive processes of reading sentences with 

different polarities and seeing pictures. These experiments include both classification and 

pattern analysis. 

The case study problem used here belongs to the STAR/PLUS fMRI data set, originally 

collected by Marcel Just and his colleagues at Carnegie Mellon University’s Center for 

Cognitive Brain Imaging (CCBI) (Just & Wang, 2001). STAR/PLUS fMRI data sets consist 

of sequences of images from the whole brain volume captured every 500 milliseconds (two 

brain images per second) whilst healthy subjects were undertaking a cognitive task. The task 

consisted of a collection of trials, each started with presenting a stimulus (picture or sentence) 

that remains on the screen for 4 seconds. Then, a blank screen appeared for another 4 seconds. 

After that, a second stimulus (picture or sentence) was presented for the next 4 seconds. 

Subjects were required to press the button ‘Yes’ or ‘No’ to identify whether the sentence 

described the picture correctly or not. Finally, each trial was followed by a 15-second resting 

period before the beginning of the next trial. Every trial was 27 seconds in length 

corresponding to 54 fMRI data points. Further information related to the experiment setting 

and stimuli, which are not explicitly discussed here, can be found from (Mitchell, et al., 

2004). More information about the fMRI scanner, and the data pre-processing is presented in 

Appendix B. In the following, I present experiments A and B:  

- Experiment A—fMRI data analysis related to reading affirmative versus negative

sentences: It relates to the modelling of fMRI data to study how different areas of the
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brain were involved in the processing of different sentence polarities. Considering that 

the hemodynamic response is slow, for each sentence stimulus that displayed on screen 

for 4 seconds, I used 8 seconds of continuous fMRI data corresponding to 16 images, 

which involve a 4-second resting gap. There were 20 samples for class 1: reading 

affirmative sentences and 20 samples for class 2: reading negative sentences. I employed 

a feature selection method to select informative voxels associated with the highly 

activated brain regions in response to a reading-related task. With respect to the selected 

features, I designed here three sessions of classification problems, each was based on 

using different fMRI voxel features. 

- Experiment B—fMRI data analysis related to seeing pictures versus reading a sentences: 

It relates to modelling fMRI data to study the voxel activity patterns generated by 

different stimuli types (picture or sentence). The fMRI data were divided into two 

partitions (class 1: a subject was seeing pictures, class 2: a subject was reading sentences). 

I prepared 40 fMRI samples for each class, so in total 80 samples were used in this 

experiment. 

For experiments A and B, the fMRI data of one subject (id: 05680) has been randomly 

selected from the STAR/PLUS website (Just & Wang, 2001). In this fMRI data, 25 

anatomical regions of interest (ROI) were defined as explained in Appendix B. 

The fMRI data dimension was defined by the x, y, and z voxel coordinates which compose a 

volume of 51×56×8 as mapped in Figure 4-4. In this dimension, 5062 voxels were recorded 

from the entire brain volume. Experimental results were illustrated here mainly for the visual 

exploration of the SNN models, but I also performed a quantitative analysis, where numerical 

information of connection weights can be obtained from the model and statistically analysed. 
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4.3.1 FMRI Feature Selection 

The brain is a complex information processing system. When fMRI data are recorded from 

the whole brain volume, considering the fact that various areas are involved for processing 

the input stimuli, this is essential for machine learning to identify the involved and activated 

voxels for the purpose of bias reduction. Therefore, as I designed my experiments with 

regards to the analysis of certain stimuli sets (pictures and sentences), I suggested that a 

feature selection needs to be employed to extract the important voxels (relevant to the 

cognitive task). In such a way I could ignore the involvement of irrelevant areas. 

To this end, I applied the signal-to-noise ratio (SNR) method to select the more vital fMRI 

voxels with a high power of discrimination between the defined classes. The name ‘signal-

to-noise ratio’ is a ‘jargon’ for a well-known statistical method that evaluates how important 

a variable is to discriminate samples belonging to different classes, one class named as 

‘signal’ and the rest as ‘noise’ (being unwanted data). For the case of the two-class problem, 

an SNR ranking for variable 𝑥 is calculated as an absolute difference between the mean value 

µ1𝑥 of the variable for class 1 and the mean µ2𝑥 of the variable for class 2, divided by the 

sum of the respective standard deviations as follows.  

  
 

𝑆𝑁𝑅𝑥 =
𝑎𝑏𝑠(µ1𝑥 − µ2𝑥)

𝑆𝑡𝑑1𝑥 + 𝑆𝑡𝑑2𝑥
 (4-1) 

Figure 4-3 illustrates the selected voxels from the fMRI data for each of the two experiments 

A and B, while Table 4-1 shows how many of these voxels belong to which region of interest 

(ROI). It can be concluded from Table 4-1 (left column) that when the subject was faced with 

different sentence polarities, the selected fMRI voxels (6 voxels) were located at Left 
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Dorsolateral Prefrontal Cortex (LDLPFC), which belongs to the middle frontal gyrus (lateral 

part of Brodmann areas 9 and 46). Table 4-1 (right column) reports about the case when the 

subject was dealing with pictures/sentences stimuli, and it shows that the more activated 

fMRI voxels belonged to Calcarine (CALC) in Brodmann area 17.    

4.3.2 FMRI Data Mapping into SNN Models 

I defined two mapping structures:  𝑀1 relates to personalised mapping of an individual fMRI 

coordinate and  𝑀2 relates to transferring an individual fMRI coordinate into the Talairach 

atlas. Figure 4-4 relates to mapping 𝑀1, which illustrates the spatial mapping of 5062 voxels 

into an SNN model. Input neurons are allocated and labelled to represent the pre-selected 

input voxels as per the selection in Table 4-1. Figure 4-5 illustrates that mapping 𝑀2 was 

used to transfer the coordinates of the pre-selected voxels and map them into an SNN model 

of 1471 spiking neurons according to the Talairach brain template.  

4.3.3 Unsupervised Learning and Pattern Visualisation in SNN Models 

In Experiment A, Figure 4-6 (a) shows the initial connections in the SNN model and Figure 

4-6(b) shows the modified connections after the STDP unsupervised learning process using 

the fMRI samples related to both affirmative and negative sentences. Figure 4-6 (b) shows 

that more and stronger connections were generated in the left hemisphere than in other areas. 

These connections were established because of more spikes transferred between the neurons 

located in these areas, reflecting the changes in the corresponding voxels. 

These findings suggested that language comprehension, including a reading task, is 

processed in several areas, and mostly observed in the Left Dorsolateral Prefrontal Cortex, 
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Broca, and Wernicke as confirmed in (Yuasa, Saito, & Mukawa, 2011). Figure 4-7 (a) shows 

the SNN model connectivity related to fMRI samples of the affirmative sentences, while 

Figure 4-7 (b) relates to the negative sentences. 

The observed connectivity from Figure 4-7 confirms that the subject performed differently 

when reading an affirmative (average connection weights=0.61) versus negative sentence 

(average connection weights=1.7). Table 4-2 represents the quantitative information about 

the averag connection weights around each input neuron (input fMRI voxel) that shows the 

differences between the trained SNN models of affirmative and negative sentences. 

It can be seen from Table 4-2 and Figure 4-7 that the connectivity was especially enhanced 

between the input neurons located in the left hemisphere of the SNN model when reading 

negative sentences. Distribution of the SNN connection weights around the input voxels 

located in the left and right hemispheres are illustrated in Appendix B, Figures B-1 and B-2.



 

       

 

 

Figure 4-3 The SNR ranking (on the y-axis) of top voxels (on the x-axis) related to (a) the affirmative versus negative sentences and (b) the pictures versus sentences. The 

top voxels were selected according to their SNR values that were greater than a threshold= 0.4.
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Table 4-1 Informative voxels are selected sing an SNR feature selection from two fMRI data sets. The voxels 

were selected due to their SNR values were higher than a threshold= 0.4. 

Activated ROIs in Affirmative vs Negative 

sentence task (number of voxels selected in Figure 
4-3 (a) that belong to each of these regions).  

Activated ROIs in Picture vs Sentence task (number of 

voxels selected in Figure 4-3 (b) that belong to each of 
these regions).  

LT (3), LOPER (3), LIPL (1), LDLPFC (6), RT (2), 
CALC (1), LSGA (1), RDLPFC (1), RSGA (1), RIT (1) 

CALC (5), ROPER (3), LT (4), LOPER (3), LSPL (1), RIPS 
(3), LPPREC (1), RT (4), LFEF (1), LDLPFC (3), RDLPFC 
(1), LIPS (2), RPPREC (1), LIT (1) 

The SNN connections in Figure 4-7 were captured when the models were trained with all of 

the 20 fMRI samples from affirmative sentences, Figure 4-7 (a), and 20 fMRI samples from 

the negative sentences, Figure 4-7 (b). Now, to evaluate the confidence of the designed SNN 

models and to investigate how the models of affirmative and negative sentences are 

statistically significant, I designed an iterative procedure of unsupervised learning through a 

leave-one-out method. As shown in Figure 4-2, at each iteration the SNN model is first 

initialised and then trained with a fold of samples in which one sample is holdout from the 

training while the rest of samples are involved. Then the average of the connection weights 

in the trained SNN model is measured. In the next iteration, the SNN model is again 

initialised and the holdout sample is replaced by another sample to form the training set. This 

procedure is terminated when all the samples were replaced by the holdout sample, one by 

one. 



 

       

 

 

 
 

Figure 4-4 The fMRI data dimension of one person is defined by the maximum value of x, y, and z coordinates of voxels that forms a volume size of 51×56×8. In this 
dimension, 5062 voxels are captured. These voxel coordinates are mapped into an SNN model. The selected top-informative voxels in Table 4-1 for each experiment are 

used as input variables and their ROIs are shown in the text boxes. (a) Affirmative versus negative sentences; (b) Pictures versus sentences. 
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(a)                                                                                                             (b) 



 

       

 

 

 

Figure 4-5 The coordinates of the top-informative voxels in Table 4-1 are transferred to the Talairach and used as input variables, shown as circles along with the ROIs (as 

text in the boxes) for (a) affirmative versus negative sentences and (b) pictures versus sentences. 
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Figure 4-6 (a) The initial connections in the SNN model; (b) The learnt connections (absolute connection weights>0.08) after STDP unsupervised learning using fMRI 

data of both affirmative and negative sentences (20 fMRI samples for affirmative sentence and 20 fMRI samples for negative sentences). The SNN models are mapped 

using the Talairach atlas with an allocation of 20 input voxels (Experiment A). 

 

 

7
0
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Figure 4-7 (a) The learnt connections (absolute connection weights>0.08)  in an SNN model when only the fMRI samples of affirmative sentences were used (20 fMRI 

samples); (b) The learnt connections in an SNN model when only the fMRI samples of negative sentences were used (20 fMRI samples). 

 

Average connection weights 0.61 Average connection weights 1.7 
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Figure 4-8 (a) Connectivity of an SNN model trained on fMRI data related to seeing pictures; (b) Connectivity 

of an SNN model trained on fMRI related to reading sentences; (c) 2-D coronal projection of the connectivity 

of the SNN model from Figure 4-8 (a); (d) 2-D coronal projection of the SNN model from Figure 4-8 (b). 

Connection weights>0.08. 

Table 4-3 reports the average of the connection weights in SNN models over 40 training 

iterations (20 samples of affirmative and 20 samples of negative classes). I applied a t-test to 

the connection weights of these iterations as reported in Appendix B, Table B-1. The 𝑝-
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value=1.3E-07 represented that the trained SNN models of affirmative and negative 

sentences are statistically significant. 

In experiment B, which relates to the fMRI data analysis of the picture versus sentence 

observation task, Figure 4-8 (a) shows the learnt connections in an SNN model using samples 

of seeing pictures and Figure 4-8 (b) relates to reading sentences. Figure 4-8 (c) and Figure 

4-8 (d) show the 2-D visualisations of the connectivity from Figure 4-8 (a) and Figure 4-8 

(b) correspondingly. After training the SNN model with the fMRI samples of seeing pictures, 

Figure 4-8 (a) and Figure 4-8 (c) represent stronger spatio-temporal connections between 

neurons located in the parts of the brain dedicated to vision, such as the Calcarine (CALC) 

region, which is located in the primary visual cortex in the Occipital Lobe (BA 17). 

On the other hand, as shown in Figure 4-8 (b) and Figure 4-8 (d), when the SNN model was 

trained with spike trains that represent fMRI data related to sentence stimuli, the connections 

were mostly enhanced in the left hemisphere, particularly, in the Broca and Wernicke areas. 

This corresponds to the studies about brain areas involved in language comprehension. Figure 

4-9 shows the SNN model connectivity after STDP unsupervised training with the use of two 

different data sets related to affirmative sentences and negative sentences. Figure 4-10 

illustrates the SNN models trained on fMRI data of seeing pictures and reading sentences. 

Figure 4-9 illustrates that stronger connections were generated between the neurons located 

in the left hemisphere, significantly in the LDLPFC region, when reading negative sentences 

instead of affirmative sentences. 



 

       

 

 

 

Figure 4-9 2-D coronal projection of the adapted connections in the SNN models after unsupervised learning with two data sets related to affirmative sentences (a) and 

negative sentences (b). The positive connections are shown in blue and negative ones in red (absolute connection weights>0.08). 
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Figure 4-10 2-D coronal projection of the adapted connections in the SNN models after unsupervised learning with two data sets related to (a) seeing  pictures and (b) 

reading sentences. The positive connections are shown in blue and negative ones in red (absolute connection weights>0.08).
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Table 4-2 Average connection weights around each input neuron in the trained SNN models from Figure 4-7 related to affirmative (A) and negative (N) sentences. The 

sum of the average connection weights across all the input neurons in each SNN model is reported in the last column. 

 LT LOPER LIPL LOPER LDLPFC LOPER LT LDLPFC RT CALC LSGA LDLPFC LT LDLPFC RT LDLPFC LDLPFC RDLPFC RSGA RIT Avg 

N 1.4 0.92 1.87 1.03 2.08 1.12 1.48 0.44 0.2 0.89 1.84 1.03 1.9 0.45 1.1 1.26 0.56 0.19 0.43 1.4 1.7 

A 0.9 0.56 1.01 0.87 1.03 0.65 0.89 0.23 0.1 0.43 1.04 0.68 1.1 0.17 0.8 0.24 0.22 0.11 0.32 0.9 0.6 

 

Table 4-3 Average connection weights of the trained SNN models for each iteration. Two SNN models were trained over 40 iterations (20 iterations for Affirmative (A) 

and 20 for negative (N) sentences) using different folds of samples. At each iteration, one sample was taken out from the training and the model was trained by the 

remaining samples. This procedure was repeated for all the 20 samples for both affirmative and negative sentences. The 𝑝-value represents that the trained SNN models 

of affirmative and negative sentences are statistically significant 

 

 

 

 
Table 4-4 Average connection weights of the trained SNN model for each iteration. Two SNN models were trained over 80 iterations (40 iterations for pictures and 40 for 

sentences) using different folds of samples. At each iteration, one sample was taken out from the training set and the model was trained by the remaining samples. This 

procedure was repeated for all the samples in both classes. The 𝑝-value represents that the trained SNN models of pictures and sentences are statistically significant. 

 Number of iterations for training the SNN models with fMRI samples from picture and sentence classes  

Picture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1.02 1.98 1.2 1.8 1.7 1.1 1 0.93 0.96 1.3 1.1 0.99 1.05 1.6 1.6 1.5 1.8 1.3 1.8 0.9  

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

1.4 1.6 1.8 1.5 1.1 0.98 1.9 1.3 1.3 1.8 1.59 0.8 0.7 0.92 1.9 1.1 1.2 0.8 0.9 1.7 
 

Sentence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.8 0.98 1.1 1.1 1.9 1.3 1.4 1.3 1.1 0.98 0.99 1.1 1 1.4 1.2 1.1 1.3 1.1 1.2 0.89 
 

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

0.78 0.98 0.7 1.2 1.6 1.7 1.3 0.9 0.9 1.1 1.3 0.9 1 1 0.89 0.79 1.1 1.1 1.2 1.3 
 

 Picture class mean: 1.32         Sentence class mean: 1.1     Picture SD: 0.3       Sentence SD:0.2          𝑝-value:0.006 

 Number of iterations for training the SNN models of fMRI samples related to affirmative and negative classes  

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1.3 0.98 1.3 1.07 0.89 1.23 1.09 1.52 1.21 1.05 1.23 1.01 0.98 1.06 1.6 1.4 1.7 1.8 1.32 1.3 
 

A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.71 0.6 1.01 1.2 0.71 0.78 0.67 0.98 0.78 1.01 0.98 0.56 0.62 0.49 0.81 0.71 0.99 0.7 0.74 0.83 
 

 Negative sentence class mean: 1.16   Affirmative sentence class  mean: 0.73   Negative sentence SD: 0.25     Affirmative sentence  SD: 0.18    𝑝-value=1.3E-07 
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On the other hand, Figure 4-10 shows that visual areas were more activated than other areas 

when seeing pictures. The SNN models were trained several times using different folds of 

the data (leave-one-out method as shown in Figure 4-2). To evaluate how the trained SNN 

models were statistically significant, I applied a t-test as reported in Table 4-2 , Table 4-3 

and Table 4-4. 

4.3.4 Classification in SNN Models 

The classification task was performed using a Leave-one-out Cross Validation (LOOCV) 

method. In this method, only one sample is picked up as the test set and a model is built using 

all the remaining samples (training set). Then the trained model is tested using the single 

holdout sample. The final classification accuracy is obtained by repeating this procedure for 

each of the samples and averaging the results. For optimisation, I performed an exhaustive 

grid-search on combinations of parameters for every sample model, as explained in Appendix 

B, Table B-2. The performance of the classifier was measured using the 𝐹𝑆𝑐𝑜𝑟𝑒 to evaluate 

the test’s accuracy, as explained in Appendix C, Section C.7. 

Table 4-5 summarises the fMRI data classification accuracy of the affirmative sentence class 

versus negative sentence class obtained through three sessions (different voxel features were 

selected as represented in Table 4-1). The results were also compared with results obtained 

using conventional machine learning methods. The methods that I used for comparison were: 

SVM, MLR, MLP and Evolving Clustering Method (ECM). I also compared them with the 

results obtained by Behroozi in (Behroozi & Daliri, 2014) that employed SVM method for 

classification of the fMRI samples. It can be seen from Table 4-5  that the designed SNN 

models achieved better classification accuracy when compared with conventional methods. 

Table 4-6 represents the classification accuracy of picture versus sentence classes obtained 
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using the designed SNN models and conventional machine learning methods. In both 

experiments A and B, the SNN models leant the fMRI patterns from sets of streaming spatio-

temporal data over time. In contrast, the same fMRI data were learnt in the conventional 

machine learning methods as vector-based data, where vectors were formed through the 

concatenating of temporal frames. 

Table 4-5 Classification accuracy of the affirmative sentences (class C1) versus negative sentences (class C2) 

via an SNN model using the LOOCV method. The results of conventional machine learning methods along 

with the SVM classification results from (Behroozi & Daliri, 2014) are also reported. The experiment is done 

on a total number of 40 samples (20 samples per class).  

Method Sessions and selected voxels for classification C1 

(Affirm) 

C2 

(Negat) 

Average  𝑭𝑺𝒄𝒐𝒓𝒆  

 

NeuCube 
Session I: 20 voxels selected from Table 4-1 

(left column) 

85.00 95.00 90.00 88.00 

Session II: 20 pre-selected voxels from RDLPFC 
region 

85.00 80.00 82.50 84.00 

Session III: 20 pre-selected voxels from LDLPFC 
region 

90.00 85.00 87.50 84.00 

SVM results  

obtained in 

(Behroozi & 

Daliri, 2014) 

Session I: classification based on the LDLPFC’s 
voxels 

64.00 68.00 66.00 — 

Session II: classification based on the RDLPFC’s 
voxels 

65.00 69.00 67.00 —  

SVM SVM Kernal: Polynomial, Degree, Gamma, N/A : 1 70.00 75.00 
 

73.00 71.00 

MLP Number of Hidden Units=180, Number of Training 
Cycles=600, 
Output Activation Function- linear.  

 
75.00 

 
65.00 

 
70.00 

 
71.00 

ECM Maximum Field Radius=2; Minimum Field 
Radius=0.01, M of N=3,  

65.00 70.00 70.00 67.00 

MLR Class Performance Variance=0.26 65.00 60.00 63.00 65.00 

Table 4-6 Classification accuracy of pictures (class C1) versus sentences (class C2) obtained via an SNN model 

using the LOOCV method. The results of the conventional machine learning methods are also reported. The 

experiment is done on a total number of 80 samples (40 samples per class). 

Classification accuracy results from NeuCube-based model Accuracy 

Method Session and selected voxels for classification C1 

(Pic) 

C2 

(Sen) 

Average 𝐹𝑆𝑐𝑜𝑟𝑒 

NeuCube Session I: 33 voxels selected from Table 4-1 (right 

column) 

95.00 90.00 92.00 90.00 

Classification results from conventional machine learning methods 

SVM SVM Kernal: Polynomial, Degree, Gamma, N/A:1 85.00 85.00 85.00 85.00 

MLP Number of Hidden Units: 304, Number of Training 
Cycles: 300 
Output Activation Function: linear 

75.00 77.00 76.00 75.00 

ECM Maximum Field R.=1; Minimum Field R.=0.01; M of N= 
3 

82.00 72.00 77.00 79.00 

MLR Class Performance Variance: 0.13 75.00 62.00 68.00 71.00 
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4.4 SNN Application on EEG 

Employing the NeuCube framework for EEG, I designed three sessions of experiments, each 

includes both classification and pattern analysis as explained in Section 4.2. The EEG data 

were recorded via 26 EEG channels: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, CP3, CPz, 

CP4, FC3, FCz, FC4, T3, T4, T5, T6, Pz, P3, P4, O1, O2, and Oz electrode sites (10-20 

International System) whilst participants performed a cognitive GO/ NOGO task. The EEG 

data were recorded from 70 participants in three groups as follows: 

(a) The Methadone Maintenance Treatment (MMT) group containing 31 subjects (17 male, 

14 female) with a mean age of 39.36, standard deviation (SD)=5.14, was recruited by 

recommendations from the case managers of Auckland Community Alcohol Drug Services 

(CADS), New Zealand. The current methadone dose was 70.86 (SD=40.61; range 8−180) 

mg/day.  

(b) The Opiate users (OP) group containing 18 subjects (11 male, 7 female) with a mean age 

of 37.38 (SD=7.44), was recruited from the Auckland Drug Information Outreach (ADIO) 

Trust Needle Exchange Services.  

(c) The Healthy control (H) group containing 21 subjects (11 male, 10 female) with a mean 

age of 36.12 (SD=6.61), was recruited by advertisements (notices posted on notice boards) 

distributed in a range of local communities, such as the public library, shopping mall, cafes, 

or by word of mouth. The designed cognitive task was as follows: 

During the GO/NOGO task, participants were repeatedly presented with the word ‘PRESS’, 

which appeared randomly either in red or green.  They were instructed to press a button in 

response to the green ‘PRESS’ (GO) and not respond to the red ‘PRESS’ (NOGO). Further 
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information about the GO/NOGO task, EEG data recording, participants and demographic 

and clinical measures are presented in Appendix C. In order to analyse the EEG data, I 

designed three experimental sessions on the recorded data, each of which investigated 

different EEG epochs as follows: 

- Session I:  I prepared six EEG sample files, each containing EEG epochs measured from 

one group (MMT/ OP/ H subjects) per cognitive task (GO versus NOGO). Then each 

sample file was entered separately into the SNN model to capture the differences between 

the brain activity patterns of different groups of participants performing GO versus 

NOGO responses. 

- Session II: I only studied the EEG epochs related to the GO trials to compare the brain 

activity patterns of different groups when performing the same cognitive task.  

- Session III: I only studied the EEG epochs related to the NOGO trials as these trials are 

of common interest in studies on response inhibition.   

The organisation of the EEG samples, as used for each of these sessions, is presented in Table 

4-7.   

4.4.1 Pattern Analysis in SNN Models  

To evaluate how the SNN models can capture different patterns when they are trained by 

different classes of data, I visualised them and statistically analysed their spatio-temporal 

connectivity. Figure 4-11 illustrates the connectivity in SNN models, each was trained by 

one-fold EEG data (20 samples as the training set when one sample was holdout) from H 

group in both GO and NOGO. It can be seen from Figure 4-11 that the average connection 

weights in the trained SNN model of H subjects was smaller in NOGO trials (0.06) when the 
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response had to be withheld in comparison with GO trials (0.1) when the response was 

required. Figure 4-12 and Figure 4-13 illustrate the SNN models trained with one-fold EEG 

data respectively from MMT and OP groups related to GO and NOGO trials. For both MMT 

and OP subjects, the average connection weights induced by the NOGO trials (0.21 and 0.17 

respectively) were greater than those induced by the GO trials (0.1 and 0.08 respectively). 

As can be seen from Figure 4-11 to Figure 4-13, the SNN models were trained by only one-

fold EEG data as the training set. Now, in order to evaluate the level of confidence for the 

models, Table 4-8 to Table 4-10 report the average connection weights of the SNN models 

that were trained over a number of iterations using different folds of the EEG samples (leave-

one-out method). Table 4-8 shows that the SNN models of H subjects were trained over 42 

iterations (21 iterations per class: GO and NOGO) using different folds of samples. At each 

iteration, one sample was holdout, then the model was trained using the remaining samples. 
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Table 4-7 EEG data sets for the three experimental sessions to compare the brain activity patterns of the H, 

MMT, and OP subjects in a GO/NOGO task. Due to the quality of the data, some participants’ data were omitted 

from the experimental sessions. 

Session I:  EEG data sample files for GO versus NOGO classification 

classifications Samples per class EEG sample file size 

 
GO trials class (68 participants) 

21 Healthy subjects 
18 OP subjects 
29 MMT subjects 

75 EEG time points * 26 channels * 21 samples 
75 EEG time points * 26 channels * 18 samples 
75 EEG time points * 26 channels * 29 samples 

NOGO trials class (70 participants) 21 Healthy subjects  
18 OP subjects 
31 MMT subjects 

75 EEG time points * 26 channels * 21 samples 
75 EEG time points * 26 channels * 18 samples 
75 EEG time points * 26 channels * 31 samples 

Session II: EEG data sample files captured during GO trials 

MMT class vs H class (50 
participants) 

29 MMT subjects (class 1) 
21 Healthy subjects (class 2) 

75 EEG time points *26 channels *50 samples 

OP class vs  H class (39 participants) 18 Opiate subjects (class 1) 
21 Healthy subjects (class2) 

75 EEG time points *26 channels *39 samples 

MMT class vs OP class (47 
participants) 

29 MMT subjects (class 1) 
18 Opiate subjects (class 2) 

75 EEG time points *26 channels *47 samples 

Session III: EEG data sample files captured during NOGO trials 

MMT class vs H class (52 
participants) 

31 MMT subjects (class 1) 
21 Healthy subjects (class 2) 

75 EEG time points *26 channels *52 samples 

OP class vs  H class (39 participants) 18 OP subjects (class 1) 
21 Healthy subjects (class2) 

75 EEG time points *26 channels *39 samples 

MMT class vs OP class (49 
participants) 

31 MMT subjects (class 1) 
18 OP subjects (class 2) 

75 EEG time points *26 channels *49 samples 

This procedure was repeated for all the 21 samples in both GO and NOGO (42 training 

iterations in total). Table 4-9 is related to MMT group and that shows the SNN models were 

trained over 60 iterations (29 iterations for class GO and 31 iterations for class NOGO) using 

different folds of samples. Table 4-10 is related to OP group and that shows the SNN models 

were trained over 36 iterations (18 iterations for each class GO and NOGO) using different 

folds of samples. 

To evaluate how the SNN models of GO and NOGO were statistically significant, I applied 

a t-test to the average connection weights at each of the training iterations. The corresponding 

𝑝-values are reported in the tables. The 𝑝-value in all the experimental sessions is less than 

0.05, which shows that the results are statistically significant with a high confidence, greater 

than 99%. Further quantitative information about the interactions between the EEG variables 

in the SNN models during STDP learning is presented in Appendix C, Section C.6. 



