
A STAGED APPROACH TO

CLASSIFICATION IN

HIGH SPEED CONCEPT DRIFTING

DATA STREAMS

A THESIS SUBMITTED TO AUCKLAND UNIVERSITY OF TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Supervisors

Assoc. Prof. Russel Pears

Dr. M. Asif Naeem

December 2018

By

Chamari I. Kithulgoda

School of Engineering, Computer and Mathematical Sciences

Abstract

Data stream classification task needs to address challenges of enormous volume, continu-

ous rapid flow, and concept drift of data in the presence of limited computer resources.

A successful classifier is expected to result in higher accuracy and throughput under

constrained memory conditions. This thesis aims at the problem of increasing through-

put without sacrificing the accuracy of the classifier in concept drifting and recurring

data streams. The solution introduces a novel stage learning framework that senses the

context of data to determine the level of volatility in the stream.

Two learning stages namely, Stage 1 and Stage 2 are defined in accordance with stream

volatility. Stage 1 is the high volatility state where many new, previously unseen con-

cepts appear. Stage 1 represents an intensive learning phase in the lifetime of a data

stream and hence an ensemble of classifiers is used in this stage as previous research has

shown that ensembles excel in such situations. In Stage 1, concepts are captured by the

ensemble learner and then stored in an online repository for future use in the event that

such concepts recur in the future. In contrast, Stage 2 represents a low volatility state

and features a limited learning ability as it relies to a greater extent on concepts already

captured in Stage 1. Our empirical results reveal that such a staged approach achieves

a significant throughput advantage as a result of the deactivation of computationally

expensive ensemble learner in Stage 2.

Two main versions of the stage learning paradigm, namely Staged Online Learner

(SOL), and SOL with Incremental Fourier Classifier (SOL-IFC) is presented. The Stage

2

1 segment of both SOL and SOL-IFC is driven by a forest of Hoeffding decision trees,

each of which has its own drift detector. The Stage 2 learning segment of SOL is carried

out by Fourier spectral representations of learned decision trees and a derivative in the

form of a single decision tree. Although Stage 2 processing overhead of SOL is much

smaller than in Stage 1, peaks in processing time occur at concept drifts have to be

prevented. Consequently, an extended version of SOL named as SOL-IFC introduces

an innovative incrementally adaptive Fourier spectrum arrangement for Stage 2. The

IFC comprises of novel noisy feature filtering and instance synopsis generation mechan-

isms that contribute to further performance enhancements. As per empirical evidence,

SOL-IFC outperforms state-of-art algorithms on a combined metric of throughput and

classification accuracy while avoiding the issue of peak processing times at drifts with a

smoother incremental Fourier adaptation process.

The implementation independence of the staged learning approach is proven by the

third version named as MLP-FC that replaces the decision tree forest with a neural

network classifier during Stage 1.

3

Contents

Abstract 2

Attestation of Authorship 10

Acknowledgements 11

1 Introduction 12
1.1 Research problem . 12
1.2 Motivation for research . 17
1.3 Research objectives . 21
1.4 Overview of research solution . 23
1.5 Research contributions . 24
1.6 Thesis structure . 25

2 Background 26
2.1 Introduction . 26
2.2 Data stream classification . 27
2.3 Concept drift . 28
2.4 Data stream classification strategies . 30

2.4.1 Non ensemble incremental approaches 30
2.4.2 Incremental ensemble classifiers 33
2.4.3 Pairing drift detectors with stream learners 36
2.4.4 Re-use of models when concepts recur 38

2.5 The use of the Discrete Fourier Transform in classification and concept
encoding . 42
2.5.1 Repository management . 46

2.6 Conclusion . 49

3 Staged Learning Approach 51
3.1 Introduction . 51

3.1.1 Basic components . 52
3.1.2 Optimizing for stream volatility and speed 52

3.2 The context sensitive Staged Learning framework 53
3.2.1 Implementation choices . 53

4

3.2.2 The Staged Online Learning (SOL) approach 55
3.2.3 Transition between Stages . 58
3.2.4 Algorithm . 63

3.3 Time and space complexity of spectral learning 65
3.4 Conclusion . 66

4 Experimental Study on Staged Online Learning 68
4.1 Introduction . 68
4.2 Empirical study . 69

4.2.1 Algorithms used for the study 69
4.2.2 Datasets used for the study . 72
4.2.3 Parameter values . 76
4.2.4 Effectiveness of Staged Learning approach 77
4.2.5 Accuracy evaluation . 81
4.2.6 Throughput evaluation . 84
4.2.7 Accuracy versus Throughput trade-off 86
4.2.8 Memory consumption evaluation 86

4.3 Sensitivity analysis . 87
4.4 Conclusion . 90

5 Incremental Fourier Classifier 91
5.1 Introduction . 91
5.2 Application of DFT in SOL vs its application in SOL-IFC 92
5.3 Advantages of the Fourier Classifier over the Decision Tree Classifier 93

5.3.1 Decision Tree overhead . 94
5.3.2 Fourier Classification overhead 95
5.3.3 Fourier Coefficient Array update overhead 96

5.4 Incremental approach to Fourier Spectrum maintenance 97
5.4.1 Incremental maintenance of Spectra 98

5.5 Hashing and Reservoir management . 103
5.5.1 Schema Hashing through Feature Selection 104
5.5.2 Reservoir organization . 105

5.6 Algorithm . 107
5.7 Conclusion . 109

6 An Empirical Study of the Incremental Fourier Classifier 111
6.1 Introduction . 111

6.1.1 Algorithms used in study . 112
6.1.2 Datasets used for the empirical study 116
6.1.3 Parameter values . 117

6.2 Accuracy evaluation . 117
6.3 Throughput evaluation . 123

6.3.1 Accuracy versus Throughput trade-off 126
6.4 Load Shedding . 127

5

6.4.1 Load Shedding exercise . 128
6.5 Overheads of Decision Tree Learning vs Incremental Fourier Classific-

ation . 130
6.5.1 Incremental versus Non Incremental approach to Fourier Clas-

sification . 131
6.6 Conclusion . 133

7 Verifying the Potential of Using Different Classifiers in SOL 135
7.1 Introduction . 135
7.2 Neural Network . 136

7.2.1 Feed-forward MLP . 137
7.2.2 Activation function . 138
7.2.3 Error function . 139
7.2.4 Backpropagation algorithm . 139

7.3 Learning from Neural Network in Stage 1 139
7.4 Generating Fourier model for Stage 2 Learning 141

7.4.1 Extracting Schema Set . 142
7.4.2 Fourier Coefficient calculation for Stage 2 Learning 144

7.5 Experimental study . 144
7.5.1 Datasets used for the experimental study 145
7.5.2 Parameter values . 146
7.5.3 Effectiveness of SOL with MLP based Fourier model 147

7.6 Conclusion . 156

8 Conclusion 157
8.1 Research achievements . 157

8.1.1 Designing a context sensitive Staged Learning framework . . . 157
8.1.2 Implementation and evaluation of the proposed framework . . 158
8.1.3 Design, implementation, and evaluation of advanced version of

the framework . 159
8.1.4 Examination of the generalisability of the proposed framework . 161

8.2 Limitations of this research . 161
8.3 Future work . 166

References 169

Appendices 178

A Glossary 179

6

List of Tables

2.1 Mapping of Fourier concepts to their intuitive meanings 42

4.1 Stage-wise throughput and accuracy profiles for the Noisy RH dataset 78
4.2 Stage-wise throughput and accuracy profiles for the Noisy RBF dataset 78
4.3 Stage-wise throughput and accuracy profiles for the Flight dataset . . 79
4.4 Stage-wise throughput and accuracy profiles for the Elec dataset . . . 79
4.5 Stage-wise throughput and accuracy profiles for the Covertype dataset 80
4.6 Classification accuracy with ranking . 81
4.7 Throughput with ranking . 85
4.8 Average memory consumption (in kBs) 87
4.9 Effect of Alpha and Beta on the Noisy RBF dataset and Elec dataset . 89
4.10 Effect of repository size on the 10% progressive RH, Flight, and Cover-

type datasets . 89

6.1 Classification accuracy with ranking . 118
6.2 Throughput with ranking . 124
6.3 Load Shedded LB accuracy . 129
6.4 Load Shedded throughput and accuracy for IFC 129

7.1 Elec: 10% data for Stage 1 . 147
7.2 Elec: 30% data for Stage 1 . 148
7.3 Elec: 50% data for Stage 1 . 148
7.4 Elec: 70% data for Stage 1 . 148
7.5 Sensor: 10% data for Stage 1 . 150
7.6 Sensor: 30% data for Stage 1 . 150
7.7 Sensor: 50% data for Stage 1 . 151
7.8 Sensor: 70% data for Stage 1 . 151
7.9 Occupancy: 10% data for Stage 1 . 152
7.10 Occupancy: 30% data for Stage 1 . 152
7.11 Occupancy: 50% data for Stage 1 . 152
7.12 Occupancy: 70% data for Stage 1 . 153
7.13 Flight: 10% data for Stage 1 . 154
7.14 Flight: 30% data for Stage 1 . 154
7.15 Flight: 50% data for Stage 1 . 155
7.16 Flight: 70% data for Stage 1 . 155

7

List of Figures

1.1 Overview of research solution . 23

2.1 Incremental Decision tree . 31
2.2 A Decision tree and its equivalent Fourier spectrum. 44

3.1 Staged Learning framework for context sensitive learning 57

4.1 Preparation of synthetic datasets with two levels of drift signals 73
4.2 Statistical comparison of algorithms by accuracy. Subsets of classifiers

that are not significantly different are connected with dashed lines. . . 83
4.3 Accuracy of a concept . 84
4.4 Statistical comparison of algorithms by throughput. Subsets of clas-

sifiers that are not significantly different are connected with dashed
lines. 85

4.5 Accuracy vs. Throughput trade-off . 86

5.1 Staged Transition Learning framework adapted from chapter 3 99
5.2 Periodic update of spectra . 100
5.3 Hashing and Reservoir structure . 106

6.1 Sensor accuracy chart . 120
6.2 Flight accuracy chart . 121
6.3 Statistical comparison of top 7 ranked algorithms by accuracy. Subsets

of classifiers that are not significantly different are connected with
dashed lines. 122

6.4 Covertype throughput chart . 125
6.5 Flight throughput chart . 126
6.6 Statistical comparison of the throughput performance of the top 7 ranked

algorithms that were ranked on accuracy. Subsets of classifiers that are
not significantly different are connected with dashed lines. 126

6.7 Accuracy vs. Throughput tradeoff . 127
6.8 Throughput advantage of Incremental spectral learning over Decision

tree learning . 130
6.9 Time spent when learning in Non-Incremental and Incremental modes

of operation . 131
6.10 Resource utilisation of Incremental and Non-Incremental DFT approaches132

8

7.1 Multilayer perceptron with a single hidden layer 137
7.2 Backpropagation of error signals . 140
7.3 Schema Patterns (clusters) generated after clustering algorithm 143
7.4 Learning in Stages with MLP . 145

9

Attestation of Authorship

I hereby declare that this submission is my own work and
that, to the best of my knowledge and belief, it contains no
material previously published or written by another person
nor material which to a substantial extent has been accepted
for the qualification of any other degree or diploma of a
university or other institution of higher learning.

Signature of student

10

Acknowledgements

I am profoundly grateful to my primary supervisor Assoc. Prof. Russel Pears for
supporting me wholeheartedly during this journey of PhD. His extensive knowledge,
guidance, and patience motivated this study from the beginning to end. My sincere
thanks also go to Dr. Asif Naeem, my secondary supervisor for his constant
encouragement, and insightful comments.

My research would have been impossible without the aid and support I received from
both Auckland University of Technology and the School of Engineering, Computer, and
Mathematical Sciences specifically. I am grateful for the chance to work in excellent
facilities, more importantly, for the immense support from my colleagues; ranging from
administrative help to stimulating conversation over coffee, their contribution has made
this thesis all the richer.

Looking further back, I am also highly grateful to all the teachers I have had along this
journey, both in universities and schools. Their passion for their subjects and their skill
in articulating it sparked a similar passion in me and their expertise has helped guide
me down this intellectual journey.

The course of a PhD has many ups and downs and friends make celebrating the victories
all the sweeter and moving on from the failures all the swifter. Many thanks to my
friends in Auckland and back home in Sri Lanka. Your presence in my life has helped
light up my doctoral experience.

Finally, a huge thanks to my parents, siblings, and extended siblings. Together, you
have helped teach me the most important lessons of all: how to live a good life, how
to pursue my passions, and how to look after the others in my life. Without you, this
thesis simply would not exist.

11

Chapter 1

Introduction

1.1 Research problem

A variety of prevalent real-world data sources such as sensors, mobile phones, social

networks, stock markets, automated teller machines, telephone communication net-

works, and the World Wide Web generate streams of data ceaselessly. As a result of

the booming Internet of Things (IoT), the number of such data sources will grow in the

future. These enormous, continuous, and rapid data flows are called data streams. In

order to operate on these data streams, meaningful information extraction is essential.

The process of pursuing knowledge from data streams in real time is known as data

stream mining.

Data stream mining has been extensively researched over the last two decades due

to its increasing importance in mining data from real-world applications. Stream mining

can be categorised as clustering, classification, frequent itemset mining, and forecasting

(Aggarwal, 2007a; Gama, 2010; Kholghi, Hassanzadeh & Keyvanpour, 2010). Among

these, the major focus of this thesis is the task of data stream classification. Solving

the data stream classification problem, that is identifying an outcome based on the

12

Chapter 1. Introduction 13

given input, is of high interest as timely decision making is paramount in many real-

world applications. Identifying the credit risk level of loan applicants, identifying spam

emails, recognising malware, sentiment analysis, predicting the level of electricity

demand, weather prediction, and recognising stock market fluctuations represent a few

examples for such applications. For its criticality, classification has been one of the most

frequently discussed topics in the data stream mining literature (Lemaire, Salperwyck

& Bondu, 2015; Nguyen, Woon & Ng, 2015).

Different from traditional data mining where the datasets are static, relatively small

in volume, and available in their entirety, stream mining is challenging due to the

inherently challenging nature of stream data. The “store and then process” approach is

not practical because of the unbounded nature. In addition, multiple scans per record

are not possible as it is necessary to cope with the quick arrival rate. On account of

its volume and speed, stream mining requires a single-pass, learning and then discard

strategy.

Furthermore, the underlying distribution of streaming data is not guaranteed to

remain the same over time, thus introducing a further complication. This property of

being non-stationary will hereafter be referred to as concept drift in this work. Concept

drift is the property that is mainly responsible for distinguishing data stream mining

from mining of fixed data size data repositories. In real-world scenarios, the reasons

behind concept drifts are unforeseen, and neither the frequency nor the exact time of

their occurrence is certain. As a result, research in the field of data stream mining

has challenged conventional thinking and forced the research community to extend

solutions that were developed for environments where the statistical properties of data

remain static over time. In other words, models produced by stream classifiers need to

evolve with time, in response to the drifts in the data distribution.

The surveys and reviews done in Domingos and Hulten (2001); Gaber, Zaslavsky

and Krishnaswamy (2005); Aggarwal (2007b); Gama (2010), and Kholghi et al. (2010)

Chapter 1. Introduction 14

underscored the significance of data stream mining, recognised the aforementioned

challenges and recommended evolving knowledge representations, which are feasible

under strict time and space constraints for learning in data streams. According to

Domingos and Hulten (2001); Lemaire et al. (2015), and Bifet, Read, Holmes and

Pfahringer (2018), a data stream learning algorithm is needed to adhere to certain

qualities such as:

• Process instances in real time

• Learn in a single inspect operation

• Operate under a limited amount of memory

• Adapt the models produced by them in the presence of concept drift

• Produce predictions to be used at any time in the progression of the stream

The overall implication of the aforementioned requirements is that a data stream

classifier needs to be capable of providing higher accuracy in real time while consuming

a limited amount of memory (Aggarwal, 2007b; Gama & Kosina, 2009; Kholghi et al.,

2010). The accuracy of a stream mining solution is reliant on the classifier’s ability to

capture knowledge from data, perform timely drift detection, possess robustness to noise,

differentiate drift from noise, and the quality of the consequent model adaptation (Gama,

Žliobaitė, Bifet, Pechenizkiy & Bouchachia, 2014). Time spent on classification is

dependent on the model building time, the duration for the model to update in response

to drift, and the time to process input towards the relevant category. The quicker the

learning, the higher the data instance processing rate, which is called throughput. In

general, memory consumption is the space consumed for processing and holding models.

As distributed systems that generate distributed data streams exist in settings of limited

memory and battery power, the work of Kholghi et al. (2010); Aggarwal (2007b), and

Kargupta and Park (2004) emphasised the value of decreasing the memory consumed

by classifiers, the unit computational cost of processing data, and the cost of model

Chapter 1. Introduction 15

update operations.

With the objective of meeting these requirements, researchers have developed one-

pass, memory bounded, evolving classifiers which are distinct from traditional data

mining algorithms such as C4.5 (Quinlan, 1993) and SLIQ (Mehta, Agrawal & Rissanen,

1996) which require to have an entire dataset resident in memory, as well as multiple

access to data instances.

Such evolving classifiers use single incremental approaches, such as decision tree

(Hulten, Spencer & Domingos, 2001; Gama, Fernandes & Rocha, 2006; Hoeglinger,

Pears & Koh, 2009; Yang & Fong, 2011) , Naive Bayes (Oza, 2005; J. Gomes, Menas-

alvas & Sousa, 2010; Alippi, Boracchi & Roveri, 2013), rule-based system (Widmer &

Kubat, 1996; Ferrer-Troyano, Aguilar-Ruiz & Santos, 2006), neural network (Gomide,

2009), and support vector machine (Domeniconi & Gunopulos, 2001; Zheng, Shen, Fan

& Zhao, 2013). Alternatively, groups of models can be produced, as exemplified by an

ensemble of classifiers that reach a final classification decision by combining individual

decisions according to a well defined group decision policy (Dietterich, 2000). Some

examples are AWE (H. Wang, Fan, Yu & Han, 2003), CBDT (Hoeglinger et al., 2009),

LeveragingBag (Bifet, Holmes & Pfahringer, 2010), EP (Sakthithasan, Pears, Bifet &

Pfahringer, 2015), and ARF (H. Gomes, Bifet et al., 2017). Importantly, H. Wang et al.

(2003); Kuncheva (2004); Elwell and Polikar (2009), and Zliobaite (2010) have shown

that ensembles are the better choice for concept drifting streams, in contrast to single

model classifiers.

Meanwhile, researchers who focused on the challenge of concept drift have been

working on change detection techniques (Tsymbal, 2004; Gama et al., 2014; Khamassi,

Mouchaweh, Hammami & Ghedira, 2018). A number of widely used methods have

emerged: sequential analysis based Page-Hinkley test (Page, 1954; Mouss, Mouss,

Mouss & Sefouhi, 2004), statistical process control related EWMA (Ross, Adams,

Chapter 1. Introduction 16

Tasoulis & Hand, 2012), time-window based DDM (Gama, Medas, Castillo & Rodrig-

ues, 2004), EDDM (Baena-Garcia et al., 2006), ADWIN (Bifet & Gavalda, 2007) and

SeqDrift (Pears, Sakthithasan & Koh, 2014). These drift detectors trigger the drift

points when the difference between two data distributions is deemed to be statistically

significant. As a result, a classifier could adapt itself to the current distribution when it

is informed by the signal of drift detection strategy rather than change the model at a

constant rate despite the presence or absence of drift in data. Such stream data sensitive

concept drift adaptation techniques are known by different terms: informed adaptation

or explicit detection (Gama et al., 2014), and active approach (Ditzler, Roveri, Alippi &

Polikar, 2015). This thesis uses the term explicit drift detection henceforth.

Moreover, drifts can be categorised into two main types: abrupt, when the new

concept suddenly replaces the old one, and gradual, where the old concept is slowly

converted into a new one (Tsymbal, 2004; Khamassi et al., 2018). The situation where

a concept observed once is likely to happen again is referred to as a recurring concept

and has also been considered as a type of concept drift in previous work (Gama et al.,

2014). This suggests an approach of classifier systems that store previously learned

concepts for reuse in the future, without the need for relearning them from scratch.

Some examples of such systems are Widmer and Kubat (1996); Nishida, Yamauchi

and Omori (2005); Alippi et al. (2013); Jaber, Cornuéjols and Tarroux (2013a), and

Sakthithasan et al. (2015).

In this setting, cutting-edge studies (Bifet, Holmes & Pfahringer, 2010; Bifet, Frank,

Holmes & Pfahringer, 2010; Sakthithasan et al., 2015; H. Gomes, Bifet et al., 2017)

have suggested incrementally adaptive classifier ensembles operating under the control

of a concept change detection mechanism. According to Ditzler et al. (2015), a merger

of incremental learners with explicit drift detectors enhances a stream learner’s ability

to cope with any kind of time changing data stream. In addition to learners and drift

detectors, research done in J. Gomes et al. (2010); Sripirakas and Pears (2014), and

Chapter 1. Introduction 17

Sakthithasan et al. (2015) take the advantage of concept recurrences through storage of

already learned concepts in a repository.

All these advancements in the stream mining literature were trying to fulfil the

requirements listed for a decent stream mining algorithm as described above. Even

though the above-listed qualities guarantee an effective classifier, building a system

that simultaneously achieves all such objectives is certainly a difficult task in practice.

Among many such difficulties, the critical trade-off in a successful stream classifica-

tion solution is between the accuracy and efficiency in terms of both time and space

(Aggarwal, 2007b).

In this background, the research carried out in this thesis concentrates on increasing

the throughput of a data stream classification task without compromising the accuracy

of the classifier. At the same time, reducing storage requirements is also desirable,

especially in memory constrained devices such as personal devices and sensors. Even

though there have been a few previous attempts at scaling up throughput while pre-

serving accuracy, this research seeks to extend the performance boundary further by

achieving a better trade-off between accuracy and throughput in relation to previous

work.

1.2 Motivation for research

In the data stream mining literature, some studies have focused on increasing throughput

while others have aimed at pursuing better accuracy. As a consequence of the well-

known throughput and accuracy trade-off in stream data classification, the problem of

optimising both accuracy and throughput has been addressed by only a few researchers

(J. Gomes et al., 2010; Sakthithasan et al., 2015; H. Gomes, Bifet et al., 2017).

In the interest of meeting the processing speed demand of massive, continuous

data flows, research has followed several different approaches: one-pass learning, load

Chapter 1. Introduction 18

shedding, learning through the use of synopses, learning with Fourier model repositories,

and parallel data stream processing.

Avoidance of multiple pass learning was one of the viable remedies attempted in

dealing with high-speed data streams initially. As claimed by Domingos and Hulten

(2000) in the benchmark study of the one-pass decision tree learner VFDT, the Hoeffding

tree method could learn instances in a very short time. That speed advantage enables

the classifier to meet the required data read/write rate while learning without storing

instances in the memory. The main shortcoming of VFDT was its stationary data

distribution assumption. In contrast, later Hoeffding tree based algorithms such as

CVFTD (Hulten et al., 2001), VFDTc(Gama et al., 2006), VFDTt (T. Wang, Li, Hu,

Yan & Chen, 2007), and optimised VFDT (Yang & Fong, 2011) have been designed

to work in evolving data stream environments. However, having a single incremental

classifier was not a strong solution for non-stationary environments where concepts

keep evolving over time.

Reducing the workload via a load shedding strategy has been practiced in Babcock,

Datar and Motwani (2004); Tatbul, Cetintemel, Zdonik, Cherniack and Stonebraker

(2003); Chi, Yu, Wang and Muntz (2005); Babcock, Datar and Motwani (2007), and

Ning, Wang, Shu and Yeh (2016). With the aim of lesser workload, those studies

discarded subsets of arrival data in the stream. Unknown dataset size and unawareness

of the influence of dropped data can be cited as potential drawbacks of the load shedding

(Gaber et al., 2005) approach.

Synopses of data are obtained from a data stream by applying a variety of data

summarisation techniques such as wavelets and sketches. Such structures have been

used as a method for managing the enormous data volume and the speed of data streams.

According to the surveys of Aggarwal and Yu (2007), and Cormode, Garofalakis,

Haas and Jermaine (2012), synopses are mostly applied to query processing of stream

Chapter 1. Introduction 19

data, space-constrained distributed data stream applications, and frequent itemset prob-

lems. As identified by Gaber et al. (2005) accuracy is one of the major issues of data

summarisation in streams.

The challenge of meeting decent accuracy in difficult concept drifting scenarios has

been addressed by strategies such as having a group of incremental classifiers in the

place of a single classifier, prompt drift detection technique that is robust to noise and

followed by model adaptation at drift, learning from a repository of previously learned

concepts, and noise robust Fourier classifiers.

According to Dietterich (2000), an ensemble of classifiers is more accurate than

any of its member classifiers for statistical, computational and representational reasons.

In addition, ensembles are considered as more stable solutions for concept drifting

data (H. Wang et al., 2003; Aggarwal, 2007b; Scholz & Klinkenberg, 2007; Kolter

& Maloof, 2007). For these causes, an ensemble of classifiers has become a popular

choice for non-stationary data stream mining as exemplified by surveys of H. Gomes,

Barddal, Enembreck and Bifet (2017), and Krawczyk, Minku, Gama, Stefanowski and

Wozniak (2017). Unfortunately, these accuracy and stability advantages come at a price

of greater computational overhead since statistics for every classifier in an ensemble

need to be updated on a per-instance basis.

Furthermore, classifiers such as OzaBagADWIN (Bifet, Holmes, Pfahringer, Kirkby

& Gavaldà, 2009), LimAttClassifier (Bifet, Frank et al., 2010), and LeveragingBag

(Bifet, Holmes & Pfahringer, 2010) accompany ADWIN (Bifet & Gavalda, 2007)

change detector with group of incremental Hoeffding trees. These solutions report

better accuracies while coping with drifts effectively. However, almost all these en-

semble learners are recommended for applications where processing speed and memory

consumption are not priorities.

The work discussed so far have either achieved throughput at the cost of accuracy

or accuracy at the cost of throughput. As both throughput and accuracy are crucial

Chapter 1. Introduction 20

aspects of data stream mining, a few studies have sought to achieve both requirements

simultaneously through strategies such as the maintenance of a repository for learned

models, optimised Fourier representation of stored models, and parallel processing.

The stream learning framework proposed in J. Gomes et al. (2010) highlights

the importance of storing learned models as a response to the likelihood of concepts

recurrence. Further to an ensemble of classifiers and the drift detection mechanism

termed as DDM (Gama et al., 2004), a repository of learned models were used in

J. Gomes et al. (2010). Results showed that using model repositories reduced the effort

demanded for drift adaptation when compared to the scenarios that learn from scratch.

Study of Sakthithasan et al. (2015) also focused on the recurring concepts and therefore

maintained a repository of learned models other than the ensemble of trees accompanied

by drift detector instances of SeqDrift (Pears et al., 2014). By contrast with J. Gomes

et al. (2010), Sakthithasan et al. (2015) stored concepts in the form of Fourier spectra

by applying discrete Fourier transform on decision trees as described in Park (2001),

and Sripirakas and Pears (2014). Proving the effectiveness of recurrence capture and

the advantage of noise robust Fourier models, Sakthithasan et al. (2015) claimed better

accuracy and competitive processing speed in stream classification.

A recent study of H. Gomes, Bifet et al. (2017) implemented a parallel processing

capability on top of the extended random forest solution integrated with drift detector

ADWIN. Hence, trees in the forest can be operated in separate threads independently.

In their comparative study of serial and parallel versions of algorithms, a parallel

implementation achieved 3 times faster performance than the serial version while

maintaining accuracy.

What is striking in all previous data stream classification approaches is the main-

tenance of computationally expensive incremental learners throughout the lifetime of a

data stream. Upon the arrival of each instance, incremental ensemble approaches are

needed to process that instance through all individual members and update the sufficient

Chapter 1. Introduction 21

statistics stored in each classifier. While this approach is effective from the viewpoint

of accuracy, it might not be the most efficient solution in terms of computing resource

utilisation.

Having access to previously seen concepts that either reappear in exactly the same

form or with slight deviations, a continuous learning strategy may be unnecessary and

wasteful of system resources. This suggests approaches that temporarily suspend their

continuous learning strategy in stream segments when recurrences of past concepts

manifest in the stream. Some examples of such systems are Ramamurthy and Bhatn

(2007); Gama and Kosina (2009), and Pears et al. (2014), although none of them are

sensitive to the rate of appearance of new concepts within the stream. These approaches

improve efficiency by removing the need for concept re-learning, but they still maintain

expensive ensemble learners, nevertheless. Thus none of these systems have taken

optimum advantage of periods with a low rate of appearance of previously unseen

concepts.

Recognising that maintaining an expensive, resource-consuming ensemble of classi-

fiers in low volatility stream segments is inherently an inefficient approach, the major

motivation of this study is to initiate a novel framework of staged learning. In staged

learning, each learning stage is determined in accordance with the context. More spe-

cifically, the context that is characterised by the rate of appearance of previously unseen

concepts. In light of this, the following research objectives were formulated.

1.3 Research objectives

This research is intended for a data stream classification solution that increases through-

put without compromising on accuracy. As indicated previously in section 1.2, the

solution is based on a new staged learning framework driven by the rate of appearance of

previously unseen concepts. With that in mind, a solution is accomplished by achieving

Chapter 1. Introduction 22

the four objectives listed below:

1. Objective 1: To design a context sensitive staged learning framework.

In this study, being context sensitive means the ability to differentiate between

segments that exhibit concept recurrences, from those that do not. A contiguous

collection of stream segments that contain a high degree of new concept occur-

rence is termed Stage 1. On the other hand, a collection of segments that embed

a high rate of reappearance of concepts, as opposed to new concepts, is termed

Stage 2. On this account, it is of critical importance to establish a theoretical

perspective and relevant operational measures that define the transition between

the stages.

2. Objective 2: To implement and evaluate the framework.

The framework utilises the Ensemble Pool (EP) classifier produced in Sakthithasan

et al. (2015) which in turn utilised the CBDT classifier discussed in Hoeglinger et

al. (2009). In EP, SeqDrift (Pears et al., 2014) drift detection instances monitor

each classifier for drifts. Once the current best performing classifier signals a

drift, the tree is converted into a Fourier model (Park, 2001) and stored in the

repository for future use (Sripirakas & Pears, 2014).

The feasibility of the implemented novel staged learning framework needs to be

evaluated against the throughput, memory usage, and accuracy measures over

several different datasets. The new design needs to outperform or be competitive

with comparative alternatives.

3. Objective 3: To design, implement and evaluate an advanced version of the frame-

work.

The initial design is upgraded to an optimal design which aims at further per-

formance improvements. The implementation of this advanced design uses an

Chapter 1. Introduction 23

adaptive version of a Fourier classifier developed for the initial implementation.

This optimum version is compared against state-of-art algorithms for two-fold

measures of throughput and accuracy.

4. Objective 4: To identify the generalisability of the framework.

Finally, the generalisability of the staged learning framework is verified. Imple-

mentation independence of the type of classifier used for learning in the proposed

framework needs to be investigated. Basically, the ability of generating Fourier

model through base classifiers other than decision trees needs to be explored.

1.4 Overview of research solution

Figure 1.1: Overview of research solution

The overview of the complete solution is outlined in Fig. 1.1 which comprises the

proposed framework, and three corresponding products: the framework’s feasibility

tester, its advanced version, and the generalisability verifier.

The core of Fig. 1.1 is the architecture of the framework which consists of compon-

ents that include the incremental learner, model repository and drift detection technique.

These inter-related components contribute significantly to the stream classification

process as per the context of the stream. Chapter 3 presents the framework named

staged learning approach.

Chapter 1. Introduction 24

The feasibility tester product represents the initial implementation of the proposed

framework. This is supposed to confirm the appropriateness of the staged learning

framework, and its ability to gain a significant throughput improvement whilst not

reducing accuracy. This initial product that is named as Staged Online Learner (SOL) is

evaluated in chapter 4.

The enhanced version of the staged learning framework is represented by the

advanced staged learner. While enabling smoother functionality compared to its initial

product, further performance optimisations are ensured by the use of an innovative

incremental Fourier classifier. Theories and design concepts behind this advanced

learner are discussed in chapter 5. The product termed as Staged Online Learner with

Incremental Fourier Classifier (SOL-IFC) is assessed in chapter 6.

The last product is the proof of concept which illustrates the implementation in-

dependence of the staged learning paradigm. Decision tree forest is replaced by an

artificial neural network and the pattern gathered from the neural network is converted

into a Fourier model in a creative method. This version of the product is identified as

Multi-Layer Perceptron based Fourier Classifier (MLP-FC). Chapter 7 introduces the

design and experiments the product MLP-FC.

1.5 Research contributions

1. Kithulgoda, C.I., Pears, R., & Naeem, M.A. (2018). The Incremental Fourier

Classifier: Leveraging the Discrete Fourier Transform for Classifying High Speed

Data Streams. Journal of Expert Systems with Applications, 97, 1– 17.

Chapter 5 and 6 of this thesis are based on this publication.

2. Kithulgoda, C. I. & Pears, R. (2016, July). Staged Online Learning: A New

Approach to Classification in High Speed Data Streams. Paper presented at

Chapter 1. Introduction 25

the IEEE 2016 International Joint Conference on Neural Networks (IJCNN),

Vancouver, BC, Canada.

Chapter 3 and 4 of this thesis are based on this publication.

3. Kithulgoda, C. I. & Pears, R. (2019). A Context Sensitive Framework for Mining

Concept Drifting Data Streams. In E. Lughofer & M.S. Mouchaweh (Eds.),

Predictive Maintenance. (Accepted)

Chapter 2, 3 and 4 of this thesis are based on this publication.

4. Kithulgoda, C. I. (2015, August). Data Stream System Classification Framework

for Concept Recurring Situation. Abstract presented at the Postgraduate Research

Symposium of Auckland University of Technology, Auckland, New Zealand.

Chapter 1 is based on this publication.

1.6 Thesis structure

Chapter 2 describes the background information relevant to this research, including

classification, concept drift, Discrete Fourier Transformation, and other relevant lit-

erature. The novel staged learning framework is introduced in chapter 3 while the

subsequent chapter (chapter 4) evaluates its feasibility and effectiveness in terms of

accuracy, throughput, and memory. In chapter 5, the theories, definitions, and basic

concepts of enhanced staged learning system that consists of innovative incremental

Fourier classifier is discussed. Experimental evaluation of the enhanced staged learner

against state-of-art classifiers is given in chapter 6. Chapter 7 discusses a proof of

concept whereby the feasibility of extending base classifiers from Heoffding trees to

neural network classifiers is tested. The thesis concludes in chapter 8 by discussing

research achievements, limitations, and future directions.

Chapter 2

Background

2.1 Introduction

This chapter summarises the background knowledge related to the research presented

in this thesis. The discussion starts with a formal definition of the data classification

problem. Then, the crucial challenge of the data stream classification problem is

explored. The challenge, in summary, is to determine the actions which should be taken

by a classifier when concept drift renders the model generated by the classifier redundant

over time as a result of changes that take place in the underlying data distribution.

