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Abstract

Melanoma is the most serious form of skin cancer and is estimated to be the 19th

most frequently occurring type of cancer worldwide, with approximately 232,000

new cases diagnosed in 2012. It is widely accepted that early diagnosis of melanoma

significantly reduces morbidity, mortality and the cost of medication.

Computer-aided systems can be applied for a quantitative and objective evalu-

ation of pigmented skin lesions to assist the clinical assessment process. Increasing

innovation in non-invasive methods can be of significant help in the early detection

of malignant melanoma, thus minimising the need for biopsies. The initial step is

to analyse and develop efficient algorithms for melanoma detection. This thesis is

mainly focused on two main areas: a) developing an efficient lesion border detection

algorithm, and b) developing an efficient classification system.

For lesion border detection, several edge detection techniques are evaluated. We

implemented a basic border detection algorithm on the ZYNQ-7000 System-on-

Chips, which suggests a proper portable vision system could be designed for early

detection of melanoma with high resolution and performance.

A semi-automatic algorithm consisting of eight steps is proposed for detecting

the borders of skin lesions in clinical images. Using this approach, the user selects

a small patch of the lesion to specify the foreground lesion area. The results show

that the proposed method achieved the accuracy of 89.32%.

We present a multi-layer feed-forward deep neural networks (DNN) as a pre-

ferred lesion segmentation and recognition method. The algorithm can detect lesion

borders without using any pre-processing algorithms; however, a pre-processing step

e.g. hair removal and illumination correction has been essential in the previous sys-

tems.

In order to develop a classification system, we investigated two different ap-

proaches: a) using hand-engineered feature data that are extracted from the seg-

mented lesion and b) using a deep learning method which learns features automat-

ically from the original images.
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The feature extraction algorithms that are used in this study are shape, colour

and texture features. Correlation-based feature selection method is applied for fea-

ture selection. A performance evaluation of several supervised classifiers are dis-

cussed based on different feature sets. Two novel cascade classification architectures

are proposed to improve accuracy. The second proposed cascade classifier achieved

an overall accuracy of 83.3%, sensitivity of 85.1%, specificity of 80% and ROC area

of 90% using ten-fold cross-validation.

Finally, we present a multi-layer DNN to distinguish melanoma from benign nevi

as our preferred method for classification. Our preliminary work shows that networks

trained with no preprocessed and segmented images, using directly learned features

instead of applying feature extraction; achieved an average accuracy of 72.53%.

However, a larger dataset and more investigations are required to train a better

classifier.
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Chapter 1

Introduction

1.1 Research Motivation

Skin cancer is among the top twenty most common cancers and it can be divided

into two main categories: melanoma and non-melanoma. Malignant melanoma is

one of the leading causes of death due to skin cancer [1]. While prevention of this

malignancy is the best approach, early diagnosis of existing melanoma is crucial.

One reason is that melanoma generally develops on the skin surface; however, it

can metastasise to other parts of the body if it is not detected in its early stages.

When melanoma is detected in an early stage of its development, it is highly treat-

able; thus, early detection can significantly reduce morbidity, mortality and cost of

medication [2].

The clinical reference standard for melanoma diagnosis is visual examination of

skin lesions by a dermatologist, followed by biopsy and histopathological analysis.

In a visual examination, dermatologists decide which moles are of interest based

on size, border, shape, and colour. It is well known that early stage melanomas

can be difficult to diagnose in some circumstances. The main problem is that a

melanoma may mimic a benign melanocytic/non-melanocytic lesion and vice versa

[3]. Dermatologists’ accuracy varies [4] and this is an issue of concern. It has been

reported that the overall estimated sensitivity (percent of melanoma diagnosed as

melanoma) is around 80% [5].

Several non-invasive methods have been developed to improve dermatologists’

discrimination of melanomas from benign nevi. In recent years, multi-spectral and

hyper-spectral imaging systems have led to renewed interest in the diagnosis of

melanoma [6, 7]. The dermoscope is another non-invasive imaging device for the

diagnosis of pigmented skin lesions (PSLs) such as melanoma. This device illustrates

1



pigmented lesions clearly and visually; however, the accuracy is less than 85% and it

is highly dependent on the opinion of a well-trained dermatologist. Unfortunately,

even with dermoscopy, it is still a challenging task for dermatologists to distinguish

some melanomas from other lesions [3].

Computer aided diagnosis (CAD) systems and image processing, used to help

skin cancer specialists achieve better detection of melanoma, have been widely stud-

ied in the last two decades. This idea was first proposed around 1985 [5]. Using

image processing, skin lesion images are assessed to detect certain features that ex-

pect to be characteristic of malignancy. For instance, melanoma’s characteristics

such as asymmetrical shape, irregular border, colour variety and diameter greater

than 6 millimetre [8] can be extracted using high performance image processing

techniques.

However, these approaches are not considered to be the best diagnostic method

or an alternative for histopathology and they are mainly used for educating clinicians

by using image processing and computer vision techniques as a second opinion at

the primary health care level [8, 9].

As stated by Tyagi et al. [10], “While early detection is key to improved

melanoma survival in general, adherence to screening guidelines is low; with population-

based estimates of approximately 26% for physician-based skin cancer screening and

20-25% for skin self-examination. The individuals in certain populations are at in-

creased risk of poor outcomes as a result of advanced-stage diagnosis.”

A potential new technique for skin screening and melanoma detection is the de-

velopment of innovative digital patient-oriented “e-Health” devices that are low-cost

and widely available [11]. These could help to reduce the practical and psychological

issues relating to the early detection of melanoma.

Increasing innovation in non-invasive methods can significantly improve the early

detection of malignant melanoma as an alternative to biopsy. Therefore, developing

novel methods may lead to increasing accuracy in melanoma detection. Further-

more, due to the rapid growth of embedded system applications, there has been a

great opportunity to develop portable vision systems for medical diagnosis and ap-

plications, with good resolution and performance. Portable devices enable diagnosis

in remote locations for patients who do not have access to expert dermatologists at

an affordable cost [12].
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1.2 Research Objectives

• Use of Clinical Images Instead of Dermoscopy Images:

In order to develop such a portable application the first step is image acquisi-

tion. There are various methods for image acquisition of skin lesions, such as

clinical photography, dermoscopy, and multi-spectral and hyper-spectral imag-

ing. For instance, the significant difference between dermoscopic and clinical

image acquisition is in screen visualisation of a lesion [8]. Clinical images il-

lustrate skin lesions on the surface of the skin, similar to what a dermatologist

observes with the naked eye [5]. Figure 1.1 shows two lesion photographs that

are captured by a normal camera and a dermoscopy device1.

a) b)

c) d)

Figure 1.1: Clinical images (top) versus dermoscopy images (bottom); (a) and (c):
in-situ melanoma, (b) and (d): invasive.

It has been reported that using diagnostic dermoscopy is more accurate than

other traditional examinations employed by experts; however, this tool is less

common in the USA than in Australia and Europe [13]. The main advantage

of using clinical images in the proposed system is that it allows the user to

scan lesions as simply as possible via a normal camera compared with other

types of visual detection devices such as dermoscopy. In addition, it is more

1source: http://www.dermoscopyatlas.com with permission.
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affordable and not necessary to use extra devices or specific conditions for

photography (e.g. applying gel or controlling lighting conditions).

Difficulties arise, however, when attempts are made to create image processing

algorithms to increase the accuracy of the system. Image processing of clinical

images collected in uncontrolled conditions and unknown environments is more

challenging compared with the processing of standard dermoscopy images.

• Lesion Border Detection:

This study attempts to investigate the current methods used in melanoma

CAD systems and consider new techniques for creating a practical system for

the diagnosis of melanoma.

The presence of artefacts such as hairs, ruler marks, variable illumination and

shadows in clinical images may affect segmentation and result in imperfect

feature extraction. Therefore, preprocessing of melanoma images, which is the

process of removing these artefacts, is essential and is a major area of interest

in the field of computer-aided diagnosis of melanoma. Following the prepro-

cessing of skin images, lesion segmentation (border detection) is performed in

order to separate the undesirable background skin section from the foreground

lesion. One of the issues that arose in this study was lesion segmentation where

each image was captured via a different camera in uncontrolled settings. There

are various factors that may result in imperfect segmentation; for example, an

image from a public dataset may have high light illumination inside the lesion

or may have hair artefacts. In addition, usually the region of interest (ROI) of

the lesion and surrounding skin is located on a curved surface, and this may

produce a shadow on the image and therefore imperfect segmentation. An-

other objective of this study is to find an efficient technique for lesion border

detection which requires the minimum use of image preprocessing computa-

tions.

• Melanoma Classification:

After performing lesion segmentation, feature extraction is an important step

to extract meaningful attributes from the segmented lesion. We need to use

features that characterise the lesion and are not detectable using the naked

eye. These features should interpret the visual signs of melanoma that are

similar to the clinical ABCD rule in dermatology (ABCD rule is explained in

Section 2.3.1). In addition, feature selection should be applied in order to find

the best and most practical feature set, with the highest impact for classifica-

tion accuracy. An objective of this study is to find an efficient technique for

lesion classification (distinguishing melanoma from benign nevi). We investi-

gate feature extraction by applying shape, colour and texture analysis and then
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finding the most powerful set to diagnose melanoma. Following feature extrac-

tion and selection of the optimal feature set, we need to apply classification in

order to diagnose the mole as a melanoma or benign nevi. Another objective

of this study is proposing cascade classification architecture to achieve a high

accuracy with high sensitivity and specificity. In addition, we investigate the

use of deep neural networks for melanoma detection.

• Investigation of an Embedded System for Implementation of Image

Processing Algorithms:

Recently, with the revolution in the production of smart-phone devices, de-

veloping medical applications that run on mobile devices has become a high

priority in the health science field. Modern mobile devices include mega-pixel

cameras, multi-core CPUs/GPUs and a collection of sensors. Smart-phone

sensors can be set up to distinguish a broad range of medical applications

such as cough diagnosis, irregular heartbeat diagnosis, and lung function as-

sessment [14]. “The ability to diagnose ailments in the convenience of patients’

homes using smart-phones that they already possess could lead to early de-

tection, which could ultimately reduce health-care costs”, stated by Agu et al.

[14].

A number of smart-phone applications related to melanoma diagnosis have

been developed for both Android and Apple phones. For instance, Wadhawan

et.al. developed a portable library to detect skin cancer automatically, using an

iPhone-4 smart phone; however, its performance in reality is not promising [15].

Chadwick et.al. reviewed available skin cancer detection applications running

on different mobile platforms (e.g. Apple and Android devices). They tested

five applications using 15 images of previously diagnosed skin cancers (tested

by biopsy) and compared the risk accuracy to the recognised histopathologic

diagnoses of the lesions. The results of this study indicated that current CAD

lesion analysis applications in the market are as yet neither reliable nor ready

for use as a triage tool [16].

The ultimate objective of the research was to investigate and develop fast and

efficient embedded vision algorithms for implementation of melanoma detec-

tion. It could be implemented on an embedded system such as fast system-

on-chip SoC technologies such as Field Programmable Gate Arrays (FPGAs)

devices or Digital Signal Processors and Graphical Processor Units (DSPs/G-

PUs), or could be integrated as a medical application on smart phones or

tablets. However, the first step and main focus of this thesis is to analyse and

develop efficient algorithms for melanoma detection. In a general melanoma

diagnosis system, the major components of the system are image acquisition,

image pre-processing, border detection, feature extraction and classification.
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ZYNQ-7000 System-on-Chip (SoC) platform is investigated in terms of speed

of processing and feasibility of implementation of image processing and com-

puter vision algorithms on the hardware and software sides of this platform.

