# Binary Choice Probabilities on Mixture Sets MSRG Symposium 

Matthew Ryan<br>Department of Economics, AUT

27-28 November 2014

## Theoretical context

- Binary stochastic choice.
- Fechner models: utility difference representation of choice probabilities.
- Stochastic choice between risky or uncertain prospects.
- New representation theorems: Fechner models with "utility" of non-EU form.


## Theoretical context

- Binary stochastic choice.
- Fechner models: utility difference representation of choice probabilities.
- Stochastic choice between risky or uncertain prospects.
- New representation theorems: Fechner models with "utility" of non-EU form.


## Theoretical context

- Binary stochastic choice.
- Fechner models: utility difference representation of choice probabilities.
- Stochastic choice between risky or uncertain prospects.
- New representation theorems: Fechner models with "utility" of non-EU form.


## Theoretical context

- Binary stochastic choice.
- Fechner models: utility difference representation of choice probabilities.
- Stochastic choice between risky or uncertain prospects.
- New representation theorems: Fechner models with "utility" of non-EU form.


## Binary stochastic choice

- Let $A$ be a set of alternatives.
- Let $P: A \times A \rightarrow[0,1]$ be a binary choice probability (BCP).
- If $a \neq b$ then $P(a, b)$ is the probability of choosing $a$ from $\{a, b\}$. We leave $P(a, a)$ uninterpreted.


## Binary stochastic choice

- Let $A$ be a set of alternatives.
- Let $P: A \times A \rightarrow[0,1]$ be a binary choice probability (BCP).
- If $a \neq b$ then $P(a, b)$ is the probability of choosing a from $\{a, b\}$. We leave $P(a, a)$ uninterpreted.


## Binary stochastic choice

- Let $A$ be a set of alternatives.
- Let $P: A \times A \rightarrow[0,1]$ be a binary choice probability $(B C P)$.
- If $a \neq b$ then $P(a, b)$ is the probability of choosing $a$ from $\{a, b\}$. We leave $P(a, a)$ uninterpreted.


## Binary stochastic choice

- Any BCP is assumed to satisfy

$$
P(a, b)+P(b, a)=1
$$

for any $a, b \in A$.

## Binary stochastic choice

- Any BCP is assumed to satisfy

$$
P(a, b)+P(b, a)=1
$$

for any $a, b \in A$.

- In particular,

$$
P(a, a)=\frac{1}{2}
$$

for any $a \in A$.

## Fechner models

Definition: The BCP $P$ has a strong utility representation (SUR) if there exists a utility function $u: A \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
& \quad P(a, b) \geq P(c, d) \quad \Leftrightarrow \quad u(a)-u(b) \geq u(c)-u(d) \\
& \text { for any } a, b, c, d \in A \text {. }
\end{aligned}
$$

- This is a standard psychophysical model of choice behaviour: probability of choice depends on the relative stength of stimuli.


## Fechner models

What are sufficient conditions (on $P$ ) for the existence of a SUR?

## Fechner models

- Compact axiomatisations are possible when $A$ is suitably "rich".
- This was first demonstrated by Debreu (1958), applying a result of Thomsen (1927) and Blaschke (1928) from topology.


## Fechner models

- Compact axiomatisations are possible when $A$ is suitably "rich"
- This was first demonstrated by Debreu (1958), applying a result of Thomsen (1927) and Blaschke (1928) from topology.