In order to address major issues caused by the potentially enormous, and continuous

flow of data that arrives at a high speed and with concept drift, researchers have taken

various approaches. These strategies are categorised and presented based on their

characteristics.

Since this research utilises decision trees and Fourier spectra as classifiers, along

with drift detectors, background knowledge with regard to the Discrete Fourier Trans-

form (DFT) is provided. The foundations of the DFT, an explanation on the Fourier

spectrum generation from decision tree and details related to the effective maintenance

of the repository of Fourier spectra are discussed.

26

Chapter 2. Background 27

2.2 Data stream classification

In its literal meaning classification is the task of deciding the category of objects under

consideration. The data classification problem in data mining related domains refers

to the process of extracting a representative model (function) which is capable of

differentiating data into categories (Han, Kamber & Pei, 2012). In formal terms, given

a set of instances of the form (X⃗, y), the classification problem constructs a model

y = f(X⃗), where X⃗ =X1, ...,Xk is a vector of attribute values and y is a discrete class

from a set of C different classes (Bifet et al., 2018). This model can be built in various

forms such as decision trees, rule-based methods, and neural networks.

The data classification process has two basic steps to be followed in order: (1) model

building and (2) model testing (Gaber, Zaslavsky & Krishnaswamy, 2007; Lemaire et

al., 2015). The model building phase is the period where it is being learned by taking a

representative sample of available data. In traditional data mining, the model building

act is done in several inspects over the stored data. Thereafter, the built model y = f(X⃗)

takes the responsibility for deciding the category of objects arriving with unknown class

labels in the test phase.

In the data stream environment which demands a time and memory efficient solution

to deal with high speed, continuous and enormous flow of data, the aforementioned “

store and process” approach is not acceptable. Hence, one-pass, incrementally learning

algorithms are needed in place of the several passes, batch learning approach. Further

to that, and more importantly, data in data streams is not stationary which renders a

given classifier redundant over time. This dictates that models be synchronised with

changes that occur periodically in the stream.

The realisation that concept drift detection plays a central role in data stream mining

sparked off a flurry of research in this area. In order to get an in-depth understanding of

concept drifting data streams, an understanding of the formal definition and forms of

Chapter 2. Background 28

concept drift is important.

2.3 Concept drift

In essence, the change in the relationship between an outcome variable and its observed

features is called a concept drift. In real-world scenarios, the reasons behind these

changes are unforeseen and neither the frequency nor the exact time of occurrence is

certain.

In formal terms, Gama et al. (2014) defines concept drift as the dissimilarity of the

joint probability distribution of input features and class label at two subsequent time

points t0 and t1. The definition given by that study is adopted here:

∃X ∶ pt0(X⃗, y) ≠ pt1(X⃗, y) (2.1)

This dissimilarity of the likelihood of events X⃗ and y occurring can be caused by

changes in components ((Kelly, Hand & Adams, 1999; Gao, Fan, Han & Yu, 2007)

as cited by Gama et al. (2014)), namely the prior probabilities p(y) of classes or the

conditional probabilities of classes, that is p(X⃗ ∣y). These changes result in a change in

the posterior probability p(y∣X⃗). This change in p(y∣X⃗) over time is the reason behind

accuracy fluctuations.

Accordingly, any solution should have the capability of sensing the changes in

p(y∣X⃗) throughout the lifespan of the data stream in a time efficient manner in order

to maintain classification accuracy. This is called the concept drift detection problem

which has been widely studied (Baena-Garcia et al., 2006; Bifet & Gavalda, 2007; Ross

et al., 2012; Pears et al., 2014). Another classification of concept drift is the speed with

which it occurs. A sudden deviation in the p(y∣X⃗) value is said to be an abrupt change

whereas deviations that occur in an incremental and cumulative manner over time are

Chapter 2. Background 29

said to be gradual (Tsymbal, 2004; Khamassi et al., 2018). Abrupt changes require

a fast response to the change in order to preserve accuracy. This, in turn, requires an

alternative model that is better suited to the new concept be deployed as soon as the

drift is detected. In order to achieve this goal, a pool of learners needs to be available

at any given point in time. Deployment can be done through a switch from learner L1

to another learner L2 which may be better suited to the new concept whenever a drift

is detected. If no alternative learner is available that matches to the new concept, then

accuracy will be severely compromised until one or more of the learners adjust to the

new concept.

On the other hand, gradual changes allow time for the system to adjust to the

change and individual learners may have adapted sufficiently well to cope with the new

concepts. Thus, in general, their effects may not be as severe as with abrupt drift.

Yet another categorisation of drift is whether the drift pattern reappears over a period

of time. Such recurrences may follow a periodic pattern to a greater or lesser degree

or be aperiodic and completely unpredictable in its recurrence pattern. In either case,

the action that needs to be performed at detection time is a switch to a new learner,

just as with the case of abrupt drift. However, unlike with the case of abrupt drift, if

the recurrence pattern is strong, i.e. repeated appearances have statistical properties

very similar to each other, then it could be profitable to store such concepts separately

in an online repository which is separate from the pool of learners that adapt their

models over time. The use of the repository will guarantee that models associated

with recurring concepts are preserved in their original form in between successive

recurrences. However, they may be subject to change at the next appearance and a new

version of the recurring concept may then be stored in its place in the repository.

In summary, having an explicit drift detection technique, a set of learners rather than

a single learner, and a repository of stored concepts can be considered as significant

enhancements for coping with different types of concept drifts productively. These

Chapter 2. Background 30

findings have enriched the data stream classification literature and research is ongoing

with a variety of different classifier designs.

2.4 Data stream classification strategies

As described in sections 2.2, the high speed, continuous nature of a data stream dictates

the importance of time efficiency and memory management while concept drift implies

the necessity for a time-evolving classifier. Further to this, embedding drift detectors,

strategies of using a group of learners, and maintaining a model repository are recom-

mended in section 2.3. This section reviews previously suggested solutions for meeting

such data stream classification challenges. These solution strategies are grouped into

four categories as per their characteristics.

2.4.1 Non ensemble incremental approaches

The data stream classification problem in concept drifting streams through incremental

algorithms has been researched by many scholars. In one of the pioneering data stream

studies, the Very Fast Decision Tree (VFDT) (Domingos & Hulten, 2000) introduced an

incrementally learning Hoeffding decision tree classifier. VFDT differs from traditional

decision tree learners such as ID3 (Quinlan, 1986), and C4.5 (Quinlan, 1993), as it is

not necessary to keep training examples in main memory. Attributes were selected as

decision nodes of the tree after observing a statistically sufficient number of instances

as determined by the Hoeffding bound (Hoeffding, 1963). Importantly, the Hoeffding

bound is independent from the distribution of observations. The Hoffeding bound

selects a particular attribute as the best attribute to make the split after observing n

instances and that decision was the same as observing an infinite number of instances

with a given level of confidence (1 − δ), where δ is the level of uncertainty.

Figure 2.1 exemplifies the incremental learning process of a Hoeffding tree over a

Chapter 2. Background 31

given period. The classification task illustrated in this example categorises incoming

instances with attributes X1,X2,,Xn into two groups: Yes or No. Tree splits are

determined by the Hoeffding tree algorithm proposed in Domingos and Hulten (2000).

Given the difference between two highest split evaluation function values G(.)s is

greater than the ε, a leaf node is split on the attribute with maximum G(.). The ε is

defined by
√

(R2ln(1/δ))/2n, where n is the number of observation, (1 − δ) is the

confidence and R is 1. In this example, splits on X1,X3 and Xn occur respectively

within the interval of observation.

Figure 2.1: Incremental Decision tree

Even though the one-pass learning capability and classification speed of VFDT

fit with the requirements of speed and continuous nature of data streams compared to

conventional learners, the stationary nature of data assumed by VFDT was considered

as a drawback. Their concept change sensitive extended study of Concept-adapting

Very Fast Decision Tree (CVFDT) (Hulten et al., 2001) examined the suitability of the

previous decision tree splits through continuous up-to-date Hoeffding tests. Whenever a

split fails its validity test, an alternative tree is grown with the current optimum attribute,

ensuring the validity of tree in a concept drifting environment.

Chapter 2. Background 32

The VFDTc (Gama et al., 2006) extended VFDT by proposing three additions: com-

petency of handling numeric attributes, use of Naïve Bayes classifier which considers

conditional class probability at tree leaves, and being drift sensitive through repeated

comparison of two class-distribution examples. In contrast to VFDTc, VFDT used only

the prior probability of classes at leaf nodes. It has been claimed that VFDTc is better

even with small datasets due to its enhanced split frequency compared to conservative

VFDT. A further extension, in the form of VFDTt (T. Wang et al., 2007), was based on

both VFDT and VFDTc to improve the processing time.

Another variant of VFDT is optimised VFDT (Yang & Fong, 2011) that finds the

best number of splits by an adaptive tie mechanism compared to VFDT’s user-defined

tie-breaking threshold. Furthermore, the classifier CVFDTNBC (Nishimura, Terabe,

Hashimoto & Mihara, 2008) incorporated Naive Bayes classifiers at leaf nodes of

well-known CVFDT in order to achieve a higher accuracy.

Hoeffding Option Tree (HOT) presented in Pfahringer, Holmes and Kirkby (2007)

is another variant to the standard Hoeffding tree. In HOT, there are option nodes which

allow instances to go along multiple paths and hence end up at multiple leaves. The

class outcome of a particular instance is determined by the sum of individual leaf node

probabilities. Tree growth has been restricted by defining an upper limit for the number

of options a node can provide, and not allowing an attribute to split on a given node

more than once. Tree pruning was also considered as it was necessary to deal with the

memory consumption, yet concluded as not being effective.

The study of this thesis adopts an incremental decision tree learner Concept Based

Decision Tree (CBDT) described in Hoeglinger et al. (2009). This is also a variation of

Hoeffding tree studied in CVFDT (Hulten et al., 2001). Differently, in CBDT tree, each

node maintains a counter C which shows the total number of instances seen by the time.

In the case of a split, C value of the new decision node is assigned by the root node’s C

in an effort to indicate the relative age of this split in future.

Chapter 2. Background 33

Similar to VFDT and CVFDT, sufficient statistics are given in a 3-dimensional array

Si,j,k where i is the class, j is the attribute and k is the value of that attribute. In addition,

those C values are taken into consideration by CBDT when weighing the information

gain of a subtree. The subtree with the minimum sum of weighted information gain

across all leaf nodes is pruned as a method of reversing splits for the avoidance of

overfitting.

In addition to decision trees, there are several other incremental classifiers namely,

incremental support vector machine, incremental K-nearest neighbour classifier, rule

learners, Naive Bayes, and regression trees. The incremental support vector ma-

chines were experimented in Syed, Liu and Sung (1999), Domeniconi and Gunopulos

(2001), and Zheng et al. (2013). Studies such as STAGGER (Schlimmer & Granger,

1986), FLORA (Widmer & Kubat, 1996), AQ-11PM (Maloof & Michalski, 2004),

and Ferrer Troyano, Aguilar-Ruiz and Riquelme (2005) used incremental rule learners.

Naive Bayes algorithm has been taken as an incremental learner in several studies

such as Oza (2005), J. Gomes et al. (2010) and Alippi et al. (2013). The study of

Ikonomovska, Gama and Džeroski (2011) describes regression model trees.

2.4.2 Incremental ensemble classifiers

Another significant advancement in stream learning was the use of multiple classifiers

in the place of a single decision model. Several studies including H. Wang et al. (2003);

Kuncheva (2004); Hoeglinger et al. (2009); Elwell and Polikar (2009); Bifet et al. (2009),

and Zliobaite (2010) recognised and empirically verified, that a group of classifiers,

also known as ensemble learning (Dietterich, 2000) is better at addressing challenges

in concept drifting environments. In the ensemble learning literature, researchers have

used several different approaches to cope with concept drift, diverse decision making

strategies to decide the class outcome for an instance, a variety of base classifiers,

Chapter 2. Background 34

various diversity measures, and different numbers of base classifiers.

Coping with concept drift can be done implicitly where the model is being updated

continuously, or explicitly by feeding the binary classification outcome, “incorrect” or

“correct” into the change detector units. Implicit drift detection approaches were used

by CBDT (Hoeglinger et al., 2009), ASHT (Bifet & Gavaldà, 2009), AWE (H. Wang et

al., 2003), AUE (Brzeziński & Stefanowski, 2011), AD (Jaber et al., 2013a). In those

studies, models in the ensemble were updated after observing instances over fixed size

windows or sliding windows that discard an instance at a time. Explicit drift detectors

such as ADWIN (Bifet & Gavalda, 2007), SeqDrift (Pears et al., 2014) or Page-Hinkley

test (Page, 1954) were embedded into classifiers in OzaBagADWIN (Bifet et al., 2009),

LeveragingBag (Bifet, Holmes & Pfahringer, 2010), LimAttClassifier (Bifet, Frank

et al., 2010), SOL (Kithulgoda & Pears, 2016), ARF (H. Gomes, Bifet et al., 2017),

SOL-IFC (Kithulgoda, Pears & Naeem, 2018), and Ikonomovska et al. (2011). In either

case, changes were done on ensemble in response to drifts via one or few of strategies

among classifier removal, classifier insertion, model resets, or model statistic resets.

Meanwhile some ensemble solutions such as H. Wang et al. (2003), Zhang, Zhu, Tan

and Guo (2010) and Brzeziński and Stefanowski (2011) adjusted weights of individual

ensemble members as the method of drift adaptation.

Among a variety of strategies to decide overall class label from a group of learners,

three main trends can be found in the literature. One such trend is to assume homogen-

eity within a concept, and hence appoint the most accurate classifier (Hoeglinger et al.,

2009; Sakthithasan et al., 2015; Kithulgoda et al., 2018) as the solo decision maker for

that particular concept based on its performance compared to others in the ensemble.

This thesis also pursues the assumption of intra-concept homogeneity. Whenever a drift

is detected, the classifier with maximum accuracy is selected as the best decision maker

for the recently emerged concept.

The other two approaches have followed voting mechanisms; either majority voting

Chapter 2. Background 35

or weighted majority voting when deciding the overall class outcome per incoming

instance. In the simple majority voting method, a class label decided by the majority of

classifiers is considered as the overall outcome (Oza, 2005; Bifet, Holmes & Pfahringer,

2010). Ties are avoided by taking an odd number of models. In contrast, the class

outcome of each classifier is weighted relative to the performance of that classifier which

can be increased or decreased over the time in weighted majority voting technique.

This weighted majority voting technique has been applied in many studies including

Brzeziński and Stefanowski (2011), Scholz and Klinkenberg (2007) and Kolter and

Maloof (2007). Performance might be measured over constant size or variable size

windows.

Many studies in literature consist of homogeneous base learners that consist of a

single classifier type (e.g. all base learners are decision trees) within an ensemble, and

a few have heterogeneous base learners (e.g. some base learners are decision trees

while others are Naive Bayes). A popular class of incremental ensemble learners uses

Hoeffding decision tree as the basic learning mechanism. Some examples of incremental

classifiers using ensembles of decision trees include CBDT (Hoeglinger et al., 2009)

which is used in this thesis, OzaBagADWIN (Bifet et al., 2009), LimAttClassifier (Bifet,

Frank et al., 2010), LeveragingBag (Bifet, Holmes & Pfahringer, 2010), and ARF

(H. Gomes, Bifet et al., 2017) with slight variations between each other. In addition,

an ensemble of incrementally learning hypotheses are studied in Learn++ NSE (Elwell

& Polikar, 2009) and ADAIN (He, Chen, Li & Xu, 2011). Incremental Naive Bayes

learner is the base learner used in Katakis, Tsoumakas and Vlahavas (2008), J. Gomes et

al. (2010), and Ren, Lian and Zou (2014). The studies of Nguyen, Woon, Ng and Wan

(2012) and van Rijn, Holmes, Pfahringer and Vanschoren (2015) are some examples of

heterogeneous base learners.

Even though there is a sensible belief that none of the group members can individu-

ally perform better than the group itself in terms of accuracy (Dietterich, 2000), the

Chapter 2. Background 36

extent to which those individual base learners should be diversified from each other is

an interesting matter which remains as an open research question. Scholars have used

distinct pair-wise diversity measures as summarised in H. Gomes, Barddal et al. (2017),

including Yule’s Q statistic (Yule, 1900), the correlation coefficient of a given pair of

classifiers for all possible outcomes, and a disagreement measure that quantifies the

ratio of disagreed instances on the classification outcome by a pair of classifiers under

consideration. This study follows the method based on the degree of agreement calls as

distance similarity between two classifiers as described in section 2.5.1.

The cardinality, i.e. the number of base learners of an ensemble can be dynamic

or constant throughout the lifetime of the system. Even though a larger number of

classifiers tend to produce better overall accuracy, it comes at the expense of more

memory usage and less throughput. Studies such as H. Wang et al. (2003); Bifet et al.

(2009); Bifet, Holmes and Pfahringer (2010); Brzeziński and Stefanowski (2011), and

Jaber et al. (2013a) maintained a fixed number of models in their ensembles, whereas

Nishida et al. (2005); Ramamurthy and Bhatn (2007); Sripirakas and Pears (2014), and

Sakthithasan et al. (2015) classified with a dynamic number of classifiers subject to

some maximum allowable number. This thesis follows the latter option, with the use of

a predefined maximum number of classifiers, as described in section 2.5.1.

2.4.3 Pairing drift detectors with stream learners

A vast amount of studies have focused on the concept drift detection problem (Pears et

al., 2014); in the context of stream classification, several studies have paired explicit

drift detector modules with stream learners.

For instance, OzaBagADWIN (Bifet et al., 2009), LeveragingBag (Bifet, Holmes

& Pfahringer, 2010), and LimAttClassifier (Bifet, Frank et al., 2010) have associated

a change detector ADWIN (Bifet & Gavalda, 2007) in each tree for the purpose of

Chapter 2. Background 37

recognising drifts by accuracy degradation. ADWIN method maintains a variable length

sliding window which can be shrunk when the concept is drifted or can be grown when

the concept is stabilised. In response to drift, both OzaBagADWIN and LeveragingBag

algorithms remove the worst learner and add a new learner. The LimAttClassifier

responds to drift by resetting its learning rate and replacing poorly performing trees by

their root nodes.

The Regression model tree stream learner presented in Ikonomovska et al. (2011)

embeds Page-Hinkley test (Page, 1954; Mouss et al., 2004) at each tree node. This

work modifies only the affected sub-tree at drift and builds an alternate tree rooted by

the node that the change is detected. The decision of replacing an old tree with an

alternative tree is taken with the aid of a relative performance measure.

The study in this thesis uses drift detector SeqDrift2 (Pears et al., 2014) on account

of its low false positive rate and optimised drift detection delay. Two reservoirs, namely

left and right are populated with a sequence of binary 1s and 0s for incorrect and correct

classifications respectively. The size of the left reservoir is adaptive in accordance with

drift rate, whereas the right reservoir size is fixed. At each block size which is equal to

right reservoir size, the algorithm tests whether there is a significant mean difference

between left an right reservoirs in order to detect concept drifts. The SeqDrift2 adopts

the reservoir sampling method suggested in Vitter (1985) as the strategy of ensuring

randomness when selecting a data point to be replaced by the new value given the left

reservoir is already filled. Instead of using the conservative Hoeffding bound (Hoeffding,

1963), the Bernstein Bound (Bernstein, 1946) is taken when calculating mean difference

threshold ε for the left and right reservoirs. The detector makes use of the sample means

ĥl, ĥr, and a threshold ε to determine if the condition for drift (ĥr − ĥl) > ε is satisfied.

Then drift is concluded with probability (1 − δ) where δ is the drift significance level.

The ε threshold is given by: 1
3(1−k)nr (p +

√
p2 + 18σ2

snrp) where p = ln 4
δ , k = nr

nr+nl ,

σs= sample variance, nr = size of the right reservoir, and nl = size of the left reservoir.

Chapter 2. Background 38

In response to drift, best performing model selection, insertion of the model to the

repository for reuse in future, and model removal, as required have been done.

Further to those drift detection strategies, Drift Detection Method (DDM) by Gama

et al. (2004), Early Drift Detection Methodology (EDDM) by Baena-Garcia et al. (2006),

and Exponentially Weighted Moving Average (EWMA) by Ross et al. (2012) can be

found as statistical process control based approaches.

2.4.4 Re-use of models when concepts recur

Moreover, scholars have recognised the likelihood of concept recurrence in data streams

and have suggested storing learned models for re-use rather than relearning from scratch.

One of the initial, seminal adaptive learners which took advantage of concept

recurrences was FLORA3 (Widmer & Kubat, 1996). The FLORA3 algorithm stored

hypotheses of stable concepts for later use, with the belief of the reappearance of that

concept in future. Stability of a concept was decided after considering that concept’s

accuracy, the trend of accuracy, and the instance count that agrees with the hypothesis

under consideration. The level of concept stability also adjusted the window size of

the observations. When the system suspected a concept drift, the best matching stored

hypothesis was considered as a potential hypothesis for the current concept. The study

of Lazarescu (2005) also stored learned concepts in a repository and searched the

repository for matching concept at concept drift. In contrast to the FLORA framework,

this study had two windows, small and large, in order to deal with different types of

drifts.

The popularity of ensemble online learning in concept drifting streams has also had

an influence on the idea of model re-usability when concepts recur. The study done

by Nishida et al. (2005) has proposed a system consisting of an online classifier that

is k-nearest neighbour, many batch learners which are C4.5 decision trees (Quinlan,

Chapter 2. Background 39

1993), and drift detection mechanism. The online learner updates the currently learning

hypothesis with each incoming instance and the instance is stored in a buffer until the

buffer is full or concept has drifted. Given the situation where either the buffer became

full or the concept drifted, the system generates a new hypothesis based on the instances

stored in the buffer. When making a final classification decision, a weighted majority

vote approach is applied on the set of hypotheses. Weight of a classifier was determined

by its suitability measure, interpreted as a function of the accuracy over recent instances.

Detecting drifts were done by comparing the suitability measure with the both upper

and lower endpoints’ suitability measures of 100(1 − α)% confidence. The degree

of reuse of a classifier was determined by its weight which is a function of accuracy.

Compared to that, the work of Elwell and Polikar (2009) avoided irrelevant classifiers

through weights that are derived by averaging errors over time. Both of these studies

generated classifiers for batches of data.

In Ramamurthy and Bhatn (2007) also, classifiers were learned from data chunks.

Those were stored in a repository called global set for reuse when concepts recur. When

neither a single model in the global set nor the ensemble of relevant models are capable

of classifying new data chunk with an error less than the user-defined permitted error,

a new classifier is built in response to the new concept. An ensemble of ID3 decision

trees (Quinlan, 1986) was used as the classifier.

The practice of using two learning layers can be found in the studies of Gama and

Kosina (2009) and J. Gomes et al. (2010). These studies suggested the use of two

learning layers consisting of a base classifier and a corresponding meta-classifier while

maintaining a pool of learned classifiers. In the work of Gama and Kosina (2009), the

first layer learned from labelled instances while the second acts as a referee who keeps

an account of the base learner’s performance with respect to regions of feature space.

Each learned classifier is stored in a pool together with its referee. When the error rate of

the current learner is at the warning level, the system checks the performance of stored

Chapter 2. Background 40

models through their referees proactively. A model is reused providing its applicability

is greater than some given threshold. If not, a new model and its meta-learner are

learned and are added to the pool. In J. Gomes et al. (2010), the base learner learns

new concepts and the meta-learner learns the context-concept relation. In addition, the

meta-learner is responsible for detecting concept drifts and selecting an appropriate

model from the repository if the concept recurs. Learned models are stored in the form

of conceptual vectors together with its context information based on the assumption of

associativity between concept and context in every recurrence.

The Just-In-Time (JIT) classifier (Alippi et al., 2013) also stored concept representa-

tions of previously seen concepts when a drift is detected. JIT continuously updates

concept details by making use of supervised input data. Such details consist of three

properties: a collection of the supervised data instance (xt,yt), a set of statistical char-

acteristics of the concept, and statistical features which signal the change of concept,

together with classification errors. When drift is detected, details collected for the

recent concept is subjected to a pair-wise comparison against stored concept details.

If a match is found then an enhanced set of supervised instances is created. Then a

classifier is trained by using the newly created set of supervised instances. The JIT

classification framework has been tested with different base learners namely, k-nearest

neighbour, Naive Bayes, and Support Vector Machine. This study of Alippi et al. (2013)

demonstrated the effectiveness of drift-adaptive, incremental ensemble learning in the

face of concept recurrence in the stream.

The Anticipative Dynamic Adaptation to Concept Change (ADACC) approach

presented in Jaber et al. (2013a) is another study that stored models for reuse in the

future. Ensemble classifiers were used as the classifier with Naive Bayes as the base

classifier. Every base learner continuously adapts to new incoming data unless it has

been removed due to poor performance over time. The decision of storing a model is

taken on the basis of the stability of the ensemble over a sequence of examples. The

Chapter 2. Background 41

stability is measured by the difference between the sum of pair-wise agreements and the

sum of errors measured over the best performing half of the ensemble over a sufficient

period of time. If the stability measure is higher than some predefined threshold, and

sufficiently varied from the models already in memory, the model is cached for re-use

in the future.

The ensemble classifier used in this thesis is initialised by a forest of decision

trees (Hoeglinger et al., 2009) which learns continuously from incoming data until the

forest learning is suspended, as described in chapter 3. While learning from trees is in

progress, in common with Sripirakas and Pears (2014), the system transforms a tree

into a Fourier spectrum whenever that tree signals a drift. This model conversion is

illustrated in detail in section 2.5. Over a period of time, a collection of Fourier spectra

are built up in an online repository. For the purpose of memory management and model

generalisation, those spectra are aggregated as described in Sakthithasan et al. (2015).

More information on repository management can be found in section 2.5.1. Spectra

are reused whenever the underlying concept that gave rise to its creation reappears.

The recognition of correspondence between an emerging concept and its stored version

(in the form of a spectrum) is done on the basis of the best accuracy measure over a

recently observed block of instances in SeqDrfit2 (Pears et al., 2014) that was described

in section 2.4.3.

Accordingly, the classifier used in this study contains both an ensemble of Fourier

spectra as well as a forest of Hoeffding decision trees. The model conversion from tree

to Fourier spectrum via DFT and maintenance of spectra are discussed below.

Chapter 2. Background 42

2.5 The use of the Discrete Fourier Transform in classi-

fication and concept encoding

The use of DFT in data mining has been of recent origin and has been focused on

deriving a Fourier spectrum from Decision trees. Firstly, a basic overview of the

derivation of the multivariate DFT from a decision tree is presented. Then the setting of

Fourier encoding and classification scheme is described.

Before the presentation of the mathematical foundations of the DFT, fundamental

ideas underpinning the Fourier transform are mapped to their meanings in Table 2.1 in

order to communicate their roles in an intuitive manner.

Table 2.1: Mapping of Fourier concepts to their intuitive meanings
Symbol Meaning
x A schema consists of a vector of feature values drawn from

features that comprise the dataset. A schema is a compact
way of defining a set of data instances, all of which share the
same set of feature values.

X The schema set which contains the set of all possible schema
for a given dataset.

j This is a partition of the feature space. Essentially, it is also
a vector of feature values, just as with a schema. The only
(conceptual) difference is that a schema refers to the data
whereas a partition indexes a Fourier spectrum.

J The partition set that defines the number of coefficients in
the spectrum and its size.

wj⃗ A coefficient in the Fourier spectrum.
λ⃗
j (x⃗) This is the Fourier basis function that takes as input a feature

vector and a partition vector and produces an integer for a
dataset with binary-valued features or a complex number for
a dataset with non-binary feature values.

A Fourier spectrum is derived from a Fourier basis set which consists of a set of

orthogonal functions that are used to represent a discrete function. Consider the set

of all d-dimensional feature vectors where the lth feature can take λl different discrete

values, {0,1,⋯, λl − 1}. The Fourier basis set that spans this space consists of
d

∏
l=1
λl

Chapter 2. Background 43

basis functions. Each Fourier basis function is defined as:

ψλ⃗j (x⃗) =
1

d

√
d

∏
l=1
λl

d

∏
m=1

exp(2πlxmjm
λm

) (2.2)

where j⃗ and x⃗ are vectors of length d; x(m), j(m) are the mth attribute values in x⃗ and

j⃗, respectively. The vector j⃗ is called a partition and its order is the number of nonzero

feature values it contains.

A function f: Xd →R that maps a d-dimensional discrete domain to a real-valued

range can be represented using the Fourier basis functions:

f(x⃗) = ∑
j∈X

ψj
λ⃗(x⃗)wj⃗ (2.3)

, where wj⃗ is the Fourier coefficient corresponding to the partition j⃗ and ψj
λ⃗(x⃗) is the

complex conjugate of ψλ⃗j (x⃗). Henceforth the superscript λ shall be dropped from the

ψj function formulation to simplify the presentation. The Fourier coefficient wj⃗ can be

viewed as the relative contribution of the partition j⃗ to the function value of f(x) and is

computed from:

wj⃗ =
l

∏
i=1

1

λi
∑
x∈X

ψj⃗(x⃗)f(x⃗) (2.4)

In a data mining context, f(x⃗) represents the classification outcome of a given data

instance x⃗ ∈X . Each data x⃗ must conform to a schema and many data instances in the

stream may map to the same schema. For example, in Fig. 2.2, many data instances

for schema (0,0,1) may occur at different points in the stream. Henceforth schema

instances are referred rather than data instances as the Fourier classifier operates at the

schema, rather than at the data instance level. Thus the notation x⃗ shall be adopted to

denote a schema instance, rather than a data instance. The set X is the set of all possible

schema, and for the simple example in Fig. 2.2 it is of size 8.

Chapter 2. Background 44

The absolute value of wj⃗ can be used as the “significance” of the corresponding

partition j⃗. If the magnitude of some wj⃗ is very small compared to other coefficients,

it is considered that the jth partition to be insignificant and neglect its contribution.

The order of a Fourier coefficient is simply the order of its corresponding partition.

Terms like high order or low order coefficients will be used to refer to a set of Fourier

coefficients whose orders are relatively large or small, respectively.

Figure 2.2: A Decision tree and its equivalent Fourier spectrum.

The Fourier spectrum of a Decision Tree can be computed using the class outcomes

predicted by its leaf nodes. As an example, consider the decision tree in Fig. 2.2

defined on a binary valued domain consisting of 3 features. Its truth table derived from

the predictions made by the tree and the corresponding Fourier spectrum that results

appears in Fig. 2.2. Below the computation of jth Fourier coefficient wj is illustrated

for a data with d binary valued features which is given by the Boolean domain version

(Park, 2001) of Eq. 2.4:

wj =
1

2d
∑
X

ψj(x)f(x) (2.5)

where f(x) is the class outcome predicted by the leaf node with path vector x and ψj(x),

the Fourier basis function given by the simplified version of the Eq. 2.2:

ψj(x) = (−1)(j.x) (2.6)

Considering three binary valued features X1,X2 and X3 given in Fig. 2.2, only X1

Chapter 2. Background 45

and X3 are appeared in tree and hence contributed to calculation. The study of Park

(2001) guaranteed that coefficients for paths which are defined by attributes need to be

computed since other coefficients are zero in value. Thus coefficients w010,w011,w110

and w111 are zero. Computation for non-zero coefficients w000 and w001 are as follows.

w000 =
1

23
∑
X

ψj(000)f(x) =
1 + 0 + 1 + 0 + 1 + 1 + 1 + 1

8
= 3/4

w001 =
1

23
∑
X

ψj(001)f(x) =
1 + 0 + 1 + 0 + 1 + (−1) + 1 + (−1)

8
= 1/4

The Fourier spectrum derived from a decision tree is compact due to the two

following properties:

1. The number of non-zero coefficients is polynomial in the number of features

represented in the tree (Kargupta & Park, 2004).

2. The magnitude of the coefficients wj decreases exponentially with the order of

the partition j (Kargupta & Park, 2004; Kargupta, Park & Dutta, 2006).

These two properties collectively make a spectrum derived from a tree very attractive.

Firstly, the tree provides a natural filtering mechanism as typically only a fraction of the

features have sufficient information gain to be represented in the tree. Once the tree is

in place, only the set of low order coefficients defined from partitions appearing in the

tree make a significant contribution to the classification outcomes.

Kargupta and Park (2004) and Kargupta et al. (2006) made use of spectral energy

to derive a cut-off point for coefficient order. Given a spectrum s, its energy E is

defined by: E = ∑
j⃗∈J

∣w2
j ∣ where J is the partition set of s. For a given energy threshold

T, the subset of J (in ascending spectral order) whereby E ≥ T is retained; all other

coefficients are deemed to be zero and removed from the array. Thus for example in the

spectrum defined in Fig. 2.2, the first order coefficients contain 9+1+0+1
9+1+0+1+0+0+1+0 = 91.7%

Chapter 2. Background 46

of the total energy and so with a threshold of 90%, only coefficients w000,w001, andw100

should be retained, thus reducing the size of the spectrum that needs to be maintained.

Once a Fourier spectrum is derived from a decision tree, it can fully replace the

latter since the classification of a newly arriving schema instance x can be computed by

applying the inverse transform given in Eq. 2.3 over the set J that contains the reduced

set of coefficients that survive the energy thresholding process.

Computing of the classification outcome for a given schema through the Fourier

spectrum is illustrated below.

f(x) =∑
j

ψj(x)wj

f(010) =∑
j

(−1)(j.010)wj

f(010) = (−1)(000.010)w000 + (−1)(001.010)w001 + (−1)(010.010)w010

+ (−1)(011.010)w011 + (−1)(100.010)w100 + (−1)(101.010)w101

+ (−1)(110.010)w110 + (−1)(111.010)w111

= 3

4
+ 1

4
− 1

4
+ 1

4
= 7

4
= 1

2.5.1 Repository management

As spectra in the repository may accumulate in number, it will be necessary to imple-

ment a memory management strategy to ensure that memory does not overflow in the

repository. A simple strategy would be to delete the oldest spectrum when memory is

not available to store a newly created spectrum. Instead, this thesis aggregates newly

created spectra with existing spectra as a memory saving measure.

Aggregation of spectra (Sakthithasan et al., 2015) was implemented via a pair-wise

algebraic summation of the spectra involved as given in Eq. 2.7:

Chapter 2. Background 47

Sc(x) =∑
k

Ak∑
j

Sk(x)

=∑
k

Ak ∑
k∈Qk

ωj
(k)ψj(x) (2.7)

where Sc(x) denotes the aggregated spectrum produced from the individual spectra

Sk(x) produced at different points k in the stream; Ak is the classification accuracy of

its corresponding spectrum and Qk is the set of partitions for non zero coefficients in

spectrum Sk.

Before proceeding with spectral aggregation, the implementation done in this study

checks whether the new spectrum is significantly different from already existing spectra

in the repository. Given the new spectrum Snew is different from existing spectra,

and no more space is available in the repository, then Snew’s classifications on a test

data segment of a certain size N is assessed against the classifications produced by

spectra that exist in the repository. Suppose that C is the number of classes. Then the

winner spectrum Snew is aggregated with the spectrum Sa determined by Eq. 2.11 if

the distance similarity (E) is greater than the given threshold for similarity, as done in

Sakthithasan et al. (2015).