 

 

83 

 

4.4.2 Classification in SNN Models 

The classification task was performed using the LOOCV method. The performance of the 

classifier (reported in Table 4-11) was measured using the 𝐹𝑆𝑐𝑜𝑟𝑒 (explained in Appendix C, 

Section C.7). For optimisation, I performed an exhaustive grid-search model as explained in 

Appendix C, Section C.8. 

Table 4-12 presents the classification accuracy obtained using other machine learning 

methods, which are still being actively used in literature for classification of STBD. The 

methods used for comparison were: SVM and MLP. The classification accuracy results of 

these methods are reported in Table 4-12. The parameter optimisation procedure and EEG 

data preparation for the conventional classifiers are presented in Appendix C, Section C.9.  
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Figure 4-11 Visualisation of the SNN model connectivity of the H group (absolute connection weights>0.08) 

after the STDP learning with EEG data of 26 features (channels) for GO and NOGO trials. The average of the 

connection weights in each trained SNN model is also presented. The blue lines are positive (excitatory) 

connections, while the red lines are negative (inhibitory) connections. The thickness of the lines identifies the 

weight of the connection. The 1471 neurons of the SNN model are spatially mapped according to the Talairach 

atlas (Koessler, et al., 2009). The SNN models are visualised in 3-D (top) and 2-D coronal projection (bottom).  
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Figure 4-12 Visualisation of the SNN model connectivity of the MMT group (absolute connection 

weights>0.08) after the STDP learning with EEG data of 26 features (channels) for GO and NOGO trials. The 

average of the connection weights in each trained SNN model is also presented. The blue lines are positive 

(excitatory) connections, while the red lines are negative (inhibitory) connections. The thickness of the lines 

identifies the weight of the connection. The 1471 neurons of the SNN model are spatially mapped according to 

the Talairach atlas (Koessler, et al., 2009). The SNN models are visualised in 3-D (top) and 2-D coronal 

projection (bottom). 
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Figure 4-13 Visualisation of the SNN model connectivity of the OP group (absolute connection weights>0.08) 

after the STDP learning with EEG data of 26 features (channels) for GO and NOGO trials. The average of the 

connection weights in each trained SNN model is also presented. The blue lines are positive (excitatory) 
connections, while the red lines are negative (inhibitory) connections. The thickness of the lines identifies the 

weight of the connection. The 1471 neurons of the SNN model are spatially mapped according to the Talairach 

atlas (Koessler, et al., 2009). The SNN models are visualised in 3-D (top) and 2-D coronal projection (bottom). 
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Table 4-8 Average connection weights of the SNN models trained over 42 iterations (21 iterations for class GO and 21 for class NOGO) using different folds of samples. 

At each iteration, one sample was taken out and the model was trained by the remaining samples. This procedure was repeated for all the 21 samples in both GO and 

NOGO. The 𝑝-value represents that the trained SNN models of GO and NOGO are statistically significant with a high confidence, greater than 99%. 

 Number of iterations for training the SNN models of H groups in GO and NOGO classes  

GO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

0.11 0.011 0.11 0.09 0.089 0.098 0.11 0.1 0.11 0.06 0.12 0.11 0.11 0.09 0.08 0.091 0.1 0.1 0.1 0.09 0.08 
 

NG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

0.06 0.08 0.07 0.01 0.09 0.07 0.08 0.06 0.08 0.07 0.08 0.07 0.08 0.09 0.08 0.06 0.06 0.06 0.06 0.09 0.08 
 

 GO mean: 0.09   NOGO  mean: 0.07   GO SD: 0.02     NOGO SD: 0.01    𝑝-value=0.002   

Table 4-9 Average connection weights of the SNN models trained over 60 iterations (29 iterations for class GO and 31 iterations for class NOGO) using different folds of 

samples. At each iteration, one sample was taken out and the model was trained by the remaining samples. This procedure was repeated for all the samples in both GO and 

NOGO. The 𝑝-value represents that the trained SNN models of GO and NOGO are statistically significant with a high confidence, greater than 99%. 

 Number of iterations for training the SNN models of MMT groups in GO and NOGO classes  

GO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0.1 0.19 0.19 0.12 0.18 0.1 0.19 0.18 0.19 0.19 0.107 0.1 0.18 0.1 0.1 

16 17 18 19 20 21 22 23 24 25 26 27 28 29  

0.18 0.19 0.1 0.1 0.19 0.17 0.19 0.18 0.18 0.17 0.19 0.19 0.19 0.15  
 

NG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0.21 0.11 0.18 0.1 0.2 0.12 0.27 0.18 0.19 0.19 0.24 0.27 0.12 0.2 0.19 0.21 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  

0.16 0.18 0.2 0.27 0.23 0.24 0.19 0.19 0.18 0.19 0.19 0.24 0.23 0.18 0.19  
 

 GO mean: 0.15   NOGO  mean: 0.19    GO SD: 0.03     NOGO SD: 0.04    𝑝-value=0.001   

Table 4-10 Average connection weights of the SNN models trained over 36 iterations (18 iterations for class GO and 18 for class NOGO) using different folds of samples. 

At each iteration, one sample was taken out and the model was trained by the remaining samples. This procedure was repeated for all the samples in both GO and NOGO. 

The 𝑝-value represents that the trained SNN models of GO and NOGO are statistically significant with a high confidence, greater than 99%. 

 Number of iterations for training the SNN models of OP groups in GO and NOGO classes  

GO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0.08 0.07 0.12 0.07 0.15 0.08 0.1 0.09 0.09 0.12 0.1 0.07 0.06 0.09 0.07 0.05 0.05 0.07 
 

NG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

0.17 0.2 0.24 0.19 0.12 0.09 0.8 0.12 0.07 0.18 0.17 0.2 0.2 0.15 0.12 0.9 0.9 0.13 
 

 GO mean: 0.08   NOGO  mean: 0.27   GO SD: 0.03     NOGO SD: 0.28    𝑝-value=0.009   

8
7
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Table 4-11 The EEG data classification accuracy (in %) using the LOOCV method. Correctly classified samples 

are shown on the diagonal of the confusion matrix, shown in bold.  

Healthy control subjects (H), MMT subjects (M), Opiate subjects (OP)   

 Classes Accuracy 

(average)  

Confusion table Testing samples 

per class 

Precision 

and recall 
𝐹𝑆𝑐𝑜𝑟𝑒  

S
es

si
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n
 I

: 
G
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 v

s.
 N

O
 c

la
ss
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ic

at
io

n
 H in Go vs 

NOGO 
 
90.47 

 GO NOGO 21 H samples in GO  
21 H samples in 
NOGO  

P=0.95 
R=0.86 

0.90 

GO 20 1  

NOGO 3 18 

 

MMT in 
Go vs 
NOGO  

 
83.20 

 GO NOGO 29 MMT samples in 
GO 
31 MMT samples in 

NOGO  

P=0.79 
R=0.85 

0.82 

GO 23 6 

NOGO 4 27 

   

OP in GO 
vs NOGO 

 
83.33 

 GO NOGO 18 OP samples in 
GO  
18 OP samples in 
NOGO  

P=0.67 
R=1.00 

0.8 

GO 12 6 

NOGO 0 18 

 

S
es

si
o
n
 I

I:
 O

P
, 

M
M

T
, 

C
O

 

cl
as

si
fi

ca
ti

o
n
 i

n
 G

O
 

MMT vs 
H subjects 

 
72.57 

 MMT H 21 H samples 
29 MMT samples 

P=0.69 
R=0.8 

0.74 

MMT 20 9 

H 5 16 

 

OP vs H 
subjects  

 
83.33 

 OP H 18 OP samples  
21 H samples  

P=0.68 
R=1.0 

0.8 

OP 12 6 

H 0 21 

 

MMT vs 
OP 
subjects 

 
73.27 

 MMT OP 29 MMT samples  
18 OP samples  

P=0.97 
R=0.76 

0.85 

MMT 28 1 

OP 9 9 
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O
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MMT vs 
H subjects 

 
84.79 

 MMT H 31 MMT samples 
21 H samples 

P=0.84 
R=0.90 

0.87 

MMT 26 5 

H 3 18 

   

OP vs H 
subjects 

 
92.85 

 OP H 21 H samples 
18 OP samples 

P=1.0 
R=0.86 

0.92 

OP 18 0 

H 3 18 

 

MMT vs 
OP 
subjects 

 
83.87 

 MMT OP 31 MMT samples 
18 OP samples 

P=0.87 
R=0.89 

0.9 

MMT 27 4 

OP 2 16 

Table 4-12 The EEG data classification in conventional methods using the LOOCV method. The optimal 

parameter setting is reported in Appendix C, Tables C-12 and C-13. 

Healthy control subjects (H), Opiate subjects (OP), Accuracy is reported in % 

Sessions Classification SVM MLP 

Session I: 

GO vs. NOGO classification 

H in GO vs. NOGO 65.00 70.00 

MMT in Go vs. NOGO 63.00 69.00 

OP in GO vs. NOGO 67.00 60.00 

 

Session II:  
OP, MMT, H classification in GO 

MMT vs. H subjects 70.00 76.00 

OP vs. H subjects  68.00 78.00 

MMT vs. OP subjects 67.00 63.00 

R
ea

l 

Predicted 



 

 

89 

 

 

Session III:  
OP, MMT, H classification in NOGO 

MMT vs. H subjects 63.00 77.00 

Op vs. H subjects 73.00 73.00 

MMT vs. OP subjects 63.00 61.00 

4.5 Chapter Summary 

In this chapter, I presented the feasibility analysis of the NeuCube SNN architecture using 

two cognitive STBD. This procedure included: spatial mapping of the STBD into a 3-D SNN 

model, unsupervised STDP learning, SNN model visualisation for a better understanding of 

the spatio-temporal interactions between the variables, supervised learning in the deSNN 

classifier, parameter optimisation, and model validation. Some of the key findings of this 

chapter are as follows:  

a. An average improvement of the classification accuracy by 20% when compared with 

some other machine learning methods. 

b. Improved understanding and interpretation of the interactions between the STBD 

variables, in a 3-D brain-inspired model.  

c. In the case of fMRI data, the findings confirm that the trained spatio-temporal 

connections in the SNN models are compatible with neuroscience literature, which 

reported that comprehension of negative sentences is cognitively different from 

affirmative sentences. Containing negative words, such as “not,” in the middle of a 

sentence can make it more difficult to comprehend, due to its more complex structure. 

Therefore, this type of sentence may engage more regions of the brain (Christensen, 

2009). More detailed analysis on the connectivity related to the task can be performed 

by neuroscientists to answer different research questions. 
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d. In the case of EEG data, the trained SNN model of H subjects was significantly different 

from people with a history of opiate dependence. The differences appeared less 

pronounced in people undertaking MMT compared to those who were current opiate 

users. 

It can be seen from the results that the SNN models outperformed the conventional methods 

in terms of STBD classification accuracy. In addition to this, interpretability in machine 

learning is of crucial importance. This allows for understanding the relationship between 

features and the predicted values. Therefore, the model does not act as a black-box 

information processing system, but as an interpretable model that demonstrates what 

interactions between the features have triggered the output. Now the question is: how the 

SNN models can be further investigated for knowledge discovery in such dynamic learning 

patterns that evolve over time? Since clustering is an approach for the detection of 

relationships and structure in data, in the next chapter I propose a new spatio-temporal 

clustering in SNN model to study its incremental learning patterns. This will lead to the 

model interpretability. 
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4.6 Contribution 

In this chapter, I have made the following contributions: 

 

 

--------------------------------------------------------------------------------------------- 

1. I designed the feasibility study of the NeuCube SNN architecture on fMRI 

and EEG datasets. 

 

a. In the case of fMRI data, I selected the informative fMRI voxels.  

b. I modelled the fMRI data using two spatial mapping structures. 

c. I improved the classification accuracy. 

 

2. I conducted statistical analysis of the SNN results. 

3. I conducted experiments for parameter optimisation. 

4. I published parts of the fMRI study in one conference paper as the leading 

author and in one journal paper as the corresponding author. 

5. I published parts of the EEG study as a leading author in an international 

journal. This paper is a multidisciplinary research which involves 

researchers from psychology department at AUT and University of 

Auckland who have conducted the EEG data recording and pre-

processing. From a computational point of view, I designed the research 

protocol, specified for EEG data, performed the empirical study and 

analysed the results. 

 

Kasabov, N. K., Doborjeh, M. G., & Doborjeh, Z. G. (2017). Mapping, 

learning, visualization, classification, and understanding of fMRI data in 

the NeuCube evolving spatiotemporal data machine of spiking neural 

networks. IEEE Transactions on Neural Networks and Learning Systems, 

28(4), 887-899. 

 

Doborjeh, M. G., Wang, G. Y., Kasabov, N. K., Kydd, R., & Russell, B. 

(2016). A spiking neural network methodology and system for learning 

and comparative analysis of EEG data from healthy versus addiction 

treated versus addiction not treated subjects. IEEE Transactions on 

Biomedical Engineering, 63(9), 1830-1841.   

 

Doborjeh, M. G., Capecci, E., & Kasabov, N. (2014). Classification and 

segmentation of fMRI spatio-temporal brain data with a NeuCube 

evolving spiking neural network model. IEEE Symposium on Evolving 

and Autonomous Learning Systems (EALS), 73-80. 
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Chapter 5 A New Spatio-temporal Clustering of 

SNN Patterns 

5.1 Introduction  

In the previous chapter, I have shown that complex spatio-temporal patterns were adapted in 

the recurrent SNN models while learning from STBD streams. In this chapter, I propose a 

new clustering method to interpret such spatio-temporal patterns (dynamic learning 

behaviour), which carried out meaningful information to the classifier. This clustering 

approach is a technique for knowledge discovery in SNN architecture, which resulted in a 

better understanding of the relationship between features and output. This also allowed for 

detecting the SNN abstraction, which resembles deep-learning methods. 

Clustering is considered as a main approach in data mining, pattern recognition, and 

knowledge discovery. This aims to objectively organise data samples into homogeneous 

groups, where the data samples within a group are similar. The following classes of clustering 

methods for static vector-based data are distinguished:  

a) Clustering of vector-based data, where the number of clusters is pre-defined (such as 

C-means and K-means methods as discussed in Chapter 2, Section 2.5.2). 

b) Clustering of time-series data, where the number of the time points are fixed and the 

time series are represented as vectors, applying the above methods (such as SOM and 

Biclustering as discussed in Chapter 2, Section 2.5.2). 

c) Dynamic evolving clustering methods, where a stream of vectors is clustered 

incrementally without pre-defining the number of clusters. 
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Category (c) from the above refers to adding the time dimension to clustering configuration 

which devises dynamic clusters. It is in contrast to instant clustering of an entire data space 

in categories (a) and (b), as dynamic evolving clustering attempts to create incremental 

clusters of streaming data which continuously evolve with time. In the extant real-life 

applications, there is a growing demand for models that can dynamically process the time-

dependant data streams. To model such dynamics in data, evolving systems (Angelov, Filev, 

& Kasabov, 2010) have been proposed to reflect the data changes over time through evolving 

new models and updating them incrementally. 

A known sub-field of evolving systems is the Evolving Cluster Model (ECM) that develops 

unsupervised evolving clusters on data streams (Bifet, Holmes, Kirkby, & Pfahringer, 2010). 

At each time, ECM receives one static vector-based sample and finds its best fit cluster. As 

the data steam progresses over time, ECM may manifest a cluster fusion problem which 

refers to merging two distinct clusters due to new samples filling their intervening gap. The 

overlapping clusters were handled by the concept of fuzzy rules as developed in an evolving 

fuzzy system (Lughofer , Bouchot, & Shaker, 2011). Lughofer (Lughofer E. , 2012) proposed 

a new split-and-merge method to overcome the fusion problem in conventional ECM. This 

method detects the temporal changes by an incremental learning and the entropy suggested 

a perfect estimation of border lines.  

Many other dynamic evolving clustering methods have been proposed in the literature 

including: ESOM (Deng & Kasabov, 2000), DENFIS (Kasabov & Song, 2002), EFuNN 

(Kasabov, 1998) and evolving framework (Aggarwal, 2003). These methods have 

successfully discovered the temporal changes in data streams. However, when dealing with 

STBD where both time and space information need to be preserved and learnt together, the 
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current evolving clustering methods do not integrate the spatial and temporal components. 

They often transpose the temporal information into static vectors, where the time is hidden, 

and no spatio-temporal interaction can be learnt. In some approaches, such as SOMs, the 

spatial information is topologically preserved in the map, but not considered in the 

computation. 

Therefore, the current methods need to significantly advance the similarity/distance measures 

with respect to the spatio-temporal characteristics of STBD. While dynamic evolving 

clustering of static (vector-based) data has been well explored, dynamic evolving spatio-

temporal clustering has been little researched if at all, especially when patterns of changes 

(events) in the data across space and time have to be learnt. In principle, spatio-temporal 

clustering methods can be classified into the following groups:   

1) Two-tier clustering of the data: according to the spatial information, and separately 

according to the temporal information (Aggarwal, 2003).  In such a way, the integrated 

spatio-temporal similarity cannot be measured. 

2) Integrated clustering of both spatial and temporal information (the case in this chapter). 

3) In case of both static and spatio-temporal data are available, clustering of the integrated 

static and temporal information first, and then the spatio-temporal information. This can 

be applied for personalised modelling (will be presented in Chapter 7). 

Furthermore, the current evolving clustering methods are proposed for investigating the 

relationship in the raw data space through incremental learning, but without investigating 

the model learning patterns itself. Therefore, they act as black-box information processing 

systems that solve the problems without discovering the meaningful interactive patterns in 
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the models that have triggered the outputs. Knowledge discovery in deep-learning patterns 

generated during the learning time, in an unsupervised mode, from spatio-temporal data 

streams is of crucial importance for the interpretability. To address this, I suggest dynamic 

spatio-temporal clustering of the incremental learning patterns is a promising technique to 

detect meaningful interactions between the features and outputs. Therefore, in this chapter I 

propose a new model-based clustering method that adds two new features to the current 

evolving clustering approaches: 

• Measuring the integrated spatio-temporal similarity in a brain-inspired model, during 

incremental learning with STBD streams. 

• Knowledge discovery in dynamic learning behaviour in recurrent SNN models. 

Compared to the current evolving clustering methods that perform a direct clustering of data, 

the proposed approach in this chapter is for clustering of a model that is being created to learn 

and capture the essential characteristics of interest from the data. This chapter is structured 

as follows: Section 5.2 introduces a new spatio-temporal clustering of SNN evolutionary 

learning patterns. Section 5.3 represents a validity measure for this clustering configuration.  

5.2 Clustering of SNN Evolutionary Patterns    

This research contributes to the NeuCube with a new dynamic spatio-temporal clustering 

method in SNN models while learning form streaming data. The proposed method contains 

procedures for encoding the spatio-temporal data into spikes and for creating dynamic 

clusters of spiking neurons in a 3-D SNN model, both in space and time. In contrast to 

conventional clustering techniques, which are based on either spatial or temporal components 
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(Kohonen, 1998; Kasabov, 1998; Deboeck & Kohonen, 2013; Kasabov, 2007), this method 

is based on integrated spatial and temporal measures. The main objective is knowledge 

discovery in the SNN model by detecting similar spatio-temporal patterns of changes (while 

streaming data), which are dynamically adapted with respect to the interactions between input 

neurons. This method results in a better interpretation of interactions between features. This 

is based on unsupervised learning in the SNN architecture as shown graphically in Figure 

5-1.   

5.2.1 Spatio-temporal Clustering Schema 

In this method, the cluster centres are predefined by the spatial locations of the data sources 

used as input variables (e.g. EEG channels). During unsupervised STDP learning in the SNN 

model, spikes are transmitted between neurons that cause modifications of the connection 

weights. The more spikes are transmitted between two neurons i and j, the stronger the 

connection (𝑤𝑖𝑗) becomes between them, where 𝑤𝑖𝑗  denotes the weight specifying the 

connection strength. During the clustering procedure, each neuron can be assigned to 

different clusters (input variables) with different membership values. This membership is 

defined with respect to the number of spikes that a neuron receives from each of the inputs. 

A neuron belongs to a cluster that has received the most spikes from this input when 

compared with other inputs.   
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Figure 5-1 A block diagram of the dynamic spatio-temporal clustering method using SNN. 

In an SNN model with 𝑁 neurons, the input neurons are allocated to the cluster centres and 

labelled by the input variables. The rest of the neuros are unlabelled. The goal is to assign 

the cluster labels to the unlabelled neurons in the SNN model. To this end, I have used the 

concept of spreading activation from (Zhou, Bousquet, Lal, & Weston, 2004) and performed 

as follows: 

The neurons in the SNN model are indexed from 1 to N ascendingly according to the order 

of their (x, y, z) coordinates. The input neurons are marked as the information source and 

defined using an 𝑁 × 𝑣 matrix 𝐹𝑠𝑟𝑐 in which 𝐹𝑠𝑟𝑐(𝑖, 𝑗) = 1 if neuron i is the input neuron for 

variable j; otherwise 𝐹𝑠𝑟𝑐(𝑖, 𝑗) = 0, where N is the number of neurons in the SNN model and 

𝑣 is the number of input variables (e.g. EEG channels). While streaming sets of spatio-

temporal data, each neuron in the SNN model receives a different ratio of information from 

different input variables. The ratio of the received information can be computed through the 

following steps: 

End 
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1 An affinity 𝑁 × 𝑁 matrix 𝐴 is defined on the SNN model that displays the sum of the 

spikes that are exchanged between neurons i and j (𝑖 = 1, … , 𝑁  and 𝑗 = 1, … , 𝑁) via 

connection 𝑤𝑖𝑗 . The amount of information that are exchanged between the neurons is 

computed as follows: 

{
𝑨′

𝒊𝒋 = 𝑨𝒊𝒋 + 𝑨𝒋𝒊         𝒊 ≠ 𝒋

𝑨′
𝒊𝒋 = 𝟎                        𝒊 = 𝒋

 

(5-1) 

where the element 𝐴𝑖𝑗  displays the number of spikes transmitted from neuron i to j, 

while 𝐴𝑗𝑖   indicates the number of spikes transmitted from neuron j to i. Since a 

neuron does not send a spike to itself, the entry for 𝐴 𝑖𝑗 is 0 when 𝑖 = 𝑗. 

𝑻𝒊 = ∑ 𝑨′𝒊𝒋       𝒊 = 𝟏 𝒕𝒐 𝑵

𝑵

𝒋=𝟏

 

(5-2) 

 

Thus, 𝑇𝑖 is the sum of the elements in the 𝑖𝑡ℎ row of matrix 𝐴′. Then the affinity matrix 

𝐴 is normalised using 𝑆 = 𝐷 𝐴 𝐷, where 𝐷 is an 𝑁 × 𝑁 diagonal matrix, where its 

(𝑖, 𝑖)-element is defined by 𝐷𝑖𝑖 = (
1

√𝑇𝑖
) and S is an 𝑁 × 𝑁 normalised matrix that 

encodes the spike propagation in the SNN model. 

2 Iterate 𝐹(𝑡 + 1) = 𝛼𝑆𝐹(𝑡) + (1 − 𝛼)𝐹𝑠𝑟𝑐 until it converges, where  𝛼 parameter is in 

the (0, 1) range. The limit of 𝐹(𝑡) is denoted by 𝐹∗ = lim
𝑡→∞

𝐹(𝑡) = (𝐼 − 𝛼𝑆)−1 𝐹𝑠𝑟𝑐 , 

where 𝐼 is an identity matrix. The output  𝐹∗ has 𝑁 rows (representing all neurons in the 

SNN model) and 𝑣 columns (representing the input variables). 
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The element  𝐹∗
𝑖𝑗  represents the relative information amount that a neuron 𝑖 in the SNN 

model receives from an input neuron 𝑗. By computing the 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1,…𝑣  𝐹∗
𝑖𝑗, the neurons 

in the SNN model are classified into different input variables. This results in clustering the 

neurons into 𝑣 inputs. This procedure can be better understood as follows: 

In an SNN model, the input information is propagated from input neurons (sources of 

information) to other neurons. At the beginning of the STDP learning in the SNN model, 

only the input neurons (centroids of the clusters) have received the information ( 𝐹∗ = 𝐹𝑠𝑟𝑐). 

When the learning procedure increments with sets of spatio-temporal streams over time, the 

other neurons will also receive a ratio of information from one or more input neurons. 

Therefore, neurons are being clustered with respect to the amount of information that receive 

from each of the inputs. In such a way, neural clusters are created and evolved over time in 

an incremental way during STDP learning.    

The dynamic visualisation of the clusters captures the time in which a cluster is created, and 

it demonstrates how this cluster is changed over time. Such created clusters are 3-dimensional 

and have different shapes. The size and the formation-time of a cluster represents the 

importance of the cluster centre in the trained SNN model and therefore, the importance of 

the corresponding input variable in the STBD. The proposed dynamic spatio-temporal 

clustering algorithm is given in Table 5-1. 

Table 5-1 The dynamic spatio-temporal clustering algorithm, called at each time point t of the STDP learning. 

Algorithm 1: Dynamic Spatio-temporal Clustering   

Input:  Input spike data sp, number of neurons in the SNN model N, number of input variables 𝒗, 

connection weights 𝒘[𝑵, 𝑵], and parameter α. 

Output: A vector of labelled neurons k 

 

1: Procedure  

2: [L V]= size(sp) 

3: 𝐅𝐬𝐫𝐜 ∈  𝑹𝑵×𝒗, 𝐀 ∈  𝑹𝑵×𝑵 
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4:   for t=1: (L*V) do  

5:     𝐔𝐩𝐝𝐚𝐭𝐞 𝒘 𝐰𝐢𝐭𝐡 𝐒𝐓𝐃𝐏 

6:      𝑺 = 𝑫 𝐀 𝑫 

7:      𝑭∗ = (𝑰 − 𝜶𝑺)−𝟏 𝑭𝒔𝒓𝒄 

8:      𝒌 =  𝒂𝒓𝒈 𝒎𝒂𝒙𝒋=𝟏,…𝒗  𝑭∗
𝒊𝒋 

9:     Visualisation of the clusters 

10:    end for 

11: End of procedure 

5.3 Clustering Validation 

Clustering validation has been considered as an essential approach to evaluate the success of 

clustering configurations (Maulik & Bandyopadhyay, 2002). In general, two main 

measurement categories are known for clustering validation: 

- Internal measures are used to indicate the goodness of a clustering structure without 

external information, such as class label association (Tan, 2006) (which is the case in this 

research). 

- External measures are used to describe the agreement between two partitions where the 

first partition is a priori known clustering structure, while the second resulted from the 

clustering algorithm. A known external measure is the entropy, which assesses the purity 

of clusters according to given class labels (Wu, Xiong, & Chen, 2009).  

In many applications, external information such as class labels are not always accessible; 

thus, entropy cannot be calculated. Similarly, in the SNN models, when clusters are formed 

through an unsupervised learning, it is crucial to validate the goodness of clusters. Otherwise, 

the clusters’ contribution would be obscure. The objective in this clustering is to maximize 

the connection weights between neurons in a cluster and minimise the connection between 

neurons of the neighbour clusters. To this end, I employed the Silhouette coefficient validity 

method as an internal measurement technique. 
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5.3.1 Silhouette Coefficient 

The validity measures are usually based on the “cohesion and separation” concept (Tan, 

2006; Zhao & Karypis, 2002), which is graphically shown in Figure 5-2. Cohesion measures 

how similar objects are within a cluster, whereas separation measures how distinct or well-

separated a cluster is from other clusters. The objective in valid clustering is maximising the 

cohesion measure while minimising the separation measure.  

 

Figure 5-2 Cohesion and separation of two neighbour clusters in an SNN model, where cluster centres are 

denoted by features 1 and 2. 

In an SNN model, for each neuron 𝑖 within a cluster, 𝑥(𝑖) is the cohesion of  𝑖 to all other 

neurons in the same cluster. It shows how well  𝑖 is assigned to its own cluster, so that; a 

larger value of 𝑥(𝑖) refers to a better assignment. In contrast, 𝑦(𝑖) is the separation between 

neuron 𝑖 in the current cluster and other neurons from a neighbour cluster. 