## Fechner models

- Debreu showed that the following two conditions suffice for a SUR:


## Fechner models

- Debreu showed that the following two conditions suffice for a SUR:

For any $x \in(0,1)$ and any $a, b, c, a^{\prime}, b^{\prime} \in A$

$$
\begin{equation*}
P(a, b) \geq P\left(a^{\prime}, b^{\prime}\right) \quad \Leftrightarrow \quad P\left(a, a^{\prime}\right) \geq P\left(b, b^{\prime}\right) \tag{QC}
\end{equation*}
$$

$$
\begin{equation*}
P(a, b) \geq x \geq P(a, c) \quad \Rightarrow \quad P(a, e)=x \text { for some } e \in A \tag{S}
\end{equation*}
$$

## Fechner models

The necessity of QC is easy to see:

$$
\begin{array}{clrrl}
P(a, b) & \geq P\left(a^{\prime}, b^{\prime}\right) & \Leftrightarrow & P\left(a, a^{\prime}\right) \geq P\left(b, b^{\prime}\right) \\
u(a)-u(b) \geq u\left(a^{\prime}\right)-u\left(b^{\prime}\right) & \Leftrightarrow & u(a)-u\left(a^{\prime}\right) \geq u(b)-u\left(b^{\prime}\right)
\end{array}
$$

## Fechner models

A weaker (and more intuitive) property than the QC:

Strong Stochastic Transitivity (SST) For all $a, b, c \in A$

$$
P(a, b), P(b, c) \geq \frac{1}{2} \quad \Rightarrow \quad P(a, c) \geq \max \{P(a, b), P(b, c)\}
$$

## Risk and uncertainty

- If $A$ is a set of lotteries, it is natural to require additional structure on the utility function $u: A \rightarrow \mathbb{R}$ in a SUR (e.g., expected utility form)

What are sufficient conditions for such a SUR?

## Risk and uncertainty

- If $A$ is a set of lotteries, it is natural to require additional structure on the utility function $u: A \rightarrow \mathbb{R}$ in a SUR (e.g., expected utility form)

What are sufficient conditions for such a SUR?

## Risk and uncertainty

- In Dagsvik (2008), $A$ is the unit simplex in $\mathbb{R}^{n}$ interpreted as lotteries over a fixed set of $n$ possible prizes.
- Given $a, b \in A$ and $\lambda \in[0,1]$, we write $a \lambda b$ for $\lambda a+(1-\lambda) b$.
- Useful to think of a $\lambda \mathrm{b}$ as a compound lottery.
- Dagsvik (2008) augments Debreu's axioms with two more:


## Risk and uncertainty

- In Dagsvik (2008), $A$ is the unit simplex in $\mathbb{R}^{n}$ interpreted as lotteries over a fixed set of $n$ possible prizes.
- Given $a, b \in A$ and $\lambda \in[0,1]$, we write $a \lambda b$ for $\lambda a+(1-\lambda) b$.
- Useful to think of $a \lambda b$ as a compound lottery.
- Dagsvik (2008) augments Debreu's axioms with two more:


## Risk and uncertainty

- In Dagsvik (2008), $A$ is the unit simplex in $\mathbb{R}^{n}$ interpreted as lotteries over a fixed set of $n$ possible prizes.
- Given $a, b \in A$ and $\lambda \in[0,1]$, we write $a \lambda b$ for $\lambda a+(1-\lambda) b$.
- Useful to think of $a \lambda b$ as a compound lottery.
- Dagsvik (2008) augments Debreu's axioms with two more:


## Risk and uncertainty

- In Dagsvik (2008), $A$ is the unit simplex in $\mathbb{R}^{n}$ interpreted as lotteries over a fixed set of $n$ possible prizes.
- Given $a, b \in A$ and $\lambda \in[0,1]$, we write a $\lambda b$ for $\lambda a+(1-\lambda) b$. - Useful to think of a $\lambda \mathrm{b}$ as a compound lottery.
- Dagsvik (2008) augments Debreu's axioms with two more:


## Risk and uncertainty

Archimedean Property For all $a, b, c \in A$ if

$$
P(a, b)>\frac{1}{2}>P(c, b)
$$

then there exist $\alpha, \beta \in(0,1)$ such that

$$
P(a \alpha c, b)>\frac{1}{2}>P(a \beta c, b) .
$$

## Risk and uncertainty

Strong Independence (SI) For all $a, b, a^{\prime}, b^{\prime}, c \in A$ and all $\lambda \in(0,1)$

$$
P(a, b) \geq P\left(a^{\prime}, b^{\prime}\right) \quad \Rightarrow \quad P(a \lambda c, b \lambda c) \geq P\left(a^{\prime} \lambda c, b^{\prime} \lambda c\right)
$$