In Equations 2.8 and 2.9, the class labels c(Snew(i)) and c(Sp(i)) of the ith data

instance is determined for spectra Snew and Sp respectively by applying the Inverse

Fourier Transform (IFT) on the respective spectra to reconstruct a numeric approxima-

tion of the class value which is converted to a class label by multiplying by the number

of classes C and then taking the ceiling of the resulting numeric value that is returned.

The same operation is performed on all spectra which are already in the repository.

Chapter 2. Background 48

c(Snew(i)) = ⌈f(Snew(i)) ×C⌉ (2.8)

c(Sp(i)) = ⌈f(Sp(i) ×C)⌉ (2.9)

E = N −
P

∑
p=1

N

∑
i=1
I(c(Snew(i)) ≠ c(Sp(i))) (2.10)

where P is the number of spectra in the repository.

Sa = argmax(E)
p

(2.11)

For example, if the number of classes C=3 and if the inverse Fourier value returned

for data instance i with spectrum Snew is 0.61, then clearly instance i should be labelled

with class value 2 as the class boundaries are [0.0..0.33], [0.34..0.66], [0.67..1.0]. This

label of 2 is recovered by multiplying 0.61*3 and then taking the ceiling of 1.83, giving

a class label of 2.

Equation 2.10 computes the distance similarity E between Snew and a spectrum Sp

in the repository by counting the number of instances that return the same class labels

over the test segment of size N and then subtracting the total count by N to get the

similarity score. The identity function I where I(b) = 1 if b is true, 0 otherwise, is used

to determine if Snew, Sp agree or not on class outcomes. In Eq. 2.11, the spectrum Sa

that has the maximum similarity with Snew is returned.

If this maximum distance similarity is smaller than the given threshold, aggregation

does not take place. In the case when the repository is full and insufficient distance sim-

ilarity exists to meet aggregation requirements, the least accurate spectrum is removed

Chapter 2. Background 49

to make way for the newly generated spectrum.

Aggregation of spectra brings with it two major benefits. Firstly, a reduction in

space as coefficients common to spectra being aggregated need to be stored only once.

Secondly, aggregation performs a similar role to an ensemble of models and leads to

better generalisability to new data arriving in the stream.

In a nutshell, Fourier spectrum of a bounded depth decision tree has several interest-

ing properties including the exponential decay of energy with a coefficient order, ability

to derive class label through the use of the IFT, and the possibility of deriving ensemble

classifiers by aggregating Fourier spectra through an algebraic operation. In addition,

Park (2001) presented an algorithm for reconstructing a decision tree from a Fourier

spectrum. The recent study of Sakthithasan et al. (2015) observed that the robustness to

noise of Fourier classifiers is significant when compared to the application of decision

trees on their own. Taken together, the ease of algebraic Fourier model aggregation in

contrast to trees, higher accuracy due to its noise robustness, and the space efficiency

of ensemble models make a strong case for the use of Fourier ensembles in concept

drifting, concept recurring data streams.

2.6 Conclusion

In summary, the high speed data stream classification research landscape has been

enriched over the last two decades in order to address its inherited challenges of sheer

volume, continuous high speed flow, and concept drift in the presence of limited

computer resources. Amongst a variety of solutions, the use of incremental classifiers

instead of conventional static learners, incremental ensembles of classifiers versus a

single incremental classifier, incremental classifier ensembles with embedded drift

detectors in contrast to ones without drift detectors, all have contributed to promising

results.

Chapter 2. Background 50

More specific to concept recurring streams, the use of two classifier types, namely

online learners and repository of previously learned models have highlighted the advant-

age of reuse, in contrast to relearning. Having a more compressed version of a Decision

tree, made possible by the use of the DFT helps in lifting processing speed. The cap-

ability of simple algebraic aggregation of spectra has made it practical to maintain a

repository of spectra which helps to lift accuracy.

The major contributions of this thesis revolve around classifying concept drifting

and recurring data streams. The research has been inspired by recent improvements

achieved with adaptive/incremental algorithms, ensemble classifiers, drift detectors, and

recurrence capture mechanism through a repository of Fourier spectra.

Chapter 3

Staged Learning Approach

3.1 Introduction

In this chapter, a new framework and associated algorithms to classification in non-

stationary streams of data are presented. Different from closely related previous work

(Gama & Kosina, 2009; J. Gomes et al., 2010; Sakthithasan et al., 2015), this approach

detects volatility in a stream and then matches the learning paradigm to the degree of

volatility. In high volatility stream segments a decision forest is used as the learning

mechanism, whereas in low volatility segments, an approach driven by the use of stored

Fourier spectra are used for learning.

The framework is generic in the sense that it is able to cope with all of the drift

types identified in chapter 2 and experimented with in chapter 4. Furthermore, the

framework is modular in design as each component can have different implementations

corresponding to different methods that have been proposed to solve a particular issue

in a learning environment accompanied by concept drift.

51

Chapter 3. Staged Learning Approach 52

3.1.1 Basic components

Firstly, the necessity of each component in the proposed framework is identified. An

incremental learner that restructures models by synchronizing changes in data patterns

to models is indispensable to cope with high data arrival rates in a data stream. The

synchronisation of changes in data patterns is accomplished through the use of a concept

drift detector. Without a drift detector a learner will experience severe drops in accuracy

from time to time and hence it is also a mandatory component. As described in chapter

2, it is useful to maintain a repository of past concepts in cases where a recurring drift

pattern is present. Thus the basic components required to support online learning in

non-stationary environments are:

• An incremental classifier

• A concept drift detector

• An online repository of past concepts

3.1.2 Optimizing for stream volatility and speed

The above components are basic in the sense that they support core functionality but

other supporting elements such as memory management and support for high speed

streams are also essential. In streams that are highly volatile, many different concepts

can manifest and it may not be feasible to store all concepts in the repository even if

compression were to be applied. This calls for a memory management scheme that goes

beyond a simple first-in-first-out strategy of populating spectra in the repository.

At the same time, the framework should be able to take advantage of periods of

low volatility to speed up processing by reusing already learned models coupled with a

minimal amount of learning that is needed to reflect changes in the recurring concepts.

This would result in speeding up the learning process and would require a mechanism

to sense the level of volatility in the stream. The volatility detector could then adjust the

Chapter 3. Staged Learning Approach 53

mode of learning from an intensive learning mode to a less intensive one or vice versa,

as the case may be. The level of volatility could be estimated by monitoring whether

the probability pr of usage of past concepts in the repository is significantly higher

than the probability pn of usage of concepts that are evolving or new. If this is the case

then it indicates that the system is operating in a less volatile state and learning can

then be adjusted accordingly. Learning in a less volatile state can rely to a large extent

on classifiers stored in the repository with minor adjustments if needed, and hence

should be more efficient than learning in a highly volatile state where new concepts

need to be learned. The staged learning framework that will implement this key notion

of sensitivity to stream volatility is presented in section 3.2 below.

3.2 The context sensitive Staged Learning framework

The framework has been referred to as being context sensitive as it recognises system

behaviour and tailors the learning strategy accordingly. Thus it is able to recognise

periods of stability, stages in which concepts are in a state of change, periods of concept

reoccurrence, and finally, system states with different levels of volatility.

Starting with choices available for each of the basic components, this section first

explores the design choices needed to achieve context sensitivity. The discussion on

staged learning approach and volatility detection follows thereafter.

3.2.1 Implementation choices

Each of the components listed in section 3.1.1 can be implemented in several different

ways. As discussed in section 2.4, a large number of incremental classifiers have been

proposed for data stream mining, including the decision tree group of classifiers, the

Bayesian family of classifiers, and others. A popular class of incremental learners uses

ensembles of decision trees with the Hoeffding tree (Domingos & Hulten, 2000) as

Chapter 3. Staged Learning Approach 54

the basic learning mechanism. Decision trees have proved to be a popular choice in

data stream mining on account of their learning efficiency and their ability to cope with

interdependence between features, unlike the Naive Bayes classifier. Some examples of

incremental classifiers using ensembles of decision trees including CBDT (Hoeglinger

et al., 2009), OzaBagADWIN (Bifet et al., 2009), LeveragingBag (Bifet, Holmes &

Pfahringer, 2010), and ARF (H. Gomes, Bifet et al., 2017).

It is clear that any of the decision tree ensembles can be used as the incremental

classifier component and this study has chosen CBDT as the implementation choice

for the incremental classifier component. A number of previous studies (Hoeglinger

et al., 2009; Sripirakas & Pears, 2014; Sakthithasan et al., 2015; Kithulgoda & Pears,

2016; Kithulgoda et al., 2018) have shown that CBDT provides a good foundation for

learning in a concept drifting environment and this influenced our choice. However,

we note that the methods developed in this chapter and other chapters can equally be

applied to other types of decision tree ensembles.

In terms of concept drift detectors a large choice of drift detectors exist, including

EDDM (Baena-Garcia et al., 2006), ADWIN (Bifet & Gavalda, 2007), and SeqDrift2

(Pears et al., 2014), among others. All of these detectors require the same input, which

is a binary stream of the truth value of classification decisions, while all of them produce

an output which is a binary variable, indicating whether or not the classification decision

is correct or not by reference to ground truth data. Hence the drift detector component is

completely interchangeable amongst the drift detectors that are currently available. The

implementation choice for this work was SeqDrift2 on account of its low false positive

rate and optimized drift detection delay in relation to other drift detectors (Pears et al.,

2014).

With respect to an online repository, there have been two different approaches so far

proposed in the literature. The first by Ramamurthy and Bhatn (2007) stores decision

trees in their original form in the repository. The second approach used in Sripirakas and

Chapter 3. Staged Learning Approach 55

Pears (2014); Sakthithasan et al. (2015); Kithulgoda and Pears (2016) and Kithulgoda

et al. (2018) is to compress decision trees into Fourier spectra by applying the Discrete

Fourier Transform (DFT), and then storing the resulting spectra in the repository (as

illustrated in section 2.5). Classification can be performed directly on the spectra by

applying the Inverse Fourier Transform (IFT) without having to recover the original tree,

thus making such a solution attractive on account of the compression achieved. The time

to classify new data could also reduce due to the compact nature of the spectrum. The

trade-off with better memory utilisation is the transformation cost but this is a one time

cost. When concept drift is signalled by the drift detector, all classifiers (including the

spectra in the repository) are polled to determine which one has the best classification

accuracy on the new concept and this particular classifier is then used on the current

concept. This process and its results are independent of whether or not Fourier based

compression is used and hence the repository component is also interchangeable. This

work’s implementation uses Fourier spectra as classifiers for the repository.

3.2.2 The Staged Online Learning (SOL) approach

So far emphasis in this chapter has been on maintaining classification accuracy in the

presence of concept drift and there was no attempt to improve performance, apart from

a possible improvement in classification time resulting from having more compact

classifiers in the repository. As mentioned briefly in section 3.1.2, one optimization that

could result in significant improvements to system throughput would be to model a data

stream as a state machine that models interactions between two states. The first state

can be thought of as a “learning state” (henceforth referred to as a Stage 1) where new

concepts appear and these concepts are learned and stored as classifiers in the form of

decision trees, Fourier spectra or other types of models.

The second state is a “deployment state” (henceforth referred to as Stage 2) in which

Chapter 3. Staged Learning Approach 56

concept drifts still appear but the vast majority of drifts take place between concepts

already learned in the first state. If such concepts are stored online in the repository

then classifiers representing these concepts could be deployed as they were without the

need for relearning them when concepts recur. Whilst this could yield significant gains

in throughput, concepts may undergo some change when they reappear, and in practice,

some level of learning may also need to take place in Stage 2.

In keeping with the low volatile nature of Stage 2, the decision tree forest is

suspended and Fourier spectra are used as classifiers. When a concept drift occurs

in Stage 2 processing, the spectrum S that reports the best accuracy is chosen as the

classifier for the current concept. However, it is possible that some concepts may

undergo a change after reappearance, and at the end point of a concept’s progression, as

signalled by concept drift, it may happen that the stored version of S may no longer

be a precise representation of the concept. In order to synchronise S with the changed

state of the concept, a single decision tree is used to learn any changes that take place in

the current concept. This tree is induced from spectrum S at the start of the concept

and thereafter learns any changes that may take place after that point onwards. The tree

induction algorithm proposed in Park (2001) has been used for this purpose. At the

end of the concept, the tree is transformed into a new spectrum Snew which is placed

into the repository if space permits, otherwise it is aggregated with its closest matching

spectrum in the repository using the process described in section 2.5.1.

An alternative strategy would have been a simple replacement of S with Snew but

it is believed that aggregation would enable historical properties of the concept to

be preserved, thus offering a better generalization capability. Overall, the processing

overhead in Stage 2 is much lesser than in Stage 1 as only a single tree needs to be

maintained in Stage 2 in contrast to a forest of trees in Stage 1. In addition, as mentioned

earlier, Fourier spectra are more compact than their decision tree counterparts and

hence classification can also be expected to be more efficient. Experimental results on

Chapter 3. Staged Learning Approach 57

throughput presented in section 4.2 show clearly that this is the case.

The staged approach is a generalization of the “learn then deploy” paradigm used

in classical machine learning on a stationary data environment. The difference here is

that many cycles of learning and deployment may occur within a data stream, unlike

a stationary environment which involves just one (unless the data miner retrains a

classifier periodically).

Figure 3.1: Staged Learning framework for context sensitive learning

Figure 3.1 shows the interactions between the major components of the staged

learning framework. The incremental classifier component consists of a forest of

decision trees. Each tree in the decision tree forest operates under the control of a drift

detector.

The system starts off in Stage 1 with the repository in an empty state. Classification

is initially done in a grace period G with a randomly selected tree from the forest. This

tree is designated as the “winner” classifier, meaning that it is solely responsible for

Chapter 3. Staged Learning Approach 58

classifying data arriving in the stream until a concept drift occurs. Within the span

of the grace period the drift detection buffer of each drift detector associated with a

tree is populated with its own classification decision, irrespective of whether or not it

is the designated winner classifier. At the expiration of the grace period the tree that

returns the highest average accuracy is chosen as the new winner tree and this tree is

chosen to classify new data arriving in the stream beyond the grace period. This process

continues until a drift signal is produced. At drift point, the classification accuracy of

each tree in the forest is assessed and a new winner is selected which will be responsible

for classification until the next drift occurs. At each drift point, the winner tree is

compressed by applying the DFT and the resulting spectrum is stored in the repository.

Once spectra appear in the repository they can be used for classification, just as with

trees in the forest. As spectra are classifiers in their own right they too operate under

the control of drift detectors.

In Stage 2, each Fourier spectrum is paired with its own Evolving Tree (ET) when

that spectrum becomes the winner. As described before, the tree ET is used to synchron-

ise the current state of a concept with the spectrum that it is paired with.

The staged approach requires a mechanism for determining the stream state and for

transiting between states. Transition from Stage 1 to 2 is governed by the firing of a

trigger T1 when a shift from high stream volatility to low volatility is identified by the

volatility detector. On the other hand, the reverse shift from low stream volatility to

high volatility is triggered by T2. Details of how these triggers function appear in the

subsequent section.

3.2.3 Transition between Stages

Volatility shift is captured through the application of rigorous statistical methods. Firstly,

a formal definition of volatility is presented and then the discussion proceeds to illustrate

Chapter 3. Staged Learning Approach 59

how shifts in volatility are detected by framing the volatility shift problem in terms of a

concept drift problem.

Definition 1 Volatility is defined as the rate of appearance of new concepts in the

stream with respect to time. In any given stream segment of length l, if n new concepts

appear, then volatility is defined as the probability of appearance of a new concept and

is estimated by n
l .

Note that the definition is based on the appearance of new concepts and not on the

probability of concept drift taking place. Concept drift can occur as a result of concept

changing over to a new, previously unseen concept or reverting to a previously seen

concept. If s switches in concept take place in a stream segment of size l, then in general

only n(≤ s) of them will be new and hence the volatility rate as defined above as n
l will

be less than or equal to the rate of concept drift, sl .

Although Definition 1 characterizes volatility, its utility in practice is limited unless

a method can be found to measure the rate at which new concepts appear in a given data

stream. With this in mind, it is interesting to consider the role that the repository plays

in classification.

With the staged transition learning framework in place, as long as a concept exists

in the online repository that matches the newly emerging concept in the stream that is

signalled by the drift detector, then no re-learning is required. In such cases classifica-

tion is performed with the concept stored in the repository. This suggests that the rate

of re-use of objects in the repository can be taken as a proxy for the rate of appearance

of new concepts. The higher the rate of re-use, the lower is the rate of appearance

of new concepts in the stream, and lower is the volatility. It is possible to provide an

operational definition for volatility in this position.

Chapter 3. Staged Learning Approach 60

Definition 2 At any given point in time during the operation of Stage 1 with the

occurrence of s concept drifts, volatility is estimated as: 1 −
s

∑
i=1

B(R)

s , where B(R) is a

Boolean-valued function that returns “1” if the newly emerging concept i is found in

the repository, otherwise it returns value “0”.

Definition 2 quantifies volatility in terms of the empirical hit (success) rate of the

repository in finding emerging concepts, which is given by: h =
s

∑
i=1

B(R)

s . The higher

the hit rate, the lower is the volatility. It is noted that with a drift detector in place that

has high sensitivity and low false positive rate, the hit rate, and hence volatility can be

determined. Now it is possible to determine the transition point between Stages 1 and 2.

In order to determine the transition point, a window of size w is maintained that

contains samples drawn from values returned by function B(R) defined above. A check

for a transition detection point is made after the arrival of every s concept drifts. The

window is divided into a left sub-window of size (w − s) with the right sub-window

containing the last s samples.

Definition 3 A transition from Stage 1 to Stage 2 occurs if at a concept drift point

i the repository hit ratio satisfies:

• Condition 1: hr > hl

• Condition 2: hr > α

where hl, hr are the hit ratios across the left and right sub-windows respectively and α

is a user defined threshold on hit ratio. Definition 3 establishes that the transition point

i is reached only when an upward shift in the hit ratio takes place in the window prior

to the hit ratio exceeding α.

In practice the hit ratio is a random variable and ensuring conditions 1 and 2 require

statistical significance tests to be made. To check validity of condition 1, a one-tailed

Chapter 3. Staged Learning Approach 61

statistical hypothesis test H0 ∶ hl ≥ hr versus H1 ∶ hl < hr is formulated. Here hl,

hr represent the population means of the data across the left and right sub-windows

respectively.

Thus it can be seen that volatility detection is essentially a second order determin-

ation of concept drift. Amongst the set of drifts recorded in the stream if the rate of

change of appearance of new concepts, as signalled by the repository hit ratio, is on a

statistically significant decreasing trend, then sufficient evidence exists that the system

has transited to a low volatile state (Stage 2). The implication is that the volatility

detection problem can then be framed in terms of a concept drift problem and the

SeqDrift2 (Pears et al., 2014) drift detector is used for volatility detection as well.

The SeqDrift2 detector makes use of the sample means ĥl, ĥr and a threshold ε1 to

determine if condition 1 is satisfied. If (ĥr− ĥl) > ε1, thenH0 is rejected with probability

(1 − δ), else H1 is rejected. The ε1 threshold is given by: 1
3(1−k)nr (p +

√
p2 + 18σ2

snrp),

where p = ln 4
δ , k = nr

nr+nl , σs= sample varience, nr = size of the right sub window, nl =

size of the left sub window and δ= drift significance level.

If H1 is rejected, then it is possible to conclude that no significant increase in hit

ratio has occurred in the current window and hence it is recommended to proceed and

update the left sub-window with samples from the right sub-window before proceeding

to gather a new set of s samples in a new right sub-window for re-testing H0 versus H1.

If there is evidence to reject H0 at the δ significance level, then the implication is

that the stream is moving towards Stage 2 since classification is relying increasingly on

the repository that contains previously captured concepts, in preference to the forest.

However, as yet there is no definitive evidence to transit to Stage 2 as the recent activity

may still not be high enough to justify suspending the operation of the forest of trees.

Thus a further hypothesis test for condition 2 is carried out to ascertain whether ĥr is

greater than some acceptable threshold value α.

To check validity of condition 2, hypothesis H2 tests whether hr ≤ α versus H3

Chapter 3. Staged Learning Approach 62

which corresponds to: hr > α. If H2 is rejected in favor of H3, then the stream is

considered to have transited to Stage 2. If not, the stream is still in Stage 1 and at the

arrival of the next s samples condition 2 is re-evaluated. As with the test for condition 1

above the sample hit ratio ĥr is used and a threshold ε2 to execute the test. If (ĥr−α) > ε2,

then H2 is rejected in favor of H3 with probability (1−δ). The threshold ε2 is computed

using the Hoeffding bound and is given by: ε2 =
√

ln 1
δ

2nr
.

Here the attention is trigger T2. The rationale behind T2 is based on tracking how

good the spectra in the repository are in classifying concepts that are evolving. To

the extent that spectra return high classification accuracy, Stage 2 processing should

continue. High classification accuracy can result when concepts produced by the stream

are similar to those produced in the past or there is a collection of trees that is capable of

reacting quickly to the arrival of several new concepts that are dissimilar to those seen in

the past. Thus when the spectra produced through the growth of a regenerated tree starts

to deviate sharply from those already in the repository in terms of structural similarity,

then there is an indication that the concepts appearing in the stream are novel in the

sense that they have not been captured previously in the stream. Having a definition for

structural similarity in place, now it is possible to implement T2.

Definition 4 Structural similarity simC between the evolving tree ET and the

Repository R is given by: simC =
⎛
⎝

maxS∈R∑i(B[S(i)=ET (i)])
m

⎞
⎠

, where C is the current

concept; B is a Boolean valued function that returns binary “1” for data instance i if

the classification outcome from spectrum S matches with the classification outcome for

tree ET; if no match is produced, then binary “0” is returned in the window; m is the

length of the current concept drift point - the number of data instances in the concept;

and i is an index that ranges over the data instances in the current concept.

As illustrated in Definition 4, the similarity score simC returns the structural sim-

ilarity between the tree ET and its best matching spectrum S in the repository. It is

Chapter 3. Staged Learning Approach 63

measured at each concept drift point C. If simC < β, then binary“1” is written to the

change detection window, otherwise “0” is recorded.

As with trigger T1, SeqDrift2 is used as the change detector. SeqDrift2’s window is

split into left and right sub-windows and with the arrival of every s concept drift points

the null hypothesis H4 ∶ µl ≥ µr is tested against H5 ∶ µl < µr. If H4 is rejected with

probability (1 − δ), then the system transits back to Stage 1 as the right sub-window

shows a significant increase in the occurrence of structural dissimilarity, otherwise Stage

2 processing continues. The intuition behind triggering T2 is that a state change back to

Stage 1 needs to occur when the concepts stored in the form of spectra in the repository

becomes sufficiently dissimilar to the currently emerging concepts in the stream.

3.2.4 Algorithm

The staged data classification approach of SOL is illustrated by algorithms 1 and 2.

Those two algorithms summarise the sequence of steps to be followed in Stage 1 and

Stage 2 respectively.

At the beginning of classification, the system is in Stage 1. Incoming data instances

are classified by using the best performing classifier chosen from one of the trees in the

forest or from one of the spectra in the repository as per step 3. According to step 6, the

stage change detector is fed at every concept drift point by “1" or “0" as an indication of

a repository hit or not, respectively. As given in step 7 of algorithm 1, after observing

s number of concept drift points, hypotheses H0 and H2 are tested (step 8). When

both hypotheses are rejected, the current best performing spectrum is transformed to its

equivalent tree (step 9), which is to be used as the ET learner for the initial concept in

Stage 2. The decision tree forest is suspended in step 10, and the system then transits to

Stage 2 in step 15.

As illustrated by Algorithm 2, subsequent incoming instances are processed by the

Chapter 3. Staged Learning Approach 64

Algorithm 1 Algorithm Process In Stage One
Input: Sample size s, T1 firing threshold α

1: repeat
2: Read next instance ▷ Stage 1 Processing
3: Classify with best classifier chosen from CBDT forest or repository rep
4: if concept drift is detected then
5: Increment Concept Drift Count
6: Feed stage 1 detector with 0 if accuracy(forest) > accuracy(rep), else 1
7: if Concept Drift Count mod s = 0 then
8: if H0 and H2 are both rejected then
9: Evolving tree (ET) from a copy of current best spectrum

10: Suspend the forest and free its memory
11: end if
12: end if
13: end if
14: until H0 and H2 are rejected
15: Call PROCESS IN STAGE TWO(s)

Algorithm 2 Algorithm Process In Stage Two
Input: T2 firing threshold β

1: repeat
2: Read next instance ▷ Stage 2 Processing
3: Classify instance with best classifier chosen from ET or a spectrum S chosen

from the Repository rep
4: if concept drift is detected then
5: Increment Concept Drift Count
6: if accuracy (ET)> accuracy(rep) then
7: Transform ET into its spectrum and update the rep
8: else
9: Generate ET from a copy of current best spectrum

10: end if
11: Feed stage 2 detector with 1 if structuralsimilarity < β, else 0
12: if Concept Drift Count mod s = 0 then
13: if H4 is rejected then
14: Create a new instance of CBDT forest and add ET to it
15: end if
16: end if
17: end if
18: until H4 is rejected
19: Call PROCESS IN STAGE ONE()

Chapter 3. Staged Learning Approach 65

best performer chosen from either the ET or the spectra in the repository (step 3). At

each concept drift point in Stage 2, the repository is modified by either adding a new

spectrum or by aggregating with an existing spectrum when the best performer happens

to be a tree chosen from the decision tree forest as given in step 7. A tree representation

of the best performing spectrum is also constructed in step 9 to classify incoming data

instances in Stage 2 and to adapt to small-scale concept changes in the data.

The degree of agreement (i.e. structural similarity) of the tree ET with spectra in

the repository is examined in step 11 and the stage change detector window is fed

with binary “1” or binary“0” by comparing the similarity score with the user-defined

parameter β. When s number of drifts occur, hypothesis 4 is tested; in the event that it is

rejected a new instance of the CBDT forest is started in step 14 as a result of triggering

T2.

3.3 Time and space complexity of spectral learning

Space and throughput advantages of SOL results from spectral learning. This section

illustrates the space and time complexity for the classification based on spectra in the

repository.

An upper bound for the space consumption of spectra is determined by the total

number of coefficients M taken over all spectra in the repository. Assuming that there

are P spectra and that Qp is the size of the coefficient array for the pth spectrum, the

space complexity is given by Eq 3.1

M =
P

∑
p=1
Qp (3.1)

: The spectral size Qp is determined by the order Op for the given energy threshold, as

Chapter 3. Staged Learning Approach 66

described in section 2.5. Hence we have:

Qp =
OP

∑
r=0

dCr (3.2)

where d is the number of data features and dCr is the number of combinations of

selecting r features from a total of d. The memory complexity M is then given by:

M =
P

∑
p=1

OP

∑
r=0

dCr (3.3)

The Fourier classifier does not rely on a deep hierarchical tree structure but instead

uses a self-indexing hashing scheme to store its schema values. This is compact due to

the reasons mentioned in section 2.5.

Now that an upper bound for the number of coefficients in a given spectrum has

been formulated, the time complexity of the IFT operations defined by Eq. 2.3 can be

expressed as:

O(Md2) (3.4)

as d2 multiplications are needed for the computation of the vector product between x⃗

and j⃗ for each of the coefficients in the array.

3.4 Conclusion

The staged learning paradigm represents a major shift in the way that data streams are

mined and was motivated by the need to scale classifiers to high speed data environments.

The proposed system suspends the operation of the ensemble of learners upon detection

of a sufficiently large rate of recurrences in the data stream. This was quantified and

implemented through the use of trigger T1 that shifts the system from Stage 1 to Stage

2.

Chapter 3. Staged Learning Approach 67

Even though ensemble approaches, in general, perform better than single classifiers

in terms of accuracy and stability, the model statistics update overhead is greater as

statistics for every classifier in an ensemble needs to be updated on a per-instance basis.

For that reason, the proposed framework is expected to result in much higher throughput

through suspension of computationally expensive ensemble learning.

While scaling classifiers to high speed, it is necessary to guarantee that the accuracy

is not compromised. This has been ensured through timely decisions on stage transition

that are driven by sound statistical thresholds. In the low volatility stage where there is

no significant appearance of previously unseen concepts, the framework depends on a

set of stored Fourier spectra and a single derived learner instead of an entire ensemble.

This learner is responsible for capturing small-scale changes in between recurrences.

The framework will be evaluated empirically for its timely stage transition, through-

put, accuracy, and memory advantages over diverse datasets in the next chapter.

Chapter 4

Experimental Study on Staged Online

Learning

4.1 Introduction

This chapter validates the feasibility of the proposed staged learning framework in

chapter 3 through a comprehensive empirical study. The datasets were chosen so as to

represent all of the drift types in order to test whether the framework covers all of the

drift types that can be encountered in practice.

The first set of experiments studied the effectiveness of triggers and stages with

respect to the inherent characteristics of various datasets. Several different evaluation

criteria such as accuracy, throughput, and memory consumption of Staged Online

Learning (SOL) approach were analysed against four other different classifier systems

in the second set of experiments. The robustness of different classifiers was compared

according to their average accuracy rank over all datasets. With the belief of the

importance of both performance measures, namely accuracy and throughput of a stream

classifier, an accuracy versus throughput analysis was also performed. Finally, the

sensitivity analysis assessed the dependency of various parameter settings on the SOL.

68

Chapter 4. Experimental Study on Staged Online Learning 69

4.2 Empirical study

The empirical study consists of four basic sections. Firstly, the effectiveness of the SOL

approach was tested with two key performance measures, namely per-stage classification

accuracy and per-stage processing speed. The study compares SOL against Ensemble

Pool (EP) (Sakthithasan et al., 2015) and Recurrent Classifier (RC) described in section

4.2.1.

Then, overall accuracy and throughput of SOL were examined in comparison to

several well-known algorithms. In this connection, a comparative study is conducted

against two more algorithms that have been proposed for concept drifting data streams.

These algorithms are state of the art meta learning algorithms featured in MOA1, namely

Adaptive Random Forest (H. Gomes, Bifet et al., 2017) and LeveragingBag (Bifet,

Holmes & Pfahringer, 2010). A brief explanation of the operation of these classifiers

can be found in section 4.2.1. Thirdly, the memory consumption was evaluated against

EP. Finally, the effects of different parameter settings on the performance of SOL was

analysed.

4.2.1 Algorithms used for the study

In this section, an overview of the operation of the four comparators is given.

1. Adaptive Random Forest (ARF):

This recently proposed classifier ensemble (H. Gomes, Bifet et al., 2017) is a

reworking of the widely cited Random Forest algorithm presented in Breiman

(2001) together with a revised version of earlier efforts to adapt Random Forest

in Abdulsalam, Skillicorn and Martin (2007, 2008). In contrast to those previous

studies, one of the newly added features of ARF is its resampling strategy which

is followed by Online bagging (Oza, 2005). Secondly, ARF uses a drift detector
1from http://moa.cms.waikato.ac.nz/

Chapter 4. Experimental Study on Staged Online Learning 70

per tree in order to detect drift warning point and the drift point of the stream.

Individual trees used here are Hoeffding trees, as described in Domingos and

Hulten (2000), except for the policy of pruning of poor attributes which is not

implemented in ARF.

Once a warning of drift is detected, the training of new trees is started and

replacement is done at actual drift time. The study of ARF highlights the positive

aspect of initiating training of new trees at the warning point rather than waiting

until drift point to reset learners as the majority of studies do. Authors claim the

ability to use any drift detector with ARF and their experimental study has been

demonstrated with both ADWIN (Bifet & Gavalda, 2007) and Page Hinckley

Test (Page, 1954) drift detectors. In our experiments, ADWIN was selected as

the ARF’s drift detector.

With the aim of dealing with the high execution overhead usually associated with

ensemble learning, ARF has implemented multithreading to parallelize processing

of trees in the ensemble. Their experimentation revealed that speedups of up to

3 were achievable over the serial version. In the comparative experimentation

of this chapter, the serial version of ARF was considered in fairness to other

algorithms that do not use a multithreaded implementation.

2. LeveragingBag (LB):

This algorithm that is given in Bifet, Holmes and Pfahringer (2010) claims better

performance than the well-known Bagging (Oza, 2005) algorithm through the

use of two techniques. First, diversity of instance weights is increased by using

a larger λ for the Poisson distribution as compared to the use of Poisson with

λ = 1 in the original Bagging algorithm. The second modification is having

distinct predictive functions for each classifier in the ensemble in order to reduce

correlations between classifiers. Both variations are done with the objective of

Chapter 4. Experimental Study on Staged Online Learning 71

increasing diversity in the ensemble.

Drifts are detected with ADWIN (Bifet & Gavalda, 2007) change detector. At

drift, a new model replaces the worst performing model in the ensemble. Accord-

ing to their empirical study, better accuracy was achieved over several existing

Bagging algorithms. However, the results showed that this accuracy comes at the

price of efficiency.

3. Staged Online Learning approach (SOL):

This is the approach presented in the previous chapter and published in Kithulgoda

and Pears (2016). The system follows the staged learning approach as explained in

chapter 3. Drift detector instances of SeqDrift2 (Pears et al., 2014) are embedded

into each classifier.

4. Ensemble Pool (EP):

The EP is the classifier system presented in Sakthithasan et al. (2015). The

CBDT tree forest (Hoeglinger et al., 2009) and the Fourier classifier repository

(Sripirakas & Pears, 2014) integrated with the concept drift detectors SeqDrift2

(Pears et al., 2014) are the main components of EP. Compared to SOL, the

EP approach employ neither the staged learning approach nor an evolving tree

and hence it is one of the ideal methods to compare against. This algorithm was

selected as it would provide interesting contrasts and insights into the performance

of unique features that were introduced into the SOL framework.

5. Recurrent Classifier (RC):

This is another implementation of the staged approach which simply uses Fourier

spectra generated in Stage 1 to classify data arriving in Stage 2 without any form

of learning. This classifier thus assumes recurrence of concepts in Stage 2 and is

thus termed Recurrent Classifier. This version provides a useful contrast with the

Chapter 4. Experimental Study on Staged Online Learning 72

SOL as it enables us to assess the benefits of adapting spectra in Stage 2 through

an evolving tree. Similar to SOL and EP, drift detector instances of SeqDrift2

(Pears et al., 2014) are embedded into each classifier in repository and forest.

4.2.2 Datasets used for the study

All experiments were carried out with the use of two synthetic datasets generated by

MOA’s stream generators and four real-world datasets.

Synthetic data

For synthetic datasets, several distinct concepts were generated, each of length 10,000

instances. Drift signals were applied at two levels on the concepts: firstly, abrupt drift

was injected to produce a set of distinctive concepts, and then at the second level,

recurrences of concepts generated at the first level were produced, as depicted in Fig.

4.1. Each concept recurred with a varying degree of change from its first appearance,

depending on its cycle of repetition.

Two different types of changes were introduced at level 2. Firstly, in ‘Synthetic

data recurring with noise’ a given amount of noise was superimposed on the recurring

concepts to differentiate them from their previous appearance.