1.3 Research Contribution

The primary contributions of this research are as follows:

• Data Collection:

A first step in this study was data collection. A collection of 650 clinical images

was collected from on-line web resources [17–21] to be used for image analysis

and to develop the system. The following image problems were excluded from

the collection in order to generate the dataset:

– poor-quality images,

– images with uncertain class labels,

– images in which the ratio of the size of lesions was very low in comparison

with other images,

– images in which significant numbers of hairs covered the surface of the

lesion.

Each image was cropped so that the lesion was located in the centre of the

image and then each sample was resized to 512 × 512 pixels. The generated

dataset contained 400 images and was divided into two groups: melanoma and

non-melanoma. There were 195 images of melanoma and 205 images of be-

nign nevi. The dataset of non-melanoma images included atypical (compound,

junctional, dermal, and combined), dysplastic, seborrheic keratosis, blue ne-

vus, congenital, spitz, halo and neurofibromatosis. Information about clinical

images is provided in Section 2.3.1.

• Development of Lesion Border Detection Algorithm: One of the main

contributions of this study was to develop a fast and efficient algorithm to

enable border detection to be implemented on a portable system. We proposed

three different techniques as follows:

– Based on Image Edge Detection Techniques: Several edge detection

methods were investigated after applying morphological operations as

the pre-processing step for border detection of melanoma images. We

considered this method due to its speed and computational simplicity.
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– Based on Colour features: A semi-automatic method for lesion seg-

mentation of clinical images based on lesion colour features was developed

in order to improve the accuracy of border detection.

– Based on Convolutional Neural Network (CNN): A novel border

detection approach based on CNNs was developed. The main reason

for proposing this method is that it would be able to recognize lesions

without needing a pre-processing approach. We tested our method based

on the most challenging images in the literature and achieved good results

compared with other methods.

• Hardware Implementation on ZYNQ-7000:

– Investigation of the state-of-the-art platforms for creating hand-held med-

ical imaging applications and evaluation of the required Hardware/Soft-

ware techniques for efficient and rapid prototyping design.

– Developing the image acquisition system followed by a border detection

algorithm which works successfully with a number of image and video

LogiCore IPs implemented on the FPGA (logic programming) side and

with related software running on the ARM processor (software program-

ming) side. The border detection algorithm also includes morphological

filters for applying hair removal for preprocessing of images. The main

advantage of the proposed implemented embedded system is that it is

reconfigurable so that the implemented IP can be modified/changed to

suit other methods.

• Feature Extraction and Lesion Classification:

– Feature extraction based on shape, colour and texture features.

– Investigation of accuracy of several supervised classifiers based on ex-

tracted features.

– Designing a two-stage cascade classifier using SVM to increase accuracy.

– Designing a cascade classifier with rejection criteria at the first stage of

the classifier to increase the reliability of classification and achieve higher

performance for the diagnostic system

– Developing a multi-layer deep neural network for melanoma detection. A

deep learning model based on convolutional neural network is proposed

for melanoma detection. The main advantages of the proposed model is

that it can learn feature of melanoma without applying feature extraction

and feature selection methods. Another point of this model is that it can

detect melanoma even better than applying segmentation step.
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1.4 Thesis Structure

Following this introduction, the thesis is structured into six chapters:

• Chapter 2: presents background information about skin cancer and melanoma.

In addition, it provides a literature review and background of the current CAD

systems, including previous work in lesion segmentation, feature extraction

and classification.

• Chapter 3: deals with embedded vision platforms used for the implementa-

tion of image processing algorithms and provides information about hardware

and software programming of the proposed system.

• Chapter 4: describes the proposed method for lesion segmentation including

experimental results and discussion.

• Chapter 5: describes the methodologies used for feature extraction.

• Chapter 6: deals with the methods proposed for image classification. Perfor-

mance of various supervised classifiers are analysed for discriminating melanoma

from benign nevus based on selected features. Two novel cascade classification

architectures are presented to improve reliability as well as the accuracy of the

system.

In addition, we investigate the use of deep learning based on supervised and

unsupervised methods. It compares the result of proposed model using seg-

mented images and raw (no segmentation and pre-processing) images.

• Chapter 7: includes overall conclusion and discusses the future direction of

the research.
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Chapter 2

Background and Literature

Review

2.1 Introduction

The purpose of this chapter is to review the literature on clinical and computer-aided

diagnostic approaches used for melanoma examination. It begins by providing a brief

summary of the human skin’s structure, the nature of malignant melanoma and the

existing screening tools. Clinical methods and current computer-aided approaches

used in melanoma detection are described. This chapter also reviews the existing

image processing methods as applied to the development of melanoma CAD systems,

and recent works that have used deep neural networks based on general machine

vision application are reviewed.

2.2 The Human Skin Structure and Malignant

Melanoma

The epidermis, the dermis and the hypodermis (also called as subcutaneous) com-

pose the three main layers of human skin. Each of these connected layers has an

important role (Figure 2.1) [22]. The dermis is made of collagen (a type of pro-

tein), and elastic fibres. It contains two layers: a) the papillary dermis (thin upper

layer) that contains the epidermis and dermis; and b) the reticular dermis (thick

layer) consists of blood and lymph vessels, nerve endings, sweat glands and hair

follicles. It supplies energy and nutrition to the epidermis and is a key factor in

thermo-regulation, healing and the touch sensation [22–24].
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Figure 2.1: Skin’s anatomy illustrating the epidermis, the dermis and the subcuta-
neous (hypodermis) layers (source: americanskin.org).

The epidermis is the protecting (outermost) layer of the skin, which can be di-

vided into four layers: basal layer (Stratum Basale); stratum spinosum; stratum

granulosum; and stratum corneum. There are four types of cells in the epidermis:

keratinocytes (95% of cells), melanocytes, Langerhans’ cells and Merkel cells [25].

The melanin produced by melanocytes can spread to the surrounding keratinocytes

[25]. This procedure can be increased by tanning reactions to sun exposure or Ultra-

violet UV radiation and may increase the possibility of malignant transformation.

Basal cell carcinoma and squamous cell carcinoma are the most common types of

skin cancer and develop from non-pigmented basal and squamous keratinocytes; ma-

lignant melanoma is less frequent but is much more dangerous and sometimes fatal

[26].

2.2.1 Global Prevalence of Melanoma

Melanoma is the deadliest form of all skin cancers and is estimated to be the 19th

most frequent cancer worldwide, “With approximately 232,000 new cases diagnosed

in 2012” [27]. The prevalence of melanoma is highest in New Zealand/Australia

and lowest in South Africa and south-central Asia [26]. According to the Ministry

of Health of New Zealand [28], this country had an age-standardised rate of 42.8

per 100,000 in men and 33.6 per 100,000 in women in 2009. The World Health

Organisation (WHO) estimates that “the current rate of new melanoma cases an-

nually is 132,000 worldwide, and one in every five American citizens is expected to

develop malignant melanoma in their lifetime” [29]. The average age for diagnosis
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of melanoma in the USA is 61. Although the melanoma incidence rate in USA is

said to be less than 2%, it causes death in many cases; the risk of melanoma among

the white population is more than 20 times that in African Americans [26, 30]. In

Europe, the mortality rate of melanoma was estimated, showing that Switzerland

ranked the highest while Romania and Greece ranked the lowest [31].

2.2.2 Types of Melanoma

The most common form of melanoma, encompassing 70% of melanomas, is super-

ficial spreading melanoma, which frequently appears in a pre-existing mole (benign

nevus). Other types include nodular melanomas as the second most commonly oc-

curring (15-30%), lentigo malignant (5%) and acral lentiginous melanoma, which

accounts for 2-10% of melanomas [32].

2.3 Screening of Melanoma

Photography has been widely employed as a standard tool in dermatological practice

in both the health care and research environments [33]. Nowadays, with the devel-

opment of low-cost and practical imaging systems, clinicians can take advantage of

medical images with higher quality resolution of the region of interest. There are

various clinical criteria for the differential diagnosis of melanoma and benign nevi.

However, performing these tests often requires special imaging techniques and expe-

rience. Screening PSLs helps clinicians and dermatologists obtain better realisation

and observation. It is also useful for documenting and registering PSLs. One of

the significant benefits of lesion documentation is that clinicians can track evolution

and changes in the lesion over time. There are two standard melanoma screening

methods that are widely used in primary health care and research studies: clini-

cal photography and dermoscopy. There are other non-invasive screening devices

in this field such as multi-spectral or hyper-spectral imaging systems; but because

one of the aims of this research was to develop a portable system and because of

the limited access to medical image databases that we encountered in this study,

this thesis deliberately did not focus on other imaging techniques. Before describing

the clinical criteria, it is worth pointing out the similarities and differences between

clinical photography and dermoscopy.
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2.3.1 Clinical Images

Clinical imaging or clinical photography provides a traditional screening method

for pigmented skin lesions in which images are captured from the surface of the

skin using a customer-grade camera. It represents the region of interest, “similar

to what a clinician observes with unaided eye” [5]. The term clinical photography

can also refer to macroscopic images or dermatologists’ pictures. Clinical images are

useful for documenting PSLs and registering their locations on the human body in

order to track changes over time. Total body skin imaging (TBSI) and whole body

photography (WBP) are two clinical methods of scanning the whole human body

[34]. The most important parts that should be scanned are the face, the ears, the

anterior, posterior and palms and soles [35]. It has been reported that one advantage

of using this method is that it helps the patient to feel less anxiety compared with

other methods [36, 37].

2.3.2 Dermoscopy

Dermoscopy is a non-invasive imaging method that has been used widely for the

screening of PSLs. A dermoscope (also known as an epiluminescence microscope

(ELM)) as is a hand-held device for magnifying and visualising the patterns and

substructure of a lesion that are not visible to the naked eye [38].

These features include pigment networks, dots, globules, branched streaks, streaks,

structure-less areas, blotches, regression, blue-white veil, milia-like cysts, comedo-

like openings, fingerprint-like structures, moth-eaten borders, fissure ridges or brain-

or leaf-like areas, wheel-spoke-like structures, and large blue-grey ovoid nests [39].

The user needs to apply a liquid such as gel, oil or alcohol to the skin and analyse

the pigmented lesion by contacting it with the dermoscope.

In expert hands and when used by trained general practitioners, dermoscopy has

been shown to improve both the sensitivity and specificity of melanoma diagnosis,

elevating the diagnostic accuracy by 5%-30% [40, 41].

2.3.3 Spectral Imaging

Recently, Hyper Spectral Imaging (HSI) has been used for the analysis of physiologic

and pathologic developments in living tissue in animal and human studies, to inves-

tigate the health or disease of tissues [42]. HSI could be a useful tool for diagnostic

procedures to determine healthy/unhealthy tissues. HSI is a remote sensing technol-
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ogy that provides images, which contain multiple optical spectral data in each pixel.