## Risk and uncertainty

- These four axioms suffice for a SUR with linear $u$.
- Dagsvik's proof uses Debreu (1958).
- Here is an alternative (sketch) proof via Anscombe and Aumann (1963) rather than Debreu (1958):


## Risk and uncertainty

- These four axioms suffice for a SUR with linear $u$.
- Dagsvik's proof uses Debreu (1958).
- Here is an alternative (sketch) proof via Anscombe and Aumann (1963) rather than Debreu (1958):


## Risk and uncertainty

- These four axioms suffice for a SUR with linear $u$.
- Dagsvik's proof uses Debreu (1958).
- Here is an alternative (sketch) proof via Anscombe and Aumann (1963) rather than Debreu (1958):


## Risk and uncertainty

- Define a binary (preference) relation $\geq^{*}$ on $A \times A$ as follows: ${ }^{1}$

$$
\begin{equation*}
(a, d) \geq^{*}(b, c) \quad \Leftrightarrow \quad P(a, b) \geq P(c, d) \tag{**}
\end{equation*}
$$

- An ordering on two-state Anscombe-Aumann (AA) acts.
- Then $P$ has a SUR iff $\geq^{*}$ has a Subjective Expected Utility (SEU) representation with equi-probable states:

$$
\begin{array}{rlrlrl}
(a, d) & \geq^{*}(b, c) & & P & P(a, b) & \geq P(c, d) \\
\frac{1}{2} u(a)+\frac{1}{2} u(d) & \geq \frac{1}{2} u(b)+\frac{1}{2} u(c) & & \Leftrightarrow & u(a)-u(b) & \geq u(c)-u(d)
\end{array}
$$

${ }^{1}$ An old idea: see Suppes and Winet (1955, p.261), who credit Donald Davidson.

## Risk and uncertainty

- Define a binary (preference) relation $\geq^{*}$ on $A \times A$ as follows: ${ }^{1}$

$$
\begin{equation*}
(a, d) \geq^{*}(b, c) \quad \Leftrightarrow \quad P(a, b) \geq P(c, d) \tag{**}
\end{equation*}
$$

- An ordering on two-state Anscombe-Aumann (AA) acts.
- Then $P$ has a SUR iff $\geq^{*}$ has a Subjective Expected Utility (SEU) representation with equi-probable states:

${ }^{1}$ An old idea: see Suppes and Winet (1955, p.261), who -credit Donald Davidson.


## Risk and uncertainty

- Define a binary (preference) relation $\geq^{*}$ on $A \times A$ as follows: ${ }^{1}$

$$
\begin{equation*}
(a, d) \geq^{*}(b, c) \quad \Leftrightarrow \quad P(a, b) \geq P(c, d) \tag{**}
\end{equation*}
$$

- An ordering on two-state Anscombe-Aumann (AA) acts.
- Then $P$ has a SUR iff $\geq^{*}$ has a Subjective Expected Utility (SEU) representation with equi-probable states:

$$
\begin{array}{rlrrl}
(a, d) & \geq^{*}(b, c) & \Leftrightarrow & P(a, b) & \geq P(c, d) \\
\frac{1}{2} u(a)+\frac{1}{2} u(d) & \geq \frac{1}{2} u(b)+\frac{1}{2} u(c) & & \Leftrightarrow & u(a)-u(b) \geq u(c)-u(d)
\end{array}
$$

${ }^{1}$ An old idea: see Suppes and Winet (1955, p.261), whocredit Donald Davidson.

- Anscombe and Aumann (1963) axiomatise preferences over AA acts which have a SEU representation with a linear (EU) utility function.
- Anscombe and Aumann (1963) axiomatise preferences over AA acts which have a SEU representation with a linear (EU) utility function.