The Silhouette method (Rousseeuw, 1987) validates the homogeneity within clusters through 

measuring how similar an object is to its own cluster (cohesion) compared to other clusters 

(separation).  The Silhouette value of neuron i is defined as follows:   
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𝑠(𝑖) =

𝑥(𝑖) − 𝑦(𝑖)

max {𝑦(𝑖), 𝑥(𝑖)}
 (5-3) 

The Silhouette value is in the range of  −1 ≤ 𝑠(𝑖) ≤ 1, where a value closer to 1 implies that 

the object is well-matched to its own cluster. If many objects have a high Silhouette value, 

then the clustering configuration is suitable. Figure 5-3 illustrates the Silhouette method 

exemplified using two adjacent clusters in an SNN model. 

 

Figure 5-3 Silhouette measure exemplified on two clusters. 

Within a cluster, where neuron i is connected to M neurons, the average of the connection 

weights between i and all the M neurons defines the cohesion of neuron i to its cluster. This 

cohesion is also weighted by  𝐹∗
𝑖𝑣, which is the membership value of neuron i to the cluster 

centre 𝑣. Therefore, I defined the cohesion 𝑥(𝑖) as follows:  

 
𝑥(𝑖) =  

∑ 𝑤𝑖𝑚
𝑀
𝑚=1

𝑀
×  𝐹∗

𝑖𝑣 (5-4) 

In contrast, 𝑦(𝑖) is the average separation between neuron 𝑖 and 𝐾 connected neurons from 

𝐺 neighbour clusters as follows: 
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𝑦(𝑖) =  

∑  
∑ 𝑤𝑖𝑘

𝐾
𝑘=1

𝐾 ×  𝐹∗
𝑖𝑣

  
𝑔=1,…,𝐺

𝐺
  

(5-5) 

where 𝐹𝑖𝑣 is the membership value of neuron i to the neighbour cluster centre 𝑣. To measure 

the Silhouette for the SNN clusters, these modified 𝑥(𝑖)  and 𝑦(𝑖) are used in Equation (5-3). 

5.4 Chapter Summary  

While streaming STBD samples into a 3-D SNN model, spatio-temporal clusters were 

created and modified in a continuous, incremental way. In such a way, the spatio-temporal 

relationships of changes in the variables were learnt in the model and the model’s spiking 

activity patterns were incrementally clustered. This method captures significant information 

about STBD as it records the exact time in which a cluster was formed, and it reveals how 

this cluster’s shape was changed over time. The cluster size and the time of creation represent 

the importance of the STBD input variables at different time t of the learning process, 

providing insights into the input data structures and the SNN learning process. Assessment 

of the dynamic patterns of the clusters contributes to identify the importance and the 

involvement of neural clusters in the SNN model. This approach allows for interpreting the 

hidden learning patterns in the SNN models, that is a significant contribution to machine 

learning and AI. 

The proposed clustering method is in contrast to the current evolving clustering methods 

(Song & Kasabov, 2001), where the number of clusters are not pre-defined, but evolved with 

respect to the homogeneity in the raw data space when a new sample vector comes. 

Compared to the extant evolving clustering methods that perform a direct clustering of data, 
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the proposed approach in this chapter is for clustering of a model that is being created to learn 

and capture the essential characteristics of interest from the data.  

In the proposed spatio-temporal clustering method, the centres of clusters are defined in 

advance (which are the input data variables). During unsupervised STDP learning, the spatio-

temporal patterns in the model (neural activity in the SNN architecture) are clustered. The 

method was based on the following scheme: (1) dynamic processes, e.g. brain activity 

patterns, (2) spatio-temporal data streaming, (3) 3-D SNN models, (4) dynamic spatio-

temporal clustering during unsupervised learning, and (5) updating the clusters on new data. 

The next chapter demonstrates a feasibility analysis of the proposed clustering method on a 

real-life case study of EEG data.  

5.5 Contribution  

In this chapter, I have made the following original contributions:  

 

--------------------------------------------------------------------------------------------- 

1. Proposal of an original method for dynamic spatio-temporal clustering of 

learning patterns in SNN model. This resulted in an interpretation of 

interactions between STBD variables. It contributes to knowledge 

discovery in SNN architectures. 

2. Visualisation of the dynamic SNN patterns over time.  

3. A method for validity measurement of the clustering configuration. 

4. I published parts of this research as a leading author in the following 

journal paper: 

 

Doborjeh, M. G., Kasabov, N., & Doborjeh, Z. G. (2018). Evolving, 

dynamic clustering of spatio/spectro-temporal data in 3D spiking neural 

network models and a case study on EEG data. Evolving Systems, 9(3), 

195-211. 
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Chapter 6 Feasibility Study of Spatio-temporal 

Clustering 

6.1 Introduction 

This chapter applies the proposed clustering method (introduced in Chapter 5) to a case study 

of EEG data. It illustrates the differences between the patterns of the clusters created in the 

SNN models across individuals when they performed different cognitive tasks. The proposed 

clustering is performed through the following steps: 

• Step1: STBD preparation. 

• Step 2: STBD encoding into spike trains. 

• Step 3: Mapping the STBD to 3-D SNN model. 

• Step 4: Unsupervised learning using STDP and simultaneously clustering the 

SNN learning patterns (neural connectivity).  



 

 

106 

 

6.2 Clustering Patterns in SNN Models 

This section illustrates how the proposed spatio-temporal clustering method can be applied 

to a case study of EEG data. At step 1, the same EEG data that has been used in Chapter 4, 

is selected here again for the case study in this chapter. The description of EEG data 

acquisition was presented in Chapter 4. Six EEG sample files were defined, each containing 

EEG data captured from one subject group (MMT/ OP/ H) per cognitive task (GO versus 

NOGO). The organisation of the data is presented in Table 6-1. At step 2 and 3, each sample 

file was separately encoded into spike trains using TBR method and then spatially mapped 

to an SNN model using the Talairach atlas template as described in (Koessler, et al., 2009). 

The EEG mapping in the Talairach space is presented in Appendix A.  At step 4, the learning 

process of each EEG sample file was started by entering the first EEG time point to train the 

SNN model and it was finished after entering the final EEG time point. Simultaneously, 

spatio-temporal clusters were created with respect to spiking activity in the SNN model.   

Table 6-1 EEG data samples used for dynamic clustering to study the activity patterns of H, MMT, and OP 

subjects in a GO/NOGO task.  

EEG data sample files of different subject groups in GO versus NOGO 

Task trials Samples per class EEG sample size 

GO Trials  21 H Subjects 

18 OP subjects 

29 MMT subjects 

75 EEG time points * 26 channels * 21 samples 

75 EEG time points * 26 channels * 18 samples 

75 EEG time points * 26 channels * 29 samples 

NOGO Trials  21 H Subjects  
18 OP subjects 

31 MMT subjects 

75 EEG time points * 26 channels * 21 samples 
75 EEG time points * 26 channels * 18 samples 

75 EEG time points * 26 channels * 31 samples 

6.2.1 SNN Clustering during Unsupervised Learning  

The spatio-temporal clusters were formed and updated with every new input EEG time point 

entered, frame by frame. This process can be traced and analysed in terms of: 
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- The order in which input EEG channels formed the clusters, related to the order of activity 

of the corresponding areas in an SNN model. 

- The evolution of the clusters related to the importance of the clusters positioned in 

different areas of an SNN model.      

Figure 6-1 to Figure 6-6 (see the first frame at top, left) show how the input neurons of the 

SNN model were allocated to the respective EEG channels for transferring the spike trains 

into the model. They also demonstrate the evolution of the clusters for 7 selected time points 

during unsupervised learning in the SNN models of EEG data from different groups of 

subjects in GO/NOGO task. Cluster creation started from predefined centroids (EEG 

channels as the source of information) and were adapted after every input EEG time point 

was entered into the SNN model. The reason that I have chosen different time frames in the 

visualisation was the time differences in cluster creation across the subject groups with 

respect to their EEG data. Once new clusters were created during unsupervised STDP 

learning, a new figure was captured to display the step-wise changes in the cluster evolution. 

In Figure 6-1, since there were 21 healthy subjects and 75 EEG time points captured from 

every subject, the last time point of the training data was 21*75=1575. These results show 

that when an SNN model was trained with EEG data of H group in GO task, the first created 

clusters correspond to Fz and FCz channels after entering the 8th EEG time point to the 

learning process. Those neurons that were clustered by Fz and FCz channels have received 

the most of the spikes (received a high ratio of information as discussed in 5.2.1) from these 

corresponding channels (information sources). 
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Figure 6-2 and Figure 6-3 represent the dynamic clustering of the EEG data related to MMT 

and OP subjects respectively in GO trials. In the MMT group, the first clusters were created 

by FP1 and FP2 channels at the 11th time point. In case of OP subjects, the first cluster was 

created by FP2 at the 2nd EEG time point. 

Figure 6-4, Figure 6-5 and Figure 6-6  are related to the NOGO trials.  In the H group, the 

first created cluster was related to the FC3 channel at the 2nd EEG time point. It represents a 

case where a high ratio of information has been propagated (spikes) into the SNN model via 

the FC3 channel at this time. Therefore, the neurons located around this channel were 

clustered faster than the other neurons in the SNN model. However, the first clusters for 

MMT and OP groups were generated later than the clusters in the H group and they belonged 

to C3 and F8 at the 4th and 9th EEG time points, respectively. These results show that in the 

MMT and OP groups, slower response was observed from frontal regions and, consequently, 

a smaller number of spikes entered the SNN model compared to the H group.  



 

 

 

 

Figure 6-1 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 21 healthy subjects in a GO task during unsupervised 

learning in an SNN model. The total number of time frames is 21×75=1575.  The first two clusters are created at the 8th time point of the EEG data that are associated with 

Fz and FCz channels. 
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Figure 6-2 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 29 MMT subjects in a GO task. The total number of time 

frames is 29×75=2175. The first two clusters are created at the 11th time point of the EEG data that are associated with Fp2 and Fp1 channels. 
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Figure 6-3 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 18 OP subjects in a GO task. The total number of time 

frames is 18×75=1350.  The first cluster is created at the 2nd time point of the EEG that is associated with the Fp2 channel. 
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Figure 6-4 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 21 healthy subjects in a NOGO task. The total number of 

time frames is 21×75=1575.  The first cluster is created at the 2nd time point of the EEG data that is associated with the FC3 channel. 
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Figure 6-5 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 31 MMT subjects in a NOGO task. The total number of 

time frames is 31×75=2325. The first cluster is created at the 4th time point of the EEG data that is associated with the C3 channel. 
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Figure 6-6 A step-wise visualisation of the dynamical cluster evolution corresponding to the 26 EEG channels of 18 OP subjects in a NOGO task. The total number of 

time frames is 18×75=1350. The first cluster is in the 9th time point of the EEG data that is associated with the F8 channel.
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6.2.2 Clustering Evolutionary Patterns  

The clusters which evolved in the SNN model during unsupervised learning can also be 

statistically investigated in terms of the size (number of neurons that belong to each cluster) 

and also in terms of the cluster creation time. The clusters were scaled up or down with 

respect to the number of neurons (cluster members) associated with every input EEG variable 

(cluster centre). A bigger cluster contains a larger number of spiking neurons around the 

centre, which means that more spikes were propagated via this centre to the SNN model. A 

greater number of input spikes implies that more changes were observed in the brain signals 

and this reflects stronger brain responses. 

By comparing the number of neurons that belong to each EEG channel, I can differentiate 

the dynamic brain activity patterns captured via different EEG channels across the subject 

groups in GO versus NOGO trials. Figure 6-8 is a representation of the cluster size changes, 

while three SNN models were trained with EEG data of the H, MMT, and OP subjects during 

the GO trials. 

The horizontal axis represents the number of EEG time points entered to the SNN model 

training via input neurons corresponding to the EEG channels. The vertical axis represents 

the number of neurons that belong to the cluster (cluster size). In this procedure, the clusters 

are made bigger or scaled down with respect to the number of neurons associated with every 

input EEG channel through the EEG data training inside the SNN models. The average 

number of neurons in each cluster for the GO and NOGO tasks are reported, respectively in 

Table 6-2 and Table 6-3. The quantitative information of the cluster size changes during the 

whole-time interval of the learning procedure, as illustrated in Appendix D. 
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Figure 6-7 There are 26 clusters which are centred at the input neurons corresponding to the EEG channels. The size of the clusters changes while the SNN models are 

training on EEG data of the H, MMT and OP subjects in GO trials.  
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Figure 6-8 There are 26 clusters which are centred at the input neurons corresponding to the EEG channels. The size of the clusters changes while the SNN models are 

training on EEG data of the H, MMT and OP subjects in NOGO trials.  
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Table 6-2 The size of all the EEG channel clusters (plotted in Figure 6-7) was averaged over all the time points during the STDP learning in SNN models of H, MMT and 

OP groups in GO task. 

 

Table 6-3 The size of all the EEG channel clusters (plotted in Figure 6-8) was averaged over all the time points during the STDP learning in SNN models of H, MMT and 

OP groups in NOGO task. 

 

 

 

 

 

 

 

 

 

 

 

Fp1 Fp2 F7 F3 Fz F4  F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

Healthy 77.3 70.7 77 22 64 38 108 45 36 56.1 83 28.9 38 23.1 104 11.1 82.3 30.3 53 29 13 17.1 76.4 59 27 67.7

MMT 56.9 17.8 108 19 63 12 186 74 23 43.6 53 12.2 9.3 94.6 106 9.16 13.3 17.7 32 48 103 22.5 65.9 75 35 33

OP 43.7 64.4 121 13 45 71 93 90 10 30 82 16.8 37 42.7 166 12.6 20.6 29.4 81 14 30 52.8 75.9 106 9.2 47.9

Fp1 Fp2 F7 F3 Fz F4  F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

Healthy 78 91.4 47 54 38 27 120 21 26 59.4 114 27.8 51 22.8 91.7 22.2 60.1 22.7 21 3.1 25 42 88 122 19 50.7

MMT 45.6 44.7 171 6.4 48 14 164 45 25 68.6 49 35.2 52 13.9 104 8.68 33.5 49.8 46 41 35 43 78 73 39 30.6

OP 70.1 75.2 56 43 75 43 87 39 34 30.2 106 40.5 58 51.1 162 24.5 20.8 8.55 27 16 23 32 65 97 36 82.1
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As shown in Table 6-2, when participants were dealing with the GO task, the largest average 

number of neurons belongs to F8 for H and MMT groups with 108 and 186 values 

respectively, while the largest average for the OP group belongs to T4 with 166 values. On 

the other hand, Table 6-3 shows that the largest average number of neurons in the NOGO 

task belongs to F8 (120) for H group and F7 (171), F8 (164) for MMT group and T4 (162) 

for OP group. Figure 6-8, Table 6-2 and Table 6-3 show that the cluster size changes during 

the presentation of the EEG data of a particular order of the subject data.  Two questions may 

arise in this regard: 

- Would cluster evolution be different within a subject group? 

- Would the order of presentation of subject data influence the final clusters?  

To address these questions, the clustering experiment was performed 10 times for each 

subject group using a random order of the subject data presentation. It can be seen from 

Figure 6-9 that different clusters based on EEG channels have different variability (in terms 

of the cluster size) across subject groups and within a subject group. Figure 6-10 illustrates 

the variance in cluster size across the groups. If a cluster has obtained a small standard 

deviation σ (measured as variation of a cluster size across all samples in one group and across 

the 10 different experiments), it may indicate that a uniform brain activity was measured 

from the corresponding EEG channel across all the subjects. For instance, a high value for 

T4 represents that the T4 cluster was developed differently across the individuals. In order to 

evaluate the validity of the created clusters, the average of the Silhouette coefficients 

(presented in Chapter 5) was measured in every cluster as shown in Figure 6-11. The graph 

shows that all the average Silhouette values are positive and very close to 1 which represents 

a high goodness value for the clusters.    
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Figure 6-9 The minimum, maximum and the mean of the number of neurons that belong to each cluster. The 

dynamic clustering was performed 10 times for each group of subjects using random order of the subject data 

presentations.  



 

 

 

 

 

Figure 6-10 The standard deviation σ is reported for healthy (in blue), MMT (in red) and OP (in green). A higher σ value (mostly observed in MMT and OP groups) may 

represent less stability in cluster size evolved by different order of sample presentation. Blue, red and green colours represent respectively H, MMT and OP groups. 

 

Figure 6-11 Validity measurement of the clusters generated in the case study of EEG data with 26 channels from three groups of subjects (H group in blue, MMT group 

in red, and OP group in green). The Silhouette value was measured for every neuron in a cluster. Then the Silhouette values were averaged over all the neurons in a cluster 

and represented as a validity measure for this cluster. 
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6.2.3 Analysis of Temporal Patterns in Clusters 

Every cluster is composed of a number of neurons that received more spikes from the centre 

of this cluster over the time of the STDP learning. During the STDP, the neuron’s 

postsynaptic potential (PSP) increases by every input spike that arrived to the neuron at time 

t. Once the PSP reaches a firing threshold, the neuron emits an output spike and sends it to 

other neurons which are connected to it. 

Figure 6-12 exemplifies the PSP rate and the spiking rate in one randomly selected cluster 

centred by FP1 channel. This result allows us to study the pattern of the cluster creation and 

adaptation in detail by looking at the number of spikes produced within a cluster and also the 

changes in the neurons’ PSP during the learning. 

It can be seen from Figure 6-12 that the PSP rate and the spiking rate resemble the LIFM 

behaviour as shown in Chapter 3. More analysis of the PSP rate will be presented on the same 

EEG data case study in the next chapter.  
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Figure 6-12 The spike rates and PSP rates of the neurons within the FP1 cluster during unsupervised learning 

of EEG data (blue: H group, red: MMT group, and green: OP). 

To translate the experimental results into meaningful interpretations, it is essential to detect 

the STBD variables that demonstrate a good discrimination between multiple classes. As 

described in Chapter 5, Section 5.2.1, during the clustering of the SNN model, significant 

dynamic patterns were associated with each cluster. These are five temporal patterns: input 

spike train (𝑠𝑡), the mean of the cluster’s postsynaptic potentials (μPSP(t)) , the mean of the 

cluster’s spiking rates (𝑠𝑟𝑡), the cluster size, and the mean of the neurons memberships (the 

ratio of information received by neurons as explained in Section 5.2.1). Figure 6-13 and 

Figure 6-14  show the dynamic clustering patterns of the Fz and T4 channels generated from 

5 samples in the H group.  
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Figure 6-13 Dynamic patterns of one cluster (EEG channel Fz) against an input spike train (𝑠𝑡) corresponding 

to 5 samples in class 1 (H subjects). Each sample constitutes of 75 time points. 
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Figure 6-14 Dynamic patterns of one cluster (EEG channel T4) against an input spike train (𝑠𝑡) corresponding 

to 5 samples in class 1 (H subjects). Each sample constitutes of 75 time points. 

In Figure 6-13, the pattern of the input spike train (𝑠𝑡) shows the encoded EEG data of 

channel Fz corresponding to 5 samples from the H group. The 𝑠𝑡   is the input data to the 

NeuCube SNN model via the cluster centre (the input neuron).  The size of the cluster shows 

the number of neurons that belong to a cluster at each time t of the learning process. The 

μPSP(t)  and  𝑠𝑟𝑡 patterns, are respectively, the mean of the PSP and the spike rates measured 

from the neurons within the Fz cluster.   
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6.2.4 Feature Selection  

 In this section, μPSP(t) time series are analysed to reveal how the proposed dynamic 

clustering approach can be useful to discriminate the EEG data samples across different 

classes.  

Figure 6-15 shows the 𝑃𝑆𝑃(𝑡) time series of all the 26 clusters (26 EEG channels: Fp1, Fp2, 

F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, 

O1, Oz and O2), which were captured during the learning process with the EEG data of two 

classes H and OP.  The distribution of μPSP(t) is illustrated in Appendix D. In order to analyse 

the μPSP(t) time series of 26 clusters of the H and OP groups, the following statistical methods 

have been used: 

• 𝑃𝑚𝑎𝑥(𝑡): Local maximum in the μPSP(t).  

• Area under the curve. 

• Mid of potential. 

For each sample, the local maximum of the μPSP(t) (the peak of potential— 𝑃𝑚𝑎𝑥(𝑡)) is 

plotted as a dot in time t. This plot in Figure 6-16 can potentially separate the samples across 

the classes with a different degree of discrimination. The 𝑃𝑚𝑎𝑥(𝑡) plot identifies the most 

discriminative and informative variables for this classification problem (used as feature 

selection), consequently it can detect the irrelevant variables which should not be included 

for this classification task as they may drop the classification accuracy.  
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Figure 6-15 The dynamic patterns of the average PSP rates from 26 clusters during the learning process with 

EEG samples from classes H (in red) and class OP (in blue). 

A t-test measure was applied to the 𝑃𝑚𝑎𝑥 plots (shown in Table 6-4 and Figure 6-16) to 

identify how these two classes (H and OP) are statistically significant. Figure 6-17 illustrates 

the area under the curve of  μPSP(t) for each sample, computed according to a definite integral, 

where l is the length of each sample (time points) as follows: 

 
∫ 𝑃(𝑡)

𝑙

1

𝑑𝑡 (6-1) 
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Figure 6-16 For 26 clusters, the local maximum of the potential value, 𝑃𝑚𝑎𝑥(𝑡) are plotted as dots in time t for 

all samples in class H (red) and class OP (blue). The 𝑃𝑚𝑎𝑥(𝑡) values show discriminative patterns between class 

H and class OP in EEG variables with small 𝑝-value (measured by a t-test) as shown in Table 6-4. 

The midrange of a potential (shown in Figure 6-18) is the average within the min value and 

max value of a curve. The formula to find the midrange is (high + low) / 2. Table 6-4 

represents that the statistical t-test measure was applied to the 𝑃𝑚𝑎𝑥 (left), the area under the 

curve of μPSP(t) (middle) and the midrange of the PSP (right) to identify how the clustering 

patterns of H and OP are statistically significant. The EEG channel CPz (index: 17) has the 

lowest 𝑝-value, representing the highest discriminative power between the samples that 

belong to different classes.  

 

p-value=58E-09                                                                                      p-value=9.9E-09 
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Figure 6-17 The area under the curve of PSP rates for 26 clusters for all the samples in class H (red) and class 

OP (blue). As shown in Table 6-4, different discriminative power between the samples that belong to class H 

versus OP have been observed. 

 

Figure 6-18 The midrange of the PSP rates corresponding to 26 clusters for all samples in H (red) class and OP 

(blue) class. As shown in Table 6-4, the midrange values have shown different discriminative power between 

samples belong to class H versus OP. 
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Table 6-4 A t-test measure was applied to the 𝑃𝑚𝑎𝑥 (left), the area under the curve of PSP (middle) and the 

midrange of the PSP (right) to identify how two classes H and OP are statistically significant. EEG channel 17 

has the lowest 𝑝-value, representing the highest discriminative power between the samples that belong to 

different classes. 

 

As can be seen from Table 6-4, the top 8 channels have shown high discriminative power 

between class H and class OP. These are variables: 17, 14, 21, 22, 6, 12, 5 and 23 which 

respectively correspond to CPz, C4, P4, Pz, F4, C3, T6, and Fz channels. These 8 variables 

were used as top-informative features for classifying the EEG samples into two classes: H 

and OP.  Table 6-5 shows that the classification accuracy results were higher when the SNN 

model was trained by the EEG data from these 8 important variables than when using all the 

26 variables, as reported in Chapter 4.  

 Area under curve Midrange of the PSP 

P-Value EEG channel Channel index P-Value EEG channel Channel index P-Value EEG channel Channel index

2.41E-11 CPz 17 1.21E-11 CPz 17 -1E-11 CPz 17

2.38E-09 C4 14 1.37E-08 C4 14 8.4E-09 C4 14

4.78E-09 Pz 21 2.4E-08 P4 22 1.7E-08 Pz 21

9.93E-09 P4 22 1.8E-07 Pz 21 4.9E-08 P4 22

0.00001 F4 6 7.3E-06 F4 6 2.2E-06 F4 6

0.00008 C3 12 3.9E-05 C3 12 8.2E-05 C3 12

0.00008 Fz 5 0.0007 T6 23 0.0001 Fz 5

0.00019 T6 23 0.0025 Fz 5 0.0003 T6 23

0.0004 F3 4 0.002 FCz 9 0.0008 F3 4

0.001 FC4 10 0.002 Oz 25 0.001 CP4 18

0.004 P3 20 0.003 F3 4 0.003 FC4 10

0.004 CP4 18 0.006 CP4 18 0.009 Fp2 2

0.005 T4 15 0.01 T4 15 0.013 Cz 13

0.0059 Cz 13 0.01 Fp2 2 0.013 FCz 9

0.0076 Fp2 2 0.02 FC4 10 0.014 Oz 25

0.0176 FCz 9 0.07 Cz 13 0.02 T4 15

0.0247 FC3 8 0.074 O1 24 0.05 FC3 8

0.21 O1 24 0.09 FC3 8 0.16 O1 24

0.309  F8 7 0.3  F8 7 0.2 P3 20

0.31 T3 11 0.3 P3 20 0.28  F8 7

0.37 CP3 16 0.47 Fp1 1 0.3 T3 11

0.4 Fp1 1 0.48 T3 11 0.49 Fp1 1

0.53 T5 19 0.53 O2 26 0.57 O2 26

0.55 O2 26 0.56 F7 3 0.78 F7 3

0.72 Oz 25 0.9 CP3 16 0.78 T5 19

0.84 F7 3 0.97 t5 19 0.98 CP3 16
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Table 6-5 The classification accuracy between EEG samples in H and OP in the GO task obtained when using 

the all the EEG variables versus using the 8 top-informative variables.   

Methods NeuCube SVM MLP 

No feature selection: all 26 variables were used  80.00 68.00 78.00 

8 selected variables (feature selection) 90.00 70.00 78.00 

6.3 Chapter Summary  

In this chapter, the proposed spatio-temporal clustering method was applied to a case study 

of EEG data recorded from three groups of subjects.  Dynamic clustering in an SNN model 

reflected the activity of input neurons (EEG channels) at each time t of the STDP learning 

process. This allows for an interpretation of the model, which resulted in knowledge 

discovery in the SNN evolutionary learning patterns. The assessment of these evolutionary 

patterns allowed me to identify more important EEG channels (considered as feature 

selection) that improved the classification accuracy.   

Hitherto, the SNN models have demonstrated a successful analysis by considering all the 

samples (all individuals) in a given data space. However, as the SNN models were trained on 

the whole data spaces, they could not differentiate across individuals who belong to the same 

class of data. Therefore, the next chapter presents a new approach for building personalised 

SNN models for individuals using the most informative subset of samples as the training set.
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6.4  Contribution 

In this chapter, I have made the following contributions:  

 

-------------------------------------------------------------------------------------------------- 

1. I designed a feasibility study of the proposed dynamic spatio-temporal 

clustering on EEG data. 

2. Knowledge discovery in SNN learning patterns through the assessment of 

clustering patterns. This resulted in feature selection and improved the 

classification accuracy. 

3. I published parts of this research as a leading author in the following papers: 

 

Doborjeh, M. G., Kasabov, N., & Doborjeh, Z. G. (2018). Evolving, 

dynamic clustering of spatio/spectro-temporal data in 3D spiking neural 

network models and a case study on EEG data. Evolving Systems, 9(3), 

195-211.  

 

Doborjeh, M. G., & Kasabov, N. (2015, November). Dynamic 3D 

clustering of spatio-temporal brain data in the NeuCube spiking neural 

network architecture on a case study of fMRI data. In International 

Conference on Neural Information Processing (pp. 191-198). Springer, 

Cham. 
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Chapter 7 A New Personalised Modelling using 

SNN 

7.1 Introduction 

Over the last decades, there has been an overwhelming abundance of neurological disorders 

which revealed a pressing need for neuroscientists to consider various brain imaging 

techniques for patients. An individual patient may have significant psychologic or 

behavioural factors. Therefore, neuroscientists have recently suggested personalised 

treatment to sidestep undesirable influences of conventional treatments on the current 

medical conditions (e.g., heart disease, diabetes mellitus, and so forth). Numerous personal 

events and personalised treatments for an individual patient can be achieved if appropriate 

computational models learn the complex patterns in multivariate data.   

Inspired by the idea of personalised treatment, this chapter proposes a new personalised 

modelling aimed at developing a computational prognostic or diagnostic system. The 

proposed method is based on integration of different data processing techniques for an 

appropriate selection of neighbour samples. This has the potential to identify important 

characteristics of an individual through personalised profiling and improves the 

classification/prediction of output when compared with global modelling.  