The combination of these images is called a hypercube, where the two-dimensional

image captures the spatial features of an object and the third dimension shows

the spectral wavelength [43]. The HSI has also been used in non-medical applica-

tions e.g. satellite investigations to determine different type of area such as chemical

weapons production and agricultural fields [44]. In HSI the spectrum of each pixel is

correlated with the presence and concentration of various chemical species. HSI is a

method of ‘imaging spectroscopy’ in which the light element is separated into several

wavelengths using a spectral separator and collected using a charge-coupled device

(CCD) or a complementary metal oxide semiconductor (CMOS) by an ordinary

camera [45]. Figure 2.2 illustrates an overview of a spectral imaging system.

Figure 2.2: An overview of spectral imaging system for skin cancer detection [46]

To date, a number of spectral imaging systems designed for use in skin cancer

detection have been developed, in which the processing system is based on CPU-

based desktop computers [46–55]. A basic HSI method uses a sequence of 2D images

which are captured in different wavelengths by adding a rotating filter on the lens

of camera (Figure 2.3).

As mentioned in Chapter 1, we decided to work on clinical images instead of

other dermatological screening types. The main advantage of using clinical images
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Figure 2.3: An overview of the spectral model of the acquisition process in a multi-
spectral system [48].

over dermoscopy is the simplicity, and it allows the user to scan lesions via a typical

camera. This approach is also more accessible and does not need extra devices such

as dermoscopes or specific conditions for photography.

2.4 Clinical Criteria for Melanoma Diagnosis

Various methods have been introduced and adapted for melanoma detection, using

either clinical images or dermoscopy. A list of diagnostic criteria and corresponding

imaging methods is provided in Table 2.1. This table shows that only two methods

are adaptable for clinical images: the ABCD rule and Glasgow’s 7-point check-list.

Since our image dataset is based on clinical photographs, we only describe these two

methods that can be applied for our images.

Table 2.1: Clinical diagnosis methods and related screening tools [8, 56].

Clinical Criteria Clinical Images Dermoscopy Images

ABCD(E) yes yes

Glasgow 7-point checklist yes no

7-point checklist no yes

Pattern analysis no yes

Menzies’ method no yes

7 feature of melanoma no yes

3-point checklist no yes
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2.4.1 ABCD Rule

The ABCD rule is a clinical method proposed in 1985 by Friedman et al. [57]. This

approach has been widely used, mainly because of its ease of use in assigning the

lesion to benign, suspicious or malignant categories [58]. In this method, the lesion

is analysed using four criteria: (A) Asymmetry, (B) Border irregularity, (C) Colour

variegation and (D) Diameter, which is normally greater than six millimetres [59, 60].

Recently another important criterion has been added to expand the ABCD rule to

the ABCDE rule. The term E (evolution) describes the measurement of changes

such as size, shape, and texture and colour of the surface of the lesion over a given

period of time [59]. Table 2.2 shows the difference in definitions of the ABCD(E)

rule between clinical images and dermoscopy.

Table 2.2: Difference of ABCD(E) rule in clinical and dermoscopy images.

Criteria Clinical photography Dermoscopy

A Asymmetrical shape Asymmetrical counter, colour and structure

B Irregular border Border sharpness, cut-off pigmentation

C Colour variation Colour variation

D Diameter > 6mm Differential structure

E Changes in size Changes in size, Colour and pattern

2.4.2 Glasgow’s Seven-point Check-list

The expansion of E (evolution) adds three major criteria to the ABCD rule. The

idea of lesion evolution is emphasised more in Glasgow’s 7-point check-list, which

highlights changes in size, shape, and colour as major features for early melanoma

detection [61]. However, there are four minor criteria in the Glasgow’s seven check-

list (including sensory change, diameter of 7 mm or greater, and the presence of

inflammation, crusting or bleeding) that are not easy adaptable by clinicians [59,

61, 62]. Table 2.3 also demonstrates the differences between the Glasgow (clinical

images) and dermoscopy seven-point check-list .
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Table 2.3: Variation of definition in seven-point checklist criteria [59].

Criteria Clinical images Dermoscopy images

(1) Changes in size Atypical pigment network

(2) Changes in shape Blue-whitish veil

(3) Colour variation Atypical vascular pattern

(4) Diameter greater than 7mm Irregular streaks

(5) Inflammation Irregular dots/globules

(6) Crusting or bleeding Irregular blotches

(7) Sensory change Regression structures

According to the table above, there are significant differences in interpretation of

the seven-point check-list method in clinical and dermoscopy photographs. There-

fore, one should consider certain feature extraction methods and algorithms for

image analysis of clinical or dermoscopy images. For example, a pattern recognition

algorithm can be applied to detect atypical pigment network in dermoscopy images.

By contrast, shape analysis can be applied to detect change in size of the lesion in

clinical images.

2.5 Computer-aided Analysis of Melanoma

A computer-based melanoma diagnostic system or a computer-aided diagnostic sys-

tem (CAD) can be used for quantitative and objective evaluation of PSLs to assist

clinical assessment. Such systems can be used to provide a second opinion for physi-

cians, allowing automatic and semi-automatic diagnosis to overcome the variability

of observation and the challenging tasks that occur in dermatologists’ examinations.

Figure 2.4 illustrates five essential components for the development of melanoma

CAD tools. These components, which are in fact an image processing algorithm,

are deployed in a CAD system with the end goal of diagnosis of the type of lesion.

This section reviews image processing algorithms that have been used for the de-

velopment of CAD of melanoma based on clinical images rather than dermoscopy

images and each subsection deals with a separate group of the literature classifica-

tion.
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Figure 2.4: Components of a melanoma CAD system.

This section reviews image processing algorithms that have been used for the

development of CAD of melanoma based on clinical images rather than dermoscopy

images and each subsection deals with a separate group of the literature classifica-

tion.

2.5.1 Image Pre-processing

This component is used between the image acquisition and border detection steps

and is mostly performed in order to enhance the border detection accuracy by cor-

recting/removing undesirable imaging information. The presence of artefacts such as

hairs, ruler marks, and variable illumination in clinical and dermoscopy images may

affect the following steps, such as segmentation, and thereby cause imperfect feature

extraction results [63]. Existing research has primarily focused on two distinct areas:

artefact (e.g. hair) removal and image enhancement (illumination correction).

2.5.1.1 Hair Removal

Hair removal is the principal task in the preprocessing step, with the aim of removing

existing hairs in the image with the help of software rather than shaving. The
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challenge is to remove occluded hairs on PSLs compared with the regular part of

the surface. However, use of hair removal algorithms depends on the image dataset.

Based on our experiments, if there is no hair in a particular image, applying these

algorithms may change the lesion’s patterns. In addition, if significant numbers of

hairs covered the surface of the lesion, applying these algorithms may significantly

change the lesion’s pattern.

The literature has emphasised the importance of this step. Lee et al. (1997)

proposed the first method of hair removal from dermoscopy images [64] and since

then this approach has been widely adapted and improved [65–70]. This algorithm

performs three main tasks: 1) Detecting the location of dark hairs in the image using

morphological filters; 2) Replacing the identified hairs with neighbouring pixels; and

3) Applying an adaptive median filter to smooth the final image. Several other

studies have been carried out to remove hair artefacts, especially dark ones that

are more dominant than other artefacts, particularly in dermoscopy images [70–

73]. These hair rejection algorithms can be divided into two steps: hair detection

and hair restoration. Hair restoration is a necessary step and consists of filling the

detected hairs with suitable intensity values; however, this may corrupt the texture

of the PSL and cause imperfect texture analysis or border detection. According to

the literature, most hair removal algorithms that have been proposed for clinical

images are based on median filtering [66, 74, 75]. The median filter is effective

for removing noise spikes that cover a few pixels [74]. For instance, Zagrouba and

Barhoumi (2004) applied median filtering to reduce the weight of small structures

for thin hairs (e.g. blond hairs), and used DullRazor for thick hairs. Also, they

used a Karhunen-Loeve transform to enhance the edges of the lesion against the

surrounding skin [66].

In recent work, Abass et al. [76] proposed an automatic feature-preserving hair

removal algorithm for dermoscopy images. The proposed algorithm was tested on

100 dermoscopy images. In addition, they compared their work with two in-painting

methods such as non-linear partial differential equations (PDE) and exemplar-based

repairing approaches, and as well as a linear interpolation method. The proposed

algorithm outperformed the others, with an accuracy of 93.3%.

The hair removal issue has not completely addressed in previous studies. There is

no hair detection algorithms reported to detect hair first and then decide to remove

them. Applying most of these algorithms might change the pattern of the lesion.

Development of a hair removal algorithm is not the objective of this study and

we used DullRazor software for removing hairs in our image dataset (described in

Chapter 4).
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a) b)

c) d)

Figure 2.5: Example of images including shading and illumination issues.

2.5.1.2 Illumination Correction:

Reflected illumination from the skin surface can result in misclassification of skin

lesions. For instance, see the shading and highlight effects in Figure 2.5 (a-c):

the healthy section of the skin is covered by shadows and highlights and appears

similar to the colour of the lesion. Another example is shown in Figure 2.5 where

bright/intense highlight reflection impacts colour features within the lesion area

(specular reflection).

Several techniques have been reviewed for enhancing both shading and illumina-

tion effects. Although there has been a considerable amount of research in this area,

few studies have focused on clinical and dermoscopy images. Several techniques

such as morphological filters, bilateral filters and Monte Carlo sampling have been

used for estimation of illumination [77]. Most of the available methods are based on

histogram equalisation or the illumination-reflectance model. Histogram equalisa-

tion minimises variations in illumination by adjusting the global distribution of pixel

intensities. This method is limited to local illumination [78]. In the illumination-

reflectance model, with the assumption of a direct relationship between illumination

and reflectance components, the illumination map is determined to output the re-

flectance map. Glaister et al. [79] stated that these applications are typically limited

and have issues when applied to skin lesion images.

Among the existing studies on the pre-processing of PSLs, there are three pub-
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lications in which illumination correction is specifically proposed for clinical and

dermoscopy images [79–81]. These algorithms involve the estimation of initial and

final illumination; the significant difference between them is the initial illumination

estimation. A method proposed by Cavalcanti et al. [80] uses morphological fil-

ters to determine an illumination map. This work was improved by Glaister et al.

[79], who proposed a multi-stage illumination modelling of dermatological images

for illumination correction. The proposed method first estimates a non-parametric

model of illumination using Monte Carlo sampling, followed by final illumination

estimation which is based on quadratic surface modelling. This method outper-

forms the method introduced. However, this technique is criticized in a comparison

study; Zhao et al. proposed an illumination modelling and chromophore identifi-

cation method which is compared with the two previously mentioned techniques.

More information about the performance analysis of these three approach methods

is discussed in [81]. In these studies, there is no indication that these computation-

ally expensive methods are able to detect the variations in illumination first and

then decide to correct them.

2.5.2 Lesion Border Detection

Much of the current literature on melanoma CAD systems pays particular attention

to developing border segmentation techniques. Border detection is an important

component in CAD systems and plays a critical role in melanoma detection accu-

racy. Morphological structure of skin lesions may often result in difficulties with

lesion border detection. A broad range of lesion segmentation algorithms have been

developed to address these difficulties. However, these algorithms are designed based

on particular imaging modalities (e.g. clinical and dermoscopy images) due to vari-

ations in the appearance of PSLs, and their performance is subject to variations in

factors such as lesion type, colour, and light condition or angle of view [8]. Various

techniques for border detection (also known as lesion segmentation) of clinical im-

ages have been proposed. Celebi et al. [82] categorised the segmentation algorithms

used in border detection in clinical and dermoscopy images as follows:

• Histogram thresholding methods: The region of interest (ROI) is sep-

arated from the background by exploiting one or more estimated threshold

values.