Translate Dagsvik's axioms on $P$ into the corresponding restrictions on $\geq^{*}$ and show (using the techniques of Anscombe and Aumann) that they suffice for a SEU representation with linear utility and subjective probability $\frac{1}{2}$ on each state.

## Risk and uncertainty

In particular, the translation of QC ensures equi-probable states:

$$
\begin{aligned}
P(a, b) & \geq P(c, d)
\end{aligned} \quad \Leftrightarrow \quad P(a, c) \geq P(b, d)
$$

## New representation theorems

- This proof strategy turns out to be very powerful and very flexible.
- We can:
- Strengthen Dagsvik's result by weakening QC to SST.
- Develop new SUR representation theorems that impose alternative restrictions on $u$ (besides linearity).


## New representation theorems

- This proof strategy turns out to be very powerful and very flexible.
- We can:
- Strengthen Dagsvik's result by weakening QC to SST.
- Develop new SUR representation theorems that impose alternative restrictions on u (besides linearity).


## New representation theorems

- This proof strategy turns out to be very powerful and very flexible.
- We can:
- Strengthen Dagsvik's result by weakening QC to SST.
- Develop new SUR representation theorems that impose alternative restrictions on $u$ (besides linearity).


## New representation theorems

- This proof strategy turns out to be very powerful and very flexible.
- We can:
- Strengthen Dagsvik's result by weakening QC to SST.
- Develop new SUR representation theorems that impose alternative restrictions on $u$ (besides linearity).


## New representation theorems

Definition Given some $M \subseteq A$ we say that $u: A \rightarrow \mathbb{R}$ is $M$-linear if

$$
\begin{aligned}
& \qquad u(M)=u(A) \\
& \text { and } \\
& \qquad u(a \lambda b)=\lambda u(a)+(1-\lambda) u(b) \\
& \text { for any } a \in A \text {, any } b \in M \text { and any } \lambda \in[0,1]
\end{aligned}
$$

## New representation theorems

Examples of $M$-linear classes of utility functions:

- Examples with $M=A$ :
- Expected utility for lotteries.
- Subjective expected utility in an AA environment.
- Maxmin expected utility or Choquet expected utility in an AA environment.
- $M=$ constant acts.
- Yaari's (1987) Dual Theory for lotteries.
- $M=$ degenerate lotteries.


## New representation theorems

Given an $M$-linear class $\mathcal{U}$ of utility functions, what are sufficient conditions for a $B C P$ to possess a $S U R$ with respect to some $u \in \mathcal{U}$ ?

- If we know sufficient conditions for a preference order on $A$ to be representable within $\mathcal{U}$, we can provide an answer.
- We give a general "recipe" based on a generalisation of the Anscombe-Aumann approach and specific axiomatisations for all the M-linear utility classes mentioned above.


## New representation theorems

Given an $M$-linear class $\mathcal{U}$ of utility functions, what are sufficient conditions for a $B C P$ to possess a $S U R$ with respect to some $u \in \mathcal{U}$ ?

- If we know sufficient conditions for a preference order on $A$ to be representable within $\mathcal{U}$, we can provide an answer.
- We give a general "recipe" based on a generalisation of the Anscombe-Aumann approach and specific axiomatisations for all the M-linear utility classes mentioned above.


## New representation theorems

Given an $M$-linear class $\mathcal{U}$ of utility functions, what are sufficient conditions for a $B C P$ to possess a $S U R$ with respect to some $u \in \mathcal{U}$ ?

- If we know sufficient conditions for a preference order on $A$ to be representable within $\mathcal{U}$, we can provide an answer.
- We give a general "recipe" based on a generalisation of the Anscombe-Aumann approach and specific axiomatisations for all the $M$-linear utility classes mentioned above.


## Postscript

- Empirical challenges to the (basic) Fechner model: strength of preference versus ease of comparison (e.g., dominance).