In health-related research, massive amounts of static personal clinical data and spatio-

temporal data are available for patients that need to be precisely scrutinised. It becomes 
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apparent that a unifying computational approach is needed for proper analysis, understanding 

and knowledge discovery of such multifaceted data. 

In this chapter, the hypothesis is that personalised modelling with SNN can be successfully 

used, if the SNN models learn from informative STBD which are selected based on nearest 

neighbour samples. This chapter addresses the following criteria: 

• How to select relevant data samples for a new person for creating a 

personalised model based on integrated static and spatio-temporal data? 

• How does the personalised model improve the performance of the 

classification/prediction? 

To address the above questions, an application of the proposed method will be presented later 

in the chapter using a case study of EEG data measured along with static clinical information. 

7.2 Personalised Modelling for Integrated Static and 

Dynamic Data 

In this section, instead of building a global model and training it with STBD of the whole 

population, for every person a personalised SNN model (PSNN) will be built and trained 

only on a subset of STBD which belong to individuals who have similar integrated static 

clinical factors and dynamic STBD. 

The proposed SNN-based personalised modelling system is based on the following steps:  

1. Clustering of integrated static-dynamic data is performed using the new algorithm 

DWWKNN (Dynamic Weighted-Weighted Distance K-nearest Neighbours). For a new 
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individual 𝑥𝑖, I rank the contribution of each of the k neighbour samples based on 

integrated static-dynamic distance to the 𝑥𝑖, giving greater rank to closer neighbours. 

2. Select the STBD of those samples that are selected by DWWKNN method. 

3. Using the selected STBD for unsupervised learning in the PSNN model (the STBD of the 

new person  𝑥𝑖 is excluded from training). 

4. Test the PSNN model with STBD of  𝑥𝑖, which is unknown to the model. 

The structure of the proposed personalised modelling system is sketched in Figure 7-1. 

 

Figure 7-1 A block diagram of the personalised modelling that I proposed for integrated static and dynamic 

data. An SNN is trained with STBD samples that are found using the proposed DWWKNN method (the new 

person  𝑥𝑖 is excluded from training). 

The integrated static-dynamic data clustering procedure is accomplished by the following 

three subparts: 

a) Forming a cluster 𝐶𝑠 in static vector-based data space as nearest neighbours to a new 

sample vector 𝑥𝑖. 

b) Forming a cluster 𝐶𝑆𝑇𝐵𝐷 in STBD space as nearest neighbours to a new sample data. 
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c) Obtaining a cluster of samples that have integrated static-dynamic similarity through 

intersection of  𝐶𝑆𝑇𝐵𝐷 and 𝐶𝑠. These steps are elucidated in the following:  

In the WWKNN approach, the first weight W is defined according to the Euclidean distance 

between a new sample static vector  𝑥𝑖 and other sample static vectors in the global dataset. 

The main idea behind the WWKNN algorithm is to include one more rank (weight) vector to 

weigh the importance of the variables. Therefore, the second weight is defined to represent 

the importance of each variable to the input static vector for which a model is being built.  

When calculating the Euclidean distance in a V-dimensional space of input variables, it is 

usually assumed that all variables have the same impact on the output. However, when the 

variables are ranked in terms of their discriminative power of class samples over the whole 

𝑉-dimensional space, different variables have different importance to separate samples 

across classes. To rank the importance of each input variable, a standard statistical measure, 

known as Signal-to-Noise Ratio (SNR), was used to evaluate how important a variable is to 

discriminate samples belonging to different classes, one class named as ‘signal’ and the rest 

as ‘noise’.   

For a two-class problem, SNR values for a variable {𝑣 = 1, . . , 𝑚} is calculated as an absolute 

value of the difference between the mean value 𝑀1𝑣 of the variable for class 1 and the mean 

𝑀2𝑣 of the variable for class 2, divided by the sum of the respective standard deviations  𝜎1𝑣 

and 𝜎2𝑣.  In a C-class problem, where 𝐶 = {1,2, … , 𝑛} for each variable 𝑣, the SNR is defined 

as follows: 
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𝑆𝑁𝑅𝑣 =

∑
𝑎𝑏𝑠(µ𝑖

𝑣
− µ{𝐶\𝑖}

𝑣
)

𝜎𝑖𝑣 + 𝜎{𝐶\𝑖}
𝑣

𝑛
𝑖=1

𝑛
, 𝑣 = 1, … , 𝑉 

(7-1) 

where 𝑖 denotes which class is named as signal, while {𝐶\𝑖} is the rest of the classes as noise. 

Therefore, 𝜎𝑖𝑣 and µ𝑖𝑣 are correspondingly the standard deviation and the mean value of the 

variable v among all the samples in class i. The obtained 𝑆𝑁𝑅𝑣 is used to weight the 

Euclidean distance 𝐷𝑖𝑗 between a new vector 𝑥𝑖  and another sample vector 𝑥𝑗 as follows: 

 
𝐷𝑖𝑗 =

√∑  𝑆𝑁𝑅𝑣(𝑥𝑖,𝑣 − 𝑥𝑗,𝑣)2𝑚
𝑣=1

 ∑ 𝑆𝑁𝑅𝑣
𝑚
𝑣=1

 (7-2) 

𝐷𝑖𝑗 is then normalised and assigned in the range of [0 1]. The distance 𝐷𝑖𝑗 in Equation (7-2) 

is computed only based on the static data. However, as the dataset is constituted by both static 

and dynamic information, a new distance needs to be measured with respect to the dynamic 

STBD. It is performed as follows: 

A correlation coefficient is computed between each variable in STBD of sample 𝑥𝑖 and the 

same variable in other samples. The correlation coefficient is a measure that defines the 

degree to which two time series are associated; it is defined as follows:  

 
𝐶𝑜𝑟𝑟𝑥,𝑦 =  

𝐶𝑜𝑣(𝑥, 𝑦)

𝜎𝑥  𝜎𝑦
, −1 ≤  𝐶𝑥𝑦 < 1 (7-3) 

To calculate the correlation coefficient, the covariance of two variables x and y, denoted by 

𝐶𝑜𝑣(𝑥, 𝑦), is divided by the product of the two variables’ standard deviations 𝜎𝑥  and 𝜎𝑦. The 

correlation  𝐶𝑜𝑟𝑟𝑥𝑦 = −1   indicates a great negative correlation, while 𝐶𝑜𝑟𝑟𝑥𝑦 = 1    is a 

http://www.investopedia.com/terms/n/negative-correlation.asp
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great positive correlation. If 𝐶𝑜𝑟𝑟𝑥𝑦 = 0, then means there is no relationship between the two 

variables. Using the correlation coefficient, I rank samples with respect to their STBD 

relationships to a new sample, where the higher the rank, the greater a positive correlation 

between the samples.  

Once the distance between static samples and the correlation between the STBD samples 

have been computed, a number of nearest samples can be selected with respect to two 

distance thresholds as follows: In static data space, a cluster 𝐶𝑠 of static vectors can be 

extracted in which their computed distance 𝐷𝑖𝑗 to the new sample vector 𝑥𝑖 is less than a 

distance threshold 𝑡 = μ𝐷𝑖𝑗. In dynamic STBD, I can extract a cluster 𝐶𝑆𝑇𝐵𝐷 of samples 

where their computed correlation to the new sample is greater than a threshold= μ𝐶𝑜𝑟𝑟𝑖𝑗 . 

Finally, two clusters of samples are extracted, one refers to the samples with similar static 

information and the other one refers to the samples with similar dynamic STBD patterns to 

a selected sample. The cluster 𝐶𝑠𝑑 is then identified using the intersection relation of 𝐶𝑠 ∩

𝐶𝑆𝑇𝐵𝐷. The DWWKNN algorithm is represented in Table 7-1. 

Table 7-1 The proposed DWWKNN algorithm. 

Algorithm 1: DWWKNN 

Input: Static dataset 𝑿(𝑵, 𝑽) with N samples and V variables, Number of class C, Spatio-temporal 

data samples of STBD 

Output: results 

 

1: Procedure 

2: s=length (STBD) 

3: 𝑪𝒐𝒓[𝟏: 𝒔, 𝟏: 𝒔, 𝟏: 𝑪] ← compute pairwise correlation coefficient between STBD samples for 

each class 
4: for v=1: V do 

5:   𝑺𝑵𝑹𝒗= compute the SNR for variable 𝒗 in (𝑿(: , 𝒗)) 

6: end for 

7: for i=1: N do 

8:   𝑪𝒆𝒏𝒕𝒆𝒓(𝒊, 𝟏: 𝑽) ← 𝐯𝐞𝐜𝐭𝐨𝐫 𝒙(𝒊, 𝟏: 𝑽) ∈ 𝑿 

9:   for j=1: N-1 do 

http://www.investopedia.com/terms/p/positive-correlation.asp
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10:   compute pairwise distance 𝑫𝒊𝒋 =
√∑ 𝑺𝑵𝑹𝒗  (𝑪𝒆𝒏𝒕𝒆𝒓(𝒊,𝒗)−𝒙(𝒋,𝒗))𝟐𝑽

𝒗=𝟏

∑ 𝑺𝑵𝑹𝒗
𝒎
𝒗=𝟏

 

11:   end for  

12:   form a cluster on static data space using 𝑪𝟏 ← 𝒇𝒊𝒏𝒅(𝑫𝒊𝒋 > 𝛍𝑫𝒊𝒋)  

13:   for c=1:C do 

14:      𝑻 = 𝛍𝑪𝒐𝒓[𝒔, 𝒔, 𝒄] 
15:      𝑪𝟐=𝒇𝒊𝒏𝒅{𝑪𝒐𝒓[𝟏: 𝒔, 𝟏: 𝒔, 𝒄] ≥ 𝐓  }   

16:    end for  

17:    select the common samples in two clusters using 𝑪𝒔𝒅 = 𝑪𝟏 ∩ 𝑪𝟐 

18:    selected-samples←STBD samples belonging to 𝑪𝒔𝒅  

19:    SNN model training with the selected-samples  

20:    classification(i)=recall STBD of 𝒙𝒊 for testing 

21: end for  

22: 𝐑𝐞𝐬𝐮𝐥𝐭 =
∑ 𝐜𝐥𝐚𝐬𝐬𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧(𝐢)

𝐥𝐞𝐧𝐠𝐭𝐡(𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝−𝐬𝐚𝐦𝐩𝐥𝐞𝐬)
  

23: End of Procedure 

7.3 Personalised Modelling for EEG Data  

To exemplify the proposed personalised modelling system, the same EEG data that has been 

introduced in Chapter 4, is now used here as a case study. This section aims at evaluating 

how the personalised SNN models, trained on the relevant EEG samples (selected using the 

proposed DWWKNN algorithm), can perform a better accuracy of results when compared 

with the SNN models trained on a global space of EEG data (reported in Chapter 4). 

This EEG data consists of 67 samples, in which 20 samples are labelled as healthy—H (class 

1), 29 samples are labelled as patients undertaking methadone maintenance treatment—

MMT (class 2) and 18 samples are labelled as opiate addict patients—OP (class 3). The EEG 

data were recorded via 26 EEG channels. This EEG data has a slightly different number of 

samples when compared with the data used in Chapter 4. This is because static data were not 

available for all the participants, so in this chapter I used only those subjects who had both 

static clinical data and EEG data.   

In addition to the spatio-temporal EEG data, personal clinical, static information was also 

available per subject, such as:  gender, age, drug consumption, methadone dose, history of 
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overdose, and so forth. In total, there were 20 variables for measuring static information from 

each subject. Table 7-2 shows only 15 randomly selected samples of the static data among 

all the 67 samples. However, all the 67 samples of the static data space were used in this 

experiment.  

Table 7-2 Five samples are randomly selected from each groups of subjects (in total 15 samples). V1: age; V2: 

gender (0 is male and 1 is female); V3: level of education; V4: life time nicotine consumption; V5: illness; V6: 
history of overdose; V7: times of hospitalised; V8: Legal charge; V9: days being in jail; V10: Methadone dose; 

V11: alcohol consumption in last 30 days; V12: sedative consumption in last 30 days; V13:level of anger; 

V14:cannabis consumption; V15: hallucinogens consumption; V16: taking ecstasy; V17:amphetamine 

consumption; V18: barbiturate consumption; V19: heroin; and V20: class label of subject groups (1 is H, 2 is 

MMT and 3 is OP). 

 

The SNR values for these 20 variables of static data (67 instances) were computed and 

reported in Figure 7-2. It represents that variable 2 (variable gender) has obtained the highest 

importance for discriminating the samples across the mentioned three classes. 

V1 V2 V3 V V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20

37.9 1 12 21 0 0 2 0 0 0 0 0 75 0 0 0 0 0 0 1

36.7 1 13 0 0 0 0 0 0 0 0 0 88 0 0 0 1 0 0 1

45.3 0 16 5 0 0 1 0 0 0 5 0 75 20 0 0 7 0 2 1

41.3 0 12 0 0 0 1 0 0 0 0 0 50 0 0 0 1 0 0 1

34.3 1 13 25 0 0 2 0 0 0 0 0 63 11 0 12 0 0 15 1

41.8 0 13 0 0 0 2 2 0 52 0 30 88 16 0 0 15 3 7 2

39.6 1 12 0 0 3 1 10 48 22.5 0 10 50 20 0 5 13 1 0 2

31 0 13 13 1 0 0 1 0 90 0 0 50 0 2 0 0 0 10 2

39.8 0 11 24 0 4 4 40 64 120 0 30 63 4 15 0 5 1 13 2

40.3 1 11 30 0 0 30 1 0 90 0 0 50 0 4 12 0 0 0 2

38.5 0 11 0 0 0 1 1 24 0 0 0 38 0 0 0 0 0 8 3

45.7 0 13 0 0 1 3 1 0 0 0 0 75 0 3 3 0 0 0 3

28.2 0 16 6 0 1 2 3 0 0 0 10 63 0 5 0 10 0 0 3

39.2 1 13 0 0 2 0 1 0 0 30 0 63 0 0 0 0 0 0 3

38.5 1 13 13 1 1 2 6 0 0 0 0 88 6 0 0 0 0 0 3
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Figure 7-2 The SNR values for the 20 variables of static data. 

Figure 7-3 illustrates the user interface of personalised modelling that I developed in 

MATLAB as part of NeuCube software. In order to make an application of the proposed 

personalised modelling, the following steps have been performed: 

a) The dynamic EEG data and static vector-based data were loaded into the personalised 

modelling module. Subjects are labelled by an ID: 1 to 20 are from H group; 21 to 49 

are from MMT group; and 50 to 67 are from OP group. 

b) A subject was randomly selected (here it is ID: 4 from H group) for creating a 

personalised model. 

c) Static data samples of each class were ranked according to Equation (7-1). The distance 

D in Equation (7-2) was based on only the distance between the static data vector of 

sample ID: 4 and the other 66 sample vectors. As I am interested to observe how static 
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data of sample ID: 4 is similar to the static data vectors of the other samples, I computed 

𝐷 = 1 − 𝐷 as a similarity measure, then it was normalised and plotted in Figure 7-3 

(top bar lines). It shows a high similarity between sample ID: 4 and sample ID: 49 (from 

MMT group). 

d) Employing Equation (7-3), the STBD samples of each class were also ranked with 

respect to the correlation coefficient between EEG data of sample ID: 4 and the other 

66 samples. Figure 7-3 (bottom bar-lines) shows that the EEG data of ID: 4 has a high 

positive correlation with sample ID: 29 (from MMT group) and a high negative 

correlation with ID: 49 (from MMT group). 

e) In order to extract a relevant subset of samples to sample ID: 4 with respect to both 

static data and STBD, two clusters were formed, one on the static data space and the 

other on the STBD space.  

e.1. In the static data, samples with close D values to ID: 4 (greater than threshold 𝑡 =

μ𝐷𝑖, 𝑖 = 1, . . ,66) were grouped as cluster 𝐶𝑠  .  In this example 𝑡 = 0.68 for subject 

ID: 4. 

e.2. In STBD, a cluster of EEG data samples were formed in which samples were 

highly correlated to the EEG data of ID: 4. Samples were selected if their correlation 

values (𝐶𝑜𝑟𝑟) were greater than a threshold value  𝑇 = μ𝐶𝑜𝑟𝑟𝑖, 𝑖 = 1, . . ,66, meaning 

a high positive correlation. As there were three classes in this dataset, I have computed 

three different thresholds per class: 𝑇1 = 0.39, 𝑇2 = 0.46, and 𝑇3 = 0.41, to select 

three sub-clusters which each was constituted of samples with correlation above the 

corresponding T. Then the sub-clusters are merged as one, called cluster 𝐶𝑆𝑇𝐵𝐷. This 

procedure handles the issue of imbalanced classes by selecting a close number of 
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samples from each class.  

f) The relevant data samples to sample ID: 4 were selected by finding the common samples 

(intersection) between two clusters 𝐶𝑠  and 𝐶𝑆𝑇𝐵𝐷. The selected samples were the nearest 

samples to ID: 4, pertaining to integrated static and dynamic information. In this 

example, 18 nearest neighbour samples to ID: 4 were selected to build a PSNN model 

for profiling subject ID: 4. 

g) Finally, the EEG data of these 18 samples were used to train the built PSNN model 

through STDP unsupervised learning. 

The 18 EEG samples were transferred to the NeuCube module 1, where a 3-D PSNN model 

was spatially mapped using the Talairach template. Then, 26 input neurons were allocated to 

the 26 EEG channels. The PSNN model was trained using STDP learning. Then the model 

was tested by EEG data of sample ID: 4, which was excluded from training. 

In this experiment, for every subject in dataset, one PSNN model was created and trained 

with the most informative EEG samples corresponding to subjects who have similar 

integrated clinical static information and dynamic EEG data to the selected subject.  Figure 

7-4, Figure 7-5 and Figure 7-6 show the ranking of samples in the data space for six randomly 

selected subjects belonging to different classes (class 1: H subjects, class 2: MMT subjects, 

and class 3: OP subjects), where the green highlighted bar lines represent the K nearest 

neighbour samples to the selected ones (ID: 1 and 15 from H group, 45 and 31 from MMT 

group, 58, and 61 from OP group) obtained using DWWKNN. 
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Figure 7-3 The proposed personalised modelling user interface for integrated static-dynamic data, exemplified 

using a case study of EEG data and static clinical data. For a selected subject id: 4, the relevant samples to it is 

a cluster of the common samples between 𝐶𝑠  and 𝐶𝑆𝑇𝐵𝐷 (green bar lines) defined using the DWWKNN.  

   
Figure 7-4 Data samples were ranked according to the integrated static-dynamic similarity to a new data from 

two H samples id: 1 and id: 15 in (a) and (b) respectively. The EEG data of the neighbour samples (shown in 

green) are used for training of the PSNN models. 
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Figure 7-5 Data samples were ranked according to the integrated static-dynamic similarity to the new data from 

two MMT samples id: 45 and id: 31 in (a) and (b). The EEG data of the neighbour samples (shown in green) 

are used for training of the PSNN models. 

 
Figure 7-6 Data samples were ranked according to the integrated static-dynamic similarity to the new data from 

two OP samples id: 58 and id: 61 in (a) and (b). The EEG data of the neighbour samples (shown in green) are 

used for training of the PSNN models. 
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The informative EEG data samples were used to create 6 separate PSNN models, each 

represents the spatio-temporal interaction between EEG channels of an individual person. 

The EEG samples were first encoded into spike trains and then transferred into a PSNN 

model for STDP unsupervised learning. During the learning, the connections between 

neurons of the PSNN model were strengthened or weakened based on the timing of 

postsynaptic in relation to the presynaptic spikes. Figure 7-7 illustrates six PSNN models, 

each trained on a subset of informative EEG samples selected through DWWKNN as shown 

in Figure 7-4 to Figure 7-6. 

These results represent that the trained PSNN models captured different spatio-temporal 

connectivity across subjects, even though they belonged to the same class. For instance, the 

trained PSNN model of MMT ID: 45 in Figure 7-7 (d) illustrates stronger average connection 

weights (1.12) than the trained PSNN model of MMT, ID: 31 in Figure 7-7 (c) where the 

average connection weight is 0.98. These findings can be scrutinised to identify what are the 

differences in the PSNN models personalised for these two MMT individuals. Subsequently, 

they can be used to implicate how different individuals in the MMT group have differently 

responded to the Methadone treatment.  

The personalised modelling was performed for all the 67 samples by creating 67 separate 

PSNN models, each trained on a subset of informative EEG data selected via the DWWKNN. 

After the training process was completed for each PSNN model, the model was tested using 

EEG data of the sample which the PSNN model was built for.  
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Figure 7-7 The PSNN models were created for 6 randomly selected persons from H (a-b), MMT (c-d), and OP 

(e-f) groups. Each PSNN model was trained by the closest samples to the corresponding person.  
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Table 7-3 shows the overall classification accuracy of all 67 PSNN models versus a global 

SNN model, which was obtained using the LOOCV method. The classification accuracy was 

also compared with two conventional methods SVM and MLP. In Table 2, the proposed 

DWWKNN clustering approach was compared with different clustering methods (WWKNN, 

WKNN, and KNN) towards building PSNN models for classification. Unlike the proposed 

DWWKNN, the employed rival methods used here do not include the EEG data correlation 

into their computation.  

Table 7-3 Classification accuracy obtained via SNN-based personalised modelling versus using a global SNN 

model. The number of correctly classified samples in each class is shown on the diagonal of the tables. For each 

person 𝑥, one PSNN model is trained by EEG of subjects who have similar integrated static and dynamic data 

to 𝑥 and then tested by the EEG data of 𝑥, which was unseen during the learning. 

One SNN model tested via a leave-one-out 

method 

 Personalised modelling of 67 trained SNN 

models for each subject’s data 

 H M OP Accuracy 

in % 

  H M OP Accuracy 

in % 

H 16 3 1 80.00 H 18 2 0 90.00 

MMT 4 19 6 65.51 MMT 3 22 4 75.86 

OP 2 6 10 55.50 OP 1 4 13 72.22 

Overall accuracy (average) 67.00 Overall accuracy (average) 79.36 

 

Table 7-4 Comparison of the classification accuracy (in %) obtained using a global SNN, PSNN and 

conventional methods including: SVM and MLP. The MLP optimal parameters that resulted the best 

classification accuracy were found after performing the experiments several times with different parameter 
setting (learning rate (LR) = [0.01, 0.5], momentum (M) = [0.1, 0.9], training iteration (TI) = [500, 1500], and 

number of hidden layer (HL) = [2, 6]). 

Method SVM MLP NeuCube SNN NeuCube 

PSNN 

Accuracy  60.00 61.00 67.00 79.36 

 

Parameters 

Polynomial kernel 
degree=3 

LR=0.1, M=0.6 
TI=1000, HL=3 

LR=0.002, Mod= 0.5, Drift=0.02  

            Predicted 

Actual 

       Predicted 

Actual 
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Table 7-5 Classification accuracy obtained using the PSNN models with different clustering approaches 

(DWWKNN, WWKNN, WKNN and KNN) for selecting the nearest neighbour samples to an individual.  

PSNN with different clustering  methods dWWKNN WWKNN WKNN KNN 

Accuracy 79.36 74.00 72.00 70.00 

7.4 Chapter Summary 

I this chapter, I proposed a personalised modelling approach based on SNN for integrated 

static clinical data and dynamic STBD for individuals. The proposed approach has 

contributed to the NeuCube architecture through introducing new methods for selecting an 

appropriate size of neighbour samples to build personalised models. A new method, called 

Dynamic Weighted-Weighted Distance K-nearest Neighbours (DWWKNN) has been 

introduced as a new method to select the most relevant samples with respect to both static 

data and spatio-temporal information.  

As deduced from PSNN model visualisations, different patterns of connectivity have been 

formed across individuals belonging to the same class of data. Therefore, PSNN models not 

only can distinguish samples with respect to their class labels with a high classification 

accuracy, but they can also be used for a better identification of interactions between spatio-

temporal variables in each individual subject’s data. 
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7.5 Contribution  

In this chapter, I have made the following original contributions:  

 

 

 

----------------------------------------------------------------------------------------------------- 

1. Proposal of a new personalised modelling system based on the SNN 

architecture (called PSNN).  

2. Proposal of a new clustering approach (named DWWKNN) for integrated 

static and temporal/spatio-temporal data. 

3. Empirical study on the proposed personalised modelling based on EEG data 

and static clinical health data.  

4. I published this study in a conference paper as the leading author.  

 

Doborjeh, M. G., & Kasabov, N. (2016, July). Personalised modelling on 

integrated clinical and EEG spatio-temporal brain data in the NeuCube spiking 

neural network system. In IEEE International Joint Conference on Neural 

Networks (IJCNN), 2016 (pp. 1373-1378).  
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Chapter 8 Conclusions and Recommendations 

for Future Work  

8.1 Introduction 

This chapter discusses the key contributions and achievements of this thesis and further 

articulates how the research questions, posed in Chapter 1, have been addressed. Some main 

limitations of this work are then discussed along with an overview of future implications.  

8.2 Aims and Methodological Approach  

An overview on ANN pointed out that SNNs resemble the activity mechanism in the human 

brain, due to their ability in encoding time information into the computation. Hence, this 

thesis is based on SNN architecture for modelling, classifying, clustering and a better 

interpretation of STBD.   

The main objectives in this thesis were addressed in two steps: first feasibility analysis and 

empirical study step, and second, method development step. The first step was to design 

optimal SNN architectures for modelling different types of STBD (EEG and fMRI). The 

results obtained in step one implicated that the evolving learning patterns in recurrent SNN 

models are complex to interpret, due to the composition of spatial information of neurons, 

which is learnt, in an evolving manner, from temporal data streams over time. Hence, to study 

such evolving patterns, I proposed a new spatio-temporal clustering approach that resulted in 

knowledge discovery from SNN architectures.  
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Additionally, I proposed a new personalised modelling system based on SNN architecture 

that offers improved personal outcome classification, personalised interpretation and 

identification of important factors for a person across various types of data, including both 

static and dynamic (temporal) types.  

8.3 Key Findings 

The progression of this thesis resulted in the following findings which improved an 

understanding of SNN patterns triggered by multivariate STBD. 

8.3.1 Optimal SNN to Model, Learn and Analyse STBD    

When applied to real-life case studies, such as multivariate STBD, the designed SNN models 

enhanced the classification performance by achieving up to 92% accuracy, which represents 

an average improvement of 20% when compared with conventional machine learning 

methods. Compared to conventional classifiers, the designed SNN models of EEG data 

showed a superior classification accuracy by up to 92% between different cognitive processes 

performed by different groups of human subjects (opiate addict subjects, a group of addict 

subjects undertaking treatment, and a group of healthy subjects). In addition to this, the 

trained SNN models developed significantly different spatio-temporal neural connections 

illustrated in a 3-D brain-inspired space for different groups of subjects. A t-test measure (𝑝-

value=0.009<0.05) confirmed that the trained SNN models were statistically significant with 

a high confidence, greater that 99%. This allowed for a better interpretation of the spatio-

temporal interactions between variables when compared with black-box conventional 

classifiers and statistical methods such as SVM, MLP and MLR.  
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I also designed optimal SNN models for analysing benchmark fMRI data. The SNN models 

have exposed a better discrimination across different mental activities (reading affirmative 

versus negative sentences) than conventional methods.  

8.3.2 Knowledge Discovery in SNN Learning Patterns 

The trained SNN models resulted in a higher classification accuracy when compared with 

conventional methods. In addition to this, the model interpretability was also higher than the 

state-of-the-art machine learning techniques. This has been achieved with proposal of a new 

spatio-temporal clustering in SNN models while streaming STBD for unsupervised learning.  

Compared to the current evolving clustering methods, such as ESOM (Deng & Kasabov, 

2000), DENFIS (Kasabov & Song, 2002), dynamic evolving clustering (Aggarwal, 2003) 

that successfully detect the temporal changes in data streams, the proposed (in this thesis) 

dynamic spatio-temporal clustering method considers both spatial and temporal information 

together in an SNN model and dynamically clusters the evolving learning patterns over time. 

An assessment of these spatio-temporal clustering patterns has led to the detection of 

important discriminative features in the SNN models. Hence, using only the selected 

informative features for a classification task, an average of 10% increase in accuracy has 

been achieved. In addition, it revealed a trajectory of sequential activated neural areas in the 

SNN models, reflecting the importance of the STBD variables with respect to the time at 

which these clusters were created. 

