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Abstract

This thesis proposes methods employing an evolving Spiking Neural Network (SNN)
architecture for the analysis of spatio-temporal neuroimaging data. Multivariate Spatio-
Temporal Brain Data (STBD) is intrinsically complex as it contains both time and space
dimensions that represent the patterns of cognitive processes in the brain. Scrutinising the
spatio-temporal interactions between variables in such complex data demands incorporating

the spatial and temporal aspects into the model’s computations.

To this end, first an SNN architecture was used for modelling, learning, mapping and
classifying of STBD, including Electroencephalogram (EEG) and Functional Magnetic
Resonance Imaging (fMRI) data. | designed SNN models that allowed for a better
understanding of cognitive processes by capturing the spatio-temporal interactions between
variables when compared with extant reservoir computing systems. The models enhanced
the classification performance by achieving up to 92% accuracy which represents an average

improvement of 20% when compared with different machine learning methods.

Further, | proposed and developed a new dynamic spatio-temporal clustering approach which
allowed for the assessment of the evolving learning patterns in SNN models. This study led
to knowledge discovery in SNN evolutionary learning patterns and resulted in feature

selection that improved the classification accuracy by up to 10%. It also revealed the



trajectory of brain areas involved in response to a cognitive task. The proposed clustering
configuration was evaluated using a validity measurement method based on cohesion and

separation that represented a high goodness of the clustering structure.

Finally, | proposed a new personalised modelling approach for integrated static and spatio-
temporal data using SNN models. To build a personalised SNN model (PSNN), | developed
a new clustering method, named Dynamic Weighted-Weighted Distance K-nearest
Neighbours (DWWKNN). The developed PSNN improved the classification accuracy by
12% when compared with the global SNN models. This also resulted in creating a profile for

an individual.

Overall, this research has scrutinised the hidden evolutionary learning patterns in SNN
architecture, which resulted in an identification of neural areas activated by different input
neurons. Furthermore, it has demonstrated an original personalised modelling that resulted

in an improvement in classification accuracy.
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Chapter 1 Introduction

1.1 Rationale and Motivation

Large amounts of Spatio-temporal Brain Data (STBD) are being recorded in different areas
of study including neuroscience, neurology, psychology, and so forth. STBD record
cognitive brain functions, which are involved in the processing of afferent information
produced by internal and/or external stimuli. Scrutinising such multivariate data by
computational approaches has led to the proposal of neuroinformatics, where the models are

inspired by neural systems.

The worldwide demand for modelling and understanding the underpinning of functional
processes in STBD has propelled the development of various analytical methods. The
majority of current statistical and Artificial Neural Network (ANN) machine learning
techniques often create models by separately processing the spatial and temporal
components. This usually results in losing some informative spatio-temporal correlations in
real-life applications of STBD. Hence, the accuracy of the output prediction/classification

might not be quite substantial.

Besides the model accuracy, the model interpretability is also of crucial importance in
machine learning. This refers to understanding the relationships between the model features
and the predicted outputs, which has not been investigated in depth. The higher the
interpretability of a model, the easier it is for someone to comprehend why certain decisions
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(output predictions) were made. This allows for knowledge discovery in the models and
contributes to the understanding of interactions in the model that have controlled an output
to occur. Nevertheless, the extant analytical methods develop models on data without
investigating the model learning patterns itself. Hence, they act as black-box information
processing systems that solve a problem without discovering the causal relationships that

have triggered the output.

The brain is a highly interactive and deep learning network. Understanding of the STBD is a
complex task as the temporal features manifest complicated causal relations between the
spatially distributed neural sources in the brain. To model such interactions, Spiking Neural
Networks (SNNs) can be considered as suitable models that incorporate both spatial and
temporal components into an operation. Therefore, their compact representation of space and

time allows for learning of “hidden” spatio-temporal correlations in STBD.

This thesis is based on brain-inspired * SNN architecture for modelling and analysing of
STBD towards improving the classification accuracy. This research also contributes to an
improved level of interpretability of learning patterns in SNN models when compared with
conventional 2 methods. The STBD case studies here are real-life Electroencephalogram
(EEG) and Functional Magnetic Resonance Imaging (fMRI) data sets which were measured

prior to this study by other institutions who are acknowledged in this thesis.

! Brain-inspired refers to the mathematical implementation of a method gets inspiration from neuroscience
research on brain activity.

2 Conventional methods refer to methods that have been proposed for data analysis, besides neural network
techniques.



1.2 Aims of this Thesis and Research Questions

The primary aims of this thesis are summarised as follows:
1) Feasibility analysis of SNN architecture on case studies of real-life STBD.

e To design optimal SNN models that can learn from STBD with respect to
both space and time components.

e To achieve an improved classification accuracy when compared with
conventional Al and machine learning methods.

e To interpret the spatio-temporal interactions, captured during the learning

process in SNN models.

2) Development of new methods for knowledge discovery in SNN evolutionary learning

patterns.

e To develop a new method for dynamic spatio-temporal clustering of patterns
generated during unsupervised learning in SNN models. This is to study the
evolving patterns in SNN models, which has not been interpreted in depth
(presented in Chapter 5).

e Knowledge discovery through assessment of dynamic clustering patterns in
SNN models, which results in detecting a set of discriminative features
(feature selection). This contributes to improve the model interpretability and

accuracy (presented in Chapter 6).

3) Proposal of a personalised SNN model.



e To develop a personalised modelling system based on integrated
computational methods and SNN models, when both static data and spatio-
temporal data from an individual are available.

e To improve the classification accuracy for an individual’s outcome through

personalisation of the SNN model.

During the progression of this thesis, the following research questions (RQ) will be

addressed:

RQ 1. How to optimally design SNN architectures to model, learn and analyse different types

of STBD and to precisely capture both spatial and temporal components?

RQ 2. How does spatio-temporal clustering of the evolving patterns in SNN models lead to
knowledge discovery about the “hidden” dynamic behaviour (learning patterns) in SNN

models during unsupervised learning from spatio-temporal streams over time?

RQ 3. When both static and dynamic datasets are available for an individual, how SNN
models can be personalised towards the best possible diagnosis/prognosis outcomes of an

individual?

1.3 Thesis Structure

This thesis consists of eight chapters which are outlined as follows:

Chapter 1 states the research motivations, goals, and research questions and outlines

methods to address these questions.



Chapter 2 reviews the research about how a biological neuron functions and introduces two
neuroimaging techniques for measuring the neural activities in the brain. This section is then

followed by a review on some analytical methods for classification and clustering.

Chapter 3 discusses how the known mechanisms of neurons can be computationally
modelled by artificial spiking neurons in machine learning. Next, this chapter introduces a
brain-inspired SNN architecture, called NeuCube for modelling, learning, and understanding

of STBD.

Chapter 4 demonstrates a feasibility analysis of the NeuCube SNN architecture on two case
studies of cognitive data: fMRI and EEG. In this study, | designed SNN models of STBD
that resulted in an improvement of the classification accuracy when compared with

conventional machine techniques.

Chapter 5 represents an original contribution to the NeuCube SNN architecture by proposing
a new method for dynamic spatio-temporal clustering of learning patterns in SNN models

whilst training with STBD streams over time.

Chapter 6 investigates the proposed clustering approach through an empirical study on EEG
data. This chapter represents knowledge discovery in SNN evolutionary patterns whilst
incrementally learning from streaming EEG. The assessment of these evolutionary patterns
allows us to identify the informative features (STBD variables) in SNN that lead to an

improvement in classification accuracy.

Chapter 7 proposes a new personalised modelling system based on SNN architecture and a

new clustering method for integrated static and dynamic STBD.



Chapter 8 summaries the thesis achievements, key findings and contributions, in particular,

to SNN research. Future directions are also suggested.

Figure 1-1 illustrates a bird’s-eye view of the thesis and its different components towards
addressing the research questions. As illustrated here, my contributions are in two steps: (1)
feasibility study of SNN on STBD and (2) new SNN-based method development. The first
step is an optimal design of SNN models to better study the complex spatio-temporal
interactions among the STBD variables. The designed models were tested using two types of
STBD: EEG and fMRI. The second step refers to my original contributions to the NeuCube
architecture by proposing two new approaches for scrutinising the SNN learning patterns.
These approaches are (1) a new dynamic spatio-temporal clustering of the “hidden” learning
patterns and (2) a new personalised modelling framework when both static and dynamic data

are available for an individual.
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Chapter 2 Spatio-temporal Brain Data and
Analytical Methods

2.1 Introduction

This chapter will first review in Section 2.2 what is known in neuroscience research about
the brain, which performs as a complex information processing system. Then, Sections 2.3
and 2.4 will review the two important types of STBD measuring techniques,
Electroencephalogram (EEG) and functional Magnetic Resonance Imaging (fMRI) data that
are used as case study problems in this thesis. Section 2.5 reviews some classification
techniques and refers to their limitations when dealing with STBD. Then, clustering is

discussed as one of the main techniques for understanding of the STBD.

2.2 Information Processing in the Human Brain

The brain is the most complex organ in the human body that contains approximately 86
billion nerve cells, known as neurons (Azevedo, Carvalho, Grinberg, & Farfel, 2009).
Neurons are the fundamental information processing units that are interconnected to
construct a complex neural network. Neurons use biochemical reactions to receive, process,
store and transmit input information. A typical neuron consists of three major parts: the cell
body, the dendrites and the axon. A neuron’s cell body (also called soma) contains the
nucleus and most of the main organelle. Soma accomplishes the continuous maintenance of
the neuron’s functionality. This retains a certain ion concentration in the membrane to
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actively transfer sodium ( Na*) ions from intra-cellular fluid to the extra-cellular fluid.
Potassium ( K*) ions flow in the opposite direction from the outside to the inside of the
soma. For ion transportation across the soma membrane, several ion channels that contain
specialised proteins are embedded in the membrane. These channels provide an outward flow
of potassium to the extra-cellular fluid, while sodium moves inwards into the soma; thus, the
opposing directions of ions with different strength levels produce an electrical potential
across the soma membrane. Figure 2-1 illustrates the information flow in a neuron, while
Figure 2-2 shows a slice of the soma membrane which has several channels for ion
transportation. As shown in Figure 2-1, at the beginning of the soma, branch-like
extensions (called dendrites) are positioned to receive chemicals from other neurons via
synapses. These chemicals are transformed into electrical impulses and then transmitted to

the soma.

The firing state of each neuron is controlled by the axon, which is located at the end of the
soma. If the total force of the signals entered into a neuron surpasses the limit of the axon,
the neuron fires and triggers an action potential down to the axon terminals. Synapses are
embedded to store the neurotransmitter chemicals at the end of the axon terminals. These
synapses are attached to the dendrites of the neighbour neurons and allow the transmission
of information from one sending neuron (presynaptic * neuron) to other receiving neurons
(postsynaptic 4 neurons). The sending information contains action potential (approximately
one millisecond in duration), which is created in the presynaptic neuron’s axon by

regenerative alterations in membrane potential, and acts as an energy that induces neural

3 Presynaptic neuron is delivering the “message” across the synapse to the postsynaptic neuron.
* The postsynaptic neuron is the “receiver” of the neurotransmitter “message” from the presynaptic neuron.
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activity (Hodgkin, Huxley, & Katz, 1952; Hall, 2015). The axon can accelerate propagation
of electrical signals, if it is covered by myelin sheaths, which perform as insulators and
prevent the dissipation of the depolarisation wave caused by an electrical spike triggered in

the soma.

When a neuron sends a spike to the postsynaptic neuron through the axon, neurotransmitter
chemicals are diffused into the synaptic cleft (a narrow gap between two neurons) and which
reacted with receptor proteins of the postsynaptic neurons. The receptor activation allows the
transfer of ions from the extra-cellular fluid of the presynaptic neuron to the postsynaptic
cell. Different categories of transmission synapses, named excitatory and inhibitory, control
the likelihood of the postsynaptic neuron to emit an action potential. Excitatory
neurotransmitter increases the potential of the postsynaptic neurons to fire, while inhibitory
neurotransmitters suppress the postsynaptic neuron from firing. Therefore, the efficacy of the
postsynaptic response is not fixed but adjusted with respect to the released neurotransmitters.
This principle is so-called synaptic plasticity, which enables learning and memorising in the
brain. Comprehensive information about neurons can be found in the standard text book on
the matter by Kandel (Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth, 2000) and (Fuchs,

et al., 2012).

Hitherto, this chapter presents how the construction of a neuron enables it to exchange
electrical signals among a series of interconnected neurons; thus, propagating the
information. Afterwards, two main neuroimaging techniques for recording such neural

activities will be discussed.
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Post-synaptic cell Pre-synaptic cell

Figure 2-1 Information flows between neurons through the axon, which receives information from a presynaptic
neuron and generates an action potential that is sent down to the synapses of the postsynaptic neuron. This
figure is modified from (Marcella, 2011).
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Figure 2-2 Sodium Na* and potassium K* ions move across the soma membrane through ion channels, this
accomplishes electrochemical powers as a result of the ion exchange through specific channels located along
the neural membrane (Brady, Siegel, Albers, & Price, 2011). This figure is modified from (Khanacademy,
2017).

A variety of techniques has been devised for recording brain dynamics, such as EEG and
fMRI. An EEG is based on the magnetic and electrical activity of the brain that possesses a
high temporal resolution (i.e. brain signals are recorded in a sequence of milliseconds) but

unclear localisation, as the measurement is performed via a limited number of electrodes

attached to the scalp. In contrast, fMRI data represents brain activity with a high spatial
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localisation even though it uses a much lower temporal sampling rate. The principle of the

EEG and fMRI data will be explained in the following Section 2.3 and Section 2.4.

2.3 EEG Data

EEG is a method for measuring STBD from cortical activity via a number of electrodes
attached to the scalp that are connected to a computer interface system (Haas, 2003). The
history of EEG measuring goes back to the moment that Richard Caton discovered the
electrical nature of neural activity (Caton, 1875). Caton reported that he had used
a galvanometer for detecting and measuring the electric impulses from the surface of
mammalians’ brains (a rabbit and a monkey). In 1924, the first human EEG was recorded by
Hans Berger (Niedermeyer & da Silva, 2005). By 1938, EEG had expanded as a widespread
recognition technique by eminent scientists, leading to practical applications in diagnosis
among many countries (Wiedemann, 1994). Figure 2-3 illustrates an EEG recording
procedure, which collects brain cortical signals via a number of electrodes (also called
channels). The EEG signal oscillation is rhythmic; thus, it is typically described in terms of

bands of different frequencies as follows:

Delta band in 0.5-3.5 Hz, at sleep and rest stages.

e Thetaband in 3.5-7.5 Hz, at learning, memory and sensory motor processing.
e Alpha band in 7.5-12.5 Hz, at meditation.

e Betaband in 12.5- 30 Hz, at mental calculation, anticipation or tension.

e Gamma band in 30-60 Hz, at attention of sensory perception.
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Figure 2-3 EEG recording that shows the electrical charges resulting from the activity of the brain cells.

Figure 2-4 shows the frequency and amplitude of an example of a 14-channel EEG. The
signal amplitudes in three different frequencies (6 Hz, 10 Hz and 22 Hz) are shown in colour

maps, where red represents a high power while blue is a low power.

Frequency (Hz)

Figure 2-4 EEG band frequency corresponding to signals recorded from 14 electrodes and scalp maps generated
by EEGLAB toolbox (Neuroscience, 2016).
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2.4 FMRI Data

The spatio-temporal fMRI data is a susceptible indicator of blood flow changes influenced
by neural activities. This relies on the statement that neural activity and the cerebral blood
flows are highly correlated. Thus, evoked neurons demand a high level of oxygen carried by
blood to start processing and firing (Logothetis, Pauls, Augath, Trinath, & Oeltermann,
2001). FMRI uses the Blood Oxygenation Level Dependence (BOLD) contrast method for
observing the level of oxygenation in the blood. The BOLD context was first described by
Ogawa (Ogawa, et al., 1992). It is a type of specialised brain scan that maps neural activity
through imaging the blood flow changes, also called hemodynamic response rate (HDR), in
relation to the energy/oxygen consumption within brain cells (Huettel, Song, & McCarthy,
2004). BOLD represents local increases in blood oxygenation as a direct effect of

neurotransmitter chemicals that perform local neural signalling.

In the presence of a magnetic field, BOLD contrast is influenced by the paramagnetic nature
of deoxyhemoglobin which affects the main magnetic field, leading to a local reduction in
main field homogeneity. Paramagnetic deoxyhemoglobin in the blood possesses a stronger
magnetic moment whilst oxyhemoglobin is diamagnetic and has little effect. This
inhomogeneity of the magnetic field can be measured over time as different illuminations in
fMRI data. Therefore, a high level of deoxyhaemoglobin decreases the fMRI intensity, while

little deoxyhaemoglobin increases the image intensity.

In the context of neurobiology, HDR refers to the fast distribution of blood to activate neural

tissues. If the brain neurons are constantly active with a high level of processing, cerebral
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blood flow is vital to retain the neurons, astrocytes, and other cells of the brain. FMRI

temporal resolution is limited by the slow rate of HDR time.

FMRI recording occurs over time at many small, three-dimensional areas called “voxels”.
Each voxel is a numeric cube which represents the BOLD intensity of thousands of neurons
over time. FMRI techniques are non-invasive and have been widely used in cognitive science
and neuroscience, providing insight into brain structures and processes for researchers and
clinicians (Lindquist, 2008; Liu, et al., 2014; Rodriguez, nderson, Calhoun, & Adali, 2015;

Siegelmann, 2015; Norman, Polyn, Detre, , & Haxby, 2006; Behroozi & Daliri, 2014).

There are numerous common objectives pursued in fMRI data analysis, including: localising
the activated brain regions during a mental task, detecting the brain information pathways
corresponding to functional activities, diagnosis or prognosis of disease or psychological
states, and so forth. The next section will discuss some major analytical methods and their

limitations when dealing with STBD.

2.5 Analytical Methods for STBD

Currently there is a huge amount of STBD collected from either healthy subjects or unhealthy
subjects during and after treatment. EEG and fMRI have been extensively used for brain
study through applying different computational methods. Some familiar tools to process EEG
data include: EEGLAB (SCCN, 2017), LORETA (Loreta, 2017), PyEEG (PyEEG Reference
Guide, 2010), and so forth. A review (Lotte, Ongedo, Lecuyer, Lamarche, & Arnaldi, 2007)
on classification algorithms for STBD in Brain Computer Interface (BCl) has explored

different categories, where the most important methods are linear classifiers, non-linear
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Bayesian classifiers, neural networks and hybrid models. In the following, I present an

overview on current classification methods for STBD.

2.5.1 Overview on Classification Methods

A. Linear Classifiers

Linear classifiers are based on assigning linear decision boundaries between the samples
(feature vectors) of different classes. A variety of algorithms has been proposed so far, such
as Support Vector Machines (SVMs) (Cortes & Vapnik, 1995; Raghavendra & Deka, 2014),
Linear Discriminant Analysis (LDA) (Manly, McDonald, Thomas, McDonald, & Erickson,
2002) and regularised LDA (Guo, Hastie, & Tibshirani, 2007) that is adapted for high-
dimensional data space. Both SVM and LDA have been widely used for classification of
EEG (Costantini, et al., 2009; Subasi & Gursoy, 2010) and fMRI (Peltier, Lisinski, Noll, &
LaConte, 2009). However, when dealing with complex STBD streams, samples cannot be
linearly discriminable. This problem is called non-linear classification which cannot be

handled by drawing straight discriminative lines in the data space.

The original SVM constructs a hyperplane for linear classification, however, a non-linear
classification can be performed by applying a kernel (Cristianini & Shawe-Taylor, 2000) to
the hyperplane that allows to transform the feature space to fit the hyperplane. Examples of

kernels are polynomial and Gaussian function.

General Linear Method (GLM) (Friston, et al., 1994; Beckmann, Jenkinson, & Smith, 2003)
is another type of statistical linear modelling of multivariate data that was used in several
neuroimaging analytical tools such as Statistical Parametric Mapping (SPM) (Friston K. ,

Statistical Parametric Mapping, 1994).
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B. Non-linear Classifiers

Non-linear Bayesian classifiers emerged for modelling the probability distributions of each
class. Bayesian classifiers are based on probabilities of associated events (dependent)
according to a conditional probability principle. An example of such a classifier is the Hidden
Markov Model (HMM) (Eddy S. R., 1996; Chakraborty & Talukdar, 2016), which is a
probabilistic model for temporal data by assigning probability distributions over sequences
of observations. Using HMMs, input data can be classified by passing them through several

states together with their transition probabilities as statistical measurements.

Several successful applications of HMMs have been developed in the field of speech
recognition and classification (Katagiri & Lee, 1993; Rabiner, 1989). In the field of STBD
analysis, research on EEG data classification (Obermaier, Guger, Neuper, & Pfurtscheller,
2001) has shown that the accuracy of BCIl-based HMM outperformed the BCI-based LDA.
In (Ou, et al., 2015), fMRI data were used for classification of different groups of patients by
applying HMM, which generated different sequences of observations (states), based on
which the specific test subject was classified. Research (Argunsah & Cetin, 2010) presented
that HMMs for EEG classification were improved by using Principle Component Analysis
(PCA) (Friston, Frith, Liddle, & Frackowiak, 1993), which is a dimensionality reduction
approach that transfers data samples into a new space with a smaller dimension, where
different orthogonal principle components preform as linear-subspace representations of the

data.

When dealing with samples that are not linearly distributed, PCA transforms result in losing

some of the information. Independent Component Analysis (McKeown, et al., 1998),
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(Franchin, Tana, Cannata, Cerutti, & Bianchi, 2013) has been proposed to overcome the

limitations of the non-linear subspaces in PCA.

HMMs performed well in various STBD classifications, however, when both spatial and
temporal information are critical to be preserved and learnt, HMMs do not model the
integrated spatial-temporal correlations in data. In addition, HMM is a parametric technique
with a fixed number of states and a fixed topology with respect to the observations. The
HMM model operates using discrete states and they consider only the previous known state,
so deep-learning patterns cannot be captured. They are also lacking from brain-inspired
learning to adjust the interconnections. Some limitations of HMMs are reviewed in

(Chakraborty & Talukdar, 2016).

C. Artificial Neural Networks (ANNSs)

ANNs have been proposed for solving classification or regression tasks in computational data
processing. ANNs are constituted of a set of basic cells (called neurons) performing a defined
mathematical operation connected and organised in layers, which process input information
and assign decision boundaries between samples that belong to different classes. According

to their computational units, they were categorised into three generations.

Rosenblatt proposed the first generation of ANNs (Rosenblatt, 1957), called perceptron
which was based on McCulloch-Pitts neurons and was inspired by the concept of
thresholding in biological neurons. A perceptron neuron is a computational unit with several
inputs, each is associated with a weight that resembles synaptic efficiency. A perceptron

integrates the inputs and fires if the synaptic weighted sum of inputs reaches a threshold. This
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is computed using a step function to perform binary outputs (—1 or 1). This function is time-

independent, meaning that the time in which the threshold is exceeded is not considered.

A single layer perceptron consists of one layer of neurons that are fully connected to the input
data by weighted connections. An extended version of the perceptron is the Multilayer
Perceptron (MLP) (Kruse, et al., 2013) which usually consists of an input layer, one or more
hidden layers and an output layer. The step function can be replaced by a linear function,

which produces a range of activations, so it is not limited to a binary output.

The second generation of ANNS is related to improving the computational units by including
an activation function. In contrast to a fixed threshold value to determine the output, here an
activation function (such as non-linear sigmoid) produces outputs which are proportional to
the inputs; thus, performing non-linear classifications. Figure 2-5 illustrates a block diagram
of an artificial neuron (right) and a simple small network (left) with two input neurons, two

hidden layers, and one output neuron.

Q N O N O
N AN| W1Xy output
N /N N — —»
R N Inputs WX,

Weights

Activation function

Input Layer Hidden Layers Output Layer

A multilayer NN An artificial neuron with action potential

Figure 2-5 A block diagram showing components of an artificial neuron.

Feed-forward ANNSs with a back-propagation (BP)-based algorithm can learn time varying

inputs (Shinde, Samant, Naik, Ghorpade, & Kale, 2017; Yu, Efe, & Kaynak, 2002). Several
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BP learning algorithms have been proposed, such as an on-line neural-network learning
algorithm for dealing with time varying inputs (Zhao Y. , 1996; Cilimkovic, 2015) and
learning algorithms based on gradient descent (Zhou & Si, 1998; Ranganathan & Natarajan,

2018).

MLPs with non-linear activation functions have been applied for classification of STBD,
such as EEG classification related to emotion perception (Yaacob, Abdul, & amaruddin,
2016) and a motor imagery EEG classification (Chatterjee & Bandyopadhyay, 2016). Some
other relevant ANN models are Recurrent Neural Networks (RNNs) (Peddinti, Povey, &
Khudanpur, 2015; Waibel, Hanazawa, inton, Shikano, & Lang, 1989; Mozer, 1993; Che,
Purushotham, Cho, Sontag, & Liu, 2018) that are suitable for sequential data classifications,
such as time series. This network is based on back-propagation, meaning that the output of
one layer can return back as input to the previous layer for tuning the connections. One
problem with this complex network is a vanishing gradient that happens when the activation
function cannot make significant change in the output, therefore, the network refuses to learn

further.

Although these ANNSs are inspired by some properties observed in brain research (Hodgkin,
Huxley, & Katz, 1952; Hall, 2015), the neuron’s state depends only on the current time of
inputs, employing an activation function. To enhance this, the third generation of ANNS,
called Spiking Neural Networks (SNNs) emerged in which accumulated inputs over time

control an action potential function; thus, it encodes the neuron’s firing-time information.

Like the first-generation ANN, a spiking neuron integrates the inputs and fires when the firing

threshold is exceeded. In addition to this, a spiking neuron has an inherent dynamic nature
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that defines a postsynaptic potential state which changes with time. The postsynaptic
potential of a spiking neuron changes with time while streaming inputs. A spiking neuron
fires at the time t in which its internal state exceeds the neuron threshold. Therefore, SNNs
are considered as brain-inspired computational models that encode properties such as action
potential, excitatory postsynaptic potential and inhibitory postsynaptic potential (1zhikevich,

2003).

D. Deep Structured Learning (DSL)

In machine learning, DSL methods refer to learning the data representations in a hierarchical
manner, where each layer in the model extracts a different informative level of representation
that corresponds to a particular concept in data. The learning procedure can be supervised,
unsupervised or semi-supervised. So far, different DSL architectures have been introduced
and examples are as follows: Deep Neural Network (DNN) (Liu, et al., 2017), Deep Belief
Neural Network (DBNN) (Goodfellow, Bengio, & Courville, 2016), RNN and Convolutional
Neural Network (CNN). DNN refers to a network with multiple hidden layers between the
input and output layers. In DNNs every layer of neurons extracts informative abstractions
and transfers them to the next layer to model complex non-linear relationships. DNNs are
usually feed-forward networks, while the data flow can be in any direction in RNNs making
them suitable for a wide range of applications (Gers & Schmidhuber, 2001; Sutskever,

Vinyals, & Le, 2014; Tomavs, Karafiat, Burget, Cernocky , & Khudanpur, 2010).

CNNs (Schmidhuber, 2015) are inspired by the visual cortex, where the firing rate of every
sensory neuron is affected by a specific region in the retina, called the neuron’s receptive

field. Neurons have different specific receptive fields, and they are overlapping. CNNs
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consist of three main layers: input layer, feature learning layer and classifier layer. Each of
these has several sub-layers. In contrast to MLPs, in CNNSs the hidden layers are not fully
connected. Through a convolution procedure, every region of neurons (receptive field) from
layer i is connected to one neuron in layer i + 1, which results in extracting abstractions (i.e.
some informative features) from layer i and transfers them to the next layer. Convolution
uses a filter (with a specific size) which is sliding over the input values to merge them and
generates a feature map. Several convolutions are applied on the input data to develop
different feature maps. Training a CNN is similar to MLP training that can be based on
backpropagation or gradient descent. CNNs use activation functions, therefor, they can solve

non-linear classification tasks.

CNNs supported tremendous achievements in computer vision systems, including image
classification (Krizhevsky, Sutskever, & Hinton, 2012), image segmentation (Liang-Chieh,
George, lasonas, Kevin, & Alan L, 2018; Wachinger, Reuter, & Klein, 2018) and object
detection (He, Hang, Ren, & Sun, 2016). One of the common issues with CNNs is overfitting
that may happen due to the presence of layers which model irrelevant dependencies. CNNs
were also used in several applications of STBD, for instance, emotion classification using
EEG data (Tripathi, Acharya, Sharma, Sudhanshi, & Bhattacharya, 2017) and the result has
shown that CNN outperformed MLP. In research (Rezaei Tabar & Halici, 2016) a motor
imagery EEG classification task was performed, and the results suggested that deep learning
CNN improved classification performance by at least 9% compared to other conventional
approaches. In this section, | reviewed methods that have been applied so far for STBD
classifications. The next section reviews data clustering which is an important approach for

understanding relationships in STBD.
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2.5.2 Overview on Clustering Methods

Clustering aims at objectively organising data samples into homogenous groups where data
samples within a group are similar in some sense. So far, many clustering methods have been
developed to identify structures in different data types, such as static and temporal data. Data
are static when the feature values do not change over time, and they are time series (temporal)
if the features comprise values that change over a continuous time interval. With respect to
different data types, clustering methods differ significantly in the notion of
similarity/distance measures. In the following, | present a review on clustering methods
applied to different data domains: (A) static data clustering, (B) time series clustering and

(C) dynamic evolving clustering.

A. Clustering Approaches for Static Data

Clustering methods for various static data are classified into five major categories:
hierarchical methods (Johnson, 1967), partitioning methods, density-based methods (Ester,

Kriegel, Sander, & Xu, 1996), grid-based methods, and model-based methods.

Partitioning clustering divides datasets into k distinct partitions, where samples in each
partition share similar characteristics of this cluster. Most of the partitioning clustering
algorithms are based on minimising an objective function, which usually refers to the

distance between samples and the cluster centre. A typical objective function is as follows:

k 1Cil

Z Z Dist(x;, center(i)) (2-1)

i=1j=1
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where |C;| denotes the number of samples belonging to cluster i and function Dist computes
the distance between sample x; to the centre of cluster i. A partition is hard if each sample
belongs to only one cluster, or fuzzy if one sample is allowed to be in more than one cluster
up to a different membership degree, e.g. fuzzy c-means (Bezdek, Ehrlich, & Full, 1984; Rali,
Bajaj, & Kumar, 2015). Numerous hard partitional clustering methods have been proposed,
in which one of the most popular ones is the K-means algorithm (Hartigan & Wong, , 1979;
Prabhakar & Rajaguru, 2015). The K-means algorithm classifies a given data set into K
centroids, which are pre-defined a priori. The procedure is to assign each sample to the
nearest centre and form K clusters. Afterwards, new centroids will be computed with respect
to the mean value of each cluster. Over a number of iterations in the algorithm, the K
centroids change until they converge to certain locations (which means that no more changes
are done) through minimising an objective function, which follows here as a square error

function:

Z”xj — center(i) ||2 (2-2)

J=1

Kk Gl
i=1

With respect to different clustering algorithms, the similarity/distance can be measured

through different equations as reported in Table 2-1.

Table 2-1 Different techniques for measuring the distance.

Method Formula
Euclidean distance
la=bll, = | Y (@ - by
L

Squared Euclidean distance la—bliz = Z-(ai — b))?

L
Manhattan distance la—bll, = Z_lai b2

L
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Maximum distance lla — bll,, = max;|a; — b;|
Mahalanobis distance J@=b)S(a—b)
S is a covariance matrix

Hierarchical clustering represents groups of data samples using a tree of clusters, in which
the similarity is measured according to a pairwise distance matrix of samples. Every two
similar samples can be merged to represent a cluster and then the most similar pair of clusters
can merge their members to represent a higher level of clusters (known also as a parent
cluster). This procedure will be repeated until all the data samples fall into one cluster, which
is the root of the tree. Hierarchical clustering algorithms are either bottom-up (also called

agglomerative clustering) or top-down (also called divisive clustering).

Figure 2-6 represents an example of bottom-up hierarchical clustering for 11 alphabetic
samples, illustrating how it organises the data space through merging similar pairs of letters.
A deficiency of the hierarchical clustering is that the computational complexity is 0(n?)

subject to the number of n samples.

> —
o —
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Figure 2-6 A tree diagram of a data space with 11 samples of letters (right) and the corresponding nested clusters
(left).

In density-based clustering, unlike the K-means, the number of clusters is not predefined.
Clustering is initiated from a set of points, continuously growing as long as the density in the

neighbourhood surpasses a threshold.

In grid-based clustering, the sample space is quantised into a finite number of cells, where
the operations for clustering are performed. A common example of the grid-based approach

is Statistical Information Grid-Based method (STING) (Wang, Yang, & Muntz, 1997).

Model-based clustering undertakes a model for each cluster and aims at creating the best fit
of the data to the model. One major method of model-based clustering is the neural network
approach. Prominent clustering methods of the neural network field are defined by
competitive learning, including Self-organizing Maps (SOM) (Carpenter & Grossberg, 1987;

Baig, Ayaz, Gillani, Jamil, & Naveed, 2015; Kohonen, 1998).