• Colour-clustering methods: Using unsupervised clustering and colour in-

tensities, pixels are classified into homogeneous subdivisions.

• Edge-based methods: By applying edge detection algorithms such as Sobel
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kernel, the edges between the lesion and the background can be used for border

detection.

• Region-based methods: Classify the pixels into smaller parts by deploying

region-merging/splitting algorithms.

• Morphological methods: Watershed transform is considered an example in

this group, which can be used in contour detection algorithms.

• Model-based methods: These methods model the image as random fields

and deploy optimisation solvers to estimate the optimal parameters of the

model.

• Active-contour methods: Using these techniques the contour of the lesion

is determined in order to separate the ROI from the background.

• Soft-computing methods: In this category, a classification algorithm such

as a neural network or fuzzy logic is applied to classify pixel values into sepa-

rable regions.

Lesion order detection methods (for clinical images) can also be categorised into

simpler groups such as:

• Histogram thresholding [83–87];

• Discontinuity-based (detecting lesion edges using active contours, radial search

techniques and Laplacian of Gaussian (LoG): active contour [88, 89], radial

search [90, 91] and edge detection [92–94];

• Based on colour features [95–97];

• Based on Texture features [98–101];

• Based on combination of colour and Texture features [102];

• Region-based: watershed [84] and statistical region merging (SRM) [79, 103].

In a comparison study conducted by Hance et al. [104], six colour segmenta-

tion methods were assessed including fuzzy c-mean adaptive thresholding, spherical-

coordinate transform/center split, principal-component transform/median cut, split

and merge, and multi-resolution techniques for border detection of clinical images.

The common idea behind these methods is based on setting the number of colours

within the images to three (four for spherical-transform). The result of this study

illustrated that adaptive thresholding and principal-component transform/median
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cut performed with a lower average error than other reported methods. In addition,

the authors proposed a method which improved this accuracy using a combination

of these six approaches. In a recent article [98], Glaister et al. proposed a novel

texture-based segmentation method, using joint statistical texture distinctiveness,

and compared their result with three other state-of-the-art segmentation algorithms.

Their result showed that their algorithm was more accurate than other reported

techniques.

Pirnog et al. [86] proposed a simple automatic segmentation method for skin

lesion identification for macroscopic images. They used only the saturation channel

of the HSV (Hue-Saturation-Value) image. They claimed that using this channel

component, two unwanted skin lesion components (hair and illumination variation)

were addressed. They also compared their algorithm with the well-known grey-level

Otsu’s thresholding [105] as well as an active contour (Chan-Vese [106]) method,

using 40 clinical images containing 30 benign and 10 malignant images; the 30

benign images were captured using a smart-phone camera. The accuracy of the

proposed method was 98.49% against 79.81% and 65.53% for the Chan-Vese and

Grey-level Otsu respectively, using the Dice similarity performance index.

In another comparison of segmentation by Maglogiannis et al. [85], global thresh-

olding was proposed, which outperformed region growing and window thresholding

techniques. Gradient Vector Flow Snake was proposed by Tang [89] to perform the

segmentation. Cavalcanti et al. [107] proposed using Independent Component Anal-

ysis (ICA) to perform the initial skin lesion segmentation and the Chan method for

the final segmentation. Cavalcanti and Scharcanski [108] deployed Otsu’s Thresh-

olding. The preprocessing step is applied to maximise the discrimination between

healthy and unhealthy skin areas on the image. Kmeans clustering algorithm [109]

is applied to project the pixels into two groups (patches); this increased segmenta-

tion accuracy compared with other algorithms mentioned. In a recent paper, Flores

and Scharcanski [110] proposed a novel method for border detection of melanocytic

skin lesions. After performing the pre-processing shading correction algorithm pro-

posed in [80], the image is converted to a 3-channel image for better discrimination

between the normal background and the lesion area. Then the converted image is

divided into a set of image patches. They created an image patch dictionary using

the Information-theoretic Dictionary Learning method to smooth the discrimination

of these image patches. At the final stage, using Normalised Graph-Cut, the set of

image patches is projected into two groups to create a binary mask. The binary mask

labels the pixels as skin or lesion regions. They also evaluated their algorithm using

152 clinical images collected from the Dermnet (online resource) [17] and compared

it with other previous segmentation methods which is briefly provided in Table 2.4:
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Table 2.4: Comparison of the previous lesion segmentation algorithms with their
performance (with two significant figures) accuracy used in [80].

Method Performance

Tang’s Snake [89] 59%

Otsu’s Thresholding on the Gray-scale channel [111] 42%

Otsu Thresholding on the R channel [87] 38%

Thresholding on Multichannel Image [108] 34%

ICA-Based Active-Contours [107] 28%

NMF Segmentation [109] 25%

Scharcanski’s method [110] 21%

One significant theoretical issue that has dominated the field is the lack of a

proper definition of the ground truth (GT) for lesion boundaries [112, 113]. Gen-

erally, GT must be assessed and determined manually by an expert; however, sig-

nificant disagreement is reported due to the various subjective criteria in specifying

the boundary of lesion in dermoscopy images [112, 113]. Based on our knowledge,

to date, there is no available public dataset including a standard GT definition for

clinical images. A GT definition could allow researchers to evaluate the performance

of their algorithms, achieve the desired results and make considerable progress in

this context.

A limitation for assessing lesion border detection algorithms is that there are not

enough comparative study for performance comparison of these techniques (based on

clinical images). Comparison of these techniques is not easy because the researches

investigated their algorithms by a limited number of clinical images, not a dataset

including challenging cases. Moreover, the performance of these algorithms can be

highly conditional and variable if an efficient preprocessing algorithm applies before

this stage.

2.5.3 Feature Extraction

In the field of melanoma detection using CAD systems, feature extraction is the

process of applying mathematical operations to measure particular properties from

the output image of the lesion segmentation step. As mentioned in Chapter 1, the

aim of feature extraction is to reduce the original image information by estimating

particular attributes, differentiating between one object pattern and another in the

picture. Therefore, it is crucial to determine the most powerful and effective features

to be extracted from melanoma and other lesions images that will be used for the

next step, which is diagnosis by a classifier.
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It is worth mentioning that in the majority of melanoma CAD systems, the

feature extraction algorithms are inspired by the clinical ABCD rule of dermatology

due to its simplicity and effectiveness of implementation [114]. Feature extraction

algorithms deployed in this field can be categorised into three main groups: a)

shape-based (geometrical features); b) colour-based; and c) texture-based.

Tasoulis et al. [115] used these three types of features followed by feature selec-

tion. They used border features to cover the A and B parts of the ABCD-rule, colour

features for the C rule and textures features for the D rule. Although D corresponds

to a diameter greater than 7 mm in clinical images they used this term to extract

differential structures of the lesion. Korotkov and Garcia [8] summarized feature

descriptors used in melanoma CAD systems and noted that the feature descriptors

used in dermoscopy images are completely different from those used for clinical im-

ages (using a standard camera) in terms of definition and meaning. Therefore, in this

study we review and address the feature descriptors used for melanoma detection

based on clinical images.

Shape features:

• Asymmetry: Several algorithms have been proposed for the asymmetry anal-

ysis of clinical images. To measure the asymmetry of a shape, image processing

operations apply the binary mask obtained from the segmented lesion. The

asymmetry descriptors used in the literature are based on

– Centroid of lesion and moments of inertia e.g. asymmetry index;

– Symmetry Distance.

• Geometrical features: The geometrical features are mainly area, major and

minor diameter, perimeter, circularity, and standard deviation [115, 116].

• Lesion’s Boundary analysis : A number of techniques were used to extract

the border irregularity criteria of the lesions such as convex hull [12]; bound-

ing box [117]; fractional geometry [116]; centroid distance diagram [118] and

polygon approximation methods [119].

Colour Features: Colour features or histogram features include statistical pa-

rameters measured from different colour channels such as conventional Red, Green

and Blue (RGB) channels [115, 116]. The following provides some information about

colour features used for clinical image analysis:
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• Statistical features based on RGB images: The descriptors in this class

include measuring a number of statistical parameters from every channel of

an RGB image, including min, max, average, standard deviation, skewness,

Kurtosis, and entropy.

• Statistical features based on colour space conversion of RGB images:

These features can be obtained by measuring the above-mentioned statistical

parameters using the converted version of the RGB image in other colour

domains such as: HSV (Hue, Saturation and Value), HSI, CIELUV, CMYK,

Lab, Normalized-RGB and others.

• Colour quantization: Colour quantization is a procedure of reducing the

number of similar colours existing in an image, so that the reproduced image

is as visually similar to the original as possible. The features used in this

class are based on relative colours used in the image and include, for example,

statistics of relative difference and the aspect ratios of distinct colour channels

in the RGB domain [120].

Texture Features: For texture feature extraction, the use of GLCM-based tex-

ture features (grey-level co-occurrence matrices) such as energy, entropy, mean, an-

gular second moment, maximum probability, contrast and correlation have been

reported [121, 122].

Calvacandi and Scharcanski compared five state-of-the-art texture descriptors

applied to clinical images (107 melanoma and 45 atypical nevi) [123]. In this study,

they investigated five texture descriptors including a) co-occurrence matrices, b)

intensity variability, c) local binary patterns (acLBP), d) independent component

analysis (ICA), e) and fractal measurement. They compared these features using

two classifiers: SVM and KNN. The result was as follows:

• Co-occurrence matrices ranked the best option by:

– classifier= KNN, accuracy= 84.21%,

– classifier =SVM, accuracy= 79.60%.

• The fractal ranked the second by:

– classifier =KNN, accuracy= 75.65% and

– classifier =SVM, accuracy= 78.28%.

Amelard et al. [77], presented a framework for melanoma detection using clinical

images, which consisted of pre-processing (illumination correction presented in [79]),
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feature extraction and a simple classification algorithm (soft-margin SVM model).

They applied the pre-processing step to correct illumination variation on the images

because they believed that shadows can affect the lesion colours and thereby result

in poor colour feature extraction. For feature extraction, a combination of high-level

intuitive features (HLIF) that characterize asymmetry and border irregularity were

extracted and combined with low-level features described in [80].

In this study we use shape, colour and texture features followed by feature se-

lection, which is described in more detail in Chapter 5.

2.5.4 Classification

Classification is the final step in computerized melanoma detection. Various meth-

ods have been applied for melanoma detection, including artificial neural networks

(ANN), Multi-layer Perceptron (MLP), Support vector machines (SVM), K-Nearest

Neighbour (KNN) [121], as well as ensembles such as Bagging, AdaBoost (boost-

ing), Rotation Forest, and Dagging. The accuracy of classification is highly related

to the feature data collected from the previous step, as well as the type of classi-

fier chosen.“The comparison of classification approaches gives optimal results when

performed on the same dataset and using the same set of descriptor” [8].

The number of prediction exemplars in a classification algorithm is related to

the number of classes used for the training phase. For example, if the lesion types in

the training phase are “benign” and “melanoma”, the output of classifiers is binary;

it is ternary when we have three types of lesion such as “benign”, “melanoma” and

“dysplastic”.