Secondly, instead of noise, drift patterns were used to generate the data. In ‘Synthetic

data recurring with a progressively increasing pattern of drift’, a progressively increasing

drift pattern was used, whereas in ‘Synthetic data recurring with oscillating drift pattern’

an oscillating pattern was superimposed on the recurrence signal. To the best of our

knowledge, this is the first experimental study of its kind that embeds several different

drift patterns simultaneously in its data. More details can be found below.

Chapter 4. Experimental Study on Staged Online Learning 73

Figure 4.1: Preparation of synthetic datasets with two levels of drift signals

Synthetic data recurring with noise

In following two synthetic datasets, a 5% noise level was introduced for each concept

recurrence by inverting the binary class label of randomly selected data instances with

the belief that ‘concepts do not repeat in exactly the same form’ in reality. In this case,

class flips P1= P2=....Pm= 5%. This is just the noise which has no any meaningful

pattern.

1. Rotating Hyperplane dataset (Noisy RH): This dataset has a total of 10 attrib-

utes and six distinct concepts which were created by adjusting the magnitude of

change in the range [0.03, 0.04, 0.05, 0.07, 0.08, 0.09]. The first three concepts

were repeated 20 times more, with each concept being distorted by a noise level

of 5% at each cycle over its base representation (i.e. its first generated state).

Three previously unseen concepts were injected at the end of datasets with the

intention of examining whether the staged learners would opt for adapting to the

new concepts in Stage 2 or for triggering T2 to transit back to Stage 1. The size

of the dataset was 660,000 data instances.

Chapter 4. Experimental Study on Staged Online Learning 74

2. RBF dataset (Noisy RBF): This 10-dimensional dataset generated concepts by

changing the number of centroids. Here 12 different concepts were produced. The

first 5 concepts were repeated 9 more cycles with noise as per the description for

RH. The remaining 7 concepts were appended in order to simulate the appearance

of completely new concepts in the stream. The size of the dataset was 570,000

data instances.

The objective of including several concept repetitions was to evaluate the capabil-

ity of triggering T1 which should transit SOL system to Stage 2 when recurring

concepts present in the stream. Further to that, the sensitivity of trigger T2 was

assessed by injecting new concepts to test whether trigger T2 would reactivate

Stage 1 operation.

Synthetic data recurring with a progressively increasing pattern of drift

With the objective of evaluating the robustness of the proposed framework to any given

scenario, two more RH datasets were created by injecting two different monotonically

increasing drift intensities on the first 5 concepts of the data stream. Whenever an

instance belonging to any one of these concepts recurred with a certain attribute value,

the class label for that instance was inverted to the other class with a given probability.

In both of these datasets, the drifts between two consecutive concepts were abrupt while

the recurrences have gradually deviated from their last occurrence. Experimented two

drift intensities are given below.

1. RH progressive increase of 10% in flip probability over cycles (10% progressive

RH): The original 5 concepts reappeared in 10 more cycles of repetitions, each

of which had 10% (Where P2= P1+10% ,P3= P2+10%...Pm= P(m-1)+10% as

per Fig. 4.1) greater flip probability of class label than in the previous cycle. The

Chapter 4. Experimental Study on Staged Online Learning 75

process of pattern recognition was challenged by introducing 30% flips of class

labels in the first repetition and thereafter 40%, 50%, and so on up to 100%.

2. RH progressive increase of 20% in flip probability over cycles (20% progressive

RH): The original 5 concepts reappeared in 5 more cycles of repetitions, each of

which had 20% (Where P2= P1+20% ,P3= P2+20%...Pm= P(m-1)+20% as per

Fig. 4.1) greater flip probability of class label than in the previous cycle. The

process of pattern recognition was challenged by introducing 20% flips of class

labels in the first repetition and thereafter 40%, 60%, and so on up to 100%.

Synthetic data recurring with oscillating drift pattern

Further to above, the learning capability of the classifiers was tested when the pattern in

between recurrences are tended to oscillate, rather than being monotonic in nature.

1. RH Oscillating flips (Oscillating RH): In this dataset, repetition cycles were

appended by interleaving flip probability: P1 = 30%, P2= 70%, P3= 40%, P4 =

80%, P5= 50%, P6= 90%, P7= 60%, P8= 100% as per Fig. 4.1.

Real world data

1. Electricity (Elec) dataset: NSW Electricity dataset is used in its original form2.

There are two classes Up or Down that indicate the change of price with respect

to the moving average of electricity prices in the last 24 hours.

2. Flight dataset: This dataset3 was generated by NASA’s FLTz flight simulator

which was designed to simulate flight conditions experienced with commercial

flights. Each flight has four different concepts, corresponding to four flight scen-

arios: take off, climb, cruise and landing. The ‘Velocity’ feature was discretized

2from http://moa.cms.waikato.ac.nz/datasets/
3from https://c3.nasa.gov/dashlink/resources/

Chapter 4. Experimental Study on Staged Online Learning 76

into two binary outcomes Up or Down depending on the directional change of

the moving average in a window of size 10 data instances.

3. Covertype dataset: The original version of this dataset is available at Lichman

(2013). The data was collected from Roosevelt national forest of Northern

Colorado for the task of predicting forest cover type from 54 attributes derived

from 12 cartographic variables. the initial 10% of instances were extracted from

the two most frequent forest types, namely Spruce-Fi and Lodgepole Pine.

4. Occupancy detection dataset: This dataset was also obtained from Lichman

(2013) and used by Candanedo and Feldheim (2016). The dataset consists of

measurements of temperature, humidity, light, and CO2 levels in a given room

and was collected with the purpose of deciding the suitability of the room for

human occupancy. Ground-truth occupancy label outcomes were determined on

the basis of pictures taken at intervals of one minute.

4.2.3 Parameter values

The default parameter values used in the experimentation are as follows:

Maximum number of nodes in decision tree forest: 5000, SeqDrift drift significance

value (δ): 0.01, Maximum number of Fourier spectra in repository: 40, Repository hit

ratio threshold (α) for T1 is 0.5, Similarity threshold (β) for T2 is 0.7, and the Smaple

size (s) is 200.

System configuration

All experiments were conducted on a Windows 10 Enterprise 64-bit machine featuring

Intel Core i5 processor running at 3.2 GHz and having 16 GB of RAM. The framework

was implemented using C# 5.0 in .NET Framework 4.5 runtime environment.

Chapter 4. Experimental Study on Staged Online Learning 77

4.2.4 Effectiveness of Staged Learning approach

In order to test whether a significant difference in performance exists between proposed

SOL classifier, EP, and RC both throughput and accuracy profiles of these algorithms

were examined. Tables 4.1 to 4.5 show average values for throughput and accuracy for

five datasets. The remaining four datasets follow the same trends and were omitted in

the interest of avoiding information overload. The repository hit ratio of Stage 1 which

represents the usage of stored classifiers was also reported for SOL. In addition, the

averaged structural similarity (given in the definition 4 in section 3.2.3) was tracked to

gain insights into the extent of change in the stream during Stage 2 processing for SOL.

Accuracy was observed in batches of size 1,000 and overall accuracy was obtained

by averaging across the entire set of batches. The same sampling scheme was used to

trace other measures such as throughput, repository hit ratio, and structural similarity.

Measures were stable across multiple runs for all classifiers across all datasets with a

standard deviation less than 0.05 and hence were not included.

The objective of experimenting with the Noisy RH and Noisy RBF recurring datasets

was to assess the sensitivity of trigger T1 in detecting recurring concepts by transiting

from Stage 1 to Stage 2. Also the sensitivity of trigger T2 was tracked in transiting back

to Stage 1 when newly injected concepts appeared in the stream. The results presented in

Tables 4.1 and 4.2 depict the potency of triggers T1 and T2 through necessary transitions

through the stages. In the case of RH noisy dataset, T2 was not observed even though

three previously unseen concepts were injected at the end. This illustrates the ability to

handle new concepts without dropping accuracy while working in Stage 2.

Chapter 4. Experimental Study on Staged Online Learning 78

Table 4.1: Stage-wise throughput and accuracy profiles for the Noisy RH dataset
Stage 1
(start-160000)

Stage 2
(160000-end)

Overall

SOL

Accuracy 72.2 73.8 73.4
Throughput 7973 18304 13930
Repository hit ratio 0.36 – –
Structural similar-
ity

– 90.0 –

EP
Accuracy 72.2 72.8 72.6
Throughput – – 6403

RC
Accuracy 72.2 63.6 65.7
Throughput – – 16824

Table 4.2: Stage-wise throughput and accuracy profiles for the Noisy RBF dataset
Stage 1
(start-
80000)

Stage 2
(80000-
560000)

Stage 1
(560000-end)

Overall

SOL

Accuracy 80.9 76.0 71.3 76.6
Throughput 4357 4514 2976 4451
Repository hit ratio 0.48 – – –
Structural similar-
ity

– 88.8 – –

EP
Accuracy 80.9 76.0 70.2 76.6
Throughput – – – 1435

RC
Accuracy 80.9 60.4 45.0 63.0
Throughput – – – 4777

The results presented in Tables 4.3 to 4.5 provide clear evidence of the presence of

recurrence patterns in real-world datasets (not just for RH and RBF for which they were

injected) as SOL fired trigger T1 on all of them. The fact that SOL triggered it on RH

and RBF where there were known recurrences indicates that SOL is sensitive to state

changes in the system. Furthermore, the results demonstrate the effectiveness of trigger

T2 in real-world scenarios as well.

Chapter 4. Experimental Study on Staged Online Learning 79

Table 4.3: Stage-wise throughput and accuracy profiles for the Flight dataset
Stage 1
(start-4000)

Stage 2
(4000-end)

Overall

SOL

Accuracy 77.1 82.7 81.8
Throughput 1399 7201 4331
Repository hit ratio 0.14 – –
Structural similar-
ity

– 97.6 –

EP
Accuracy 77.1 80.7 80.1
Throughput – – 982

RC
Accuracy 77.1 52.9 56.8
Throughput – – 4553

Table 4.4: Stage-wise throughput and accuracy profiles for the Elec dataset
Stage 1
(start-8000)

Stage 2
(8000-44000)

Stage 1
(44000-end)

Overall

SOL

Accuracy 67.0 66.7 83.5 67.1
Throughput 14220 32447 13998 25661
Repository hit ratio 0.38 – – –
Structural similar-
ity

– 85.7 – –

EP
Accuracy 67.0 65.8 83.5 66.4
Throughput – – – 11559

RC
Accuracy 67.0 64.9 83.0 65.7
Throughput – – – 34589

In summary, it is noted that SOL had significant improvements in throughput over

EP, specifically 117.6% for noisy RH, 210.2% for noisy RBF, 341.0% for Flight, 122.0%

for Elec and 150.2% for the Covertype dataset. As expected, the reduction in overheads

caused by replacing a forest of learners with a mechanism of refining already stored

concepts yielded significant gains in throughput. Obviously, the throughput gains for

the RC classifier were even higher than that of SOL but they came at a heavy price in

accuracy.

The competitive accuracy returned by SOL is supported by the high structural

similarity score registered by SOL in Stage 2 processing for all datasets. A high level of

similarity between the concepts being formed and those already present in the repository

Chapter 4. Experimental Study on Staged Online Learning 80

Table 4.5: Stage-wise throughput and accuracy profiles for the Covertype dataset
Stage
1
(start-
12000)

Stage
2
(12000-
20000)

Stage
1
(20000-
36000)

Stage
2
(36000-
48000)

Stage
1
(48000-
end)

Overall

SOL

Accuracy 79.3 82.6 88.7 87.0 77.3 84.8
Throughput 492 7314 389 2510 461 663
Repository hit ratio 0.25 – 0.23 – 0.07 –
Structural similar-
ity

- 93.7 - 95.2 – –

EP
Accuracy 79.3 82.4 87.4 93.3 87.5 86.0
Throughput – – – 265

RC
Accuracy 79.3 56.8 57.8 56.8 60.0 62.7
Throughput - - – – 1626

implies that spectra already generated during Stage 1 are effective in classifying newly

arriving data during Stage 2.

Finally, it is observed that the Flight dataset contains strong episodes of concept

recurrence as T2 did not fire until the endpoint was reached. This type of behavior is

expected to be exhibited in a number of real-world datasets. Given that Covertype does

not have an explicit time dimension but rather a spatial one, yet another insight which

can gain from the Covertype results is that the staged approach is effective at capturing

recurrences defined on a spatial dimension. Interestingly, a relatively poor performance

of RC in Stage 2 was observed. This means that while recurrences are present, they are

not in exact form, once again underscoring the need for a limited learning capability in

Stage 2 to learn small-scale changes in concepts.

Thus we note that relying totally on spectra stored during Stage 1 is not a viable

strategy. This is illustrated by the difference in classification accuracy between SOL

and RC. The SOL classifier significantly outperforms RC, thus demonstrating the need

for learning and refinement of the spectra in Stage 2.

Chapter 4. Experimental Study on Staged Online Learning 81

4.2.5 Accuracy evaluation

In this section, the overall accuracy of SOL against ARF, LB, EP, and RC was compared.

All classifiers were run with the Hoeffding tree as the base learner. The leaf prediction

method was set to the majority class. The split confidence and the tie confidence

parameters were both set at 0.01 for all classifier ensembles in order to maintain

fairness. Each meta-learner was run with default settings for its internal parameters.

In each case, the winner’s accuracy (with accuracies rounded to 1 significant place)

was bolded for easy identification. The LB couldn’t complete the classification task for

datasets symbolized by "–" due to a heap space error. Ranks for each algorithm per

dataset were included in parentheses. The algorithm that reported the highest accuracy

obtained a rank of 1, rank 2 was assigned for the runner-up and so forth. The last row

of the table contains the average of ranks over datasets together with the overall rank of

that algorithm accordingly.

Table 4.6: Classification accuracy with ranking
Dataset ARF LB SOL EP RC
RH Noisy 73.9(2) 76.5(1) 73.4(3) 72.(4) 65.7(5)
RBF Noisy 78.8(2) 78.9(1) 76.6(3) 76.6(3) 63.0(4)
10% progressive RH 76.8(2) – 77.0(1) 76.0(3) 73.4(4)
20% progressive RH 76.2(1) – 76.2(1) 76.2(1) 75.3(2)
Oscillating RH 76.5(2) – 76.8(1) 74.4(3) 73.1(4)
Flight 78.7(4) 79.2(3) 81.8(1) 80.1(2) 56.8(5)
Elec 65.7(3) 65.7(4) 67.1(1) 66.4(2) 65.7(3)
Covertype 82.8(4) 86.3(1) 84.8(3) 86.0(2) 62.7(5)
Occupancy 95.9(1) 85.2(3) 91.4(2) 91.4(2) 82.8(4)
Average Rank 2.3(3) 2.2(2) 1.8(1) 2.4(4) 4.0(5)

Rank of an algorithm per dataset followed by the average rank over all datasets was

the algorithm of choice in determining the best performing algorithm out of multiple

algorithms over multiple datasets. As explained in 4.2.2, datasets are fairly diverse and

Chapter 4. Experimental Study on Staged Online Learning 82

this study intends to provide a suitable solution regardless of the domain. Therefore, the

ranking method was considered to be more appropriate compared to average accuracy

that was less meaningful when datasets were from considerably different domains.

Moreover, average accuracy has the potential of being influenced by outliers Demšar

(2006).

As shown in Table 4.6 algorithms can be divided into two groups, comprising more

accurate classifiers and less accurate classifiers. The first group consists of SOL, LB,

ARF, and EP whereas the second group contains only RC. This is evident by overall

average ranks of algorithms. It recapitulates that RC’s approach of relying totally on

spectra stored during Stage 1 is not a viable strategy.

The proposed algorithm SOL emerges as the winner in 5 out of 9 datasets while

it becomes the joint winner with ARF and EP for dataset 20% progressive RH. The

runner-up algorithm LB results in highest accuracies for RH noisy, RBF Noisy, and

Covertype. The Occupancy dataset reports the highest accuracy with ARF. Being the

winner for the majority of datasets while being the overall winner over all nine datasets

verifies the robustness of proposed stage online learning approach. More precisely, SOL

is the best with three challenging synthetic datasets and two real- world datasets. This

observation validates the applicability of the framework in various types of recurring

and drifting scenarios including real-world datasets.

Even though algorithms were ranked based on the accuracy value, it is also apparent

that the difference between best and the second best is negligible (less than 1%) in the

majority of datasets except for RH Noisy, Flight, and Occupancy. Interestingly, LB

wins RH noisy by 2.6% accuracy difference compared to ARF whereas SOL becomes

the winner for Flight by 1.7% compared to EP, and ARF defeats SOL for Occupancy by

4.5%.

The analysis which has been done above was based on the average accuracy ranks

on datasets given in Table 4.6. The grouping that has been observed was confirmed by

Chapter 4. Experimental Study on Staged Online Learning 83

Figure 4.2: Statistical comparison of algorithms by accuracy. Subsets of classifiers that
are not significantly different are connected with dashed lines.

non-parametric statistical test named Friedman test. This test has been recognised by

Demšar (2006) as one of the best tests to use when it is necessary to compare multiple

classifiers against multiple different datasets. The null hypothesis H0 was that the

average accuracy ranks across the 5 classifiers were the same.

Since Friedman test statistic is greater than the critical value, null hypothesis H0

was rejected at the 95% confidence level, thus indicating that statistically significant

differences exist between the classifiers. Then the classifiers were subjected to the

post hoc Nemenyi test to identify exactly where those differences lay. The Nemenyi

test yielded a Critical Difference (CD) value of 2.09 at the 95% confidence level. Fig.

4.2 graphically illustrates that the top group consisted of SOL, LB, ARF, and EP as

none of the members in this group had significant differences with any of the other

members within the group. One and only member of the other group is RC. However,

the structural of RC is not significant from the subset EP, ARF, and LB.

ARF vs. SOL accuracy of a concept

Further to the above analysis, the accuracy of one particular concept over three con-

secutive repetitions that manifested in the 10% progressive RH dataset was contrasted.

This gives us an in-depth understanding of the rationale behind SOL’s performance

advantage when compared to ARF.

Figure 4.3 shows that SOL is significantly better at capturing recurrences of past

concepts in comparison to ARF that takes a long time to re-learn the concept during

Chapter 4. Experimental Study on Staged Online Learning 84

Figure 4.3: Accuracy of a concept

which time its accuracy suffers. Once ARF learns the concept, it eventually manages

to capture the concept by adjusting its forest and is able to acquire a slightly higher

accuracy than SOL. However, with shorter concepts, ARF would be at a disadvantage.

In addition, the accuracy of SOL is increasing with each repetition due to its property

of applying modifications on previously captured patterns rather than a simplistic ‘use a

previously stored pattern that is the best match’ policy or a more expensive ‘re-learning

the currently appearing pattern from scratch strategy’.

The discussion is continued on analysis of throughput in section 4.2.6, and the

trade-off between accuracy and throughput in section 4.2.7.

4.2.6 Throughput evaluation

In this section overall throughput of SOL against ARF, LB, EP, and RC were compared.

Similar to section 4.2.5, algorithms are ranked so as the highest throughput classifier is

assigned a rank of 1, rank 2 for the runner-up and so forth. The last row of the Table 4.7

also contains the average of ranks over datasets together with the overall rank of that

algorithm accordingly.

Chapter 4. Experimental Study on Staged Online Learning 85

Table 4.7: Throughput with ranking
ARF LB SOL EP RC

RH Noisy 5537(4) 659(5) 13930(2) 6403(3) 16824(1)
RBF Noisy 4309(3) 221(5) 4451(2) 1435(4) 4777(1)
10% progressive RH 1432(3) – 1991(2) 1046(4) 2839(1)
20% progressive RH 1386(3) – 1469(2) 1176(4) 1879(1)
Oscillating RH 1621(3) – 2917(2) 1150(4) 4255(1)
Flight 1903(3) 427(5) 4331(2) 982(4) 4553(1)
Elec 5388(5) 7527(4) 25661(2) 11559(3) 34589(1)
Covertype 1016(2) 327(4) 663(3) 265(5) 1626(1)
Occupancy 9057(5) 13526(4) 19934(2) 14378(3) 22844(1)
Average Algorithm
Rank

3.4(3) 4.5(5) 2.1(2) 3.8(4) 1.0(1)

From the results, it is clear that SOL is the runner-up algorithm in terms of through-

put whereas RC reported the highest throughput over all datasets. ARF and EP were at

the 3rd and 4th place respectively while LB was the weakest in terms of speed.

In order to gain a statistically sound indication of how these five algorithms differ

from each other, the ranks presented in Table 4.7 were subjected to the Friedman test.

As displayed in Fig. 4.4 there are 2 distinct groups. The first group consists of RC and

SOL as these two classifiers have a significant difference with remaining 3 classifiers.

The other group comprises ARF, EP, and LB. On the other hand, the subset of SOL,

ARF, and EP are not significantly different from each other in terms of speed as it

formed another group (critical difference among these three is not significant). These

insights are in accordance with the observations presented in Table 4.7.

4.2.7 Accuracy versus Throughput trade-off

Here the trade-off between accuracy and speed of each algorithm was studied. The

following Fig. 4.5 clearly shows that classifiers that tend to be more accurate (e.g.

LB, ARF) tend to be more time consuming and vice versa. The SOL is an exception

Chapter 4. Experimental Study on Staged Online Learning 86

Figure 4.4: Statistical comparison of algorithms by throughput. Subsets of classifiers
that are not significantly different are connected with dashed lines.

although it was not the fastest. For that reason, it is clear that SOL has provided a good

balance between the two opposing characteristics of accuracy and speed. The nearest

classifiers to SOL are ARF and EP as they achieved the next best compromise between

accuracy and speed.

Figure 4.5: Accuracy vs. Throughput trade-off

4.2.8 Memory consumption evaluation

Memory consumption was sampled at the same intervals used in collecting other

performance measures presented in previous sections. Table 4.8 presents average

number of kilobytes for 10% progressive RH , Elec, and Flight datasets. Table 4.8

Chapter 4. Experimental Study on Staged Online Learning 87

shows the gains in memory usage when SOL and EP operate with a repository that can

accommodate a maximum of 10 spectra.

The memory gains mirror those of throughput, with improvements ranging from

38.9% for 10% progressive RH, and 57.4% for Flight to 59.7% for Elec. The memory

profiles for the other datasets follow the same trends and were omitted in the interest of

avoiding information overload. Once again this is due to the reduction of overheads in

Stage 2 since SOL’s memory overheads are exactly the same as that of EP in Stage 1 as

they share the same learning mechanism. As SOL suspends the operation of its forest

in Stage 2, its memory is released and its only memory overheads are that of the single

tree that it grows and the repository which occupies a small fraction of the space taken

up by a forest of trees. While it is also true that EP’s repository is also very compact, it

suffers by maintaining its forest unnecessarily in Stage 2 where volatility is low.

Table 4.8: Average memory consumption (in kBs)
10% prog. RH Elec Flight

SOL

Stage 1 Forest 1514.80 58.59 585.29
Stage 1 Repository 315.36 9.01 32.82
Stage 1 Total 1831.55 67.60 618.10
Stage 2 Total 571.79 27.16 126.55
Weighted average total 1243.66 37.27 342.46
Spectra count at
the end of stream

10 9 10

EP
Total 2037.66 92.64 803.38
Spectra count at
the end of stream

10 10 10

4.3 Sensitivity analysis

The sensitivity analysis was done in two phases. Firstly, the effects of the threshold

firing parameters α and β were investigated on all datasets and then, results were

Chapter 4. Experimental Study on Staged Online Learning 88

presented for two representative datasets, namely noisy RBF and Elec. The second

phase is focused on analysing the effect of the permitted maximum for the number of

spectra, or repository size. The results are presented for noisy RH, 10% progressive

RH, Flight, and Covertype.

Table 4.9 shows that the noisy RBF dataset throughput is sensitive to the cut off

value used for α. As α is increased from a low value of 0.5 to 0.7 there was a 49.0%

loss in throughput while not having a significant difference in accuracy. This throughput

loss is to be expected as it delayed the T1 for further 40,000 instances. This exemplifies

the negative effects of too high cut-off value for α. The same effects of the α parameter

were also seen for the Elec dataset with a cut-off value of 0.7 that inhibited the firing

of trigger T1, resulting in lower throughput. The effects of α on accuracy were very

marginal, as illustrated by Table 4.9.

Table 4.9 shows that throughput was also sensitive to the value of β, albeit to a

lesser extent than with the α parameter. With RBF, a β setting of 0.5 caused throughput

to slight increase by 3.1% from its default value with the 0.7 setting. The lower setting

for RBF allowed it to stay in Stage 2 for a little longer (as trigger T2 was not activated),

thus resulting in better throughput. On the other hand, a 0.5 setting of β for the Elec

dataset did not cause any difference in triggers compared to its default setting. This

difference in behavior is due to the difference in the dynamics of the two datasets - the

lower setting for Elec had no effect on T2 as the concept recurrence level and concept

similarity were little lessor than with RBF, thus enabling it to remain in Stage 2 for the

same length of time as with the higher setting for β. Table 4.9 shows that the effects of

β on accuracy were also marginal, just as with α.

As depicted in Table 4.10, 10% progressive RH and Flight datasets needed a certain

amount of spectra to stay in Stage 2; with size 10 the throughput increased by 68.7%

Chapter 4. Experimental Study on Staged Online Learning 89

Table 4.9: Effect of Alpha and Beta on the Noisy RBF dataset and Elec dataset
Noisy RBF dataset T1 T2 Throughput Accuracy

α
0.6 same as default
0.7 120000 – 2268 76.1

β
0.5 80000 – 4590 76.5
0.8 80000 520000 4015 76.5

Default setting α = 0.5 , β = 0.7 80000 560000 4451 76.6
Elec dataset

α
0.6 same as default
0.7 24000 32000 12887 67.6

β
0.5 same as default
0.9 8000 36000 22654 67.2

Default setting α = 0.5 , β = 0.7 8000 44000 25661 67.1

and 4.4% respectively over the throughput obtained with size 5. However with the

Covertype dataset having 5 spectra was better in terms of speed while not losing

significant accuracy. Having more spectra, especially in the case of datasets with more

attributes also results in speed disadvantages, which should be avoided. As with the

other two parameters, the effects of repository size on accuracy were marginal.

Table 4.10: Effect of repository size on the 10% progressive RH, Flight, and Covertype
datasets

Dataset Repository
Size

T1 T2 Throughput Accuracy

10%
progressive RH

5 160000
440000

320000 2656 76.4

10 80000 – 4480 74.0
40 (Default) 160000 – 1991 77.0

Flight
5 4000

18000
16000 4016 82.5

10 4000 – 4195 81.8
40 (Default) 4000 – 4331 81.8

Covertype
5 12000

28000
20000 1081 84.4

10 12000
36000

20000 663 84.8

40 (Default) 12000
36000

20000
48000

663 84.8

Chapter 4. Experimental Study on Staged Online Learning 90

4.4 Conclusion

This chapter presented an in-depth examination of the staged learning paradigm that

uses a two staged approach to learning in a data stream environment. The results

demonstrated the effectiveness of the staged learning approach in terms of processing

speed and memory usage without compromising on classification accuracy. The gain

is significant for data streams that exhibit periods of low volatility and hence the

detection of such periods of low volatility is of critical importance to the staged approach.

Classification within those low volatility periods can be effectively dealt with through

exploitation of concept recurrence.

The volatility detection strategy proved to be effective in identifying low volatility

states that enabled the computationally expensive ensemble learning component to

be suspended, thus directly contributing to the performance gains that were obtained.

Likewise, precise recognition of the high volatility stage avoided potential accuracy

drops by ensuring the timely reactivation of Stage 1 which is indispensable to learning

a new batch of concepts unseen in the past.

Moreover, empirical results confirmed the robustness of the staged learning platform

under a variety of challenging recurrence scenarios such as patterns repeating with noise,

patterns repeating with monotonically increasing drift intensity, as well as oscillating

patterns. It also demonstrates the capability of capturing recurrences across a spatial

dimension.

The sensitivity analysis conducted on three critical system parameters: α, β, and

repository size demonstrated the influence of these parameters on performance.

In summary, the empirical study has shown that the staged learning paradigm of

tailoring the learning strategy to the level of volatility in the stream has significant

Chapter 4. Experimental Study on Staged Online Learning 91

performance benefits in terms of throughput and memory savings while resulting in a

better accuracy.

Chapter 5

Incremental Fourier Classifier

5.1 Introduction

In the previous chapter, the Staged Online Learning (SOL) framework which operates

in two stages based on the volatility of data stream was presented. The major difference

between classical data stream mining frameworks and SOL is that the latter takes

advantage of periods with a lesser number of previously unseen concepts. When the

majority of concepts have been seen previously, a computationally expensive group

of experts approach is redundant. For this reason, the forest of decision trees could

be replaced with a single tree in such periods. Even though the results presented in

chapter 4 were promising, the repeated two-way transition between decision tree and

best performing spectrum at each and every concept drift point in Stage 2 is sub-optimal

due to the spikes in processing time at drift points. Therefore, this chapter proposes an

extension to the naive version of SOL introduced in chapter 3.

The extension, named Staged Online Learning with Incremental Fourier Classifier

(SOL-IFC), presents a novel incrementally adaptive Fourier spectrum scheme that

operates in low volatility stream segments. To the best of our knowledge, an incremental,

adaptive Fourier spectrum strategy for data classification has not been proposed in

92

Chapter 5. Incremental Fourier Classifier 93

previous research. Along with the incremental approach, this chapter also proposes

schemes for pruning noisy features and synopsis generation that enable the coefficient

array to be refreshed efficiently on a periodic basis.

In order to present the rationale behind Incremental Fourier Classifier (IFC) in SOL-

IFC, the chapter starts with a discussion of the use of Discrete Fourier Transform (DFT)

in SOL and SOL-IFC contexts, followed by a comparison between Fourier classification

and decision tree classification.

5.2 Application of DFT in SOL vs its application in

SOL-IFC

Several attractive properties of the DFT in data stream environment have been exploited

in mining data streams (Sakthithasan et al., 2015; Kithulgoda & Pears, 2016), but their

use comes at a price. The application of the DFT on multivariate data to produce a

spectrum is a non-trivial operation and has time complexity O(∣X ∣2), where ∣X ∣ is the

size of the feature space (Kargupta & Park, 2004). The size of the feature space ∣X ∣

grows exponentially with the dimensionality of the data. In a highly dynamic data

stream environment where there are frequent concept drifts, the time spent on repeated

application of the DFT at each drift can quickly become prohibitive as shown in section

6.5. A much more effective strategy would be to incrementally maintain a spectrum in

a fashion analogous to the incremental maintenance of a conventional classifier such as

a decision tree.

SOL-IFC draw on the SOL approach proposed in chapter 3 that uses a two-staged

approach to data stream classification. The SOL approach divides data streams into

two types of segments based on the level of volatility in the stream, which is measured

by the rate of appearance of new concepts in the stream. Stage 1 represents a high

Chapter 5. Incremental Fourier Classifier 94

volatility phase while Stage 2 operates in a low volatility phase. The IFC is deployed

in the low volatility phase for two reasons. Firstly, refining an already established

spectrum by making small incremental changes to it, is far more attractive than having

to generate a new spectrum from a decision tree. The experimental results in chapter 6

supports this premise very strongly. Secondly, the underlying philosophy of the staged

approach is that Stage 1 provides a basis for Stage 2 by capturing new patterns as they

arrive in a high volatility stage. These patterns, stored as spectra can then be refined in

an incremental manner in the low volatility Stage 2 phase without compromising on

accuracy.

5.3 Advantages of the Fourier Classifier over the De-

cision Tree Classifier

Two major performance bottlenecks with decision tree based classifiers in a data stream

environment are the depth of the tree and the update overhead of maintaining leaf node

statistics on an instance-wise basis to ensure that classification is consistent with the

current state of the data stream. The proposed classifier has been chosen to contrast with

the decision tree classifier. The decision tree classifier has been shown in a number of

empirical studies to be one popular choice for a data stream environment (Gama, Rocha

& Medas, 2003; Kargupta & Park, 2004; Bifet et al., 2009). This is due to two important

reasons. Firstly, decision tree induction is efficient, and when used in conjunction with

the Hoeffding bound (Hoeffding, 1963), can adapt to new patterns in a data stream with

a single pass through the data. Secondly, they capture dependencies between features

without the need for time consuming graph traversals, such as in neural networks or

Bayesian networks.

Chapter 5. Incremental Fourier Classifier 95

5.3.1 Decision Tree overhead

Although decision trees are efficient when compared with other types of conventional

classifiers, they still have shortcomings that negatively impact on performance. The

depth of the tree directly impacts classification performance as the label for a data

instance can only be determined by a traversal from the root node to the node that

matches with the schema of the given data instance. The deeper the tree, the greater is

the number of intermediate nodes that need to be traversed to extract the required class

label.

Furthermore, once the true label for a data instance is known, the sufficient statistics,

nfvc (Domingos & Hulten, 2000) which record the number of data instances for each

feature f taking value v that belong to class outcome c, need to be updated. These

statistics are required to determine whether a leaf node should split into two or more

decision nodes. The average time complexity of this update is:

O(dvc) (5.1)

where d is the dimensionality (number of features in the data), v is the average cardinality

taken over all features and c is the number of classes. This update needs to be performed

on a per-instance basis even though splits may only occur in a small percentage of

cases, thus exposing a fundamental performance weakness of the decision tree method

when operating in a data stream environment. In many implementations of decision

tree classifiers for a data stream environment, a forest of trees is used and this will

further increase overheads by a factor proportional to the size of the forest. Thus overall,

the appearance of each data instance involves an overhead of O(dvc) in the case of a

decision tree.

Chapter 5. Incremental Fourier Classifier 96

5.3.2 Fourier Classification overhead

The Fourier classifier does not rely on a deep hierarchical tree structure but instead

uses a self indexing hashing scheme to store its schema values. Access to schemas is

provided via a shallow two level extendible hashing scheme. The biggest advantage

of such a two level structure is that classification is very efficient when the schema for

the data instance to be classified is cached in the reservoir described in section 5.5.2.

However, when the spectrum is updated on a periodic basis, classification needs to be

performed once again for data arriving after the update point. In this case, classification

is performed via the Inverse Fourier Transform (IFT) operation.

If s is the size of the coefficient array (number of coefficients) then the time com-

plexity of IFT from Eq. 2.3 is:

O(sd2) (5.2)

as d2 multiplication are needed for the computation of the vector product between x⃗

and j⃗ for each of the s coefficient in the array.

Although a direct comparison between the decision tree and the Fourier classifier

is not possible in terms of time complexity, it is observed that there is no control over

any of the factors governing Eq. 5.1, whereas in Eq. 5.2, the time complexity can be

controlled by limiting the size s of the array as well as the dimensionality of the data d.

Pruning of the coefficient array can be accomplished effectively by energy thresholding.

In addition to energy thresholding discussed in section 2.5, this chapter proposes a

schema pruning scheme in section 5.5.1 that complements on the energy thresholding

scheme proposed by Kargupta and Park (2004).