B. Clustering Approaches for Time Series

A massive amount of temporal data (time-series data) has been recorded so far in various
fields, such as electronic, video/audio, biology, neurology, and so forth. In cases of clustering
such data, given a set of time series, the objective is to group similar temporal patterns into
the same cluster. This task demands a specific notion of distance measured to estimate the
level of similarity between time series distributions. However, the Euclidean distance and
other typical measures (used for non-temporal data) are unsuitable measures to evaluate the
similarity between time series. In the literature of time series clustering, various methods

have been introduced of which some are briefly discussed as follows:
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Biclustering (Mirkin, 1998) is a pattern-based clustering technique which simultaneously
clusters both rows and columns of a dataset represented by m samples and n-dimensional
features as a matrix (m, n). Every sample vector can represent a pattern with multi features,
and biclustering can find a relationship between patterns in such datasets. Biclustering has
been used for clustering time series gene expression data (Tanay, Sharan, & Shamir, 2002).
Since the biclustering can detect the direction of changes in data variables among samples, it
has been considered as a promising technique for clustering time series. However, when
dealing with spatio-temporal data, where both space and time need to be integrated and
involved in the clustering algorithm, biclustering approaches cannot perform sufficiently as

the spatial relationship between features is not incorporated in the analysis.

SOM is a clustering approach, utilising the ANN underpinning unsupervised learning. SOM
is performed in two phases: (1) training, which creates a map using input training samples
through a competitive procedure and (2) mapping, which classifies a new input sample
vector. During the training phase, for every input sample vector, the distance between sample
variables and all the nodes in the map will be computed (usually by means of Euclidean
distance). Then, with respect to the principle of competitive learning, the node with the
smallest distance will win as the best matching unit. The winning neuron and its
neighbourhood (within a radius) will be pulled towards the current input sample. The learning
procedure will be iteratively performed for all the training samples, and the final network
performs a similar response to certain input patterns. Thus, SOM shapes a semantic map

where similar sample vectors are mapped close together and dissimilar ones apart.
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SOM has been widely used for clustering of EEG data (Hamdoun & Usman, 2016;
Joutsiniemi, Kaski, & Larsen, 1995; Orjuela-Caon, et al., 2017), where each EEG spatio-
temporal sample was first transformed into one feature vector and then passed on to SOM

for learning.

C. Dynamic Evolving Clustering Approaches

The concept of dynamic or evolving clustering differs from the wide spectrum of clustering
approaches that attempt to measure the distance/similarity within the whole data space. It
rather refers to clustering of a data stream environment which continuously evolves with
time. As a result, evolving clustering methods represent the incremental growth of clusters
and the creation of new clusters from a stream of vector-based data. So far, several methods
for dynamic evolving clustering have been proposed. While SOM in an entire data space
assigns similar input vectors into topologically close neurons, Evolving Self-organizing
Maps (ESOM) (Deng & Kasabov, 2000) and the DENFIS evolving clustering method
(Kasabov & Song, 2002) were introduced for online dynamic clustering of data streams.
When dealing with STBD, both ESOM and DENFIS successfully detect the temporal
changes in data streams and incrementally assign them into the already generated clusters or
develop new clusters for them. However, the temporal components of each data sample are
transposed into one feature vector (static vector), where the time is hidden, and no temporal
interaction can be extracted anymore. Also, the spatial relationships between the features are

not considered in these models.

Aggarwal (Aggarwal, 2003) has proposed a framework for dynamic evolving clustering of

spatio-temporal streams. The clustering method considers both spatial and temporal
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relationships in data space, however, it creates separately two spatial and temporal models.
Therefore, the integrated spatial-temporal similarity in the data is not properly measured and

this is a crucial lack for clustering of STBD streams.

It can be concluded from the literature that classification and clustering of STBD have often
been done using conventional machine learning methods such as the SVM (Cortes & Vapnik,
1995), MLP, Multiple Linear Regression (MLR), linear regression, or deep learning
architectures. Now the question is: what is missing in the current technologies for STBD

analysis?

Currently, many types of STBD have been collected that capture complex temporal patterns,
which need to be modelled and analysed. Various techniques have been developed to analyse
the brain’s activation, functional connectivity (Tana, Bianchi, Sclocco, Franchin, & Cerutti,
2012; Aggioni, Tana, Arrigoni, Ucca, & Bianchi, 2014) or effective connectivity (Buchel &
Friston, 1997). Learning dynamic patterns of spatio-temporal data is a challenging task, as
temporal features may manifest complex interactions that may also change dynamically over
time. Therefore, the relationship between the spatial and temporal components needs to be
considered and learnt. In addition, the spatial information of the temporal sources needs to
be learnt both topologically and computationally. To address these needs, developing new
analytical methods that can capture interactions among multivariate data is of crucial

importance.

Compared to conventional ANNSs (first and second generations as explained in Section 2.5.1)

SNNs have emerged to integrate space and time components of data into the computation.
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SNN models and their neuromorphic ® highly parallel implementations are advancing quickly
(Furber, Galluppi, Temple, & Plana, 2014; Indiveri, et al., 2011). The challenge now for
information science and Al is to develop new SNN algorithms and methods for the efficient

learning of STBD and for their efficient neuromorphic implementations (Kasabov, 2014).

2.6 Chapter Summary

This chapter reviews two main techniques for recording STBD that have been widely studied
in cognitive science and neuroscience research. Then, a historical review on classification
and clustering approaches was presented. In the next chapter, SNN principles, models and

applications are discussed.

°> Neuromorphic refers to a kind of a “dynamical” machine with processors (e.g. neurons and synapses) in which
the algorithms simulate complex spatio-temporal dynamics on the computing hardware.
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Chapter 3  Spiking Neural Networks

3.1 Introduction

As discussed in the previous chapter, the first and second generation ANNs were developed
based on activation functions, which determine the neuron’s firing state according to the
current inputs at time t. However, neuroscience research indicated that the behaviour of a
biological neuron is influenced by the dynamics of the membrane potential over a period of
time. This means that the membrane potential fluctuates dynamically while the neuron
receives streaming inputs. When the membrane potential suppresses a certain capacity, it
generates an action potential (signal) and sends it out. Therefore, the action potential

corresponds to the intensity of communication between neurons.

In the third generation ANNs (Maass, 1997), the inherent nature of the spiking neuron is
inspired by the principle of action potential to incorporate the previous accumulated inputs.
This is much similar to how a biological neuron functions (lzhikevich, 2006; Brette, et al.,

2007; Scott, Kasabov, & Indiveri, 2013). The action potential here can be computationally
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encoded by binary values (-1 or 1) with a precise timing, called spikes ®. A sequence of spikes

represents the times in which a neuron emitted action potentials.

SNNs are computational models that consist of spiking neurons as processing elements,
connections between them, and algorithms for learning from data (Thorpe & Gautrais, 1998;
Verstraeten, Schrauwen, D’Haene, & Stroobandt, 2007; Masquelier, Guyonneau, & Thorpe,
2009). They transpired as potential means to learn time, space and frequency of complex
STBD. In addition to considering the neural synaptic state, SNNs include the timing of spikes
in the computation. This means that the current activation level of a spiking neuron depends
on the incoming spikes, pushing this value higher and then either firing (if exceeding a

threshold) or decaying over time.

So far, numerous methods of SNNs have been schemed such as spatio-temporal pattern
recognition (Humble, Denham, & Wennekers, 2012; Kasabov, 2012b), encoding time-series
data such as speech data into spike sequences (Van Schaik & Liu, 2005; Delbruck &
Lichtsteiner, 2007; Lichtsteiner, Posch, & Delbruck, 2008; Lichtsteiner & Delbruck, 2005;
Indiveri, et al., 2011), computational neuro-genetic modelling (Benuskova & Kasabov,
2007), spatio-temporal data learning (Maass, Thomas, & Henry, 2002; Song, Miller, &
Abbott, 2000; Dhoble, Nuntalid, Indiveri, & Kasabov, 2012), SNN reservoir computing and
liquid state machines (Verstracten, Schrauwen, D’Haene, & Stroobandt, 2007), classification

systems (Kasabov, 2007), neuromorphic design and implementation (Izhikevich, 2006;

& A Spike is a binary value (-1 or 1) at time t, which represents a certain upward or downward change in the
signal.
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Furber, Galluppi, Temple, & Plana, 2014; Indiveri, et al., 2011) and neuro-computational

perspective of brain pathology (Reggia, Ruppin, & Glanzman, 1999).

Many applications of SNNs have been developed, including: multimodal audio-visual
information processing (Wysoski, Benuskova, & Kasabov, 2010), STBD modelling
(Kasabov, 2014), Brain-Computer Interfaces (BCI) (Anderson, Stolz, & Shamsunder, 1998),
moving object recognition (Kasabov, Dhoble, Nuntalid, & Indiveri, 2013), cognitive data
modelling (Kasabov & Capecci, 2015), finite automata modelling (Natschlager & Maass,
2002), predictive systems (Tu, et al., 2014). These applications are structured based on the
SNN models, which process input stimuli across different evoked cognitive states, acting as

an ultimate spatio-temporal data processing machine (Kasabov, 2014; Kasabov, 2010).

3.2 Computational Model of a Spiking Neuron

In a biological neuron structure (as explained in Chapter 2), when the overall power of input
signals reaches a certain threshold, an output signal is generated and sent to other neurons
connected to it. Therefore, neurons receive and transmit information by means of signals

exchanged via synapses.

This procedure can be computationally simulated by artificial spiking neurons as
information-processing units that accomplish non-linear processing (Anderson, Stolz, &
Shamsunder, 1998; Maass, Thomas, & Henry, 2002). A collection of interconnected spiking

neurons creates an SNN, where neighbour neurons are influenced by their spiking activities.

Figure 3-1 illustrates a biological neuron and an artificial spiking neuron which resembles

the behaviour of a biological neuron’s cell. It can be seen that the inputs and outputs in a
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spiking neuron are in the form of spike sequences with a precise timing. With respect to
different mathematical neuron models introduced in the literature, a spiking neuron can
dynamically process the input spikes over time to compute its membrane potential. Incoming
spikes make change in a neuron potential and when this exceeds a threshold value, the neuron
emits an output spike. Similar to the axons, artificial neurons are interconnected through
simulated paths, which are initially established with random weights. Then the connection
weights between neurons are modified by transferring spikes across synapses. Numerous
computational models of SNNs have been developed so far, some well-known models are

listed in the following and discussed afterwards.

Lapicque

e Integrated-and-Fire

e Leaky Integrated-and-Fire
e Izhikevich

e Thorpe’s Model

e Probabilistic Spiking Neural Model
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Figure 3-1 (a) Structure of a biological neuron, figure was modified form (Pearson , 2005); (b) Artificial spiking
neuron which receives input spike trains, processes them and produces output spikes.

Lapicque Model. One of the earliest models of the neuron was the Lapicque model (Brunel,

van, & Mark, 2007), which was constructed according to the mechanism of an electric circuit

with a parallel resistor. This model captures the leakage resistance and capacitance of the cell
membrane, but the concept of action potentials was not known. In this model, the action

potential was set as a constant with different time of occurrence.

Integrated-and-Fire Model. In (Abbott, 1999) the Lapicque has been further developed to

incorporate the principle of action potential, in which once the membrane capacitor reaches
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to a certain threshold, an action potential is produced and then the membrane potential is
reset. This model is called the integrated-and-fire model of a neuron. The integrate-and-fire

model of a neuron can be defined by its membrane potential v and capacitance C as follows.

dv 1

= — 3-1

6= RV —vrest) +1(0) (3-1)
v(tPD)=0 when v'(t¥)>0 (3-2)

where resistor is denoted by R, input current is I(t) and ¢t is the time at which a neuron
fires when its membrane potential v(t"”) exceeds the firing threshold 8, while v'(t¥)) is

its derivative.

Leaky Integrated-and-Fire Model (LIFM). In this model also called “forgetful” (Knight,
1972), the membrane potential v(t) increases with every input spike at a time t, multiplied
by the synaptic efficacy (strength), until it reaches a certain threshold . After that, an output
spike is emitted, and the membrane potential is reset to an initial state. Like a biological
neuron performs, when the simulated neuron emits a spike, it does not produce a new spike
within a refractory period and its membrane potential v(t) leaks. The membrane potential
can have certain leakage between spikes, which is defined by a parameter 1. A schematic
representation of the LIFM is illustrated in Figure 3-2 and the neuron action potential is

defined as follow:

dv

Tm gy = Vrest ~ v(t) + RI(t) (3-3)
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The ,, is the membrane time constant, v,..; IS the resting potential, 1 is the input current and

R is the resistance.
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Figure 3-2 The LIFM of a spiking neuron. (a) Schematic representation; (b) Showing an input train of spikes
(top row), the emitted output spikes (second row) and the membrane potential changes over time. Figure from
(Kasabov, 2014).

Izhikevich Model. The model was introduced by Eugene M. Izhikevich (Izhikevich, 2003),
combines the computational efficiency of the integrate-and-fire neurons and the biologically
plausible principle of the Hodgkin—Huxley model. The Izhikevich model is implemented by

means of a two-dimensional system of ordinary differential equations as follows:

d
d_: = 0.04v(t)? + 5v(t) + 140 — u(t) + I(t) (3-4)

Ucll—lz = a(bv(t) — u(t)) (3-5)

Once the neuron membrane potential v exceeds a fixed threshold & = 30 mV , a spike will

be emitted and u and v will be reset according to the following rule:
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ifuzethen{zi__i_i_d (3-6)

where u denotes a membrane recovery variable that models feedback to v and a, b, c and d
are dimensionless parameters. The Izhikevich model has been extended and developed in

(Izhikevich, 2006), and (Izhikevich & Edelman, 2008).

Thorpe’s Model. A variation of LIFM has been proposed by Thorpe (Thorpe S. J., 1990) in
which a neuron membrane potential v(t) is only influenced by the order of incoming spikes,
when the earlier spikes have higher effects than the next upcoming ones. In this model, when
neuron i receives input spikes from the presynaptic neuronj, (j = 1,2, ..., N) the postsynaptic
potential of neuron i, PSP;(t), is increased according to the order of incoming spikes from N
synapses. The earlier the spikes are received from the presynaptic neuron, the greater the

impression on the neuron’s postsynaptic potential. In this model, connection weights (W;,

j=1,2,..,N) are established as follow:

- ' 3-7
VVji_ ?lzlmodorder(]) ( )

where WW;; denotes to the connection weight between neurons j and i, mod is a modulation

factor within [0, 1] and order(j) is the time order of the following spikes to the presynaptic j

from all the connected neurons to j.

Probabilistic Spiking Neural Model (pSNM). In 2010, Kasabov proposed the pSNM
(Kasabov, 2010) in which information is stored in the form of connection weights calculated

with respect to Thorpe’s model plus inclusion of three new probabilistic parameters to the
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synaptic connection weight w;; (t). A pSNM is schematically shown in Figure 3-3. The

probabilistic parameters are p; ;(t), ps;;(t) and PSP;(t), described as follows:

p.;,i(t) is a probability parameter that neuron i receives a spike from neuron j at time t
via connection wj; between j and i. Here the connections are not created and pruned as
in other ANN models (Kasabov, 2007), but a probability parameter is assigned to each
connection to represent its structural and functional uncertainty. If p.;;(t) = 0, then this
means that there is no connection and no spike propagation between j and i, while
pcj,i(t) = 1 represents a 100% probability of spike propagation.

- ps;,i(t) represents a probability for the synapse s;; to be involved in the computation of
PSP;(t) after receiving a spike from neuron j.

- A probability parameter p;(t) that neuron i emits an output spike at time t when its

PSP;(t) has surpassed a certain threshold.

pj(t) Py (D)

pcj‘j (E)r Wj,j('t)
n; H on;
/ ' 0]

Figure 3-3 Representation of one synaptic connection in a pPSNM.

The PSP;(t) is calculated using the following formula:

PSP = ) > eg(put—m)f (Pt =p) wpu® + 1t —t0) g

p=to,..t j=1,..N

where e; equals to 1, if neuron j emitted a spike, and 0 otherwise; g(p.;;(t)) is 1 with a
probability p.;;(t), and 0 otherwise; f(ps;;(t)) equals to 1 with a probability ps;;(t), and
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0 otherwise; t, is the time of the last spike emitted by neuron i; n(t — t,) expresses decay in
the PSP. The pSNM is simplified as the LIFM, when all the probability parameters are fixed

to be 1.

The parameters p.;;(t), ps;j:(t) and PSP;(t) were optimised using a quantum-inspired
evolutionary algorithm to maximise the network’s accuracy. This algorithm searches for the
best parameter values to calculate the neuron’s response in the presence of the stimuli.
Further information about how to modify these probability parameters is given in (Kasabov,

2010).

3.3 Information Encoding in a Spiking Neuron

As explained in chapter 2, biological neurons send information by sudden and short increases
in their electrical energy which generates an action potential or spike as encoded spatio-
temporal information. When SNNs are used for learning the spatio-temporal patterns
“hidden” in STBD, such data first need to be encoded into sequences of spikes, which are
then transferred into the SNN via input neurons. Now the question is what kind of codes can

be considered for transmitting information in SNNs?

Rate codes and pulse codes are two main techniques in neural encoding. In the first two
generations of artificial neural networks, rate coding has been used to calculate the neurons’
output signals based on only the frequency transmission. However, coding in SNNs is based
on precise timing of spikes as computed in pulse coding (Maass & Bishop, 2001; Gerstner &

istler, 2002).
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A simple SNN is composed of an input layer, a hidden layer, and an output layer. Like a
biological neuron’s dendrites, the input layer receives the original input information and
encodes it into a new number of features which are then transferred into the hidden layer’s
neurons. The input encoding procedure transfers the real value of input information to

discrete sequences of spikes as new format of inputs to SNN models.

Different spike encoding algorithms have been proposed so far, some popular ones are:
Temporal Contrast (Threshold-based Representation—TBR) (Delbruck T. , 2007; Dhoble,
Nuntalid, Indiveri, & Kasabov, 2012), Ben’s Spikes algorithm (BSA) (Schrauwen & Van
Campenhout, 2003), Population Rank Coding (Bohte S. M., 2004), and Rank Order Coding

(Thorpe & Gautrais, 1998). Two important encoding algorithms are explained here:

Temporal Contrast (TBR). This method was originally proposed in 2007 for information
encoding in artificial silicon retina (Delbruck & Lichtsteiner, 2007). The method encodes
substantial changes in signal amplitude over a given threshold, where the OFF and ON
commands of the hardware were dependent to the sign of the changes. However, for dramatic
changes in the signal amplitude, it is almost impossible to reconstruct the signal from spike

trains generated by TBR. Therefore, TBR has been improved as follows:

For a given signal S(t), where t = 1,2, ..., n, the signal amplitude variation over time t is
denoted by B(t), with a baseline B(1) = S(1). At the next time point ¢, if the upcoming signal
amplitude S(t) is greater than B(t — 1) plus a threshold 6, then a positive spike is generated
at time t and B(t) will be replaced by B(t — 1). The encoding of positive and negative spikes

is defined as follows:
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land B(t) « B(t—1) + Th if S)=Bt—-1)+6
spike(t) =y —1and B(t) « B(t1—-1)—Th if S(t) <B(t—1)+6 (3-9)
0 otherwise

Rank Order Coding (RO). With respect to the order of neuron firing times, a higher rank
will be given to the earlier fired neuron (Thorpe & Gautrais, 1998). RO has been successfully
applied in modelling audio visual systems in visual pattern recognition (WysoskKi,
Benuskova, & Kasabov, 2006) and speech recognition (Loiselle, Rouat, Pressnitzer, & horpe,

2005) applications.

3.4 Learning in SNN Models

Different types of learning rules in SNNs have been explored in the literature. The most

popular ones are supervised and unsupervised learning as explained in the following:

Supervised learning. In this learning, the input data and the anticipated outputs are known.
For instance, in the classification problem the class labels of samples are known and in a
regression problem the real values for regression are given. SNN learns the input data patterns
to produce an exact output when a new unknown input is presented. RO learning rule and
error-backpropagation (Bohte, Kok, & La Poutre, 2002) are two popular supervised learning

examples.

Unsupervised learning. In this learning approach, the desired outputs are not provided, and
a training process is performed with unlabelled input data patterns. Hitherto, several
unsupervised learning algorithms have been developed in SNN models, the majority of them
are constructed to adapt the synaptic weights according to the temporal relation between pre-

and postsynaptic action potentials as similarly implemented in Hebbian learning (Song,
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Miller, & Abbott, 2000; Hebb, 1949). One example of Hebbian learning is Spike Time
Dependent Plasticity (STDP) learning rule which depends on the relative timing of pre- and
postsynaptic action potentials (Song, Miller, & Abbott, 2000). The STDP learning rule is

defined using the following relation:

_ [ Ajexp(At/1y) if At <0 )
F(at) = {—A_exp(—At/T_ ) if At >0 (3-10)

where F(At) defines the synaptic modification elicited from a single pair of pre- and
postsynaptic spikes separated by a time interval At = t,,,., — t,o5. The parameters A+ and
A. define the maximum quantities of synaptic modification, which transpire when At = 0.
The parameters 7, and 7_ determine the ranges of pre-to-post-synaptic inter spike intervals

over which the synaptic strengthening and weakening occurs.

3.5 SNN Reservoir Computing Systems

Reservoir computing systems are constituted of a group of recurrent connected neurons that
form a computational framework, where the input signals are mapped into a higher
dimension, called dynamical reservoir. The reservoir’s neurons are non-linear information
processing units which are typically connected randomly. The neural activities are triggered
by the input dynamics and are also influenced by the past. Therefore, for online learning of

continues input streams, reservoir computing allows for real-time computation in parallel.

One example of the reservoir methods is Liquid State Machines (LSMs), proposed by Mass
(Maass, 2010; Maass, Thomas, & Henry, 2002) that employ LIFM of spiking neurons. The

general architecture of LSM includes the following main layers:
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- Aninput layer is randomly connected to the neurons in the reservoir.

- Areservoir of randomly interconnected neurons, each of which fires over time when its
action potential value exceeds a certain threshold. Therefore, patterns of spikes are
captured after T time-steps.

- Anoutput layer is a simple deterministic readout layer that receives the spike patterns for

classification.

The readout for LSMs is typically a multilayer feed-forward NN or linear regression that
reads the states of the reservoir and maps them into the desired output. In several application
domains, LSMs have shown better performance when compared with conventional ANN
models. For instance, in pattern recognition (Verstraeten, Schrauwen, & Stroobandt, 2005),
LSM was applied to recognise an isolated word and the results were compared with HMM
models. In contrast to the HMM, the LSM has shown to be robust to noise. In (Pape, De
Gruijl, & Wiering, 2008; Ju, Jian-Xin, & Antonius, 2010), sound data were transferred into
64 static vectors of frequencies using the Fast Fourier Transformation (FFT) which were
further processed through normalisation. Then the pre-processed data were used to
demonstrate real-time applicability of the LSM for music recognition. For the classification
tasks, readout functions such as Recurrent NN, K-nearest Neighbours (KNN) and perceptron
were often used. It can be concluded from these studies that LSMs perform well for the
classification of spatio-temporal data. Now the fundamental question is: what was missing in

the current LSMs?

- The LSMs do not preserve and learn the correlation between the spatial and temporal

components in one model.
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LSMs are not developed based on an entirely spike-time constructed computational
approach. The readout functions are usually implemented according to conventional
machine learning algorithms. However, neurons in LSMs are spiking neurons and they
produce patterns of spikes. Therefore, the performance of LSMs can be improved by
employing SNN-based classifiers, which results in directly processing the reservoir’s
spikes in an online- one-pass mode. This suggests a better applicability of SNN models
for real-life information processing.

LSMs benefit from LIFM of neurons which try to model real neurons, however, brain-
inspired learning is lacking to capture the spatio-temporal interactions in the form of
adaptive connections in the reservoir.

As a result of random connections in the reservoir, LSMs cannot be spatially interpreted.
The spatial information of the temporal variables are not topologically and

computationally considered.

In view of both characteristics and limitations of LSMs, SNN features were employed for

developing a special type of an LSM, a Spatio-temporal Data Machine (STDM), called

NeuCube that is an evolving spiking neural network (eSNN) for better modelling and

understanding of STBD (Kasabov, 2007; Kasabov, Dhoble, Nuntalid, & Indiveri, 2013;

Kasabov, 2012b). The following Section 3.6 introduces the NeuCube architecture, which will

be used in this thesis for development of new methods for STBD analysis.

3.6 NeuCube for STBD Modelling

NeuCube is a generic evolving STDM based on the SNN for modelling, learning,

classification/regression, clustering, visualisation and interpretation of spatio-temporal data,
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it was first introduced for STBD (Kasabov, 2012b). The NeuCube development system is
illustrated as an integrated configuration for spatio-temporal data pattern recognition and it

includes the following ten modules:

e Module M1: Generic prototype and testing.

e Module M2: A pySNN simulator for small- and large-scale applications.
e Module M3: A neuromorphic hardware for real-time execution.

e Module M4: A 3-D visualisation and mining.

e Module M5: Exchanging of input/output information.

e Module M6: A neuro-genetic and prototyping testing.

e Module M7: Personalised modelling.

e Module M8: A multi-model brain modelling.

e Module M9: Data encoding and event detection.

e Module M10: Online learning.

In this thesis, Module 1 is explained in the current chapter, while the development of Module
7 is proposed by me as presented in Chapter 7. Figure 3-4 illustrates a diagram of the
NeuCube multinodular development architecture for modelling of STBD. The NeuCube
Module 1 was initially proposed in (Kasabov, 2012b) for STBD modelling and then further
developed in (Kasabov, 2014). Module 1 consists of the following five sub-modules and it is

depicted in Figure 3-4 and Figure 3-5:

e Input data mapping and encoding.
e Unsupervised learning in a 3-dimensional (3-D) SNN reservoir, called SNN model.

e Supervised learning and classification in an evolving SNN.
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e Parameter optimisation.

e Model visualisation and interpretation.

BASIC CONFIGURATION STANDARD CONFIGURATION

Module M1: Module M2: Module M3: Module M4:
Generic PyNN Simulator Neuromorphic 3D Visualisation
Prototyping for Small and P— Hardware for and Mining
and Testing Large Scale Real Time
Applications Execution

Module M6: Module M7: Module M8: Module M9: Module M10:
Neuro-genetic Personalised Multimodal Data Encoding Online System
Prototyping Modelling Brain Data and Event Prototyping

and Testing Modelling Detection

FULL CONFIGURATION

Figure 3-4 The multinodular development architecture of the NeuCube. Figure from (Kasabov, et al., 2016).

3-D SNN model + time
Spatio/Spectro Temporal
Input Data Stream

EEG signals in milliseconds
low spatial resolution

fMRI in seconds
High spatial resolution ...,

_______ — Brain-like SNN Model
Gene Regulatory Network internal connectivity

.
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Figure 3-5 A functional diagram of the NeuCube SNN architecture, consisting of: input spatio-temporal data
encoding module, 3-D SNN model and the STDP learning, output module for classification/regression, and
gene regulatory network (GRN) module. Figure is modified from (Kasabov, 2012b).

3.6.1 Input Data Mapping

The NeuCube mapping sub-module is created as a 3-D SNN structure of a suitable size that
maps spatially a brain template, such as the Talairach (Talairach & Tournoux, 1988), the
Montreal Neurological Institute (MNI) template (Brett, Christoff, Cusack, & Lancaster,

2001) or coordinates of individual brain data.

If the spatial information of STBD variables is given, | can spatially map these variables into
the pre-designed SNN model (the Talairach-based mapping) with respect to the coordinates
of these variables as positioned in the Talairach. For instance, the location of each EEG
channel (input variable) can be used for localising the input neuron in the SNN model. The
size of the SNN model is scalable and controlled by three parameters: n,, n,, n, representing
the numbers of neurons along x, y and z directions. This model is used to map the (x, y, 2)
coordinates of an STBD; so that, the spatial information of the data is preserved. The
prominent attitude of spatially mapping the input variables are: (a) construction of accurate
spatial models for STBD collected from these variables and (b) better understanding and
interpretation of the STBD models, as models are labelled by different functional areas in the

Talairach or other templates.

If such spatial information is not available for some datasets, temporal variables can be
efficiently mapped to the SNN models with respect to their temporal correlation. The
temporal patterns of v variables are first encoded into v spike trains, and then correlation

between these spike trains is measured. Variables are then mapped; so that, highly correlated
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variables (highly time-dependent) will be mapped to nearby input neurons in an SNN model.
Every neuron in an SNN model is a computational unit that can be simulated according to
different models of a spiking neuron as described in Section 3.2. As being implemented, the
LIFM is used here in NeuCube SNN model. LIFM is commonly used by neuroscientist in
the literature (Eugene, 2004; Sterratt, Bruce, Andrew, & David, 2011) and has been also used

in this thesis as a brain-inspired and efficient model for a proof-of-concept.

3.6.2 Input Data Encoding

The continuous time series of STBD variables that measure functional activity in the brain
were encoded into spike trains. The timing of the spikes corresponds to the time of the
changes inthe STBD. A spike train, obtained after the encoding process, represents new input
information to the SNN model, where the time unit might be different from the real time of
the data acquisition (machine computation time versus data acquisition time). The spike
trains were transferred into the SNN model via input neurons which are spatially allocated

using the same (x,y,z) coordinates as positioned in a brain template.

The existing implementation of the NeuCube is sustained by four different spike encoding

algorithms including:

Ben’s Spiker Algorithm (BSA).

Temporal Contrast (Threshold-based representation—TBR).

Step-Forward Spike Encoding Algorithm (SF).

Moving-Window Spike Encoding Algorithm (MW).

The above spike encoding methods have different features when demonstrating input data.
For encoding high frequency signals, it is more suitable to use BSA as it is based on the finite
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impulse response technique and the original signal reconstruction is also easy. The BSA
method produces only positive (excitatory) spikes, whereas using the other methods
mentioned above, negative (inhibitory) spikes can be produced along with the positive spikes.
As an example, the TBR encoding method was applied to a time series of one EEG channel

data to transfer it into a sequence of spikes as shown in Figure 3-6.

Channel Gz

100 150 200 280 300 380 400 450 500
Encoded Spikes

50
1 T T
0sH
0

0 50 100 150 200 250 300 350 400 450 500

Figure 3-6 An example of encoding EEG data into sequence of positive (black) and negative spikes (red) using
the TBR algorithm that is the format of the input data into the NeuCube SNN architecture. The image shows
the first 500 data points of one EEG channel (the Cz channel) from (Capecci, et al., 2016).

NeuCube learning is a two-phase process: (1) an unsupervised learning stage in an SNN
model, where spatio-temporal relations from the input data are learnt and connection weights
are evolved, and (2) a supervised learning stage, where the class information is associated

with each training spatio-temporal samples. These learning processes are explained in

Section 3.6.3 and Section 3.6.4 respectively.

3.6.3 Unsupervised learning in SNN Models

After mapping the spatial components of STBD to the SNN model, the neuron connectivity
is initialised using the small-world connectivity as shown in (Tu, et al., 2014), which is a

phenomenon observed in biological systems (Bullmore & Sporns, 2009; Braitenberg &
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Schuz, 1998). In this rule, each neuron in the SNN model is connected to its nearby neurons
which are within a radius d. These connections are later modified based on the learning of
new incoming spikes in time during unsupervised learning which is performed based on the

STDP learning rule (Song, Miller, & Abbott, 2000).

STDP learning is performed through transferring spikes (in time) across spatially located
synapses and modifying the synapses over time. In this learning, a neuron’s postsynaptic
potential (PSP) increases by every input spike at time t to reach the firing threshold. Once
the PSP exceeds this threshold, the neuron fires and sends a spike to the other neurons that
are connected to it. In STDP learning, if neuron i fires before neuron j, the connection weight
from i to j will increase, otherwise it will decrease. As a result, STDP adjusts the connection
weights between neurons based on the relative timing of a particular neuron’s output and
input spikes. In this study, the unsupervised learning allows for the SNN model to evolve its
connections; so that, they capture spatio-temporal associations between STBD variables

representing consecutive brain activities.