8.3.3 Improved Personalised Modelling using SNN Architecture 

I further developed this research towards the proposal of a new personalised modelling 

system that has contributed to the NeuCube architecture by introducing a new method for 

selecting an appropriate size of neighbour samples to build personalised models. To this end, 
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I introduced the DWWKNN as a new method to select the relevant samples with respect to 

both static data and spatio-temporal information. This approach enhanced the classification 

accuracy by 12% when compared with global SNN models. 

8.4 Empirical and Theoretical Contributions 

The findings of this thesis contributed to new knowledge about SNN models of STBD and 

carried out implications regarding the following aspects including improved extant reservoir 

computing systems; knowledge discovery in recurrent SNN models; and improved outcome 

prediction/classification by personalised profiling. 

 Improved Extant Reservoir Computing Systems 

The designed SNN models for STBD analysis implicated several advantages when compared 

with recently developed reservoir computing methods. Compared to LSM, the designed SNN 

models in this thesis have brain-inspired structure owing to the following criteria: 

1. The STBD variables are topologically mapped into a 3-D SNN model which has a brain 

template (atlas). Spatial mapping of input features (data variables) in the SNN model 

preserves the spatial information in the brain data variables. 

2. Every artificial spiking neuron in an SNN model is a computational unit that resembles a 

biological neuron model, encoding the timing of spikes. 

3. Input STBD are encoded by spikes, emphasising certain changes in the brain data 

(signals) at a millisecond time scale. 

4. Unlike the LSM that initialises random connectivity, in this thesis the SNN connections 

are initialised with respect to the small-world connectivity. 
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5. The initialised connections will be adapted using the STDP learning rule, which 

resembles the brain synaptic plasticity that enables learning and memorising.  

 Knowledge Discovery in Recurrent SNN Models 

The proposed spatio-temporal clustering approach allowed to scrutinise the learning evolving 

patterns in recurrent SNN models. The findings demonstrated that SNN models are not acting 

as black-box information processing systems which solve a problem without discovering the 

meaningful interactive patterns that triggered a prediction/classification output. An 

assessment of these dynamic clustering patterns represented the importance of different areas 

of neurons that can be used to detect abstractions from SNN models for a further development 

of deep-learning in SNN architecture. Therefore, the achieved knowledge discovery in SNN 

models is a significant contribution to machine learning and AI. 

 Improved Personalised Profiling  

In this thesis, the proposed personalised modelling system implicated that using an 

informative subset of samples as training set can result in a better differentiation across 

individuals, although they may belong to the same class of data. The proposed personalised 

modelling considers both static and spatio-temporal data to create a personalised SNN model, 

which resulted in an increased classification accuracy for an individual person. This approach 

contributed to creating a profile for each person with optimised output classification when 

compared with a global SNN modelling.  
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8.5  Limitations of the Thesis 

The limitations of this thesis are: 

8.5.1 Scope and Parameters of the Research 

The EEG data used in the study were small, so the trained models can only be valid on the 

defined data scope and this is not yet generalised to be tested on any new person’s STBD 

stream. The SNN models of fMRI data belonged to only one human subject and the results 

were specified to this person rather than being generalised implications for different subjects 

with different gender. Therefore, the optimised parameters for the designed SNN models 

were the best parameters for the defined domains. In addition, the data used in this thesis 

were only STBD, however, the proposed SNN-based methods need to be generalised for 

other types of spatio-temporal data, including environmental data, seismic data, and so forth. 

8.5.2 Methodological Point of View  

The encoding procedure to transfer the STBD into spike trains was a threshold contrast 

method as explained in Chapter 3, Section 3.6.2. However, the encoding method and its 

parameters should be optimised towards minimising the brain signal reconstruction error.  

Assessment of different encoding methods and optimising their parameters may lead to 

choosing another technique to encode EEG or fMRI. 

8.6 Future Direction and Implications 

Besides the remarks that have been made hitherto, there are a number of avenues that could 

be explored in the area in the future as follows:   
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SNN parameter optimisations: The optimisation method used in this thesis was an 

exhaustive grid-search on a combination of parameters. Each parameter was searched within 

a specified range. The optimisation procedure needs to be further improved to consider all 

the possible ranges of the SNN parameters.   

Knowledge representation and knowledge transfer: The spatio-temporal connectivity 

developed in different SNN models need to be transformable to make them communicate 

with each other. If a trained SNN model can exchange information with another trained SNN 

model, the concept of “knowledge transfer” between machines, and between machines and 

humans can be applicable.    

Early prediction of evolutionally patterns in SNN models: For further development of the 

proposed clustering approach presented in Chapter 6, I aim to enhance it towards early 

prediction of the learning patterns during unsupervised learning in SNN model. To this aim, 

the dynamics of the SNN clusters need to be mathematically modelled by differential 

equations. Consequently, using only a temporal chunk of STBD, the next sequential activated 

areas in the SNN models can be predicted by the clustering patterns. This method needs to 

be also generalised for other types of spatio-temporal data, including environmental data, 

seismic data, and so forth. 

Deep structured SNN: Using the proposed clustering method, the most informative clusters 

of neurons were detected. Theses clusters can be seen as abstractions in a deep structured 

SNN model that transfer informative trained patterns to the next layer, which is here the 

deSNN classifier. The pattern of a cluster evolution captures the size of the cluster and the 

time of the cluster creation as two vital measures that reflect the importance of the cluster 
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centres (input variables). For detecting the abstractions in SNN models, I will rank the 

neurons according to the importance of the cluster that each neuron belongs to. 

Bio and health informatics: For further development of the proposed personalised 

modelling system presented in Chapter 7, a generic predictive system for early prediction of 

health risk factors (neurological events, stroke, seizure, and so forth) will be proposed 

according to the following system developments:  

- Personalised modelling for the prediction of the risk of stroke using static data of patients 

(that have had a stroke) and temporal environmental data. 

- Personalised modelling for the prediction of the progression of Mild Cognitive 

Impairment (MCI) to Dementia or Alzheimer disease (AD). 

- E-Health software development for the prediction of risk factors along with the detection 

of causal and temporal interactions between reasons, expressed as data variables.
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Appendix A   Talairach Mapping 

The spatial mapping of EEG data variables into the NeuCube-based SNN models was 

performed with respect to the (x,y,z) coordinates as positioned in the Talairach template 

(Table A-1). 

Table A-1 Anatomical locations of cortical projections from (Koessler, et al., 2009). The BA column represents 

the id of the corresponding Brodmann areas. 

 

Labels 

Talairach coordinates  

Gyri 

 

BA x avg (mm) y avg (mm) z avg (mm) 

FP1 − 21.2 ± 4.7 66.9 ± 3.8 12.1 ± 6.6 L FL Superior frontal G 10 

FPz 1.4 ± 2.9 65.1 ± 5.6 11.3 ± 6.8 M FL Bilat. medial 10 

FP2 24.3 ± 3.2 66.3 ± 3.5 12.5 ± 6.1 R FL Superior frontal G 10 

AF7 − 41.7 ± 4.5 52.8 ± 5.4 11.3 ± 6.8 L FL Middle frontal G 10 

AF3 − 32.7 ± 4.9 48.4 ± 6.7 32.8 ± 6.4 L FL Superior frontal G 9 

AFz 1.8 ± 3.8 54.8 ± 7.3 37.9 ± 8.6 M FL Bilat. medial 9 

AF4 35.1 ± 3.9 50.1 ± 5.3 31.1 ± 7.5 L FL Superior frontal G 9 

AF8 43.9 ± 3.3 52.7 ± 5.0 9.3 ± 6.5 R FL Middle frontal G 10 

F7 − 52.1 ± 3.0 28.6 ± 6.4 3.8 ± 5.6 L FL Inferior frontal G 45 

F5 − 51.4 ± 3.8 26.7 ± 7.2 24.7 ± 9.4 L FL Middle frontal G 46 

F3 − 39.7 ± 5.0 25.3 ± 7.5 44.7 ± 7.9 L FL Middle frontal G 8 

F1 − 22.1 ± 6.1 26.8 ± 7.2 54.9 ± 6.7 L FL Superior frontal G 6 

Fz 0.0 ± 6.4 26.8 ± 7.9 60.6 ± 6.5 M FL Bilat. medial 6 

F2 23.6 ± 5.0 28.2 ± 7.4 55.6 ± 6.2 R FL Superior frontal G 6 

F4 41.9 ± 4.8 27.5 ± 7.3 43.9 ± 7.6 R FL Middle frontal G 8 

F6 52.9 ± 3.6 28.7 ± 7.2 25.2 ± 7.4 R FL Middle frontal G 46 

F8 53.2 ± 2.8 28.4 ± 6.3 3.1 ± 6.9 R FL Inferior frontal G 45 

FT9 − 53.8 ± 3.3 − 2.1 ± 6.0 − 29.1 ± 6.3 L TL Inferior temporal G 20 

FT7 − 59.2 ± 3.1 3.4 ± 5.6 − 2.1 ± 7.5 L TL Superior temporal G 22 

FC5 − 59.1 ± 3.7 3.0 ± 6.1 26.1 ± 5.8 L FL Precentral G 6 

FC3 − 45.5 ± 5.5 2.4 ± 8.3 51.3 ± 6.2 L FL Middle frontal G 6 

FC1 − 24.7 ± 5.7 0.3 ± 8.5 66.4 ± 4.6 L FL Superior frontal G 6 

FCz 1.0 ± 5.1 1.0 ± 8.4 72.8 ± 6.6 M FL Superior frontal G 6 

FC2 26.1 ± 4.9 3.2 ± 9.0 66.0 ± 5.6 R FL Superior frontal G 6 

FC4 47.5 ± 4.4 4.6 ± 7.6 49.7 ± 6.7 R FL Middle frontal G 6 

FC6 60.5 ± 2.8 4.9 ± 7.3 25.5 ± 7.8 R FL Precentral G 6 

FT8 60.2 ± 2.5 4.7 ± 5.1 − 2.8 ± 6.3 L TL Superior temporal G 22 

FT10 55.0 ± 3.2 − 3.6 ± 5.6 − 31.0 ± 7.9 R TL Inferior temporal G 20 

T7 − 65.8 ± 3.3 − 17.8 ± 6.8 − 2.9 ± 6.1 L TL Middle temporal G 21 

C5 − 63.6 ± 3.3 − 18.9 ± 7.8 25.8 ± 5.8 L PL Postcentral G 123 

C3 − 49.1 ± 5.5 − 20.7 ± 9.1 53.2 ± 6.1 L PL Postcentral G 123 

C1 − 25.1 ± 5.6 − 22.5 ± 9.2 70.1 ± 5.3 L FL Precentral G 4 
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Cz 0.8 ± 4.9 − 21.9 ± 9.4 77.4 ± 6.7 M FL Precentral G 4 

C2 26.7 ± 5.3 − 20.9 ± 9.1 69.5 ± 5.2 R FL Precentral G 4 

C4 50.3 ± 4.6 − 18.8 ± 8.3 53.0 ± 6.4 R PL Postcentral G 123 

C6 65.2 ± 2.6 − 18.0 ± 7.1 26.4 ± 6.4 R PL Postcentral G 123 

T8 67.4 ± 2.3 − 18.5 ± 6.9 − 3.4 ± 7.0 R TL Middle temporal G 21 

TP7 − 63.6 ± 4.5 − 44.7 ± 7.2 − 4.0 ± 6.6 L TL Middle temporal G 21 

CP5 − 61.8 ± 4.7 − 46.2 ± 8.0 22.5 ± 7.6 L PL Supramarginal G 40 

CP3 − 46.9 ± 5.8 − 47.7 ± 9.3 49.7 ± 7.7 L PL Inferior parietal G 40 

CP1 − 24.0 ± 6.4 − 49.1 ± 9.9 66.1 ± 8.0 L PL Postcentral G 7 

CPz 0.7 ± 4.9 − 47.9 ± 9.3 72.6 ± 7.7 M PL Postcentral G 7 

CP2 25.8 ± 6.2 − 47.1 ± 9.2 66.0 ± 7.5 R PL Postcentral G 7 

CP4 49.5 ± 5.9 − 45.5 ± 7.9 50.7 ± 7.1 R PL Inferior parietal G 40 

CP6 62.9 ± 3.7 − 44.6 ± 6.8 24.4 ± 8.4 R PL Supramarginal G 40 

TP8 64.6 ± 3.3 − 45.4 ± 6.6 − 3.7 ± 7.3 R TL Middle temporal G 21 

P9 − 50.8 ± 4.7 − 51.3 ± 8.6 − 37.7 ± 8.3 L TL Tonsile NP 

P7 − 55.9 ± 4.5 − 64.8 ± 5.3 0.0 ± 9.3 L TL Inferior temporal G 37 

P5 − 52.7 ± 5.0 − 67.1 ± 6.8 19.9 ± 10.4 L TL Middle temporal G 39 

P3 − 41.4 ± 5.7 − 67.8 ± 8.4 42.4 ± 9.5 L PL Precuneus 19 

P1 − 21.6 ± 5.8 − 71.3 ± 9.3 52.6 ± 10.1 L PL Precuneus 7 

Pz 0.7 ± 6.3 − 69.3 ± 8.4 56.9 ± 9.9 M PL Superior parietal L 7 

P2 24.4 ± 6.3 − 69.9 ± 8.5 53.5 ± 9.4 R PL Precuneus 7 

P4 44.2 ± 6.5 − 65.8 ± 8.1 42.7 ± 8.5 R PL Inferior parietal L 7 

P6 54.4 ± 4.3 − 65.3 ± 6.0 20.2 ± 9.4 R TL Middle temporal G 39 

P8 56.4 ± 3.7 − 64.4 ± 5.6 0.1 ± 8.5 R TL Inferior temporal G 19 

P10 51.0 ± 3.5 − 53.9 ± 8.7 − 36.5 ± 10.0 L OL Tonsile NP 

PO7 − 44.0 ± 4.7 − 81.7 ± 4.9 1.6 ± 10.6 R OL Middle occipital G 18 

PO3 − 33.3 ± 6.3 − 84.3 ± 5.7 26.5 ± 11.4 R OL Superior occipital G 19 

POz 0.0 ± 6.5 − 87.9 ± 6.9 33.5 ± 11.9 M OL Cuneus 19 

PO4 35.2 ± 6.5 − 82.6 ± 6.4 26.1 ± 9.7 R OL Superior occipital G 19 

PO8 43.3 ± 4.0 − 82.0 ± 5.5 0.7 ± 10.7 R OL Middle occipital G 18 

O1 − 25.8 ± 6.3 − 93.3 ± 4.6 7.7 ± 12.3 L OL Middle occipital G 18 

Oz 0.3 ± 5.9 − 97.1 ± 5.2 8.7 ± 11.6 M OL Cuneus 18 

O2 25.0 ± 5.7 − 95.2 ± 5.8 6.2 ± 11.4 R OL Middle occipital G 18 



 

 

197 

 

Appendix B    Spatio-Temporal fMRI 

Study 

B.1 Spatio-temporal fMRI Data Description  

The case study problem used here belongs to the STAR/PLUS fMRI data set, originally 

collected by Marcel Just and his colleagues at Carnegie Mellon University’s Centre for 

Cognitive Brain Imaging (CCBI) (Just & Wang, 2001). The original dataset was provided in 

a MATLAB file which contains three major arrays: Data (contains the time-series recorded 

from voxels), Info (contains information about cognitive task) and Meta (contains the voxels’ 

labels related to their region of interests— ROIs). A stated in (Mitchell, et al., 2004), in order 

to introduce randomness in the cognitive task, 40 trials were defined. In the first 20 trials, 

participants were first presented by a picture and then a sentence whereas for remaining 20 

trials, they reversed the order of the picture and sentence presentation. 

For fMRI acquisition, while participants were performing the cognitive trials, T2-weighted 7 

fMRI images were collected using 3T scanner at an interval of 500 milliseconds, and with 

TE = 18 milliseconds and flip angle of 50°. These settings yield images that have 

approximately 5000 voxels per subjects in 8 oblique axial slices in two different non-

contiguous four-slice volumes. The first volume set captures prefrontal areas and superior 

parietal regions, while, another volume set covers posterior temporal, inferior frontal and 

occipital areas. After acquiring T2-weighted fMRI images for each subject, images were pre-

                                                
7 In T2-weighted both fat and water are hyper-intense and appear bright. 
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processed using Functional Imaging Analysis Software, Computational Olio (FIASCO) 

program (Eddy, Fitzgerald, Genovese, Mockus, & Noll, 1996; Eddy, et al., 1999). This pre-

processing helps in reducing the artifacts that arise during image acquisition process due to 

signal drift, head motion, and others. After pre-processing of images, 25 anatomical regions 

of interest (ROI) were defined. To identify the ROI in fMRI data, two types of brain images 

were collected for each subject. The first type of image, which has been discussed up to this 

point, captures brain activation via the BOLD response, and is referred to as a functional 

image. The second type of image, called a structural image, captures the static physical brain 

structure at higher resolution. For each subject, this structural image was used to identify the 

anatomical regions of interest, using the parcellation scheme (Caviness, Verne, Meyer, 

Makris, & Kennedy, 1996) and (Rademacher, Galaburda, Kennedy, Filipek, & Caviness , 

1992). For each subject, the mean of their functional images was then co-registered to the 

structural image; so that, individual voxels in the functional images could be associated with 

the ROIs identified in the structural image. The achieved ROIs include: left dorsolateral 

prefrontal cortex (LDLPFC) and right dorsolateral prefrontal cortex (RDLPFC), calcarine 

sulcus (CALC), left frontal eye fields (LFEF), right frontal eye fields (RFEF), left inferior 

parietal lobule (LIPL), right inferior parietal lobule (RIPL), left intraparietal sulcus (LIPS), 

right intraparietal sulcus (RIPS), left inferior frontal gyrus (LIFG), left opercularis (LOPER), 

right opercularis (ROPER), supplementary motor areas (SMA), left and right inferior 

temporal lobule (LIT, RIT), left and right posterior precentral sulcus (LPPREC, RPPREC), 

left and right supramarginal gyrus (LSGA, RSGA), left temporal lobe (LT), right temporal 

lobe (RT), left and right triangularis (LTRIA, RTRIA), left superior parietal lobule (LSPL) 

and right superior parietal lobule (RSPL).  
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B.2 Statistical Analysis of the SNN Models of fMRI 

 

 

Figure B-1 Distribution of the average connection weights around the input voxels located in the left and right 

hemispheres of the trained SNN models of related respectively to negative sentences. 

 

Figure B-2 Distribution of the average connection weights around the input voxels located in the left and right 

hemispheres of the trained SNN models of related respectively to affirmative sentences. 
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Table B-1 T-Test results of the training iterations in the SNN models of fMRI data related to affirmative 

sentences and negative sentences (right) and seeing pictures and reading sentences (left). The t-test was 

measured in Excel using “Two-Sample Assuming Unequal Variances” method. 

 

B.3 SNN Parameter Optimisation  

For optimisation, I performed an exhaustive grid-search on combination of parameters for 

every sample’s model. Each parameter was searched within a range, specified by the 

minimum and maximum, through several iterations related to the number of steps for moving 

from minimum to maximum. For every model creation, I chose three main parameters (STDP 

learning rate, 𝑚𝑜𝑑 and 𝑑𝑟𝑖𝑓𝑡 parameters) to be optimised. The parameters were selected by 

assigning 10 steps between the minimum and maximum values of each parameter range. 

Therefore, for every model creation, 1000 iterations of training (using all samples except the 

holdout sample) and testing (using the single holdout sample) were performed with different 

combination of these three parameters. Then the parameters that resulted in the best accuracy 

in most of the iterations have been reported as the optimal parameters, shown in Table B-2. 

The TBR threshold, neuron firing threshold and small-world radius parameters were fixed to 

0.5, 0.5, and 2.5 respectively. 

 

Picture Sentence Affirmative Negative 

Mean 1.3 1.12 Mean 1.2 0.7

Variance 0.13 0.06 Variance 0.06 0.03

Observations 40 40 Observations 20 20

P(T<=t) one-tail 0.003 P(T<=t) one-tail 6.50E-08

t Critical one-tail 1.6 t Critical one-tail 1.6

P(T<=t) two-tail 0.006 P(T<=t) two-tail 1.30E-07

t Critical two-tail 2 t Critical two-tail 2.03
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Table B-2 Optimal parameter setting of the SNN models for different experiments and sessions with the 

benchmark fMRI data. 
Classification tasks Experiment 

Sessions 

mod drift STDP rate 

Experiment A: Affirmative vs negative 

sentences  

Session I 0.56 0.03 0.006 

Session II 0.45 0.03 0.005 

Session III 0.51 0.02 0.005 

Experiment B: Pictures vs sentences Session I 0.56 0.03 0.006 

Parameter range  0.4-0.95 0.001-0.5 0.001-0.01 
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Appendix C    EEG Study 

To validate the proposed methods in this thesis, I have used a case study of EEG data which 

was recorded under an ethical approval granted by the Northern Regional X Ethics Committee 

of New Zealand. The data were recorded at the School of Pharmacy, University of Auckland 

by Dr Grace Wang, Senior Lecturer /Addictions Programme Leader from Faculty of Health 

and Environmental Science at Auckland University of Technology. All participants signed 

informed consent to certify their voluntary participation. 

C.1 Participants  

Inclusion criteria. All participants recruited were between 18– 45 years of age, had a basic 

English literacy skill and were able to provide written informed consent. Participants in the 

opiate user group were required to meet the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-IV) (American Psychiatric Association, 2000) criteria for opiate 

dependence which was diagnosed using the Composite International Diagnostic Interview 

(CIDI) (Kessler & Üstün, 2004). This requires participants to be physically dependent on 

opiates as evidenced by a history of withdrawal symptoms and to have been actively using 

opiates for a minimum of one year prior to the study date. Participants in the opiate user 

group were not allowed to be currently undertaking MMT. The inclusion criteria for healthy 

control subjects were no current or lifetime history of drug or alcohol abuse other than 

nicotine dependence. 
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Exclusion criteria. Exclusion criteria were based on the results of the CIDI (Kessler & 

Üstün, 2004), which was administered to all participants, and included a history of psychotic 

disorder, depression, cardiac disease, endocrine disorder, head trauma, neurological disease 

and self-reported current pregnancy or breastfeeding. The CIDI is a well-validated clinical 

assessment tool that has been used extensively for clinical and research purposes (Wittchen, 

1994). It provides detailed information based on the DSM-IV (American Psychiatric 

Association, 2000) and includes 22 diagnostic sections that assess mood disorders, anxiety 

disorders, substance use, disorder, childhood disorder and other disorders. There are 

additional sections screening for the presence of cognitive impairments, such as memory, 

speech and learning, and current physical status (i.e. headache, speech and sensor 

perception). At the time of testing, none of the participants were experiencing symptoms that 

could be attributed to acute drug intoxication or withdrawal. To minimise potential confounds 

between groups, the age, gender, educational levels and ethnicity were matched and 

controlled by recruitment. The quantity of other drug use by MMT and opiate user groups 

was not controlled for during recruitment because the quantity of a drug consumed can be 

influenced by its overall quality; self-report of the amounts consumed is also known to lead 

to underestimates (Danion, et al., 1993). Table C-1 presents the demographic data and history 

of Methadone use in H, MMT, H and OP groups.  

Table C-1 Demographic data and history of Methadone use in the healthy control (H), methadone maintenance 
treatment (MMT) and opiate (OP) groups. Standard deviation (SD). 

Group Number of 

participants 

Mean age 

(SD) 

Male  

% (n) 

Female 

% (n) 

Mean duration years of 

education (SD) 

Mean duration years of 

opiate/Methadone   use (SD) 

 MMT 31 39.36 

(5.14) 

 

54.83 (17)  45.16(14) 12.06 (SD=2.00) Opiate use:10.03 (6.08)  

MMT use: 7.29 (SD=6.39) 

 

 OP 18 37.38 

(7.44) 

 

61.11 (11) 38.88 (7) 12.47 (SD=1.46) Opiate use: 11.41 (8.60)  

H 21 36.12 

(6.61) 

52.38 (11) 47.61 (10) 13.71 (SD=1.73)  

— 
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C.2 Cognitive GO/NOGO Task 

GO/NOGO task is a psychological test to measure a participant’s capacity for response 

control and sustained attention. During the task, participants were repeatedly presented by 

the word ‘PRESS’ (for 500 ms).  The colour of the word ‘PRESS’ was presented randomly 

in either red or green. Participants were instructed to respond by pressing a button with the 

index finger of both hands in response to the word that appeared in green (GO) and not 

respond to the word that appeared in red (NOGO). Based on the most literature about 

GO/NO-GO task, the brain response inhibition, as a core executive function, is expected to 

be observed in prefrontal, frontal, dorsal, ventral, and parietal regions, which are related to 

human response inhibition. On the other hand, psychological reports showed there is a direct 

relation between the response reduction in prefrontal cortex magnitude and addictive 

behaviour, due to the drug effects on these brain functions.   

Participants were asked to complete the practice trial prior to the real test to ensure that they 

understood the task. At this stage, the word ‘PRESS’ was presented in the same colour 6 

times in a row. There were 28 sequences, 21 of which were presented in green and 7 in red, 

presented in a pseudo-random order, with an inter-stimulus interval of 1 second. The task 

duration was approximately 5 minutes. Speed and accuracy of response were stressed equally 

in the task instructions. 

During a GO/NOGO task, a participant is required to perform an action given certain stimuli 

(e.g. press a button-GO) and inhibit that action under a different set of stimuli (e.g. not press 
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that same button- NOGO). Typically, NOGO stimuli are rare and task instructions are to 

execute a fast GO response. Therefore, there is increased conflict when NOGO stimuli are 

presented. Although the GO/NOGO task appears simple, requiring a response according to a 

conditional rule reflects high level cognitive functions including decision making, response 

selection, and inhibition. Evidence shows that groups characterised by clinically relevant 

impulsivity, e.g., drug users, tend to show diminished inhibition of responses to NOGO 

stimuli; thus, making more errors of commission (Ahmadi, et al., 2013). 

C.3 EEG Data Acquisition 

EEG has been extensively used for brain studies including addiction research. It is recognised 

as a sensitive measure of drug effects on the brain, which often manifest as changes in the 

size and time course of the postsynaptic potentials (Gevins, et al., 2011) as reflected in 

alterations in EEG signals. It has been shown that reinforcing effects of many drugs mediated 

by the mesolimbic dopamine pathway modify EEG recordings (Knyazev, 2007).  

For EEG recordings, a QuickCap (Neuroscan 4.3) 40 sensor shielded cap was used to acquire 

EEG data from the cephalic sites. The 26 Ag/AgCl sintered electrodes included Fp1, Fp2, 

Fz, F3, F4, F7, F8, Cz, C3, C4, CP3, CPz, CP4, FC3, FCz, FC4, T7, T8, P7, P8, Pz, P3, P4, 

O1, O2, and Oz electrode sites (10–20 International System). EEG was recorded relative to 

the average of A1 and A2 (mastoid) electrode sites. Horizontal eye movements were recorded 

with electrodes placed 1.5 cm laterally to the outer canthus of each eye. Vertical eye 

movements were recorded with electrodes placed 3 mm above the middle of the left eyebrow 

and 1.5 cm below the middle of the left bottom eye-lid. Skin resistance was kept at <5 kOhms. 

Scalp and EOG potentials were amplified and digitised continuously by a system (NuAmps, 
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SCAN 4.3) having frequency response from direct current (DC) to 100 Hz (above which 

attenuating by 40 dB per decade), and a sampling rate of 500 Hz. EEG data were screened 

visually for artifacts, normal variants and changes in alertness (the technician screening these 

data was blinded to group status). To reduce muscle artefacts in the EEG signal, the 

participants were instructed to assume a comfortable position and avoid movement during 

recording. Electrical impedance was always <5 KΩ.  