In SOL-IFC, two types of pruning are used. Firstly, by reducing the size s of

its coefficient array it reduces the time complexity of the IFT, leading to smaller

classification times after a spectral update is performed. The second type of benefit is

that it reduces overhead by excluding some of the d features from the computation of

Chapter 5. Incremental Fourier Classifier 97

the vector product between x⃗ and j⃗. This is done by eliminating features that do not

contribute to the classification process. The details are given in section 5.5.1.

5.3.3 Fourier Coefficient Array update overhead

Just as with the decision tree the Fourier classifier needs to update its model by refreshing

the coefficient array. Each coefficient of the array plays a role similar to the leaf node

of a decision tree classifier but there is no need to store sufficient statistics for each

coefficient apart from its numeric value. Thus the cost of accessing a large 3-dimensional

array is avoided during the model update operation.

From Eq. 2.4, we observe that the time complexity for the update operation is

O(nd2∣X ∣) where n is the number of coefficients affected by the update and X is the

schema set. Each coefficient to be updated requires d2 × ∣X ∣ multiplications to compute

the new value of the coefficient that is being updated.

Our strategy for reducing the update overhead is two-fold. Firstly, as noted in

section 5.3.2, feature selection enables us to eliminate some of the d features from the

vector product operation. The reduction factor R1 obtained through feature selection is:

R1 =
∣X ∣
∣F ∣

(5.3)

, where ∣X ∣ = ∏
i∈X

λi and ∣F ∣ = ∏
i∈F
λi, where F denotes the subset of features (drawn

from feature set X) that survive the feature selection process described in section 5.5.1.

Secondly, Theorem 1 in section 5.4.1 enables us to prune the schema set X . It does

this by identifying a subset C of X consisting of those schemas that change their class

labels from the last observed interval. The Theorem ensures that the coefficient array

can be updated efficiently without compromising on classification accuracy. Theorem 2

further constrains the size of C when certain conditions are met.

If C is the subset of X identified by Theorem 1 (which we present in section 5.4.1)

Chapter 5. Incremental Fourier Classifier 98

over which the update operation must be performed, then the reduction factor obtained

through schema pruning is:

R2 =
∣X ∣
∣C ∣

(5.4)

In stream segments that exhibit a low level of change, we expect that only a small

fraction of schema will change their class labels, i.e. ∣C ∣ ≪ ∣X ∣ and so ∣R2∣ ≫ 1. The

reduction factors R1 and R2 are independent of each other as the class label change rate

for a given schema (from one interval to another) is an inherent property of the data and

is not influenced by the information content of individual features. Thus the cost of the

update operation reduces by a factor R1 ×R2 with the help of the two optimisations.

Our experimentation in chapter 6 will quantify the performance gains from feature

selection and the incremental coefficient update strategy.

With these optimisations, SOL is enhanced with IFC to enable a trade-off between

accuracy and efficiency to be made in a concept changing data environment. A detailed

presentation of the novel incremental Fourier classifier approach follows.

5.4 Incremental approach to Fourier Spectrum main-

tenance

Real-time classifier update techniques have been extensively researched in the domain

of data stream classification as discussed in section 2.4. In incremental learning, small-

scale changes are made on the decision model over time on a continuous basis rather

than recreating models from scratch.

Even though the SOL proposed in chapter 3 yielded good savings in time and

memory, several inefficiencies remain. Firstly, in the low volatility state, the spectrum

(S) that most closely fits is used to induce a decision tree (T). This induction process

Chapter 5. Incremental Fourier Classifier 99

can involve high computational overhead, depending on the actual size of the spectrum.

Secondly, when concept drift takes place from an existing concept C to a new

concept C’, the tree T that has evolved to a new version Tc that embodies changes from

the former concept C will need to be converted to spectral form Sc, so that it can be

stored in the repository for future use if C recurs. At the same time, a conversion from

S’ to tree T’ is needed in order to learn future changes in the new concept C’. Such

conversions from spectrum to tree and tree to spectrum can be avoided by tracking

changes in the raw data and translating such changes to the spectrum without the need

for transformations to or from the tree to spectral domains.

There has been very little research done on optimizing the learning process within

the Fourier domain. None of those studies (Park, 2001; Kargupta & Park, 2004;

Kargupta et al., 2006; Sakthithasan et al., 2015; Kithulgoda & Pears, 2016) have worked

on an incremental adaptation of the Fourier spectrum. As Park (2001) says, learning

directly in the Fourier domain is challenging in a high dimensional data environment

and optimization strategies such as gradient descent were used to update the coefficient

array. This work shows that there is no need for using such computationally complex

methods.

5.4.1 Incremental maintenance of Spectra

Spectra in the repository can be maintained in one of two ways. The first approach

taken by Sripirakas and Pears (2014); Sakthithasan et al. (2015), and Kithulgoda and

Pears (2016) is to select the best performing tree from a decision tree forest at each

concept drift point and apply the DFT to produce a spectrum. This spectrum is then

aggregated with the most similar spectrum already resident in the repository through

the use of a Euclidean distance measure discussed in section 2.5.1. There are two major

issues with this approach. The first is the high overhead in applying the DFT. Secondly,

Chapter 5. Incremental Fourier Classifier 100

the maintenance operation is not incremental as an existing spectrum is updated in its

entirety with a newly generated spectrum from the best performing tree.

The second approach to maintenance exploits the fact that in any given stream

segment only a subset of schema instances will experience a change in their class values

over the previous segment. Thus, instead of treating the spectrum that covers the data

in the newly arriving data segment as being a new spectrum in its own right, this work

treats it as an extension of the spectrum that was generated from the previous segment.

For that reason, this study proposes to deploy these extended spectra which are

considered as incremental Fourier classifiers in low volatility segments of a data stream

in SOL. The proposed method adapts SOL framework described in section 3.2.2 as

depicted in Fig. 5.1.

Figure 5.1: Staged Transition Learning framework adapted from chapter 3

Figure 5.2 illustrates the incremental update process that is carried out periodically

in intervals. Schema instances x that have changed their class labels f current(x) in the

current interval are used in conjunction with fprevious(x) from the previous interval,

together with the current version of the spectrum array wcurrent
j⃗

to compute the new

version wnew
j⃗

that will be used in the next interval. Theorem 1 quantifies the update

Chapter 5. Incremental Fourier Classifier 101

computation and provides a proof of its correctness.

Figure 5.2: Periodic update of spectra

Theorem 1: Let C be the change set containing all schema instances that have

had their class labels changed since the previous update point. The new version of the

coefficient array wnew
j⃗

can be derived from its current version wcurrent
j⃗

as follows:

wnew
j⃗

= wcurrent
j⃗

+ 1

∣X ∣ ∑x∈C
ψj⃗(x)(f current(x) − fprevious(x)) (5.5)

,where f current(x) , fprevious(x) are the class labels in the current and previous

intervals respectively for a given schema x.

Proof
wnew
j⃗

= 1

∣X ∣ ∑x∈X
ψj⃗(x)f current(x)

= 1

∣X ∣ ∑x∈X
ψj⃗(x)(f current(x) − fprevious(x))

+ 1

∣X ∣ ∑x∈X
ψj⃗(x)fprevious(x)

= 1

∣X ∣ ∑x∈C
ψj⃗(x)(f current(x) − fprevious(x))

+ 1

∣X ∣ ∑
x∈X∖C

ψj⃗(x)(f current(x) − fprevious(x))

+wcurrent
j⃗

, as wcurrent
j⃗

= 1

∣X ∣ ∑x∈X
ψj⃗(x)fprevious(x)

= wcurrent
j⃗

+∑
x∈C

ψj⃗(x)(f current(x) − fprevious(x))

as f current(x) = fprevious(x)∀x ∈X ∖C

In certain cases, it is possible to optimize further by restricting the refresh operation

Chapter 5. Incremental Fourier Classifier 102

to only a subset of coefficients in the coefficient array. Definition below establishes

when this optimization applies and how this subset can be identified.

Definition (Pivot) A feature p is said to be a pivot on the schema set X if ∀x ∈ C

∃y ∈ C such that

1. x and y differ only in index position p

2. f(x) = f(y)

3. ⋃
x(p)∈C

= {0,1,⋯, λp−1}, where x(p) is the pth position of a schema instance x

Suppose a pivot feature p exists with change set C. Theorem 2 below identifies

the spectrum coefficient subset that is unaffected by the class label changes amongst

schema recorded in the change set C.

Theorem 2: If a feature p is a pivot in the previous interval, and remains as a pivot in

the current interval then the set of coefficients U that is unchanged is given by wj⃗ with

j(i) = ∗ ∀i ≠ p and j(i) ∈ {1,2,⋯, λp − 1} when i = p.

Proof

Chapter 5. Incremental Fourier Classifier 103

Consider an arbitrary j⃗ ∈ U

ψj⃗(x) = ∑
x⃗∈C

d−1
∏
l=0

cos(2πj(l)x(l)
λl

)

+ i∑
x⃗∈C

d−1
∏
l=0

sin(2πj(l)x(l)
λl

)

Define F = {0,1,⋯, d − 1}

Let t1 = ∑
x⃗∈C
∏
l∈F

cos(2πj(l)x(l)
λl

) (5.6)

and t2 = ∑
x⃗∈C
∏
l∈F

sin(2πj(l)x(l)
λl

)

Let m = ∏
l∈F∖{p}

cos(2πj(l)x(l)
λl

)

Then t1 = ∑
x(p)∣x⃗∈C

m cos(2πj(p)x(p)
λp

)

We are interested in coefficients j ∈ U such that j(p) ≠ 0 Now with k = j(p)x(p) and

N = λp, Eq. 5.6 can be written in the form:

t1 =m
N−1
∑
k=0

cos(2πk
N

) = 0 for all integers k and N (Knapp, 2009).

Likewise, t2 =m(sin(2πj(p) × 0

λp
) + sin(2πj(p) × 1

λp
)

+⋯ + sin(
2π(j(p) × (λp − 1))

λp
)

=m × 0 as
N−1
∑
k=0

sin(2πk
N

) = 0

for all integers k and N, also from Knapp (2009).

Thus ψj⃗(x) = 0 ∀x ∈ C

Chapter 5. Incremental Fourier Classifier 104

From Theorem 1 above, we have ∀j ∈ U,

wnew
j⃗

= wcurrent
j⃗

+∑
x∈C

ψj⃗(x)(f current(x) − fprevious(x))

= wcurrent
j⃗

as ψj⃗(x) = 0 ∀x ∈ C and j ∈ U

The utility of Theorem 2 is illustrated in the following example which uses binary

data to maintain simplicity.

Suppose there is a 3-dimensional dataset with X2 as a pivot in the previous interval.

The Theorem then deals with scenarios such as given below.

Class labels in previous interval: f(∗ ∗ 1) = 0, f(∗ ∗ 0) = 1.

As feature X2 was a pivot in the previous interval f(∗0∗) = f(∗1∗) .

Now suppose that the class labels in the current interval are: f(∗ ∗ 0) = 1, f(0 ∗ 1) =

0, f(1 ∗ 1) = 1.

Hence change set CPreviousToCurrent = {101,111}.

It has been observed that feature X2 remains as a pivot in the current interval.

Now from Theorem 2, we can conclude that coefficients given by w(⃗∗1∗) do not need to

be updated.

Efficient and effective recognition of the change set is facilitated by hashing and

reservoir management process as explained below.

5.5 Hashing and Reservoir management

This section describes two further optimisations applied on IFC as introduced in section

5.3.3: features selection based schema hashing, and capturing change set with the aid

of hashing and synopsis generation.

Chapter 5. Incremental Fourier Classifier 105

5.5.1 Schema Hashing through Feature Selection

Feature selection strategy is based on identifying the subset of features that play a

critical role in the classification process. In the context of classification via a Fourier

spectrum, feature selection means the selection of features which contribute to the IFT

operation, as given in Eq. 2.3. Kargupta et al. (2006) proved that when a feature Xk

does not appear in a decision tree then all coefficients wj⃗ = 0, whenever j(k) take a

non zero value, irrespective of the values taken by other elements of j⃗. With respect to

coefficients with j(k) ≠ 0 their contribution to the IFT is hence zero.

Further to this, consider the remaining set of Fourier coefficients where j(k) = 0 at

feature Xi’s position. Even though the Fourier coefficients wj take non zero values, the

Fourier basis function has no contribution from such coefficients as shown below. On

this basis, it is concluded that features that do not appear in decision trees in Stage 1

play no part in the classification process. This property is exploited when obtaining the

hash function as described below.

Eq. 2.2 is applied on the subset of coefficients where j(k) = 0. If k ≠ 1, j⃗ can be

reordered to make k = 1 then without loss of generality.

λ⃗
j (x⃗) =

1

d

√
d

∏
l=1
λl

d

∏
m=1

exp(2πlx(m)j(m)
λm

)

Let r(m) = 2πl

λm

Now λ⃗
j (x⃗) = exp (r(1)x(1) × 0) 1

d

√
d

∏
l=2
λl

d

∏
m=2

exp (r(m)x(m)j(m))

= 1 × 1

d

√
d

∏
l=2
λl

d

∏
m=2

(exp (r(m)x(m)j(m)))

Chapter 5. Incremental Fourier Classifier 106

Thus the Fourier basis function’s contribution to coefficients where j(i) = 0 has not

been affected by the X th
l feature.

This feature selection is done, besides the feature selection done in Stage 1 prior to

transformation of a decision tree to its corresponding spectrum. In Stage 1, all features

that appear in a tree are stored along with its corresponding spectrum. When one

spectrum is aggregated with another, a union of the feature sets of the two spectra that

are aggregated is stored with the new aggregated spectrum.

Knowing the set of influential features per spectrum, a hash scheme for efficiently

storing schema instances can be devised. Given a schema instance, a hash function for

the ith spectrum Si is the string ⋃nj=1 Y (j), where Y (j) =X(j) if feature j survives the

feature selection process, otherwise Y (j) = 0. The rationale for this is that all schema

instances will take the same class value regardless of the non contributing feature values.

Hence only one instance indexed by a position of 0 for such feature will suffice. For

instance, if we consider the binary tree given in Fig. 2.2, X1 and X3 are influential

features but not X2 as it does not appear in the tree and hence does not play a part in

the classification process. Thus it follows that the hash function for the spectrum is

H(X1(x)X2(x)X3(x)) = (X1(x)0X3(x)).

5.5.2 Reservoir organization

A critical element of incrementally adapting the Fourier spectrum to changes in the

data stream is a dynamic data structure that captures changes in the schema over a

period of time. Fig. 5.3 shows a dynamic reservoir structure that keeps track of the

evolution of schema over time based on an extendible hash implementation. Each and

every spectrum in the repository has its own reservoir built using the hashing scheme

described earlier.

The reservoir is compact for two reasons. First of all, it only stores schema and

Chapter 5. Incremental Fourier Classifier 107

Figure 5.3: Hashing and Reservoir structure

not data instances, in a manner analogous to a decision tree that only stores decision

paths and not actual data instances. Secondly, feature selection ensures that the worst

case space complexity of the reservoir is O(∣X ∣). Thus for the example shown in Fig.

5.3, the appeared schema reduces in size from 6 to 3 as feature 2 plays no part in

classification and hence both 0 and 1 occurrences of this feature maps to the same class,

thus requiring only one representation for this feature, which we choose to be 0.

Although the schema set can be sparse, the reservoir is compact as only a subset

of schema instances may actually manifest in the stream. For this example schema set,

although there are a total of 8 possible schema instances, only 6 may actually appear

in the stream, as illustrated in Fig. 5.3. This calls for a dynamic data structure that

only utilises space as and when needed, and hence our use of a hashing scheme. The

extendible hashing scheme also ensures that an entry in the reservoir can be extracted

with no more 2 memory fetches.

Each spectrum in the repository will be stored its own reservoir according to the

structure defined in Fig. 5.3. At any given point in time, only the winner spectrum

undergoes a change; all other spectra in the repository remain static until one of them

emerges as the winner. Each entry in a reservoir is indexed by its hash value, the class

value of the schema at its first appearance, its frequency of appearance, the true class

label within the current interval if it appeared, and finally the true class label within its

Chapter 5. Incremental Fourier Classifier 108

previous appearance if any.

The reservoir serves two main purposes. Firstly, it helps to determine when spectra

should be refined, and secondly, it provides a cache for extracting the class label

whenever several data instances recur within the same interval with the same schema,

or when schema only differ in one or more index positions involving non contributing

features. In this respect the higher the number of collisions in the hash table, the better

the efficiency. For any given schema, the class value returned by the IFT will remain

the same and will represent the predicted class value as long as the spectrum remains

unchanged.

5.6 Algorithm

The discusion on SOL-IFC approach in sections 5.4 and 5.5 are presented in two

algorithms 3 and 4. The pseudocode given in algorithm 3 presents the reservoir man-

agement and classification process.

As given in steps 6-10 of algorithm 3, if the hash value returned by the corres-

ponding spectrum’s hash function already exists in that spectrum’s reservoir, instead

of reclassifying it class value is simply extracted from its first appearance. If no entry

exists, then it is necessary to classify and insert a new record. If the winner is not in a

drift state and a threshold I on the number of instances arrived (steps 12-14), then the

Refine Winner procedure which is given in algorithm 4 is activated.

In algorithm 4, the requirements for refinement are first tested in step 8. In case the

cumulative change rate is higher than the tolerable change rate T, the coefficients of the

winner spectrum will be modified by utilizing an incremental factor, as shown in step

17 of Algorithm 4. At this point in time, the reservoir is reset by clearing its contents

(step 17 of algorithm 3).

If it fails to meet the conditions for refinement, subsequent tests for refinement will

Chapter 5. Incremental Fourier Classifier 109

Algorithm 3 Incremental Fourier Classifier
Input: Interval Length I , Spectrum Repository, InstanceCount = 0,

EffectiveChangeRate = 0
1: repeat InStage2
2: Read Instance
3: IncrementInstanceCount by 1
4: for all Spectrum Si in Repository do
5: Apply S′is Hash Function on Instance
6: if Hash Value found in S′is Reservoir then
7: Extract predicted class value, update frequency and True class columns
8: else
9: Classify by IFT and insert into Reservoir

10: end if
11: end for
12: if Winner is not in drift then
13: if Instance Count MOD Interval Length = 0 then
14: EffectiveChangeRate= RefineWinner (EffectiveChangeRate)
15: if WinnerRefined then
16: Reset Instance Count = 0
17: Clear Winner’s Reservoir
18: else
19: for all Winner Reservoir Record do
20: Previous True Class = Current True Class
21: Current True Class = null, Frequency = 0
22: end for
23: end if
24: end if
25: else
26: Define spectrum with the highest accuracy as New Winner
27: Aggregate Previous Winner with most similar Spectrum if such exist
28: Reset InstanceCount =0, Reset EffectiveChangeRate=0
29: Clear New Winner Spectrum’s Reservoir
30: end if
31: until InStage2

be done using the accumulated change rate in intervals of size I .

Chapter 5. Incremental Fourier Classifier 110

Algorithm 4 Refine Winner
Input: Tolerable Change Rate, WinnerRefined = False,NumberofChanges = 0

1: for all Winner Reservoir Hash Value appeared in Current Interval do
2: if Current True Class is not equal to Previous True Class then
3: Increment NumberOfChanges by Frequency
4: end if
5: end for
6: ChangeRate = NumberOfChanges/ Interval Length
7: CumChangeRate = EffectiveChangeRate +ChangeRate
8: if CumChangeRate > Tolerable Change Rate then
9: for all Coefficient Index j that belongs to Winner Spectrum do

10: IncrementalFactor = 0
11: for all Reservoir Hash Value x where Classes are changed do
12: Calculate ClassDifference = (f current(x) − fprevious(x))
13: Compute F = ψj(x) ×ClassDifference where ψj(x) is from Eq. 2.2

▷ Update Incremental Factor in Eq. 5.5 as
∑
x∈C

ψj⃗(x)(f current(x) − fprevious(x))
14: IncrementalFactor = IncrementalFactor+ F
15: end for
16: Compute AverageIncrementalFactor as 1

∣X ∣IncrementalFactor

▷ where ∣X ∣ is the current reservoir size
17: wnewj = wcurrentj + AverageIncrementalFactor

▷ as in in Eq. 5.5
18: end for
19: Set WinnerRefined = True , Reset CumChangeRate = 0
20: else
21: Set WinnerRefined = False
22: end if

return CumChangeRate

5.7 Conclusion

This chapter presented a novel approach to classification that exploits the DFT called

SOL-IFC. This approach believes that most data streams either exhibit recurrence of

previous concepts, closely resemble, or are derivatives of previously seen concepts. In

stream segments exhibiting recurrence of previous concepts, SOL-IFC re-uses previ-

ously stored spectra that most closely matched with the recurring concept.

On the other hand, when the current stream segment does not closely resemble any

Chapter 5. Incremental Fourier Classifier 111

of its stored concepts from the past, SOL-IFC refines the spectrum that it currently

operates on in order to adapt to concept change in the stream. In cases where completely

new concepts appear in the stream, SOL-IFC suspends its operation via a transit to

Stage 1, in order to learn concepts with the help of the decision tree forest.

The chapter also discussed how the spectrum refinement process was optimised

by introducing a self indexing hashing scheme that efficiently references a reservoir

containing key statistics that quantify changes occurred in a given time window. In

order to guarantee fast access to the reservoir, a schema pruning strategy which ensures

the removal of noisy features was also implemented.

As a positive consequence of the above mentioned enhancements, namely, self

indexing hashing scheme and schema pruning strategy, the time efficiency of the IFT

process was increased in two ways. Firstly, through the use of the hash function,

the number of different schemas is reduced and hence the likelihood of finding the

result of the IFT in the reservoir was increased. Also, the removal of noisy features

reduces the effective schema length involved in the IFT calculation and thereby reduces

classification time.

The effect of these three novel conceptual contributions will be examined through

an extensive experimental study reported in the subsequent chapter.

Chapter 6

An Empirical Study of the

Incremental Fourier Classifier

6.1 Introduction

This chapter presents an empirical study that examines the effectiveness of SOL-IFC in

terms of classification accuracy and throughput. An examination of SOL-IFC’s accuracy

against eleven other adaptive classifiers that have been previously proposed for concept

drifting data streams is undertaken. Nine of those algorithms were chosen from state of

the art meta learning algorithms featured in MOA1. The SOL, predecessor of SOL-IFC

introduced in chapter 3, and an algorithm named Recurrent Classifier (RC) were also

used as comparators. The experiments were carried out on two synthetic datasets and

five real-world datasets described in section 6.1.2.

In addition to the accuracy study, the trade-off between throughput and accuracy

of the best performing algorithms (defined in terms of accuracy) was also examined.

Finally, section 6.5 presents an in-depth comparison of SOL-IFC over SOL with the

focus on execution time and CPU utilisation.
1from http://moa.cms.waikato.ac.nz/

112

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 113

6.1.1 Algorithms used in study

A brief explanation of the twelve algorithms that we experimented with is given below.

1. Accuracy Weighted Ensemble (AWE):

This is one of the highly cited ensemble algorithms presented by H. Wang et

al. (2003) for concept drifting data stream processing. This study also presents

a theoretical proof for the capability of reducing classification errors with an

ensemble classifier.

The models are built sequentially on equal sized partitions of the stream. Each

classifier’s mean square error determines the weight of its contribution to the final

class label. In order to limit the number of classifiers in the ensemble, AWE tests

how confident it is to make the same classification decision with and without that

classifier under consideration of removal. A decision on a class outcome of a

given instance was taken by conferring classifiers one after another in descending

order of their weights until it reached a certain user-defined confidence about the

outcome. The authors adopted a pruning algorithm from Fan, Wang, Yu, Lo and

Stolfo (2002).

Even though an explicit concept drift detector has not been used, authors claim

good adaptability via combining models based on weights. In their original

experimental study, C4.5 (Quinlan, 1993) and a few other base classifiers were

used. In the comparative study given in sections 6.2 and onwards, Hoeffding tree

was used as the base classifier in order to be consistent with all other approaches.

2. OzaBagASHT (AS):

The study of Bifet et al. (2009) has presented an algorithm named Adaptive Size

Hoeffding Tree (ASHT) which features two variations when compared to the

original Hoeffding tree (Domingos & Hulten, 2000). The ASHT has a maximum

number of split nodes as a parameter, that is, its ‘size’. If the size exceeds its

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 114

maximum setting after node splits, some nodes are then deleted. Two deletion

choices are recommended: deletion of all nodes except for the latest split node or

the removal of the entire tree, followed by regrowth from the new root.

The individual ASHTs are combined by the use of a novel bagging strategy which

ensures a pool of trees with higher diversity than could be obtained through

standard bagging methods (Oza, 2005). A higher diversity is obtained by having

trees of different size. The size of the initial tree in the ensemble is two and

thereafter the size of every subsequent tree is doubled. The trees are weighted

according to the inverse of the square of their errors obtained after applying an

exponential weighted moving average on error. In this algorithm, no drift detector

was used.

3. OzaBagADWIN (OB):

The OzaBagADWIN in Bifet et al. (2009) is an integration of the well-known on-

line bagging algorithm of Oza (2005) and the ADWIN change detector presented

in Bifet and Gavalda (2007). The worst performing learner is removed and a new

learner is added at each drift point in the stream.

The study suggests the use of variations on the basic Bagging algorithm for

situations where the focus is not on processing speed or memory consumption.

4. LeveragingBag (LB):

The algorithm description is given in section 4.2.1.

5. LimAttClassifier (LA):

This ensemble learner presented in Bifet, Frank et al. (2010) consists of Hoeffding

trees (Domingos & Hulten, 2000) built on all possible attribute subsets of some

user-defined size that is small. Per-instance basis class predictions are collected

from each tree in the ensemble to train perceptron classifiers. This training uses

stochastic gradient descent with a learning rate 2
2+m+n , where m is the number of

attributes and n is the observed training instances by the time. In order to avoid

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 115

excessive delay in convergence for the perceptron, the algorithm resets n at each

drift.

The ADWIN (Bifet & Gavalda, 2007) drift detector is the change detection

mechanism. Other than resetting the learning rate n parameter, poorly performing

trees are also reset by replacing the tree with its root node at drifts.

The subset size of ‘2’ is recommended as a practical value for relatively higher

dimensional datasets while larger subset sizes are recommended for datasets with

small dimensionality. The authors of this algorithm also conclude the importance

of using an apt relevance measure for combining individual tree classification

result when deciding classification output for the ensemble rather than the use of

a simple averaging method.

6. Accuracy Updated Ensemble (AUE):

The algorithm presented in Brzeziński and Stefanowski (2011) is an extension of

the above given AWE (H. Wang et al., 2003). In contrast to AWE’s adjustable

weight driven adaptability, AUE maintains an online classifier that adapts itself

if changes are observed between consecutive instance blocks. In addition, AUE

only updates the weights of selected classifiers that reports adequate accuracy.

Their experimental study showed accuracy improvements compared to AWE

while consuming similar amounts of processing time and memory.

7. Dynamic Adaptation to Concept Changes (DA):

The study of Jaber, Cornuéjols and Tarroux (2013b) explores various forgetting

mechanisms that decide which ensemble leaners be removed while learning

takes place. Highlighting the limitation of removing the worst learner, the study

introduces arbitrarily selection of one model from the subset of poorly performing

learners for the removal.

Experimentation on different subset sizes revealed ‘1’ as the best subset size

for stationary environments while half size of learners was optimal for concept

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 116

drifting streams. The deletion of one of the poor learners and the insertion of a

new learner was used as the method of coping with drift.

8. Anticipative Dynamic Adaptation to Concept Change (AD):

The Anticipative Dynamic Adaptation to Concept Change (ADACC) algorithm

presented in Jaber et al. (2013a) is an extension of the work DA (Jaber et al.,

2013b) described above. This study integrates an approach of storing critical past

concepts and recognising reappearance of those concepts in the stream.

The decision of storing a given model is taken on the basis of the difference

between the Kappa statistic (Carletta, 1996) and the error of that model over a

period of time. If the difference is higher than some predefined threshold and

sufficiently varied from the models already in memory, the model is cached for

re-use in the future.

9. Adaptive Random Forest (ARF):

The algorithm description is given in section 4.2.1.

10. SOL-IFC (IFC):

This is the algorithm proposed in the previous chapter and published in Kithulgoda

et al. (2018). Drift detector instances of SeqDrift2 (Pears et al., 2014) are

embedded into each classifier in the spectrum repository and decision tree forest.

11. Recurrent Classifier (RC):

The algorithm description is given in section 4.2.1.

12. Staged Online Learning approach (SOL):

This is the predecessor of SOL-IFC which was presented in chapter 3 and briefly

described in section 4.2.1. This algorithm was selected as it would provide an

interesting contrast between SOL-IFC and its more naive version, SOL.

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 117

6.1.2 Datasets used for the empirical study

All experiments were carried out with the use of two synthetic datasets generated by

MOA’s stream generators and five-real world datasets.

Synthetic data recurring with noise

For synthetic datasets, several distinct concepts were generated, each of length 10,000

instances. With the belief that ‘concepts do not repeat in exactly the same form’ in

reality, a 5% noise level for each concept recurrence was introduced by flipping the

class label of randomly selected data instances.

1. Rotating Hyperplane dataset (RH): The dataset description is given in section

4.2.2.

2. RBF dataset (RBF): This 10-dimensional dataset generated concepts by changing

the number of centroids. The size of this dataset is 1,300,000 data instances with

5 different concepts which were repeated 25 more times with noise as per the

description for RH.

Real world data

The real word datasets that this study experimented with have been widely used as

benchmarks in a number of studies on data stream mining. The accuracy profiles of

the most accurate classifiers show that these datasets have widely different levels of

concept drift and concept recurrence.

1. Sensor (Sensor) dataset: The Sensor stream dataset extracted from Zhu (2010)

contains a total of 130,073 instances. It consists of temperature, humidity, light,

and sensor voltage measures collected from sensors installed in Intel Berkeley

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 118

Research Lab. The task is to recognise the sensor ID. Instances of two most

frequently appeared sensor IDs 29 and 31 were filtered.

2. Electricity (Elec) dataset: The dataset description is given in section 4.2.2.

3. Flight dataset: The dataset description is given in section 4.2.2.

4. Covertype (Cover) dataset: The dataset description is given in section 4.2.2.

5. Occupancy (Occ) dataset: The dataset description is given in section 4.2.2.

6.1.3 Parameter values

The default parameter values used in the experimentation are as follows:

Maximum number of nodes in decision tree forest: 5000, SeqDrift drift significance

value (δ): 0.01, Maximum number of Fourier spectra in repository: 20, Repository hit

ratio threshold (α) for T1 is 0.5, Similarity threshold (β) for T2 is 0.7, Sample size (s) is

200, Tolerable change rate for refinement is 0.05, and Interval length (I) is 100.

System configuration

System configuration is given in section 4.2.3.

6.2 Accuracy evaluation

In order to maintain fairness, all classifiers were run with the Hoeffding tree as the base

learner. The split confidence and tie confidence parameters were both set at 0.01 for

all classifier ensembles. Each meta learner was run with default settings for its internal

parameters. Accuracies for each classifier was obtained in intervals of size 1,000 and an

overall accuracy was then computed by averaging over all intervals for a given dataset.

Accuracies were stable across multiple runs for all classifiers across all datasets with

a standard deviation less than 0.05 and hence were not included. The outright and

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 119

joint winners (with accuracies rounded to 1 significant place) were bolded for easy

identification of winner. Ranks for each algorithm were included in parentheses in order

to facilitate the analysis of the trade-off between accuracy and throughput conduct in

section 6.3.1.

Table 6.1: Classification accuracy with ranking
RBF RH Flight Elec Cover Occ Sensor Algo.

Rank
ARF 81.8(2) 73.9(4) 80.8(2) 68.5(1) 84.5(3) 95.9(1) 65.2(6) 2
OB 75.3(10) 73.7(5) 73.0(6) 65.4(4) 83.2(5) 82.3(9) 66.5(3) 5
AS 80.3(4) 74.2(3) 73.1(5) 64.4(5) 75.6(9) 84.0(8) 62.2(9) 6
LA 74.8(11) 75.3(2) 71.4(9) 61.3(11) 84.5(3) 89.1(5) 62.9(8) 7
LB 82.4(1) 76.3(1) 77.2(3) 66.0(3) 86.1(1) 86.4(6) 66.2(4) 2
AWE 72.1(12) 69.3(9) 49.3(10) 63.7(9) 78.5(8) 73.4(12) 65.8(5) 10
AUE 76.4(7) 71.1(7) 72.5(7) 64.2(7) 82.8(7) 81.8(10) 65.1(7) 8
AD 76.2(8) 68.9(10) 76.9(6) 64.3(6) 84.3(4) 95.3(3) 65.8(5) 5
DA 75.9(9) 68.9(10) 77.2(3) 64.0(8) 84.5(3) 95.8(2) 65.8(5) 4
IFC 80.7(3) 74.2(3) 81.8(1) 68.5(1) 84.6(2) 93.0(4) 70.3(1) 1
RC 79.0(5) 70.6(8) 71.6(10) 62.4(10) 73.8(10) 75.6(11) 54.4(10) 9
SOL 78.7(6) 72.7(6) 80.8(2) 67.2(2) 82.9(6) 85.4(7) 69.5(2) 3

Table 6.1 shows that the algorithms can be divided into 3 groups with respect to

accuracy. The first group of the most accurate classifiers consisted of ARF, LB, IFC,

and SOL. Interestingly, the accuracy ranks (shown in parentheses) of three out of four

of these classifiers indicate that they collectively accounted for winners across the entire

range of datasets. The accuracy profiles of LB (Bifet, Holmes & Pfahringer, 2010) and

ARF (H. Gomes, Bifet et al., 2017) reinforce results from previous studies where they

excelled in performance. The strong performance of ARF is to be expected as the basic

Random Forest algorithm has proved its superior performance in numerous studies

and ARF builds on this success by adapting the forest to concept drift in a data stream

environment.

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 120

The middle group comprised of AD, DA, and OB while the rest formed the bottom

group. The performance of the algorithms are further analysed using RC as a benchmark.

Since RC does not adapt its model upon entering its low volatile state (Stage 2 of its

execution), it is an ideal algorithm to assess the impact of the scale of concept change

on the performance of the algorithms. Using this benchmark, it is observed that the

Sensor, Occ, Cover, and Flight datasets gave rise to the highest accuracy improvements

with respect to RC.

The IFC execution log with the Sensor dataset revealed moderate rates of drift and

refinement when compared to the other datasets. IFC gracefully copes with moderate

intra-concept variation by incremental refinements on its initially captured spectra

while inter-concept switches trigger concept drift and re-use of previously captured

spectra. In contrast, LB had to re-learn concepts from scratch rather than making slight

adjustments or reuse of previous concepts. The effects of this on LB’s accuracy profile

is apparent from Fig. 6.1, as there is a noticeable time lag between its peaks and those

of IFC over much of the stream. IFC is able to capitalise on concept recurrence by self

adaptation or by replacing its currently used spectrum with another in its pool that more

closely matches the concept that has recurred. Also, the 29% of accuracy advancement

with respect to RC highlights the importance of being self adaptive through periodic

refinements of initially learned patterns.