3.6.4 Supervised Learning and Classification in Evolving SNN

After the unsupervised learning is completed, for data classification/regression, dynamic
evolving SNN (deSNN) (Kasabov, Dhoble, Nuntalid, & Indiveri, 2013) is used to train an
output classifier based on an association between class labels and training samples. For each
training sample, an output neuron is created and connected to each neuron in the trained SNN
model. The initial connection weight between a neuron i from the SNN model and an output
neuron j is defined by using the RO learning rule. After establishing the initial connection

weights, the same data that have been used for unsupervised learning will be propagated
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again through the trained SNN model, sample by sample. The spatio-temporal pattern of
activation in the trained SNN model, evoked by each particular sample, will be used as input
data to train an output neuron for recognising this pattern. The PSP of neuron j at time t is

calculated as follow:

PSP(j,t) = Z mod° e W, (3-11)

where mod is a modulation factor (a parameter between 0 and 1) and order(i) is the time
order of the following spikes to the connection between neurons i and j. Through this learning
rule, the first spike that arrives at the output neuron j will have the highest value. Then, the
connection weight W;; will be further modified according to the spike driven synaptic
plasticity learning rule using a drift parameter, which is used to modify W;; to take into
account the occurrence of the following spikes at neuron j at time t, denoted by spike;(t),
i.e. if there is a spike arriving from neuron i at time t after the first one was emitted, the

connection weight increases by a small drift value; otherwise, it decreases by drift as shown

in the following:

W;;(t — 1) + drift if spike;(t) =1

Wi (= {Wij (t—1) —drift if spike;(t) =0 (3-12)

The NeuCube classification accuracy is evaluated through cross-validation for different sets
of parameter values and the best accuracy model is saved for recall purposes, for further
analysis and adaptation on new data. The use of deSNN allows for a further adaptation of the
NeuCube model on new data in an incremental way without re-training the model on old
data.
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3.6.5 NeuCube Parameter Optimisation

The output classification accuracy depends on the combination of parameters’ values. This
combination can be optimised using different algorithms, such as: grid-search (exhaustive
search), genetic algorithm, and quantum inspired evolutionary algorithm (Schliebs &

Kasabov, 2013). Important parameters of a NeuCube model are:

- TBRy,,: A self-adaptive bi-directional threshold for STBD encoding to spike trains.

- d: Radius threshold for the initialisation of the SNN connectivity in small-world
connectivity rule.

- STDP learning rate (a): A parameter used to modify the connection weights according
to repetitively arriving spikes to the synapses. If a neuron i fires before a neuron j, then
its connection weight increases, otherwise it decreases with respect to the STDP learning
rate («).

- (Th,): Threshold of firing for the neurons in the SNN model.

- deSNN classifier parameters: These parameters are: mod and drift.

The trained NeuCube model of STBD can be dynamically visualised in a 3-D virtual reality
space for the analysis of brain activities and for a better understanding of spatio-temporal

relationships in the data (Kasabov, et al., 2016).

3.7 Chapter Summary
This chapter exposes an overview on computational models of SNNs and introduced the
NeuCube SNN architecture for modelling STBD. A NeuCube model supports a meaningful

mapping of spatial variables, modelling, learning and model visualising. In the NeuCube
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architecture, the random connections in the LSM are replaced by meaningful brain-inspired
connections and the learning procedure is based on STDP which captures the spatio-temporal
interactions. These features make a NeuCube model meaningful in terms of its interpretation
for a better understanding of spatio-temporal characteristics of data. The next chapter will

demonstrate a feasibility analysis of the SNN for modelling of real-life STBD.
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Chapter 4 SNN Feasibility Study on STBD

4.1 Introduction

In this chapter, | present the feasibility study of the NeuCube SNN architecture using two
types of STBD, which are here real-life fMRI and EEG datasets. For each of these studies, |
designed an empirical scenario which includes both pattern analysis and classification tasks.
I constructed optimal SNN models and trained them with STBD samples. The trained models
demonstrate the spatio-temporal interactions between the input data variables in a
computational SNN model, rather than an exact structure of the brain’s physical neural
connectivity. The SNN models are then used for classification of STBD samples with respect
to different pre-defined mental activities. The models are also visualised in a 3-D space and
statistically analysed to evaluate the level of significance. In addition, | performed a
comparative analysis to illustrate how the designed SNN models resulted in an improvement

of classification accuracy when compared with conventional methods.

4.2 NeuCube Architecture for STBD Analysis

NeuCube has been used to analyse several STBD such as EEG and fMRI to expose
meaningful spatiotemporal patterns while different mental activities are performed. For
examples, classifying EEG data for music versus noise perception (Kasabov, Hu, Chen,

Scott, & Turkova, 2013); classifying EEG data with respect to different arithmetic tasks
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(Kasabov & Capecci, 2015); classifying EEG data in relation to different levels of dementia

(Capecci, et al., 2016; Capecci, et al., 2015); and fMRI data mapping and classifying to

investigate how a reading task is processed in the brain (Murli, Kasabov, & Handaga, 2014).

Now in this chapter, employing the NeuCube framework, | designed a new empirical study

for pattern analysis and classification of STBD. The designed framework allows for

measuring the level of confidence in the SNN models and this is accomplished according to

the following steps (graphically illustrated in Figure 4-1):

A) Pattern analysis:

1.

2.

Design the experimentations.

Preparation and sampling of the STBD according to the designed experiments.
Encoding of the STBD into spikes.

Spatial mapping of STBD into a 3-D SNN model.

Unsupervised learning in SNN models, visualisation and interpretation of spiking

activity and connectivity in the trained SNN models.

B) Classification:

1.

2.

3.

Supervised learning and classification.
Parameter optimisation.

Statistical analysis of the SNN models.
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Figure 4-1 A schematic representation of the NeuCube framework for STBD mapping, learning, visualising,
and classifying.

The above steps are performed for two feasibility studies on STBD: (1) a new study on fMRI
data using SNN models; and (2) an SNN application on EEG data. In both studies, in order

to evaluate the level of significance in the trained SNN models, | performed the following:

| created one SNN model per class of data (each class contains n samples) and trained it

through an iterative procedure of leave-one-out as follows (shown in Figure 4-2):

1. The SNN model is initialised.

2. The initialised SNN model is trained with (n — 1) samples (one sample is excluded from

the training).

3. The average of the spatio-temporal connection weights in the trained SNN model is

computed.
4. The hold-out sample is replaced by another sample, then go to step 1 until all the samples

are excluded from the training set, one by one (it means that a set of SNN models are

initialised and trained with different folds of samples).
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Figure 4-2 Unsupervised training iterations in SNN models by the leave-one-out method. For n samples, the
SNN model is initialised n times, and trained by a fold of different (n — 1) samples.
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4.3 A New SNN Study on fMRI

In this section, I demonstrate a new study on fMRI data modelling using SNN architecture
by designing two experiments related to cognitive processes of reading sentences with
different polarities and seeing pictures. These experiments include both classification and

pattern analysis.

The case study problem used here belongs to the STAR/PLUS fMRI data set, originally
collected by Marcel Just and his colleagues at Carnegiec Mellon University’s Center for
Cognitive Brain Imaging (CCBI) (Just & Wang, 2001). STAR/PLUS fMRI data sets consist
of sequences of images from the whole brain volume captured every 500 milliseconds (two
brain images per second) whilst healthy subjects were undertaking a cognitive task. The task
consisted of a collection of trials, each started with presenting a stimulus (picture or sentence)
that remains on the screen for 4 seconds. Then, a blank screen appeared for another 4 seconds.
After that, a second stimulus (picture or sentence) was presented for the next 4 seconds.
Subjects were required to press the button ‘Yes’ or ‘No’ to identify whether the sentence
described the picture correctly or not. Finally, each trial was followed by a 15-second resting
period before the beginning of the next trial. Every trial was 27 seconds in length
corresponding to 54 fMRI data points. Further information related to the experiment setting
and stimuli, which are not explicitly discussed here, can be found from (Mitchell, et al.,
2004). More information about the fMRI scanner, and the data pre-processing is presented in

Appendix B. In the following, I present experiments A and B:

- Experiment A—fMRI data analysis related to reading affirmative versus negative

sentences: It relates to the modelling of fMRI data to study how different areas of the
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brain were involved in the processing of different sentence polarities. Considering that
the hemodynamic response is slow, for each sentence stimulus that displayed on screen
for 4 seconds, | used 8 seconds of continuous fMRI data corresponding to 16 images,
which involve a 4-second resting gap. There were 20 samples for class 1: reading
affirmative sentences and 20 samples for class 2: reading negative sentences. | employed
a feature selection method to select informative voxels associated with the highly
activated brain regions in response to a reading-related task. With respect to the selected
features, | designed here three sessions of classification problems, each was based on
using different fMRI voxel features.

Experiment B—fMRI data analysis related to seeing pictures versus reading a sentences:
It relates to modelling fMRI data to study the voxel activity patterns generated by
different stimuli types (picture or sentence). The fMRI data were divided into two
partitions (class 1: a subject was seeing pictures, class 2: a subject was reading sentences).
| prepared 40 fMRI samples for each class, so in total 80 samples were used in this

experiment.

For experiments A and B, the fMRI data of one subject (id: 05680) has been randomly

selected from the STAR/PLUS website (Just & Wang, 2001). In this fMRI data, 25

anatomical regions of interest (ROI) were defined as explained in Appendix B.

The fMRI data dimension was defined by the X, y, and z voxel coordinates which compose a

volume of 51x56x8 as mapped in Figure 4-4. In this dimension, 5062 voxels were recorded

from the entire brain volume. Experimental results were illustrated here mainly for the visual

exploration of the SNN models, but I also performed a quantitative analysis, where numerical

information of connection weights can be obtained from the model and statistically analysed.
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4.3.1 FMRI Feature Selection

The brain is a complex information processing system. When fMRI data are recorded from
the whole brain volume, considering the fact that various areas are involved for processing
the input stimuli, this is essential for machine learning to identify the involved and activated
voxels for the purpose of bias reduction. Therefore, as | designed my experiments with
regards to the analysis of certain stimuli sets (pictures and sentences), | suggested that a
feature selection needs to be employed to extract the important voxels (relevant to the

cognitive task). In such a way I could ignore the involvement of irrelevant areas.

To this end, | applied the signal-to-noise ratio (SNR) method to select the more vital fMRI
voxels with a high power of discrimination between the defined classes. The name ‘signal-
to-noise ratio’ is a ‘jargon’ for a well-known statistical method that evaluates how important
a variable is to discriminate samples belonging to different classes, one class named as
‘signal’ and the rest as ‘noise’ (being unwanted data). For the case of the two-class problem,
an SNR ranking for variable x is calculated as an absolute difference between the mean value
ulx of the variable for class 1 and the mean p2x of the variable for class 2, divided by the

sum of the respective standard deviations as follows.

abs(ulx — u2x)
_ 4-1
SN Ry Std1x + Std2x 41

Figure 4-3 illustrates the selected voxels from the fMRI data for each of the two experiments
A and B, while Table 4-1 shows how many of these voxels belong to which region of interest
(ROLI). It can be concluded from Table 4-1 (left column) that when the subject was faced with

different sentence polarities, the selected fMRI voxels (6 voxels) were located at Left
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Dorsolateral Prefrontal Cortex (LDLPFC), which belongs to the middle frontal gyrus (lateral
part of Brodmann areas 9 and 46). Table 4-1 (right column) reports about the case when the
subject was dealing with pictures/sentences stimuli, and it shows that the more activated

fMRI voxels belonged to Calcarine (CALC) in Brodmann area 17.

4.3.2 FMRI Data Mapping into SNN Models

| defined two mapping structures: M, relates to personalised mapping of an individual fMRI
coordinate and M, relates to transferring an individual fMRI coordinate into the Talairach
atlas. Figure 4-4 relates to mapping M,, which illustrates the spatial mapping of 5062 voxels
into an SNN model. Input neurons are allocated and labelled to represent the pre-selected
input voxels as per the selection in Table 4-1. Figure 4-5 illustrates that mapping M, was
used to transfer the coordinates of the pre-selected voxels and map them into an SNN model

of 1471 spiking neurons according to the Talairach brain template.

4.3.3 Unsupervised Learning and Pattern Visualisation in SNN Models

In Experiment A, Figure 4-6 (a) shows the initial connections in the SNN model and Figure
4-6(b) shows the modified connections after the STDP unsupervised learning process using
the fMRI samples related to both affirmative and negative sentences. Figure 4-6 (b) shows
that more and stronger connections were generated in the left hemisphere than in other areas.
These connections were established because of more spikes transferred between the neurons

located in these areas, reflecting the changes in the corresponding voxels.

These findings suggested that language comprehension, including a reading task, is

processed in several areas, and mostly observed in the Left Dorsolateral Prefrontal Cortex,

64



Broca, and Wernicke as confirmed in (Yuasa, Saito, & Mukawa, 2011). Figure 4-7 (a) shows
the SNN model connectivity related to fMRI samples of the affirmative sentences, while

Figure 4-7 (b) relates to the negative sentences.

The observed connectivity from Figure 4-7 confirms that the subject performed differently
when reading an affirmative (average connection weights=0.61) versus negative sentence
(average connection weights=1.7). Table 4-2 represents the quantitative information about
the averag connection weights around each input neuron (input fMRI voxel) that shows the

differences between the trained SNN models of affirmative and negative sentences.

It can be seen from Table 4-2 and Figure 4-7 that the connectivity was especially enhanced
between the input neurons located in the left hemisphere of the SNN model when reading
negative sentences. Distribution of the SNN connection weights around the input voxels

located in the left and right hemispheres are illustrated in Appendix B, Figures B-1 and B-2.
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Figure 4-3 The SNR ranking (on the y-axis) of top voxels (on the x-axis) related to (a) the affirmative versus negative sentences and (b) the pictures versus sentences. The
top voxels were selected according to their SNR values that were greater than a threshold= 0.4.



Table 4-1 Informative voxels are selected sing an SNR feature selection from two fMRI data sets. The voxels
were selected due to their SNR values were higher than a threshold= 0.4.
Activated ROIs in Affirmative vs Negative Activated ROIs in Picture vs Sentence task (number of
sentence task (number of voxels selected in Figure = voxels selected in Figure 4-3 (b) that belong to each of
4-3 (a) that belong to each of these regions). these regions).
LT (3), LOPER (3), LIPL (1), LDLPFC (6), RT (2), CALC (5), ROPER (3), LT (4), LOPER (3), LSPL (1), RIPS
CALC (1), LSGA (1), RDLPFC (1), RSGA (1), RIT (1) = (3), LPPREC (1), RT (4), LFEF (1), LDLPFC (3), RDLPFC
(1), LIPS (2), RPPREC (1), LIT (1)

The SNN connections in Figure 4-7 were captured when the models were trained with all of
the 20 fMRI samples from affirmative sentences, Figure 4-7 (a), and 20 fMRI samples from
the negative sentences, Figure 4-7 (b). Now, to evaluate the confidence of the designed SNN
models and to investigate how the models of affirmative and negative sentences are
statistically significant, | designed an iterative procedure of unsupervised learning through a
leave-one-out method. As shown in Figure 4-2, at each iteration the SNN model is first
initialised and then trained with a fold of samples in which one sample is holdout from the
training while the rest of samples are involved. Then the average of the connection weights
in the trained SNN model is measured. In the next iteration, the SNN model is again
initialised and the holdout sample is replaced by another sample to form the training set. This
procedure is terminated when all the samples were replaced by the holdout sample, one by

one.
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(a) (b)
Figure 4-4 The fMRI data dimension of one person is defined by the maximum value of x, y, and z coordinates of voxels that forms a volume size of 51x56x8. In this
dimension, 5062 voxels are captured. These voxel coordinates are mapped into an SNN model. The selected top-informative voxels in Table 4-1 for each experiment are
used as input variables and their ROIs are shown in the text boxes. (a) Affirmative versus negative sentences; (b) Pictures versus sentences.
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Figure 4-5 The coordinates of the top-informative voxels in Table 4-1 are transferred to the Talairach and used as input variables, shown as circles along with the ROIs (as
text in the boxes) for (a) affirmative versus negative sentences and (b) pictures versus sentences.
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Figure 4-6 (a) The initial connections in the SNN model; (b) The learnt connections (absolute connection weights>0.08) after STDP unsupervised learning using fMRI
data of both affirmative and negative sentences (20 fMRI samples for affirmative sentence and 20 fMRI samples for negative sentences). The SNN models are mapped
using the Talairach atlas with an allocation of 20 input voxels (Experiment A).
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Average connection weights 0.61 Average connection weights 1.7

(a) (b)
Figure 4-7 (a) The learnt connections (absolute connection weights>0.08) in an SNN model when only the fMRI samples of affirmative sentences were used (20 fMRI
samples); (b) The learnt connections in an SNN model when only the fMRI samples of negative sentences were used (20 fMRI samples).
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Figure 4-8 (a) Connectivity of an SNN model trained on fMRI data related to seeing pictures; (b) Connectivity
of an SNN model trained on fMRI related to reading sentences; (c) 2-D coronal projection of the connectivity
of the SNN model from Figure 4-8 (a); (d) 2-D coronal projection of the SNN model from Figure 4-8 (b).

Connection weights>0.08.

Table 4-3 reports the average of the connection weights in SNN models over 40 training

iterations (20 samples of affirmative and 20 samples of negative classes). | applied a t-test to

the connection weights of these iterations as reported in Appendix B, Table B-1. The p-
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value=1.3E-07 represented that the trained SNN models of affirmative and negative

sentences are statistically significant.

In experiment B, which relates to the fMRI data analysis of the picture versus sentence
observation task, Figure 4-8 (a) shows the learnt connections in an SNN model using samples
of seeing pictures and Figure 4-8 (b) relates to reading sentences. Figure 4-8 (c) and Figure
4-8 (d) show the 2-D visualisations of the connectivity from Figure 4-8 (a) and Figure 4-8
(b) correspondingly. After training the SNN model with the fMRI samples of seeing pictures,
Figure 4-8 (a) and Figure 4-8 (c) represent stronger spatio-temporal connections between
neurons located in the parts of the brain dedicated to vision, such as the Calcarine (CALC)

region, which is located in the primary visual cortex in the Occipital Lobe (BA 17).

On the other hand, as shown in Figure 4-8 (b) and Figure 4-8 (d), when the SNN model was
trained with spike trains that represent fMRI data related to sentence stimuli, the connections
were mostly enhanced in the left hemisphere, particularly, in the Broca and Wernicke areas.
This corresponds to the studies about brain areas involved in language comprehension. Figure
4-9 shows the SNN model connectivity after STDP unsupervised training with the use of two
different data sets related to affirmative sentences and negative sentences. Figure 4-10
illustrates the SNN models trained on fMRI data of seeing pictures and reading sentences.
Figure 4-9 illustrates that stronger connections were generated between the neurons located
in the left hemisphere, significantly in the LDLPFC region, when reading negative sentences

instead of affirmative sentences.
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Figure 4-9 2-D coronal projection of the adapted connections in the SNN models after unsupervised learning with two data sets related to affirmative sentences (a) and

(a)

(b)

negative sentences (b). The positive connections are shown in blue and negative ones in red (absolute connection weights>0.08).
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Figure 4-10 2-D coronal projection of the adapted connections in the SNN models after unsupervised learning with two data sets related to (a) seeing pictures and (b)
reading sentences. The positive connections are shown in blue and negative ones in red (absolute connection weights>0.08).
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Table 4-2 Average connection weights around each input neuron in the trained SNN models from Figure 4-7 related to affirmative (A) and negative (N) sentences. The
sum of the average connection weights across all the input neurons in each SNN model is reported in the last column.

LT LOPER LIPL LOPER LDLPFC LOPER LT LDLPFC RT CALC | LSGA | LDLPFC LT LDLPFC RT LDLPFC LDLPFC RDLPFC RSGA | RIT | Avg
N| 1.4 | 0.92 1.87 1.03 2.08 1.12 1.48 | 0.44 0.2 0.89 1.84 1.03 19 | 045 11 | 1.26 0.56 0.19 0.43 14 1.7
A| 0.9 | 0.56 1.01 0.87 1.03 0.65 0.89 | 0.23 0.1 0.43 1.04 0.68 11 | 0.17 08 | 0.24 0.22 0.11 0.32 09 | 06

Table 4-3 Average connection weights of the trained SNN models for each iteration. Two SNN models were trained over 40 iterations (20 iterations for Affirmative (A)
and 20 for negative (N) sentences) using different folds of samples. At each iteration, one sample was taken out from the training and the model was trained by the
remaining samples. This procedure was repeated for all the 20 samples for both affirmative and negative sentences. The p-value represents that the trained SNN models
of affirmative and negative sentences are statistically significant

Number of iterations for training the SNN models of fMRI samples related to affirmative and negative classes

N| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1.3 09 13 107 089 123 109 152 121 105 123 101 098 106 16 14 17 18 132 13

Al l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.71 0.6 101 12 071 078 067 098 078 101 098 056 062 049 081 071 099 0.7 074 0.83

Negative sentence class mean: 1.16 Affirmative sentence class mean: 0.73 Negative sentence SD: 0.25  Affirmative sentence SD: 0.18 p-value=1.3E-07

Table 4-4 Average connection weights of the trained SNN model for each iteration. Two SNN models were trained over 80 iterations (40 iterations for pictures and 40 for
sentences) using different folds of samples. At each iteration, one sample was taken out from the training set and the model was trained by the remaining samples. This

procedure was repeated for all the samples in both classes. The p-value represents that the trained SNN models of pictures and sentences are statistically significant.

Number of iterations for training the SNN models with fMRI samples from picture and sentence classes

Picture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
102 198 12 18 17 11 1 093 09% 13 11 099 105 16 16 15 18 13 18 09
21 22 23 24 25 26 27 28 29 30 31 32 33 34 3 36 37 38 39 40
1.4 1.6 18 15 11 098 19 13 1.3 1.8 159 0.8 0.7 092 19 11 12 08 09 17
Sentence 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
08 098 11 11 19 13 14 13 11 098 09 11 1 14 12 11 13 11 12 0.89
21 22 23 24 25 26 27 28 29 30 31 32 33 34 3B 36 37 38 39 40
078 098 07 12 16 17 13 09 09 11 13 09 1 1 089 079 11 11 12 13

Picture class mean: 1.32

Sentence class mean: 1.1

Picture SD: 0.3

Sentence SD:0.2

p-value:0.006




On the other hand, Figure 4-10 shows that visual areas were more activated than other areas
when seeing pictures. The SNN models were trained several times using different folds of
the data (leave-one-out method as shown in Figure 4-2). To evaluate how the trained SNN
models were statistically significant, | applied a t-test as reported in Table 4-2 , Table 4-3

and Table 4-4.

4.3.4 Classification in SNN Models

The classification task was performed using a Leave-one-out Cross Validation (LOOCV)
method. In this method, only one sample is picked up as the test set and a model is built using
all the remaining samples (training set). Then the trained model is tested using the single
holdout sample. The final classification accuracy is obtained by repeating this procedure for
each of the samples and averaging the results. For optimisation, | performed an exhaustive
grid-search on combinations of parameters for every sample model, as explained in Appendix
B, Table B-2. The performance of the classifier was measured using the Fs.,,.. t0 evaluate

the test’s accuracy, as explained in Appendix C, Section C.7.

Table 4-5 summarises the fMRI data classification accuracy of the affirmative sentence class
versus negative sentence class obtained through three sessions (different voxel features were
selected as represented in Table 4-1). The results were also compared with results obtained
using conventional machine learning methods. The methods that | used for comparison were:
SVM, MLR, MLP and Evolving Clustering Method (ECM). | also compared them with the
results obtained by Behroozi in (Behroozi & Daliri, 2014) that employed SVM method for
classification of the fMRI samples. It can be seen from Table 4-5 that the designed SNN
models achieved better classification accuracy when compared with conventional methods.
Table 4-6 represents the classification accuracy of picture versus sentence classes obtained
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using the designed SNN models and conventional machine learning methods. In both

experiments A and B, the SNN models leant the fMRI patterns from sets of streaming spatio-

temporal data over time. In contrast, the same fMRI data were learnt in the conventional

machine learning methods as vector-based data, where vectors were formed through the

concatenating of temporal frames.

Table 4-5 Classification accuracy of the affirmative sentences (class C1) versus negative sentences (class C2)
via an SNN model using the LOOCV method. The results of conventional machine learning methods along
with the SVM classification results from (Behroozi & Daliri, 2014) are also reported. The experiment is done

on a total number of 40 samples (20 samples per class).

Method Sessions and selected voxels for classification
Session |: 20 voxels selected from Table 4-1
NeuCube (left column)
Session 11: 20 pre-selected voxels from RDLPFC
region
Session I11: 20 pre-selected voxels from LDLPFC
region

SVM results = Session I: classification based on the LDLPFC’s
obtained in  voxels
(Behroozi & @ Session Il: classification based on the RDLPFC’s
Daliri, 2014) voxels

SVM SVM Kernal: Polynomial, Degree, Gamma, N/A: 1

MLP Number of Hidden Units=180, Number of Training
Cycles=600,
Output Activation Function- linear.

ECM Maximum Field Radius=2; Minimum Field
Radius=0.01, M of N=3,

MLR Class Performance Variance=0.26

C1
(Affirm)
85.00

85.00
90.00
64.00
65.00

70.00

75.00
65.00

65.00

C2 Average
(Negat)

95.00 90.00
80.00 82.50
85.00 87.50
68.00 66.00
69.00 67.00
75.00 73.00
65.00 70.00
70.00 70.00
60.00 63.00

F Score
88.00

84.00

84.00

71.00

71.00
67.00

65.00

Table 4-6 Classification accuracy of pictures (class C1) versus sentences (class C2) obtained via an SNN model
using the LOOCV method. The results of the conventional machine learning methods are also reported. The

experiment is done on a total number of 80 samples (40 samples per class).

Classification accuracy results from NeuCube-based model
Method Session and selected voxels for classification

NeuCube = Session I: 33 voxels selected from Table 4-1 (right

column)
Classification results from conventional machine learning methods
SVM SVM Kernal: Polynomial, Degree, Gamma, N/A:1
MLP Number of Hidden Units: 304, Number of Training
Cycles: 300
Output Activation Function: linear
ECM Maximum Field R.=1; Minimum Field R.=0.01; M of N=
3
MLR Class Performance Variance: 0.13
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C1
(Pic)
95.00
85.00

75.00

82.00

75.00

Cc2

(Sen)
90.00
85.00

77.00

72.00

62.00

Accuracy
Average

92.00

85.00

76.00

77.00

68.00

E Score
90.00

85.00

75.00

79.00

71.00



4.4 SNN Application on EEG

Employing the NeuCube framework for EEG, | designed three sessions of experiments, each
includes both classification and pattern analysis as explained in Section 4.2. The EEG data
were recorded via 26 EEG channels: Fpl, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, CP3, CPz,
CP4, FC3, FCz, FC4, T3, T4, T5, T6, Pz, P3, P4, O1, 02, and Oz electrode sites (10-20
International System) whilst participants performed a cognitive GO/ NOGO task. The EEG

data were recorded from 70 participants in three groups as follows:

(a) The Methadone Maintenance Treatment (MMT) group containing 31 subjects (17 male,
14 female) with a mean age of 39.36, standard deviation (SD)=5.14, was recruited by
recommendations from the case managers of Auckland Community Alcohol Drug Services
(CADS), New Zealand. The current methadone dose was 70.86 (SD=40.61; range 8—180)
mg/day.

(b) The Opiate users (OP) group containing 18 subjects (11 male, 7 female) with a mean age
of 37.38 (SD=7.44), was recruited from the Auckland Drug Information Outreach (ADIO)
Trust Needle Exchange Services.

(c) The Healthy control (H) group containing 21 subjects (11 male, 10 female) with a mean
age of 36.12 (SD=6.61), was recruited by advertisements (notices posted on notice boards)
distributed in a range of local communities, such as the public library, shopping mall, cafes,

or by word of mouth. The designed cognitive task was as follows:

During the GO/NOGO task, participants were repeatedly presented with the word ‘PRESS’,
which appeared randomly either in red or green. They were instructed to press a button in

response to the green ‘PRESS’ (GO) and not respond to the red ‘PRESS’ (NOGO). Further
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information about the GO/NOGO task, EEG data recording, participants and demographic
and clinical measures are presented in Appendix C. In order to analyse the EEG data, |
designed three experimental sessions on the recorded data, each of which investigated

different EEG epochs as follows:

- Session I: | prepared six EEG sample files, each containing EEG epochs measured from
one group (MMT/ OP/ H subjects) per cognitive task (GO versus NOGO). Then each
sample file was entered separately into the SNN model to capture the differences between
the brain activity patterns of different groups of participants performing GO versus
NOGO responses.

- Session II: I only studied the EEG epochs related to the GO trials to compare the brain
activity patterns of different groups when performing the same cognitive task.

- Session I11: 1 only studied the EEG epochs related to the NOGO trials as these trials are

of common interest in studies on response inhibition.

The organisation of the EEG samples, as used for each of these sessions, is presented in Table

4-7.

4.4.1 Pattern Analysis in SNN Models

To evaluate how the SNN models can capture different patterns when they are trained by
different classes of data, | visualised them and statistically analysed their spatio-temporal
connectivity. Figure 4-11 illustrates the connectivity in SNN models, each was trained by
one-fold EEG data (20 samples as the training set when one sample was holdout) from H
group in both GO and NOGO. It can be seen from Figure 4-11 that the average connection

weights in the trained SNN model of H subjects was smaller in NOGO trials (0.06) when the
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response had to be withheld in comparison with GO trials (0.1) when the response was
required. Figure 4-12 and Figure 4-13 illustrate the SNN models trained with one-fold EEG
data respectively from MMT and OP groups related to GO and NOGO trials. For both MMT
and OP subjects, the average connection weights induced by the NOGO trials (0.21 and 0.17

respectively) were greater than those induced by the GO trials (0.1 and 0.08 respectively).

As can be seen from Figure 4-11 to Figure 4-13, the SNN models were trained by only one-
fold EEG data as the training set. Now, in order to evaluate the level of confidence for the
models, Table 4-8 to Table 4-10 report the average connection weights of the SNN models
that were trained over a number of iterations using different folds of the EEG samples (leave-
one-out method). Table 4-8 shows that the SNN models of H subjects were trained over 42
iterations (21 iterations per class: GO and NOGO) using different folds of samples. At each

iteration, one sample was holdout, then the model was trained using the remaining samples.
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Table 4-7 EEG data sets for the three experimental sessions to compare the brain activity patterns of the H,
MMT, and OP subjects ina GO/NOGO task. Due to the quality of the data, some participants’ data were omitted
from the experimental sessions.

Session I: EEG data sample files for GO versus NOGO classification

classifications Samples per class EEG sample file size
21 Healthy subjects 75 EEG time points * 26 channels * 21 samples
GO trials class (68 participants) 18 OP subjects 75 EEG time points * 26 channels * 18 samples
29 MMT subjects 75 EEG time points * 26 channels * 29 samples
NOGO trials class (70 participants) = 21 Healthy subjects 75 EEG time points * 26 channels * 21 samples
18 OP subjects 75 EEG time points * 26 channels * 18 samples
31 MMT subjects 75 EEG time points * 26 channels * 31 samples

Session I1: EEG data sample files captured during GO trials

MMT class vs H class (50 29 MMT subjects (class 1) 75 EEG time points *26 channels *50 samples

participants) 21 Healthy subjects (class 2)

OP class vs H class (39 participants) = 18 Opiate subjects (class 1) = 75 EEG time points *26 channels *39 samples
21 Healthy subjects (class2)

MMT class vs OP class (47 29 MMT subjects (class 1) 75 EEG time points *26 channels *47 samples

participants) 18 Opiate subjects (class 2)

Session I11: EEG data sample files captured during NOGO trials

MMT class vs H class (52 31 MMT subjects (class 1) 75 EEG time points *26 channels *52 samples

participants) 21 Healthy subjects (class 2)

OP class vs H class (39 participants) = 18 OP subjects (class 1) 75 EEG time points *26 channels *39 samples
21 Healthy subjects (class2)

MMT class vs OP class (49 31 MMT subjects (class 1) 75 EEG time points *26 channels *49 samples

participants) 18 OP subjects (class 2)

This procedure was repeated for all the 21 samples in both GO and NOGO (42 training
iterations in total). Table 4-9 is related to MMT group and that shows the SNN models were
trained over 60 iterations (29 iterations for class GO and 31 iterations for class NOGO) using
different folds of samples. Table 4-10 is related to OP group and that shows the SNN models
were trained over 36 iterations (18 iterations for each class GO and NOGO) using different

folds of samples.

To evaluate how the SNN models of GO and NOGO were statistically significant, | applied
a t-test to the average connection weights at each of the training iterations. The corresponding
p-values are reported in the tables. The p-value in all the experimental sessions is less than
0.05, which shows that the results are statistically significant with a high confidence, greater
than 99%. Further quantitative information about the interactions between the EEG variables

in the SNN models during STDP learning is presented in Appendix C, Section C.6.
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4.4.2 Classification in SNN Models

The classification task was performed using the LOOCV method. The performance of the
classifier (reported in Table 4-11) was measured using the Fs.,,. (explained in Appendix C,
Section C.7). For optimisation, | performed an exhaustive grid-search model as explained in

Appendix C, Section C.8.