Masoud and Al-Jumaily described classification algorithms that have been used

in melanoma detection, with relevant references [124]. However, a comparative study

including algorithmic calculations for feature extraction and classification was not

provided. A comparison of classification methods was reported by Maglogiannis et

al. [121]; the authors compared eleven classifiers (such as Bayes Networks, NBL,

MLP, RBF network, classification via regression, CART, NBTree) using 3639 der-

moscopic images and reported that their SVM out-performed other methods. They

showed that feature selection and the learning process play significant roles in de-

termining the accuracy of the system. As mentioned in the previous subsection,

in [123], two classifiers (KNN and SVM) were compared using five different sets of

texture features. The results showed that KNN performed with a higher overall

accuracy, using the same dataset.

In many research studies published in the field of melanoma detection, the SVM
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classifier has been one of the most widely used [76, 77, 114, 123, 125–127]. There is

no evidence to date suggesting possible ways to increase the reliability of these bio-

medical diagnosis systems. High sensitivity is more important than high specificity

in melanoma diagnosis systems. Although precise detection of all melanoma samples

is crucial, a high false positive rate is not suggested.

Faal et al. [128] proposed using combination of three different classifiers (KNN,

SVM and LDA) with the deployment of a different feature set for each classifier

(trinary classification of benign, dysplastic and melanoma lesions), which helped to

increase diagnostic accuracy for dysplastic and melanoma lesions.

In order to evaluate the performance of the state-of-the-art classifiers based on

the feature data extracted from the clinical image dataset, we compared the accu-

racy of nine classifiers. We also address improvement in accuracy of the system as

described in Section 6.2.3.

2.6 Deployment of Deep Neural Networks (DNN)

in Machine Vision and Medical Imaging

Recently, deep learning has been the subject of renewed interest in machine learning

due to very encouraging results in speech recognition and computer vision. Deep

learning is a set of algorithms including Neural Network (NN) as an architecture

[129, 130]. “A standard neural network (NN) is consisted of many simple connected

processors called neurons, which produce a sequence of activation functions” [131].

Although the field of artificial neural networks (ANN) dates back to the 1950s [132],

nowadays they are more popular with taking advantage of parallel hardware pro-

cessors such as GPUs and FPGAs. It has been reported that a shallow network

obtained the same level of accuracy as a deep network with many more connections

in a speech recognition application [133, 134]. Figure 2.6 shows the difference be-

tween a shallow and a deep network. It can be seen that in the deep network, the

activation function obtained by the red neuron in the layer one is reused three times

in the computation of the output function; in the shallow network, the function

computed by the red neuron is only used once [131]. Therefore, a shallow network

is more computationally expensive when the problem has non-linear properties.
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Figure 2.6: Deep network vs. shallow network [131].

In machine vision, most deep network architectures are composed of multiple

layers followed by a classical classifier such as Multilayer Perceptron (MLP classi-

fier), where each layer is composed of linear two-dimensional filters, non-linearity

functions and pooling of data (also known as sub-sampling) [129, 135]. Most re-

cent machine vision research has focused on the task of training such deep networks

using large available datasets in the form of image frames. These deep networks

need to learn good feature representations for complex visual applications such as

object recognition and tracking [136]. These feature representations usually involve

learning the linear shared weight values (also known as shared filters) from labelled

(supervised learning) or unlabelled (unsupervised learning) input data.

Deep convolutional neural networks have obtained good outcome in a broad

range of computer vision problems, including image classification [137–140], object

detection [141] and semantic segmentation [142–145]. Couprie et al. presented a

multi-class segmentation algorithm for indoor scenes based on supervised learning

and RGB-D input images [142]. They applied multi-scale convolutional neural net-

works (CNN) to learn features directly from the images and the depth information

(D channel). Their proposed architecture achieved an accuracy of 64.5% based on an

NYU-v2 depth image dataset. Lenz et al. [145] later proposed an adapted version of

this architecture for a robot vision application using RGB-D images and found that

using a deep network had several benefits: a) it avoided hand-engineered features,

but learned them directly instead, b) it outperformed even well-designed features

from previous studies.

Since providing labelled data (supervised learning) to the network is expensive

and often comes with human errors [136, 146], unsupervised learning can help the

network to learn features purely from unlabelled input data [149, 150]. These meth-

ods can learn multiple layers of deep networks through training several layers of

features, one layer at a time [147, 148]. Recent approaches based on unsupervised
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clustering techniques were promising because they used simple learning methods

such as K-means clustering [148]. Culurciell and Bates [136] adapted this method

to promote it for general-purpose real time robotic vision system.

While CNNs have also been applied to segmentation and object recognition prob-

lems, most of the previous work reported on non-medical problems, along with many

proposed architectures, is not well suited to medical imaging systems. Based on our

knowledge, to date, DNNs have not been applied in the field of melanoma seg-

mentation and classification. However, there have been reports on other medical

applications. Havaei et al. [149] proposed a fully automatic brain tumour segmen-

tation approach based on DNNs using MR images. Their specific architecture uses

both local features and more global contextual features simultaneously, since the

tumours can be anywhere in the brain with any kind of shape, size and contrast.

They also deployed a cascade classifier in which the output of the CNN is used as

the input for another CNN. Petersen et al. [150] used an unsupervised DNN for

breast tissue segmentation and mammographic risk scoring and reported that the

learned percentage mammographic density (PMD) scores were well correlated with

manual scores and were more related to future cancer risk than manual PMD scores.
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2.7 Summary

This chapter has provided an overview of current clinical methods used for melanoma

detection. In addition, it also highlighted the significance of image processing in

the evolving domain of computerised diagnosis of melanoma applications. Basically,

there are four stages in a CAD system for melanoma detection: pre-processing, lesion

segmentation, feature extraction and classification. Recent works that applied these

methods were reviewed in this chapter. Furthermore, we reviewed recent works that

used deep neural networks based on general-purpose machine vision applications.

The next chapter presents a comprehensive study to select a proper platform for

the implementation of image processing algorithms to create a hand-held medical

imaging tool.
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Chapter 3

Embedded System for Medical

Imaging

3.1 Introduction

In recent years, real-time vision systems have been used in a wide range of appli-

cations and sophisticated medical imaging systems. Most computer-vision applica-

tions have been developed based on a Graphics Processing Unit (GPU). However,

recent developments in the field of powerful, low cost and energy-efficient embed-

ded systems have led to the implementation of image/video applications in Digital

Signal Processors (DSPs) and Field Programmable Gate Arrays (FPGAs). Each

technique has its advantages and tradeoffs based on the nature of the algorithms,

performance requirements, power consumption, cost, productivity, flexibility and

design cycle time. With the development of advanced algorithms, especially in the

medical imaging realm where the majority are computationally intensive, more flex-

ibility and performance are required to achieve adequate performance in embedded

systems at an affordable cost and with acceptable power consumption.

Among the various types of programmable and reconfigurable platforms that can

handle image and video processing tasks, FPGAs and DSPs are the most popular

devices for embedded systems and System-on-Chips (SoCs) due to their lower power

consumption and portability compared to other platforms such as GPUs. The main

limitation of DSPs, however, is their limited resources in terms of memory bandwidth

and arithmetic logic units (ALU). Therefore, they cannot adequately perform some

parallel processing techniques such as 3D medical imaging. In contrast, FPGAs can

be considered a promising technology with good performance and flexibility via their

massive hardware-based parallel signal processing capabilities that enable computa-

tion of sophisticated algorithms such as real-time medical imaging [151]. Typically,
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due to the complexity of the hardware specifications, implementation of sophisti-

cated algorithms and systems becomes more complicated. A serious weakness with

FPGAs is that implementing a DSP algorithm using a register transfer level (RTL)

in hardware description language (HDL) is very time consuming [152, 153]. For in-

stance, to implement an image processing algorithm on FPGA or DSP an engineer

writes the code in C/MATLAB and verifies it with a simulator. Then, the hardware

engineer has to convert the code to a verified synthesizable HDL code for mapping

on an FPGA or DSP device.

This chapter comprises two parts: the first deals with hardware and software

implementation of image processing algorithms using the state-of-the-art embedded

system technology. The second investigates an efficient imaging system in the con-

text of medical imaging. One of the recent products from XILINX, ZYNQ-7000,

is a possible solution to the challenges of hardware and software implementation

of a vision system on a single System-on-Chip (SoC) device. It may also decrease

the unit cost and increase accuracy as well as performance, thereby optimizing the

processing task. The ZYNQ-7000 platform was found to be suitable for designing

the proposed hand-held medical imaging system for early diagnosis of skin cancer.
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3.2 Embedded Platforms for Implementation of

Image Processing Applications

Processing of complex applications in medical imaging are computationally expen-

sive, power consuming and may require a high memory bandwidth [154]. In this

section, some alternative embedded hardware targets for implementation of com-

putationally expensive image processing algorithms are discussed to determine the

advantages and tradeoffs of different types of platforms in the realm of embedded

systems.

Typically, embedded vision platforms can be categorized into the following groups:

• Software-based on DSPs.

• Customized hardware module in high-performance FPGAs.

• Customized hardware module plus single embedded soft-core microprocessor

in FPGAs (HW/SW co-design).

• Combination of a DSP and FPGA (Hybrid).

• Combination of a GPU and a general purpose processor GPP.

FPGAs and DSPs are the most popular platforms for embedded systems and

SoCs due to their lower power consumption compared with other platforms such

as GPUs [155]. GPPs and DSPs suffer from limited memory bandwidth and few

arithmetic logic units (ALU), so that some parallel techniques such as 3D medical

imaging algorithms cannot be fully performed; in contrast, FPGAs provide high

performance and flexibility for sophisticated algorithms [156].

Digital signal processors from Texas Instruments (TI) have been widely used

for the implementation of a wide range of application signals and image process-

ing. However, there are some key issues for implementation on single embedded

cores such TMS320DSP6416 and TM320DSPC6713. These issues can be power

consumption, heat dissipation, number of instructions that can run in parallel, and

other bottlenecks [157]. To overcome these problems, multi-core technologies are

generated for multimedia applications. Typically, TI’s multi-core platforms are a

combination of technologies such as GPPs, DSPs or SoCs and they can be divided

into homogeneous and heterogeneous architectures [157]:

• Homogeneous architectures consist of multiple DSPs with identical architec-

ture. For example TMS320C647x consists of six C64x processors which can

work together in parallel.
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• Heterogeneous architecture involves a combination of a DSP and a GPP (i.e.

ARM processor), a GPU(s) or Micro Controller Unit(s) (MCUs).

There have been numerous published studies on the topic of implementation of

image processing and its applications based on the OMAP3530 architecture from

Texas Instruments. These studies show that OMAP has been a popular platform

for image processing applications. In [158], OMAP was used for implementation

of wave form techniques. The performance of this platform was measured based

on four different system design methods for the use of the ARM processor and the

corresponding DSP processor. According to this article an embedded system on

OMAP DSP processors can be implemented as follows:

1. Only on Cortex-A8 (ARM processor)

2. Cortex-A8 + NEON implementation

3. Only on DSP

4. Dual-core ( Cortex-A8 and DSP)

It was found that the second method (ARM cortex-A8 + NEON engine) gave

the best performance where the NEON engine was used as a co-processor to support

floating point numbers. However, the negative aspect is that DSP was of no use in

this method. The final method (combination of ARM and DSP) was faster than the

third method (DSP only). The key issue with this platform is that floating-point

numbers are not supported by the fixed-point C64x DSP and much time is consumed

in software emulation of floating points [159]. Although OMAP3530 is considered a

promising platform for implementation of vision systems, with the ability to run a

real-time application, in most studies to date the implemented applications cannot

be considered as sophisticated and computationally intensive algorithms.