Similarly, the Occ dataset also revealed significant improvement (23%) of accuracy

over RC and 8% improvement over LB. The execution log of IFC revealed that Occ

has a high rate of inter-concept variation, resulting in switches among a few distinct

concepts which were captured by only 5 different spectra in the repository. At the same

time, it demanded a high rate of adjustments on recurring concepts thus strengthening

the need for refinements to be made on models stored from the past.

On the other hand, LB excelled on the Cover dataset. The accuracy profiles of these

classifiers over time show no regular pattern in the peaks and troughs, suggesting a

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 121

Figure 6.1: Sensor accuracy chart

lack of significant recurrence of concepts over time for this particular dataset. The LB

adapts by adjusting the trees in its ensemble to new concepts as they occur. The IFC

classifier experienced its highest rate of refinement amongst all datasets, resulting in

significantly different spectra through the refinement process in Stage 2. This scenario

exemplifies high inter-concept variation between concepts which are interspersed with

abrupt intra-concept changes within a given concept. Even though the performance of

IFC is somewhat lower compared to LB, it is noted that IFC is second best with a 15%

of improvement over RC. This shows IFC’s ability to provide good accuracy even in

non-recurring situations by generating models that are derivatives of previously stored

ones.

IFC with the Flight dataset experienced its highest inter-concept drift rate. The

number of concepts in its repository is lesser when compared to Cover but higher when

compared to Occ. IFC obtains the best accuracy for this dataset by taking advantage

of the reuse of concepts but also by subjecting them to continuous refinement. The

accuracy advancements are 14% and 6% over RC and LB respectively. As shown in

Fig. 6.2, IFC remains the clear winner in Stage 2 of its execution cycle as a result of

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 122

Figure 6.2: Flight accuracy chart

reuse and refine of concepts, whereas with LB concepts were relearned.

In terms of RBF, LB was the winner with marginally better accuracy than IFC. LB

adapted its model well to concept drift in this dataset. A close analysis of the models

produced showed that LB produced the deepest trees in its ensemble, with comparatively

higher concept lengths when compared to other datasets (with the exception of RH).

Such deep trees when grown over a significant time duration do better than IFC and

other algorithms, especially when drift rate is low. With IFC the comparison was harder

in terms of tree depth as it relies exclusively on Fourier spectra in Stage 2, but its

average tree height in Stage 1 was much shorter than that of LB.

Finally, it is noted that the triad of algorithms, ARF, IFC and LB performed well

across the full range of datasets, in general. The SOL classifier which is at the third

place in overall performance also remains competitive with IFC on Flight, Elec, and

Sensor datasets. The two classifiers share the use of the DFT although IFC in Stage

2 relies entirely on Fourier spectra whereas SOL uses Hoeffding trees induced from

spectra as the learning mechanism. The essential difference between the two is that

a Hoeffding tree induced from a spectrum is constrained by its initial structure. The

tree is free to grow by splitting its leaf nodes and forming new decision nodes but

changes in higher level nodes are not possible. In contrast, Fourier spectra are refined

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 123

Figure 6.3: Statistical comparison of top 7 ranked algorithms by accuracy. Subsets of
classifiers that are not significantly different are connected with dashed lines.

when changes occur in the stream and such changes could reflect more fundamental

changes in its decision model. Conceptually, such changes could correspond to better

adaptability to changes that take place over time in the stream. In other words, spectra

have better flexibility and are able to prune away redundant decision paths and replace

them with new ones that are a better match with currently arriving trends in the stream.

The above analysis of the behaviour and performance of classifiers was based on

the groupings formed by considering average accuracy rank on the datasets as shown

in Table 6.1. This grouping was confirmed through a non- parametric Friedman test

that established statistically significant differences between certain sets of classifiers.

For this exercise, we subjected the top 7 algorithms by average accuracy rank to the

Friedman test. As discussed in Demšar (2006) the Friedman test is recognised as one

of the best tests to use when multiple classifiers are to be compared simultaneously on

multiple different datasets. The null hypothesis H0 that we used was that the average

accuracy ranks across the 7 classifiers were the same.

Figure 6.3 shows that the null hypothesis H0 was rejected at the 95% confidence

level, thus indicating that statistically significant differences exist between the classifiers.

Then those classifiers were subjected to the post hoc Nemenyi test to identify exactly

where those differences lay. The Nemenyi test yielded a Critical Difference (CD)

value of 3.4 at the 95% confidence level. Fig. 6.3 graphically illustrates that the top

group consisted of IFC, LB, ARF, and SOL as none of the members in this group had

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 124

significant differences with any of the other members within the group. All members of

the other group (i.e. OB, DA, and DA) are also not significant from other members of

their group. However, it is also noted from Fig. 6.3, that the IFC classifier stands out

as it is the only classifier that was significantly different from all other members of the

other group. This was not the case with ARF, LB, and SOL. For instance, LB, ARF,

and SOL are not significantly different from OB, AD, and DA.

6.3 Throughput evaluation

This section turns the attention to the processing speed of the algorithms, and in

particular, it examines how IFC fares in relation to the other 11 algorithms. The

processing speed is measured over the same interval size (1,000) just as the section 6.2

did with accuracy. Processing speed is evaluated by throughout which is the number of

data instances processed in an interval for any given dataset. An average throughput

measure was then computed over the entire dataset. Multiple runs were conducted for

each dataset and negligible variance in timing was observed between runs.

For the purpose of simulating real-world data streams, the size of the smaller datasets

was increased, namely Elec, Flight, Cover, and Occ by concatenating each of them with

multiple copies of themselves. This also served to produce more reliable estimates of

execution time and throughput. The other 3 datasets were large enough to be used in

their original form.

Although IFC performed well in terms of accuracy, it was designed specifically

to scale up to high speed data streams and the performance aspect is crucial in its

evaluation. Table 6.2 shows that IFC excels on throughput, obtaining the highest

average rank when taken over all datasets and emerging the outright winner in 3 out of

the 7 datasets.

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 125

Table 6.2: Throughput with ranking
RBF RH Flight Elec Cover Occ Sensor Algo.

Rank
ARF 25811(8) 26481(7) 18866(3) 33038(7) 11837(4) 45729(9) 50342(7) 6
OB 30729(4) 30634(5) 4975(7) 37313(6) 4398(6) 51692(8) 50263(8) 5
AS 30056(5) 39910(4) 6353(6) 53882(5) 3371(8) 71425(3) 86447(2) 4
LA 3195(12) 2827(12) 1686(11) 25869(10) 117(12) 64000(4) 64000(3) 8
LB 9810(9) 10838(11) 1082(12) 21667(12) 1413(11) 33641(12) 36525(11) 11
AW 59468(1) 47099(3) 19722(2) 54428(4) 14122(3) 60618(6) 62345(4) 2
AU 50577(2) 59704(2) 10777(4) 55755(3) 6811(5) 63289(5) 62080(5) 3
AD 26446(7) 24933(8) 3517(9) 23110(11) 2788(10) 39282(11) 43313(10) 10
DA 29028(6) 24138(9) 3720(8) 30501(9) 2883(9) 45630(10) 53818(6) 7
IFC 35599(3) 73335(1) 70990(1) 89338(2) 35466(2) 155560(2) 137466(1) 1
RC 9468(10) 26553(6) 7975(5) 415660(1) 83856(1) 464493(1) 48889(9) 4
SOL 5140(11) 17076(10) 3044(10) 31106(8) 4102(7) 53031(7) 30869(12) 9

To gain insights into why IFC was the overall winner, its throughput is compared to

that of the RC, SOL, and the MOA group of algorithms. Firstly, IFC is compared with

SOL and RC, as they all use the staged approach. It is observed that IFC significantly

outperforms RC on RBF, RH, Flight, and Sensor datasets. Despite the fact that RC does

not update its spectra during Stage 2, IFC is much faster due to the lesser number of

distinct schema when compared to RC. RC does not use feature selection and therefore

number of influential features in dot product calculations are much higher than that of

IFC. Since it uses the Inverse Fourier Transform (IFT) in Stage 2 which has complexity

O(∣X ∣2), its Stage 2 processing time is much longer than that of IFC.

In contrast, SOL uses trees induced from spectra during Stage 2. Even though it

maintains a single tree at a time instead of an ensemble it still has higher classification

overhead than IFC. The IFC classifier simply fetches the class label of an instance to be

classified from its reservoir if present, otherwise it performs the IFT, but unlike RC its

schema set is much smaller and hence the overall classification time is much smaller.

In comparison to IFC, all of MOA’s classifiers use an ensemble of trees during Stage

2, and depending on average tree size their performance is impacted. In particular, LB

that was ranked alongside ARF and IFC on accuracy suffers the most when compared

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 126

Figure 6.4: Covertype throughput chart

to IFC as it had the highest tree size out of all of MOA’s group of classifiers. Overall,

the ARF classifier had a higher throughput than LB even without the use of a large

multi-core machine for which it was designed. It was reported in H. Gomes, Bifet et al.

(2017) that its speed increased by a factor of around 3 with the use of a machine that

supported a high degree of parallelism with 40 cores.

Figures 6.4 and 6.5 show the contrast between the IFC and LB classifiers. In Fig.

6.5, the granularity of the horizontal axis in the range 1,000 to 10,000 was scaled up

in order to highlight the presence of the relatively short lived Stage 1. These charts

clearly show that IFC’s speed advantage was gained in Stage 2 of its processing when

classification was performed exclusively with the use of Fourier spectra.

In order to gain an understanding of how the most accurate classifiers perform with

respect to throughput, we subjected the same set of 7 classifiers that we selected for

accuracy analysis to the Friedman test. Fig. 6.6 shows that there are three distinct

groups. The first group comprises of IFC on its own as it has statistically significant

differences with all other 6 classifiers that form the other two groups. The second group

consists of ARF, OB, DA, SOL, and AD while LB makes up another group together

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 127

Figure 6.5: Flight throughput chart

with AD, SOL, and DA. This statistical analysis thus yields additional insights into the

relative throughput performance of the classifiers over those given in Table 6.2.

Figure 6.6: Statistical comparison of the throughput performance of the top 7 ranked
algorithms that were ranked on accuracy. Subsets of classifiers that are not significantly
different are connected with dashed lines.

6.3.1 Accuracy versus Throughput trade-off

This section visualises the trade-off between accuracy and speed. Fig. 6.7 clearly shows

that IFC and LB are at opposite sides of the speed spectrum. Classifiers that tend to

be more accurate (e.g. LB, SOL) tend to be more time consuming and vice versa; the

exception being IFC although it was not always the most accurate, nor was it always

the fastest. However, it is clear that IFC has achieved its design goals as it is by far

the fastest amongst the set of the most accurate algorithms that we experimented with.

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 128

The closest neighbours to IFC are ARF and OB as they achieved the next best balance

between accuracy and speed.

Figure 6.7: Accuracy vs. Throughput tradeoff

6.4 Load Shedding

High speed data streams have a greater likelihood of causing computing resource

allocation problems. In this respect, load shedding is an attractive solution for dealing

with such resource problems. In the majority of studies done in the domain of load

shedding in data streams, the approach taken is discarding of some subset of the data in

order to decrease the workload.

The approach given in Babcock et al. (2007) decides whether to process or drop

a data instance by performing a Bernoulli trial. The data instance is processed with

a given probability p, while the probability of neglecting it is (1 − p). In the scenario

of multiple streams processing studied by Chi et al. (2005), it is suggested to shed

some streams’ data with the objective of reducing data pre-processing effort with the

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 129

assumption that pre-processing is more resource demanding than classification. In the

next step of their setup, a corrective action is taken by inferring those dropped data

features based on their historic values.

The recent study of Ning et al. (2016) proposes not to use common loss ratio-based

random dropping techniques for stream processing. Alternatively, it recommends a

(m,k) scheduling algorithm that guarantees to avoid dropping of successive instances.

Here m is the number of processed tuples whereas the k is the number of total arrivals

per stream. In this context, at most (k–m)/k number of instances are neglected for

reducing the workload.

The simulation given in section 6.4.1 has taken a different approach to load shedding

compared to the above studies. Rather than dropping data to ensure lesser resource

consumption, here we reduce the number of classifiers in the ensemble or encourage

lesser decision node splits as devices to reduce the workload.

6.4.1 Load Shedding exercise

The IFC and LB classifiers were subjected to a load shedding exercise that assessed

their sensitivity to accuracy by simulating a high speed data stream environment.

Firstly, the speed achieved by IFC was used as the benchmark and then manipulated

parameters for LB until it matched IFC’s throughput. The matching was achieved by

decreasing the number of classifiers in LB’s ensemble and/or setting the split confidence

parameter value for the Hoeffding tree base classifier to low settings (e.g. 10−7). The

load shedding simulation was performed for the RBF, Flight, and Cover datasets. These

datasets were chosen on the basis of their accuracy performance with the LB and IFC

classifiers and the fact that they represented the greatest diversity in dimensionality

across the datasets that we experimented with.

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 130

Table 6.3: Load Shedded LB accuracy
Dataset Ensemble Size Split Confidence Accuracy
RBF 7 1E(-4) 80.0
Flight 3 1E(-7) 73.6
Cover 3 1E(-7) 82.4

Table 6.4: Load Shedded throughput and accuracy for IFC
Dataset Scaled Throughput Throughput Gain (%) Accuracy
RBF 45156 26.8 81.1
Flight 80408 13.3 77.2
Cover 55155 55.6 81.4

Table 6.3 when read in conjunction with Table 6.1 shows clearly that IFC now

achieves the highest accuracy over each of these datasets. This results show that an

algorithm’s accuracy needs to be judged by its load handling capability, while it may

be more accurate than another algorithm on a stream with a certain speed, its accuracy

advantage may disappear when it runs on a higher speed stream, and is forced to perform

load shedding to cope with the speed of the stream.

This work also tracked IFC’s ability to scale up to data streams in excess of its

capacity reported in Table 6.2. Load shedding with IFC was simulated by increasing its

interval length I by a factor of 5. Table 6.4 shows that IFC’s throughput gain ranged

from a modest 13.3% for the Flight dataset to 55.6% for the Cover dataset. Interestingly,

the accuracy for the RBF dataset has been increased marginally by 0.5%. This is

consistent with the moderate drift rate detected in IFC’s execution log for this dataset.

The decrease was 3.8% for Cover and 5.6% for Flight. The Flight dataset recorded the

highest decrease as it exhibited the highest drift rate and the highest rate of refinements

amongst all datasets.

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 131

Figure 6.8: Throughput advantage of Incremental spectral learning over Decision tree
learning

6.5 Overheads of Decision Tree Learning vs Incremental

Fourier Classification

In this section, the overheads of classification with a decision tree are contrasted to an

incremental learning approach using Fourier spectra. The SOL presented in chapter 3

was featured in this experimental study since it uses the staged learning approach just

as IFC does, except that it classifies using a decision tree instead of a Fourier spectrum

in the low volatility segments of the stream. The SOL classifier takes advantage of low

volatility to dispense with a forest of trees and uses a single tree instead. This provides

a good platform for comparison as IFC which uses an ensemble of models (in the form

of spectra) would need to compete with a single model.

Figure 6.8 depicts the time spent by IFC and SOL in randomly selected stream

blocks. The blocks were selected from the execution logs of both classifiers to exclude

blocks where either SOL and/or IFC experienced concept drifts. This was done to

ensure that the time reported reflected the time spent in classification. The overheads of

processing concept drift are presented in section 6.5.1.

Figure 6.8 shows clearly that classification using Fourier spectra is much faster than

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 132

Figure 6.9: Time spent when learning in Non-Incremental and Incremental modes of
operation

with a decision tree. This is due to the replacement of a tree traversal operation with a

simple lookup operation on the hash based reservoir structure that extracts class labels

in the event of a cache hit. In the event of a cache miss, the IFT would be used to

retrieve the class label of the instance.

6.5.1 Incremental versus Non Incremental approach to Fourier Clas-

sification

In this section, the effects of incrementally maintaining a Fourier spectrum are studied

and contrasted with its naive version (SOL) which generates a new spectrum from a

decision tree whenever a concept drift is signalled in the stream.

Two new experiments were conducted. The first was on the Flight dataset and shows

the difference in timing between the two versions at concept drift points. It is clear from

Fig. 6.9 that the incremental version (IFC) is far more efficient and is able to avoid

spikes in processing time that are experienced by a conventional DFT application in

SOL.

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 133

The second experiment was a controlled experiment run on a RBF dataset whereby

the dimensionality was varied from 10 to 60 in intervals of 10. The intention was to

examine the CPU utilisation as a function of dimensionality (D), drift rate (R) and

stream speed (S). For each value of dimensionality, the average processing time spent

on classifying data instances (C) as well as the time spent on the application of the

DFT was recorded (F). Likewise, the average time spent in classification as well as in

reorganising the spectrum with our incremental Fourier version was recorded. With

these average values in place, CPU utilisation (U) was modelled using Eq. 6.1.

U = (1 −R) × S ×C +R × S × F (6.1)

Figure 6.10: Resource utilisation of Incremental and Non-Incremental DFT approaches

A stream with a sample arrival rate of 1,000 instances per second is modelled first.

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 134

The top panel of Fig. 6.10 shows clearly that CPU utilisation is an increasing function

of both drift rate and dimensionality for both the incremental and non incremental

versions. For the non-incremental version (SOL) in the top left panel of Fig. 6.10, the

utilisation varies from a low bound in the range 0-20 to an upper bound of 120-140

when both dimensionality and drift rate are their maximum levels. At the high end of

the CPU range (120-140), 2 resources with own processor and local memory would be

needed to ensure that the system functions without any form of disruption.

In sharp contrast we note from the top right panel (IFC) of Fig. 6.10, that the upper

bound for CPU utilisation is very much smaller at 2.5%, thus managing comfortably

with a single resource.

A high speed data stream with a speed setting of 100,000 instances per second is

modelled as the next. The bottom left and right panels of Fig. 6.10 shows the same

trends as with a stream speed of 1,000 but at a much higher scale. With the non-

incremental version, the left panel of Fig. 6.10 shows that the CPU utilisation reaches

a maximum value of 12,000-14,000, thus requiring up to 140 resources to maintain

operation without disruption. If lesser than 140 resources are available, then the cost of

the non-incremental version becomes prohibitive. In contrast, the peak CPU utilisation

for the incremental version was just 300-350; thus requiring far fewer resources (up to

4) to maintain normal operation.

These experiments show clearly the resource utilisation advantage of the incremental

approach, and explain the massive gains in throughput of IFC over the non-incremental

SOL classifier that was tabulated in Table 6.2.

6.6 Conclusion

This empirical study reveals that SOL-IFC is able to adapt its behaviour successfully to

different types of situations that manifest in data streams. This novel algorithm exploits

Chapter 6. An Empirical Study of the Incremental Fourier Classifier 135

the staged learning framework and outperforms most of the algorithms, both in terms of

accuracy and throughput.

In terms of speed, SOL-IFC proved to be superior on account of its compact data

structure used for classification. The coefficient pruning strategy implemented via

energy thresholding ensured that the coefficient array was as compact as possible, thus

reducing classification overhead. In addition, the schema pruning strategy, when used

in conjunction with the incremental Fourier coefficient update strategy ensured that

update overheads were minimised.

Amongst the set of best performing algorithms on accuracy, SOL-IFC ranked in

the first position when evaluated on a combined metric of throughput and classification

accuracy. Moreover, SOL-IFC successfully addresses the issue of peak processing times

that was observed at drift points in SOL, by replacing the computationally expensive

tree-spectrum and spectrum-tree transformations with a smooth incremental adaptation

process that takes place on a continuous basis.

Chapter 7

Verifying the Potential of Using

Different Classifiers in SOL

7.1 Introduction

This chapter demonstrates the staged learning framework’s ability to be independent

from a particular type of incremental learner. Chapter 3 of this thesis listed 3 main

components of the staged learning framework: an incremental learner, a concept drift

detector, and a repository for capturing past concepts. The same chapter claimed that

each of those components is replaceable, that is can accommodate different implement-

ations in the place of any of those. Hence, this chapter can be viewed as a proof of

concept of a neural network successfully replacing a decision tree ensemble that was

previously being used.

More specifically, a feed-forward Multi-Layer Perceptron (MLP) Neural Network

(NN) with a Backpropagation training algorithm takes over the Stage 1 learning in

SOL. To put it briefly, this is an effort to verify two premises: (1) the effectiveness

of the Discrete Fourier Transformation (DFT) on classifiers other than decision trees,

that happens to be the neural network in this exercise and, (2) the suitability of such a

136

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 137

classifier in SOL.

With those two main premises in mind, several advanced capabilities integrated

to SOL in Chapter 3 and Chapter 5 are kept out of scope in this chapter for the

sake of simplicity. For instance, concept drift detection has not been implemented.

Furthermore, volatility sensitive stage transition has been implemented through a trial

and error process. After observing a certain fraction of data in Stage 1, a learned MLP

model was condensed into a Fourier spectrum via application of the DFT.

Sections 7.2 and 7.3 outline related domain knowledge and implementation choices

made in this particular implementation. Generation of the Fourier model for an obtained

MLP was addressed with novel instance clustering strategy described in section 7.4.

Then, the performance of the derived MLP based Fourier model has been explored in

section 7.5. Lastly, the section 7.6 concludes the chapter.

7.2 Neural Network

Artificial Neural Network (ANN) classifier is a collection of connected layers each of

which comprises a set of nodes called artificial neurons. ANNs are initially inspired by

biological neural networks’ architecture of animal brains.

Architecture based grouping done in Jain, Mao and Mohiuddin (1996) recognised

feed-forward networks and recurrent networks as two main categories of ANN. Feed-

forward networks are static in the sense of producing only one set of output per given

input. The output is independent of the previous state of the network and hence called

memoryless. In contrast, recurrent networks are dynamic due to its feedback paths

which update inputs according to outputs of the previous state. Aiming to achieve higher

performance, this study adopts the feed-forward architecture that is commonly used.

Furthermore, single-layer perceptron, MLP and Radial Basis function networks are

identified as sub-groups (Jain et al., 1996) of the feed-forward category. Among those,

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 138

Figure 7.1: Multilayer perceptron with a single hidden layer

multilayer feed-forward networks are more accurate and robust for even non-linear

functions (Gardner & Dorling, 1998; Gudise & Venayagamoorthy, 2003), and hence

are regarded as universal approximators. The multilayer perceptron consists of one or

more hidden layers in addition to basic input and output layers that exist in the single

layer perceptron version. However, the number of hidden nodes, the effectiveness of

the learning strategy used, and the nature of the relationship between input and output

all affect the performance of MLP (Hornik, Stinchcombe & White, 1989). This chapter

uses the feed-forward MLP with one hidden layer.

7.2.1 Feed-forward MLP

Figure 7.1 illustrates the design of this type of neural network. Accordingly, nodes of

the input layer are fed by input value X⃗ = (X1, ..,Xi, ..,Xn) and then weighted input

values are sent through the hidden layer. Weight wij is associated with the connection

between input node i and successor node j. The hidden layer outputs ajs are produced

after applying hidden layer’s transfer function (activation function) gj on the weighted

sum of inputs Xis plus bias value bj . More details about activation function can be

found in the section 7.2.2. Likewise, output layer is fed by ajs. The activation function

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 139

of output layer gk is applied on the weighted sum of ajs plus bias value bk.

Accordingly, output ak for a given input instance X⃗ = (X1, ..,Xi, ..,Xn) can be

given below:

ak = gk(bk +∑
j

gj(bj +∑
i

Xiwij)wjk) (7.1)

7.2.2 Activation function

Activation function facilitates the capability of dealing with non-linear complex arbitrary

relationships between inputs and outputs. These functions need to be differentiable for

the purpose of minimising error as described in 7.2.4. Some of the popular activation

functions are Sigmoid, Tangent Hyperbolic (Tanh), SoftMax and Rectified linear unit

(ReLu). This study uses Tanh as the activation function for the hidden layer and SoftMax

as activation function for the output layer. The conceptual design of this work does not

rely on any of the specific activation functions, hence they can be altered as necessary.

Tanh activation function

Tanh activation function given in Eq.7.2 outputs values between -1 and 1.

tanh(x) = e
x − e−x
ex + e−x

(7.2)

SoftMax function

SoftMax function results in probabilities of each target class as expressed in the Eq. 7.3

below. The values are in the range of 0 and 1 for each target class while the sum of all

the probabilities of output nodes is equal to 1. These probabilities can be interpreted as

the estimate of the class distribution for a given input.

P (y = cm∣x) = ex
Twj

∑m
k=1 e

xTwkcm
(7.3)

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 140

7.2.3 Error function

Error or the cost over L number of training examples is quantified using the averaged

squared difference between the output ak and the target value (true class label) tk of

each example as shown below in Eq. 7.4.

E = 1

2L
∑
k

∣∣(ak − tk)∣∣2 (7.4)

7.2.4 Backpropagation algorithm

The backpropagation learning algorithm is used by the gradient descent optimisation

algorithm in order to find optimum weights and biases of neurons by calculating the

gradient of the prediction error. This iterative weight readjustment process was proposed

in Werbos (1974).

The error of a neural network is the difference between predicted output and expected

output. Given labeled input instances for some period of time, the system calculates the

error, adjust weights and bias values so as to minimise the error.

For this, it is necessary to compute partial derivatives of cost function E given in Eq.

7.4 with respect to bias values and weights which are called gradients for each layer.

Lastly, weights and biases of each level are updated iteratively so that the gradient of

the cost function is decreased.

7.3 Learning from Neural Network in Stage 1

In addition to classification, Stage 1 learning involves iterative adjustment of network

parameters. Weights and biases need to be updated so as to minimise the error of the

network. The error minimisation is implemented by the gradient descent procedure.

The gradient (derivative) of the error function is calculated with respect to each of the

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 141

Figure 7.2: Backpropagation of error signals

model parameters. The calculated gradient information is needed to be sent across the

layers for parameter updates. The process done in this study is depicted Fig. 7.2 and

can be summarised as below.

1. Forward-propagation towards the outputs.

The output is produced through the Eq. 7.1 given in section 7.2.1. Initially,

all weights wijs and wjks are assigned randomly for each connection in net-

work. Tanh function and SofMax functions are taken as hidden layer’s activation

function gj and output layer’s activation function gk respectively.

2. Backpropagation of error signals to the inputs.

Error signals at output node ak and hidden layer node aj are calculated as follows:

δk = g
′

k(zk)E
′(ak, tk) (7.5)

δj = g
′

j(zj)∑
k

δkwij (7.6)

,where zk = bk +∑j gj(bj +∑iXiwij)wjk and zj = bj +∑iXiwij .

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 142

3. Evaluate gradients to lower the error.

The gradients of the error function are calculated with respect to the model

parameters at each layer using the forward signals (Xi, aj) and backward error

signals (δj , δk) as shown below:

∂E

∂Wij

=Xiδj (7.7)

∂E

∂Wjk

= ajδk (7.8)

4. Update the weights.

At the learning rate of η, weights can be updated as below:

wij = wij − η
∂E

∂Wij

(7.9)

wjk = wjk − η
∂E

∂Wjk

(7.10)

These steps are repeated until the maximum number of epochs is reached.

7.4 Generating Fourier model for Stage 2 Learning

For the purpose of generating a Fourier model, it is necessary to represent the dataset

in the form of a schema set (X) that is defined in section 2.5. These schemas and

their corresponding class labels are gathered through the novel cluster pool algorithm

explained below in section 7.4.1. This is followed by the section 7.4.2 which summarises

steps of Fourier coefficients calculation.

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 143

7.4.1 Extracting Schema Set

Following algorithm 5 is implemented on a set of distinct data instances appeared in

Stage 1. A collection called HashSet introduced in .NET 3.5 environment is used for

this purpose. The HashSet is an ordered collection of unique elements, and hence

guarantees to avoid duplicates from being inserted.

Algorithm 5 Cluster Pool for Schema Set Extraction
Input: Distinct data instances seen in Stage 1

1: repeat
2: Classify instance by trained MLP
3: if No cluster pool for the class then
4: Create a new cluster pool for new class
5: Go to 7
6: else
7: if No clusters in the cluster pool for the class then
8: Create a cluster with the instance pattern, Go To 2
9: else

10: for all Clusters in the cluster pool do
11: Generate qualifying pattern: put "*" if values are mismatched
12: ▷ Null pattern (pattern with all "*"s) is not allowed
13: if No valid qualified pattern then
14: Create a cluster with the instance pattern, Go To 2
15: else
16: if Pattern not found in any cluster in other cluster pools then
17: Remove previously compared cluster ▷ follow LIFO
18: Create a new cluster for the qualified pattern
19: end if
20: end if
21: end for
22: end if
23: end if
24: until End of input

Each Stage 1 instance is accommodated by a cluster pool associated with its class

label. In the absence of a corresponding cluster pool, a new cluster pool is to be created

for that particular class (line 4 in the algorithm 5). This ensures a separate cluster

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 144

pool for distinct class labels identified in the data. For example, in the case of binary

data, each cluster in a cluster pool can be represented with a label (e.g. 0*1, **0, 1*1)

that symbolises a schema pattern as shown in Fig. 7.3. At the arrival of each new

instance, iterating through all clusters (line 10) in a cluster pool is done on the basis

of Last-In-First-Out (LIFO). The algorithm 5 and the Fig. 7.3 are further illustrated

through the use of a worked example below.

Assume that 001 and 011 instances arrived with class label 0. Currently, no any clusters

exist in the cluster pool for class 1. Firstly, a new cluster is created with 001 inside

the cluster pool for class 0, and then the next instance 011 is considered. A qualifying

pattern is generated by replacing mismatched attribute values with the ‘*’ character.

Therefore, this example produces 0*1 as the qualifying pattern after observing 001 and

011. As a result, cluster 001 is removed and cluster 0*1 is formed.

Assuming 000, 010, 100, 110, 101 and 111 all arrived with class label 1, the

algorithm proceeds as follows. Note that, the cluster pool for class 0 consists of cluster

0*1 at this point in time. A new cluster is created for 000, and then it starts to process

the next instance 010. As described above, the qualifying pattern 0*0 is formed. Since

the cluster pool for class 0 is not empty, the algorithm verifies that the pattern 0*0 is not

Figure 7.3: Schema Patterns (clusters) generated after clustering algorithm

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 145

found in the other cluster pool for class 0. Given it cannot be found in the other cluster

pool, the previously created 000 cluster is removed and then a new cluster is created

for 0*0. The algorithm continues with the next instance, 100. The qualifying pattern

**0 is generated after comparing 100 with 0*0. Provided that the pattern **0 is not

found in the other cluster pool, the previously created 0*0 pattern is removed before the

creation of **0. The instance 110 is evaluated, the pattern is matched with the cluster

0. Thereafter, the instance 101 is evaluated. Since the null pattern * is not allowed,

a new cluster is created. The next instance 111 produces 1*1 pattern with 101 cluster.

The 101 instance is now represented by the pattern 1*1. Finally, a 0*1 cluster is in class

0 pool while **0 and 1*1 clusters result in the class 1 pool.

These clusters, i.e. x vectors (elements of the schema set X) and corresponding

classes gathered at the end of Stage 1 are used in computing spectrum coefficients.

7.4.2 Fourier Coefficient calculation for Stage 2 Learning

Firstly, a set of important coefficient indexes are filtered out after energy thresholding is

applied, as described in section 2.5. Secondly, the coefficient value for every important

index is calculated by Eq. 2.4 over x schema vectors gathered in the preceding section.

The derived Fourier spectrum is deployed for Stage 2 learning upon the suspension

of neural network learning. Predicted class labels are taken as given in the Eq. 2.3 in

section 2.5.

Figure 7.4 presents the complete system design of MLP to Fourier model transform-

ation discussing so far.

7.5 Experimental study

As introduced in the section 7.1, experimenting the suitability of MLP based Fourier

models within the SOL framework was one of the chapter objectives. This section

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 146

Figure 7.4: Learning in Stages with MLP

analyses the performance of 3 classifier systems in the staged learning context. The

Stage 1 learner was MLP while Stage 2 classification was done using one of three

options. The MLP based Fourier Classifier "MLP-FC" learns during Stage 2, by

applying the Fourier model derived from the trained neural network. One of the

other approaches were "MLP-MLP" where the classification continues with MLP. The

approach named as "MLP-ClusterPool" does Stage 2 classification via the cluster pool

developed according to section 7.4.1. The "MLP-FC" was compared against "MLP-

MLP" and "MLP-ClusterPool" in order to see whether it is beneficial to have a MLP

based Fourier model in Stage 2.

Furthermore, this experimental study compares several different data partition

lengths for Stage 1 as the derivation of a suitable statistical trigger was out of scope for

this study. Different lengths tested for Stage 1 were 10%, 30%, 50%, and 70% of each

dataset.

7.5.1 Datasets used for the experimental study

Following five datasets were subjected to experiments.

1. Elec : The description of this dataset is given in section 4.2.2.

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 147

2. Sensor: The description of this dataset is given in section 6.1.2.

3. Occupancy: The description of this dataset is given in section 4.2.2.

4. Flight: The description of this dataset is given in section 4.2.2.

7.5.2 Parameter values

Below are the MLP configuration related and Fourier model generation related paramet-

ers.

MLP configuration related parameters

Maximum epochs: maximum number of iterations the algorithm sees the entire data set.

This was set to 100.

Learning rate: this is the step-size which influences the rate of reaching ANN’s minimum

error. This was set to 0.3.

Momentum: this is the increment of step-size which helps the network not to converge

to local minima. This was set to 0.2.

Number of Input Nodes: this corresponds to the number of attributes. This was set

according to the dataset.

Number of Hidden Nodes: this was set to 8.

Fourier model derivation related parameters

Energy threshold: this is used to determine the maximum coefficient order used by the

energy thresholding process as described in section 2.5. This was set to 95%. Given the

threshold is met, no higher order coefficients are considered.

System configuration

System configuration is given in section 4.2.3.

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 148

7.5.3 Effectiveness of SOL with MLP based Fourier model

Accuracy and throughput values per stage are tabulated below for the three above-

mentioned approaches over 4 different Stage 1 lengths. Overall accuracy was calculated

by weighting stage-wise accuracy according to the percentage of data that appeared

in each stage. Overall throughput (number of instances processed within a second)

is calculated by dividing the total number of instances by the total time spent for

classification, despite the stage.

Stage-wise performance measures for the Elec dataset

The Elec dataset shows a clear pattern between performance measures and Stage 1

duration for MLP-FC. Longer the Stage 1 duration, the higher the overall accuracy of

MLP-FC, yet it sacrifices throughput as depicted in Tables 7.1 to 7.4. An accuracy

increase of 419.7% was accompanied by a decrease in throughput of 85.9% from the

shortest Stage 1 to the longest. An accuracy improvement is expected in most cases

due to the longer learning period of MLP which justifies the lower throughput as well.

Error minimisation of MLP is a time consuming process in general, although most of

the time the model becomes more accurate.