Table 4-12 presents the classification accuracy obtained using other machine learning
methods, which are still being actively used in literature for classification of STBD. The
methods used for comparison were: SVM and MLP. The classification accuracy results of
these methods are reported in Table 4-12. The parameter optimisation procedure and EEG

data preparation for the conventional classifiers are presented in Appendix C, Section C.9.
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Figure 4-11 Visualisation of the SNN model connectivity of the H group (absolute connection weights>0.08)
after the STDP learning with EEG data of 26 features (channels) for GO and NOGO trials. The average of the
connection weights in each trained SNN model is also presented. The blue lines are positive (excitatory)
connections, while the red lines are negative (inhibitory) connections. The thickness of the lines identifies the
weight of the connection. The 1471 neurons of the SNN model are spatially mapped according to the Talairach
atlas (Koessler, et al., 2009). The SNN models are visualised in 3-D (top) and 2-D coronal projection (bottom).
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Figure 4-12 Visualisation of the SNN model connectivity of the MMT group (absolute connection
weights>0.08) after the STDP learning with EEG data of 26 features (channels) for GO and NOGO trials. The
average of the connection weights in each trained SNN model is also presented. The blue lines are positive
(excitatory) connections, while the red lines are negative (inhibitory) connections. The thickness of the lines
identifies the weight of the connection. The 1471 neurons of the SNN model are spatially mapped according to
the Talairach atlas (Koessler, et al., 2009). The SNN models are visualised in 3-D (top) and 2-D coronal
projection (bottom).
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Figure 4-13 Visualisation of the SNN model connectivity of the OP group (absolute connection weights>0.08)
after the STDP learning with EEG data of 26 features (channels) for GO and NOGO trials. The average of the
connection weights in each trained SNN model is also presented. The blue lines are positive (excitatory)
connections, while the red lines are negative (inhibitory) connections. The thickness of the lines identifies the
weight of the connection. The 1471 neurons of the SNN model are spatially mapped according to the Talairach
atlas (Koessler, et al., 2009). The SNN models are visualised in 3-D (top) and 2-D coronal projection (bottom).
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Table 4-8 Average connection weights of the SNN models trained over 42 iterations (21 iterations for class GO and 21 for class NOGO) using different folds of samples.
At each iteration, one sample was taken out and the model was trained by the remaining samples. This procedure was repeated for all the 21 samples in both GO and
NOGO. The p-value represents that the trained SNN models of GO and NOGO are statistically significant with a high confidence, greater than 99%.

Number of iterations for training the SNN models of H groups in GO and NOGO classes

GO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0.11 0.011 0.11 0.09 0.089 0.098 0.11 01 0.11 0.06 0.12 011 0.11 0.09 0.08 0.091 01 0.1 0.1 0.09 0.08
NG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0.06 0.08 0.07 0.01 0.09 0.07 0.08 0.06 0.08 0.0/ 0.08 0.07 0.08 0.09 0.08 0.06 0.06 0.06 0.06 0.09 0.08
GO mean: 0.09 NOGO mean: 0.07 GO SD:0.02 NOGO SD: 0.01 p-value=0.002

Table 4-9 Average connection weights of the SNN models trained over 60 iterations (29 iterations for class GO and 31 iterations for class NOGO) using different folds of
samples. At each iteration, one sample was taken out and the model was trained by the remaining samples. This procedure was repeated for all the samples in both GO and
NOGO. The p-value represents that the trained SNN models of GO and NOGO are statistically significant with a high confidence, greater than 99%.

Number of iterations for training the SNN models of MMT groups in GO and NOGO classes
GO | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.1 0.19 0.19 012 018 0.1 0.19 0.18 019 019 0107 01 018 01 01
16 17 18 19 20 21 22 23 24 25 26 27 28 29
0.18 019 0.1 0.1 0.19 0.17 0.19 0.18 0.18 0.17 0.19 0.19 0.19 0.15
NG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
021 011 018 01 02 012 027 018 019 019 024 027 012 02 019 o021
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0.16 018 0.2 0.27 023 024 019 019 018 019 019 024 023 0.18 0.19
GO mean: 0.15 NOGO mean: 0.19 GO SD: 0.03 NOGO SD: 0.04 p-value=0.001

Table 4-10 Average connection weights of the SNN models trained over 36 iterations (18 iterations for class GO and 18 for class NOGO) using different folds of samples.
At each iteration, one sample was taken out and the model was trained by the remaining samples. This procedure was repeated for all the samples in both GO and NOGO.
The p-value represents that the trained SNN models of GO and NOGO are statistically significant with a high confidence, greater than 99%.

Number of iterations for training the SNN models of OP groups in GO and NOGO classes

GO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.08 0.07 012 0.07 015 0.08 0.1 0.09 009 012 01 0.07 006 0.09 007 0.05 005 0.07
NG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

017 02 024 019 012 0.09 08 0.2 0.07 018 017 02 02 015 012 09 09 0.13
GO mean: 0.08 NOGO mean: 0.27 GO SD: 0.03 NOGO SD: 0.28 p-value=0.009




Table 4-11 The EEG data classification accuracy (in %) using the LOOCV method. Correctly classified samples
are shown on the diagonal of the confusion matrix, shown in bold.

Healthy control subjects (H), MMT subjects (M), Opiate subjects (OP)

Classes Accuracy Confusion table Testing samples Precision Fscore
(average) per class and recall
Predicted
c Hin Govs = GO NOGO 21 Hsamplesin GO & P=0.95 0.90
2 NOGO 9047 £ GO 20 1 21 H samples in R=0.86
2 NOGO 3 18 NOGO
B MMT in GO NOGO 29 MMT samples in | P=0.79 0.82
Q Go v 8320 GO 23 6 GO R=0.85
% NOGO NOGO 4 27 31 MMT samples in
5 NOGO
o
= OP in GO GO NOGO 18 OP samples in P=0.67 0.8
2 vs NOGO @ 83.33 GO 12 6 GO R=1.00
D NOGO 0 18 18 OP samples in
@ NOGO
MMT vs MMT H 21 H samples P=0.69 0.74

8 H subjects = 72.57 MMT 20 9 29 MMT samples R=0.8

-0 H 5 16
Eo
2 c
2'c OP vs H OoP H 18 OP samples P=0.68 0.8
&2 subjects  83.33 OP 12 6 21 H samples R=1.0
=2 H 0 21
52
‘2GS MMT  vs MMT OP 29 MMT samples P=0.97 0.85
b OP 73.27 MMT 28 1 18 OP samples R=0.76

subjects OP 9 9

o MMT s MMT H 31 MMT samples P=0.84 0.87
) H subjects = 84.79 MMT 26 5 21 H samples R=0.90
= H 3 18
s 3
; % OP vs H OP H 21 H samples P=1.0 0.92
& = subjects 92.85 opP 18 0 18 OP samples R=0.86
=5 H 3 18
=5
§ g MMT vs MMT OP 31 MMT samples P=0.87 0.9
24 OP 83.87 MMT 27 4 18 OP samples R=0.89
¥ © ' subjects OP 2 16

Table 4-12 The EEG data classification in conventional methods using the LOOCV method. The optimal
parameter setting is reported in Appendix C, Tables C-12 and C-13.

Healthy control subjects (H), Opiate subjects (OP), Accuracy is reported in %

Sessions Classification SVM MLP
Session |: H in GO vs. NOGO 65.00 70.00
GO vs. NOGO classification MMT in Govs. NOGO  63.00 69.00

OP in GO vs. NOGO 67.00 60.00
Session Il: MMT vs. H subjects 70.00 76.00
OP, MMT, H classification in GO OP vs. H subjects 68.00 78.00

MMT vs. OP subjects = 67.00 63.00
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Session I11: MMT vs. H subjects 63.00 77.00
OP, MMT, H classification in NOGO Op vs. H subjects 73.00 73.00
MMT vs. OP subjects = 63.00 61.00

4.5 Chapter Summary

In this chapter, | presented the feasibility analysis of the NeuCube SNN architecture using
two cognitive STBD. This procedure included: spatial mapping of the STBD into a 3-D SNN
model, unsupervised STDP learning, SNN model visualisation for a better understanding of
the spatio-temporal interactions between the variables, supervised learning in the deSNN
classifier, parameter optimisation, and model validation. Some of the key findings of this

chapter are as follows:

a. An average improvement of the classification accuracy by 20% when compared with
some other machine learning methods.

b. Improved understanding and interpretation of the interactions between the STBD
variables, in a 3-D brain-inspired model.

c. In the case of fMRI data, the findings confirm that the trained spatio-temporal
connections in the SNN models are compatible with neuroscience literature, which
reported that comprehension of negative sentences is cognitively different from
affirmative sentences. Containing negative words, such as “not,” in the middle of a
sentence can make it more difficult to comprehend, due to its more complex structure.
Therefore, this type of sentence may engage more regions of the brain (Christensen,
2009). More detailed analysis on the connectivity related to the task can be performed

by neuroscientists to answer different research questions.
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d. Inthe case of EEG data, the trained SNN model of H subjects was significantly different
from people with a history of opiate dependence. The differences appeared less
pronounced in people undertaking MMT compared to those who were current opiate

users.

It can be seen from the results that the SNN models outperformed the conventional methods
in terms of STBD classification accuracy. In addition to this, interpretability in machine
learning is of crucial importance. This allows for understanding the relationship between
features and the predicted values. Therefore, the model does not act as a black-box
information processing system, but as an interpretable model that demonstrates what
interactions between the features have triggered the output. Now the question is: how the
SNN models can be further investigated for knowledge discovery in such dynamic learning
patterns that evolve over time? Since clustering is an approach for the detection of
relationships and structure in data, in the next chapter | propose a new spatio-temporal
clustering in SNN model to study its incremental learning patterns. This will lead to the

model interpretability.

90



4.6 Contribution

In this chapter, | have made the following contributions:

-

/, 1. 1 designed the feasibility study of the NeuCube SNN architecture on fMRI
and EEG datasets.

a. Inthe case of fMRI data, | selected the informative fMRI voxels.
b. I modelled the fMRI data using two spatial mapping structures.
c. | improved the classification accuracy.

=

I conducted statistical analysis of the SNN results.

I conducted experiments for parameter optimisation.

4. | published parts of the fMRI study in one conference paper as the leading
author and in one journal paper as the corresponding author.

5. | published parts of the EEG study as a leading author in an international

journal. This paper is a multidisciplinary research which involves

researchers from psychology department at AUT and University of

Auckland who have conducted the EEG data recording and pre-

processing. From a computational point of view, | designed the research

protocol, specified for EEG data, performed the empirical study and

analysed the results.

=

learning, visualization, classification, and understanding of fMRI data in
the NeuCube evolving spatiotemporal data machine of spiking neural
networks. IEEE Transactions on Neural Networks and Learning Systems,
28(4), 887-899.

Doborjeh, M. G., Wang, G. Y., Kasabov, N. K., Kydd, R., & Russell, B.
(2016). A spiking neural network methodology and system for learning
and comparative analysis of EEG data from healthy versus addiction
treated versus addiction not treated subjects. IEEE Transactions on
Biomedical Engineering, 63(9), 1830-1841.

Doborjeh, M. G., Capecci, E., & Kasabov, N. (2014). Classification and
segmentation of fMRI spatio-temporal brain data with a NeuCube
evolving spiking neural network model. IEEE Symposium on Evolving
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Chapter 5 A New Spatio-temporal Clustering of
SNN Patterns

5.1 Introduction

In the previous chapter, | have shown that complex spatio-temporal patterns were adapted in
the recurrent SNN models while learning from STBD streams. In this chapter, | propose a
new clustering method to interpret such spatio-temporal patterns (dynamic learning
behaviour), which carried out meaningful information to the classifier. This clustering
approach is a technique for knowledge discovery in SNN architecture, which resulted in a
better understanding of the relationship between features and output. This also allowed for

detecting the SNN abstraction, which resembles deep-learning methods.

Clustering is considered as a main approach in data mining, pattern recognition, and
knowledge discovery. This aims to objectively organise data samples into homogeneous
groups, where the data samples within a group are similar. The following classes of clustering

methods for static vector-based data are distinguished:

a) Clustering of vector-based data, where the number of clusters is pre-defined (such as
C-means and K-means methods as discussed in Chapter 2, Section 2.5.2).

b) Clustering of time-series data, where the number of the time points are fixed and the
time series are represented as vectors, applying the above methods (such as SOM and
Biclustering as discussed in Chapter 2, Section 2.5.2).

c) Dynamic evolving clustering methods, where a stream of vectors is clustered

incrementally without pre-defining the number of clusters.
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Category (c) from the above refers to adding the time dimension to clustering configuration
which devises dynamic clusters. It is in contrast to instant clustering of an entire data space
in categories (a) and (b), as dynamic evolving clustering attempts to create incremental
clusters of streaming data which continuously evolve with time. In the extant real-life
applications, there is a growing demand for models that can dynamically process the time-
dependant data streams. To model such dynamics in data, evolving systems (Angelov, Filev,
& Kasabov, 2010) have been proposed to reflect the data changes over time through evolving

new models and updating them incrementally.

A known sub-field of evolving systems is the Evolving Cluster Model (ECM) that develops
unsupervised evolving clusters on data streams (Bifet, Holmes, Kirkby, & Pfahringer, 2010).
At each time, ECM receives one static vector-based sample and finds its best fit cluster. As
the data steam progresses over time, ECM may manifest a cluster fusion problem which
refers to merging two distinct clusters due to new samples filling their intervening gap. The
overlapping clusters were handled by the concept of fuzzy rules as developed in an evolving
fuzzy system (Lughofer , Bouchot, & Shaker, 2011). Lughofer (Lughofer E. , 2012) proposed
a new split-and-merge method to overcome the fusion problem in conventional ECM. This
method detects the temporal changes by an incremental learning and the entropy suggested

a perfect estimation of border lines.

Many other dynamic evolving clustering methods have been proposed in the literature
including: ESOM (Deng & Kasabov, 2000), DENFIS (Kasabov & Song, 2002), EFUNN
(Kasabov, 1998) and evolving framework (Aggarwal, 2003). These methods have
successfully discovered the temporal changes in data streams. However, when dealing with

STBD where both time and space information need to be preserved and learnt together, the
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current evolving clustering methods do not integrate the spatial and temporal components.
They often transpose the temporal information into static vectors, where the time is hidden,
and no spatio-temporal interaction can be learnt. In some approaches, such as SOMs, the
spatial information is topologically preserved in the map, but not considered in the

computation.

Therefore, the current methods need to significantly advance the similarity/distance measures
with respect to the spatio-temporal characteristics of STBD. While dynamic evolving
clustering of static (vector-based) data has been well explored, dynamic evolving spatio-
temporal clustering has been little researched if at all, especially when patterns of changes
(events) in the data across space and time have to be learnt. In principle, spatio-temporal

clustering methods can be classified into the following groups:

1) Two-tier clustering of the data: according to the spatial information, and separately
according to the temporal information (Aggarwal, 2003). In such a way, the integrated
spatio-temporal similarity cannot be measured.

2) Integrated clustering of both spatial and temporal information (the case in this chapter).

3) Incase of both static and spatio-temporal data are available, clustering of the integrated
static and temporal information first, and then the spatio-temporal information. This can

be applied for personalised modelling (will be presented in Chapter 7).

Furthermore, the current evolving clustering methods are proposed for investigating the
relationship in the raw data space through incremental learning, but without investigating
the model learning patterns itself. Therefore, they act as black-box information processing

systems that solve the problems without discovering the meaningful interactive patterns in
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the models that have triggered the outputs. Knowledge discovery in deep-learning patterns
generated during the learning time, in an unsupervised mode, from spatio-temporal data
streams is of crucial importance for the interpretability. To address this, | suggest dynamic
spatio-temporal clustering of the incremental learning patterns is a promising technique to
detect meaningful interactions between the features and outputs. Therefore, in this chapter |
propose a new model-based clustering method that adds two new features to the current

evolving clustering approaches:

e Measuring the integrated spatio-temporal similarity in a brain-inspired model, during

incremental learning with STBD streams.

e Knowledge discovery in dynamic learning behaviour in recurrent SNN models.

Compared to the current evolving clustering methods that perform a direct clustering of data,
the proposed approach in this chapter is for clustering of a model that is being created to learn
and capture the essential characteristics of interest from the data. This chapter is structured
as follows: Section 5.2 introduces a new spatio-temporal clustering of SNN evolutionary

learning patterns. Section 5.3 represents a validity measure for this clustering configuration.

5.2 Clustering of SNN Evolutionary Patterns

This research contributes to the NeuCube with a new dynamic spatio-temporal clustering
method in SNN models while learning form streaming data. The proposed method contains
procedures for encoding the spatio-temporal data into spikes and for creating dynamic
clusters of spiking neurons in a 3-D SNN model, both in space and time. In contrast to

conventional clustering techniques, which are based on either spatial or temporal components
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(Kohonen, 1998; Kasabov, 1998; Deboeck & Kohonen, 2013; Kasabov, 2007), this method
is based on integrated spatial and temporal measures. The main objective is knowledge
discovery in the SNN model by detecting similar spatio-temporal patterns of changes (while
streaming data), which are dynamically adapted with respect to the interactions between input
neurons. This method results in a better interpretation of interactions between features. This
is based on unsupervised learning in the SNN architecture as shown graphically in Figure

o-1.

5.2.1 Spatio-temporal Clustering Schema

In this method, the cluster centres are predefined by the spatial locations of the data sources
used as input variables (e.g. EEG channels). During unsupervised STDP learning in the SNN
model, spikes are transmitted between neurons that cause modifications of the connection
weights. The more spikes are transmitted between two neurons i and j, the stronger the

connection (w;;) becomes between them, where w;; denotes the weight specifying the

connection strength. During the clustering procedure, each neuron can be assigned to
different clusters (input variables) with different membership values. This membership is
defined with respect to the number of spikes that a neuron receives from each of the inputs.
A neuron belongs to a cluster that has received the most spikes from this input when

compared with other inputs.
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Figure 5-1 A block diagram of the dynamic spatio-temporal clustering method using SNN.

In an SNN model with N neurons, the input neurons are allocated to the cluster centres and
labelled by the input variables. The rest of the neuros are unlabelled. The goal is to assign
the cluster labels to the unlabelled neurons in the SNN model. To this end, | have used the
concept of spreading activation from (Zhou, Bousquet, Lal, & Weston, 2004) and performed

as follows:

The neurons in the SNN model are indexed from 1 to N ascendingly according to the order
of their (X, y, z) coordinates. The input neurons are marked as the information source and
defined using an N x v matrix F,.. in which F,..(i,j) = 1 if neuron i is the input neuron for
variable j; otherwise F;,.(i,j) = 0, where N is the number of neurons in the SNN model and
v is the number of input variables (e.g. EEG channels). While streaming sets of spatio-
temporal data, each neuron in the SNN model receives a different ratio of information from
different input variables. The ratio of the received information can be computed through the
following steps:
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1

2

An affinity N x N matrix A is defined on the SNN model that displays the sum of the
spikes that are exchanged between neuronsiand j(i=1,..,N andj =1,...,N) via

connection w;;. The amount of information that are exchanged between the neurons is

computed as follows:

o (5-1)
A’ii = Al] + A]l L¥]
A,i]' = 0 i =j
where the element A;; displays the number of spikes transmitted from neuron i to j,

while Aj; indicates the number of spikes transmitted from neuron j to i. Since a

neuron does not send a spike to itself, the entry for A ;; is 0 wheni = j.

(5-2)

N
Ti:ZA,ij i=1toN
=1

Thus, T; is the sum of the elements in the it row of matrix A’. Then the affinity matrix

A is normalised using S = D A D, where D is an N X N diagonal matrix, where its

1

(i,i)-element is defined by D;; = (\/TT

) and S is an N x N normalised matrix that

encodes the spike propagation in the SNN model.
Iterate F(t + 1) = aSF(t) + (1 — a)F,,. until it converges, where a parameter is in

the (0, 1) range. The limit of F(t) is denoted by F* = tlim F(t)=(U—-aS) ' F,.,

where [ is an identity matrix. The output F* has N rows (representing all neurons in the

SNN model) and v columns (representing the input variables).
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The element F*;; represents the relative information amount that a neuron i in the SNN

model receives from an input neuron j. By computing the arg max ;- _, F*;;, the neurons

ijo
in the SNN model are classified into different input variables. This results in clustering the

neurons into v inputs. This procedure can be better understood as follows:

In an SNN model, the input information is propagated from input neurons (sources of
information) to other neurons. At the beginning of the STDP learning in the SNN model,
only the input neurons (centroids of the clusters) have received the information ( F* = F,..).
When the learning procedure increments with sets of spatio-temporal streams over time, the
other neurons will also receive a ratio of information from one or more input neurons.
Therefore, neurons are being clustered with respect to the amount of information that receive
from each of the inputs. In such a way, neural clusters are created and evolved over time in
an incremental way during STDP learning.

The dynamic visualisation of the clusters captures the time in which a cluster is created, and
it demonstrates how this cluster is changed over time. Such created clusters are 3-dimensional
and have different shapes. The size and the formation-time of a cluster represents the
importance of the cluster centre in the trained SNN model and therefore, the importance of
the corresponding input variable in the STBD. The proposed dynamic spatio-temporal

clustering algorithm is given in Table 5-1.

Table 5-1 The dynamic spatio-temporal clustering algorithm, called at each time point t of the STDP learning.

Algorithm 1: Dynamic Spatio-temporal Clustering

Input: Input spike data sp, number of neurons in the SNN model N, number of input variables v,
connection weights w[N, N1, and parameter a.
Output: A vector of labelled neurons k

1: Procedure
2: [L V]=size(sp)
3: Fsrc € RV*¥ A € RV*N
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4: for t=1: (L*V) do

5 Update w with STDP

6: S=DAD

7 F={- ¢7zS)‘1 Fg, .

8 k = argmax;_, , F*;
Visualisation of the clusters

10: end for

11: End of procedure

5.3 Clustering Validation
Clustering validation has been considered as an essential approach to evaluate the success of
clustering configurations (Maulik & Bandyopadhyay, 2002). In general, two main

measurement categories are known for clustering validation:

- Internal measures are used to indicate the goodness of a clustering structure without
external information, such as class label association (Tan, 2006) (which is the case in this
research).

- External measures are used to describe the agreement between two partitions where the
first partition is a priori known clustering structure, while the second resulted from the
clustering algorithm. A known external measure is the entropy, which assesses the purity

of clusters according to given class labels (Wu, Xiong, & Chen, 2009).

In many applications, external information such as class labels are not always accessible;
thus, entropy cannot be calculated. Similarly, in the SNN models, when clusters are formed
through an unsupervised learning, it is crucial to validate the goodness of clusters. Otherwise,
the clusters’ contribution would be obscure. The objective in this clustering is to maximize
the connection weights between neurons in a cluster and minimise the connection between
neurons of the neighbour clusters. To this end, | employed the Silhouette coefficient validity

method as an internal measurement technique.
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5.3.1 Silhouette Coefficient

The validity measures are usually based on the “cohesion and separation” concept (Tan,
2006; Zhao & Karypis, 2002), which is graphically shown in Figure 5-2. Cohesion measures
how similar objects are within a cluster, whereas separation measures how distinct or well-
separated a cluster is from other clusters. The objective in valid clustering is maximising the

cohesion measure while minimising the separation measure.

S N
A

Separation Cohesion

Figure 5-2 Cohesion and separation of two neighbour clusters in an SNN model, where cluster centres are
denoted by features 1 and 2.

In an SNN model, for each neuron i within a cluster, x(i) is the cohesion of i to all other
neurons in the same cluster. It shows how well i is assigned to its own cluster, so that; a
larger value of x (i) refers to a better assignment. In contrast, y(i) is the separation between

neuron i in the current cluster and other neurons from a neighbour cluster.

The Silhouette method (Rousseeuw, 1987) validates the homogeneity within clusters through
measuring how similar an object is to its own cluster (cohesion) compared to other clusters

(separation). The Silhouette value of neuron i is defined as follows:
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I {OES10

~ max{y (D), x(0)} -3)

The Silhouette value is in the range of —1 < s(i) < 1, where a value closer to 1 implies that
the object is well-matched to its own cluster. If many objects have a high Silhouette value,
then the clustering configuration is suitable. Figure 5-3 illustrates the Silhouette method

exemplified using two adjacent clusters in an SNN model.
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Figure 5-3 Silhouette measure exemplified on two clusters.

Within a cluster, where neuron i is connected to M neurons, the average of the connection
weights between i and all the M neurons defines the cohesion of neuron i to its cluster. This
cohesion is also weighted by F*;,,, which is the membership value of neuron i to the cluster

centre v. Therefore, | defined the cohesion x (i) as follows:

M

=1 Wi .
x(i) = %x F*, (5-4)

In contrast, y(i) is the average separation between neuron i and K connected neurons from
G neighbour clusters as follows:
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—k *Fw (5-5)

y(@) =

where F;, is the membership value of neuron i to the neighbour cluster centre v. To measure

the Silhouette for the SNN clusters, these modified x(i) and y(i) are used in Equation (5-3).

5.4 Chapter Summary

While streaming STBD samples into a 3-D SNN model, spatio-temporal clusters were
created and modified in a continuous, incremental way. In such a way, the spatio-temporal
relationships of changes in the variables were learnt in the model and the model’s spiking
activity patterns were incrementally clustered. This method captures significant information
about STBD as it records the exact time in which a cluster was formed, and it reveals how
this cluster’s shape was changed over time. The cluster size and the time of creation represent
the importance of the STBD input variables at different time t of the learning process,
providing insights into the input data structures and the SNN learning process. Assessment
of the dynamic patterns of the clusters contributes to identify the importance and the
involvement of neural clusters in the SNN model. This approach allows for interpreting the
hidden learning patterns in the SNN models, that is a significant contribution to machine

learning and Al.

The proposed clustering method is in contrast to the current evolving clustering methods
(Song & Kasabov, 2001), where the number of clusters are not pre-defined, but evolved with
respect to the homogeneity in the raw data space when a new sample vector comes.

Compared to the extant evolving clustering methods that perform a direct clustering of data,
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the proposed approach in this chapter is for clustering of a model that is being created to learn

and capture the essential characteristics of interest from the data.

In the proposed spatio-temporal clustering method, the centres of clusters are defined in
advance (which are the input data variables). During unsupervised STDP learning, the spatio-
temporal patterns in the model (neural activity in the SNN architecture) are clustered. The
method was based on the following scheme: (1) dynamic processes, e.g. brain activity
patterns, (2) spatio-temporal data streaming, (3) 3-D SNN models, (4) dynamic spatio-

temporal clustering during unsupervised learning, and (5) updating the clusters on new data.

The next chapter demonstrates a feasibility analysis of the proposed clustering method on a

real-life case study of EEG data.

5.5 Contribution
In this chapter, I have made the following original contributions:

o e e e e e e e e e e e e e e e -

1. Proposal of an original method for dynamic spatio-temporal clustering of

learning patterns in SNN model. This resulted in an interpretation of

interactions between STBD variables. It contributes to knowledge

discovery in SNN architectures.

Visualisation of the dynamic SNN patterns over time.

A method for validity measurement of the clustering configuration.

4. | published parts of this research as a leading author in the following
journal paper:

Wi

Doborjeh, M. G., Kasabov, N., & Doborjeh, Z. G. (2018). Evolving,
dynamic clustering of spatio/spectro-temporal data in 3D spiking neural
network models and a case study on EEG data. Evolving Systems, 9(3),
195-211.
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Chapter 6 Feasibility Study of Spatio-temporal
Clustering

6.1 Introduction

This chapter applies the proposed clustering method (introduced in Chapter 5) to a case study
of EEG data. It illustrates the differences between the patterns of the clusters created in the
SNN models across individuals when they performed different cognitive tasks. The proposed

clustering is performed through the following steps:

Stepl: STBD preparation.

e Step 2: STBD encoding into spike trains.

e Step 3: Mapping the STBD to 3-D SNN model.

e Step 4: Unsupervised learning using STDP and simultaneously clustering the

SNN learning patterns (neural connectivity).
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6.2 Clustering Patterns in SNN Models

This section illustrates how the proposed spatio-temporal clustering method can be applied
to a case study of EEG data. At step 1, the same EEG data that has been used in Chapter 4,
is selected here again for the case study in this chapter. The description of EEG data
acquisition was presented in Chapter 4. Six EEG sample files were defined, each containing
EEG data captured from one subject group (MMT/ OP/ H) per cognitive task (GO versus
NOGO). The organisation of the data is presented in Table 6-1. At step 2 and 3, each sample
file was separately encoded into spike trains using TBR method and then spatially mapped
to an SNN model using the Talairach atlas template as described in (Koessler, et al., 2009).
The EEG mapping in the Talairach space is presented in Appendix A. At step 4, the learning
process of each EEG sample file was started by entering the first EEG time point to train the
SNN model and it was finished after entering the final EEG time point. Simultaneously,

spatio-temporal clusters were created with respect to spiking activity in the SNN model.

Table 6-1 EEG data samples used for dynamic clustering to study the activity patterns of H, MMT, and OP
subjects in a GO/NOGO task.

EEG data sample files of different subject groups in GO versus NOGO

Task trials Samples per class EEG sample size

GO Trials 21 H Subjects 75 EEG time points * 26 channels * 21 samples
18 OP subjects 75 EEG time points * 26 channels * 18 samples
29 MMT subjects 75 EEG time points * 26 channels * 29 samples

NOGO Trials 21 H Subjects 75 EEG time points * 26 channels * 21 samples
18 OP subjects 75 EEG time points * 26 channels * 18 samples
31 MMT subjects 75 EEG time points * 26 channels * 31 samples

6.2.1 SNN Clustering during Unsupervised Learning

The spatio-temporal clusters were formed and updated with every new input EEG time point

entered, frame by frame. This process can be traced and analysed in terms of:
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- The order in which input EEG channels formed the clusters, related to the order of activity
of the corresponding areas in an SNN model.
- The evolution of the clusters related to the importance of the clusters positioned in

different areas of an SNN model.

Figure 6-1 to Figure 6-6 (see the first frame at top, left) show how the input neurons of the
SNN model were allocated to the respective EEG channels for transferring the spike trains
into the model. They also demonstrate the evolution of the clusters for 7 selected time points
during unsupervised learning in the SNN models of EEG data from different groups of
subjects in GO/NOGO task. Cluster creation started from predefined centroids (EEG
channels as the source of information) and were adapted after every input EEG time point
was entered into the SNN model. The reason that I have chosen different time frames in the
visualisation was the time differences in cluster creation across the subject groups with
respect to their EEG data. Once new clusters were created during unsupervised STDP

learning, a new figure was captured to display the step-wise changes in the cluster evolution.

In Figure 6-1, since there were 21 healthy subjects and 75 EEG time points captured from
every subject, the last time point of the training data was 21*75=1575. These results show
that when an SNN model was trained with EEG data of H group in GO task, the first created
clusters correspond to Fz and FCz channels after entering the 8" EEG time point to the
learning process. Those neurons that were clustered by Fz and FCz channels have received
the most of the spikes (received a high ratio of information as discussed in 5.2.1) from these

corresponding channels (information sources).
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Figure 6-2 and Figure 6-3 represent the dynamic clustering of the EEG data related to MMT
and OP subjects respectively in GO trials. In the MMT group, the first clusters were created
by FP1 and FP2 channels at the 11" time point. In case of OP subjects, the first cluster was

created by FP2 at the 2" EEG time point.

Figure 6-4, Figure 6-5 and Figure 6-6 are related to the NOGO trials. In the H group, the
first created cluster was related to the FC3 channel at the 2" EEG time point. It represents a
case where a high ratio of information has been propagated (spikes) into the SNN model via
the FC3 channel at this time. Therefore, the neurons located around this channel were
clustered faster than the other neurons in the SNN model. However, the first clusters for
MMT and OP groups were generated later than the clusters in the H group and they belonged
to C3 and F8 at the 4" and 9" EEG time points, respectively. These results show that in the
MMT and OP groups, slower response was observed from frontal regions and, consequently,

a smaller number of spikes entered the SNN model compared to the H group.
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Figure 6-1 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 21 healthy subjects in a GO task during unsupervised
learning in an SNN model. The total number of time frames is 21x75=1575. The first two clusters are created at the 8™ time point of the EEG data that are associated with

Fz and FCz channels.
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Figure 6-2 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 29 MMT subjects in a GO task. The total number of time
frames is 29x75=2175. The first two clusters are created at the 11" time point of the EEG data that are associated with Fp2 and Fp1 channels.
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Figure 6-3 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 18 OP subjects in a GO task. The total number of time
frames is 18x75=1350. The first cluster is created at the 2" time point of the EEG that is associated with the Fp2 channel.
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Figure 6-4 A step-wise visualisation of the dynamic cluster evolution corresponding to the 26 EEG channels of 21 healthy subjects in a NOGO task. The total number of
time frames is 21x75=1575. The first cluster is created at the 2" time point of the EEG data that is associated with the FC3 channel.
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Figure 6-6 A step-wise visualisation of the dynamical cluster evolution corresponding to the 26 EEG channels of 18 OP subjects in a NOGO task. The total number of
time frames is 18x75=1350. The first cluster is in the 9" time point of the EEG data that is associated with the F8 channel.



6.2.2 Clustering Evolutionary Patterns

The clusters which evolved in the SNN model during unsupervised learning can also be
statistically investigated in terms of the size (number of neurons that belong to each cluster)
and also in terms of the cluster creation time. The clusters were scaled up or down with
respect to the number of neurons (cluster members) associated with every input EEG variable
(cluster centre). A bigger cluster contains a larger number of spiking neurons around the
centre, which means that more spikes were propagated via this centre to the SNN model. A
greater number of input spikes implies that more changes were observed in the brain signals

and this reflects stronger brain responses.