Another powerful multi-core DSP platform that has been used is TI-C6472 [160].

The chip consists of six high-performance C64x core + DSP at an overall speed of 4.2

GHz with a performance similar to a typical GPU. The performance of the system

was compared with a simple CPU; the multi-core operated ten times faster. In addi-

tion, TMS320C6455 has been used for image processing with a maximum frequency

of 1 GHz, which is slower than a typical GPU. For example, an algorithm proposed

for performing computed tomography images in the field of medical imaging on a

C6455 DSP processor executed in 336.0s and 8.9s on a DSP and GPU, respectively.
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3.3 FPGAs

FPGAs are becoming much more powerful platforms via which to improve processing

capabilities and this has led to a renewed interest in the implementation of embedded

vision applications. Several studies have shown that FPGAs can achieve 100 times

higher performance compared with traditional DSP processors in a number of signal-

processing applications [161]. In such systems, not only is hardware logic used, but

also the embedded soft CPU-Core can be involved in the computation to improve

productivity and system performance. A considerable amount of recent research has

involved computationally intensive applications such as medical imaging and real

time image processing based on XILINX FPGAs, especially Virtex5 and Virtex-6

[162–167].

One of the most significant issues with FPGAs is that system design, debugging

and verification are more complex, time consuming and error-prone than other plat-

forms (DSPs and GPUs) [168]. Therefore, FPGA implementation requires hardware

design experience using HDL codes (Verilog,VHDL). Ahmed et al. [169] reported

that the Dynamic Partial Re-configuration (DPR) technique can be used as a pow-

erful solution for implementation of computationally intensive applications e.g. 3D

medical image processing. They proposed an efficient architecture for 3D HAAR

Wavelet Transform (HWT) using DPR on virtex-5 XILINX FPGA with standard

quality and reconstruction of medical images such MRIs and CTs. Using DPR,

several large systems can be mapped into a single FPGA.

3.3.1 Hybrid Architectures using FPGAs

Many published studies describe vision systems based on hybrid architectures of

DSPs and FPGAs. Typically, within these architectures, a multi-board (DSP-

FPGA) is parallelized to accelerate the high-demand computational tasks for image

and video processing. In this kind of system, FPGAs are involved with accelerating

the speed of processing of complex computational tasks. In [160], TMS320C6455

(DSP) was used for channel coding algorithms in order to achieve real-time pro-

cessing and Virtex-5 was used to support recognition of I/Os. TI’s DaVinci DSP

platform has been also used widely as a coprocessor with an FPGA. Yan et al. [169]

developed a multiple object tracker for indoor environments using a DSP-FPGA

based system in which ALTERA Cyclone2 is involved with a CMOS camera and

a TMS320DSM64 processor (DaVinci) is used for video processing. Another DSP-

FPGA-based technique evaluated for medical imaging is also presented [170]. The

proposed system consisted of a XILINX (Virtex-4) and DaVinci (TMS320DM6446)

processor, which proved promising in terms of cost and real-time solutions. A dig-
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ital scan solution (SDC) platform on TMS320c64x (DSP) was used as the heart of

the system, the FPGA was used for the speckle-reduced imaging (SRI) module and

the ARM processor of the DaVinci platform was used to focus on the diagnostic

mode. Although the complexity of the algorithms was not high, the initial imple-

mentation was not satisfactory in real-time performance and several optimizations

were needed. Fang et al. [171] designed a video-text extractor based on a DaVinci

DM644 platform with the architecture distributed on a dual-core (ARM and DSP).

Several threads were performed on the ARM side to capture, display and control

devices. The main algorithm was implemented on the DSP side. Although the au-

thors proposed a design flow for communication between cores, several optimizations

were applied to enhance the processing speed performance. The key problem with

these kinds of systems is that the designer evaluates the multi-board based on two

different systems and each technique has its own challenges and design requirements.

Obviously, each technology has its pros and cons in terms of power consumption,

cost, productivity, flexibility and design cycle time.

• In terms of power consumption and portability, DSPs and FPGAs are more

suitable than GPUs.

• The development cost of DSPs is reasonable, and more straightforward when

parallel processing is not essential.

• With regard to flexibility, FPGAs are more suitable, because of their parallel

and reconfigurable architecture, than GPPs or DSPs due their limited memory

bandwidth and ALUs.

• Although hardware implementation on FPGAs is more complex and tedious

compared with DSPs and GPUs, new implementation methods such as model-

based design can help to accelerate the design process and increase the pro-

ductivity of FPGAs.

3.4 Recent Hardware Implementation Methodolo-

gies and Related Description Languages

There has been considerable research in the area of hardware implementation of

image processing algorithms using FPGAs. Typically, due to the complexity of the

hardware specification, implementation of these systems becomes more complicated.

In general, DSP designers use different high-level languages such as C/C++, while

FPGA designers deploy low-level Hardware Description Languages (HDL) such as
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Verilog or VHDL. The following shows the typical procedure for implementation of

a simple DSP algorithm onto FPGAs [172]:

• The DSP engineer has to first write the code in C/MATLAB and then verify

it with simulation in the MATLAB environment.

• An experienced hardware engineer has to convert the code to a synthesizable

HDL manually (using Verilog or VHDL) to create a hardware accelerator.

The synthesized code is mapped onto an FPGA device for verification of the

synthesized code by creating test benches.

New methodologies such as model-based design and High Level Synthesis (HLS)

tools have now become available [173–175]. Model-based approaches have been

widely used for implementation of DSP algorithms. Moreover, HLS languages and

tools such as Impulse-C , Handel-C , Catapult-C and AutoESL are software-based

tools created with the aim of solving the problem of HW/SW co-design and the

limitation of using floating-point functions [176]. Figure 3.1 shows a number of

design tools for implementing DSP algorithms on FPGAs.

Figure 3.1: Design methods for implementation of DSP algorithms on FPGAs.

3.4.1 System Generator

The XILINX System Generator is regarded as a useful development tool for the

implementation of signal processing algorithms [170]. This tool is a model-based

software provided by XILINX Inc, which can be integrated with the Simulink of

MATLAB and which helps HDL developers who are not expert in FPGA program-

ming (Verilog/HDL codes). In [177], a standard resolution geospatial imagery sys-

tem was developed on Virtex-4 XILINX FPGA and the performance of the system
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is reported to be 11 times faster than a normal CPU on a PC. In another study

[178], the System Generator was used to implement real-time parallel 2D (Magnetic

resonance imaging) MRI image filtering based on Virtex-6 FPGA. However, the re-

sults and output resolution are not encouraging. In another major study, research

on the feasibility of using System Generator for medical image processing proposed

an efficient architecture for image filtering and tumor characterization, implemented

on Spartan 3-E XILINX FPGA with promising results [179]. The VHDL codes were

automatically generated via the System Generator from the Simulink of MATLAB

to implement MRI brain images for tumour characterization. However, the results

showed that further work is required to enable real-time image processing for the

proposed architecture. Sami Hasan [180], presented a nine parallel 2-D MRI filtering

algorithm in a single FPGA-based architecture using the XILINX System Generator

and demonstrated fast filtering throughput performance, with minimum total power

consumption (0.86 Watt) at a maximum sampling frequency (230 MHz).

3.4.2 High-Level Synthesize Language

With current developments in FPGA chip capabilities, it is possible to implement

more sophisticated algorithms on FPGAs. However, algorithm implementation us-

ing register transfer level (RTL) for hardware description is time-consuming and

error-prone. Although research on HLS methodologies has been undertaken since

1990, they have only recently become an attractive solution [181]. Generating HDL

code using high level language may significantly increase design productivity and

reduce development time, and pure HDL programming mistakes can be excluded

[182–184]. Unlike the traditional design flow methodology, HLS can improve design

quality and accelerate design and verification tasks by applying optimal synthesis

directives to transform C/C++ code specifications to RTL implementation, which

can be synthesized into FPGA devices [185]. The HLS workflow is significantly

different from traditional design workflow. Xu et al. [152] developed a method for

implementing computed tomography images that work well using Impulse-C. The

ease of use and high performance of HLS (Impulse-C) compared to VHDL produced

orders of magnitude of speed-up in a software implementation of a back projection

application. Li et al. [166] developed a system design for 3D optical coherence

tomography on Virtex-5 XILINX. The hardware implementation efforts were de-

creased using HLS; however, in comparison with GPUs, results indicated that a

GPU can be better optimized and 15 times faster than an FPGA [153].

Handel-C is another C-like language HLS tool in which:

• The C-based algorithm can be translated into HDL
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• Instruction codes can be executed in parallel (depends on code structure)

• Each instruction executes in one clock cycle

• Few interfaces/connections for hardware peripheral or VHDL/Verilog HDL

module provided [156].

An architecture for multi-resolution analysis and efficient algorithm execution

has been implemented on an RC1000 Celoxica development board using Handel-

C [186]. A ray-casting algorithm for 3D volume rendering was proposed targeting

Virtex-5 using Agility’s Handel-C [156]. Volume rendering is a technique for dis-

playing a 3D object on a 2D screen and ray-casting is an efficient memory cache

technique which is used for the implementation of four rendering pipelines in a single

FPGA. However, developing high quality volume rendering for images is extremely

difficult, since the need to provide real-time feedback to the user involves processing

large amounts of data at a visually acceptable frame rate, which imposes signifi-

cant constraints on the memory and visualization system. In another study [187],

an efficient architecture for online volume rendering for medical imaging was devel-

oped on a CELOXICA RC340 board (Virtex-4) using Handel-C. Appiah et al. [189]

also performed real-time segmentation of moving objects in a video stream on an

RC340 via Handel-C [188]. The methodology consisted of two algorithms for multi-

modal background modeling and connected components analysis. Furthermore, the

functional verification of this work was compared with MATLAB using the same

algorithm and the same results. The results of these studies showed that a single

FPGA can effectively be used for parallel and real-time image and video processing.

3.5 ZYNQ-7000 Extensible Processing Platform

In our study, we selected ZYNQ-7000 as a suitable processing platform for our

hand-held application. The ZYNQ Extensible Processing Platform (EPP) can be

configured to run computationally intensive tasks and an operating system such as

Linux or Android on its ARM processor. The ZYNQ-7000 family is based on the

XILINX programmable SoC architectures, built on a state-of-the-art, high perfor-

mance, low-power, 28 nm technology which is a combination of ASIC and FPGA

technologies. It consists of a dual-core ARM Cortex-A9 MPCore-based processing

system (PS) and XILINX programmable logic (PL) all in a single SoC device. The

ZYNQ SoC is a cost-effective platform as well as a high performance solution for

designing a wide range of embedded applications such as portable medical systems.

In this study, we use ZYNQ because of its flexibility, scalability, power and perfor-

mance of ASIC technology. This section describes an overview of the ZYNQ-7000

39



architecture and proposed methods for design and implementation of the embedded

vision system.