Table 7.1: Elec: 10% data for Stage 1
Stage 1
(start-4531)

Stage 2
(4531-end)

Overall

MLP-FC
Accuracy 60.5 8.5 13.7
Throughput 1354.7 10958215.8 13532.2

MLP-MLP
Accuracy 60.5 57.2 57.5
Throughput – – 356255.9

MLP-ClusterPool
Accuracy 60.5 57.2 57.5
Throughput – 583419170.2 13546.9

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 149

Table 7.2: Elec: 30% data for Stage 1
Stage 1
(start-13593)

Stage 2
(13593-end)

Overall

MLP-FC
Accuracy 61.0 63.8 63.0
Throughput 1371.4 11396184.4 4570.1

MLP-MLP
Accuracy 61.0 65.0 63.8
Throughput – 342440.9 4529.1

MLP-ClusterPool
Accuracy 61.0 8.5 24.3
Throughput – 613520309.5 4571.4

Table 7.3: Elec: 50% data for Stage 1
Stage 1
(start-22656)

Stage 2
(22656-end)

Overall

MLP-FC
Accuracy 64.0 72.3 68.2
Throughput 1394.8 14023273.1 2789.3

MLP-MLP
Accuracy 64.0 63.3 63.6
Throughput – 266223.3 2775.1

MLP-ClusterPool
Accuracy 64.0 34.0 49.0
Throughput – 362496000.0 2789.6

Table 7.4: Elec: 70% data for Stage 1
Stage 1
(start-31718)

Stage 2
(31718-end)

Overall

MLP-FC
Accuracy 60.5 96.3 71.2
Throughput 1333.9 26324554.6 1905.6

MLP-MLP
Accuracy 60.5 96.3 71.2
Throughput – 358089.3 1902.6

MLP-ClusterPool
Accuracy 60.5 63.0 61.2
Throughput – 241028368.8 1905.6

MLP-MLP also increases overall accuracy and decreases throughput when Stage 1

gets longer, except the 50% Stage 1 length. In this case, overall accuracy was affected

by the drop in Stage 2 accuracy. This could be caused by the Stage 1 MLP model

overfitting the data, which could not be overcome by the MLP-MLP configuration, but

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 150

nevertheless was successfully overcome by the MLP-FC version with the aid of Fourier

coefficient energy thresholding. MLP-ClusterPool approach depicts almost the same

performance trend along various Stage 1 sizes, except the abnormally better accuracy

given when 10% data in Stage 1 compared to other partition sizes. As per detailed

experimental logs, this happens due to the imbalance of data that appears in the initial

10% segment of data belonging to Stage 1.

Analysis of the staged learning based results reveals a sharp increase of throughput

in Stage 2 for all three methods, especially for the MLP-FC and MLP-ClusterPool

versions. This obvious throughput advantage occurs as a consequence of the suspension

of the real-time stream learner as proposed in the stage learning framework. Clearly,

the gain of MLP-ClusterPool’s throughput costs its accuracy in all 4 Stage 1 size

configurations, unlike with MLP-FC. This ubiquitous Stage 2 dilemma of accuracy

versus throughput has been gracefully managed by MLP-FC in all cases except for

the 10% data length segment for Stage 1. This shorter Stage 1 duration highly likely

resulted in model overfitting which can be even worse if data is imbalanced within that

particular partition as observed via result logs in Elec 10%. All 3 methods result in

significant Stage 2 accuracy growth for 70% Stage 1 segment length, thus indicating

strong episodes of concept recurrence.

Stage-wise performance measures for the Sensor dataset

Tables 7.5 to 7.8 show continuous growth in overall accuracy, yet exhibit a decline in

throughput with MLP-FC when the length of Stage 1 increases, in the same way as with

the Elec dataset above. The percentage of accuracy increase is relatively lesser; to be

precise it is only 23.5% while it was 419.7% for Elec. This gives an indication of the

degree of homogeneity between Elec and Sensor. It appears that sensor record partitions

are more homogeneous compared to Elec and therefore the correlation between Stage

1 observation count and the accuracy is not as strong as with Elec, although it does

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 151

manifest. The decline of throughput along the 10% Stage 1 to 70% Stage 1 size segment

range is 86.1%, which is much similar to Elec. The rationale behind this approximately

similar throughput decline would be the minor difference in the number of attributes in

two datasets.

Table 7.5: Sensor: 10% data for Stage 1
Stage 1
(start-13007)

Stage 2
(13007-end)

Overall

MLP-FC
Accuracy 51.8 50.0 50.6
Throughput 1563.9 418990694.3 15639.0

MLP-MLP
Accuracy 51.8 58.7 56.6
Throughput – 369778.1 15066.0

MLP-ClusterPool
Accuracy 51.8 40.0 43.6
Throughput – 4739514170.0 15639.5

Table 7.6: Sensor: 30% data for Stage 1
Stage 1
(start-39021)

Stage 2
(39021-end)

Overall

MLP-FC
Accuracy 59.9 50.0 53.0
Throughput 1524.6 362179793.2 5082.0

MLP-MLP
Accuracy 59.9 53.3 55.3
Throughput – 376124.7 5034.4

MLP-ClusterPool
Accuracy 59.9 40.0 46.0
Throughput – 1424913928.0 5082.0

Significant throughput advantage in Stage 2 is common with all three approaches

for the same reason of the absence of an online classifier. In this Sensor dataset also,

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 152

Table 7.7: Sensor: 50% data for Stage 1
Stage 1
(start-65036)

Stage 2
(65036-end)

Overall

MLP-FC
Accuracy 56.9 50.0 53.5
Throughput 1543.0 293488267.1 3085.9

MLP-MLP
Accuracy 56.9 53.6 55.3
Throughput – 341998.9 3072.1

MLP-ClusterPool
Accuracy 56.9 40.0 48.5
Throughput – 1725119363.4 3085.9

Table 7.8: Sensor: 70% data for Stage 1
Stage 1
(start-91051)

Stage 2
(91051-end)

Overall

MLP-FC
Accuracy 59.6 69.2 62.5
Throughput 1518.3 345633303.8 2169.0

MLP-MLP
Accuracy 59.6 66.5 61.7
Throughput – 359775.4 2165.1

MLP-ClusterPool
Accuracy 59.6 38.5 53.3
Throughput – 2097956989.2 2169.0

MLP-ClusterPool approach has failed to maintain accuracy in Stage 2 for all 4 different

stage lengths. MLP-FC also dropped its accuracy in Stage 2, until it observes 70% of

data in Stage 1 where it reports significant accuracy improvement in Stage 2. Observing

more data appears to be helpful when recognising miniature variations. MLP-MLP

classifier reports a 6.9% increase in accuracy for both 10% and 70% Stage 1 size

segments.

Stage-wise performance measures for the Occupancy dataset

Occupancy dataset follows the same trend of overall accuracy increase while the size

of Stage 1 is growing except for the case of longest Stage 1 segment which is 70%

for MLP-FC. The drop in throughput is 86%, similar to the above two datasets. Even

though Stage 1 with 70% of data could observe 20% more data compared to 50% data

in Stage 1 case, there is no any positive effect on the accuracy of Stage 1 for any of

the classifiers. In contrast, MP-MLP and MLP-ClusterPool Stage 2 accuracies were

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 153

boosted as a result of more evidence observed in Stage 1.

Table 7.9: Occupancy: 10% data for Stage 1
Stage 1
(start-2056)

Stage 2
(2056-end)

Overall

MLP-FC
Accuracy 84.4 69.2 73.8
Throughput 1682.8 19297105.7 16825.2

MLP-MLP
Accuracy 84.4 70.6 74.7
Throughput – 313706.9 16052.6

MLP-ClusterPool
Accuracy 84.4 30.8 46.9
Throughput – 722812500.0 16827.2

Table 7.10: Occupancy: 30% data for Stage 1
Stage 1
(start-6168)

Stage 2
(6168-end)

Overall

MLP-FC
Accuracy 84.8 75.0 77.9
Throughput 1631.2 76962566.8 5437.1

MLP-MLP
Accuracy 84.8 60.2 67.6
Throughput – 369625.6 5381.9

MLP-ClusterPool
Accuracy 84.8 41.7 54.6
Throughput – 515842293.9 5437.3

Table 7.11: Occupancy: 50% data for Stage 1
Stage 1
(start-10280)

Stage 2
(10280-end)

Overall

MLP-FC
Accuracy 85.2 100.0 92.6
Throughput 1315.1 102492522.4 2630.1

MLP-MLP
Accuracy 85.2 76.6 80.9
Throughput – 429564.8 2622.1

MLP-ClusterPool
Accuracy 85.2 75.0 80.1
Throughput – 441201716.7 2630.1

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 154

Table 7.12: Occupancy: 70% data for Stage 1
Stage 1
(start-
14392)

Stage 2
(14392-end)

Overall

MLP-FC
Accuracy 85.0 100.0 89.5
Throughput 1607.8 70011350.7 2296.8

MLP-MLP
Accuracy 85.0 79.3 83.3
Throughput – 374437.7 2292.6

MLP-ClusterPool
Accuracy 85.0 100.0 89.5
Throughput – 270526315.8 2296.8

In the case of 10% and 30% Stage 1 sizes, this dataset compromises its Stage 1 accuracy

in Stage 2 with all three approaches due to the immaturity of its learned patterns. When

MLP learned over 50% or more data in Stage 1, Stage 2 classification accuracy is

increased with MLP-FC. Stage 2 throughput benefitted in all approaches, as usual.

Stage-wise performance measures for the Flight dataset

MLP-FC’s overall accuracy for the Flight dataset does not improve any further after the

30% Stage 1 segment length. Common with the other datasets, throughput is decreasing,

yet the difference between best and worst is only 29% for MLP-FC. This illustrates

a lesser dependability of classification performance on the period it spent in Stage 1

learning when compared to the other datasets. Precisely, lengthier the Stage 1 segment,

the lesser is the Stage 1 accuracy.

MLP-MLP overall accuracy kept decreasing when Stage 1 is lengthier while MLP-

ClusterPool overall accuracy fluctuates.

When it comes to stages, MLP-FC and MLP-MLP experience significant accuracy

decline in Stage 2 regardless of the length in Stage 1. Interestingly, MLP-ClusterPool

approach performs better in Stage 2, except when the Stage 1 length is only 10%. Stage

2 accuracy loss of MLP-FC and MLP-MLP is occurred because of Stage 1 MLP model

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 155

overfitting. In contrast to previous datasets, this dataset has more features (30) and

therefore the chance of having irrelevant features is even higher. It appears that the

MLP model learns in Stage 1 gets confused when only a few features are influential,

which is not the case with this dataset.

Table 7.13: Flight: 10% data for Stage 1
Stage 1
(start-2504)

Stage 2
(2504-end)

Overall

MLP-FC
Accuracy 82.1 63.8 69.3
Throughput 568.8 837.7 799.9

MLP-MLP
Accuracy 82.1 73.4 76.0
Throughput – 182850.4 5533.7

MLP-ClusterPool
Accuracy 82.1 79.2 80.1
Throughput – 3917986.3 5681.2

Table 7.14: Flight: 30% data for Stage 1
Stage 1
(start-7512)

Stage 2
(7512-end)

Overall

MLP-FC
Accuracy 81.3 70.4 73.7
Throughput 565.8 769.4 694.4

MLP-MLP
Accuracy 81.3 70.9 74.0
Throughput – 183685.1 1872.7

MLP-ClusterPool
Accuracy 81.3 85.5 84.3
Throughput – 2003817.7 1884.9

To sum up, Stage 2 constantly magnifies throughput for all 3 classifiers for the reason

of using a computationally effective offline learning strategy. The risk of not being able

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 156

Table 7.15: Flight: 50% data for Stage 1
Stage 1
(start-12521)

Stage 2
(12521-end)

Overall

MLP-FC
Accuracy 77.1 65.3 71.2
Throughput 565.7 644.4 602.5

MLP-MLP
Accuracy 77.1 67.9 72.5
Throughput – 184282.0 1128.0

MLP-ClusterPool
Accuracy 77.1 84.0 80.5
Throughput – 1067255.3 1130.9

Table 7.16: Flight: 70% data for Stage 1
Stage 1
(start-17530)

Stage 2
(17530-end)

Overall

MLP-FC
Accuracy 72.6 52.8 66.7
Throughput 567.1 563.6 566.1

MLP-MLP
Accuracy 72.6 66.4 70.8
Throughput – 186927.3 809.1

MLP-ClusterPool
Accuracy 72.6 86.8 76.9
Throughput – 1090405.1 810.0

to provide better or same accuracy as Stage 1 has been fruitfully achieved by MLP-FC

in Elec (30%,50%,70%), Sensor (70%), and Occupancy (50%, 70%), though not in

Flight. MLP-MLP provides better Stage 2 accuracy in Elec (30%, 70%), and Sensor

(10%, 70%), yet not with any of the Occupancy and Flight settings. MLP-ClusterPool

surpasses Stage 1 accuracy in Stage 2 with Elec (70%), Occupancy (70%), and Flight (

30%,50%,70%), though not with any of the Sensor data experiments.

Out of these success cases, MLP-FC becomes the winner in Elec (70%), Sensor(70%),

and Occupancy (70%), while reporting best throughput as well. MLP-MLP accuracy

is slightly better than MLP-FC in Elec (30%), but throughput is slightly lower. MLP-

ClusterPool wins flight (30%,50%,70%), while it ties with MLP-FC in Occupancy

(70%) in both performance measures.

Chapter 7. Verifying the Potential of Using Different Classifiers in SOL 157

7.6 Conclusion

This chapter firstly presented an approach to derive a Fourier spectrum from the neural

network learned in Stage 1. The application of the novel cluster pool method which

extracts a set of compressed schema and their corresponding class labels derived through

MLP deployed at the end of Stage 1 are analogous to truth tables taken from a decision

tree classifier.

Secondly, the applicability of derived Fourier spectra is verified over 4 different

real-world datasets. Performance were compared and contrasted against two other

options MLP classifier and Cluster pool obtained at the end of Stage 1. Out of these

MLP-FC, MLP-MLP, and MLP-ClusterPool classifier systems, MLP-FC were relatively

better in terms of both accuracy and throughput over a few more datasets than the

runner-up, MLP-ClusterPool. Even though it seems MLP-FC is suitable for SOL in

principle, several more potential advancements can be suggested.

For the intention of developing consistently robust solution, three main recommend-

ations are listed: (1) integration of some form of real-time learning capability in Stage

2, (2) timely, yet firm evidence driven stage transition is necessary to incorporate rather

than having trial and error data partitions for stage changes, (3) a concept drift sensitive

strategy for learning in both Stages 1 and 2.

Chapter 8

Conclusion

8.1 Research achievements

This study concentrated on the maximisation of throughput in a stream classification

context while retaining or bettering accuracy compared to state of the art data stream

classifiers. In order to address this research problem, four objectives were formulated. A

summary of accomplishments attained in achieving each of these objectives is detailed

below.

8.1.1 Designing a context sensitive Staged Learning framework

A novel context sensitive staged learning framework is presented for concept drifting

and recurring data streams. Two stages, namely Stage 1 and Stage 2, are responsible

for learning in accordance with the level of volatility present in the data stream. High

volatility stream segments, where the rate of appearance of previously unseen concepts

is higher, are to be learned in Stage 1. Capturing patterns in the highly dynamic Stage

1 was facilitated by an ensemble of incremental learners. In Stage 2, the learning was

carried out by a repository of previously learned concepts from Stage 1, together with a

relatively lesser level of real-time ongoing learning capability.

158

Chapter 8. Conclusion 159

The transition between stages was triggered in line with the statistically significant

volatility trends. Two different stage change detectors were proposed; each fed with

context information gathered for triggers T1 and T2. The detector of trigger T1 con-

tinuously senses the rate of recurrences while the system is operating in Stage 1. Two

hypotheses sets are tested prior to the decision to activate Stage 2. On the other hand,

the trigger T2 that is accountable for reactivation of Stage 1 collects evidence for the

appearance of unseen concepts whilst working on Stage 2. The decision of triggering

T2 is also endorsed by a hypothesis test.

Since Stage 2 of this framework is operated under a limited real-time learning

capability and mostly relies on stored concepts, this design was supposed to provide a

significant reduction in computational overhead in contrast with other systems. Volatility

driven triggers were expected to guarantee the timely transition between stages so that

accuracy was not compromised.

8.1.2 Implementation and evaluation of the proposed framework

The staged learning framework was illustrated using two different algorithms and those

were implemented with an ensemble of Hoeffding decision trees as the base classifier.

At concept drift points, the tree with the highest accuracy was transformed into a Fourier

spectrum and stored in an online repository in the event that a similar spectrum was not

already resident in the repository. This version of the implementation was named as

Staged Online Learner (SOL). The Fourier spectrum also acted as classifiers in the event

that concepts recurred from the past. Each classifier was equipped with a concept drift

detector to detect when new concepts occurred whereas stage detectors were responsible

for transiting between stages.

While learning in Stage 1, the system kept feeding the Trigger 1 detector until a

change was signalled. Whenever the statistical tests for T1 were satisfied, the system

Chapter 8. Conclusion 160

suspended Stage 1 operation which included the maintenance of the expensive ensemble

learner. Thereafter, learning in Stage 2 was facilitated by the repository of spectra and a

single decision tree obtained from the current best spectrum selected at each concept

drift point.

The implemented framework was assessed for its feasibility against the criteria:

effectiveness of triggers T1 and T2, throughput, memory usage, and accuracy. The

detailed, comparative experimental study done over a variety of datasets revealed fa-

vourable outcomes. The triggers were capable of sensing the volatility and signalled

stage transitions as appropriate. Given stream segments that were less volatile, clas-

sification could cope through stored patterns with little adjustments as evident by the

absence of significant accuracy drops. The robustness of the staged learning platform

was recognised on account of its consistent performance measures on a range of challen-

ging recurrence scenarios. As expected, significant performance benefits of throughput

and memory were gained without loss of accuracy in Stage 2, and consequently on an

overall basis.

Though the results were encouraging, bidirectional conversion of tree and spectrum

that happened at each drift point in Stage 2 appeared to be problematic. A sudden

increase in processing time observed at drift points detracts from a smooth processing

rate which is a highly desirable goal. With the aim of optimising the design of the

framework to avoid such time peaks, the next level of this research proposed an extension

to SOL.

8.1.3 Design, implementation, and evaluation of advanced version

of the framework

The extension named Staged Online Learner with Incremental Fourier Classifier (SOL-

IFC) contributed three novel aspects: an incrementally adaptive Fourier Classifier as

Chapter 8. Conclusion 161

the learner for low volatile data segments (Stage 2), removal of noisy features through

schema pruning, and instance schema synopsis with the help of a self-indexing hashing

scheme. Two theorems and proof were given in relation to the incremental update of

Fourier coefficients. Schema instances that changed their class labels since the last

update of the spectrum contributed to the refinement process. If the rate of class label

changes is greater than the user-defined tolerable change rate, the current coefficient set

is modified as given in Theorems 1 and 2 of chapter 5.

The subset of influential features for a particular concept was recognised on the

basis of the winner spectrum. Decision nodes of the corresponding tree that spectrum

was originated from and coefficients which actively contributed to the Fourier basis

function under user-specified energy threshold were retained as influential.

Synopses of instance schema were populated in the spectrum reservoir through the

use of a hash schema devised from knowledge of the set of influential features that were

retained after the feature selection process. These synopses served two purposes: firstly,

determination of timing for spectrum refinement; and secondly, classification from

cached class labels in the case of schema recurrences. The entire process of spectrum

refinement with the use of the feature selection approach and reservoir management

strategy was illustrated in two algorithms.

Performance of SOL-IFC was empirically tested against several comparative al-

gorithms including its predecessor SOL, and nine more meta-learners given in MOA. In

most cases, this novel algorithm outperformed other algorithms in terms of throughput

as well as accuracy. These results confirmed the improvement obtained by the use of

feature selection, hash reservoir, and the incremental Fourier classifier. Furthermore,

because of the smooth incremental adaptation of SOL-IFC, it could avoid the processing

time spike issue observed in the naïve version of SOL.

In summary, while both SOL and SOL-IFC met the research requirement of through-

put versus accuracy trade-off, SOL-IFC enhanced the staged learning approach further.

Chapter 8. Conclusion 162

It ranked at first place when evaluated on a combined metric of throughput and accuracy

compared to existing state-of-art algorithms in data stream mining domain.

8.1.4 Examination of the generalisability of the proposed frame-

work

Lastly, this study explored the potential of using classifiers other than decision trees

in Stage 1 of the staged learning framework. As a proof of concept, the feed-forward

Multi-Layer Perceptron (MLP) Neural Network (NN) was taken as the Stage 1 learner.

The major challenge of obtaining Fourier spectra from NN was successfully addressed

through the proposed cluster pool structure.

A brief experimental study done with this implementation of MLP NN for Stage 1

and the Fourier model generated from NN for Stage 2 classifier illustrated its applic-

ability in data streams. Results were positive for the implementation independence

of staged learning framework, although further advancements were recommended for

obtaining even better performance.

8.2 Limitations of this research

This research has accomplished its objectives by contributing a novel staged learning

paradigm, and three different product versions were produced, namely naïve SOL,

SOL-IFC, and MP-FC. Moreover, the SOL-IFC version itself contains three novel

conceptual contributions. Most importantly, the well-known dilemma of designing

more accurate classifiers or classifiers with higher processing speed was gracefully met

through SOL-IFC which outperformed comparable stream mining solutions. Hence, the

research objectives set out at the commencement of the study have been successfully

addressed.

Chapter 8. Conclusion 163

Notwithstanding the success of the research work, there have been some constraints

and limitations attached to some of the approaches in this research. A brief discussion

of such limitations is given below.

• Scaling generation of Fourier spectra to high dimensional data

The relationship between the number of features in a dataset and the total number

of Fourier coefficients in a spectrum is exponential in general. Even though

most of those coefficients are not significant, initial extraction of coefficients is a

computationally expensive task. This potential drawback was mitigated in this

work by applying several techniques such as coefficient calculation optimisation,

focusing on features that only appeared in a decision tree rather than the number

that appeared in the original raw data, and the IFC approach that eliminated the

need for the generation of new Fourier spectra during Stage 2. Furthermore, the

overhead of inverse Fourier computation was reduced in several ways through

the use of energy thresholding based coefficient selection, feature selection,

classification using cached class labels, and concentrating only on the set of

schemas that changed class labels during the course of spectrum refinement in

Stage 2. In the worst-case scenario where all features appear in a decision tree,

the DFT process in Stage 1 will considerably slow down the mining process.

• Stage 2 adaptation limitations of SOL-IFC

The Stage 2 noisy feature pruning assumes that there is no chance for a feature

to be influential once it was declared as not influential at the first recurrence

of a concept in Stage 2. The hash function identifies the subset of features as

non-influential with respect to a given spectrum and then it continues its operation

with the same set while the system is operating in that cycle of Stage 2. This

limitation of adaptability in Stage 2 of SOL-IFC is not specifically addressed in

the current solution. SOL-IFC makes the optimistic assumption that the option

Chapter 8. Conclusion 164

of Stage 1 reactivation will mitigate against the loss of features removed during

the course of Stage 2. This is due to the fact that Stage 1 effectively performs

a system reset as it generates a new batch of decision trees that are grown that

could incorporate these very same features that were removed in the previous

system cycle of Stage 2.

• Delay in receiving true class label

The performance, especially the accuracy of the solution presented in this study

relies on prompt concept drift detection followed by the best model selection for

the next concept. Drift detectors are fed with binary 0 or 1 after receiving the true

class label of the instance. Therefore, a delay in the arrival of the true class label

causes a delay in drift detection, and hence a delay in the selection of the most

accurate classifier of the ensemble as the best classifier. The system suggested in

this study solely depends on the accuracy of the best classifier for a given concept

as it is based on the recurrence capture concept. For this reason, a deferral in

detection and delayed response to a drift can result in an accuracy drop in the

system. At the same time, this situation causes a delay in populating the repository

with spectra which results in a delay in a stage change detection. Staying in Stage

1 for a longer time period of time will negatively impact throughput.

• Limitations of change detectors

The success of the staged learning framework highly depends on the quality of

spectra in the repository. The quality of spectra is dependent on the accurate

detection of drift signal. Errors that occur in concept capture can propagate to the

spectrum aggregation and spectrum refinement processes. Therefore, selection of

the concept drift detector with the lowest false positive and false negative rates

is crucial. On the other hand, false positive and false negatives that occur with

respect to stage change detection can have an even higher impact as it could direct

Chapter 8. Conclusion 165

the entire system into a different state prematurely. From a practical point of

view, activation or deactivation decisions of the real-time learner have to be made

on the basis of the best information that is available, but a risk exists that such

a decision is made erroneously. This reinforces the importance of stage change

detector design considerations.

• User defined parameters

In common with most other machine learning algorithms, SOL and SOL-IFC

also suffer from the curse of reliance on parameter tuning. The staged learning

approach solution features six major parameters: α, β, repository size, sample

size, tolerable change rate, and refinement interval length. Parameters α, β,

repository size, and sample size are involved in triggering T1 and T2 whereas the

tolerable change rate and interval length are for refinements in Stage 2 of SOL-

IFC. Among them, parameters α, β, and repository size were shown to have a

negligible effect on system accuracy.

The throughput of the SOL framework was negatively affected when the cut-off

value for α was too high. Certainly, it is not practical to set α to a value less than

0.5 as repository utility should not be measured on the basis of random chance.

Therefore, α is set to 0.5 throughout this work. The influence of repository size on

throughput appeared to be dependent on the dynamics of the dataset. Considering

its potential to generate new spectra continuously, we set the maximum allowable

spectrum count to 40 with SOL whereas it was 20 for SOL-IFC since the later

learns incrementally with available spectra. Tolerable change rate was set to 0.05

for SOL-IFC as it analogous to a statistical confidence. Interval length parameter

was set to 100 which is statistically significant. It was observed that slight

variations of tolerable change rate or interval length do not have a considerable

effect on system performance.

Chapter 8. Conclusion 166

The higher the β value, the higher the probability of triggering T2 and hence

throughput was reduced. On the contrary, smaller β results in a lengthier Stage 2

at the risk of accuracy loss in the long run even though there was no immediate

effect on accuracy. For these set of experiments, we set β to a moderate value 0.7

so as to cope with accuracy vs throughput trade-off. However, more studies need

to be done in order to recognise influential parameters and their influence when

determining optimum β. The sample size parameter of stage change detection,

analogous to window size in a drift detection problem, however, has a substantial

influence on timely stage change detection and ultimately on system performance.

Small sample size may results in false positives and consequently an accuracy

drop, whereas large samples lead to false negatives and low throughput thereby.

Our current implementation resolves this dilemma by picking a statistically

representative value of 200 which is proven to be the best for the change detector

SeqDrift. Nevertheless, we note that the stage change detector does not need to

be set with a constant sample size as it can be optimised with knowledge of the

level of volatility in the data stream. Further research needs to be done in setting

a context sensitive and self-adaptive sample size parameter value.

• Streams with few or no recurrences

Stage 1 of the design given in this study also follows a common incremental

ensemble learning approach with embedded drift detectors while the repository

is being populated. In data stream environments where there are few or no

recurrences, SOL and SOL-IFC might also experience low throughput as the

system has to continue in Stage 1 for a longer period of time. In such cases, if

resources are running out and the mining process continuously fails to meet the

data arrival rate, it is recommended to set an upper boundary for the duration of

Stage 1 operation. Once the stream reaches its upper bound, load shedding or

Chapter 8. Conclusion 167

forced Stage 2 transition could be done as remedies at the cost of accuracy rather

than accumulating the delay for the long run. If none of the spectra in Stage 2

gives an acceptable accuracy in this scenario, a new spectrum can be generated

directly from data without the intermediate step of generating it from a decision

tree.

8.3 Future work

There are several directions that future research can take for improving the solution

proposed in this work. Those are listed as follows.

• Declare drift warning signal

Defining a warning signal ahead of the actual drift signal will provide an op-

portunity for more accurately assessing the best performing classifier. The best

performing classifier within the warning period can be considered to be the

dominant classifier for the newly emerging concept. Furthermore, solutions like

this which solely depend on the best classifier’s accuracy until the end of that

particular concept will have an opportunity to suspend and reset other learners in

the ensemble until the next warning signal for the next concept shift occurs. This

will also lead to an increase in throughput as overhead is decreased.

• Parallel processing

Maintenance of individual trees in the forest and spectra in the repository demands

significant processing power in an ensemble classifier system. In addition to

classification, updating their own statistics and feeding their own drift detectors

also need to be done for each learner. Interestingly, those tasks are mutually

exclusive and therefore good candidates for multithreading. Given hardware

requirements, each classifier can be allocated to a separate thread for processing.

Chapter 8. Conclusion 168

• DFT on other classifiers

Other than decision trees and neural networks, exploring the ability to convert

other incremental learners such as Naïve Bayes and KNN to Fourier spectra might

be important. In this way, staged learning approach with Incremental Fourier

classifier can be applied to a greater diversity of application domains.

• Proactive stage transition for better resources utilisation

It is evident that Stage 2 needs a significantly lesser amount of computational

resources compared to Stage 1. Therefore, proactive resource utilisation in line

with stage transition might support the concept of green computing. Rather than

being reactive to the volatility of the stream, the generation of a stage change

prediction model will be helpful for taking a proactive approach to this problem.

Time series analysis on stage transition metadata will be useful in building such a

prediction model.

• Fourier spectrum based feature drift detection

In high volatility data segments, most of the concept switches resulted from

the emergence of new concepts. In contrast, concept switches in low volatility

stream segments are expected to see recurrences. Changes between consecutive

recurrences of a particular concept might mostly be caused as a result of a shift

in the importance of the features. This variation of feature importance which

is called a feature drift might be an interesting topic to proceed with. In Stage

2 learning, the study of the deviation between the refined spectrum and the

initial spectrum might provide a clue to recognise feature drifts. Agreement of

classification outcome between the initial classifier and its refined version can be

observed over the time. The binary output ‘agree’ or ‘disagree’ can be fed into

the feature drift detector.

Chapter 8. Conclusion 169

This research field of concept drifting data stream mining is challenging, yet essen-

tial due to the increasing number of sources which generate data streams. It is necessary

to explore more enhancements and novelties in the future.

References

Abdulsalam, H., Skillicorn, D. B. & Martin, P. (2007). Streaming random forests.
In Proceedings of the 11th international database engineering and applications
symposium (pp. 225–232). Washington, DC, USA: IEEE Computer Society.
Retrieved from https://doi.org/10.1109/IDEAS.2007.42 doi: 10
.1109/IDEAS.2007.42

Abdulsalam, H., Skillicorn, D. B. & Martin, P. (2008). Classifying evolving data streams
using dynamic streaming random forests. In Proceedings of the 19th international
conference on database and expert systems applications (pp. 643–651). Ber-
lin, Heidelberg: Springer-Verlag. Retrieved from http://dx.doi.org/10
.1007/978-3-540-85654-2_54 doi: 10.1007/978-3-540-85654-2_54

Aggarwal, C. (2007a). Data streams: Models and algorithms. In C. Aggarwal (Ed.),
(pp. 1–8). Springer US. doi: 10.1007/978-0-387-47534-9

Aggarwal, C. (2007b). Data streams: Models and algorithms (1st ed.; C. Aggarwal,
Ed.). Springer US. doi: 10.1007/978-0-387-47534-9

Aggarwal, C. & Yu, P. (2007). Data streams: Models and algorithms. In C. Ag-
garwal (Ed.), Data streams: Models and algorithms (pp. 169–207). Bo-
ston, MA: Springer US. Retrieved from https://doi.org/10.1007/
978-0-387-47534-9_9 doi: 10.1007/978-0-387-47534-9_9

Alippi, C., Boracchi, G. & Roveri, M. (2013, April). Just-in-time classifiers for recurrent
concepts. IEEE Transactions on Neural Networks and Learning Systems, 24(4),
620–634. doi: 10.1109/TNNLS.2013.2239309

Babcock, B., Datar, M. & Motwani, R. (2004, April). Load shedding for aggregation
queries over data streams. In Proceedings. 20th international conference on data
engineering (pp. 350–361). doi: 10.1109/ICDE.2004.1320010

Babcock, B., Datar, M. & Motwani, R. (2007). Load shedding in data stream systems.
In C. Aggarwal (Ed.), Data streams: Models and algorithms (pp. 127–147).
Boston, MA: Springer US. Retrieved from https://doi.org/10.1007/
978-0-387-47534-9_7 doi: 10.1007/978-0-387-47534-9_7

Baena-Garcia, M., Campo-Avila, J., Fidalgo-Merino, R., Bifet, A., Gavald, R. & Bueno,
R. (2006). Early drift detection method. In In fourth international workshop on
knowledge discovery from data streams (pp. 77–86).

Bernstein, S. N. (1946). The theory of probabilities (4th ed.). Moscow, Leningrad:
Gostekhizdat.