By comparing the number of neurons that belong to each EEG channel, I can differentiate
the dynamic brain activity patterns captured via different EEG channels across the subject
groups in GO versus NOGO trials. Figure 6-8 is a representation of the cluster size changes,
while three SNN models were trained with EEG data of the H, MMT, and OP subjects during

the GO trials.

The horizontal axis represents the number of EEG time points entered to the SNN model
training via input neurons corresponding to the EEG channels. The vertical axis represents
the number of neurons that belong to the cluster (cluster size). In this procedure, the clusters
are made bigger or scaled down with respect to the number of neurons associated with every
input EEG channel through the EEG data training inside the SNN models. The average
number of neurons in each cluster for the GO and NOGO tasks are reported, respectively in
Table 6-2 and Table 6-3. The quantitative information of the cluster size changes during the

whole-time interval of the learning procedure, as illustrated in Appendix D.
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Figure 6-7 There are 26 clusters which are centred at the input neurons corresponding to the EEG channels. The size of the clusters changes while the SNN models are

EEG data of the H, MMT and OP subjects in GO trials.
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Figure 6-8 There are 26 clusters which are centred at the input neurons corresponding to the EEG channels. The size of the clusters changes while the SNN models are

EEG data of the H, MMT and OP subjects in NOGO trials.
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Table 6-2 The size of all the EEG channel
OP groups in GO task.

clusters (plotted in Figure 6-7) was averaged over all the time points during the STDP learning in SNN models of H, MMT and

Fpl Fp2 F7 F3 Fz

FA F8 FC3FCzFC4 T3 C3 Cz C4 T4 CP3 CPz CPA TS P3 Pz P4 T6 Ol Oz O2

Healthy | 77.3 70.7 77 22 64

38 108 45 36 56.1 83 289 38 23.1 104 11.1 823 30.3 53 29 13 17.1 764 59 27 67.7

MMT 56.9 17.8 108 19 63

12 186 74 23 43.6 53 122 9.3 94.6 106 9.16 13.3 17.7 32 48 103 225 659 75 35 33

OP 43.7 64.4 121 13 45

71 93 90 10 30 82 16.8 37 42.7 166 12.6 20.6 29.4 81 14 30 52.8 75.9 106 9.2 47.9

Table 6-3 The size of all the EEG channel
OP groups in NOGO task.

clusters (plotted in Figure 6-8) was averaged over all the time points during the STDP learning in SNN models of H, MMT and

Fpl Fp2 F7 F3 Fz

F4 F8 FC3FCzFC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3 Pz P4 T6 O1 Oz O2

Healthy 78 914 47 54 38

27 120 21 26 59.4 114 27.8 51 228 91.7 22.2 60.1 22.7 21 3.1 25 42 88 122 19 50.7

MMT 456 44.7 171 6.4 48

14 164 45 25 68.6 49 35.2 52 13.9 104 8.68 33.5 498 46 41 35 43 78 73 39 30.6

OP 70.1 752 56 43 75

43 87 39 34 30.2 106 40.5 58 51.1 162 245 20.8 855 27 16 23 32 65 97 36 82.1




As shown in Table 6-2, when participants were dealing with the GO task, the largest average
number of neurons belongs to F8 for H and MMT groups with 108 and 186 values
respectively, while the largest average for the OP group belongs to T4 with 166 values. On
the other hand, Table 6-3 shows that the largest average number of neurons in the NOGO
task belongs to F8 (120) for H group and F7 (171), F8 (164) for MMT group and T4 (162)
for OP group. Figure 6-8, Table 6-2 and Table 6-3 show that the cluster size changes during
the presentation of the EEG data of a particular order of the subject data. Two questions may

arise in this regard:

- Would cluster evolution be different within a subject group?

- Would the order of presentation of subject data influence the final clusters?

To address these questions, the clustering experiment was performed 10 times for each
subject group using a random order of the subject data presentation. It can be seen from
Figure 6-9 that different clusters based on EEG channels have different variability (in terms
of the cluster size) across subject groups and within a subject group. Figure 6-10 illustrates
the variance in cluster size across the groups. If a cluster has obtained a small standard
deviation ¢ (measured as variation of a cluster size across all samples in one group and across
the 10 different experiments), it may indicate that a uniform brain activity was measured
from the corresponding EEG channel across all the subjects. For instance, a high value for
T4 represents that the T4 cluster was developed differently across the individuals. In order to
evaluate the validity of the created clusters, the average of the Silhouette coefficients
(presented in Chapter 5) was measured in every cluster as shown in Figure 6-11. The graph
shows that all the average Silhouette values are positive and very close to 1 which represents

a high goodness value for the clusters.
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Figure 6-9 The minimum, maximum and the mean of the number of neurons that belong to each cluster. The

dynamic clustering was performed 10 times for each group of subjects using random order of the subject data
presentations.
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Figure 6-10 The standard deviation o is reported for healthy (in blue), MMT (in red) and OP (in green). A higher o value (mostly observed in MMT and OP groups) may
represent less stability in cluster size evolved by different order of sample presentation. Blue, red and green colours represent respectively H, MMT and OP groups.
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Figure 6-11 Validity measurement of the clusters generated in the case study of EEG data with 26 channels from three groups of subjects (H group in blue, MMT group
in red, and OP group in green). The Silhouette value was measured for every neuron in a cluster. Then the Silhouette values were averaged over all the neurons in a cluster
and represented as a validity measure for this cluster.



6.2.3 Analysis of Temporal Patterns in Clusters

Every cluster is composed of a number of neurons that received more spikes from the centre
of this cluster over the time of the STDP learning. During the STDP, the neuron’s
postsynaptic potential (PSP) increases by every input spike that arrived to the neuron at time
t. Once the PSP reaches a firing threshold, the neuron emits an output spike and sends it to

other neurons which are connected to it.

Figure 6-12 exemplifies the PSP rate and the spiking rate in one randomly selected cluster
centred by FP1 channel. This result allows us to study the pattern of the cluster creation and
adaptation in detail by looking at the number of spikes produced within a cluster and also the

changes in the neurons’ PSP during the learning.

It can be seen from Figure 6-12 that the PSP rate and the spiking rate resemble the LIFM
behaviour as shown in Chapter 3. More analysis of the PSP rate will be presented on the same

EEG data case study in the next chapter.
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Figure 6-12 The spike rates and PSP rates of the neurons within the FP1 cluster during unsupervised learning
of EEG data (blue: H group, red: MMT group, and green: OP).

To translate the experimental results into meaningful interpretations, it is essential to detect
the STBD variables that demonstrate a good discrimination between multiple classes. As
described in Chapter 5, Section 5.2.1, during the clustering of the SNN model, significant
dynamic patterns were associated with each cluster. These are five temporal patterns: input
spike train (s.), the mean of the cluster’s postsynaptic potentials (upsp(r)) , the mean of the
cluster’s spiking rates (s7;), the cluster size, and the mean of the neurons memberships (the
ratio of information received by neurons as explained in Section 5.2.1). Figure 6-13 and
Figure 6-14 show the dynamic clustering patterns of the Fz and T4 channels generated from

5 samples in the H group.
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Figure 6-14 Dynamic patterns of one cluster (EEG channel T4) against an input spike train (s;) corresponding

to 5 samples in class 1 (H subjects). Each sample constitutes of 75 time points.

In Figure 6-13, the pattern of the input spike train (s;) shows the encoded EEG data of

is the input data to the

channel Fz corresponding to 5 samples from the H group. The s;

NeuCube SNN model via the cluster centre (the input neuron). The size of the cluster shows

the number of neurons that belong to a cluster at each time t of the learning process. The

Upspry and st patterns, are respectively, the mean of the PSP and the spike rates measured

from the neurons within the Fz cluster.
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6.2.4 Feature Selection

In this section, ppsp(r time series are analysed to reveal how the proposed dynamic
clustering approach can be useful to discriminate the EEG data samples across different

classes.

Figure 6-15 shows the PSP (t) time series of all the 26 clusters (26 EEG channels: Fp1, Fp2,
F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6,
01, Oz and O2), which were captured during the learning process with the EEG data of two
classes H and OP. The distribution of ppgp ) is illustrated in Appendix D. In order to analyse

the ppspr) time series of 26 clusters of the H and OP groups, the following statistical methods

have been used:

®  Ppax(t): Local maximum in the ppgp y).

e Area under the curve.

e Mid of potential.

For each sample, the local maximum of the ppsp() (the peak of potential— P4, (1)) is
plotted as a dot in time t. This plot in Figure 6-16 can potentially separate the samples across
the classes with a different degree of discrimination. The P, (t) plot identifies the most
discriminative and informative variables for this classification problem (used as feature
selection), consequently it can detect the irrelevant variables which should not be included

for this classification task as they may drop the classification accuracy.
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Figure 6-15 The dynamic patterns of the average PSP rates from 26 clusters during the learning process with
EEG samples from classes H (in red) and class OP (in blue).

A t-test measure was applied to the B,,, plots (shown in Table 6-4 and Figure 6-16) to
identify how these two classes (H and OP) are statistically significant. Figure 6-17 illustrates
the area under the curve of ppgp , for each sample, computed according to a definite integral,

where | is the length of each sample (time points) as follows:

l
f P(t)dt (6-1)
1
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Figure 6-16 For 26 clusters, the local maximum of the potential value, P, (t) are plotted as dots in time t for
all samples in class H (red) and class OP (blue). The P, (t) values show discriminative patterns between class
H and class OP in EEG variables with small p-value (measured by a t-test) as shown in Table 6-4.

The midrange of a potential (shown in Figure 6-18) is the average within the min value and
max value of a curve. The formula to find the midrange is (high + low) / 2. Table 6-4
represents that the statistical t-test measure was applied to the B,,,, (left), the area under the
curve of ppgp () (Middle) and the midrange of the PSP (right) to identify how the clustering
patterns of H and OP are statistically significant. The EEG channel CPz (index: 17) has the
lowest p-value, representing the highest discriminative power between the samples that

belong to different classes.
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Figure 6-17 The area under the curve of PSP rates for 26 clusters for all the samples in class H (red) and class
OP (blue). As shown in Table 6-4, different discriminative power between the samples that belong to class H
versus OP have been observed.

Midrange of 26 clusters’ P(t) for all the samples in class H vs OP «H =0P
18
1o .
Q u
a
E
T : .
@
£ N [}
% 10 l
w ] . ] [ .
k] 3 . ' |
o ° ' . . ' ' 3
(] . l [] H N ] . . . .
c H I 2 3 H H ' N .
C o« I I 5 . . o [] b | 1 3
T . . I i ! ’ {0 ! . i . i ¢ .
2 [ ' e [ . I I . |
R B ! I i PR g :
H . M
F I : ' l i I i . ¢ I | . ! l l I I ! 1
SRS IR B N N I | :
: [} : . H [] [ s ] . & .

Cluster centered by EEG channels

Figure 6-18 The midrange of the PSP rates corresponding to 26 clusters for all samples in H (red) class and OP
(blue) class. As shown in Table 6-4, the midrange values have shown different discriminative power between
samples belong to class H versus OP.
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Table 6-4 A t-test measure was applied to the P, (left), the area under the curve of PSP (middle) and the
midrange of the PSP (right) to identify how two classes H and OP are statistically significant. EEG channel 17
has the lowest p-value, representing the highest discriminative power between the samples that belong to
different classes.

Prax(t) Area under curve Midrange of the PSP

P-Value | EEG channel | Channel index | | P-Value | EEG channel | Channel index| | P-Value | EEG channel | Channel index
2.41E-11|CPz 17]|1.21E-11 CPz 17 -1E-11 CPz 17
2.38E-09|C4 141 |1.37E-08 C4 14 8.4E-09 C4 14
4.78E-09|Pz 21| |2.4E-08 P4 22 1.7E-08 Pz 21
9.93E-09|P4 22| |1.8E-07 Pz 21 4.9E-08 P4 22
0.00001|F4 6| | 7.3E-06 F4 6 2.2E-06 Fa 6
0.00008|C3 12| |3.9E-05 C3 12 8.2E-05 C3 12
0.00008]|Fz 5] 10.0007 T6 23 0.0001 Fz 5
0.00019|T6 23] |0.0025 Fz 5 0.0003 T6 23
0.0004]F3 4110.002 FCz 9 0.0008 F3 4
0.001|FC4 10| |0.002 Oz 25 0.001 CP4 18
0.004]P3 20} ]0.003 F3 4 0.003 FC4 10
0.004|CP4 18] 0.006 CP4 18 0.009 Fp2 2
0.005|T4 15/ 10.01 T4 15 0.013 Cz 13
0.0059|Cz 13]0.01 Fp2 2 0.013 FCz 9
0.0076|Fp2 2|10.02 FC4 10 0.014 Oz 25
0.0176|FCz 9]0.07 Cz 13 0.02 T4 15
0.0247|FC3 8| 0.074 o1 24 0.05 FC3 8
0.21]01 24110.09 FC3 8 0.16 01 24
0.309| F8 7110.3 F8 7 0.2 P3 20
0.31]T3 11}0.3 P3 20 0.28 F8 7
0.37|CP3 16/ 10.47 Fpl 1 0.3 T3 11
0.4]Fpl 1/]0.48 T3 11 0.49 Fpl 1
0.53|T5 19 10.53 02 26 0.57 02 26
0.55]02 26| |0.56 F7 3 0.78 F7 3
0.72|0z 25 10.9 CP3 16 0.78 T5 19
0.84|F7 3]10.97 t5 19 0.98 CP3 16

As can be seen from Table 6-4, the top 8 channels have shown high discriminative power
between class H and class OP. These are variables: 17, 14, 21, 22, 6, 12, 5 and 23 which
respectively correspond to CPz, C4, P4, Pz, F4, C3, T6, and Fz channels. These 8 variables
were used as top-informative features for classifying the EEG samples into two classes: H
and OP. Table 6-5 shows that the classification accuracy results were higher when the SNN
model was trained by the EEG data from these 8 important variables than when using all the

26 variables, as reported in Chapter 4.
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Table 6-5 The classification accuracy between EEG samples in H and OP in the GO task obtained when using
the all the EEG variables versus using the 8 top-informative variables.

Methods NeuCube  SVM MLP
No feature selection: all 26 variables were used 80.00 68.00 78.00
8 selected variables (feature selection) 90.00 70.00 78.00

6.3 Chapter Summary

In this chapter, the proposed spatio-temporal clustering method was applied to a case study
of EEG data recorded from three groups of subjects. Dynamic clustering in an SNN model
reflected the activity of input neurons (EEG channels) at each time t of the STDP learning
process. This allows for an interpretation of the model, which resulted in knowledge
discovery in the SNN evolutionary learning patterns. The assessment of these evolutionary
patterns allowed me to identify more important EEG channels (considered as feature

selection) that improved the classification accuracy.

Hitherto, the SNN models have demonstrated a successful analysis by considering all the
samples (all individuals) in a given data space. However, as the SNN models were trained on
the whole data spaces, they could not differentiate across individuals who belong to the same
class of data. Therefore, the next chapter presents a new approach for building personalised

SNN models for individuals using the most informative subset of samples as the training set.
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6.4 Contribution
In this chapter, | have made the following contributions:

P I i i

1. | designed a feasibility study of the proposed dynamic spatio-temporal
clustering on EEG data.

2. Knowledge discovery in SNN learning patterns through the assessment of
clustering patterns. This resulted in feature selection and improved the
classification accuracy.

3. I published parts of this research as a leading author in the following papers:

i dynamic clustering of spatio/spectro-temporal data in 3D spiking neural
! network models and a case study on EEG data. Evolving Systems, 9(3),
I 195-211.

Doborjeh, M. G., & Kasabov, N. (2015, November). Dynamic 3D
clustering of spatio-temporal brain data in the NeuCube spiking neural
network architecture on a case study of fMRI data. In International
Conference on Neural Information Processing (pp. 191-198). Springer,

Doborjeh, M. G., Kasabov, N., & Doborjeh, Z. G. (2018). Evolving, !
Cham. 1
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Chapter 7 A New Personalised Modelling using
SNN

7.1 Introduction

Over the last decades, there has been an overwhelming abundance of neurological disorders
which revealed a pressing need for neuroscientists to consider various brain imaging
techniques for patients. An individual patient may have significant psychologic or
behavioural factors. Therefore, neuroscientists have recently suggested personalised
treatment to sidestep undesirable influences of conventional treatments on the current
medical conditions (e.g., heart disease, diabetes mellitus, and so forth). Numerous personal
events and personalised treatments for an individual patient can be achieved if appropriate

computational models learn the complex patterns in multivariate data.

Inspired by the idea of personalised treatment, this chapter proposes a new personalised
modelling aimed at developing a computational prognostic or diagnostic system. The
proposed method is based on integration of different data processing techniques for an
appropriate selection of neighbour samples. This has the potential to identify important
characteristics of an individual through personalised profiling and improves the

classification/prediction of output when compared with global modelling.

In health-related research, massive amounts of static personal clinical data and spatio-

temporal data are available for patients that need to be precisely scrutinised. It becomes
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apparent that a unifying computational approach is needed for proper analysis, understanding

and knowledge discovery of such multifaceted data.

In this chapter, the hypothesis is that personalised modelling with SNN can be successfully
used, if the SNN models learn from informative STBD which are selected based on nearest

neighbour samples. This chapter addresses the following criteria:

e How to select relevant data samples for a new person for creating a
personalised model based on integrated static and spatio-temporal data?
e How does the personalised model improve the performance of the

classification/prediction?

To address the above questions, an application of the proposed method will be presented later

in the chapter using a case study of EEG data measured along with static clinical information.

7.2 Personalised Modelling for Integrated Static and
Dynamic Data

In this section, instead of building a global model and training it with STBD of the whole
population, for every person a personalised SNN model (PSNN) will be built and trained
only on a subset of STBD which belong to individuals who have similar integrated static

clinical factors and dynamic STBD.
The proposed SNN-based personalised modelling system is based on the following steps:

1. Clustering of integrated static-dynamic data is performed using the new algorithm

DWWKNN (Dynamic Weighted-Weighted Distance K-nearest Neighbours). For a new
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individual x;, | rank the contribution of each of the k neighbour samples based on
integrated static-dynamic distance to the x;, giving greater rank to closer neighbours.

2. Select the STBD of those samples that are selected by DWWKNN method.

3. Using the selected STBD for unsupervised learning in the PSNN model (the STBD of the
new person x; is excluded from training).

4. Test the PSNN model with STBD of x;, which is unknown to the model.

The structure of the proposed personalised modelling system is sketched in Figure 7-1.

Dataset 3D Brain-like Personalized SNNcube RdeSNN
Personal | Dynamic Input spike trains :
, static data | brain data STBD of dWWKNN T Y od
| | e :\.L‘L 5
1 - A V ) B ks o
1 ; \ A7k i E Output
W:SNR| [W:Euclidean] | d: Correlation ‘ dWWKNN qf N 4 e
of static 4 — 4 distance coefficient of |4-|» integrated static- 5 / 3
variable dynamic data dynamic data samples * p¥ i ;
1 = to xi 4 R Tt 1 “
[ H 3 o sl et "
1 1
1 1
3 1
Personal Dynamic

static data brain data

New person data of xi

NeuCube Personalised Modelling Module

Figure 7-1 A block diagram of the personalised modelling that | proposed for integrated static and dynamic
data. An SNN is trained with STBD samples that are found using the proposed DWWKNN method (the new
person x; is excluded from training).

The integrated static-dynamic data clustering procedure is accomplished by the following

three subparts:

a) Forming a cluster C, in static vector-based data space as nearest neighbours to a new
sample vector x;.

b) Forming a cluster Csr5p in STBD space as nearest neighbours to a new sample data.
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c) Obtaining a cluster of samples that have integrated static-dynamic similarity through

intersection of Csrpp and C. These steps are elucidated in the following:

In the WWKNN approach, the first weight W is defined according to the Euclidean distance
between a new sample static vector x; and other sample static vectors in the global dataset.
The main idea behind the WWKNN algorithm is to include one more rank (weight) vector to
weigh the importance of the variables. Therefore, the second weight is defined to represent

the importance of each variable to the input static vector for which a model is being built.

When calculating the Euclidean distance in a V-dimensional space of input variables, it is
usually assumed that all variables have the same impact on the output. However, when the
variables are ranked in terms of their discriminative power of class samples over the whole
V-dimensional space, different variables have different importance to separate samples
across classes. To rank the importance of each input variable, a standard statistical measure,
known as Signal-to-Noise Ratio (SNR), was used to evaluate how important a variable is to
discriminate samples belonging to different classes, one class named as ‘signal’ and the rest

as ‘noise’.

For a two-class problem, SNR values for a variable {v = 1, .., m} is calculated as an absolute
value of the difference between the mean value M1,, of the variable for class 1 and the mean
M?2,, of the variable for class 2, divided by the sum of the respective standard deviations o1,
and a2,,. Ina C-class problem, where C = {1,2, ..., n} for each variable v, the SNR is defined

as follows:
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" abs(uiv - u{C\i}v)
=1 gi, + o{C\i} (7-1)
SNR, = ' —v=1,..,V
n

where i denotes which class is named as signal, while {C\i} is the rest of the classes as noise.
Therefore, i, and pi, are correspondingly the standard deviation and the mean value of the
variable v_.among all the samples in class i. The obtained SNR, is used to weight the

Euclidean distance D;; between a new vector x; and another sample vector x; as follows:

D.. = \/231:1 SNRv(xi,v - xj,v)z
=

i — (7-2)
v=1 SNR,

D; j Is then normalised and assigned in the range of [0 1]. The distance D;; in Equation (7-2)

is computed only based on the static data. However, as the dataset is constituted by both static
and dynamic information, a new distance needs to be measured with respect to the dynamic

STBD. It is performed as follows:

A correlation coefficient is computed between each variable in STBD of sample x; and the
same variable in other samples. The correlation coefficient is a measure that defines the
degree to which two time series are associated; it is defined as follows:

Cov(x,y)

COTTx,y = T,—l < ny <1 (7-3)
x 2y

To calculate the correlation coefficient, the covariance of two variables x and y, denoted by
Cov(x,y), is divided by the product of the two variables’ standard deviations o, and Oy. The

correlation Corr,, = —1 indicates a great negative correlation, while Corr, =1 s a
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great positive correlation. If Corr,,, = 0, then means there is no relationship between the two
variables. Using the correlation coefficient, | rank samples with respect to their STBD
relationships to a new sample, where the higher the rank, the greater a positive correlation

between the samples.

Once the distance between static samples and the correlation between the STBD samples
have been computed, a number of nearest samples can be selected with respect to two
distance thresholds as follows: In static data space, a cluster C, of static vectors can be
extracted in which their computed distance D;; to the new sample vector x; is less than a
distance threshold ¢ = uD;;. In dynamic STBD, | can extract a cluster Csrpp Of samples
where their computed correlation to the new sample is greater than a threshold= uCorr;; .
Finally, two clusters of samples are extracted, one refers to the samples with similar static
information and the other one refers to the samples with similar dynamic STBD patterns to
a selected sample. The cluster C,, is then identified using the intersection relation of C; N
Csrgp- The DWWKNN algorithm is represented in Table 7-1.

Table 7-1 The proposed DWWKNN algorithm.

Algorithm 1: DWWKNN

Input: Static dataset X(N, V) with N samples and V variables, Number of class C, Spatio-temporal
data samples of STBD
Output: results

1: Procedure

s=length (STBD)

Cor[1:s,1:s,1: C] « compute pairwise correlation coefficient between STBD samples for
each class

4: forv=1:V do

5:  SNR,=compute the SNR for variable v in (X(:, v))
6: end for
7.
8
9

for i=1: N do
Center(i,1:V) « vector x(i,1: V) e X
for j=1: N-1 do
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o ) \/2,‘5:151\/13,, (Center(i,v)—x(j,v))?
10:  compute pairwise distance D;; = STSNR,

11: end for

12: form a cluster on static data space using C; < find(D;; > pD;)
13: forc=1:.Cdo

14: T = pCorfs,s,c]

15:  C,_find{Cor[1:s,1:5,¢c]>T }

16: end for

17:  select the common samples in two clusters using C;4 = C; N C,
18: selected-samples<~STBD samples belonging to C, 4

19:  SNN model training with the selected-samples

20: classification(i)=recall STBD of x; for testing

21: end for

22 Result = length(selected—samples)
23:. End of Procedure

Y. classification(i)

7.3 Personalised Modelling for EEG Data

To exemplify the proposed personalised modelling system, the same EEG data that has been
introduced in Chapter 4, is now used here as a case study. This section aims at evaluating
how the personalised SNN models, trained on the relevant EEG samples (selected using the
proposed DWWKNN algorithm), can perform a better accuracy of results when compared

with the SNN models trained on a global space of EEG data (reported in Chapter 4).

This EEG data consists of 67 samples, in which 20 samples are labelled as healthy—H (class
1), 29 samples are labelled as patients undertaking methadone maintenance treatment—
MMT (class 2) and 18 samples are labelled as opiate addict patients—OP (class 3). The EEG
data were recorded via 26 EEG channels. This EEG data has a slightly different number of
samples when compared with the data used in Chapter 4. This is because static data were not
available for all the participants, so in this chapter | used only those subjects who had both

static clinical data and EEG data.

In addition to the spatio-temporal EEG data, personal clinical, static information was also
available per subject, such as: gender, age, drug consumption, methadone dose, history of
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overdose, and so forth. In total, there were 20 variables for measuring static information from
each subject. Table 7-2 shows only 15 randomly selected samples of the static data among
all the 67 samples. However, all the 67 samples of the static data space were used in this

experiment.

Table 7-2 Five samples are randomly selected from each groups of subjects (in total 15 samples). V1: age; V2:
gender (0 is male and 1 is female); V3: level of education; V4: life time nicotine consumption; V5: illness; V6:
history of overdose; VV7: times of hospitalised; V8: Legal charge; V9: days being in jail; V10: Methadone dose;
V11: alcohol consumption in last 30 days; V12: sedative consumption in last 30 days; V13:level of anger;
V14:cannabis consumption; V15: hallucinogens consumption; V16: taking ecstasy; V17:amphetamine
consumption; V18: barbiturate consumption; VV19: heroin; and V20: class label of subject groups (1 is H, 2 is
MMT and 3 is OP).

vi V2 Vv3 V V5 V6 V7 V8 V9 V10 V11l vi2V13 V14 V15 V16 V17 V18 V19 V20
379 1 122 212 0 O 2 O O O O O 75 O O O O O o0 1
%7 1 13 0o O O O O O O O O 8 O O O 1 0 0 1
453 0 1 5 O O 1 0 O O 5 O 7520 0 0 7 0 2 1
413 0 12 0 O O 1 O O O O O 55 O O O 1 o0 o0 1
343 1 13 25 0 0O 2 O O O O O 63 11 O 12 O O 15 1
418 0 13 0 O O 2 2 O 52 O 30 8 16 0 O0 15 3 7 2
%6 1 12 0 O0 3 1 10 48 225 0 10 50 20 0 5 13 1 o0 2
31 0 13 13 1 0 0 1 O 999 O O 5 O 2 o0 O O 10 2
398 0 11 24 0 4 4 40 64 120 O 30 63 4 15 O 5 1 13 2
403 1 1 30 O O 301 0 %% O O 5 O 4 12 0 O 0 2
35 0 112 o 0 O 1 1 24 0 O O 338 0O O O O o0 8 3
457 0 13 o o0 1 3 1 0 O O O 725 0 3 3 0O O O 3
282 0 16 6 O 1 2 3 0 O O 1063 O 5 0 10 0 o0 3
%2 1 13 0 0 2 O 1 O O 30€ O 63 0 0O O 0O O o0 3
385 1 13 13 1 1 2 6 O O O O 8 6 O O O O O 3

The SNR values for these 20 variables of static data (67 instances) were computed and
reported in Figure 7-2. It represents that variable 2 (variable gender) has obtained the highest

importance for discriminating the samples across the mentioned three classes.
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Figure 7-2 The SNR values for the 20 variables of static data.

Figure 7-3 illustrates the user interface of personalised modelling that | developed in
MATLAB as part of NeuCube software. In order to make an application of the proposed

personalised modelling, the following steps have been performed:

a) The dynamic EEG data and static vector-based data were loaded into the personalised
modelling module. Subjects are labelled by an ID: 1 to 20 are from H group; 21 to 49
are from MMT group; and 50 to 67 are from OP group.

b) A subject was randomly selected (here it is ID: 4 from H group) for creating a
personalised model.

c) Static data samples of each class were ranked according to Equation (7-1). The distance
D in Equation (7-2) was based on only the distance between the static data vector of

sample ID: 4 and the other 66 sample vectors. As | am interested to observe how static
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d)

data of sample ID: 4 is similar to the static data vectors of the other samples, | computed
D =1 — D as a similarity measure, then it was normalised and plotted in Figure 7-3
(top bar lines). It shows a high similarity between sample ID: 4 and sample ID: 49 (from
MMT group).

Employing Equation (7-3), the STBD samples of each class were also ranked with
respect to the correlation coefficient between EEG data of sample ID: 4 and the other
66 samples. Figure 7-3 (bottom bar-lines) shows that the EEG data of ID: 4 has a high
positive correlation with sample ID: 29 (from MMT group) and a high negative
correlation with 1D: 49 (from MMT group).

In order to extract a relevant subset of samples to sample ID: 4 with respect to both
static data and STBD, two clusters were formed, one on the static data space and the

other on the STBD space.

e.l. Inthe static data, samples with close D values to ID: 4 (greater than threshold t =
uD;, i = 1,..,66) were grouped as cluster ¢,. In this example t = 0.68 for subject
ID: 4.

e.2. In STBD, a cluster of EEG data samples were formed in which samples were
highly correlated to the EEG data of ID: 4. Samples were selected if their correlation
values (Corr) were greater than a threshold value T = uCorr;, i = 1,..,66, meaning
a high positive correlation. As there were three classes in this dataset, | have computed
three different thresholds per class: T; = 0.39,T, = 0.46,and T; = 0.41, to select
three sub-clusters which each was constituted of samples with correlation above the
corresponding T. Then the sub-clusters are merged as one, called cluster Cs;5p. This

procedure handles the issue of imbalanced classes by selecting a close number of
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samples from each class.

f) The relevant data samples to sample ID: 4 were selected by finding the common samples
(intersection) between two clusters C; and Cgrp. The selected samples were the nearest
samples to ID: 4, pertaining to integrated static and dynamic information. In this
example, 18 nearest neighbour samples to ID: 4 were selected to build a PSNN model
for profiling subject ID: 4.

g) Finally, the EEG data of these 18 samples were used to train the built PSNN model

through STDP unsupervised learning.

The 18 EEG samples were transferred to the NeuCube module 1, where a 3-D PSNN model
was spatially mapped using the Talairach template. Then, 26 input neurons were allocated to
the 26 EEG channels. The PSNN model was trained using STDP learning. Then the model

was tested by EEG data of sample ID: 4, which was excluded from training.

In this experiment, for every subject in dataset, one PSNN model was created and trained
with the most informative EEG samples corresponding to subjects who have similar
integrated clinical static information and dynamic EEG data to the selected subject. Figure
7-4, Figure 7-5 and Figure 7-6 show the ranking of samples in the data space for six randomly
selected subjects belonging to different classes (class 1: H subjects, class 2: MMT subjects,
and class 3: OP subjects), where the green highlighted bar lines represent the K nearest
neighbour samples to the selected ones (ID: 1 and 15 from H group, 45 and 31 from MMT

group, 58, and 61 from OP group) obtained using DWWKNN.
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Figure 7-3 The proposed personalised modelling user interface for integrated static-dynamic data, exemplified
using a case study of EEG data and static clinical data. For a selected subject id: 4, the relevant samples to it is
a cluster of the common samples between C, and Cgr5p, (green bar lines) defined using the DWWHKNN.
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Figure 7-4 Data samples were ranked according to the integrated static-dynamic similarity to a new data from
two H samples id: 1 and id: 15 in (a) and (b) respectively. The EEG data of the neighbour samples (shown in
green) are used for training of the PSNN models.
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Figure 7-5 Data samples were ranked according to the integrated static-dynamic similarity to the new data from
two MMT samples id: 45 and id: 31 in (a) and (b). The EEG data of the neighbour samples (shown in green)
are used for training of the PSNN models.
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Figure 7-6 Data samples were ranked according to the integrated static-dynamic similarity to the new data from
two OP samples id: 58 and id: 61 in (a) and (b). The EEG data of the neighbour samples (shown in green) are
used for training of the PSNN models.
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The informative EEG data samples were used to create 6 separate PSNN models, each
represents the spatio-temporal interaction between EEG channels of an individual person.
The EEG samples were first encoded into spike trains and then transferred into a PSNN
model for STDP unsupervised learning. During the learning, the connections between
neurons of the PSNN model were strengthened or weakened based on the timing of
postsynaptic in relation to the presynaptic spikes. Figure 7-7 illustrates six PSNN models,
each trained on a subset of informative EEG samples selected through DWWKNN as shown

in Figure 7-4 to Figure 7-6.