As shown in Figure 3.2, the ZYNQ-7000 EPP architecture contains the following

main functional blocks:

• Processing System (PS)

• Programmable Logic (PL)

Figure 3.2: Block diagram of the ZYNQ-7000 platform [189].

3.5.1 The Processing System (PS)

The ZYNQ-7000 family takes advantage of a complete ARM-based processing sys-

tem, which is a dual-ARM cortex in an Application Processor Unit (APU) inte-

grated with the NEON media processor. Moreover, the PS of the ZYNQ supports

hardware for memory interfaces and communications peripherals. This is a key

point of the system architecture because the PS is always the master and operates

independently, meaning that the PS can operate with or without configuring the

Programmable Logic (PL). The most important features the PS supports are:

• Dynamic RAM interface (SD-RAM), supporting either DDR3 and DDR2 stan-

dards.

• Static RAM interfaces (SRAM devices such as NOR and QSPI flash memories).

• Communication interfaces such UART, SPI, I2C, USB, Gigabit Ethernet.
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• General Purpose I/O up to four 32-bit.

3.5.2 The Programmable Logic (PL)

Currently, the ZYNQ SoC family is divided into four types: ZC7010, 20,30 and 40.

Although the PS is identical in all types, the FPGAs (PL) are different. Artix-7

and Kintex-7 are the integrated FPGAs in the SoC. In this study, we selected the

ZC702 series of ZYNQ, which is currently available and supported by XILINX Inc.

The main features of the PL are [189]:

• Configurable logic blocks (CLB) which contain 6-input lookup tables (LUTs)

• Memory capability within the LUT and register and shift register functional-

ities

• Digital signal processing-DSP48E1 Slice contains 25 × 18 two’s complement

Multiplier/accumulator high-resolution (48 bit) signal processor

• Power saving 25-bit pre-adder to optimize symmetrical filter applications

• Many advanced features such as:

– Optional pipelining,

– Optional ALU

– Dedicated buses for cascading and a 36 KB block RAM consisting of a

vast amount of configurable I/Os as well as high-performance Select I/O

technology.

3.5.3 Communication between the PS and PL

The close and comprehensive integration between the processing system (PS) and

the programmable logic (PL) provides the flexibility of ASIC technology and the

performance of FPGA technology on a single SoC. Depending on applications and

their performance requirements, the PS and PL can communicate with each other

using:

• Advanced extensible Interface (AXI) for master and slave interfacing for direct

access to external memories (DDR3 or DDR2) and on-chip memory.

• Direct Memory Access (DMA) and interrupts (up to16 interrupts from the PL

to the PS via four DMA channels).
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• Up to four clocks and resets to the PL from the PS.

• Extended peripherals in the PL which increases the number of PS peripherals.

3.6 ZYNQ SoC Configuration

3.6.1 Hardware Configuration Steps

1. Creating a project using the PlanAhead tool which supports the ZVIC-board

and ZYNQ SoC ( the ZC702 ZVIC development board was selected for this

research). This tool helps us to create an initial system automatically in a

short time.

2. Adding or creating an embedded source using the XPS (XILINX Studio Plat-

form) tool to declare PL and PS components (IPs). The XPS, as a part of the

PlanAhead software, is used as a GUI interface to connect all essential com-

ponents within the SoC. Figure 3.3 shows an overview of the XPS. The next

section briefly describes the software tools for programming and integrating

the PS/PL sides of the SoC.

3. After setting up the hardware using PlanAhead and XPS, the created hardware

specification files, called the Base Support Package (BSP), can be exported to

the SDK tool to create a software program and run it on the ARM processor.

The BSP contains all components’ drivers as well as their C-header files which

provide a memory map of the system and other system peripheral parameters.

4. In the next step, one can choose C or C++ language to write the actual

software program running on the ARM processor. The main program can

be used either in bare-metal mode (without the operating system) or on the

operating system mode (currently XILINX fully supports Linux OS on ARM

PS).

5. In the next step, one can choose C or C++ language to write the actual

software program running on the ARM processor. The main program can

be utilized as either on bare-metal mode (without operating system) or on

the operating system mode (currently XILINX fully supports Linux OS for

running on ARM PS).

6. Once the software is successfully compiled and verified (an ELF file is the

output file for this stage), the PS and PL are programmed respectively.
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Figure 3.3: XPS software tool for hardware configuration.
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3.6.2 Hardware and Software Partitioning on ZYNQ-7000

As discussed before, the processing side of the ZYNQ itself is a complete computing

platform; however, the FPGA area, which is integrated to the PS, can be used as a

powerful accelerator in order to increase the performance of the processing system.

In the context of the ZYNQ, we propose a method in which the bottleneck in the

system will migrate to the PL side to accelerate the speed of the processor. The

migration is achieved by the high performance AXI4 interconnection port which

tightly integrates the PS and PL. In this method, software can be developed for the

processing system. If acceleration is needed (for computationally intensive appli-

cations such as image processing), the FPGA area is configured as one (or more)

IP accelerator(s) of the system. Figure 3.4 shows our proposed design flow for the

configuration of an efficient embedded vision system. The proposed design flow is

divided into the following steps:

• Software development: Firstly, the software code is developed based on the

ARM processor via the GCC compiler in the Software Development Kit (SDK)

tool.

• Software profiling: We developed a program for a simple FIR filter and then

realized that part of the system (for loops) was the bottleneck of the system;

this part can be implemented on the PL side as an IP.

• Software and hardware partitioning: Once the bottleneck of the system is de-

tected, it must be decided which functions of the system can be implemented

on the hardware for acceleration. For example, the loops of the FIR filter can

be implemented on the PL side as an IP. Another key aspect of the system par-

titioning is that it is possible to select suitable communication infrastructure

such as DMA or memory mapping.

• Finally, after SW/HW partitioning, some changes in the main SW are required

to call and run the HW accelerator IPs.

3.7 VIVADO HLS Tool

The VIVADO HLS tool is proposed to replace manual design flow with an auto-

matic process. VIVADO HLS uses the main software to generate its related HW

accelerator; however, several directions and restructuring must be applied directly

and manually in order for the hardware conversion to improve the design quality,
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Figure 3.4: System design flow [189].

efficiency and performance requirements (here hardware conversion means the way

that HLS is able to produce efficient and functionally-equivalent Verilog or VHDL

code). In this research, we used the VIVADO HLS tool for HW implementation of

image processing IPs for the following reasons:

• Only VIVADO HLS supports ZYNQ-7000 SoC and our ZVIK development

board while other tools such as Impulse-C do not.

• There are several pre-defined IPs in the XILINX IP catalogue which can be

employed to develop our system more rapidly than traditional design flows

and other HLS tools. Different interfaces and DSP building blocks are some

of these predefined IPs. The C header files and drivers needed for software

programming and controlling can be created automatically.

• Using VIVADO HLS we are able to create test benches in C or C++ in exe-

cutable software. This feature is one of the best options for implementation

and verification of the image processing algorithms so that we can test the

developed code rapidly before synthesizing and downloading it to the FPGA.

It should be emphasized that this opportunity is not available with the tradi-

tional HDL (Verilog or VHDL) design flows. This is an important point that

simplifies the design procedure significantly.
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• Compared to a DSP C flow (comparison of Spartan3-A versus TI’s DaVinci

Processor), the VIVADO HLS solution is:

– suitable for Full-HD performance (40 times higher than TI’s DaVinci

Processor);

– more affordable in cost (28 ×higher performance);

– requires fewer code modifications.

Figure 3.5 shows the proposed method for hardware implementation using VIVADO

HLS.

Figure 3.5: HLS design flow for programmable logic [189].

In the first step we needed to use C/C++ reference design code as a model.

OpenCV is a powerful and efficient open source tool for machine vision and im-

age processing. In this research, we employed some C/C++ reference design from

OpenCV libraries to implement the design in FPGA with some changes in the origi-

nal codes. The modification means reprogramming parts of the code to illustrate the

hardware specification, architecture and DSP macros. The functional verification of

46



the implemented code uses traditional C/C++ compilers (GCC compiler) and using

C/C++ level testbenches developed for the verification of the reference code.

For efficient implementation of the code with RTL, several constraints, compiler

directives were inserted into the code as follows:

• Function Optimization

• Loop optimization (unrolling or pipelining, etc)

• Array and memory optimization (resources, map, partition, reshape, stream,

RAM and buffers)

• Logic structure optimization

• Interface management

The HLS tool takes all these inputs (the implementation C/C++ code, constraints

and directives) to generate an optimized RTL output and reports the throughput

and performance of the generated architecture. If the generated architecture does

not meet the required throughput, we can alter the C/C++ code or the directives.

The HLS tool is able to provide a report of final achievable clock frequency and

number of FPGA resources used only after running logic synthesis and place-and-

route. If the design does not meet timing performance requirements or the FPGA

resources are not satisfactory, further modification is needed for the implementation

C/C++ code or the compiler directives. One of the key points of HLS tool is that it

is an iterative design flow; the implemented code can be evaluated in different types

of restructuring until the required performance is achieved. Furthermore, the C

verification code (testbench) can be reused to verify changes to the implementation

code. When the architecture achieves the required throughput and performance,

then we can use the RTL output as the input to the XILINX ISE/EDK tools for the

next level, which is integration of the system design. The output package can be

used either as a PCORE (IP) in the IP catalogue of XILINX studio platform (XPS)

or as a DSP BlockSet for the system generator tool in SIMULINK of MATLAB.

This can help to ease access to the hardware implementation.

3.7.1 XILINX ZVIK Tool

A portable and efficient melanoma CAD system is a computationally intensive ap-

plication and requires a sophisticated platform to run. In this project a XILINX

ZVIK development board (ZYNQ-7000 Video and Imaging Kit) was used for the im-

plementation and evaluation of some proposed algorithms in this study. The ZVIC
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consists of a development board based on a ZYNQ-7000 SoC as the heart of the

system and a Full HD (1980 × 1080 resolution) image sensor.

3.8 Summary

This section presented the alternatives for development of an advanced embedded

vision system for medical imaging. High speed image and video processing is be-

coming increasingly important in medical imaging. Advances in embedded systems

and their applications in the medical imaging field are growing fast. However, the

limitation of system development on a single platform such as a DSP or FPGA

is a major concern in designing complex systems. Moreover, each platform has its

advantages and trade-offs based on the nature of the algorithm, performance require-

ments, power consumption, cost, productivity, flexibility and design cycle time. One

of the recent products from Xilinx, ZYNQ-7000, can be considered a promising way

to overcome these challenges. The ZYNQ-7000 consists of a dual-core ARM proces-

sor which is surrounded by 7-series Xilinx FPGA based on 28 nm technology. The

close integration between processing system and programmable logic combines the

flexibility of ASIC technology and the performance of FPGA technology on a single

SoC. The state-of-the-art ZYNQ-7000 SoC may be a suitable solution for designing

hand-held medical imaging systems for skin cancer detection.
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Chapter 4

Border Detection

4.1 Introduction

Border detection (lesion segmentation) is one of the crucial components of a melanoma

detection system. Development of and effective and accurate lesion segmentation al-

gorithm is very important to separate the lesion (mole) from the healthy part of the

skin. The result of this step could impact the rest of processing (feature extraction

and classification). However, implementation of an accurate lesion segmentation

algorithm is challenging due to various conditions such as human skin colour vari-

ations, hairy skins, light illumination, uncontrolled image acquisition such as light

illumination and etc. A number of border detection algorithms for segmentation

of PSLs, based either on dermoscopy or clinical images have been developed, as

discussed in Chapter 2.5.2. In this chapter, three different approaches for border

detection of skin lesions are presented: a) using edge detection; b) using colour fea-

tures; and c) using Convolutional Neural Networks. In the first section, we evaluate

several edge detection methods. In addition, a framework for the development and

implementation of a border detection technique as applied to a melanoma CAD sys-

tem on an embedded system is discussed. Then, we propose a colour-feature-based

method for border detection in order to improve the accuracy of the border de-

tection. Finally, a novel lesion segmentation method using a Convolutional Neural

Network, which addresses illumination correction and hair removal in the processing

step is discussed.