Bifet, A., Frank, E., Holmes, G. & Pfahringer, B. (2010). Accurate ensembles for

170

https://doi.org/10.1109/IDEAS.2007.42
http://dx.doi.org/10.1007/978-3-540-85654-2_54
http://dx.doi.org/10.1007/978-3-540-85654-2_54
https://doi.org/10.1007/978-0-387-47534-9_9
https://doi.org/10.1007/978-0-387-47534-9_9
https://doi.org/10.1007/978-0-387-47534-9_7
https://doi.org/10.1007/978-0-387-47534-9_7

References 171

data streams: Combining restricted hoeffding trees using stacking. In M. Su-
giyama & Q. Yang (Eds.), Proceedings of 2nd asian conference on machine
learning (Vol. 13, pp. 225–240). Tokyo, Japan: PMLR. Retrieved from
http://proceedings.mlr.press/v13/bifet10a.html

Bifet, A. & Gavalda, R. (2007). Learning from time-changing data with adaptive
windowing. In Proceedings of the 2007 siam international conference on data
mining (pp. 443–448). Retrieved from http://epubs.siam.org/doi/
abs/10.1137/1.9781611972771.42 doi: 10.1137/1.9781611972771
.42

Bifet, A. & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In
Proceedings of the 8th international symposium on intelligent data analysis:
Advances in intelligent data analysis viii (pp. 249–260). Berlin, Heidelberg:
Springer-Verlag. Retrieved from http://dx.doi.org/10.1007/978-3
-642-03915-7_22 doi: 10.1007/978-3-642-03915-7_22

Bifet, A., Holmes, G. & Pfahringer, B. (2010). Leveraging bagging for evolving data
streams. In J. L. Balcázar, F. Bonchi, A. Gionis & M. Sebag (Eds.), Machine
learning and knowledge discovery in databases: European conference, ecml
pkdd 2010, barcelona, spain, september 20-24, 2010, proceedings, part i (pp.
135–150). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from
http://dx.doi.org/10.1007/978-3-642-15880-3-15 doi: 10
.1007/978-3-642-15880-3-15

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R. & Gavaldà, R. (2009). New ensemble
methods for evolving data streams. In Proceedings of the 15th acm sigkdd
international conference on knowledge discovery and data mining (pp. 139–
148). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/
10.1145/1557019.1557041 doi: 10.1145/1557019.1557041

Bifet, A., Read, J., Holmes, G. & Pfahringer, B. (2018). Data mining in time series and
streaming databases. In A. K. Mark Last Horst Bunke (Ed.), (pp. 1–25). World
Scientific. doi: https://doi.org/10.1142/10655

Breiman, L. (2001, 01 Oct). Random forests. Machine Learning, 45(1), 5–32.
Retrieved from https://doi.org/10.1023/A:1010933404324 doi:
10.1023/A:1010933404324

Brzeziński, D. & Stefanowski, J. (2011). Accuracy updated ensemble for data streams
with concept drift. In E. Corchado, M. Kurzyński & M. Woźniak (Eds.), Hybrid
artificial intelligent systems: 6th international conference, hais 2011, wroclaw,
poland, may 23-25, 2011, proceedings, part ii (pp. 155–163). Berlin, Heidel-
berg: Springer Berlin Heidelberg. Retrieved from http://dx.doi.org/
10.1007/978-3-642-21222-2-19 doi: 10.1007/978-3-642-21222-2-19

Candanedo, L. M. & Feldheim, V. (2016). Accurate occupancy detection of
an office room from light, temperature, humidity and {CO2} measurements
using statistical learning models. Energy and Buildings, 112, 28–39. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S0378778815304357 doi: https://doi.org/10.1016/j.enbuild.2015.11
.071

http://proceedings.mlr.press/v13/bifet10a.html
http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.42
http://epubs.siam.org/doi/abs/10.1137/1.9781611972771.42
http://dx.doi.org/10.1007/978-3-642-03915-7_22
http://dx.doi.org/10.1007/978-3-642-03915-7_22
http://dx.doi.org/10.1007/978-3-642-15880-3-15
http://doi.acm.org/10.1145/1557019.1557041
http://doi.acm.org/10.1145/1557019.1557041
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/978-3-642-21222-2-19
http://dx.doi.org/10.1007/978-3-642-21222-2-19
http://www.sciencedirect.com/science/article/pii/S0378778815304357
http://www.sciencedirect.com/science/article/pii/S0378778815304357

References 172

Carletta, J. (1996, June). Assessing agreement on classification tasks: The kappa
statistic. Comput. Linguist., 22(2), 249–254. Retrieved from http://dl.acm
.org/citation.cfm?id=230386.230390

Chi, Y., Yu, P. S., Wang, H. & Muntz, R. R. (2005). Loadstar: A load shedding
scheme for classifying data streams. In Proceedings of the 2005 siam interna-
tional conference on data mining (pp. 346–357). Retrieved from https://
epubs.siam.org/doi/abs/10.1137/1.9781611972757.31 doi:
10.1137/1.9781611972757.31

Cormode, G., Garofalakis, M., Haas, P. J. & Jermaine, C. (2012, January). Synopses for
massive data: Samples, histograms, wavelets, sketches. Found. Trends databases,
4(1–3), 1–294. Retrieved from http://dx.doi.org/10.1561/
1900000004 doi: 10.1561/1900000004

Demšar, J. (2006, December). Statistical comparisons of classifiers over multiple
data sets. Journal of Machine Learning Research, 7, 1–30. Retrieved from
http://dl.acm.org/citation.cfm?id=1248547.1248548 doi:
2007-03550-001

Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier
systems (pp. 1–15). Berlin, Heidelberg: Springer Berlin Heidelberg.

Ditzler, G., Roveri, M., Alippi, C. & Polikar, R. (2015). Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10(4),
12–25. doi: 10.1109/MCI.2015.2471196

Domeniconi, C. & Gunopulos, D. (2001). Incremental support vector machine con-
struction. In Proceedings 2001 ieee international conference on data mining (pp.
589–592).

Domingos, P. & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of
the sixth acm sigkdd international conference on knowledge discovery and data
mining (pp. 71–80). New York, NY, USA: ACM. Retrieved from http://doi
.acm.org/10.1145/347090.347107 doi: 10.1145/347090.347107

Domingos, P. & Hulten, G. (2001). Catching up with the data: Research issues in
mining data streams. In In workshop on research issues in data mining and
knowledge discovery.

Elwell, R. & Polikar, R. (2009). Incremental learning of variable rate concept drift.
In J. A. Benediktsson, J. Kittler & F. Roli (Eds.), Multiple classifier systems (pp.
142–151). Berlin, Heidelberg: Springer Berlin Heidelberg.

Fan, W., Wang, H., Yu, P. S., Lo, S.-h. & Stolfo, S. (2002). Progressive modeling.
In Proceedings of the 2002 ieee international conference on data mining. IEEE
Computer Society. Retrieved from http://dl.acm.org/citation.cfm
?id=844380.844728

Ferrer Troyano, F., Aguilar-Ruiz, J. S. & Riquelme, J. C. (2005). Incremental rule
learning based on example nearness from numerical data streams. In Proceedings
of the 2005 acm symposium on applied computing (pp. 568–572). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/1066677
.1066808 doi: 10.1145/1066677.1066808

Ferrer-Troyano, F. J., Aguilar-Ruiz, J. S. & Santos, J. C. R. (2006). Data streams

http://dl.acm.org/citation.cfm?id=230386.230390
http://dl.acm.org/citation.cfm?id=230386.230390
https://epubs.siam.org/doi/abs/10.1137/1.9781611972757.31
https://epubs.siam.org/doi/abs/10.1137/1.9781611972757.31
http://dx.doi.org/10.1561/1900000004
http://dx.doi.org/10.1561/1900000004
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://doi.acm.org/10.1145/347090.347107
http://doi.acm.org/10.1145/347090.347107
http://dl.acm.org/citation.cfm?id=844380.844728
http://dl.acm.org/citation.cfm?id=844380.844728
http://doi.acm.org/10.1145/1066677.1066808
http://doi.acm.org/10.1145/1066677.1066808

References 173

classification by incremental rule learning with parameterized generalization. In
Sac.

Gaber, M. M., Zaslavsky, A. & Krishnaswamy, S. (2005, June). Mining data streams:
A review. SIGMOD Rec., 34(2), 18–26. Retrieved from http://doi.acm
.org/10.1145/1083784.1083789 doi: 10.1145/1083784.1083789

Gaber, M. M., Zaslavsky, A. & Krishnaswamy, S. (2007). Data streams: Models
and algorithms. In A. C.C. (Ed.), (pp. 39–59). Springer US. doi: 10.1007/
978-0-387-47534-9

Gama, J. (2010). Knowledge discovery from data streams (1st ed.). Chapman &
Hall/CRC.

Gama, J., Fernandes, R. & Rocha, R. (2006, January). Decision trees for mining data
streams. Intell. Data Anal., 10(1), 23–45. Retrieved from http://dl.acm
.org/citation.cfm?id=1239076.1239079

Gama, J. & Kosina, P. (2009). Tracking recurring concepts with meta-learners. In
Progress in artificial intelligence (pp. 423–434). Springer.

Gama, J., Medas, P., Castillo, G. & Rodrigues, P. (2004). Learning with drift detection.
In A. L. C. Bazzan & S. Labidi (Eds.), Advances in artificial intelligence – sbia
2004 (pp. 286–295). Berlin, Heidelberg: Springer Berlin Heidelberg.

Gama, J., Rocha, R. & Medas, P. (2003). Accurate decision trees for mining high-speed
data streams. In Proceedings of the ninth acm sigkdd international conference on
knowledge discovery and data mining (pp. 523–528). New York, NY, USA: ACM.
Retrieved from http://doi.acm.org/10.1145/956750.956813 doi:
10.1145/956750.956813

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. & Bouchachia, A. (2014, March).
A survey on concept drift adaptation. ACM Comput. Surv., 46(4), 44:1–
44:37. Retrieved from http://doi.acm.org/10.1145/2523813 doi:
10.1145/2523813

Gao, J., Fan, W., Han, J. & Yu, P. S. (2007). A general framework for mining concept-
drifting data streams with skewed distributions. In Proceedings of the 2007 siam
international conference on data mining (pp. 3–14). Retrieved from https://
epubs.siam.org/doi/abs/10.1137/1.9781611972771.1 doi:
10.1137/1.9781611972771.1

Gardner, M. & Dorling, S. (1998). Artificial neural networks (the multilayer per-
ceptron)a review of applications in the atmospheric sciences. Atmospheric Envir-
onment, 32(14), 2627–2636. Retrieved from http://www.sciencedirect
.com/science/article/pii/S1352231097004470 doi: https://
doi.org/10.1016/S1352-2310(97)00447-0

Gomes, H., Barddal, J., Enembreck, F. & Bifet, A. (2017, March). A survey on
ensemble learning for data stream classification. ACM Computing Surveys, 50(2),
23:1–23:36. Retrieved from http://doi.acm.org/10.1145/3054925
doi: 10.1145/3054925

Gomes, H., Bifet, A., Read, J., Barddal, J., Enembreck, F., Pfharinger, B., . . . Ab-
dessalem, T. (2017, 01 Oct). Adaptive random forests for evolving data
stream classification. Machine Learning, 106(9), 1469–1495. Retrieved from

http://doi.acm.org/10.1145/1083784.1083789
http://doi.acm.org/10.1145/1083784.1083789
http://dl.acm.org/citation.cfm?id=1239076.1239079
http://dl.acm.org/citation.cfm?id=1239076.1239079
http://doi.acm.org/10.1145/956750.956813
http://doi.acm.org/10.1145/2523813
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.1
https://epubs.siam.org/doi/abs/10.1137/1.9781611972771.1
http://www.sciencedirect.com/science/article/pii/S1352231097004470
http://www.sciencedirect.com/science/article/pii/S1352231097004470
http://doi.acm.org/10.1145/3054925

References 174

https://doi.org/10.1007/s10994-017-5642-8 doi: 10.1007/
s10994-017-5642-8

Gomes, J., Menasalvas, E. & Sousa, P. (2010). Tracking recurrent concepts
using context. In M. Szczuka, M. Kryszkiewicz, S. Ramanna, R. Jensen
& Q. Hu (Eds.), Rough sets and current trends in computing: 7th interna-
tional conference, rsctc 2010, warsaw, poland, june 28-30,2010. proceedings
(pp. 168–177). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from http://dx.doi.org/10.1007/978-3-642-13529-3-19 doi:
10.1007/978-3-642-13529-3-19t

Gomide, D. F. L. . P. C. . F. (2009). Evolving granular classification neural networks.
IEEE. doi: 10.1109/IJCNN.2009.5178895

Gudise, V. G. & Venayagamoorthy, G. K. (2003, April). Comparison of particle swarm
optimization and backpropagation as training algorithms for neural networks. In
Proceedings of the 2003 ieee swarm intelligence symposium. (pp. 110–117). doi:
10.1109/SIS.2003.1202255

Han, J., Kamber, M. & Pei, J. (2012). Data mining: Concepts and techniques (Third
Edition ed.; J. Han, M. Kamber & J. Pei, Eds.). Morgan Kaufmann.

He, H., Chen, S., Li, K. & Xu, X. (2011, 10). Incremental learning from stream data. ,
22, 1901-14.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301), 13–30. doi: 10.2307/
2282952

Hoeglinger, S., Pears, R. & Koh, Y. S. (2009). Cbdt: A concept based approach to
data stream mining. In T. Theeramunkong, B. Kijsirikul, N. Cercone & T.-B. Ho
(Eds.), Advances in knowledge discovery and data mining: 13th pacific-asia
conference, pakdd 2009 bangkok, thailand, april 27-30, 2009 proceedings (pp.
1006–1012). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from
http://dx.doi.org/10.1007/978-3-642-01307-2-107 doi: 10
.1007/978-3-642-01307-2-107

Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward net-
works are universal approximators. Neural Networks, 2(5), 359–366. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/0893608089900208 doi: https://doi.org/10.1016/0893-6080(89)90020
-8

Hulten, G., Spencer, L. & Domingos, P. (2001). Mining time-changing data streams. In
Proceedings of the seventh acm sigkdd international conference on knowledge
discovery and data mining (pp. 97–106). New York, NY, USA: ACM. doi:
10.1145/502512.502529

Ikonomovska, E., Gama, J. & Džeroski, S. (2011). Learning model trees from evolving
data streams. Data Mining and Knowledge Discovery, 23(1), 128–168. Retrieved
from http://dx.doi.org/10.1007/s10618-010-0201-y doi: 10
.1007/s10618-010-0201-y

Jaber, G., Cornuéjols, A. & Tarroux, P. (2013a). A new on-line learning method
for coping with recurring concepts: The adacc system. In M. Lee, A. Hirose,

https://doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.1007/978-3-642-13529-3-19
http://dx.doi.org/10.1007/978-3-642-01307-2-107
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://dx.doi.org/10.1007/s10618-010-0201-y

References 175

Z.-G. Hou & R. M. Kil (Eds.), Neural information processing.iconip 2013. (pp.
595–604). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from
http://dx.doi.org/10.1007/978-3-642-42042-9-74 doi: 10
.1007/978-3-642-42042-9-74

Jaber, G., Cornuéjols, A. & Tarroux, P. (2013b). Online learning: Searching
for the best forgetting strategy under concept drift. In M. Lee, A. Hirose,
Z.-G. Hou & R. M. Kil (Eds.), Neural information processing. iconip 2013.
(pp. 400–408). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved
from http://dx.doi.org/10.1007/978-3-642-42042-9-50 doi:
10.1007/978-3-642-42042-9-50

Jain, A. K., Mao, J. & Mohiuddin, K. (1996). Artificial neural networks: A tutorial.
IEEE Computer, 29, 31–44.

Kargupta, H. & Park, B.-H. (2004, Feb). A fourier spectrum-based approach to
represent decision trees for mining data streams in mobile environments. IEEE
Transactions on Knowledge and Data Engineering, 16(2), 216–229. doi: 10.1109/
TKDE.2004.1269599

Kargupta, H., Park, B. H. & Dutta, H. (2006). Orthogonal decision trees. Knowledge
and Data Engineering, IEEE Transactions on, 18(8), 1028–1042. doi: doi
.ieeecomputersociety.org/10.1109/TKDE.2006.127

Katakis, I., Tsoumakas, G. & Vlahavas, I. (2008). An ensemble of classifiers for coping
with recurring contexts in data streams. In (pp. 763–764).

Kelly, M. G., Hand, D. J. & Adams, N. M. (1999). The impact of changing popula-
tions on classifier performance. In Proceedings of the fifth acm sigkdd interna-
tional conference on knowledge discovery and data mining (pp. 367–371). New
York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
312129.312285 doi: 10.1145/312129.312285

Khamassi, I., Mouchaweh, M. S., Hammami, M. & Ghedira, K. (2018). Discussion and
review on evolving data streams and concept drift adapting. Evolving Systems.
doi: https://doi.org/10.1007/s12530-016-9168-2

Kholghi, M., Hassanzadeh, H. & Keyvanpour, M. (2010). Classification and evaluation
of data mining techniques for data stream requirements. In 2010 international
symposium on computer, communication, control and automation (3ca). doi:
10.1109/3CA.2010.5533759

Kithulgoda, C. I. & Pears, R. (2016). Staged online learning: A new approach to
classification in high speed data streams. In 2016 international joint conference
on neural networks (ijcnn) (pp. 1–8). doi: 10.1109/IJCNN.2016.7727173

Kithulgoda, C. I., Pears, R. & Naeem, M. A. (2018). The incremental four-
ier classifier: Leveraging the discrete fourier transform for classifying high
speed data streams. Expert Systems with Applications, 97, 1–17. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S095741741730845X doi: https://doi.org/10.1016/j.eswa.2017.12
.023

Knapp, M. P. (2009). Sines and cosines of angles in arithmetic progression. In
Mathematics magazine (Vol. 82, pp. 371–372). Mathematical Association of

http://dx.doi.org/10.1007/978-3-642-42042-9-74
http://dx.doi.org/10.1007/978-3-642-42042-9-50
http://doi.acm.org/10.1145/312129.312285
http://doi.acm.org/10.1145/312129.312285
http://www.sciencedirect.com/science/article/pii/S095741741730845X
http://www.sciencedirect.com/science/article/pii/S095741741730845X

References 176

America. doi: https://doi.org/10.4169/002557009X478436
Kolter, J. Z. & Maloof, M. A. (2007, December). Dynamic weighted major-

ity: An ensemble method for drifting concepts. J. Mach. Learn. Res., 8,
2755–2790. Retrieved from http://dl.acm.org/citation.cfm?id=
1314498.1390333

Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J. & Wozniak, M. (2017). Ensemble
learning for data stream analysis: A survey. Information Fusion, 37, 132–156. Re-
trieved from http://www.sciencedirect.com/science/article/
pii/S1566253516302329 doi: https://doi.org/10.1016/j.inffus.2017.02
.004

Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In F. Roli,
J. Kittler & T. Windeatt (Eds.), Multiple classifier systems (pp. 1–15). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Lazarescu, M. (2005). A multi-resolution learning approach to tracking concept drift
and recurrent concepts. In Pris.

Lemaire, V., Salperwyck, C. & Bondu, A. (2015). Business intelligence. In K. R. Zi-
manyi E. (Ed.), (pp. 88–125). Springer, Cham. doi: https://doi.org/10.1007/
978-3-319-17551-5_4

Lichman, M. (2013). UCI machine learning repository. Retrieved from http://
archive.ics.uci.edu/ml

Maloof, M. A. & Michalski, R. S. (2004). Incremental learning with par-
tial instance memory. Artificial Intelligence, 154(1), 95–126. Retrieved
from http://www.sciencedirect.com/science/article/pii/
S0004370203001498 doi: https://doi.org/10.1016/j.artint.2003.04.001

Mehta, M., Agrawal, R. & Rissanen, J. (1996). Advances in database technology
edbt96. In G. G. Apers P. Bouzeghoub M. (Ed.), (pp. 18–32). Springer, Berlin,
Heidelberg. doi: https://doi.org/10.1007/BFb0014141

Mouss, H., Mouss, D., Mouss, N. & Sefouhi, L. (2004, July). Test of page-hinckley,
an approach for fault detection in an agro-alimentary production system. In Ieee
2004 5th asian control conference (Vol. 2, pp. 815–818).

Nguyen, H. L., Woon, Y. K. & Ng, W. K. (2015). A survey on data stream clustering
and classification. Knowledge and Information Systems, 535–569. doi: https://
doi.org/10.1007/s10115-014-0808-1

Nguyen, H.-L., Woon, Y.-K., Ng, W.-K. & Wan, L. (2012). Heterogeneous ensemble
for feature drifts in data streams. In P.-N. Tan, S. Chawla, C. K. Ho & J. Bailey
(Eds.), Advances in knowledge discovery and data mining (pp. 1–12). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Ning, G., Wang, H., Shu, L. & Yeh, G. (2016, 01 May). Towards load shed-
ding and scheduling schemes for data streams that maintain quality and tim-
ing requirements of query results. Soft Computing, 20(5), 1961–1976. Re-
trieved from https://doi.org/10.1007/s00500-015-1617-5 doi:
10.1007/s00500-015-1617-5

Nishida, K., Yamauchi, K. & Omori, T. (2005). Ace: Adaptive classifiers-ensemble
system for concept-drifting environments. In N. C. Oza, R. Polikar, J. Kittler

http://dl.acm.org/citation.cfm?id=1314498.1390333
http://dl.acm.org/citation.cfm?id=1314498.1390333
http://www.sciencedirect.com/science/article/pii/S1566253516302329
http://www.sciencedirect.com/science/article/pii/S1566253516302329
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.sciencedirect.com/science/article/pii/S0004370203001498
http://www.sciencedirect.com/science/article/pii/S0004370203001498
https://doi.org/10.1007/s00500-015-1617-5

References 177

& F. Roli (Eds.), Multiple classifier systems (pp. 176–185). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Nishimura, S., Terabe, M., Hashimoto, K. & Mihara, K. (2008). Learning higher
accuracy decision trees from concept drifting data streams. In N. T. Nguyen,
L. Borzemski, A. Grzech & M. Ali (Eds.), New frontiers in applied artificial
intelligence (pp. 179–188). Berlin, Heidelberg: Springer Berlin Heidelberg.

Oza, N. C. (2005, Oct). Online bagging and boosting. In 2005 ieee international
conference on systems, man and cybernetics (Vol. 3, p. 2340-2345). doi: 10.1109/
ICSMC.2005.1571498

Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1-2), 100–115.
Retrieved from http://dx.doi.org/10.1093/biomet/41.1-2.100
doi: 10.1093/biomet/41.1-2.100

Park, B. H. (2001). Knowledge discovery from heterogeneous data streams using fourier
spectrum of decision trees (Unpublished doctoral dissertation). Washington State
University, Pullman, WA, USA.

Pears, R., Sakthithasan, S. & Koh, Y. S. (2014). Detecting concept change in dynamic
data streams. Machine Learning, 97(3), 259–293. Retrieved from http://
dx.doi.org/10.1007/s10994-013-5433-9 doi: 10.1007/s10994-013
-5433-9it

Pfahringer, B., Holmes, G. & Kirkby, R. (2007). New options for hoeffding trees. In
M. A. Orgun & J. Thornton (Eds.), Ai 2007: Advances in artificial intelligence
(pp. 90–99). Berlin, Heidelberg: Springer Berlin Heidelberg.

Quinlan, J. R. (1986, 01 Mar). Induction of decision trees. Machine Learning, 1(1),
81–106. Retrieved from https://doi.org/10.1007/BF00116251 doi:
10.1007/BF00116251

Quinlan, J. R. (1993). C4.5: Programs for machine learning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Ramamurthy, S. & Bhatn, R. (2007, Dec). Tracking recurrent concept drift in streaming
data using ensemble classifiers. In Sixth international conference on machine
learning and applications (icmla) (pp. 404–409). doi: 10.1109/ICMLA.2007.80

Ren, S., Lian, Y. & Zou, X. (2014). Incremental naive bayesian learning algorithm
based on classification contribution degree. Journal of Computers, 9.

Ross, G. J., Adams, N. M., Tasoulis, D. K. & Hand, D. J. (2012). Exponentially
weighted moving average charts for detecting concept drift. Pattern Recognition
Letters, 33(2), 191–198. Retrieved from http://www.sciencedirect
.com/science/article/pii/S0167865511002704 doi: https://doi
.org/10.1016/j.patrec.2011.08.019

Sakthithasan, S., Pears, R., Bifet, A. & Pfahringer, B. (2015, July). Use of ensembles
of fourier spectra in capturing recurrent concepts in data streams. In 2015
international joint conference on neural networks (ijcnn) (pp. 1–8). doi: 10.1109/
IJCNN.2015.7280583

Schlimmer, J. C. & Granger, R. H. (1986, 01 Sep). Incremental learning from noisy
data. Machine Learning, 1(3), 317–354. Retrieved from https://doi.org/
10.1007/BF00116895 doi: 10.1007/BF00116895

http://dx.doi.org/10.1093/biomet/41.1-2.100
http://dx.doi.org/10.1007/s10994-013-5433-9
http://dx.doi.org/10.1007/s10994-013-5433-9
https://doi.org/10.1007/BF00116251
http://www.sciencedirect.com/science/article/pii/S0167865511002704
http://www.sciencedirect.com/science/article/pii/S0167865511002704
https://doi.org/10.1007/BF00116895
https://doi.org/10.1007/BF00116895

References 178

Scholz, M. & Klinkenberg, R. (2007, January). Boosting classifiers for drifting
concepts. Intell. Data Anal., 11(1), 3–28. Retrieved from http://dl.acm
.org/citation.cfm?id=1367489.1367491

Sobhani, P. & Beigy, H. (2011). New drift detection method for data streams. In
Proceedings of the second international conference on adaptive and intelligent
systems (pp. 88–97). Berlin, Heidelberg: Springer-Verlag. Retrieved from
http://dl.acm.org/citation.cfm?id=2045295.2045309

Sripirakas, S. & Pears, R. (2014). Mining recurrent concepts in data streams using the
discrete fourier transform. In L. Bellatreche & M. K. Mohania (Eds.), Data ware-
housing and knowledge discovery: 16th international conference, dawak 2014,
munich, germany, september 2-4, 2014. proceedings (pp. 439–451). Springer
International Publishing. Retrieved from http://dx.doi.org/10.1007/
978-3-319-10160-6-39 doi: 10.1007/978-3-319-10160-6-39

Syed, N. A., Liu, H. & Sung, K. K. (1999). Handling concept drifts in incremental
learning with support vector machines. In Proceedings of the fifth acm sigkdd
international conference on knowledge discovery and data mining (pp. 317–
321). New York, NY, USA: ACM. Retrieved from http://doi.acm.org/
10.1145/312129.312267 doi: 10.1145/312129.312267

Tatbul, N., Cetintemel, U., Zdonik, S., Cherniack, M. & Stonebraker, M. (2003).
Load shedding in a data stream manager. In J.-C. Freytag, P. Lockemann,
S. Abiteboul, M. Carey, P. Selinger & A. Heuer (Eds.), Proceedings 2003
vldb conference (pp. 309–320). San Francisco: Morgan Kaufmann. Retrieved
from http://www.sciencedirect.com/science/article/pii/
B9780127224428500355 doi: https://doi.org/10.1016/B978-012722442-8/
50035-5

Tsymbal, A. (2004). The problem of concept drift : definitions and related work..
van Rijn, J. N., Holmes, G., Pfahringer, B. & Vanschoren, J. (2015, Nov). Having

a blast: Meta-learning and heterogeneous ensembles for data streams. In 2015
ieee international conference on data mining (pp. 1003–1008). doi: 10.1109/
ICDM.2015.55

Vitter, J. S. (1985, March). Random sampling with a reservoir. ACM Trans. Math.
Softw., 11(1), 37–57. Retrieved from http://doi.acm.org/10.1145/
3147.3165 doi: 10.1145/3147.3165

Wang, H., Fan, W., Yu, P. S. & Han, J. (2003). Mining concept-drifting data streams
using ensemble classifiers. In Proceedings of the ninth acm sigkdd interna-
tional conference on knowledge discovery and data mining (pp. 226–235). New
York, NY, USA: ACM. Retrieved from http://doi.acm.org/10.1145/
956750.956778 doi: 10.1145/956750.956778

Wang, T., Li, Z., Hu, X., Yan, Y. & Chen, H. (2007). A new decision tree classification
method for mining high-speed data streams based on threaded binary search trees.
In Proceedings of the 2007 international conference on emerging technologies
in knowledge discovery and data mining (pp. 256–267). Berlin, Heidelberg:
Springer-Verlag. Retrieved from http://dl.acm.org/citation.cfm
?id=1780582.1780612

http://dl.acm.org/citation.cfm?id=1367489.1367491
http://dl.acm.org/citation.cfm?id=1367489.1367491
http://dl.acm.org/citation.cfm?id=2045295.2045309
http://dx.doi.org/10.1007/978-3-319-10160-6-39
http://dx.doi.org/10.1007/978-3-319-10160-6-39
http://doi.acm.org/10.1145/312129.312267
http://doi.acm.org/10.1145/312129.312267
http://www.sciencedirect.com/science/article/pii/B9780127224428500355
http://www.sciencedirect.com/science/article/pii/B9780127224428500355
http://doi.acm.org/10.1145/3147.3165
http://doi.acm.org/10.1145/3147.3165
http://doi.acm.org/10.1145/956750.956778
http://doi.acm.org/10.1145/956750.956778
http://dl.acm.org/citation.cfm?id=1780582.1780612
http://dl.acm.org/citation.cfm?id=1780582.1780612

References 179

Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the
behavioral sciences (Unpublished doctoral dissertation). Harvard University.

Widmer, G. & Kubat, M. (1996, 01 Apr). Learning in the presence of concept
drift and hidden contexts. Machine Learning, 23(1), 69–101. Retrieved from
https://doi.org/10.1007/BF00116900 doi: 10.1007/BF00116900

Yang, H. & Fong, S. (2011, Oct). Optimized very fast decision tree with balanced
classification accuracy and compact tree size. In The 3rd international conference
on data mining and intelligent information technology applications (pp. 57–64).

Yule, G. U. (1900). On the association of attributes in statistics: With illustrations from
the material of the childhood society. Philosophical Transactions of the Royal
Society of London. Retrieved from http://www.jstor.org/stable/
90759

Zhang, P., Zhu, X., Tan, J. & Guo, L. (2010). Classifier and cluster ensembles for mining
concept drifting data streams. In Proceedings of the 2010 ieee international
conference on data mining (pp. 1175–1180). Washington, DC, USA: IEEE
Computer Society. Retrieved from http://dx.doi.org/10.1109/ICDM
.2010.125 doi: 10.1109/ICDM.2010.125

Zheng, J., Shen, F., Fan, H. & Zhao, J. (2013, 01 Apr). An online incremental learning
support vector machine for large-scale data. Neural Computing and Applications,
22(5), 1023–1035. Retrieved from https://doi.org/10.1007/s00521
-011-0793-1 doi: 10.1007/s00521-011-0793-1

Zhu, X. (2010). Stream data mining repository. Retrieved from http://www.cse
.fau.edu/~xqzhu/stream.html

Zliobaite, I. (2010). Learning under concept drift: an overview. CoRR. Retrieved from
http://arxiv.org/abs/1010.4784

https://doi.org/10.1007/BF00116900
http://www.jstor.org/stable/90759
http://www.jstor.org/stable/90759
http://dx.doi.org/10.1109/ICDM.2010.125
http://dx.doi.org/10.1109/ICDM.2010.125
https://doi.org/10.1007/s00521-011-0793-1
https://doi.org/10.1007/s00521-011-0793-1
http://www.cse.fau.edu/~xqzhu/stream.html
http://www.cse.fau.edu/~xqzhu/stream.html
http://arxiv.org/abs/1010.4784

Appendix A

Glossary

Concept A joint probability distribution of input features and class label, i.e. the

relationship between the output variable and the input.

Concept drift A dissimilarity of the joint probability distribution of input features and

class label at two subsequent time points.

Noise Meaningless information with respect to the mining task.

Explicit drift detection Recognition of concept drift through a drift detection strategy.

Throughput The number of instances processed per time unit.

Concept recurrence A reappearance of a previously seen pattern.

Repository A place where the collection of learned models are stored.

Context sensitive The ability to differentiate between segments that exhibit concept

recurrences, from those that do not.

Schema instance A compact representation of a set of data instances, all of which

share the same set of feature values.

Schema set A set of all possible schema for a given dataset.

Fourier partition An index of a Fourier spectrum.

Fourier coefficient A value which represents the “significance” of the corresponding

Fourier partition.

180

Appendix A. Glossary 181

Fourier partition set A collection of Fourier indexes.

Fourier basis function The function which takes a schema instance vector and a

partition vector as input and produces an integer for a dataset with binary-valued

features or a complex number for a dataset with non-binary feature values.

Fourier spectrum A set of Fourier coefficients indexes and corresponding values.

Order of a Fourier partition The number of nonzero feature values it contains.

Order of a Fourier coefficient The order of its corresponding partition.

Aggregation of spectra The definition of the second term.

Volatility The rate of appearance of new concepts in the stream with respect to time.

Stage 1 The period where unseen concepts appear and these concepts are learned and

stored, i.e. high volatile stage.

Stage 2 The period where a vast majority of concepts are already learned in Stage 1,

i.e. low volatile stage.

Staged learning The framework which switches learning between two stages Stage 1

and Stage 2 according to the volatility.

Evolving tree The tree that is induced from spectrum at the start of the concept and

thereafter learns any changes in the concept that may take place after that point

onwards.

Trigger The signal which indicates a transition between stages.

Repository hit When a concept extracted from the repository offers more accuracy

for the newly emerging concept rather than from the tree forest.

Hit ratio The proportion between the count of repository hits to the total of hits and

misses (repository failures, i.e. best match comes from the forest of trees).

Degree of agreement between two classifiers The proportion between the number

of data instances where the classification outcome of both classifiers are the same

to the total number of instances under consideration.

Distance similarity The degree of agreement between two spectra to be aggregated.

Appendix A. Glossary 182

Structural similarity The degree of agreement between a spectrum and evolving tree.

Highly dynamic data stream A data stream where a combination of sample arrival

rate and concept drift rate is relatively higher. It could cause system CPU utiliza-

tion to rise above a maximum tolerable user-defined threshold.

Reservoir A dynamic data structure associated with a spectrum in Stage 2 of SOL-IFC.

This captures changes in the relationship between schema and class label over a

period of time.

Coefficient pruning The process of reducing the size of a spectrum’s coefficient array.

Schema pruning The process of eliminating features that do not contribute to the

classification process from a given schema.

Spectrum refinement The process of incremental Fourier coefficients update.

Cluster pool A collection of distinct schema instances which are categorised by their

class label.

	Abstract
	Attestation of Authorship
	Acknowledgements
	Introduction
	Research problem
	Motivation for research
	Research objectives
	Overview of research solution
	Research contributions
	Thesis structure

	Background
	Introduction
	Data stream classification
	Concept drift
	Data stream classification strategies
	Non ensemble incremental approaches
	Incremental ensemble classifiers
	Pairing drift detectors with stream learners
	Re-use of models when concepts recur

	The use of the Discrete Fourier Transform in classification and concept encoding
	Repository management

	Conclusion

	Staged Learning Approach
	Introduction
	Basic components
	Optimizing for stream volatility and speed

	The context sensitive Staged Learning framework
	Implementation choices
	The Staged Online Learning (SOL) approach
	Transition between Stages
	Algorithm

	Time and space complexity of spectral learning
	Conclusion

	Experimental Study on Staged Online Learning
	Introduction
	Empirical study
	Algorithms used for the study
	Datasets used for the study
	Parameter values
	Effectiveness of Staged Learning approach
	Accuracy evaluation
	Throughput evaluation
	Accuracy versus Throughput trade-off
	Memory consumption evaluation

	Sensitivity analysis
	Conclusion

	Incremental Fourier Classifier
	Introduction
	Application of DFT in SOL vs its application in SOL-IFC
	Advantages of the Fourier Classifier over the Decision Tree Classifier
	Decision Tree overhead
	Fourier Classification overhead
	Fourier Coefficient Array update overhead

	Incremental approach to Fourier Spectrum maintenance
	Incremental maintenance of Spectra

	Hashing and Reservoir management
	Schema Hashing through Feature Selection
	Reservoir organization

	Algorithm
	Conclusion

	An Empirical Study of the Incremental Fourier Classifier
	Introduction
	Algorithms used in study
	Datasets used for the empirical study
	Parameter values

	Accuracy evaluation
	Throughput evaluation
	Accuracy versus Throughput trade-off

	Load Shedding
	Load Shedding exercise

	Overheads of Decision Tree Learning vs Incremental Fourier Classification
	Incremental versus Non Incremental approach to Fourier Classification

	Conclusion

	Verifying the Potential of Using Different Classifiers in SOL
	Introduction
	Neural Network
	Feed-forward MLP
	Activation function
	Error function
	Backpropagation algorithm

	Learning from Neural Network in Stage 1
	Generating Fourier model for Stage 2 Learning
	Extracting Schema Set
	Fourier Coefficient calculation for Stage 2 Learning

	Experimental study
	Datasets used for the experimental study
	Parameter values
	Effectiveness of SOL with MLP based Fourier model

	Conclusion

	Conclusion
	Research achievements
	Designing a context sensitive Staged Learning framework
	Implementation and evaluation of the proposed framework
	Design, implementation, and evaluation of advanced version of the framework
	Examination of the generalisability of the proposed framework

	Limitations of this research
	Future work

	References
	Appendices
	Glossary