These results represent that the trained PSNN models captured different spatio-temporal
connectivity across subjects, even though they belonged to the same class. For instance, the
trained PSNN model of MMT ID: 45 in Figure 7-7 (d) illustrates stronger average connection
weights (1.12) than the trained PSNN model of MMT, ID: 31 in Figure 7-7 (c) where the
average connection weight is 0.98. These findings can be scrutinised to identify what are the
differences in the PSNN models personalised for these two MMT individuals. Subsequently,
they can be used to implicate how different individuals in the MMT group have differently

responded to the Methadone treatment.

The personalised modelling was performed for all the 67 samples by creating 67 separate
PSNN models, each trained on a subset of informative EEG data selected via the DWWKNN.
After the training process was completed for each PSNN model, the model was tested using

EEG data of the sample which the PSNN model was built for.
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Table 7-3 shows the overall classification accuracy of all 67 PSNN models versus a global
SNN model, which was obtained using the LOOCYV method. The classification accuracy was
also compared with two conventional methods SVM and MLP. In Table 2, the proposed
DWWAKNN clustering approach was compared with different clustering methods (WWKNN,
WKNN, and KNN) towards building PSNN models for classification. Unlike the proposed
DWWAKNN, the employed rival methods used here do not include the EEG data correlation

into their computation.

Table 7-3 Classification accuracy obtained via SNN-based personalised modelling versus using a global SNN
model. The number of correctly classified samples in each class is shown on the diagonal of the tables. For each
person x, one PSNN model is trained by EEG of subjects who have similar integrated static and dynamic data
to x and then tested by the EEG data of x, which was unseen during the learning.

One SNN model tested via a leave-one-out Personalised modelling of 67 trained SNN
method models for each subject’s data
Predicted | H M OP  Accuracy Prediced  H M opP Accuracy
Actual In % Actual In %
H 16 3 1 80.00 H 18 2 0 90.00
MMT 4 19 6 65.51 MMT 3 22 4 75.86
OP 2 6 10  55.50 OoP 1 4 13 72.22
Overall accuracy (average) 67.00 Overall accuracy (average) 79.36

Table 7-4 Comparison of the classification accuracy (in %) obtained using a global SNN, PSNN and
conventional methods including: SVM and MLP. The MLP optimal parameters that resulted the best
classification accuracy were found after performing the experiments several times with different parameter
setting (learning rate (LR) = [0.01, 0.5], momentum (M) = [0.1, 0.9], training iteration (T1) = [500, 1500], and
number of hidden layer (HL) = [2, 6]).

Method SVM MLP NeuCube SNN | NeuCube
PSNN
Accuracy 60.00 61.00 67.00 79.36
Polynomial  kernel = LR=0.1, M=0.6 LR=0.002, Mod= 0.5, Drift=0.02
Parameters degree=3 T1=1000, HL=3
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Table 7-5 Classification accuracy obtained using the PSNN models with different clustering approaches
(DWWKNN, WWKNN, WKNN and KNN) for selecting the nearest neighbour samples to an individual.

PSNN with different clustering methods dWWKNN | WWKNN | WKNN KNN
Accuracy 79.36 74.00 72.00 70.00

7.4 Chapter Summary

| this chapter, | proposed a personalised modelling approach based on SNN for integrated
static clinical data and dynamic STBD for individuals. The proposed approach has
contributed to the NeuCube architecture through introducing new methods for selecting an
appropriate size of neighbour samples to build personalised models. A new method, called
Dynamic Weighted-Weighted Distance K-nearest Neighbours (DWWKNN) has been
introduced as a new method to select the most relevant samples with respect to both static

data and spatio-temporal information.

As deduced from PSNN model visualisations, different patterns of connectivity have been
formed across individuals belonging to the same class of data. Therefore, PSNN models not
only can distinguish samples with respect to their class labels with a high classification
accuracy, but they can also be used for a better identification of interactions between spatio-

temporal variables in each individual subject’s data.
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7.5 Contribution

In this chapter, I have made the following original contributions:

____________________________________________________________

] 1. Proposal of a new personalised modelling system based on the SNN
: architecture (called PSNN).

: 2. Proposal of a new clustering approach (named DWWKNN) for integrated
: static and temporal/spatio-temporal data.

: 3. Empirical study on the proposed personalised modelling based on EEG data
! and static clinical health data.

: 4. | published this study in a conference paper as the leading author.

i

1

:

1

1

1

1

1

1

Doborjeh, M. G., & Kasabov, N. (2016, July). Personalised modelling on
integrated clinical and EEG spatio-temporal brain data in the NeuCube spiking
neural network system. In IEEE International Joint Conference on Neural
Networks (IJCNN), 2016 (pp. 1373-1378).

____________________________________________________________
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Chapter 8 Conclusions and Recommendations
for Future Work

8.1 Introduction
This chapter discusses the key contributions and achievements of this thesis and further
articulates how the research questions, posed in Chapter 1, have been addressed. Some main

limitations of this work are then discussed along with an overview of future implications.

8.2 Aims and Methodological Approach

An overview on ANN pointed out that SNNs resemble the activity mechanism in the human
brain, due to their ability in encoding time information into the computation. Hence, this
thesis is based on SNN architecture for modelling, classifying, clustering and a better

interpretation of STBD.

The main objectives in this thesis were addressed in two steps: first feasibility analysis and
empirical study step, and second, method development step. The first step was to design
optimal SNN architectures for modelling different types of STBD (EEG and fMRI). The
results obtained in step one implicated that the evolving learning patterns in recurrent SNN
models are complex to interpret, due to the composition of spatial information of neurons,
which is learnt, in an evolving manner, from temporal data streams over time. Hence, to study
such evolving patterns, | proposed a new spatio-temporal clustering approach that resulted in

knowledge discovery from SNN architectures.
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Additionally, | proposed a new personalised modelling system based on SNN architecture
that offers improved personal outcome classification, personalised interpretation and
identification of important factors for a person across various types of data, including both

static and dynamic (temporal) types.

8.3 Key Findings
The progression of this thesis resulted in the following findings which improved an

understanding of SNN patterns triggered by multivariate STBD.

8.3.1 Optimal SNN to Model, Learn and Analyse STBD

When applied to real-life case studies, such as multivariate STBD, the designed SNN models
enhanced the classification performance by achieving up to 92% accuracy, which represents
an average improvement of 20% when compared with conventional machine learning
methods. Compared to conventional classifiers, the designed SNN models of EEG data
showed a superior classification accuracy by up to 92% between different cognitive processes
performed by different groups of human subjects (opiate addict subjects, a group of addict
subjects undertaking treatment, and a group of healthy subjects). In addition to this, the
trained SNN models developed significantly different spatio-temporal neural connections
illustrated in a 3-D brain-inspired space for different groups of subjects. A t-test measure (p-
value=0.009<0.05) confirmed that the trained SNN models were statistically significant with
a high confidence, greater that 99%. This allowed for a better interpretation of the spatio-
temporal interactions between variables when compared with black-box conventional

classifiers and statistical methods such as SVM, MLP and MLR.
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| also designed optimal SNN models for analysing benchmark fMRI data. The SNN models
have exposed a better discrimination across different mental activities (reading affirmative

versus negative sentences) than conventional methods.

8.3.2 Knowledge Discovery in SNN Learning Patterns

The trained SNN models resulted in a higher classification accuracy when compared with
conventional methods. In addition to this, the model interpretability was also higher than the
state-of-the-art machine learning techniques. This has been achieved with proposal of a new
spatio-temporal clustering in SNN models while streaming STBD for unsupervised learning.
Compared to the current evolving clustering methods, such as ESOM (Deng & Kasabov,
2000), DENFIS (Kasabov & Song, 2002), dynamic evolving clustering (Aggarwal, 2003)
that successfully detect the temporal changes in data streams, the proposed (in this thesis)
dynamic spatio-temporal clustering method considers both spatial and temporal information
together in an SNN model and dynamically clusters the evolving learning patterns over time.
An assessment of these spatio-temporal clustering patterns has led to the detection of
important discriminative features in the SNN models. Hence, using only the selected
informative features for a classification task, an average of 10% increase in accuracy has
been achieved. In addition, it revealed a trajectory of sequential activated neural areas in the
SNN models, reflecting the importance of the STBD variables with respect to the time at

which these clusters were created.

8.3.3 Improved Personalised Modelling using SNN Architecture

| further developed this research towards the proposal of a new personalised modelling
system that has contributed to the NeuCube architecture by introducing a new method for

selecting an appropriate size of neighbour samples to build personalised models. To this end,
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| introduced the DWWKNN as a new method to select the relevant samples with respect to
both static data and spatio-temporal information. This approach enhanced the classification

accuracy by 12% when compared with global SNN models.

8.4 Empirical and Theoretical Contributions

The findings of this thesis contributed to new knowledge about SNN models of STBD and
carried out implications regarding the following aspects including improved extant reservoir
computing systems; knowledge discovery in recurrent SNN models; and improved outcome

prediction/classification by personalised profiling.

A. Improved Extant Reservoir Computing Systems

The designed SNN models for STBD analysis implicated several advantages when compared
with recently developed reservoir computing methods. Compared to LSM, the designed SNN

models in this thesis have brain-inspired structure owing to the following criteria:

1. The STBD variables are topologically mapped into a 3-D SNN model which has a brain
template (atlas). Spatial mapping of input features (data variables) in the SNN model
preserves the spatial information in the brain data variables.

2. Every artificial spiking neuron in an SNN model is a computational unit that resembles a
biological neuron model, encoding the timing of spikes.

3. Input STBD are encoded by spikes, emphasising certain changes in the brain data
(signals) at a millisecond time scale.

4. Unlike the LSM that initialises random connectivity, in this thesis the SNN connections

are initialised with respect to the small-world connectivity.
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5. The initialised connections will be adapted using the STDP learning rule, which

resembles the brain synaptic plasticity that enables learning and memorising.

B. Knowledge Discovery in Recurrent SNN Models

The proposed spatio-temporal clustering approach allowed to scrutinise the learning evolving
patterns in recurrent SNN models. The findings demonstrated that SNN models are not acting
as black-box information processing systems which solve a problem without discovering the
meaningful interactive patterns that triggered a prediction/classification output. An
assessment of these dynamic clustering patterns represented the importance of different areas
of neurons that can be used to detect abstractions from SNN models for a further development
of deep-learning in SNN architecture. Therefore, the achieved knowledge discovery in SNN

models is a significant contribution to machine learning and Al.

C. Improved Personalised Profiling

In this thesis, the proposed personalised modelling system implicated that using an
informative subset of samples as training set can result in a better differentiation across
individuals, although they may belong to the same class of data. The proposed personalised
modelling considers both static and spatio-temporal data to create a personalised SNN model,
which resulted in an increased classification accuracy for an individual person. This approach
contributed to creating a profile for each person with optimised output classification when

compared with a global SNN modelling.
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8.5 Limitations of the Thesis

The limitations of this thesis are:

8.5.1 Scope and Parameters of the Research

The EEG data used in the study were small, so the trained models can only be valid on the
defined data scope and this is not yet generalised to be tested on any new person’s STBD
stream. The SNN models of fMRI data belonged to only one human subject and the results
were specified to this person rather than being generalised implications for different subjects
with different gender. Therefore, the optimised parameters for the designed SNN models
were the best parameters for the defined domains. In addition, the data used in this thesis
were only STBD, however, the proposed SNN-based methods need to be generalised for

other types of spatio-temporal data, including environmental data, seismic data, and so forth.

8.5.2 Methodological Point of View

The encoding procedure to transfer the STBD into spike trains was a threshold contrast
method as explained in Chapter 3, Section 3.6.2. However, the encoding method and its
parameters should be optimised towards minimising the brain signal reconstruction error.
Assessment of different encoding methods and optimising their parameters may lead to

choosing another technique to encode EEG or fMRI.

8.6 Future Direction and Implications
Besides the remarks that have been made hitherto, there are a number of avenues that could

be explored in the area in the future as follows:

166



SNN parameter optimisations: The optimisation method used in this thesis was an
exhaustive grid-search on a combination of parameters. Each parameter was searched within
a specified range. The optimisation procedure needs to be further improved to consider all

the possible ranges of the SNN parameters.

Knowledge representation and knowledge transfer: The spatio-temporal connectivity
developed in different SNN models need to be transformable to make them communicate
with each other. If a trained SNN model can exchange information with another trained SNN
model, the concept of “knowledge transfer” between machines, and between machines and

humans can be applicable.

Early prediction of evolutionally patterns in SNN models: For further development of the
proposed clustering approach presented in Chapter 6, I aim to enhance it towards early
prediction of the learning patterns during unsupervised learning in SNN model. To this aim,
the dynamics of the SNN clusters need to be mathematically modelled by differential
equations. Consequently, using only a temporal chunk of STBD, the next sequential activated
areas in the SNN models can be predicted by the clustering patterns. This method needs to
be also generalised for other types of spatio-temporal data, including environmental data,

seismic data, and so forth.

Deep structured SNN: Using the proposed clustering method, the most informative clusters
of neurons were detected. Theses clusters can be seen as abstractions in a deep structured
SNN model that transfer informative trained patterns to the next layer, which is here the
deSNN classifier. The pattern of a cluster evolution captures the size of the cluster and the

time of the cluster creation as two vital measures that reflect the importance of the cluster

167



centres (input variables). For detecting the abstractions in SNN models, | will rank the

neurons according to the importance of the cluster that each neuron belongs to.

Bio and health informatics: For further development of the proposed personalised
modelling system presented in Chapter 7, a generic predictive system for early prediction of
health risk factors (neurological events, stroke, seizure, and so forth) will be proposed

according to the following system developments:

- Personalised modelling for the prediction of the risk of stroke using static data of patients
(that have had a stroke) and temporal environmental data.

- Personalised modelling for the prediction of the progression of Mild Cognitive
Impairment (MCI) to Dementia or Alzheimer disease (AD).

- E-Health software development for the prediction of risk factors along with the detection

of causal and temporal interactions between reasons, expressed as data variables.
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Appendix A Talairach Mapping

The spatial mapping of EEG data variables into the NeuCube-based SNN models was
performed with respect to the (x,y,z) coordinates as positioned in the Talairach template

(Table A-1).

Table A-1 Anatomical locations of cortical projections from (Koessler, et al., 2009). The BA column represents

the id of the corresponding Brodmann areas.

Talairach coordinates

Labels [yavg (mm) |yavg (mm) z avg (mm) Gyri BA
FP1 —-21.2+47 66.9 + 3.8 12.1+6.6 L FL | Superior frontal G 10
FPz 14+29 65.1+5.6 11.3+6.8 M FL | Bilat. medial 10
FP2 24.3+3.2 66.3+3.5 125+6.1 R FL | Superior frontal G 10
AF7 —41.7+£45 52.8+5.4 11.3+6.8 L FL | Middle frontal G 10
AF3 -327+49 48.4 £6.7 32.8+6.4 L FL | Superior frontal G 9
AFz 1.8+3.8 54.8+7.3 37.9+8.6 M FL | Bilat. medial 9
AF4 35.1+3.9 50.1+5.3 31.1+75 L FL | Superior frontal G 9
AF8 43.9+3.3 52.7+5.0 9.3+£6.5 R FL | Middle frontal G 10
F7 —521+£3.0 28.6 £ 6.4 3.8+£5.6 L FL | Inferior frontal G 45
F5 —51.4+3.8 26.7+£7.2 24.7+94 L FL | Middle frontal G 46
F3 —39.7+£5.0 25.3+75 44779 L FL | Middle frontal G 8
F1 -221+6.1 26.8+7.2 54.9+6.7 L FL | Superior frontal G 6
Fz 0.0+64 26.8+7.9 60.6 £ 6.5 M FL | Bilat. medial 6
F2 23.6+5.0 28.2+74 55.6 +6.2 R FL | Superior frontal G 6
F4 41.9+438 275+7.3 43.9+7.6 RFL | Middle frontal G 8
F6 52.9+3.6 28.7+7.2 252+74 RFL | Middle frontal G 46
F8 53.2+2.8 28.4+6.3 3.1+£6.9 RFL | Inferior frontal G 45
FT9 -53.8+3.3 -21%6.0 -29.1+6.3 L TL | Inferior temporal G | 20
FT7 -592+3.1 34+56 -21%+75 L TL | Superior temporal G | 22
FC5 —59.1+3.7 3.0+6.1 26.1+5.8 L FL | Precentral G 6
FC3 —455+55 24+83 51.3+6.2 L FL | Middle frontal G 6
FC1 - 24757 0.3+8.5 66.4+ 4.6 L FL | Superior frontal G 6
FCz 1.0+£5.1 1.0+£84 72.8+6.6 M FL | Superior frontal G 6
FC2 26.1+4.9 3.2+9.0 66.0+5.6 R FL | Superior frontal G 6
FC4 475+4.4 46176 49.7+6.7 RFL | Middle frontal G 6
FC6 60.5+2.8 49+73 255+7.38 RFL | Precentral G 6
FT8 60.2+25 47451 —28+6.3 L TL | Superior temporal G | 22
FT10 55.0+3.2 —36+56 -31.0+£7.9 RTL | Inferior temporal G | 20
T7 —65.8+3.3 —-178+68 |—-29+6.1 LTL | Middletemporal G | 21
C5 —63.6+3.3 —189+7.38 25.8+5.8 L PL | Postcentral G 123
C3 —49.1+55 —20.7+9.1 53.2+6.1 L PL | Postcentral G 123
C1 —25.1+£56 —225+£9.2 70.1+5.3 L FL | Precentral G 4
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Cz 0.8+49 —219+94 77.4+6.7 M FL | Precentral G 4
Cc2 26.7£5.3 —209+9.1 69.5+£5.2 RFL | Precentral G 4
C4 50.3+4.6 —18.8+8.3 53.0+6.4 RPL | Postcentral G 123
C6 65.2+2.6 —-180x7.1 26464 RPL | Postcentral G 123
T8 67.4+23 —185+69 |-34%70 RTL | Middletemporal G | 21
TP7 —63.6+45 —447+72 | -40%6.6 LTL | Middletemporal G | 21
CP5 —-61.8+4.7 —46.2+8.0 225756 L PL | Supramarginal G 40
CP3 —46.9+5.38 —47.7+9.3 49.7+£7.7 L PL | Inferior parietal G 40
CP1 —24.0+6.4 —49.1+£9.9 66.1 £ 8.0 L PL | Postcentral G 7
CPz 0.7+4.9 —479+93 72677 M PL | Postcentral G 7
CP2 25.8+6.2 —47.1+£9.2 66.0+7.5 RPL | Postcentral G 7
CP4 49.5+£59 —455+79 50.7+7.1 RPL | Inferior parietal G 40
CP6 62.9+3.7 —446+6.8 24.4+84 RPL | Supramarginal G 40
TP8 64.6 £ 3.3 —454+£66 | —-37%£73 RTL | Middletemporal G | 21
P9 —508+4.7 —51.3+86 | —-377%83 LTL | Tonsile NP
P7 —55.9+45 —64.8+5.3 0.0+9.3 L TL | Inferior temporal G | 37
P5 —52.7+5.0 —67.1+£6.8 19.9+104 LTL | Middletemporal G | 39
P3 —-414+£57 —678+84 |424+95 L PL | Precuneus 19
P1 —216+5.8 —71.3+£9.3 52.6 £10.1 L PL | Precuneus 7
Pz 0.7+6.3 —69.3+84 56.9+9.9 M PL | Superior parietal L | 7
P2 24.4+6.3 —69.9+85 53.5+94 R PL | Precuneus 7
P4 442 +6.5 —658+8.1 42.7+8.5 RPL | Inferior parietal L 7
P6 544 +4.3 —65.3£6.0 20.2+9.4 RTL | Middletemporal G | 39
P8 56.4+3.7 —64.4+56 0.1+85 RTL | Inferior temporal G | 19
P10 51.0£35 —539+87 | —365+10.0 L OL | Tonsile NP
PO7 -44.0+4.7 -81.7+49 1.6+10.6 R OL | Middle occipital G | 18
PO3 -33.3+6.3 —-84.3+5.7 265+11.4 R OL | Superior occipital G | 19
POz 0.0+6.5 —-879+6.9 33.5+11.9 M OL | Cuneus 19
PO4 35.2+6.5 - 82.6+6.4 26.1+9.7 R OL | Superior occipital G | 19
PO8 43.3+£4.0 -820+55 0.7 +10.7 R OL | Middle occipital G | 18
01 —25.8+6.3 -933+4.6 7.7+12.3 L OL | Middle occipital G | 18
Oz 0.3+5.9 —97.1+5.2 8.7+116 M OL | Cuneus 18
02 25.0+5.7 -952+5.8 6.2+11.4 R OL | Middle occipital G | 18
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Appendix B Spatio-Temporal fMRI
Study

B.1 Spatio-temporal fMRI Data Description

The case study problem used here belongs to the STAR/PLUS fMRI data set, originally
collected by Marcel Just and his colleagues at Carnegic Mellon University’s Centre for
Cognitive Brain Imaging (CCBI) (Just & Wang, 2001). The original dataset was provided in
a MATLAB file which contains three major arrays: Data (contains the time-series recorded
from voxels), Info (contains information about cognitive task) and Meta (contains the voxels’
labels related to their region of interests— ROIs). A stated in (Mitchell, et al., 2004), in order
to introduce randomness in the cognitive task, 40 trials were defined. In the first 20 trials,
participants were first presented by a picture and then a sentence whereas for remaining 20

trials, they reversed the order of the picture and sentence presentation.

For fMRI acquisition, while participants were performing the cognitive trials, T2-weighted ’
fMRI images were collected using 3T scanner at an interval of 500 milliseconds, and with
TE =18 milliseconds and flip angle of 50°. These settings yield images that have
approximately 5000 voxels per subjects in 8 oblique axial slices in two different non-
contiguous four-slice volumes. The first volume set captures prefrontal areas and superior
parietal regions, while, another volume set covers posterior temporal, inferior frontal and

occipital areas. After acquiring T2-weighted fMRI images for each subject, images were pre-

7 In T2-weighted both fat and water are hyper-intense and appear bright.
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processed using Functional Imaging Analysis Software, Computational Olio (FIASCO)
program (Eddy, Fitzgerald, Genovese, Mockus, & Noll, 1996; Eddy, et al., 1999). This pre-
processing helps in reducing the artifacts that arise during image acquisition process due to
signal drift, head motion, and others. After pre-processing of images, 25 anatomical regions
of interest (ROI) were defined. To identify the ROl in fMRI data, two types of brain images
were collected for each subject. The first type of image, which has been discussed up to this
point, captures brain activation via the BOLD response, and is referred to as a functional
image. The second type of image, called a structural image, captures the static physical brain
structure at higher resolution. For each subject, this structural image was used to identify the
anatomical regions of interest, using the parcellation scheme (Caviness, Verne, Meyer,
Makris, & Kennedy, 1996) and (Rademacher, Galaburda, Kennedy, Filipek, & Caviness ,
1992). For each subject, the mean of their functional images was then co-registered to the
structural image; so that, individual voxels in the functional images could be associated with
the ROIs identified in the structural image. The achieved ROIs include: left dorsolateral
prefrontal cortex (LDLPFC) and right dorsolateral prefrontal cortex (RDLPFC), calcarine
sulcus (CALC), left frontal eye fields (LFEF), right frontal eye fields (RFEF), left inferior
parietal lobule (LIPL), right inferior parietal lobule (RIPL), left intraparietal sulcus (LIPS),
right intraparietal sulcus (RIPS), left inferior frontal gyrus (LIFG), left opercularis (LOPER),
right opercularis (ROPER), supplementary motor areas (SMA), left and right inferior
temporal lobule (LIT, RIT), left and right posterior precentral sulcus (LPPREC, RPPREC),
left and right supramarginal gyrus (LSGA, RSGA), left temporal lobe (LT), right temporal
lobe (RT), left and right triangularis (LTRIA, RTRIA), left superior parietal lobule (LSPL)

and right superior parietal lobule (RSPL).
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B.2 Statistical Analysis of the SNN Models of fMRI
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Figure B-1 Distribution of the average connection weights around the input voxels located in the left and right
hemispheres of the trained SNN models of related respectively to negative sentences.
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Figure B-2 Distribution of the average connection weights around the input voxels located in the left and right
hemispheres of the trained SNN models of related respectively to affirmative sentences.
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Table B-1 T-Test results of the training iterations in the SNN models of fMRI data related to affirmative
sentences and negative sentences (right) and seeing pictures and reading sentences (left). The t-test was
measured in Excel using “Two-Sample Assuming Unequal Variances” method.

Picture  Sentence Affirmative  Negative
Mean 1.3 1.12] |Mean 1.2 0.7
Variance 0.13 0.06| [Variance 0.06 0.03
Observations 40 40| |Observations 20 20
P(T<=t) one-tall 0.003 P(T<=t) one-tall 6.50E-08
t Critical one-tail 1.6 t Critical one-tail 1.6
P(T<=t) two-tail 0.006 P(T<=t) two-tail 1.30E-07
t Critical two-tall 2 t Critical two-tall 2.03

B.3 SNN Parameter Optimisation

For optimisation, | performed an exhaustive grid-search on combination of parameters for
every sample’s model. Each parameter was searched within a range, specified by the
minimum and maximum, through several iterations related to the number of steps for moving
from minimum to maximum. For every model creation, | chose three main parameters (STDP
learning rate, mod and drift parameters) to be optimised. The parameters were selected by
assigning 10 steps between the minimum and maximum values of each parameter range.
Therefore, for every model creation, 1000 iterations of training (using all samples except the
holdout sample) and testing (using the single holdout sample) were performed with different
combination of these three parameters. Then the parameters that resulted in the best accuracy
in most of the iterations have been reported as the optimal parameters, shown in Table B-2.
The TBR threshold, neuron firing threshold and small-world radius parameters were fixed to

0.5, 0.5, and 2.5 respectively.
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Table B-2 Optimal parameter setting of the SNN models for different experiments and sessions with the
benchmark fMRI data.

Classification tasks Experiment mod drift STDP rate
Sessions

Experiment A: Affirmative vs negative Session | 0.56 0.03 0.006

sentences Session 11 0.45 0.03 0.005
Session 111 0.51 0.02 0.005

Experiment B: Pictures vs sentences Session | 0.56 0.03 0.006

Parameter range 0.4-0.95 0.001-0.5 @ 0.001-0.01
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Appendix C EEG Study

To validate the proposed methods in this thesis, | have used a case study of EEG data which
was recorded under an ethical approval granted by the Northern Regional X Ethics Committee
of New Zealand. The data were recorded at the School of Pharmacy, University of Auckland
by Dr Grace Wang, Senior Lecturer /Addictions Programme Leader from Faculty of Health
and Environmental Science at Auckland University of Technology. All participants signed

informed consent to certify their voluntary participation.

C.1 Participants

Inclusion criteria. All participants recruited were between 18— 45 years of age, had a basic
English literacy skill and were able to provide written informed consent. Participants in the
opiate user group were required to meet the Diagnostic and Statistical Manual of Mental
Disorders (DSM-1V) (American Psychiatric Association, 2000) criteria for opiate
dependence which was diagnosed using the Composite International Diagnostic Interview
(CIDI) (Kessler & Ustiin, 2004). This requires participants to be physically dependent on
opiates as evidenced by a history of withdrawal symptoms and to have been actively using
opiates for a minimum of one year prior to the study date. Participants in the opiate user
group were not allowed to be currently undertaking MMT. The inclusion criteria for healthy
control subjects were no current or lifetime history of drug or alcohol abuse other than

nicotine dependence.
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Exclusion criteria. Exclusion criteria were based on the results of the CIDI (Kessler &
Ustiin, 2004), which was administered to all participants, and included a history of psychotic
disorder, depression, cardiac disease, endocrine disorder, head trauma, neurological disease
and self-reported current pregnancy or breastfeeding. The CIDI is a well-validated clinical
assessment tool that has been used extensively for clinical and research purposes (Wittchen,
1994). It provides detailed information based on the DSM-IV (American Psychiatric
Association, 2000) and includes 22 diagnostic sections that assess mood disorders, anxiety
disorders, substance use, disorder, childhood disorder and other disorders. There are
additional sections screening for the presence of cognitive impairments, such as memory,
speech and learning, and current physical status (i.e. headache, speech and sensor
perception). At the time of testing, none of the participants were experiencing symptoms that
could be attributed to acute drug intoxication or withdrawal. To minimise potential confounds
between groups, the age, gender, educational levels and ethnicity were matched and
controlled by recruitment. The quantity of other drug use by MMT and opiate user groups
was not controlled for during recruitment because the quantity of a drug consumed can be
influenced by its overall quality; self-report of the amounts consumed is also known to lead
to underestimates (Danion, et al., 1993). Table C-1 presents the demographic data and history

of Methadone use in H, MMT, H and OP groups.

Table C-1 Demographic data and history of Methadone use in the healthy control (H), methadone maintenance
treatment (MMT) and opiate (OP) groups. Standard deviation (SD).

Group Number of Mean age Male Female Mean duration years of  Mean duration years of
participants (SD) % (n) % (n) education (SD) opiate/Methadone use (SD)
MMT 31 39.36 54.83 (17) 45.16(14) 12.06 (SD=2.00) Opiate use:10.03 (6.08)
(5.14) MMT use: 7.29 (SD=6.39)
oP 18 37.38 61.11 (11) 38.88 (7) 12.47 (SD=1.46) Opiate use: 11.41 (8.60)
(7.44)
H 21 36.12 52.38 (11) 47.61 (10) 13.71 (SD=1.73)
(6.61) —
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C.2 Cognitive GO/NOGO Task

GO/NOGO task is a psychological test to measure a participant’s capacity for response
control and sustained attention. During the task, participants were repeatedly presented by
the word ‘PRESS’ (for 500 ms). The colour of the word ‘PRESS’ was presented randomly
in either red or green. Participants were instructed to respond by pressing a button with the
index finger of both hands in response to the word that appeared in green (GO) and not
respond to the word that appeared in red (NOGO). Based on the most literature about
GO/NO-GO task, the brain response inhibition, as a core executive function, is expected to
be observed in prefrontal, frontal, dorsal, ventral, and parietal regions, which are related to
human response inhibition. On the other hand, psychological reports showed there is a direct
relation between the response reduction in prefrontal cortex magnitude and addictive

behaviour, due to the drug effects on these brain functions.

Participants were asked to complete the practice trial prior to the real test to ensure that they
understood the task. At this stage, the word ‘PRESS’ was presented in the same colour 6
times in a row. There were 28 sequences, 21 of which were presented in green and 7 in red,
presented in a pseudo-random order, with an inter-stimulus interval of 1 second. The task
duration was approximately 5 minutes. Speed and accuracy of response were stressed equally

in the task instructions.

During a GO/NOGO task, a participant is required to perform an action given certain stimuli

(e.g. press a button-GO) and inhibit that action under a different set of stimuli (e.g. not press
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that same button- NOGO). Typically, NOGO stimuli are rare and task instructions are to
execute a fast GO response. Therefore, there is increased conflict when NOGO stimuli are
presented. Although the GO/NOGO task appears simple, requiring a response according to a
conditional rule reflects high level cognitive functions including decision making, response
selection, and inhibition. Evidence shows that groups characterised by clinically relevant
impulsivity, e.g., drug users, tend to show diminished inhibition of responses to NOGO

stimuli; thus, making more errors of commission (Ahmadi, et al., 2013).

C.3 EEG Data Acquisition

EEG has been extensively used for brain studies including addiction research. It is recognised
as a sensitive measure of drug effects on the brain, which often manifest as changes in the
size and time course of the postsynaptic potentials (Gevins, et al., 2011) as reflected in
alterations in EEG signals. It has been shown that reinforcing effects of many drugs mediated

by the mesolimbic dopamine pathway modify EEG recordings (Knyazev, 2007).

For EEG recordings, a QuickCap (Neuroscan 4.3) 40 sensor shielded cap was used to acquire
EEG data from the cephalic sites. The 26 Ag/AgCl sintered electrodes included Fpl, Fp2,
Fz, F3, F4, F7, F8, Cz, C3, C4, CP3, CPz, CP4, FC3, FCz, FC4, T7, T8, P7, P8, Pz, P3, P4,
01, 02, and Oz electrode sites (10-20 International System). EEG was recorded relative to
the average of Al and A2 (mastoid) electrode sites. Horizontal eye movements were recorded
with electrodes placed 1.5 cm laterally to the outer canthus of each eye. Vertical eye
movements were recorded with electrodes placed 3 mm above the middle of the left eyebrow
and 1.5 cm below the middle of the left bottom eye-lid. Skin resistance was kept at <5 kOhms.

Scalp and EOG potentials were amplified and digitised continuously by a system (NuAmps,
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SCAN 4.3) having frequency response from direct current (DC) to 100 Hz (above which
attenuating by 40 dB per decade), and a sampling rate of 500 Hz. EEG data were screened
visually for artifacts, normal variants and changes in alertness (the technician screening these
data was blinded to group status). To reduce muscle artefacts in the EEG signal, the
participants were instructed to assume a comfortable position and avoid movement during

recording. Electrical impedance was always <5 KQ.