C.4 Event-Related Potentials (ERPs) Processing 

Artefact correction was conducted by the Brain Resource Company (BRC) of Australia. EEG 

data were corrected using the method of (Gratton, Coles, & Donchin, 1983), which computes 

separate propagation factors for blinks and eye movements on the basis of the residuals in 

the EEG channels after subtraction of event-related activity on either channel. Then, for each 

channel, the individual single-trial epochs were filtered with a low-pass filter function that 

attenuates frequencies above 25 Hz. Scalp EEG recording was segmented into epochs, 

centred on each single event corresponding to the stimulus. Event-related potentials (ERP) 

was acquired by averaging EEG signals from several stimulus presentations during the 

performance of a task. The averaging extracts the spontaneous ‘noisy’ background 

fluctuations from scalp recordings leaving only stimulus-related electrical activity in a time-

locked windows. ERP response to all GO stimuli with a correct button response (only) were 

included in the GO average file. Similarly, ERP response to NOGO stimuli with a correct 

button response (only) were included in the NOGO average file.  
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C.5 T-Test Results 

A t-test was applied to evaluate how the trained SNN models of H, MMT and OP subjects 

were statistically significant as shown in Tables C-2 and C-3. 

Table C-2 T-Test results of the training iterations in the SNN models of H, MMT and OP groups in GO and 

NOGO tasks. The T-Test was computed in Excel using “Two-Sample Assuming Unequal Variances” method. 

 

Table C-3 T-Test results of the FIN graphs of the H, MMT and OP groups in GO and NOGO trials. The T-Test 

was computed in Excel using “Paired Two Sample for Means” method. 

 

GO NOGO GO NOGO GO NOGO

Mean 0.09 0.7 Mean 0.1 0.2 Mean 0.08 0.2

Variance 5E-04 0.0003 Variance 0.001 0.001 Variance 6E-04 0.07

Observations 21 21 Observations 29 31 Observations 18 18

df 38 df 58 df 17

t Stat 3.2 t Stat -3.4 t Stat -2.9

P(T<=t) one-tail 0.001 P(T<=t) one-tail 0 P(T<=t) one-tail 0.004

t Critical one-tail 1.6 t Critical one-tail 1.6 t Critical one-tail 1.8

P(T<=t) two-tail 0.002 P(T<=t) two-tail 0.001 P(T<=t) two-tail 0.009

t Critical two-tail 2.02 t Critical two-tail 2 t Critical two-tail 2.1

H MMT H OP MMT OP

Mean 38.5 19.2 Mean 38.5 22.9 Mean 19.2 22.9

Variance 705 352 Variance 705 315 Variance 352 315

Observations 26 26 Observations 26 26 Observations 26 26

Pearson Correlation 0.03 Pearson Correlation 0.16 Pearson Correlation 0.25

df 25 df 25 df 25

t Stat 3.07 t Stat 2.69 t Stat -0.9

P(T<=t) one-tail 0 P(T<=t) one-tail 0.01 P(T<=t) one-tail 0.2

t Critical one-tail 1.71 t Critical one-tail 1.71 t Critical one-tail 1.71

P(T<=t) two-tail 0.01 P(T<=t) two-tail 0.01 P(T<=t) two-tail 0.4

t Critical two-tail 2.06 t Critical two-tail 2.06 t Critical two-tail 2.06

H MMT H OP MMT OP

Mean 29.3 37.6 Mean 29.3 48.6 Mean 37.6 48.6

Variance 283 473 Variance 283 1024 Variance 473 1024

Observations 26 26 Observations 26 26 Observations 26 26

Pearson Correlation 0.54 Pearson Correlation 0.33 Pearson Correlation 0.5

df 25 df 25 df 25

t Stat -2.2 t Stat -3.18 t Stat -2

P(T<=t) one-tail 0.02 P(T<=t) one-tail 0 P(T<=t) one-tail 0.03

t Critical one-tail 1.71 t Critical one-tail 1.71 t Critical one-tail 1.71

P(T<=t) two-tail 0.04 P(T<=t) two-tail 0 P(T<=t) two-tail 0.06

t Critical two-tail 2.06 t Critical two-tail 2.06 t Critical two-tail 2.06

G
O

 
N

O
G

O
 

       H                                                       MMT                                                      OP  

 0.07 

 
0.03 

 
0.003 
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C.6 Feature Interaction in SNN Models 

During the STDP learning procedure, input neurons accumulate spikes to the SNN model 

and, if the neurons that received the spikes cross an activation threshold, they also emit output 

spikes. That spikes are sent out to all the connected neurons, and then the neurons will 

likewise accumulate activity as a function of receiving spikes and, after crossing some 

threshold, fire. In such a way, spikes are transferred between neurons and propagated to the 

SNN model.  

To have a better understanding of the spike propagation in SNN models, I developed a graph-

based representation of the number of spikes exchanged between the neurons. Figures C-1 to 

C-6 illustrate the six Feature Interaction Networks (FINs), each of which captures the number 

of spikes transmitted between 26 EEG features (channels) during unsupervised STDP 

learning. Each node in FIN represents a group of neurons connected to an input neuron (EEG 

channel) and the arcs represent relative spike amounts transmitted between these groups. The 

amount of spike interaction between any 2 adjacent groups of neurons (each connected to 

one input neuron) was computed with respect to the number of spikes exchanged between 

them divided by the total STDP learning time. The wider the arc between nodes, the more 

spikes were transmitted between the corresponding groups of neurons. Tables C-4 to C-9 

represent the quantitative information of FINs that demonstrate the level of spatio-temporal 

interaction between the EEG channels with respect to the number of spikes transmitted 

between them. By comparing FIN graphs developed for H subjects in GO versus NOGO, it 

can be seen that the spike communication was larger between the most of inputs while the 

subjects were performing GO trials than NOGO trials. On the other hand, both MMT and OP 

subjects demonstrated increased spike communication in a wide range of areas during the 
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NOGO trials that GO trials. These findings represent different SNN models were developed 

for people with a history of opiate and healthy subjects. For instance, for OP subjects in 

NOGO trials wide lines were created between F4 and C4 (line weight= 16.15) and F4 and P4 

(line weight= 25.2). These links represent a great number of spikes was transmitted between 

groups of neurons around these channels while the subjects were undertaking NOGO trials. 

In contrast, different level of interaction between these channels was observed for H subjects 

during NOGO trials. These findings were evaluated by a t-test to represent whether the FIN 

graphs were statistically significant across the groups. Table C-10 represents the 𝑝-values for 

FIN graphs (applied to the last column) of H, MMT and OP subjects in GO and NOGO tasks. 

It represents that in both GO and NOGO trials the FIN graphs of the H and OP subjects were 

significantly different (𝑝-value=0.012<0.05 in GO and =0.003 <0.05 in NOGO). Also, the 

FIN graphs of H and MMT were also significantly different as the 𝑝-value=0.005<0.05 in 

GO and =0.03<0.05 in NOGO. However, the statistical analysis on the FIN graphs of MMT 

and OP subjects in GO has not shown a meaningful significance as 𝑝-value=0.4>0.05. 
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Figure C-1 The spike interaction between 26 neural groups representing 26 EEG channels in H group in GO 

task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the more 

spikes were transmitted between corresponding groups. 

Table C-4 The amount of spike transformation between 26 neural groups representing 26 EEG channels in H 

group in GO task, computed as the number of spikes exchanged between 2 groups divided by the STDP time. 

 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2 ∑

Fp1 0 3 6 1.8 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11.3

Fp2 3 0 0 0.4 10.6 11 10 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35.3

F7 6 0 0 9.7 0.4 0 0 1.2 0 0 3.1 3.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24.5

F3 1.8 0.4 9.7 0 8.7 0 0 6.9 2.1 0 0 7 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 37.2

Fz 0.4 10.6 0.4 8.7 0 7.4 0.2 1.1 12.7 6.8 0 1.6 3.7 0 0 0 6 0 0 0 0 0 0 0 0 0 60.1

F4 0 10.5 0 0 7.4 0 10 0 0.3 15 0 0 0.1 0 0.1 0 0 0 0 0 0 0 0 0 0 0 44.2

F8 0 10.2 0 0 0.2 10 0 0 0 3.6 0 0 0 0.3 6.6 0 0 0 0 0 0 0 0 0 0 0 31.7

FC3 0 0 1.2 6.9 1.1 0 0 0 1.3 0 0.2 12.5 0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 24.6

FCz 0 0 0 2.1 12.7 0.3 0 1.3 0 4.5 0 4 14.5 0.1 0 0 1 0 0 0 0 0 0 0 0 0 41.1

FC4 0 0.2 0 0 6.8 15 3.6 0 4.5 0 0 0 9.8 15.3 3.2 0 26.2 0.7 0 0 0 0 0 0 0 0 85.8

T3 0 0 3.1 0 0 0 0 0.2 0 0 0 7.9 0 0 0 1.4 0.1 0 3.6 0.4 0 0 0 0 0 0 17

C3 0 0 3.8 7 1.6 0 0 12.5 4 0 7.9 0 10.7 0 0 14.1 7.7 0 0 7.9 0 0 0 0 0 0 77.5

Cz 0 0 0 0.1 3.7 0.1 0 0.9 14.5 9.8 0 10.7 0 1.2 0 0.9 18 0.4 0 0 0 0.1 0 0 0 0 61

C4 0 0 0 0 0 0 0.3 0 0.1 15.3 0 0 1.2 0 3.5 0 3.5 5 0 0 0 3.6 0.7 0 0 0 33.5

T4 0 0 0 0 0 0.1 6.6 0 0 3.2 0 0 0 3.5 0 0 0.3 0.5 0 0 0 0.6 8.3 0 0 1 24.5

CP3 0 0 0 0 0 0 0 0 0 0 1.4 14.1 0.9 0 0 0 10 0 1.6 11.1 0.7 0 0 0.1 0 0 40.3

CPz 0 0 0 0 6 0 0 0 1 26.2 0.1 7.7 18 3.5 0.3 10 0 3.3 0 6.6 16.3 11.1 2 1.6 12.9 2 129.5

CP4 0 0 0 0 0 0 0 0 0 0.7 0 0 0.4 5 0.5 0 3.3 0 0 0 0 7.7 1.6 0 0 0 19.3

T5 0 0 0 0 0 0 0 0 0 0 3.6 0 0 0 0 1.6 0 0 0 5.5 0 0 0 0 0 0 10.9

P3 0 0 0 0 0 0 0 0 0 0 0.4 7.9 0 0 0 11.1 6.6 0 5.5 0 4 0 0 0 2 0 37.7

Pz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 16.3 0 0 4 0 2.4 0 1.5 3.2 1.1 29.7

P4 0 0 0 0 0 0 0 0 0 0 0 0 0.1 3.6 0.6 0 11.1 7.7 0 0 2.4 0 9 0 0.4 3.6 38.9

T6 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 8.3 0 2 1.6 0 0 0 9 0 0 0.1 7.1 29.1

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 1.6 0 0 0 1.5 0 0 0 4.9 0.5 8.9

Oz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12.9 0 0 2 3.2 0.4 0.1 4.9 0 3 26.9

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 1.1 3.6 7.1 0.5 3 0 18.5
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Figure C-2 The spike interaction between 26 neural groups representing 26 EEG channels in H group in NOGO 

task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the more 

spikes were transmitted between corresponding groups. 

Table C-5 The amount of spike transformation between 26 neural groups representing 26 EEG channels in H 

group in NOGO task, computed as the number of spikes exchanged between 2 groups divided by the STDP 

time. 

 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2 ∑

Fp1 0 1.7 5.3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.1

Fp2 1.7 0 0.2 2.9 8.6 9.6 10 0.3 0.8 2.4 0 0 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 38.1

F7 5.3 0.2 0 8 0 0 0 2 0 0 1.7 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17.7

F3 1 2.9 8 0 5.1 0 0 19 1 0 0.2 0.6 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 38.5

Fz 0 8.6 0 5.1 0 0.9 0.4 2.2 3.5 1.7 0 0 2.6 0 0 0 0 0 0 0 0 0 0 0 0 0 25.4

F4 0 9.6 0 0 0.9 0 14 0 0.1 11.9 0 0 0.2 0.1 3.3 0 3 0 0 0 0 0 0 0 0 0 43.8

F8 0 10 0 0 0.4 14 0 0.1 0.1 10.1 0 0 0.5 0.2 4.2 0 0 0 0 0 0 0 0 0 0 0 40

FC3 0 0.3 2 19 2.2 0 0.1 0 3.1 0.1 1.7 0 10.8 0 0 0 0.4 0 0 3 0 0 0 0 0 0 43.2

FCz 0 0.8 0 1 3.5 0.1 0.1 3.1 0 1.9 0 0.3 7.5 0 0 0 0 0 0 0 0 0 0 0 0 0 18.7

FC4 0 2.4 0 0 1.7 12 10 0.1 1.9 0 0 0 2.8 5.3 2.9 0 2.9 20.6 0 0 0 0.4 0.1 0 0 0 63.6

T3 0 0 1.7 0.2 0 0 0 1.7 0 0 0 3.5 0 0 0 0.2 0 0 2.9 0.1 0 0 0 0.5 0 0 11.1

C3 0 0 0.3 0.6 0 0 0 0 0.3 0 3.5 0 7.7 0 0 6.8 7.7 0 0.6 9.3 0 0 0 1.1 0 0 38.5

Cz 0 1.1 0 0.4 2.6 0.2 0.5 10.8 7.5 2.8 0 7.7 0 0.6 0 0.3 9.9 0.2 0 0 0 0.2 0 0 0 0 45.4

C4 0 0 0 0 0 0.1 0.2 0 0 5.3 0 0 0.6 0 1.5 0 1 6.4 0 0 0 0.9 0.7 0 0 0 17.1

T4 0 0 0 0 0 3.3 4.2 0 0 2.9 0 0 0 1.5 0 0 0 1.1 0 0 0 0.1 2.1 0 0 0 15.7

CP3 0 0 0 0 0 0 0 0 0 0 0.2 6.8 0.3 0 0 0 2.9 0 0.3 4.5 0.1 0 0 1.4 0 0 16.9

CPz 0 0 0 0 0 3 0 0.4 0 2.9 0 7.7 9.9 1 0 2.9 0 3.1 0 5.8 14 12.2 0.1 2.2 1.3 0.5 67.9

CP4 0 0 0 0 0 0 0 0 0 20.6 0 0 0.2 6.4 1.1 0 3.1 0 0 0 0 11.4 4.1 0 0 0 47.1

T5 0 0 0 0 0 0 0 0 0 0 2.9 0.6 0 0 0 0.3 0 0 0 0.9 0 0 0 2.6 0 0 7.4

P3 0 0 0 0 0 0 0 3 0 0 0.1 9.3 0 0 0 4.5 5.8 0 0.9 0 2.2 0 0 3.7 0.5 0 30.4

Pz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 14 0 0 2.2 0 4 0 3.2 1.9 1.5 27.2

P4 0 0 0 0 0 0 0 0 0 0.4 0 0 0.2 0.9 0.1 0 12.2 11.4 0 0 4 0 7.2 0 1.4 2.8 41.1

T6 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0.7 2.1 0 0.1 4.1 0 0 0 7.2 0 0 0.1 2.8 17.6

O1 0 0 0 0 0 0 0 0 0 0 0.5 1.1 0 0 0 1.4 2.2 0 2.6 3.7 3.2 0 0 0 2.2 0.5 17.8

Oz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3 0 0 0.5 1.9 1.4 0.1 2.2 0 3.4 11

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0 1.5 2.8 2.8 0.5 3.4 0 11.8
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Figure C-3The spike interaction between 26 neural groups representing 26 EEG channels in MMT group in GO 

task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the more 

spikes were transmitted between corresponding groups 

Table C-6 The amount of spike transformation between 26 neural groups representing 26 EEG channels in 

MMT group in GO task, computed as the number of spikes exchanged between 2 groups divided by the STDP 

time. 

 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2 ∑

Fp1 0 0 1.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7

Fp2 0 0 0 0 0.5 0 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.3

F7 1.6 0 0 1.3 1 0 0 1.4 0 0 0.6 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.4

F3 0 0 1.3 0 0.3 0 0 0.4 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.3

Fz 0 0.5 1 0.3 0 0.8 2.9 3 6.1 6.4 0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.4

F4 0 0 0 0 0.8 0 5.5 0 0 1.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.1

F8 0 1.7 0 0 2.9 5.5 0 0 0 12.3 0 0 0 9.2 9.1 0 0 0 0 9.4 10.1 0 0 0 0 0 60.4

FC3 0 0 1.4 0.4 3 0 0 0 3.3 0 0.2 3.1 1.9 0.1 0 0.8 0 0 0 8.4 0.4 0 0 0 0 0 23.5

FCz 0 0 0 0 6.1 0 0 3.3 0 3.7 0 0.1 3.5 1.9 0 0 0.1 0 0 0 0 0 0 0 0 0 19.1

FC4 0 0 0 0 6.4 1.6 12 0 3.7 0 0 0 1.5 19 0.5 0 0.1 0.1 0 0 0.5 0 0 0 0 0 45.9

T3 0 0 0.6 0 0 0 0 0.2 0 0 0 0.2 0 0 0 0.1 0 0 0.5 0.2 0 0 0 0 0 0 2.1

C3 0 0 0.1 0.1 0.1 0 0 3.1 0.1 0 0.2 0 0.2 0 0 1.4 0 0 0.1 1 0.1 0 0 0 0 0 6.9

Cz 0 0 0 0 0 0 0 1.9 3.5 1.5 0 0.2 0 0.8 0 0.1 0.6 0.1 0 0.2 2 0 0 0 0 0 11.3

C4 0 0 0 0 0 0 9.2 0.1 1.9 19 0 0 0.8 0 11 0 0.1 12.1 0 0 8.3 2.1 2.7 0 0.1 0.5 68.6

T4 0 0 0 0 0 0 9.1 0 0 0.5 0 0 0 11 0 0 0 0 0.1 0 0 0.2 4.4 0 0 0.4 26

CP3 0 0 0 0 0 0 0 0.8 0 0 0.1 1.4 0.1 0 0 0 0 0 0.1 3 1.2 0 0 0 0 0 6.9

CPz 0 0 0 0 0 0 0 0 0.1 0.1 0 0 0.6 0.1 0 0 0 0 0 0 4.8 0 0 0 0 0 5.9

CP4 0 0 0 0 0 0 0 0 0 0.1 0 0 0.1 12.1 0 0 0 0 0 0 0.5 3 0.1 0 0 0 16

T5 0 0 0 0 0 0 0 0 0 0 0.5 0.1 0 0 0.1 0.1 0 0 0 1.2 0 0 0 3.6 0 0 5.7

P3 0 0 0 0 0 0 9.4 8.4 0 0 0.2 1 0.2 0 0 3 0 0 1.2 0 8.1 0 0 6.2 1 0 39

Pz 0 0 0 0 0 0 10 0.4 0 0.5 0 0.1 2 8.3 0 1.2 4.8 0.5 0 8.1 0 7 0.1 2.6 4.8 0.3 51.5

P4 0 0 0 0 0 0 0 0 0 0 0 0 0 2.1 0.2 0 0 3 0 0 7 0 2.9 0 0.8 1.7 18

T6 0 0 0 0 0 0 0 0 0 0 0 0 0 2.7 4.4 0 0 0.1 0 0 0.1 2.9 0 0 0 1 11.5

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.6 6.2 2.6 0 0 0 3.9 0 16.6

Oz 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 1 4.8 0.8 0 3.9 0 2.5 13.5

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.4 0 0 0 0 0 0.3 1.7 1 0 2.5 0 6.9
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Figure C-4 The spike interaction between 26 neural groups representing 26 EEG channels in MMT group in 

NOGO task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the 

more spikes were transmitted between corresponding groups. 

Table C-7 The amount of spike transformation between 26 neural groups representing 26 EEG channels in 

MMT group in NOGO task, computed as the number of spikes exchanged between 2 groups divided by the 

STDP time. 

 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2 ∑

Fp1 0 0.2 8.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.4

Fp2 0.2 0 1.5 0 2.5 0.7 8.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13.5

F7 8.1 1.5 0 6.2 9.5 0 0.8 9.5 2.1 0 6.1 6.9 5.5 0 0 0 0 0 0 0.1 0 0 0 0 0 0 56.9

F3 0 0 6.2 0 0.4 0 0 1.2 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.1

Fz 0 2.5 9.5 0.4 0 3.5 4.4 1.4 8.9 6.8 0 0 7.7 0 0 0 0 0 0 0 0 0 0 0 0 0 45.5

F4 0 0.7 0 0 3.5 0 13 0 0.7 7.2 0 0 0.2 7.1 16 0 0 0 0 0 0 0 0 0 0 0 48.9

F8 0 8.5 0.8 0 4.4 13 0 0 0.5 11.2 0 0 3.1 2.4 15 0 0 0 0 0 0 0 0 0 0 0 59.4

FC3 0 0 9.5 1.2 1.4 0 0 0 1.8 0 0.2 9.2 5 0 0 0.1 0.1 0 0 0.1 0 0 0 0 0 0 29

FCz 0 0 2.1 0.1 8.9 0.7 0.5 1.8 0 3.2 0 0.3 13.5 0 0 0 0 0 0 0 0 0 0 0 0 0 31.4

FC4 0 0 0 0 6.8 7.2 11 0 3.2 0 0 0 13.2 14.7 3.4 0 0.1 1.7 0 0 0 0 0 0 0 0 61.7

T3 0 0 6.1 0 0 0 0 0.2 0 0 0 2.4 0 0 0 0.3 0 0 2.9 1.2 0 0 0 0.1 0 0 13.6

C3 0 0 6.9 0 0 0 0 9.2 0.3 0 2.4 0 6.8 0 0 3.9 1.5 0 0.3 6.8 0 0 0 0 0 0 38.6

Cz 0 0 5.5 0 7.7 0.2 3.1 5 13.5 13.2 0 6.8 0 6.2 1.5 0.7 5 5.7 0 2.2 1 1.1 0 0 0 0 79.2

C4 0 0 0 0 0 7.1 2.4 0 0 14.7 0 0 6.2 0 8.1 0 1.2 17.4 0 0 0 0.6 0 0 0 0 58.2

T4 0 0 0 0 0 16 15 0 0 3.4 0 0 1.5 8.1 0 0 0 8.3 0 0 0 1.9 8.3 0 0 0.1 63

CP3 0 0 0 0 0 0 0 0.1 0 0 0.3 3.9 0.7 0 0 0 1.3 0 0.3 6.6 0.2 0 0 0 0 0 13.8

CPz 0 0 0 0 0 0 0 0.1 0 0.1 0 1.5 5 1.2 0 1.3 0 6.1 0 9.1 18.9 9.5 0 0.2 0.1 0 53.8

CP4 0 0 0 0 0 0 0 0 0 1.7 0 0 5.7 17.4 8.3 0 6.1 0 0 0 0.8 18.8 3.1 0 0 0 62.1

T5 0 0 0 0 0 0 0 0 0 0 2.9 0.3 0 0 0 0.3 0 0 0 4 0 0 0 4.8 0 0 12.5

P3 0 0 0.1 0 0 0 0 0.1 0 0 1.2 6.8 2.2 0 0 6.6 9.1 0 4 0 8.5 0 0 4.7 2 0 45.9

Pz 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.2 18.9 0.8 0 8.5 0 11.5 0 3.3 4.4 0.7 49.7

P4 0 0 0 0 0 0 0 0 0 0 0 0 1.1 0.6 1.9 0 9.5 18.8 0 0 11.5 0 3.4 0.1 1.6 7.1 56.2

T6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.3 0 0 3.1 0 0 0 3.4 0 0 0 4.4 19.4

O1 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0.2 0 4.8 4.7 3.3 0.1 0 0 3.8 0.3 17.8

Oz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 2 4.4 1.6 0 3.8 0 1.9 14.1

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0.7 7.1 4.4 0.3 1.9 0 14.6
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Figure C-5 The spike interaction between 26 neural groups representing 26 EEG channels in OP group in GO 

task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the more 

spikes were transmitted between corresponding groups. 

Table C-8 The amount of spike transformation between 26 neural groups representing 26 EEG channels in OP 

group in GO task, computed as the number of spikes exchanged between 2 groups divided by the STDP time. 

 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2 ∑

Fp1 0 3.3 1.4 1.4 0.5 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.9

Fp2 3.3 0 0 0.2 4.3 5.8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15.9

F7 1.4 0 0 5.9 0.5 4 0 3.2 0.1 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18

F3 1.4 0.2 5.9 0 4 0 0 9.1 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21.3

Fz 0.5 4.3 0.5 4 0 9.1 0 2.4 11.8 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34.2

F4 4 5.8 4 0 9.1 0 7.9 0 10.1 9.6 0 0 12 7.2 7.9 0 0 0 0 0 0 0 0 0 0 0 77.9

F8 0 2 0 0 0 7.9 0 0 0 0.4 0 0 0 0 2.3 0 0 0 0 0 0 0 0 0 0 0 12.8

FC3 0 0 3.2 9.1 2.4 0 0 0 9.4 0 1.8 2.3 5.4 0 0 2.8 0.2 0 0 0.8 0.8 0 0 0 0 0 38.9

FCz 0 0 0.1 0.5 11.8 10 0 9.4 0 9.9 0 0.5 6.5 4.8 0 0 0.2 0.4 0 0 0.4 0.9 0 0 0 0 56.1

FC4 0 0 0 0 1.2 9.6 0.4 0 9.9 0 0 0 0.5 3.2 3.6 0 0 0.1 0 0 0 0.1 0 0 0 0 28.8

T3 0 0 2.5 0 0 0 0 1.8 0 0 0 1.2 0 0 0 0.3 0 0 2.8 0.4 0 0 0 0 0 0 9.2

C3 0 0 0 0 0 0 0 2.3 0.5 0 1.2 0 0.7 0 0 3.5 0.1 0 0.3 2.6 0.3 0 0 0 0 0 11.8

Cz 0 0 0 0 0 12 0 5.4 6.5 0.5 0 0.7 0 2.1 0 0.5 2.1 0.7 0 0.7 6.8 2.3 0 0 0 0 40.8

C4 0 0 0 0 0 7.2 0 0 4.8 3.2 0 0 2.1 0 8.4 0 0 7.6 0 0 0 5.6 0 0 0 0 39.3

T4 0 0 0 0 0 7.9 2.3 0 0 3.6 0 0 0 8.4 0 0 0 2.4 0 0 0 2.3 5.6 0 0 0 32.8

CP3 0 0 0 0 0 0 0 2.8 0 0 0.3 3.5 0.5 0 0 0 0 0 0.3 6.4 0.8 0 0 0 0 0 15

CPz 0 0 0 0 0 0 0 0.2 0.2 0 0 0.1 2.1 0 0 0 0 0 0 0.3 5.4 1.3 0 0 0 0 9.9

CP4 0 0 0 0 0 0 0 0 0.4 0.1 0 0 0.7 7.6 2.4 0 0 0 0 0 0.3 2.5 0.6 0 0 0 15.1

T5 0 0 0 0 0 0 0 0 0 0 2.8 0.3 0 0 0 0.3 0 0 0 4.9 0 0 0 0 0 0 8.5

P3 0 0 0 0 0 0 0 0.8 0 0 0.4 2.6 0.7 0 0 6.4 0.3 0 4.9 0 6.6 0 0 1.1 0 0 24.2

Pz 0 0 0 0 0 0 0 0.8 0.4 0 0 0.3 6.8 0 0 0.8 5.4 0.3 0 6.6 0 8.3 0 0.9 0.9 0 32

P4 0 0 0 0 0 0 0 0 0.9 0.1 0 0 2.3 5.6 2.3 0 1.3 2.5 0 0 8.3 0 0 0.1 0 0 23.9

T6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.6 0 0 0.6 0 0 0 0 0 0 0 1.8 8.2

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.1 0.9 0.1 0 0 1 0.1 3.5

Oz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2.1

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.8 0.1 1 0 3.2
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Figure C-6 The spike interaction between 26 neural groups representing 26 EEG channels in OP group in 

NOGO task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the 

more spikes were transmitted between corresponding groups. 

Table C-9 The amount of spike transformation between 26 neural groups representing 26 EEG channels in OP 

group in NOGO task, computed as the number of spikes exchanged between 2 groups divided by the STDP 

time. 