C.4 Event-Related Potentials (ERPSs) Processing

Artefact correction was conducted by the Brain Resource Company (BRC) of Australia. EEG
data were corrected using the method of (Gratton, Coles, & Donchin, 1983), which computes
separate propagation factors for blinks and eye movements on the basis of the residuals in
the EEG channels after subtraction of event-related activity on either channel. Then, for each
channel, the individual single-trial epochs were filtered with a low-pass filter function that
attenuates frequencies above 25 Hz. Scalp EEG recording was segmented into epochs,
centred on each single event corresponding to the stimulus. Event-related potentials (ERP)
was acquired by averaging EEG signals from several stimulus presentations during the
performance of a task. The averaging extracts the spontaneous ‘noisy’ background
fluctuations from scalp recordings leaving only stimulus-related electrical activity in a time-
locked windows. ERP response to all GO stimuli with a correct button response (only) were
included in the GO average file. Similarly, ERP response to NOGO stimuli with a correct

button response (only) were included in the NOGO average file.
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C.5 T-Test Results

A t-test was applied to evaluate how the trained SNN models of H, MMT and OP subjects

were statistically significant as shown in Tables C-2 and C-3.

Table C-2 T-Test results of the training iterations in the SNN models of H, MMT and OP groups in GO and
NOGO tasks. The T-Test was computed in Excel using “Two-Sample Assuming Unequal Variances” method.

H MMT oP

GO NOGO GO NOGO GO NOGO
Mean 0.09 0.07 Mean 0.1 0.2] |Mean 0.08 0.2
Variance 5E-04 0.0003| |Variance 0.001 0.001} [Variance 6E-04 0.07
Observations 21 21] [|Observations 29 31] |Observations 18 18
df 38 df 58 df 17
t Stat 3.2 t Stat -3.4 t Stat -2.9
P(T<=t) one-tall 0.001 P(T<=t) one-tail 0 P(T<=t) one-tail 0.004
t Critical one-tail 1.6 t Critical one-tall 1.6 t Critical one-tail 1.8
P(T<=t) two-tail 0.002 P(T<=t) two-tail 0.001 P(T<=t) two-tail 0.009
t Critical two-tail 2.02 t Critical two-tail 2 t Critical two-tail 2.1

Table C-3 T-Test results of the FIN graphs of the H, MMT and OP groups in GO and NOGO trials. The T-Test
was computed in Excel using “Paired Two Sample for Means” method.

H MMT H OP MMT OP
Mean 38.5 19.2] |Mean 38,5 22.9] |Mean 19.2 22.9
Variance 705 352| |Variance 705 315| [Variance 352 315
Observations 26 26| |Observations 26 26| |Observations 26 26
Pearson Correlation | 0.03 Pearson Correlation | 0.16 Pearson Correlation | 0.25
df 25 df 25 df 25
t Stat 3.07 t Stat 2.69 t Stat -0.9
P(T<=t) one-tall 0 P(T<=t) one-tail 0.01 P(T<=t) one-tail 0.2
t Critical one-tail 1.71 t Critical one-tail 1.71 t Critical one-tail 1.71
P(T<=t) two-tall 0.01 P(T<=t) two-tail 0.01 P(T<=t) two-tall 0.4
t Critical two-tall 2.06 t Critical two-tail 2.06 t Critical two-tall 2.06
H MMT H OP MMT OP
Mean 29.3 37.6] [Mean 29.3 48.6] |Mean 37.6 48.6
Variance 283 473| |Variance 283 1024| [Variance 473 1024
Observations 26 26| |Observations 26 26| |Observations 26 26
Pearson Correlation | 0.54 Pearson Correlation | 0.33 Pearson Correlation 0.5
df 25 df 25 df 25
t Stat -2.2 t Stat -3.18 t Stat -2
P(T<=t) one-tall 0.02 P(T<=t) one-tail 0 P(T<=t) one-tail 0.03
t Critical one-tail 1.71 t Critical one-tail 1.71 t Critical one-tail 1.71
P(T<=t) two-tall 0.03 P(T<=t) two-tail 0.003 P(T<=t) two-tall 0.06
t Critical two-tall 2.06 t Critical two-tall 2.06 t Critical two-tall 2.06
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C.6 Feature Interaction in SNN Models

During the STDP learning procedure, input neurons accumulate spikes to the SNN model
and, if the neurons that received the spikes cross an activation threshold, they also emit output
spikes. That spikes are sent out to all the connected neurons, and then the neurons will
likewise accumulate activity as a function of receiving spikes and, after crossing some
threshold, fire. In such a way, spikes are transferred between neurons and propagated to the

SNN model.

To have a better understanding of the spike propagation in SNN models, | developed a graph-
based representation of the number of spikes exchanged between the neurons. Figures C-1 to
C-6 illustrate the six Feature Interaction Networks (FINSs), each of which captures the number
of spikes transmitted between 26 EEG features (channels) during unsupervised STDP
learning. Each node in FIN represents a group of neurons connected to an input neuron (EEG
channel) and the arcs represent relative spike amounts transmitted between these groups. The
amount of spike interaction between any 2 adjacent groups of neurons (each connected to
one input neuron) was computed with respect to the number of spikes exchanged between
them divided by the total STDP learning time. The wider the arc between nodes, the more
spikes were transmitted between the corresponding groups of neurons. Tables C-4 to C-9
represent the quantitative information of FINs that demonstrate the level of spatio-temporal
interaction between the EEG channels with respect to the number of spikes transmitted
between them. By comparing FIN graphs developed for H subjects in GO versus NOGO, it
can be seen that the spike communication was larger between the most of inputs while the
subjects were performing GO trials than NOGO trials. On the other hand, both MMT and OP

subjects demonstrated increased spike communication in a wide range of areas during the
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NOGO trials that GO trials. These findings represent different SNN models were developed
for people with a history of opiate and healthy subjects. For instance, for OP subjects in
NOGO trials wide lines were created between F4 and C4 (line weight= 16.15) and F4 and P4
(line weight= 25.2). These links represent a great number of spikes was transmitted between
groups of neurons around these channels while the subjects were undertaking NOGO trials.
In contrast, different level of interaction between these channels was observed for H subjects
during NOGO trials. These findings were evaluated by a t-test to represent whether the FIN
graphs were statistically significant across the groups. Table C-10 represents the p-values for
FIN graphs (applied to the last column) of H, MMT and OP subjects in GO and NOGO tasks.
It represents that in both GO and NOGO trials the FIN graphs of the H and OP subjects were
significantly different (p-value=0.012<0.05 in GO and =0.003 <0.05 in NOGO). Also, the
FIN graphs of H and MMT were also significantly different as the p-value=0.005<0.05 in
GO and =0.03<0.05 in NOGO. However, the statistical analysis on the FIN graphs of MMT

and OP subjects in GO has not shown a meaningful significance as p-value=0.4>0.05.
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Figure C-1 The spike interaction between 26 neural groups representing 26 EEG channels in H group in GO
task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the more
spikes were transmitted between corresponding groups.

Table C-4 The amount of spike transformation between 26 neural groups representing 26 EEG channels in H
group in GO task, computed as the number of spikes exchanged between 2 groups divided by the STDP time.

Fpl [Fp2 [F7[ F3 [ Fz [Fa[F8[Fc3[Fcz[ Fca [ T3] ca [ cz [ ca[Ta]cP3[cPz[cpa T5 [ P3 [ Pz [ P4 [ T6 [O1] Oz | 02 | |
FpL| 0 3 6 18 04 0 0 O O O O O O O O O O O O 0 O0 O o 0 o0 o0 113
Fp2 | 3 0 0 04 106 11 10 0 O 02 0O O O 0 O O O O O 0 O0 O 0 0 0 0 353
F7 |6 0 0 97 04 0 0 12 0 O0 31 3 0 ©0 0O O O 0 O 0 0 0 0 0 0 0 245
F3 |18 04 97 0 87 0 0 69 21 0 ©0 7 01 0O O O O O O 0 0 0 0 0 0 o0 372
Fz |04 106 04 87 0 74 02 11 127 68 0O 16 37 0 0 0 6 0 0 0 0 O 0 0 0 0 601
F4 |0 1050 0 74 0 10 0 03 15 0 ©0 01 O0 01 0O O O O 0O 0 O 0 0 0 o0 442
|0 1020 0 0210 0 0 0 3 0 0 0 0366 0 0 0 0 0 0 0 0 0 0 o0 317
FC3| 0 0 12 69 11 0 0 13 0 02 125 09 0 O O O 0 O 0 0 0 0 0 0 o0 246
FCz| 0 0 0 21 12703 0 13 0 45 0 4 145 01 0 0 1 0 0 0 0 0 0 0 0 o0 411
FC4| 0 02 0 0 68 15 36 0 45 0 0O O 98 153 32 0 262 07 0 0 0 0 0 0 0 0 88
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c3| 0o o0 38 7 16 0 0 125 4 0O 79 0 107 0 0 141 77 0 0 79 0 O 0 0 0 0 775
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/0 o 0 0 O O 0O O O O 3 0O 0 0 0 16 0O 0 0 55 0 O 0 0 0 o0 109
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Figure C-2 The spike interaction between 26 neural groups representing 26 EEG channels in H group in NOGO
task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the more
spikes were transmitted between corresponding groups.

Table C-5 The amount of spike transformation between 26 neural groups representing 26 EEG channels in H
group in NOGO task, computed as the number of spikes exchanged between 2 groups divided by the STDP
time.

FpL [Fp2[F7] F3 [ Fz [F4[F8JFc3][Fcz] Fca [ T3] ca [ cz [ ca[Ta]cP3[crz[cra] Ts [ P3Pz P4 [ T6 JOor] 0z Jo2 [ ¥ |
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F7 |53 02 0 8 0 0 0O 2 o0 0 17 03 0 ©0O O O O O O O O O O O O o0 177
PR |1 29 8 0 51 0 0 19 1 0 02 06 04 0 0O O O O O O O O O O O 0 385
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Figure C-3The spike interaction between 26 neural groups representing 26 EEG channels in MMT group in GO
task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the more
spikes were transmitted between corresponding groups

Table C-6 The amount of spike transformation between 26 neural groups representing 26 EEG channels in
MMT group in GO task, computed as the number of spikes exchanged between 2 groups divided by the STDP
time.
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Figure C-4 The spike interaction between 26 neural groups representing 26 EEG channels in MMT group in
NOGO task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the
more spikes were transmitted between corresponding groups.

Table C-7 The amount of spike transformation between 26 neural groups representing 26 EEG channels in
MMT group in NOGO task, computed as the number of spikes exchanged between 2 groups divided by the
STDP time.
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Figure C-5 The spike interaction between 26 neural groups representing 26 EEG channels in OP group in GO
task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the more
spikes were transmitted between corresponding groups.

Table C-8 The amount of spike transformation between 26 neural groups representing 26 EEG channels in OP
group in GO task, computed as the number of spikes exchanged between 2 groups divided by the STDP time.
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Figure C-6 The spike interaction between 26 neural groups representing 26 EEG channels in OP group in
NOGO task. The thicker the line that connects two nodes that represent the corresponding EEG channels, the
more spikes were transmitted between corresponding groups.

Table C-9 The amount of spike transformation between 26 neural groups representing 26 EEG channels in OP
group in NOGO task, computed as the number of spikes exchanged between 2 groups divided by the STDP
time.

FpL [Fp2 [F7 [F3 [Fz [F4 [F8 [Fc3Jrcz [Fca [13 [c3 ez [ca [14 [cPafcpzcrPafts [P3 [pz [P4 [16 Jo1 Joz o2 [ |
Fpl 0 4896 17 05 0 0 0 O o o 0o 0 0 0 O O 0O O O O O0 0 O 0 0 168
Fp2 48 001 15 83 94 88 0 O 0o o 0 0 0 0 O O 0O O O O 0 0 0O 0 0 332
F7 96 01 0103 03 0 0 3 0 066 0 0 0 0O O O O O 0O O 0 0 0O 0 0 302
F3 17 15 10 0114 01 0 162 24 004 0 0O 0O 0O O O O O 0O O 0 0 O 0 0 445
Fz 05 8303114 0 1481 4155 09 O O ©0 03 0O O O O O O O O O O 0 0 64
F4 0 94 0 01143 0 18 01 97 184 O O 0116135 0 O 0O O O ©0 252 0 0 0 01158
F8 0 88 0 081 18 0 0 0 02 O O 0 0482 0 O 0O O O O O 0O 0O 0 0 443
FC3 0 0 3162 401 0 0171 0 44 73 98 03 0 18 22 0 0 08 04 0 0 O 0 0 681
FCz 0 0 0 24155 97 0171 O 67 O O 138 128 0 0 21 0 O O 01 O O O O O 808
FC4 0 0 0 0 09 1802 0 67 0 0 0 02 0114 0 0 O O O O O 0 O 0 0 282
T3 0 066 04 0 0 0 44 0 0 0 23 0 0 005 0 0 41 27 01 0 0 01 0 0 217
C3 0 00 0 0 0 0 73 0 0023 0 15 0 0 48 18 0 01 3 12 0 0 O 0 0 227
Cz 0 0 0 0 001 O 98138 02 0 15 0 8 0 07147 0 O 04 42 06 0O 0 0 0 544
C4 0 0 0 003 1604 03128 01 O O 8 0 20 0 95216 0 0 22 194 05 0 0 01115
T4 0 00 0 03582 0 0 14 0 0 0196 0 0 O0 17 OO 0O O 41 86 0 0 0 475
CP3 0 00 0 0 0 0 18 0 0 05 48 07 0 0 0 24 0 03 83 23 0 0 0O 0 0 214
CPz 0 0 0 0 0 0 0 22 21 0 0 18 147 95 0 24 0 11 0 21216 66 0 O 0 0 646
CP4 0 00 0 0 0 0 0 0 0 0 0 02617 0 11 0 0 0 06 212 06 0 0 0 47
T5 0 00 0 0O 0 0 0 0 0041 01 0 ©0 003 0O O 0 64 0 0 0 72 02 0 185
P3 0 00 0 0O 0 0 08 0 0 27 3 04 0 0 83 21 0 64 0 9 0 0 25 22 0 38
Pz 0 0 0 0 0 0 0 04 01 0 01 12 42 22 0 231216 06 0 9 0 233 0 38 13 0 824
P4 0 00 0 02 0 0 0 0 0O 0 06194 41 0 66212 0 0233 0 92 0 9 391229
T6 0 00 0 0 0 0 0 0 0 0O 0 0 058 0 006 0 0 0 92 0 0 01 21 213
oL 0 00 0 0 0 0 0 0 0ol 0 0O O 0 O O O 72 25 38 0 0 0 56 0 195
Oz 0 00 0 0 0 0 0 0 0o 0 0 0 0 0 O 0 0 02 22 13 9 01 56 0 35 339
02 0 00 0 0 0 0 0 0 0o 0o 0 0 0 0 O O O 0 0 0 39 21 0 35 0 97
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Table C-10 T-test was applied to the last column of the FNI graphs for H, MMT and OP groups to evaluate the
models’ significance in GO and NOGO. P-values are reported in the last row.

GO NOGO

H | mmT | op H | mmT | op
11.3 17 10.9 8.1 8.4 16.8
35.3 23 159 381 135 332
245 6.4 18 177 569 = 302
37.2 23 21.3 385 81 445
601 214 342 254 455 64
442 8.1 77.9 438 489 1158
3.7 604 128 40 59.4 443
246 235 389 43.2 29 68.1
411 191 561 187 314 808
858 459 2838 63.6 617 282
17 2.1 9.2 111 136 217
775 69 11.8 385 386 227
61 113 408 454 792 544
335 686 393 171 582 1115
245 26 3238 15.7 63 475
403 6.9 15 169 138 214
1295 59 9.9 679 538 646
19.3 16 151 471 621 47
10.9 5.7 8.5 74 125 185
37.7 39 24.2 304 459 38
297 515 32 272 497 824
38.9 18 239 411 562 1229
291 115 82 176 194 213
8.9 166 35 178 178 195
269 135 21 11 141 339
185 6.9 3.2 118 146 97
H-M | H-OP [ mM-OP H-M | H-OP [ M-OP
0005 | 0012 | 04 003 | 0003 | 0.05

C.7 Test Accuracy Evaluation using F-Score
Measurement

In a binary classifier of two classes (positive and negative), if positive samples are classified
into positive class, they are called true positive (TP). However, if they are misclassified to
negative class, they are called false positive (FP). On the other hand, for the negative class,

if negative samples are classified into negative class, they are called true negative (TN) and
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if they are misclassified to positive class, they are called false negative (FN). To compute the
score, both the precision p and the recall r of the test results need to be considered. Precision
p (shown in Relation C-1) is measured with respect to the number TP results divided by the
number of all positive results returned by the classifier. Recall  is measured according to the
number of TP results divided by the number of all relevant samples (shown in Relation C-
2). The Fy,,. (shown in Relation C-3) is the harmonic average of the precision and recall

(0<Fs.<1), where the best value is 1 (perfect precision and recall) and worst is 0.

p—_1P (C-1)
TP + FP

. TP (C-2)
~ TP+FN

precision .recall (C-3)

FScore -

"precision + recall

C.8 SNN Parameter Optimisation

For optimisation, | performed an exhaustive grid-search on combination of parameters for
every sample’s model. Each parameter was searched within a range, specified by the
minimum and maximum, through several iterations related to the number of steps for moving
from minimum to maximum. For every model creation, | chose three main parameters (STDP
learning rate, mod and drift parameters) to be optimised. The parameters were selected by
assigning 10 steps between the minimum and maximum values of each parameter range.
Therefore, for every model creation, 1000 iterations of training (using all samples except the
holdout sample) and testing (using the single holdout sample) were performed with different
combination of these three parameters. Then the parameters that resulted in the best accuracy
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in most of the iterations have been reported as the optimal parameters, shown in Table C-11.
The TBR threshold, neuron firing threshold and small-world radius parameters were fixed to

0.5, 0.5, and 2.5 respectively.

Table C-11 The optimal NeuCube parameters that resulted from a grid-search to optimise the classification
accuracy as an objective function.

Session EEG sample files used in NeuCube classification mod drift STDP rate
H subjects in Go vs H subjects in NOGO 0.56 0.03 0.003
| MMT subject in GO vs MMT subject in NOGO 0.56 0.02 0.0019
OP subjects in GO vs OP subjects in NOGO 0.45 0.025 0.0019
1 MMT subject vs H subjects (GO task) 0.56 0.01 0.002
Opiate subjects vs H subjects (GO task) 0.45 0.01 0.006
MMT subject vs Opiate subjects (GO task) 0.51 0.01 0.005
MMT subjects vs H subjects (NOGO task) 0.51 0.02 0.002
i Opiate subjects vs H subjects (NOGO task) 0.45 0.03 0.002
MMT subjects vs OP subjects (NOGO task) 0.45 0.025 0.0019
Parameter range 0.4-0.95 0.001-0.5 0.001-0.01

C.9 Parameter Setting for Conventional Methods

To perform the classification problem using conventional classifiers, first the spatio-temporal
sample representation needed to be transferred into vector-based representation. The
information of every input sample in SNN is presented in a 2-D matrix, where columns are
the STBD variables and rows are the continuous temporal information. To transfer one
sample data into one feature vector, | aggregated every [ time-points (a time-window) of a
variable to obtain one value. Figure C-7 graphically shows the representation of STBD

samples for NeuCube (in a) versus conventional methods (in b).
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v1 = (mean|t1,t1])
v2 = (mean[t(l+ 1).t(l+2)])

r

Sample 1

Sample 2

Sample n

tr

o2 B Vin Sample length =T /1

(a) Data sample representation in NeuCube SNN (b) Data sample representation in conventional methods

Figure C-7 (a) The 3-dimentional input data format for NeuCube SNN architecture. Every sample is presented
as a 2-D information, where columns represented the data variables (v) and rows are the temporal information
(t). This example contains 2 classes of samples; (b) transformation of the spatio-temporal samples into vector-
based samples by taking average over the temporal data with a time-window=I.

In the case of EEG data used in Chapter 4, each sample size was (75, 26), where 26 EEG
channels recorded 75 time points of temporal information. To transfer this 2-D data into one
vector, | defined [ = 15; so that, | took average over every 15 time-points which resulted to
obtain 5 values (75/15 = 5) for each EEG channel. Since, there were 26 channels, the

dimension of the final obtained sample vector is (26 x 5= 130). To optimise the

conventional classifiers, | performed as follows:

In MLP, the optimal number of hidden neurons was calculated using the formula suggested
by Trenn (Stephan, 2008) and also mentioned in (Gnana & Subramaniam, 2013). The number
of hidden neurons Nh is defined as (n + no — 1)/2, where n is the number of input neurons
(input EEG channels) and no is the number of output neurons for the classifier. Therefore,
In Chapter 4 the number of hidden neurons in MLP was (26 + 2)/2 = 14. For the rest of
the main parameters (learning rate, momentum, training iteration, number of hidden layers),
| performed the classification experiment several times with different values to find the
optimal parameters which resulted in the best classification accuracy. Table C-12 represents
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that for each experimental session, the classification was performed with different parameter
settings (learning rate range= [0.01, 0.5], momentum range= [0.1, 0.9], training iteration
range= [500, 1500], and number of hidden layer range= [2, 6]). In SVM, the classification
accuracy was performed based on two kernel functions: polynomial and radial basis function
(RBF). I considered the polynomial degree from 2 to 5 and the RBF width from 0.2 to 1 with
0.2 intervals. The best SVM’s parameters that resulted in the best classification accuracy are

reported in Table C-13.

Table C-12 The MLP optimal parameters were found after performing the experiments several times using
different parameter settings (learning rate (LR) = [0.01, 0.5], momentum (M) = [0.1, 0.9], training iteration (TI)
= [500, 1500], and number of hidden layer (HL) = [2, 6]).

MLP optimised parameters that resulted the best classification accuracy in experimental session |
Runs 5 10 20 20

Parameter [range] HL [2,6] IT[500,1500] LR[0.01,0.5] M [0.1,0.9]

H in GO vs. NOGO 5 800 0.1 0.8

MMT inGovs. NOGO | 5 1000 0.1 0.7

MMT in Govs. NOGO | 4 800 0.2 0.7

Optimised parameters that resulted the best classification accuracy in experimental session Il
Parameter [range] HL [2,6] IT[500,1500] LRJ0.01,0.5] M [0.1,0.9]
MMT vs. H subjects 5 1100 0.1 0.6

OP vs. H subjects 4 1200 0.3 0.8

MMT vs. OP subjects 4 1200 0.2 0.6

Optimised parameters that resulted the best classification accuracy in experimental session Ill
Parameter [range] HL [2,6] IT[500,1500] LRJ0.01,0.5] M [0.1,0.9]
MMT vs. H subjects 6 1000 0.3 0.6

Op vs. H subjects 5 1200 0.4 0.8

MMT vs. OP subjects 5 1200 0.3 0.8

Table C-13 The SVM optimal parameters that resulted the best classification accuracy were found after
performing the experiments several times with different parameter setting (polynomial degree within [2, 5] and
(RBF) kernel degree within [0.2, 1]).

SVM optimised parameters that resulted the best classification accuracy in experimental session |

Kernel polynomial [2,5] RBF [0.2,1]
Kenner degree 2 3 4 5 0.2 0.4 0.6 0.8 1
H in GO vs. NOGO 55.0 | 65.0 | 63.0 | 52.0 | 47.0 | 48.0 | 55.0 54.0 | 48.0

MMT in Govs. NOGO | 53.0 | 63.0 | 59.0 | 50.0 | 55.0 | 38.0 | 55.5 52.0 | 55.0
MMT in Govs. NOGO | 67.0 | 64.0 | 66.0 | 58.0 | 55.0 | 60.0 | 50.0 50.0 | 50.0
SVM optimised parameters that resulted the best classification accuracy in experimental session Il
MMT vs. H subjects 70.0 | 62.0 | 60.0 | 50.0 | 65.0 | 68.0 | 54.0 44.0 | 45.0
OP vs. H subjects 51.0 | 68.0 | 63.0 | 50.0 | 55.0 | 38.0 | 55.0 52.0 | 55.0
MMT vs. OP subjects 67.0 | 64.0 | 66.0 | 66.0 | 62.0 | 54.0 | 54.0 40.0 | 40.0
SVM optimised parameters that resulted the best classification accuracy in experimental session |1l
MMT vs. H subjects 50.0 | 53.0 | 63.0 | 53.0 | 60.0 | 62.0 | 64.0 51.0 | 40.0
Op vs. H subjects 68.0 | 73.0 | 71.0 | 50.0 | 51.0 | 48.0 | 50.0 48.0 | 44.0
MMT vs. OP subjects 56.0 | 63.0 | 60.0 | 55.0 | 56.0 | 62.0 | 62.0 55.0 | 55.0
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Appendix D Dynamic Clustering Patterns

The discriminative patterns in some EEG channels was also captured through visualisation
of the samples’ distrubution across the classes, as shown in Figure D-1. Quantitave
information about the changes in the size of the clsuters are presented in Tables D-1 to D-6.

| have applied a t-test to the B, (t), the area under the curve, and the mid of potential as

shown in Tables D-7 to D-9.

0 2 4 6 8 10 12 14 16 18 20 0 1 2 3 4 5
Channel3 Channel4

Channel7 Channel8

0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 10 12 14 16 18 20
Channel9 Channel10
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Figure D-1 Distribution of the samples with respect to the PSP rates in class H (red) and class OP (blue) for 26

EEG channels.
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Table D-1 Clusters sizes are changing over time during the STDP learning in SNN model of 21 H subjects in GO (in total 1575 time points were entered and learnt).

Fpl Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4 T3 C3 Cz C4 T4 (CP3 CPz CP4A T5 P3 Pz P4 T6 01 0Oz 02

1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1
2 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1
3 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1
4 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1
5 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1
6 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1
7 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1
8 1 1 1 14 1 1 1 30 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1
9 1 1 1 19 43 41 1 26 30 1 1 27 1 1 1 1 11 1 1 1 1 1 11 1
10 1 1 38 17 47 41 1 2 30 1 1 27 1 1 1 1 11 1 1 1 1 1 11 1
11 1 1 38 17 47 41 1 35 30 1 1 18 1 1 4 18 11 1 1 1 1 1 11 1
12 1 1 38 17 47 41 1 35 30 1 1 18 1 1 4 18 11 1 1 1 1 1 11 1
13 1 1 38 17 47 41 1 35 30 1 1 18 1 1 4 18 1 1 1 1 34 35 30 36 15 26
14 1 1 38 17 47 41 1 35 30 1 1 18 1 1 39 18 1 1 1 1 21 36 35 3631 22
15 1 1 38 17 47 41 1 35 30 1 1 18 1 1 39 18 1 1 1 1 26 37 36 52 30
16 1 1 38 17 47 41 1 35 30 1 1 18 1 1 39 18 1 1 1 1 26 37 41 51 34
17 1 37 38 17 47 37 1 26 30 1 3% 27 1 1 39 18 1 1 15 1 16 26 37 41 41 34
18 1 37 38 17 4 37 1 26 30 13 27 1 1 39 18 1 1 15 1 16 26 37 41 41 34
1574y 8 73 76 25 74 34 116 42 30 65 76 34 49 22 105 10 8 27 61 26 18 18 8 65 19 63
15750 8 72 76 25 74 34 117 42 30 65 76 34 49 22 105 10 8 27 61 26 18 18 8 65 19 63




Table D-2 Clusters sizes are changing over time during the STDP learning in SNN model of 29 MMT subjects in GO (in total 2175 time points were entered and learnt).

P4 T6 O1 Oz O2

Pz

CP4 T5 P3

C4 T4 CP3 CPz

Fz F4 F8 FC3 FCz FC4 T3 C3 Cz

F3

Fpl Fp2 F7

37

28
28
28
28
28
28
28
28

37
37
37

45

45 42

28
31

25
25

68
45

42

42

34
34
34
34
34

45

23
18
18
18

42 67

34
34
31

34
34
37

1
1
1

1
1
1

28 30
28 52
25 55

1
1
1

45

63

67
67

42

45

32
32

63

42

45

25

63

67

39

31

47

51 9% 29 70 72 49 35

51 9% 29 70

48

1 13
11 13

8
8

% 114
97 113

64 15 1
5 1

64

56
56

22
22

14 178 63 5 210 57
178 5 210 57

14

40
40

72 49 35

48

63

1
12
13

14
15

16
17

18

2174
2175
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Table D-3 Clusters sizes are changing over time during the STDP learning in SNN model of 18 OP subjects in GO (in total 1350 time points were entered and learnt).

Fpl Fp2 F7 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPz CP4 T5 Ol Oz
1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2l 1 3% 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 24 3 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 24 3B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5024 3% 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6] 24 3 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7124 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8] 4 3» 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 24 3» 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100 24 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 32 39 40 1 24
1 24 3% 1 1 1 1 1 1 1 11 1 1 1 1 1 1 27 0 0 1 3 39 92 0 2
120 24 3 1 1 1 1 1 1 1 11 1 1 1 1 1 1 27 20 0 1 31 3 72 0 25
13 24 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3% 20 14 1 22 53 58 0 26
14 24 35 1 18 39 4 1 36 12 1 1 27 40 1 1 1 1 3% 20 14 1 22 53 58 0 26
150 24 31 1 18 40 44 1 37 24 1 1 27 27 1 40 1 1 3% 20 14 1 23 47 58 0 31
16) 24 31 1 18 40 44 1 37 24 1 1 27 27 1 40 1 1 3% 20 14 1 23 47 58 0 31
171 24 32 36 13 39 4 1 36 12 1 1 27 40 1 40 1 26 3% 20 14 1 22 51 58 0 28
18] 18 32 42 13 39 44 1 36 12 1 1 41 40 1 40 1 27 35 20 13 1 21 51 42 16 29
1349 52 67 135 8 42 9 8 89 13 22 7/ 14 37 46 174 15 13 39 106 21 39 64 68 83 9 47
1350 52 67 135 8 41 95 88 90 13 22 7/ 14 37 46 174 15 13 39 106 21 39 64 68 83 9 47




Table D-4 Clusters sizes are changing over time during the STDP learning in SNN model of 21 H subjects in NOGO (in total 1575 time points were entered and learnt).

P3 Pz P4 T6 01 Oz 02

C4 T4 CP3 CPz CP4 T5

Cz

FC4 T3 C3

Fz F4 F8 FC3 FCz

F3

Fpl Fp2 F7

41

34

41

34
34
34

41

33

41

33
33

41
41

34
34
34

52

41

46

39
37

52

41

34

48

52

41

34

48
48
48
48

37

30
30
30
30
30

3 3 2

1
1

1
1
1
1
1

1
1
1
1
1

16
16
16
16
16

53
53
53
53
53

41

34

37

3 3 2
1 33 33 26
1 33 33 2
1 33 3 2

41

34

37

41

34
34
34

37

41

46

42

39
39

27
27

41

46

42

49

721 45 84 121 21
7021 45 84 121 21

23
23

81 22
22

17
17

46 21 97
97

34
34

55 108
55 108

18
18

33

25 135
25 135

109 5 52 31
109 54

78
78

49

81

21

46

33

31

52

11
12
13
14
15
16
17
18

1574
1575
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Table D-5 Clusters sizes are changing over time during the STDP learning in SNN model of 26 MMT subjects in NOGO (in total 2325 time points were entered and

learnt).
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Table D-6 Clusters sizes are changing over time during the STDP learning in SNN model of 18 OP subjects in NOGO (in total 1350 time points were entered and learnt).

Fpl Fp2 F7 F3 Fz F4 K8 FC3 FCz FC4 T3 C3 Cz C4 T4 CP3 CPzCP4 TS5 P3 Pz P4 T6 O1 Oz O2

1] 1.1 1 1 1 1 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2l 1.1 1 1 1 1 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1.1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4@ 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1.1 1 1 1 1 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6] 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
/71 1.1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
g 1.1 1 1 1 1 1 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9 1. 1 1 1 1 1 50 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 24 37 1 1 1 1 50 11 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 24 37 1 1 1 1 50 11 129 1 1 1 1 1 1 1 18 1 1 1 40 1 1 1
12 24 37 1 1 1 1 50 11 129 1 1 1 1 1 1 1 18 1 1 1 40 31 1 1
131 24 37y 1 1 1 1 50 11 129 1 1 1 1 1 1 1 18 18 1 1 40 31 1 1
14 24 37 1 1 1 1 5 3% 1 1 29222 1 1 1 15 1 1 18 12 1 1 40 31 1 1
15 24 37 1 1 1 1 5 3% 1 1 29222 1 1 1 15 1 1 18 12 1 1 40 31 1 1
16y 24 3y 1 1 1 1 5 3H 1 1 29 22 1 1 1 15 1 1 18 8 34 37 40 31 1 1
171 24 37 1 1 1 1 5 3 1 1 29 22 1 40 1 15 24 0 18 8 34 49 40 31 1 1
18 24 37 1 1 1 1 50 3 1 1 47 22 1 40 1 15 24 12 0 8 34 37 40 31 1 1
13491 84 73 48 51 83 60 68 20 43 32 111 42 67 44 193 29 12 11 36 35 19 38 48 78 46 87
1350 84 73 48 51 83 60 68 20 43 32 111 42 67 44 193 29 12 11 36 35 19 38 48 78 46 87




Table D-7 T-test measure was applied to the PSP’s area under the curve for 26 clusters which belong to 21
healthy subjects and 18 OP subjects.