 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2 ∑

Fp1 0 4.8 9.6 1.7 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16.8

Fp2 4.8 0 0.1 1.5 8.3 9.4 8.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33.2

F7 9.6 0.1 0 10.3 0.3 0 0 3 0 0 6.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30.2

F3 1.7 1.5 10 0 11.4 0.1 0 16.2 2.4 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44.5

Fz 0.5 8.3 0.3 11.4 0 14 8.1 4 15.5 0.9 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 64

F4 0 9.4 0 0.1 14.3 0 18 0.1 9.7 18.4 0 0 0.1 16.1 3.5 0 0 0 0 0 0 25.2 0 0 0 0 115.8

F8 0 8.8 0 0 8.1 18 0 0 0 0.2 0 0 0 0.4 8.2 0 0 0 0 0 0 0 0 0 0 0 44.3

FC3 0 0 3 16.2 4 0.1 0 0 17.1 0 4.4 7.3 9.8 0.3 0 1.8 2.2 0 0 0.8 0.4 0 0 0 0 0 68.1

FCz 0 0 0 2.4 15.5 9.7 0 17.1 0 6.7 0 0 13.8 12.8 0 0 2.1 0 0 0 0.1 0 0 0 0 0 80.8

FC4 0 0 0 0 0.9 18 0.2 0 6.7 0 0 0 0.2 0.1 1.4 0 0 0 0 0 0 0 0 0 0 0 28.2

T3 0 0 6.6 0.4 0 0 0 4.4 0 0 0 2.3 0 0 0 0.5 0 0 4.1 2.7 0.1 0 0 0.1 0 0 21.7

C3 0 0 0 0 0 0 0 7.3 0 0 2.3 0 1.5 0 0 4.8 1.8 0 0.1 3 1.2 0 0 0 0 0 22.7

Cz 0 0 0 0 0 0.1 0 9.8 13.8 0.2 0 1.5 0 8 0 0.7 14.7 0 0 0.4 4.2 0.6 0 0 0 0 54.4

C4 0 0 0 0 0.3 16 0.4 0.3 12.8 0.1 0 0 8 0 20 0 9.5 21.6 0 0 2.2 19.4 0.5 0 0 0 111.5

T4 0 0 0 0 0 3.5 8.2 0 0 1.4 0 0 0 19.6 0 0 0 1.7 0 0 0 4.1 8.6 0 0 0 47.5

CP3 0 0 0 0 0 0 0 1.8 0 0 0.5 4.8 0.7 0 0 0 2.4 0 0.3 8.3 2.3 0 0 0 0 0 21.4

CPz 0 0 0 0 0 0 0 2.2 2.1 0 0 1.8 14.7 9.5 0 2.4 0 1.1 0 2.1 21.6 6.6 0 0 0 0 64.6

CP4 0 0 0 0 0 0 0 0 0 0 0 0 0 21.6 1.7 0 1.1 0 0 0 0.6 21.2 0.6 0 0 0 47

T5 0 0 0 0 0 0 0 0 0 0 4.1 0.1 0 0 0 0.3 0 0 0 6.4 0 0 0 7.2 0.2 0 18.5

P3 0 0 0 0 0 0 0 0.8 0 0 2.7 3 0.4 0 0 8.3 2.1 0 6.4 0 9 0 0 2.5 2.2 0 38

Pz 0 0 0 0 0 0 0 0.4 0.1 0 0.1 1.2 4.2 2.2 0 2.3 21.6 0.6 0 9 0 23.3 0 3.8 13 0 82.4

P4 0 0 0 0 0 25 0 0 0 0 0 0 0.6 19.4 4.1 0 6.6 21.2 0 0 23.3 0 9.2 0 9 3.9 122.9

T6 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 8.6 0 0 0.6 0 0 0 9.2 0 0 0.1 2.1 21.3

O1 0 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 7.2 2.5 3.8 0 0 0 5.6 0 19.5

Oz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 2.2 13 9 0.1 5.6 0 3.5 33.9

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.9 2.1 0 3.5 0 9.7
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Table C-10 T-test was applied to the last column of the FNI graphs for H, MMT and OP groups to evaluate the 

models’ significance in GO and NOGO. 𝑃-values are reported in the last row. 

 

C.7 Test Accuracy Evaluation using F-Score 

Measurement  

In a binary classifier of two classes (positive and negative), if positive samples are classified 

into positive class, they are called true positive (𝑇𝑃). However, if they are misclassified to 

negative class, they are called false positive (𝐹𝑃). On the other hand, for the negative class, 

if negative samples are classified into negative class, they are called true negative (TN) and 

GO NOGO

H MMT OP H MMT OP

11.3 1.7 10.9 8.1 8.4 16.8

35.3 2.3 15.9 38.1 13.5 33.2

24.5 6.4 18 17.7 56.9 30.2

37.2 2.3 21.3 38.5 8.1 44.5

60.1 21.4 34.2 25.4 45.5 64

44.2 8.1 77.9 43.8 48.9 115.8

31.7 60.4 12.8 40 59.4 44.3

24.6 23.5 38.9 43.2 29 68.1

41.1 19.1 56.1 18.7 31.4 80.8

85.8 45.9 28.8 63.6 61.7 28.2

17 2.1 9.2 11.1 13.6 21.7

77.5 6.9 11.8 38.5 38.6 22.7

61 11.3 40.8 45.4 79.2 54.4

33.5 68.6 39.3 17.1 58.2 111.5

24.5 26 32.8 15.7 63 47.5

40.3 6.9 15 16.9 13.8 21.4

129.5 5.9 9.9 67.9 53.8 64.6

19.3 16 15.1 47.1 62.1 47

10.9 5.7 8.5 7.4 12.5 18.5

37.7 39 24.2 30.4 45.9 38

29.7 51.5 32 27.2 49.7 82.4

38.9 18 23.9 41.1 56.2 122.9

29.1 11.5 8.2 17.6 19.4 21.3

8.9 16.6 3.5 17.8 17.8 19.5

26.9 13.5 2.1 11 14.1 33.9

18.5 6.9 3.2 11.8 14.6 9.7

H -M H-OP M-OP H -M H-OP M-OP

0.005 0.012 0.4 0.03 0.003 0.05
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if they are misclassified to positive class, they are called false negative (FN). To compute the 

score, both the precision 𝑝 and the recall 𝑟 of the test results need to be considered. Precision 

𝑝 (shown in Relation C-1) is measured with respect to the number 𝑇𝑃 results divided by the 

number of all positive results returned by the classifier. Recall 𝑟 is measured according to the 

number of 𝑇𝑃 results divided by the number of all relevant samples (shown in Relation C-

2). The 𝐹𝑆𝑐𝑜𝑟𝑒 (shown in Relation C-3) is the harmonic average of the precision and recall 

(0<𝐹𝑆𝑐𝑜𝑟𝑒<1), where the best value is 1 (perfect precision and recall) and worst is 0. 

 
 𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(C-1) 

 
𝑟 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(C-2) 

 
𝐹𝑆𝑐𝑜𝑟𝑒 = 2.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

(C-3) 

 

C.8 SNN Parameter Optimisation 

For optimisation, I performed an exhaustive grid-search on combination of parameters for 

every sample’s model. Each parameter was searched within a range, specified by the 

minimum and maximum, through several iterations related to the number of steps for moving 

from minimum to maximum. For every model creation, I chose three main parameters (STDP 

learning rate, 𝑚𝑜𝑑 and 𝑑𝑟𝑖𝑓𝑡 parameters) to be optimised. The parameters were selected by 

assigning 10 steps between the minimum and maximum values of each parameter range. 

Therefore, for every model creation, 1000 iterations of training (using all samples except the 

holdout sample) and testing (using the single holdout sample) were performed with different 

combination of these three parameters. Then the parameters that resulted in the best accuracy 
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in most of the iterations have been reported as the optimal parameters, shown in Table C-11. 

The TBR threshold, neuron firing threshold and small-world radius parameters were fixed to 

0.5, 0.5, and 2.5 respectively. 

Table C-11 The optimal NeuCube parameters that resulted from a grid-search to optimise the classification 

accuracy as an objective function. 

Session EEG sample files used in NeuCube classification mod drift STDP rate 

 

I 

H subjects in Go vs H subjects in NOGO 0.56 0.03 0.003 

MMT subject in GO vs MMT subject   in NOGO 0.56 0.02 0.0019 

OP subjects in GO vs OP subjects in NOGO 0.45 0.025 0.0019 

II MMT subject vs H subjects (GO task) 0.56 0.01 0.002 

Opiate subjects vs H subjects (GO task) 0.45 0.01 0.006 

MMT subject vs Opiate subjects (GO task) 0.51 0.01 0.005 

 

III 

MMT subjects vs H subjects (NOGO task) 0.51 0.02 0.002 

Opiate subjects vs H subjects (NOGO task) 0.45 0.03 0.002 

MMT subjects vs OP subjects (NOGO task) 0.45 0.025 0.0019 

 Parameter range 0.4-0.95 0.001-0.5 0.001-0.01 

C.9 Parameter Setting for Conventional Methods 

To perform the classification problem using conventional classifiers, first the spatio-temporal 

sample representation needed to be transferred into vector-based representation. The 

information of every input sample in SNN is presented in a 2-D matrix, where columns are 

the STBD variables and rows are the continuous temporal information. To transfer one 

sample data into one feature vector, I aggregated every 𝑙 time-points (a time-window) of a 

variable to obtain one value. Figure C-7 graphically shows the representation of STBD 

samples for NeuCube (in a) versus conventional methods (in b). 
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Figure C-7 (a) The 3-dimentional input data format for NeuCube SNN architecture. Every sample is presented 

as a 2-D information, where columns represented the data variables (v) and rows are the temporal information 

(t). This example contains 2 classes of samples; (b) transformation of the spatio-temporal samples into vector-

based samples by taking average over the temporal data with a time-window=l.   

In the case of EEG data used in Chapter 4, each sample size was (75, 26), where 26 EEG 

channels recorded 75 time points of temporal information. To transfer this 2-D data into one 

vector, I defined 𝑙 = 15; so that, I took average over every 15 time-points which resulted to 

obtain 5 values (75/15 = 5) for each EEG channel. Since, there were 26 channels, the 

dimension of the final obtained sample vector is (26 × 5 = 130). To optimise the 

conventional classifiers, I performed as follows: 

In MLP, the optimal number of hidden neurons was calculated using the formula suggested 

by Trenn (Stephan, 2008) and also mentioned in (Gnana & Subramaniam, 2013). The number 

of hidden neurons 𝑁ℎ is defined as (𝑛 + 𝑛𝑜 − 1)/2, where n is the number of input neurons 

(input EEG channels) and 𝑛𝑜 is the number of output neurons for the classifier. Therefore, 

In Chapter 4 the number of hidden neurons in MLP was (26 + 2)/2 = 14. For the rest of 

the main parameters (learning rate, momentum, training iteration, number of hidden layers), 

I performed the classification experiment several times with different values to find the 

optimal parameters which resulted in the best classification accuracy. Table C-12 represents 
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that for each experimental session, the classification was performed with different parameter 

settings (learning rate range= [0.01, 0.5], momentum range= [0.1, 0.9], training iteration 

range= [500, 1500], and number of hidden layer range= [2, 6]). In SVM, the classification 

accuracy was performed based on two kernel functions: polynomial and radial basis function 

(RBF). I considered the polynomial degree from 2 to 5 and the RBF width from 0.2 to 1 with 

0.2 intervals. The best SVM’s parameters that resulted in the best classification accuracy are 

reported in Table C-13. 

Table C-12 The MLP optimal parameters were found after performing the experiments several times using 

different parameter settings (learning rate (LR) = [0.01, 0.5], momentum (M) = [0.1, 0.9], training iteration (TI) 

= [500, 1500], and number of hidden layer (HL) = [2, 6]). 

MLP optimised parameters that resulted the best classification accuracy in experimental session I 

Runs    5 10 20 20 

Parameter [range] HL [2,6] IT[500,1500] LR[0.01,0.5] M [0.1,0.9] 

H in GO vs. NOGO 5 800 0.1 0.8 

MMT in Go vs. NOGO  5 1000 0.1 0.7 

MMT in Go vs. NOGO 4 800 0.2 0.7 

Optimised parameters that resulted the best classification accuracy in experimental session II 

Parameter [range] HL [2,6] IT[500,1500] LR[0.01,0.5] M [0.1,0.9] 

MMT vs. H subjects 5 1100 0.1 0.6 

OP vs. H subjects  4 1200 0.3 0.8 

MMT vs. OP subjects 4 1200 0.2 0.6 

Optimised parameters that resulted the best classification accuracy in experimental session III 

Parameter [range] HL [2,6] IT[500,1500] LR[0.01,0.5] M [0.1,0.9] 

MMT vs. H subjects 6 1000 0.3 0.6 

Op vs. H subjects 5 1200 0.4 0.8 

MMT vs. OP subjects 5 1200 0.3 0.8 

Table C-13 The SVM optimal parameters that resulted the best classification accuracy were found after 

performing the experiments several times with different parameter setting (polynomial degree within [2, 5] and 

(RBF) kernel degree within [0.2, 1]). 

SVM optimised parameters that resulted the best classification accuracy in experimental session I 

Kernel  polynomial [2,5] RBF [0.2,1] 

Kenner degree 2 3 4 5 0.2 0.4 0.6 0.8 1 

H in GO vs. NOGO 55.0 65.0 63.0 52.0 47.0 48.0 55.0 54.0 48.0 

MMT in Go vs. NOGO  53.0 63.0 59.0 50.0 55.0 38.0 55.5 52.0 55.0 

MMT in Go vs. NOGO 67.0 64.0 66.0 58.0 55.0 60.0 50.0 50.0 50.0 

SVM optimised parameters that resulted the best classification accuracy in experimental session II 

MMT vs. H subjects 70.0 62.0 60.0 50.0 65.0 68.0 54.0 44.0 45.0 

OP vs. H subjects  51.0 68.0 63.0 50.0 55.0 38.0 55.0 52.0 55.0 

MMT vs. OP subjects 67.0 64.0 66.0 66.0 62.0 54.0 54.0 40.0 40.0 

SVM optimised parameters that resulted the best classification accuracy in experimental session III 

MMT vs. H subjects 50.0 53.0 63.0 53.0 60.0 62.0 64.0 51.0 40.0 

Op vs. H subjects 68.0 73.0 71.0 50.0 51.0 48.0 50.0 48.0 44.0 

MMT vs. OP subjects 56.0 63.0 60.0 55.0 56.0 62.0 62.0 55.0 55.0 
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Appendix D    Dynamic Clustering Patterns 

The discriminative patterns in some EEG channels was also captured through visualisation 

of the samples’ distrubution across the classes, as shown in Figure D-1. Quantitave 

information about the changes in the size of the clsuters are presented in Tables D-1 to D-6.  

I have applied a t-test to the 𝑃𝑚𝑎𝑥(𝑡), the area under the curve, and the mid of potential as 

shown in Tables D-7 to D-9. 
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Figure D-1 Distribution of the samples with respect to the PSP rates in class H (red) and class OP (blue) for 26 

EEG channels.  

  

 

 

 



 

 

 

 

Table D-1 Clusters sizes are changing over time during the STDP learning in SNN model of 21 H subjects in GO (in total 1575 time points were entered and learnt). 

 

 

Fp1 Fp2 F7 F3 Fz F4  F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 43 1 1 1 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 19 43 41 1 26 30 1 1 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 38 17 47 41 1 26 30 1 1 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 1 1 38 17 47 41 1 35 30 1 1 18 1 1 44 18 1 1 1 1 1 1 1 1 1 1

12 1 1 38 17 47 41 1 35 30 1 1 18 1 1 44 18 1 1 1 1 1 1 1 1 1 1

13 1 1 38 17 47 41 1 35 30 1 1 18 1 1 44 18 1 1 1 1 34 35 30 36 15 26

14 1 1 38 17 47 41 1 35 30 1 1 18 1 1 39 18 1 1 1 1 21 36 35 36 31 22

15 1 1 38 17 47 41 1 35 30 1 1 18 1 1 39 18 1 1 1 1 0 26 37 36 52 30

16 1 1 38 17 47 41 1 35 30 1 1 18 1 1 39 18 1 1 1 1 0 26 37 41 51 34

17 1 37 38 17 47 37 1 26 30 1 35 27 1 1 39 18 1 1 15 1 16 26 37 41 41 34

18 1 37 38 17 47 37 1 26 30 1 35 27 1 1 39 18 1 1 15 1 16 26 37 41 41 34

1574 86 73 76 25 74 34 116 42 30 65 76 34 49 22 105 10 86 27 61 26 18 18 82 65 19 63

1575 86 72 76 25 74 34 117 42 30 65 76 34 49 22 105 10 86 27 61 26 18 18 82 65 19 63

2
2
3
 



 

 

 

 

Table D-2 Clusters sizes are changing over time during the STDP learning in SNN model of 29 MMT subjects in GO (in total 2175 time points were entered and learnt). 

 

 

Fp1 Fp2 F7 F3 Fz F4  F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 28 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 28 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 28 37 1 25 1 28 45 42 1 45 1 1 1 1 45 1 1 1 1 1 1 1 1 1 1 1

14 28 37 1 25 34 31 42 42 1 68 1 1 1 0 45 1 1 1 1 1 1 1 1 1 1 1

15 28 34 1 0 34 34 42 67 1 45 1 1 1 23 45 1 1 1 1 28 1 1 1 1 1 1

16 28 34 1 0 34 34 42 67 1 63 1 1 1 18 45 1 1 1 1 28 30 1 1 1 1 1

17 28 37 1 0 34 31 42 67 1 63 32 1 1 18 45 1 0 1 1 28 52 1 1 1 1 1

18 28 47 1 0 34 31 39 67 1 63 32 1 25 18 45 1 0 1 1 25 55 1 1 1 1 1

2174 40 14 178 4 63 5 210 57 22 56 64 15 11 96 114 8 11 13 48 51 96 29 70 72 49 35

2175 40 14 178 4 63 5 210 57 22 56 64 15 11 97 113 8 11 13 48 51 96 29 70 72 49 35

2
2
4
 



 

 

 

 

Table D-3 Clusters sizes are changing over time during the STDP learning in SNN model of 18 OP subjects in GO (in total 1350 time points were entered and learnt). 

 

 

 

Fp1 Fp2 F7 F3 Fz F4  F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32 39 40 1 24

11 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27 0 0 1 31 39 92 0 25

12 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 27 20 0 1 31 39 72 0 25

13 24 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 35 20 14 1 22 53 58 0 26

14 24 35 1 18 39 41 1 36 12 1 1 27 40 1 1 1 1 35 20 14 1 22 53 58 0 26

15 24 31 1 18 40 44 1 37 24 1 1 27 27 1 40 1 1 35 20 14 1 23 47 58 0 31

16 24 31 1 18 40 44 1 37 24 1 1 27 27 1 40 1 1 35 20 14 1 23 47 58 0 31

17 24 32 36 13 39 44 1 36 12 1 1 27 40 1 40 1 26 35 20 14 1 22 51 58 0 28

18 18 32 42 13 39 44 1 36 12 1 1 41 40 1 40 1 27 35 20 13 1 21 51 42 16 29

1349 52 67 135 8 42 95 88 89 13 22 77 14 37 46 174 15 13 39 106 21 39 64 68 83 9 47

1350 52 67 135 8 41 95 88 90 13 22 77 14 37 46 174 15 13 39 106 21 39 64 68 83 9 47

2
2
5
 



 

 

 

 

Table D-4 Clusters sizes are changing over time during the STDP learning in SNN model of 21 H subjects in NOGO (in total 1575 time points were entered and learnt). 

 

 

Fp1 Fp2 F7 F3 Fz F4  F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 34 1 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 34 1 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 34 1 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 34 1 41 33 1 1 1 1 27 1 1 17 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 34 1 41 33 1 1 1 1 27 1 1 17 1 1 1 1 1 1 1

10 1 39 1 1 1 1 1 34 1 41 33 1 1 1 1 27 1 1 17 1 1 1 1 1 1 1

11 1 39 1 1 1 1 46 34 1 41 52 1 1 1 44 27 1 1 17 1 1 1 1 1 1 1

12 1 37 1 1 1 1 48 34 1 41 52 1 1 1 44 27 1 1 17 1 1 1 33 1 1 1

13 1 37 1 1 1 1 48 34 1 41 52 1 1 1 44 27 1 1 17 1 1 1 33 1 1 30

14 1 37 1 1 1 1 48 34 1 41 53 1 1 1 44 27 1 1 16 1 1 1 33 33 26 30

15 1 37 1 1 1 1 48 34 1 41 53 1 1 1 44 27 1 1 16 1 1 1 33 33 26 30

16 1 37 1 1 1 1 48 34 1 41 53 1 1 1 44 27 1 1 16 1 1 1 33 33 26 30

17 27 39 1 1 42 1 46 34 1 41 53 1 1 1 44 27 1 1 16 1 1 1 33 33 26 30

18 27 39 1 1 42 1 46 34 1 41 53 1 1 1 44 27 1 1 16 1 1 1 33 33 26 30

1574 78 109 54 52 31 25 135 33 18 55 108 34 46 21 97 17 81 22 23 7 21 45 84 121 21 49

1575 78 109 54 52 31 25 135 33 18 55 108 34 46 21 97 17 81 22 23 7 21 45 84 121 21 49

2
2
6
 



 

 

 

 

Table D-5 Clusters sizes are changing over time during the STDP learning in SNN model of 26 MMT subjects in NOGO (in total 2325 time points were entered and 

learnt). 

 

 

Fp1 Fp2 F7 F3 Fz F4  F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 33 1 1 1 1 1 1 20 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 33 1 1 1 1 1 1 20 1 1 1 1 1 1 1

9 1 1 1 1 1 1 1 1 1 1 1 33 1 1 1 1 1 1 20 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1 1 33 1 1 1 1 1 1 20 1 1 1 1 1 1 1

11 1 1 39 1 1 1 1 1 1 1 1 33 1 1 1 1 1 1 20 1 1 1 1 1 1 1

12 1 38 39 1 1 1 47 1 1 1 1 33 1 1 1 1 1 1 20 1 1 1 1 1 1 1

13 1 38 39 19 36 35 47 27 1 1 1 33 1 1 1 1 1 1 20 1 1 1 1 1 1 1

14 1 32 39 19 38 39 47 36 25 21 1 24 1 39 1 1 1 1 20 1 1 1 1 1 1 1

15 1 32 39 19 38 39 47 36 25 21 1 24 1 39 1 1 1 21 20 1 1 1 1 1 1 1

16 1 32 39 19 46 44 47 36 25 21 24 17 1 39 1 15 1 21 20 21 31 1 1 1 1 1

17 1 32 39 19 46 55 47 36 25 19 26 17 1 39 1 15 0 21 18 21 52 1 1 1 1 1

18 1 32 39 19 46 55 47 36 25 19 26 17 1 39 1 15 0 21 18 21 52 1 1 1 1 1

2324 45 33 216 2 48 8 190 32 20 62 50 38 74 21 110 7 26 47 50 40 25 42 88 92 51 32

2325 45 33 216 2 48 7 191 32 20 62 50 38 74 21 110 7 26 47 50 40 25 42 88 92 51 32
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Table D-6 Clusters sizes are changing over time during the STDP learning in SNN model of 18 OP subjects in NOGO (in total 1350 time points were entered and learnt). 

Fp1 Fp2 F7 F3 Fz F4  F8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

9 1 1 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10 24 37 1 1 1 1 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

11 24 37 1 1 1 1 50 1 1 1 29 1 1 1 1 1 1 1 18 1 1 1 40 1 1 1

12 24 37 1 1 1 1 50 1 1 1 29 1 1 1 1 1 1 1 18 1 1 1 40 31 1 1

13 24 37 1 1 1 1 50 1 1 1 29 1 1 1 1 1 1 1 18 18 1 1 40 31 1 1

14 24 37 1 1 1 1 50 35 1 1 29 22 1 1 1 15 1 1 18 12 1 1 40 31 1 1

15 24 37 1 1 1 1 50 35 1 1 29 22 1 1 1 15 1 1 18 12 1 1 40 31 1 1

16 24 37 1 1 1 1 50 35 1 1 29 22 1 1 1 15 1 1 18 8 34 37 40 31 1 1

17 24 37 1 1 1 1 50 35 1 1 29 22 1 40 1 15 24 0 18 8 34 49 40 31 1 1

18 24 37 1 1 1 1 50 35 1 1 47 22 1 40 1 15 24 12 0 8 34 37 40 31 1 1

1349 84 73 48 51 83 60 68 20 43 32 111 42 67 44 193 29 12 11 36 35 19 38 48 78 46 87

1350 84 73 48 51 83 60 68 20 43 32 111 42 67 44 193 29 12 11 36 35 19 38 48 78 46 87
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Table D-7 T-test measure was applied to the PSP’s area under the curve for 26 clusters which belong to 21 

healthy subjects and 18 OP subjects. 

 

 

 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4

1 8.6 95.9 59.9 46.5 226.6 228.0 131.4 271.6 292.7 203.7 219.4 107.3 58.0 264.9 324.4 166.6 307.5 166.6 98.8 79.0

2 311.5 93.7 420.8 163.2 477.5 55.6 152.0 287.5 482.5 344.5 281.1 243.3 720.9 249.9 545.6 173.0 231.9 173.0 611.5 503.8

3 177.3 448.6 338.7 441.6 282.1 874.0 202.3 391.1 391.7 531.7 53.8 1109.0 215.9 421.6 232.3 101.3 178.9 101.3 264.4 821.5

4 258.7 358.8 483.6 425.5 428.5 616.6 358.2 385.0 482.3 556.2 198.5 834.0 469.4 446.1 314.4 126.6 263.8 126.6 507.3 778.6

5 336.3 287.2 691.0 515.4 645.8 431.0 171.9 233.5 313.7 422.5 175.6 735.2 746.9 384.4 286.8 98.7 206.0 98.7 626.1 608.4

6 324.9 141.5 701.1 211.4 808.7 189.6 230.7 190.5 367.1 17.3 192.1 535.5 794.5 323.1 341.5 39.7 234.9 39.7 671.4 220.1

7 271.4 281.6 605.4 495.0 559.8 567.0 165.1 297.3 397.6 454.4 230.3 713.9 684.9 543.4 307.6 114.4 140.2 114.4 654.3 531.5

8 72.9 282.4 309.0 384.2 487.0 312.0 186.6 286.6 527.3 224.0 272.3 551.6 596.2 556.6 348.2 152.8 260.5 152.8 674.7 324.2

9 222.1 364.8 507.8 563.9 687.8 498.6 219.1 233.4 620.1 274.6 244.7 521.9 742.5 464.2 369.6 85.5 198.2 85.5 598.4 379.0

10 295.0 433.0 592.6 498.7 801.4 659.7 230.1 276.5 554.0 402.0 173.1 643.4 959.0 469.1 357.3 85.7 192.0 85.7 432.1 425.6

11 314.8 4.2 622.3 24.0 603.9 104.8 218.4 176.5 506.8 220.0 194.2 41.3 369.6 291.8 358.4 78.0 111.8 78.0 626.2 278.0

12 128.5 425.6 228.6 621.5 448.9 621.2 210.6 265.2 406.7 393.0 267.6 816.1 514.7 443.6 374.1 102.2 168.2 102.2 581.8 445.8

13 215.5 204.3 570.0 205.0 390.2 253.2 167.7 220.3 423.2 227.9 208.2 225.1 788.6 342.2 327.6 73.4 99.3 73.4 430.0 302.7

14 221.9 159.6 545.6 102.9 46.5 172.4 116.3 5.1 358.1 314.2 228.1 108.1 527.8 87.4 423.7 83.2 91.0 83.2 576.5 398.8

15 238.6 499.4 680.9 512.1 321.6 575.3 204.6 309.8 412.6 312.9 175.0 701.7 611.2 457.7 332.8 134.3 88.1 134.3 673.3 455.9

16 242.1 499.6 424.9 513.5 542.2 539.1 186.8 242.5 389.8 255.1 143.2 155.1 463.5 403.6 359.0 100.1 101.1 100.1 446.7 287.2

17 407.2 99.2 724.0 185.9 669.0 458.0 218.1 355.8 610.1 393.9 185.0 660.5 955.4 440.7 362.5 183.7 141.1 183.7 711.2 400.4

18 345.0 267.5 466.1 331.8 621.3 315.7 109.5 296.9 440.7 295.7 166.0 383.1 746.2 381.4 328.0 128.6 99.6 128.6 673.6 317.0

19 267.3 464.4 121.8 99.6 463.0 213.3 483.5 266.3 192.3 539.7

20 238.6 440.9 198.8 212.3 390.5 161.6 548.5 298.4 127.5 602.8

21 240.6 458.5 284.1 44.7 495.4 161.0 499.8 85.2 85.9 549.0

P-value 0.4725 0.017 0.5309 0.003 0.003 5E-04 0.0007 1E-11 0.003 0.022

T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3

1 298.5 142.0 173.6 268.1 216.5 218.1 171.3 226.9 498.1 332.4 120.9 88.9 133.0 125.4 339.6 155.9 46.1 19.5 4.3 136.5

2 252.6 257.1 220.8 207.4 247.1 243.5 173.7 233.6 556.1 630.5 172.7 5.1 341.5 219.1 185.6 61.8 171.9 140.8 328.0 153.0

3 397.4 708.0 283.3 361.7 119.0 213.4 217.5 325.5 638.8 1075.7 77.9 87.6 441.8 194.8 120.6 121.5 148.9 278.6 335.9 239.0

4 349.9 335.0 381.0 281.6 146.8 214.5 254.4 275.2 941.3 907.0 175.7 107.3 606.4 110.9 138.5 114.0 158.8 169.2 260.8 159.2

5 385.6 533.2 220.3 320.2 116.1 197.2 243.8 316.3 722.8 874.0 149.2 116.3 600.1 139.7 289.5 149.6 207.4 150.1 239.9 153.8

6 477.2 182.6 305.3 203.3 127.9 99.1 190.8 432.4 819.1 930.2 116.9 107.2 652.6 136.6 361.9 108.6 204.8 39.1 296.6 144.6

7 432.8 338.0 397.5 252.0 103.7 211.3 231.9 319.4 799.8 1363.7 64.2 99.7 656.6 133.3 218.1 153.8 197.2 127.6 230.2 283.4

8 297.8 261.3 479.8 253.4 204.3 208.5 135.1 418.1 727.4 1040.2 99.3 78.4 556.0 104.2 243.3 130.1 150.9 35.8 301.6 274.4

9 302.8 50.7 468.7 204.8 269.9 231.2 169.0 452.6 637.1 847.2 87.2 131.1 712.1 164.1 262.5 117.2 187.9 168.4 317.5 376.2

10 306.2 508.2 409.0 196.1 370.4 195.3 162.5 498.1 664.0 1130.3 37.6 89.0 465.1 113.2 270.6 181.4 153.8 238.8 242.8 430.5

11 91.3 15.7 469.4 185.8 288.7 171.5 206.5 501.1 741.5 413.3 74.3 81.0 630.5 128.8 276.4 152.0 138.9 109.4 306.6 229.0

12 151.3 391.2 371.4 139.5 354.1 210.6 146.2 488.0 164.9 921.1 132.2 106.0 496.4 90.4 30.9 141.7 87.5 213.7 258.5 345.4

13 116.8 29.0 313.7 170.6 192.8 104.8 127.9 314.4 613.0 687.6 55.9 92.3 572.2 82.1 199.9 193.1 167.7 145.6 124.1 218.6

14 5.9 16.0 445.4 33.1 230.4 175.3 184.3 303.9 101.6 39.1 115.8 123.4 450.3 122.1 136.5 45.3 147.4 102.5 366.8 150.1

15 53.7 268.8 423.0 154.2 204.5 205.0 191.2 495.1 782.8 995.9 104.8 158.5 608.0 106.2 163.0 159.4 172.7 145.2 256.8 392.3

16 326.4 202.2 366.1 151.0 224.8 181.5 120.6 428.7 129.3 953.7 106.4 120.3 487.5 95.9 186.2 111.3 158.0 317.6 213.5 436.2

17 156.7 396.9 487.5 238.9 322.3 228.9 190.7 407.4 784.6 1020.8 121.5 122.6 627.1 72.4 232.6 162.9 208.1 281.6 203.7 353.8

18 251.7 316.0 508.3 194.4 319.6 200.8 187.1 419.6 735.4 790.6 126.8 122.9 672.9 104.8 224.4 205.2 230.6 179.9 260.1 342.2

19 272.2 408.8 327.1 140.8 503.6 97.1 517.5 102.3 124.3 149.2

20 34.0 413.9 329.0 112.0 468.9 91.6 393.5 75.6 148.4 268.2

21 1.0 32.9 180.1 190.2 112.2 7.8 310.6 121.1 76.0 70.2

P-value 0.6236 8E-07 0.0636 1E-08 0.017 0.696 1E-11 0.005 0.9468 0.537

Pz P4 T6 O1 Oz O2

1 68.3 166.8 120.3 277.9 514.6 318.9 482.3 449.5 311.2 230.1 342.9 584.0

2 40.2 7.2 184.5 159.9 578.0 416.5 275.0 394.8 656.8 224.0 521.1 352.2

3 44.5 307.8 205.3 298.6 329.8 694.8 174.1 1061.0 235.1 118.6 304.1 618.0

4 61.8 393.3 162.2 440.6 436.4 568.1 182.2 551.2 207.6 24.0 356.8 324.1

5 89.0 408.0 139.3 535.3 404.0 321.1 264.6 425.3 159.3 109.6 278.8 299.1

6 89.8 285.1 195.7 397.1 609.0 267.6 253.8 398.7 152.2 101.8 356.7 252.1

7 108.2 412.0 157.0 388.8 500.3 327.4 438.6 422.6 244.0 58.6 346.6 262.9

8 79.0 383.2 121.0 498.7 442.8 108.4 323.4 307.0 149.0 92.3 272.1 172.7

9 165.0 482.5 244.6 397.7 395.9 215.3 480.5 377.5 271.4 60.0 301.3 209.4

10 101.8 529.0 173.5 518.7 464.8 295.6 256.8 416.1 184.7 85.3 249.4 265.1

11 135.8 318.6 257.6 463.3 465.9 214.4 353.5 302.2 178.2 132.0 260.8 89.6

12 215.6 404.6 135.9 395.7 457.8 237.9 359.4 442.3 118.9 86.0 239.7 262.3

13 80.2 333.6 155.5 467.3 359.5 212.6 232.1 163.0 132.2 142.6 222.1 236.2

14 74.1 242.7 197.4 330.5 137.7 28.3 274.9 266.8 145.9 53.4 253.9 36.0

15 129.8 385.4 131.4 666.1 432.8 212.4 389.0 342.9 174.7 143.9 273.7 241.7

16 172.9 327.6 253.5 549.2 434.1 258.8 286.0 319.8 122.7 77.0 247.9 229.7

17 168.1 481.9 180.7 476.6 879.1 347.9 363.0 290.9 181.4 71.4 366.7 232.4

18 167.8 539.7 194.5 547.3 602.1 225.6 314.7 270.1 126.5 36.9 239.8 202.8

19 124.8 164.2 515.4 225.1 147.2 233.5

20 64.0 139.8 499.3 286.1 140.9 252.2

21 108.9 207.6 352.9 305.0 115.5 213.8

P-value 2E-07 2E-08 0.0006 0.077 0.002 0.497
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Table D-8 T-test measure was applied to the PSP’s midrange values of 26 clusters which belong to 21 healthy 

subjects and 18 OP subjects 

 

 

 
 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4

1 0.78 4.26 2.3 1.39 4.95 5.95 3.95 7.03 6.53 4.61 6.82 7.25 2.54 6.12 8.26 6.76 8.58 5.2 3.89 6.82

2 8.8 2.71 14.59 4.02 13.48 1.81 4.39 6.27 14.31 7.8 9.02 9.2 18.4 8.31 13.9 4.98 6.56 5.22 18.59 12.48

3 5.64 9.43 10.18 9.61 7.08 19 4.68 9.28 11.19 11.62 3.94 9.18 10.74 22.35 9.66 10.63 5.41 3.5 16.67 18.18

4 6.54 6.85 9.47 8.32 12.04 12.3 7.33 7.55 10.56 11.84 5.89 8.71 9.7 14.35 7.13 11.38 8.73 4.08 12.05 16.25

5 6.89 6.05 15.48 11.6 13.69 9.46 4.8 6.98 8.69 8.89 5.83 10.45 14.65 16.22 6.34 11.1 7.36 3.95 13.36 11.69

6 6.61 3.85 15.89 5.62 18.64 5.94 4.98 4.68 12.31 6.43 4.81 9.6 18.45 10.96 8.8 8 7.97 1.44 16.41 10.98

7 5.68 6.48 13.39 11.7 11.74 11.8 5.96 7.52 14.26 10.28 5.95 10.76 14.66 16.6 7.81 12.56 7.01 3.96 14.88 12.77

8 3.24 5.91 9.34 8.89 12.95 6.23 4.67 7.1 12.53 10.12 7.59 9.16 16.33 11.82 7.07 13.41 5.98 3.8 16.2 9.59

9 4.72 8.9 11.06 12.1 13.7 12.1 4.24 7.81 14.92 8.83 6.02 10.89 17.38 11.12 7.36 10.44 4.94 4.02 14.67 8.81

10 5.44 9.45 13.57 10.7 16.98 15.7 4.91 7.72 13.84 8.64 5.23 13.99 18.35 15.46 7.2 12.44 4.63 3.95 10.04 10.87

11 7.08 0.22 16.05 0.97 16.48 3.18 5.15 4.85 12.59 8.01 6.18 11.52 15.29 1.46 8.68 7.04 3.57 3.5 16.41 7.84

12 2.83 10.09 5.22 13.5 8.18 14.6 4.14 8.34 10.12 9.02 5.78 13.76 10.92 15.74 8.78 10.78 3.68 4.17 10.51 11.09

13 5.24 8.32 11.13 13.5 9.11 14.6 3.73 7.87 9.89 7.75 5.31 8.7 16.79 15.74 7.95 10.23 4.03 3.43 13.34 8.1

14 6.26 4.28 11.71 2.83 1.27 5.1 2.97 0.24 7.89 6.41 4.41 5.25 10.4 3.31 9.12 2.28 2.81 3.33 11.78 8.03

15 5.78 11.03 15.11 12.4 11.64 14.5 4.78 7.16 12.05 9.19 6.09 15.41 13.43 13.15 9.05 12.57 4.1 4.49 15.87 9.37

16 9.23 4.54 15.85 7.55 12.65 10.6 5.21 7.27 15.04 7.94 4.89 17.63 18.58 13.64 7.83 9.62 4.76 4.99 16.25 10.51

17 7.52 5.68 14.76 7.18 13.78 11.6 5.03 5.47 16.64 7.37 5.54 13.4 15.9 7.51 7.62 8.99 3.86 3.93 18.47 8.75

18 5.98 7.23 14.29 7.1 4.6 8.82 4.25 6.2 14.51 7.61 5.23 4 11.45 11 5.46 9.2 5.21 4.2 15.99 7.2

19 5.64 10.28 4.95 4.18 9.33 4.28 10.84 5.82 0 3.63 14.02

20 5.1 8.97 6.05 1.42 9.39 3.69 9.59 2.52 0 1.63 11.52

21 5.65 8.97 6.12 4.2 10.1 4.4 9.2 2.2 0 3.4 12.1

P-value 0.407 0.008 0.845 5E-04 7E-05 1E-05 0.31 0.02 0.02 0.002

T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3

1 7.7 7.77 4.82 6.46 6.79 7.12 7.03 6.89 12.1 9.22 3.47 2.5 4.38 5.15 8.27 3.7 1.96 0.93 12.1 9.22

2 5.07 5.46 5.75 4.46 5.49 5.08 6.62 6.54 12.27 13.78 4.48 1.67 8.73 5.39 4.4 1.4 4.41 2.85 12.27 13.78

3 7.68 14.96 6.96 8.23 3.27 5.82 5.88 6.75 17.14 24.08 3.55 2.38 10.3 5.66 4.04 3.97 2.99 6.03 17.14 24.08

4 6.62 6.01 8.67 5.77 3.89 4.39 5.37 8.3 17.54 20.94 4.67 2.4 11.97 2.95 4.4 3.2 4.44 4.33 17.54 20.94

5 6.94 10.54 4.49 6.25 3.19 5.3 6.24 8.55 13.77 20.43 2.72 2.66 13.34 3.15 7.39 3.82 4.97 3.25 13.77 20.43

6 10.17 5.3 7.87 5.18 3.81 2.46 5.81 8.23 18.37 19.96 2.55 3.09 14.56 2.95 6.61 2.48 5.25 1.23 18.37 19.96

7 8.14 7.69 9.49 4.72 3.98 4.46 5.18 8.5 17.3 30.85 2.9 2.97 14.85 2.8 5.75 3.34 4.63 3.08 17.3 30.85

8 6.98 6.78 9.5 5.86 5.27 5.48 5.18 9.35 16.35 31.51 2.17 2.67 13.19 2.85 5.53 2.82 3.33 1.43 16.35 31.51

9 6.48 1.45 10.31 5.46 8 4.26 4.06 10.42 16.87 22.85 1.83 2.83 14.53 3.33 5.41 2.93 4.05 3.97 16.87 22.85

10 5.8 9.77 9.02 5.08 7.49 4.91 3.52 10.29 13.13 21.89 1.23 2.3 12.14 3.31 5.04 4.39 4.22 4.51 13.13 21.89

11 4.37 0.36 10.65 4.26 8.51 4.64 4.29 11.38 16.75 19.25 2.26 1.85 15.16 2.89 6.23 3.26 3.04 2.52 16.75 19.25

12 5.87 9.52 7.79 4.44 6.55 4.84 3.14 11.41 3.51 19.47 2.74 3.41 9.81 3.02 0.9 3.35 2.58 5.33 3.51 19.47

13 5.61 8.6 7.66 4.47 6.28 3.81 4.78 11.41 12.23 17.6 2.52 2.37 11.89 3.08 4.11 4.12 4.43 4.58 12.23 17.6

14 0.35 0.49 8.99 1.14 5.33 3.93 3.95 6.73 10.62 1.29 2.7 2.72 9.17 2.73 3.42 2.13 3.05 3.63 10.62 1.29

15 7.84 6.89 8.55 4.28 7.86 5.49 4.7 12.16 15.93 19.99 2.41 3.42 13.34 2.99 6.07 4.13 3.97 6.99 15.93 19.99

16 5.01 8.64 9.2 5.78 7.97 5.28 3.8 10.97 18.54 22.09 2.94 2.98 13.56 3.44 5.51 4.72 4.66 7.18 18.54 22.09

17 5.67 5.52 12.09 4.41 8.08 3.75 4.65 11.1 16.14 16.32 2.75 2.52 13.51 2.14 4.97 4.37 4.66 4.19 16.14 16.32

18 6.04 2.1 8.54 4.02 8.04 4.31 4.27 11.36 11.84 17.22 2.32 2.21 10.84 2.14 4.03 4.37 3.55 4.96 11.84 16.27

19 1.73 8.18 7.51 4.06 12.53 1.94 9.36 3.87 2.98 12.53

20 0.09 1.31 3.84 4.12 2.81 0.38 6.71 2.82 1.73 2.81

21 0.04 8.2 7.2 6.2 11.2 11.1 6.27 1.82 1.39 2.14

P-value 0.31 3E-05 0.006 2E-09 0.0051 0.376 2E-11 0 0.53 0.004

Pz P4 T6 O1 Oz O2

1 4.62 4.98 5.66 7.49 11.75 7.05 11.17 11.68 10.04 10.04 9.01 15.59

2 3.14 3.5 5.68 5.73 11.76 9.43 6.39 8.91 14.37 14.37 13.04 8.17

3 2.01 9.52 5.05 7.1 6.7 14.4 5.14 23.62 7.38 7.38 6.73 14.72

4 3.59 10.17 4.94 9.42 8.92 9.47 5.65 11.22 5.74 5.74 7.63 7.38

5 3.06 8.05 3.82 10.8 8.76 6.5 6.21 9.3 3.85 3.85 6.48 6.31

6 3.27 7.74 4.29 9.55 12.99 7.12 8.24 9.37 5.71 5.71 8.55 5.82

7 2.71 8.94 3.76 8.15 12.74 6.03 11.26 8.5 6.61 6.61 9.23 5.41

8 3.17 8.16 3.21 10.2 9.89 2.29 7.59 7.37 3.58 3.58 6.45 3.36

9 3.43 10.12 4.79 7.9 8.77 4.47 10.27 8.06 5.61 5.61 6.94 5.18

10 3.88 12.53 4.16 12.5 10.25 6.57 7.98 8.16 4.5 4.5 5.55 5.55

11 4.18 7.76 5.58 9.66 10.91 4.86 7.53 6.74 3.93 3.93 5.49 2.25

12 4.25 8.97 2.97 10.3 9.06 5.36 7.5 10.23 2.97 2.97 5.63 5.55

13 3.05 9.42 5.39 9.31 8.52 6.35 7.14 9.11 4.01 4.01 5.04 5.67

14 3.7 8.03 5.44 7.18 3.68 0.9 6.79 6.42 3.48 3.48 6.01 1.21

15 4.39 9.32 5.39 14.4 9.79 7.84 10.3 8.26 3.8 3.8 6.37 7.25

16 4.66 10.97 4.53 12.3 18.27 6.68 7.73 6.91 3.78 3.78 7.89 5.02

17 4.66 11.48 4.22 11.8 11.92 5.13 8.53 5.55 2.85 2.85 5.67 4.71

18 4.51 11.9 5.14 11.2 11.7 5.32 7.9 5.13 3.24 2.54 6.42 4.82

19 4.43 4.46 11.46 6.23 3.12 0 6.36

20 2.67 4.47 8.95 7.46 2.79 0 5.22

21 2.71 4.13 8.55 7.46 2.37 0 5.22

P-value 5E-09 1E-08 2E-04 0.212 0.7293 0.5532
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Table D-9 T-test measure was applied to 𝑃𝑚𝑎𝑥(𝑡) of 26 clusters which belong to 21 healthy subjects and 18 OP 

subjects. 

 

 

 

Fp1 Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4

1 0.776 4.26 2.291 1.38 4.941 5.94 3.955 7.0287 6.5219 4.6009 6.8195 7.241 2.533 6.12 8.2538 6.754 8.571 5.2 3.888 6.817

2 8.797 2.7 14.58 4.012 13.48 1.809 4.397 6.2687 14.305 7.7965 9.0191 9.196 18.4 8.309 13.906 4.977 6.551 5.21 18.583 12.48

3 5.636 9.42 10.17 9.609 7.078 19 4.684 9.2783 11.184 11.615 3.935 9.174 10.737 22.35 9.6505 10.63 5.406 3.5 16.668 18.18

4 6.531 6.85 9.469 8.312 12.03 12.27 7.32 7.5418 10.553 11.84 5.8867 8.706 9.6925 14.34 7.123 11.37 8.726 4.08 12.05 16.24

5 6.89 6.05 15.48 11.55 13.69 9.459 4.807 6.9795 8.6841 8.8826 5.8275 10.45 14.647 16.22 6.3341 11.1 7.353 3.95 13.356 11.68

6 6.61 3.84 15.89 5.616 18.63 5.933 4.985 4.6717 12.304 6.4245 4.8082 9.592 18.448 10.96 8.7936 7.998 7.963 1.44 16.407 10.98

7 5.677 6.48 13.38 11.69 11.74 11.77 5.954 7.5167 14.258 10.274 5.9487 10.76 14.658 16.6 7.8006 12.55 7.003 3.96 14.88 12.76

8 3.24 5.91 9.331 8.886 12.95 6.226 4.663 7.0926 12.526 10.117 7.5859 9.157 16.328 11.81 7.0665 13.41 5.975 3.8 16.195 9.587

9 4.714 8.89 11.05 12.09 13.7 12.06 4.24 7.8061 14.915 8.8269 6.0185 10.89 17.377 11.11 7.3585 10.43 4.94 4.01 14.665 8.809

10 5.431 9.45 13.57 10.72 16.98 15.69 4.903 7.7197 13.838 8.6358 5.23 13.99 18.341 15.46 7.191 12.44 4.63 3.94 10.036 10.87

11 7.077 0.21 16.04 0.962 16.48 3.176 5.142 4.8499 12.588 8.0069 6.172 11.51 15.29 1.454 8.6715 7.039 3.569 3.49 16.409 7.832

12 2.83 10.1 5.21 13.45 8.172 14.64 4.132 8.3305 10.117 9.018 5.7719 13.75 10.92 15.73 8.7713 10.77 3.678 4.16 10.502 11.08

13 5.235 8.32 11.13 13.45 9.106 14.64 3.724 7.8692 9.8817 7.7476 5.3065 8.693 16.785 15.73 7.948 10.22 4.03 3.42 13.339 8.098

14 6.256 4.28 11.71 2.821 1.268 5.092 2.961 0.2305 7.8895 6.4034 4.4095 5.244 10.392 3.305 9.1187 2.276 2.805 3.33 11.771 8.029

15 5.771 11 15.1 12.4 11.64 14.49 4.779 7.1562 12.047 9.1866 6.0892 15.4 13.423 13.15 9.0482 12.57 4.1 4.49 15.868 9.363

16 9.224 4.54 15.85 7.545 12.65 10.61 5.209 7.2639 15.034 7.9346 4.8818 17.62 18.579 13.64 7.8277 9.618 4.751 4.98 16.248 10.51

17 7.513 5.67 14.75 7.176 13.78 11.58 5.027 5.4656 16.633 7.3661 5.5393 13.39 15.894 7.51 7.6194 8.988 3.858 3.92 18.467 8.745

18 5.976 7.23 14.28 7.1 4.596 8.82 4.248 6.2 14.501 7.61 5.2246 4 11.441 11 5.4543 9.2 5.202 4.2 15.982 7.2

19 5.639 10.27 4.944 4.172 9.3249 4.2757 10.838 5.8179 3.628 14.017

20 5.1 8.963 6.046 1.412 9.3848 3.6818 9.5847 2.5192 1.62 11.52

21 5.646 8.963 6.12 4.2 10.1 4.4 9.2 2.2 3.4 12.1

P-value 0.407 0.008 0.845 5E-04 7E-05 1E-05 0.3097 0.0248 0.018 0.0018

1 7.704 7.77 4.825 6.462 6.797 7.122 7.036 6.8927 12.105 9.2205 3.4741 2.501 4.3803 5.151 8.2741 3.705 1.966 0.94 12.105 9.221

2 5.072 5.46 5.752 4.463 5.494 5.087 6.625 6.5421 12.273 13.788 4.4886 1.672 8.7308 5.392 4.4016 1.403 4.419 2.85 12.273 13.79

3 7.688 15 6.961 8.233 3.274 5.829 5.889 6.7572 17.149 24.08 3.5537 2.389 10.301 5.667 4.0482 3.978 2.992 6.04 17.149 24.08

4 6.626 6.01 8.679 5.778 3.899 4.397 5.378 8.3069 17.548 20.943 4.6753 2.401 11.979 2.955 4.4093 3.202 4.447 4.33 17.548 20.94

5 6.946 10.5 4.494 6.253 3.2 5.308 6.248 8.5545 13.772 20.433 2.7288 2.66 13.346 3.156 7.3998 3.826 4.973 3.26 13.772 20.43

6 10.18 5.3 7.871 5.188 3.812 2.47 5.819 8.2321 18.373 19.966 2.5559 3.092 14.568 2.96 6.6137 2.488 5.251 1.23 18.373 19.97

7 8.146 7.69 9.493 4.721 3.982 4.463 5.184 8.5056 17.305 30.851 2.907 2.974 14.858 2.802 5.757 3.342 4.639 3.08 17.305 30.85

8 6.988 6.79 9.502 5.869 5.277 5.488 5.184 9.3503 16.356 31.517 2.1798 2.677 13.194 2.858 5.5397 2.824 3.338 1.43 16.356 31.52

9 6.482 1.46 10.32 5.468 8.006 4.267 4.066 10.425 16.879 22.852 1.8359 2.838 14.534 3.339 5.4152 2.934 4.059 3.97 16.879 22.85

10 5.801 9.77 9.023 5.085 7.491 4.916 3.521 10.291 13.137 21.896 1.2353 2.308 12.148 3.312 5.0431 4.397 4.224 4.52 13.137 21.9

11 4.38 0.36 10.65 4.264 8.511 4.641 4.298 11.387 16.75 19.259 2.2628 1.855 15.167 2.891 6.2341 3.263 3.047 2.52 16.75 19.26

12 5.87 9.52 7.793 4.449 6.557 4.842 3.142 11.415 3.5137 19.476 2.747 3.412 9.818 3.021 0.9059 3.354 2.582 5.34 3.5137 19.48

13 5.615 8.6 7.664 4.477 6.284 3.813 4.781 11.415 12.23 17.605 2.5223 2.372 11.894 3.08 4.1138 4.128 4.438 4.59 12.23 17.61

14 0.352 0.49 9 1.148 5.332 3.935 3.951 6.7395 10.62 1.2967 2.7041 2.724 9.1756 2.734 3.4259 2.139 3.059 3.63 10.62 1.297

15 7.85 6.9 8.556 4.288 7.86 5.499 4.704 12.164 15.938 19.993 2.4128 3.427 13.348 2.999 6.0746 4.138 3.98 6.99 15.938 19.99

16 5.017 8.64 9.201 5.783 7.979 5.288 3.809 10.977 18.549 22.09 2.9471 2.985 13.564 3.446 5.5168 4.722 4.664 7.19 18.549 22.09

17 5.674 5.52 12.09 4.415 8.088 3.758 4.652 11.106 16.145 16.327 2.7542 2.525 13.511 2.142 4.9727 4.375 4.663 4.2 16.145 16.33

18 6.046 2.1 8.546 4.021 8.042 4.31 4.271 11.36 11.84 17.221 2.3268 2.212 10.848 2.142 4.0378 4.375 3.559 4.97 11.84 16.27

19 1.735 8.188 7.517 4.061 12.536 1.9435 9.3634 3.8703 2.983 12.536

20 0.099 1.314 3.841 4.127 2.8143 0.38197 6.7171 2.8285 1.74 2.8143

21 0.05 8.2 7.2 6.2 11.2 11.1 6.271 1.8285 1.395 2.143

P-value 0.311 3E-05 0.006 2E-09 0.0051 0.37464 2E-11 0.0048 0.531 0.0041

1 4.62 4.99 5.661 7.5 11.76 7.05 11.17 11.689 10.046 10.046 9.0145 15.6

2 3.147 3.51 5.683 5.736 11.77 9.434 6.398 8.9136 14.374 14.374 13.043 8.176

3 2.01 9.52 5.057 7.103 6.702 14.4 5.142 23.625 7.3859 7.3859 6.7391 14.72

4 3.596 10.2 4.941 9.422 8.922 9.477 5.66 11.227 5.7491 5.7491 7.6367 7.382

5 3.06 8.05 3.822 10.8 8.765 6.506 6.218 9.3057 3.8518 3.8518 6.4834 6.312

6 3.279 7.75 4.298 9.554 12.99 7.123 8.244 9.3737 5.7101 5.7101 8.551 5.828

7 2.711 8.95 3.767 8.158 12.75 6.039 11.27 8.5024 6.6128 6.6128 9.238 5.413

8 3.172 8.16 3.215 10.16 9.895 2.292 7.594 7.3792 3.581 3.581 6.4521 3.368

9 3.431 10.1 4.795 7.9 8.774 4.474 10.28 8.062 5.6157 5.6157 6.9484 5.187

10 3.883 12.5 4.168 12.49 10.25 6.579 7.983 8.168 4.508 4.508 5.5544 5.554

11 4.189 7.76 5.58 9.661 10.92 4.864 7.533 6.7473 3.9315 3.9315 5.4961 2.253

12 4.251 8.97 2.978 10.28 9.063 5.365 7.509 10.233 2.974 2.974 5.6346 5.559

13 3.058 9.42 5.394 9.317 8.527 6.359 7.146 9.1103 4.0186 4.0186 5.0499 5.67

14 3.701 8.03 5.441 7.187 3.686 0.901 6.792 6.4295 3.4886 3.4886 6.019 1.213

15 4.392 9.33 5.397 14.45 9.791 7.845 10.31 8.2604 3.8085 3.8085 6.3703 7.255

16 4.665 11 4.539 12.33 18.27 6.681 7.74 6.9157 3.7828 3.7828 7.8952 5.025

17 4.664 11.5 4.229 11.81 11.93 5.133 8.54 5.5513 2.8554 2.8554 5.6798 4.718

18 4.515 11.9 5.145 11.2 11.7 5.329 7.909 5.13 3.2404 2.54 6.4211 4.82

19 4.435 4.464 11.46 6.231 3.1223 6.3617

20 2.671 4.471 8.956 7.463 2.79 5.2222

21 2.71 4.13 8.557 7.463 2.379 5.22

P-value 5E-09 1E-08 2E-04 0.212 0.7292 0.55303
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