229

Fpl Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4
1 86 959 599 46.5 226.6 228.0] 131.4 2716 292.7 203.7| 2194 107.3] 58.0 264.9| 324.4 166.6] 307.5 166.6] 98.8 79.0
2 3115 93.7] 420.8 163.2| 4775 55.6| 152.0 287.5 4825 3445 281.1 243.3| 720.9 249.9] 545.6 173.0] 2319 173.0] 611.5 503.8
3 177.3 448.6| 338.7 441.6| 282.1 874.0] 202.3 391.1] 391.7 531.7| 53.8 1109.0) 2159 421.6| 232.3 101.3| 178.9 101.3| 264.4 821.5
4 258.7 358.8| 483.6 425.5| 4285 616.6| 358.2 385.0] 482.3 556.2| 198.5 834.0] 469.4 446.1] 314.4 126.6| 263.8 126.6| 507.3 778.6)
5 336.3 287.2] 691.0 515.4 6458 431.0] 171.9 2335 313.7 4225 1756 735.2| 746.9 384.4| 286.8 98.7] 206.0 98.7] 626.1 608.4
6 3249 1415] 701.1 211.4] 808.7 189.6| 230.7 190.5| 367.1 17.3] 1921 5355 7945 323.1| 3415 39.7| 2349 39.7| 671.4 220.1
7 2714 281.6] 6054 4950 559.8 567.0| 165.1 297.3| 397.6 454.4| 230.3 713.9| 684.9 543.4| 307.6 114.4] 140.2 114.4] 654.3 531.5
8 729 282.4| 309.0 384.2| 487.0 312.0f 186.6 286.6| 527.3 224.0| 272.3 551.6| 596.2 556.6| 348.2 152.8] 260.5 152.8]| 674.7 324.2
9 222.1 364.8| 507.8 563.9| 687.8 498.6| 219.1 233.4] 620.1 274.6| 244.7 521.9| 7425 464.2| 369.6 85.5] 198.2 85.5]| 598.4 379.0
10 295.0 433.0] 592.6 498.7| 801.4 659.7| 230.1 276.5 554.0 402.0] 173.1 643.4] 959.0 469.1| 357.3 85.7] 192.0 85.7] 432.1 425.6
11 314.8 42| 622.3 24.0 603.9 104.8| 218.4 176.5 506.8 220.0| 194.2 41.3] 369.6 291.8 358.4 78.0| 111.8 78.0] 626.2 278.0
12 1285 425.6] 228.6 621.5| 4489 621.2| 210.6 265.2| 406.7 393.0] 267.6 816.1] 514.7 443.6| 374.1 102.2| 168.2 102.2| 581.8 445.8
13 2155 204.3] 570.0 205.0f 390.2 253.2| 167.7 220.3| 423.2 227.9| 208.2 225.1| 788.6 342.2| 327.6 73.4] 993 73.4] 430.0 302.7
14 2219 159.6| 545.6 102.9| 46.5 172.4| 116.3 51| 3581 3142 228.1 108.1| 527.8 87.4| 4237 83.2] 910 83.2| 576.5 398.8
15 238.6 499.4| 680.9 512.1f 321.6 575.3| 204.6 309.8 412.6 3129 175.0 701.7| 611.2 457.7] 332.8 134.3] 88.1 134.3| 673.3 455.9
16 2421 499.6| 424.9 5135 542.2 539.1| 186.8 242.5| 389.8 255.1| 143.2 155.1| 463.5 403.6] 359.0 100.1] 101.1 100.1] 446.7 287.2
17 407.2  99.2] 724.0 1859 669.0 458.0] 218.1 355.8| 610.1 393.9| 185.0 660.5| 955.4 440.7| 362.5 183.7) 141.1 183.7| 711.2 400.4
18 345.0 2675 466.1 331.8| 621.3 315.7| 109.5 296.9] 440.7 295.7| 166.0 383.1| 746.2 381.4| 328.0 128.6] 99.6 128.6| 673.6 317.0
19 267.3 464.4 1218 99.6 463.0 2133 483.5 266.3 192.3 539.7
20 238.6 440.9 198.8 212.3 390.5 161.6 548.5 298.4 127.5 602.8
21 240.6 458.5 284.1 44.7 495.4 161.0 499.8 85.2 85.9 549.0
P-value 0.4725 0.017 0.5309 0.003 0.003 5E-04 0.0007 1E-11 0.003 0.022

T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3
1 298.5 142.01 173.6 268.1| 216.5 218.1] 171.3 226.9| 498.1 3324 1209 889 133.0 1254 339.6 155.9] 46.1 195 4.3 136.5
2 252.6 257.1) 220.8 207.4| 247.1 2435 173.7 233.6] 556.1 630.5| 172.7 51 3415 219.1] 1856 61.8] 171.9 140.8| 328.0 153.0
3 397.4 708.0] 283.3 361.7 119.0 213.4| 2175 3255/ 638.8 10757 779 87.6] 441.8 194.8| 120.6 121.5| 1489 278.6] 335.9 239.0
4 349.9 335.0) 381.0 281.6| 146.8 214.5| 254.4 275.2| 941.3 907.0] 175.7 107.3] 606.4 110.9] 138.5 114.0] 158.8 169.2| 260.8 159.2
5 385.6 533.2| 220.3 320.2| 116.1 197.2| 243.8 316.3| 722.8 874.0| 149.2 116.3| 600.1 139.7| 289.5 149.6] 207.4 150.1 239.9 153.8
6 477.2 182.6] 305.3 203.3| 127.9 99.1] 190.8 432.4| 819.1 930.2| 116.9 107.2| 652.6 136.6] 361.9 108.6] 204.8 39.1] 296.6 144.6
7 432.8 338.0] 397.5 252.0[ 103.7 211.3| 231.9 319.4| 799.8 1363.7| 642 99.7| 656.6 133.3] 218.1 153.8] 197.2 127.6| 230.2 283.4
8 297.8 261.3| 479.8 253.4| 204.3 208.5| 135.1 418.1] 727.4 10402 99.3  78.4| 556.0 104.2| 243.3 130.1] 150.9 35.8]| 301.6 274.4
9 302.8 50.7] 468.7 204.8[ 269.9 231.2| 169.0 452.6| 637.1 847.2| 87.2 131.1] 7121 164.1| 262.5 117.2] 187.9 168.4] 317.5 376.2
10 306.2 508.2] 409.0 196.1f 370.4 195.3| 162.5 498.1| 664.0 1130.3| 37.6  89.0 465.1 113.2| 270.6 181.4] 153.8 238.8| 242.8 430.5
11 913 15.7| 469.4 1858 288.7 1715 206.5 501.1| 7415 4133 743 81.0] 630.5 128.8| 276.4 152.0] 138.9 109.4| 306.6 229.0
12 151.3 391.2| 371.4 139.5| 354.1 210.6] 146.2 488.0| 1649 921.1] 132.2 106.0] 496.4 90.4| 30.9 1417 875 213.7| 258.5 345.4
13 116.8 29.0] 313.7 170.6] 192.8 104.8] 127.9 314.4| 613.0 687.6] 559 92.3] 5722 82.1| 199.9 193.1 167.7 1456| 124.1 218.6
14 59 16.0] 4454 33.1] 2304 1753 184.3 303.9 101.6 39.1] 1158 1234 4503 122.1| 136.5 45.3| 1474 102.5( 366.8 150.1
15 53.7 268.8| 423.0 154.2| 2045 205.0f 191.2 495.1| 782.8 9959 104.8 158.5| 608.0 106.2| 163.0 159.4| 172.7 145.2| 256.8 392.3
16 326.4 202.2] 366.1 151.0 224.8 181.5| 120.6 428.7| 129.3 953.7| 106.4 120.3| 487.5 95.9| 186.2 111.3] 158.0 317.6| 213.5 436.2
17 156.7 396.9| 487.5 238.9| 322.3 228.9] 190.7 407.4| 784.6 1020.8| 121.5 122.6] 627.1 72.4| 232.6 162.9| 208.1 281.6 203.7 353.8
18 251.7 316.0] 508.3 194.4| 319.6 200.8| 187.1 419.6] 7354 790.6| 126.8 122.9| 672.9 104.8| 224.4 205.2] 230.6 179.9] 260.1 342.2
19 2722 408.8 327.1 140.8 503.6 97.1 517.5 102.3 124.3 149.2
20 34.0 4139 329.0 112.0 468.9 91.6 3935 75.6 148.4 268.2
21 1.0 32.9 180.1 190.2 112.2 7.8 310.6 121.1 76.0 70.2
P-value 0.6236 8E-07 0.0636 1E-08 0.017 0.696 1E-11 0.005 0.9468 0.537

Pz P4 T6 o1 Oz 02
1 68.3 166.8| 120.3 277.9| 514.6 318.9 482.3 4495[ 311.2 230.1] 3429 584.0
2 40.2 7.2| 1845 159.9] 578.0 416.5| 275.0 394.8| 656.8 224.0] 521.1 352.2
3 445 307.8| 205.3 298.6] 329.8 694.8] 174.1 1061.0] 2351 118.6| 304.1 618.0)
4 61.8 393.3| 162.2 440.6| 436.4 568.1] 182.2 551.2| 207.6 24.0| 356.8 324.1
5 89.0 408.0] 139.3 535.3| 404.0 321.1] 264.6 425.3| 159.3 109.6| 278.8 299.1
6 89.8 285.1| 195.7 397.1] 609.0 267.6] 253.8 398.7| 152.2 101.8| 356.7 252.1
7 108.2 412.0] 157.0 388.8] 500.3 327.4| 438.6 422.6] 244.0 58.6] 346.6 262.9
8 79.0 383.2| 121.0 498.7| 442.8 108.4| 3234 307.0] 149.0 92.3| 2721 1727
9 165.0 482.5| 244.6 397.7) 3959 215.3] 480.5 377.5| 271.4 60.0] 301.3 209.4]
10 101.8 529.0] 173.5 518.7| 464.8 295.6] 256.8 416.1] 184.7 85.3| 249.4 265.1
11 135.8 318.6| 257.6 463.3] 4659 214.4] 3535 302.2| 178.2 132.0] 260.8  89.6|
12 215.6 404.6| 1359 395.7| 457.8 237.9| 359.4 442.3] 118.9 86.0] 239.7 262.3|
13 80.2 3336 155.5 467.3| 359.5 212.6| 232.1 163.0] 132.2 1426 222.1 236.2
14 741 2427 197.4 3305 137.7 28.3| 2749 266.8| 1459 53.4| 2539 36.0
15 129.8 385.4| 131.4 666.1] 432.8 212.4] 389.0 342.9| 1747 143.9| 273.7 241.7|
16 1729 327.6] 2535 549.2| 434.1 258.8] 286.0 319.8] 122.7 77.0| 2479 229.7
17 168.1 481.9| 180.7 476.6] 879.1 347.9] 363.0 290.9] 181.4 71.4| 366.7 2324
18 167.8 539.7| 1945 547.3] 602.1 225.6] 314.7 270.1] 126.5 36.9] 239.8 202.8
19 1248 164.2 515.4 225.1 147.2 2335
20 64.0 139.8 499.3 286.1 140.9 252.2
21 108.9 207.6 352.9 305.0 1155 213.8
P-value 2E-07 2E-08 0.0006 0.077 0.002 0.497




Table D-8 T-test measure was applied to the PSP’s midrange values of 26 clusters which belong to 21 healthy
subjects and 18 OP subjects

Fpl Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4
1 078 426 23 139 495 595 395 7.03] 653 461 682 725 254 6.12 826 6.76] 8.58 52| 389 6.82
2 8.8 2711459 4.02| 13.48 1.81] 439 6.27] 1431 7.8 9.02 92| 184 831 139 498 6.56 5.22] 18.59 12.48
3 564 9.43/10.18 9.61] 7.08 19| 468 9.28] 11.19 11.62] 3.94 9.8 10.74 22.35( 9.66 10.63| 5.41 3.5 16.67 18.18]
4 6.54 6.85| 9.47 8.32| 12.04 123 7.33 755 1056 11.84f 589 8.71] 9.7 1435 7.13 11.38) 8.73  4.08] 12.05 16.25
5 6.89 6.05|15.48 11.6 13.69 9.46| 4.8 698 869 889 583 10.45 14.65 16.22] 6.34 11.1] 7.36 3.95( 13.36 11.69
6 6.61 3.85/15.89 5.62| 18.64 594 498 468 1231 6.43] 481 9.6| 18.45 10.96| 8.8 8] 7.97  1.44( 16.41 10.98
7 5.68 6.48/13.39 11.7) 11.74 11.8| 596 7.52| 1426 10.28] 5.95 10.76| 14.66 16.6| 7.81 1256 7.01  3.96] 14.88 12.77|
8 324 591] 9.34 889 1295 6.23| 467 7.1 1253 10.12] 7.59 9.16| 16.33 11.82 7.07 13.41] 5.98 3.8 16.2 9.59
9 472 89|11.06 121 137 121 424 7.81] 1492 883 6.02 10.89 17.38 11.12| 7.36 10.44] 494 4.02| 1467 8.81
10 544 9.45|1357 10.7| 16.98 15.7| 491 7.72] 13.84 864] 523 1399 1835 1546| 7.2 12.44] 463 3.95| 10.04 10.87
11 7.08 0.22|16.05 0.97| 1648 3.18| 515 4.85 1259 801] 6.18 11.52) 1529 1.46| 8.68 7.04] 3.57 35| 1641 7.84
12 2.83 10.09] 522 135 818 14.6| 414 834] 1012 9.02] 578 13.76 10.92 15.74] 8.78 10.78| 3.68 4.17| 10.51 11.09
13 524 832/11.13 135 9.11 14.6| 373 7.87] 989 7.75 531 8.7 16.79 15.74] 7.95 10.23] 403  3.43| 13.34 8.1
14 6.26 4.28/11.71 283 127 51 297 024 7.8 641 441 525 104 331 912 228 281 333 11.78 8.03
15 578 11.03] 15.11 12.4| 11.64 145 478 7.16] 12.05 9.19] 6.09 15.41] 1343 13.15 9.05 12.57] 41 4.49| 1587 9.37
16 9.23 4541585 7.55 12.65 10.6| 521 7.27] 1504 7.94 4.89 17.63] 1858 13.64] 7.83 9.62| 476 4.99 16.25 10.51
17 752 5.68|14.76 7.18 13.78 11.6| 503 547] 16.64 737 554 134 159 751 7.62 899 3.86 3.93| 1847 8.75
18 598 72311429 7.1 46 882 425 6.2 1451 761] 523 4 11.45 11] 546 9.2 5.21 4.2) 15.99 7.2
19 5.64 10.28 4.95 4.18 9.33 4.28 10.84 5.82 0] 3.63 14.02
20 51 8.97 6.05 1.42 9.39 3.69 9.59 2.52 0] 1.63 11.52
21 5.65 8.97 6.12 4.2 10.1 4.4 9.2 2.2 0 34 12.1
P-value 0.407 0.008 0.845 5E-04 7E-05 1E-05 0.31 0.02 0.02 0.002

T3 C3 Cz C4 T4 CP3 CPz CP4 T5 P3
1 7.7 7771 482 6.46| 679 7.12| 7.03 6.89] 121 9.22| 3.47 25| 438 515/ 827 3719 093 121 9.22
2 5.07 546 575 4.46] 549 5.08| 6.62 6.54 12.27 13.78] 4.48 167 873 539 44 14 441 285 12.27 13.78
3 7.68 14.96| 6.96 8.23] 3.27 5.82| 588 6.75 17.14 24.08] 3.55 238 10.3 5.66] 404 3.97/ 299 6.03] 17.14 24.08
4 6.62 6.01] 867 5.77| 3.89 4.39| 537 83| 17.54 20.94] 4.67 2.4 11.97 295 44 3.2 444 433] 17.54 20.94
5 6.94 10.54| 4.49 6.25| 3.19 53| 6.24 855 13.77 2043 272 266 13.34 3.15| 7.39 3.821 497 3.25| 13.77 20.43
6 10.17 53| 7.87 5.18 3.81 246] 581 823] 1837 1996 255 3.09] 14.56 2.95| 6.61 2.48] 525 1.23| 18.37 19.96
7 8.14 7.69] 9.49 4.72) 3.98 4.46| 518 85 17.3 30.85 29 297 14.85 2.8 575 3.34| 463 3.08] 17.3 30.85
8 6.98 6.78 9.5 5.86| 527 548 518 935 1635 3151} 217 267 13.19 2.85 553 2.82[3.33 1.43| 16.35 31.5]
9 6.48 1.45]10.31 5.46 8 4.26| 4.06 10.42| 16.87 22.85] 1.83 2.83| 14.53 3.33| 541 293] 405 3.97| 16.87 22.85
10 58 9.77] 9.02 508 7.49 491 3.52 10.29| 13.13 21.89] 1.23 2.3 12.14 3.31] 5.04 439 422 451 13.13 21.89
11 4.37 0.36) 10.65 4.26| 8.51 4.64| 4.29 11.38| 16.75 19.25| 226 1.85| 15.16 2.89 6.23 3.26| 3.04 2.52| 16.75 19.25
12 5.87 9.52| 7.79 4.44] 6.55 4.84] 3.14 11.41] 3.51 19.47| 274 3.41] 9.81 3.02] 0.9 3.35/258 533 3.51 19.47
13 561 86| 7.66 4.47| 6.28 3.81] 478 11.41] 1223 17.6] 252 237 11.89 3.08| 4.11 4.12| 443 4.58| 12.23 17.6)
14 0.35 0.49] 899 1.14) 5.33 3.93] 395 6.73] 1062 1.29 2.7 2721 917 273] 3.42 2131305 3.63] 10.62 1.29
15 7.84 6.89| 855 4.28] 7.86 5.49] 4.7 12.16] 1593 19.99| 241 3.42| 13.34 2.99| 6.07 4.131 3.97 6.99] 15.93 19.99
16 5.01 864 9.2 578 7.97 528 3.8 1097 1854 22.09| 294 298 13.56 3.44| 551 4.72| 466 7.18| 18.54 22.09
17 5.67 5.52112.09 4.41] 8.08 3.75| 4.65 111] 16.14 16.32| 275 2.52| 13.51 2.14| 497 437|466 4.19| 16.14 16.32
18 6.04 21| 854 4.02] 8.04 431 4.27 11.36| 11.84 17.22| 232 2.21] 10.84 2.14] 403 4.37[3.55 4.96| 11.84 16.27,
19 173 8.18 7.51 4.06 12.53 1.94 9.36 3.87 2.98 12.53
20 0.09 131 3.84 4.12 2.81 0.38 6.71 2.82 173 2.81
21 0.04 8.2 7.2 6.2 11.2 11.1 6.27 1.82 1.39 2.14
P-value 0.31 3E-05 0.006 2E-09 0.0051 0.376 2E-11 0 0.53 0.004

Pz P4 T6 01 Oz 02
1 4.62 4.98| 5.66 7.49| 11.75 7.05[11.17 11.68| 10.04 10.04f 9.01 15.59
2 3.14 35| 568 573 11.76 9.43| 6.39 891 1437 1437 13.04 8.17
3 201 952 505 71 67 144] 514 23.62] 7.38 738 6.73 14.72
4 3.59 10.17| 4.94 9.42| 892 9.47| 565 11.22| 574 574 7.63 7.38
5 3.06 805 3.82 108 876 6.5 621 9.3 3.8 3.85 6.48 6.3]
6 3.27 7.74] 4.29 9.55[ 12.99 7.12] 824 937 571 571 855 5.82
7 271 8.94] 3.76 8.15[ 12.74 6.03] 11.26 85/ 6.61 6.61] 9.23 5.41
8 3.17 816 3.21 10.2| 9.89 2.29| 7.59 7.37| 3.58 3.58] 6.45 3.3
9 3.43 10.12| 479 7.9 877 4.47)10.27 806 561 5.6] 6.94 5.18
10 3.88 12.53| 4.16 12.5[ 10.25 6.57| 7.98 8.16 4.5 4.5 5.55 5.55]
11 4.18 7.76] 5.58 9.66| 10.91 4.86| 7.53 6.74f 3.93 3.93 5.49  2.25]
12 4.25 897 297 103| 9.06 5.36/ 7.5 10.23] 297 297 5.63 5.55]
13 3.05 9.42| 539 931 852 635 7.14 911 4.01 4.01 5.04 5.67
14 3.7 8.03| 544 7.18] 3.68 0.9 6.79 6.42 3.48 348 6.01 121
15 439 9.32| 539 14.4] 9.79 7.84] 103 8.26 3.8 3.8 637 7.25
16 4.66 10.97| 4.53 12.3| 18.27 6.68] 7.73 6.91] 378 3.78] 7.89 5.02
17 466 11.48| 4.22 11.8) 11.92 5.13| 853 555 2.85 285 567 471
18 451 11.9| 514 11.2| 11.7 532 7.9 513 324 254 642 4.82
19 4.43 4.46 11.46 6.23 3.12 0of 636
20 2.67 4.47 8.95 7.46 2.79 of 522
21 2.71 4.13 8.55 7.46 2.37 of 522
P-value 5E-09 1E-08 2E-04 0.212 0.7293 0.5532
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Table D-9 T-test measure was applied to P, (t) of 26 clusters which belong to 21 healthy subjects and 18 OP

subjects.

Fpl Fp2 F7 F3 Fz F4 F8 FC3 FCz FC4
1 0.776 4.26] 2.291 1.38| 4941 5.94] 3.955 7.0287| 6.5219 4.6009|] 6.8195 7.241] 2.533 6.12| 8.2538 6.754| 8.571 5.2| 3.888 6.817
2 8.797 27| 14.58 4.012| 13.48 1.809| 4.397 6.2687| 14.305 7.7965| 9.0191 9.196| 18.4 8.309] 13.906 4.977] 6.551 5.21|18.583 12.48]
3 5.636 9.42| 10.17 9.609| 7.078 19| 4.684 9.2783| 11.184 11.615| 3.935 9.174] 10.737 22.35| 9.6505 10.63| 5.406 3.5| 16.668 18.18|
4 6.531 6.85] 9.469 8.312| 12.03 12.27| 7.32 7.5418]| 10.553 11.84] 5.8867 8.706| 9.6925 14.34] 7.123 11.37| 8.726 4.08| 12.05 16.24
5 6.89 6.05| 15.48 11.55| 13.69 9.459| 4.807 6.9795| 8.6841 8.8826| 5.8275 10.45| 14.647 16.22| 6.3341 11.1] 7.353 3.95| 13.356 11.68]
6 6.61 3.84] 15.89 5.616] 18.63 5.933| 4.985 4.6717| 12.304 6.4245| 4.8082 9.592| 18.448 10.96| 8.7936 7.998| 7.963 1.44] 16.407 10.98|
7 5.677 6.48] 13.38 11.69| 11.74 11.77| 5.954 7.5167| 14.258 10.274] 5.9487 10.76| 14.658 16.6] 7.8006 12.55| 7.003 3.96] 14.88 12.76|
8 3.24 591| 9.331 8.886] 12.95 6.226| 4.663 7.0926| 12.526 10.117| 7.5859 9.157| 16.328 11.81] 7.0665 13.41| 5.975 3.8| 16.195 9.587
9 4.714 8.89] 11.05 12.09| 13.7 12.06] 4.24 7.8061] 14.915 8.8269| 6.0185 10.89| 17.377 11.11| 7.3585 10.43| 4.94 4.01| 14.665 8.809
10 5.431 9.45| 13.57 10.72| 16.98 15.69| 4.903 7.7197| 13.838 8.6358 5.23 13.99| 18.341 15.46| 7.191 12.44] 4.63 3.94{10.036 10.87
11 7.077 0.21] 16.04 0.962| 16.48 3.176| 5.142 4.8499| 12.588 8.0069| 6.172 11.51] 15.29 1.454] 8.6715 7.039| 3.569 3.49| 16.409 7.832]
12 2.83 10.1] 5.21 13.45| 8.172 14.64| 4.132 8.3305| 10.117 9.018] 5.7719 13.75| 10.92 15.73| 8.7713 10.77| 3.678 4.16| 10.502 11.08
13 5.235 8.32| 11.13 13.45] 9.106 14.64| 3.724 7.8692| 9.8817 7.7476] 5.3065 8.693| 16.785 15.73| 7.948 10.22| 4.03 3.42|13.339 8.098|
14 6.256 4.28| 11.71 2.821| 1.268 5.092| 2.961 0.2305| 7.8895 6.4034] 4.4095 5.244| 10.392 3.305| 9.1187 2.276| 2.805 3.33| 11.771 8.029
15 5771 11} 15.1 12.4| 11.64 14.49| 4.779 7.1562| 12.047 9.1866| 6.0892  15.4] 13.423 13.15| 9.0482 12.57 4.1 4.49| 15.868 9.363|
16 9.224 4.54] 15.85 7.545| 12.65 10.61| 5.209 7.2639| 15.034 7.9346] 4.8818 17.62| 18.579 13.64| 7.8277 9.618| 4.751 4.98| 16.248 10.51
17 7.513 5.67| 14.75 7.176] 13.78 11.58| 5.027 5.4656| 16.633 7.3661| 5.5393 13.39| 15.894 7.51| 7.6194 8.988| 3.858 3.92| 18.467 8.745]
18 5.976 7.23] 14.28 7.1] 4596 8.82| 4.248 6.2| 14.501 7.61] 5.2246 4] 11.441 11| 5.4543 9.2] 5.202 4.2] 15.982 7.2
19 5.639 10.27 4.944 4.172 9.3249 4.2757 10.838 5.8179 3.628 14.017
20 5.1 8.963 6.046 1.412 9.3848 3.6818 9.5847 2.5192 1.62 11.52
21 5.646 8.963 6.12 4.2 10.1 4.4 9.2 2.2 3.4 12.1
P-value 0.407 0.008 0.845 5E-04 7E-05 1E-05 0.3097 0.0248 0.018 0.0018
1 7.704 7.77| 4.825 6.462| 6.797 7.122| 7.036 6.8927| 12.105 9.2205| 3.4741 2.501| 4.3803 5.151| 8.2741 3.705| 1.966 0.94| 12.105 9.221
2 5.072 5.46| 5.752 4.463| 5.494 5.087| 6.625 6.5421| 12.273 13.788| 4.4836 1.672| 8.7308 5.392| 4.4016 1.403| 4.419 2.85| 12.273 13.79|
3 7.688 15| 6.961 8.233| 3.274 5.829| 5.889 6.7572| 17.149 24.08| 3.5537 2.389| 10.301 5.667| 4.0482 3.978] 2.992 6.04] 17.149 24.08|
4 6.626 6.01] 8.679 5.778| 3.899 4.397| 5.378 8.3069| 17.548 20.943| 4.6753 2.401] 11.979 2.955| 4.4093 3.202| 4.447 4.33| 17.548 20.94]
5 6.946 10.5| 4.494 6.253 3.2 5.308| 6.248 8.5545| 13.772 20.433| 2.7288 2.66| 13.346 3.156| 7.3998 3.826| 4.973 3.26| 13.772 20.43
6 10.18 5.3] 7.871 5.188| 3.812 2.47| 5.819 8.2321)| 18.373 19.966| 2.5559 3.092| 14.568 2.96| 6.6137 2.488| 5.251 1.23|18.373 19.97
7 8.146 7.69| 9.493 4.721] 3.982 4.463| 5.184 8.5056| 17.305 30.851] 2.907 2.974]| 14.858 2.802| 5.757 3.342| 4.639 3.08| 17.305 30.85|
8 6.988 6.79| 9.502 5.869| 5.277 5.488| 5.184 9.3503| 16.356 31.517| 2.1798 2.677| 13.194 2.858| 5.5397 2.824] 3.338 1.43| 16.356 31.52|
9 6.482 1.46| 10.32 5.468| 8.006 4.267| 4.066 10.425| 16.879 22.852| 1.8359 2.838| 14.534 3.339| 5.4152 2.934] 4.059 3.97| 16.879 22.85|
10 5.801 9.77| 9.023 5.085| 7.491 4.916| 3.521 10.291] 13.137 21.896| 1.2353 2.308| 12.148 3.312| 5.0431 4.397| 4.224 4.52|13.137 21.9
11 4.38 0.36] 10.65 4.264]| 8.511 4.641| 4.298 11.387| 16.75 19.259| 2.2628 1.855| 15.167 2.891] 6.2341 3.263| 3.047 2.52| 16.75 19.26
12 5.87 9.52| 7.793 4.449| 6.557 4.842| 3.142 11.415| 3.5137 19.476) 2.747 3.412| 9.818 3.021| 0.9059 3.354] 2.582 5.34{3.5137 19.48|
13 5.615 8.6] 7.664 4.477] 6.284 3.813| 4.781 11.415| 12.23 17.605| 2.5223 2.372| 11.894 3.08| 4.1138 4.128| 4.438 4.59| 12.23 17.61]
14 0.352 0.49] 9 1.148| 5.332 3.935| 3.951 6.7395] 10.62 1.2967| 2.7041 2.724] 9.1756 2.734] 3.4259 2.139| 3.059 3.63| 10.62 1.297
15 7.85 6.9| 8556 4.288| 7.86 5.499| 4.704 12.164| 15.938 19.993| 2.4128 3.427| 13.348 2.999| 6.0746 4.138] 3.98 6.99] 15.938 19.99
16 5.017 8.64| 9.201 5.783| 7.979 5.288| 3.809 10.977| 18.549 22.09| 2.9471 2.985| 13.564 3.446| 5.5168 4.722| 4.664 7.19| 18.549 22.09|
17 5.674 5.52| 12.09 4.415| 8.088 3.758| 4.652 11.106| 16.145 16.327| 2.7542 2.525| 13.511 2.142| 4.9727 4.375| 4.663 4.2| 16.145 16.33
18 6.046 2.1| 8546 4.021] 8.042 4.31] 4.271 11.36] 11.84 17.221] 2.3268 2.212| 10.848 2.142| 4.0378 4.375| 3.559 4.97| 11.84 16.27|
19 1.735 8.188 7.517 4.061 12.536 1.9435 9.3634 3.8703 2.983 12.536
20 0.099 1.314 3.841 4.127 2.8143 0.38197 6.7171 2.8285 1.74 2.8143
21 0.05 8.2 7.2 6.2 11.2 11.1 6.271 1.8285 1.395 2.143
P-value 0.311 3E-05 0.006 2E-09 0.0051 0.37464 2E-11 0.0048 0.531 0.0041
1 4.62 4.99| 5.661 7.5| 11.76  7.05| 11.17 11.689| 10.046 10.046| 9.0145 15.6|
2 3.147 3.51] 5.683 5.736| 11.77 9.434] 6.398 8.9136| 14.374 14.374] 13.043 8.176
3 2.01 9.52 5.057 7.103| 6.702 14.4] 5.142 23.625| 7.3859 7.3859| 6.7391 14.72
4 3.596 10.2| 4.941 9.422| 8.922 9.477| 5.66 11.227|5.7491 5.7491| 7.6367 7.382
5 3.06 8.05| 3.822 10.8] 8.765 6.506| 6.218 9.3057| 3.8518 3.8518| 6.4834 6.312
6 3.279 7.75| 4.298 9.554| 12.99 7.123| 8.244 9.3737|5.7101 5.7101 8.551 5.828
7 2.711 8.95| 3.767 8.158| 12.75 6.039| 11.27 8.5024] 6.6128 6.6128 9.238 5.413
8 3.172 8.16| 3.215 10.16| 9.895 2.292| 7.594 7.3792| 3.581 3.581] 6.4521 3.368]
9 3.431 10.1] 4.795 7.9| 8.774 4.474] 10.28 8.062| 5.6157 5.6157| 6.9484 5.187
10 3.883 12.5| 4.168 12.49| 10.25 6.579] 7.983 8.168| 4.508 4.508| 5.5544 5.554
11 4.189 7.76] 5.58 9.661| 10.92 4.864| 7.533 6.7473| 3.9315 3.9315| 5.4961 2.253
12 4.251 8.97| 2.978 10.28| 9.063 5.365| 7.509 10.233| 2.974 2.974] 5.6346 5.559
13 3.058 9.42| 5.394 9.317| 8.527 6.359| 7.146 9.1103| 4.0186 4.0186| 5.0499 5.67
14 3.701 8.03| 5.441 7.187| 3.686 0.901|] 6.792 6.4295| 3.4886 3.4886 6.019 1.213
15 4.392 9.33| 5.397 14.45| 9.791 7.845| 10.31 8.2604| 3.8085 3.8085| 6.3703 7.255
16 4.665 11| 4.539 12.33| 18.27 6.681] 7.74 6.9157| 3.7828 3.7828| 7.8952 5.025
17 4.664 11.5| 4.229 11.81] 11.93 5.133] 8.54 5.5513| 2.8554 2.8554| 5.6798 4.718
18 4515 11.9| 5.145 11.2| 11.7 5.329] 7.909  5.13| 3.2404 2.54] 6.4211 4.82
19 4.435 4.464 11.46 6.231 3.1223 6.3617
20 2.671 4.471 8.956 7.463 2.79 5.2222
21 2.71 4.13 8.557 7.463 2.379 5.22
P-value 5E-09 1E-08 2E-04 0.212 0.7292 0.55303
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