49



4.2 Border Detection Using Edge Detection

This section presents a basic border detection system developed and implemented

on a ZYNQ-7000 SoC, using the VIVADO High Level Synthesis (HLS) tool. We

take advantage of accelerating an embedded system design on a single SoC, which

offers the required features for real-time processing of skin cancer images. Several

edge detection approaches (more information about these techniques can be found in

[113]) have been investigated and implemented on ZYNQ-7000 for border detection

of skin lesions, which can be used in the early diagnosis of melanoma. The results

show better performance than other reported methods. Performance evaluation of

this approach has shown a good processing time of 60 (frame per second) fps for

real-time applications.

4.2.1 Methodology

Figure 4.1 presents the flowchart of the algorithm used for border detection. First,

the RGB-colour image is converted to a Hue-Saturation-Value (HSV) colour space.

We analysed two colour spaces such as HSV, and RGB in order to find the optimal

colour channel (Table 4.1 provides more information about this analysis). The

Value channel (V) of the HSV colour domain was the optimal channel for this

application. A median filter is applied in order to enhance the accuracy of lesion

segmentation. This is helpful to smooth existing noise and unwanted artefacts within

the image. The pre-processing step is done using morphological filters such as erosion

and dilation over the image to remove hairs and other artefacts such as ruler markers.

Then, edge detection is applied to detect the outline of the skin lesion following

histogram thresholding. However, it was observed that the images used in our

experiment did not include many hair artefacts. Edge detection algorithms are

used in image analysis with the aim of detecting boundaries between objects and

the background in grey level images. Although there are many approaches to edge

detection and object recognition in medical imaging, the calculation of the gradient

level value for each pixel using a matrix of neighbouring masks and comparison of

this value with a given threshold is a common approach. If the calculated value is

greater than the threshold, the pixel is grey as an edge.

Edge detection is the a set of mathematical operations that is widely used in

image processing with the aim of detecting points in an image where the bright-

ness changes. Although there are many approaches for edge detection in image

processing and machine vision realm, the calculation of the gradient level value for

each pixel using a matrix of neighbouring masks and comparing this value with a

given threshold, is a common approach. If the calculated value is greater than the
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threshold, the pixel is grey as an edge.

4.2.2 Extending Edge Filters

In this study, Sobel, Kirsch, Prewitt, LoG and Canny edge detectors were chosen

for border detection of skin cancer images. It was found that 3 × 3 filters, which

are normally used in edge detection methods, are extremely localised. For better

performance, the extended edge operators (5 × 5 filters) are used to cover more

surrounding pixels [190]. The process involves convolving two 5 × 5 kernels with a

matching 5× 5 portion of a two-dimensional image. The purpose of convolving the

kernels (edge operators) with the digital image is to compute an approximation of

the derivative; one for horizontal, and one for vertical. The resulting derivative gives

an approximation of the gradient of the image at that point. This in turn indicates

an edge, where the gradients change. The abruptness of this change is measured

against a threshold. If the resulting convolution is greater than the threshold then

it is deemed to be an edge. The actual kernel values for edge detection operations

are set out in the following. It can be seen that one kernel is simply rotated by 90

degrees. The Sobel operator deploys two kernels which are convolved with input

image, which can be used to calculate vertical and horizontal changes. These 3× 3

kernels can be obtained by the equation (4.1).

Gx =

−1 0 1

−2 0 2

−1 0 1

 , Gy =

 1 2 1

0 0 0

−1 −2 −1

 (4.1)

Figure 4.1: Flowchart of the border detection algorithm.
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Above Gx and Gy Kernels can be extended to 5 × 5 masks as shown in equation

(4.2) [190].

Gx =


2 2 4 2 2

1 1 2 1 1

0 0 0 0 0

−1 −1 −2 −1 −1

−2 −2 −4 −2 −2

 , Gy =


2 1 0 −1 −2

2 1 0 −1 −2

4 2 0 −2 −4

2 1 0 −1 −2

2 1 0 −1 −2

 (4.2)

The Kirsch operator is the another technique that can be used for edge detection.

The vertical and horizontal masks of this operator can be obtained using two 5× 5

masks (Gx and Gy) which are provided in equation (4.3) [190].

Gx =


9 9 9 9 9

9 5 5 5 9

−7 −3 0 −3 −7

−7 −3 −3 −3 −7

−7 −7 −7 −7 −7

 , Gy =


9 9 −7 −7 −7

9 5 −3 −3 −7

9 5 0 −3 −7

9 5 −3 −3 −7

9 9 −7 −7 −7

 (4.3)

The Canny edge detector is another approach to find the edges in images using a

Gaussian filter to reduce noise when the raw image is convolved with this filter [191].

Equation (4.4) provides the masks for 5× 5 Canny edge detection [192].

Gx =


−1 −1 0 1 1

−2 −1 0 1 2

−2 −2 0 2 2

−2 −1 0 1 2

−1 −1 0 1 1

 , Gy =


−1 −2 −2 −2 −1

−1 −1 −2 −1 −1

0 0 0 0 0

1 1 2 1 1

1 2 2 2 1

 (4.4)

The second-order gradient Laplacian of Gaussian (LoG) edge detector can be used

by convolving the LoG filter with the image [193]. Equation (4.5) provides the

related 5× 5 mask for an LoG filter [194].

Gx =


0 0 −1 0 0

0 −1 −2 −1 0

−1 −2 16 −2 −1

0 −1 −2 −1 0

0 0 −1 0 0

 (4.5)
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And finally, vertical and horizontal kernels of a 5×5 Prewitt edge detection operator

are provided in equation (4.6) [190].

Gx =


2 2 2 2 2

1 1 1 1 1

0 0 0 0 0

−1 −1 −1 −1 −1

−2 −2 −2 −2 −2

 , Gy =


2 1 0 −1 −2

2 1 0 −1 −2

2 1 0 −1 −2

2 1 0 −1 −2

2 1 0 −1 −2

 , (4.6)

4.2.3 Hardware-Software Implementation On The Proposed

System

As discussed in Chapter 3, we propose using the ZYNQ-7000 SoC to create our

portable solution for melanoma detection. One of the main advantages of this plat-

form is that its FPGA side is totally reconfigurable. Therefore, the suggested imple-

mentation can be modified or changed if required. In this thesis, we investigated the

edge detection method using high-resolution images to show the feasibility, power

and real-time speed of this platform for implementation of border detection as a

computationally expensive task of image processing. It should be noted that im-

plementation of the other methods that used/proposed in this thesis (such as deep

learning and classification) on Embedded systems is part of the future work the area.

Figure 4.2 shows the block diagram of the proposed system that was implemented

on the ZYNQ-7000.
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Figure 4.2: The block diagram of the proposed system including border detection
IP implemented on ZYNQ-7000.

An image processing pipeline consists of several predefined XILINX video In-

tellectual Property (IP) cores such as defective pixel removal, de-mosaic, colour

correction matrices. An IP in FPGA or ASIC contexts is a reusable building blocks

or chip layout design that can be used in different system on chip designs. In order

to generate the border detection IP, we first used OpenCV functions to evaluate

the proposed algorithms and then VIVADO HLS software was used to convert C

to synthesizable FPGA codes automatically. Additional IPs such as feature extrac-

tion and image classification can be developed and added to the system for the skin

cancer detection application.

Unlike the traditional FPGA design flows, HLS can improve design quality, ac-

celerate the design and verification tasks by applying optimal synthesis directives

to transform C/C++/SystemC code specifications to register transfer level (RTL)

implementation [151, 161]. Although C code is used for implementation of the

algorithm, several directives such as DataFlow, memory/interface, and for loop op-

timizations [184] are applied to obtain the required performance and area utilization

in the programmable logic. Functional verification of the edge detection IP is done

using C++ test benches to significantly reduce the development time during the

functional verification stage.

The proposed method was implemented and tested on the processing system
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of a ZYNQ-7000 (ARM processor) using the original OpenCV functions. Due to

the low speed performance of the processor, the same algorithm was implemented

on the FPGA side of ZYNQ using VIVADO HLS and XILINX Video Library. It

should be noted that the current version of the VIVADO HLS tool takes advantage

of a limited number of synthesizable OpenCV functions which are used to develop

the border detection IP. Figure 4.4 illustrates the border detection result applied to

clinical images. The output results tested on a ZC702 evaluation board achieved

the same imaging results as an ARM processor, with a higher speed of 60 fps.

Although C code is used for implementation of the algorithm, several directives

such as DataFlow, memory/interface, and loop optimisations are applied to achieve

the performance requirement and area utilisation in the PL. Functional verification

of the edge detection IP is done using C++ test benches. In this project, I used

BMP skin images as an input and verified the functionality of the code in one en-

vironment directly. This feature significantly reduced the development time during

the functional verification stage. In addition, Figure 4.3 shows the IP generated

using the VIVADO HLS, which performs edge-detection in real-time (60 fps).

Figure 4.3: Block diagram of implemented border detection IP using VIVADO HLS.

4.2.4 Experimental Result

Figure 4.4, shows the result of applying the lesion border detection IP that match

the detected border on the original input image.
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Figure 4.4: Border detection results. a) Original clinical images, b) Result of border
detection using VIVADO HLS, c) Matching the detected border on the original
image.

Furthermore, the results for Sobel, Kirsch, LoG and Canny edge detection imple-

mentations are compared. Table 4.1 shows the accuracy of edge detection measure-

ment using the Jaccard index as presented in equation (4.7). The Jaccard similarity

coefficient score, also known as the Jaccard index, is a metric that is used for com-

paring similarity and diversity in samples of data. This coefficient can be used to

calculate accuracy by measuring the similarity between the segmented image (ob-

tained by applying the algorithm) and the ground truth image. In this study, the

ground truth images are obtained manually by excluding the lesion area from the

normal skin. The Jaccard index can be expressed as the size of the intersection

divided by the size of the union of the sample set from the following equation:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B||

|A|+ |B| − |A ∩B|
(4.7)

where 0 ≤ J(A,B) ≤ 1. In equation (4.7), |A ∩B| is the intersection and |A ∪B|
is the union of two sets of A and B.

This measurement is obtained by applying an edge detection operation on each

channel of the HSV, RGB colour components. The testing accuracy is obtained
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using 52 most challenging images that we had in the dataset (not all images). The

results show that the extended 5× 5 Canny edge detection (applied on V channel)

achieved an accuracy of 65.32% and performed better than other methods. Note

that we normalised the result values to be between 0 and 100.

In addition, we implemented this algorithm on the ZYNQ-7000 board using

HLS VIVADO tool. In order to analyse the power of processing of this platform, we

tested the edge detection algorithm using a real-time video stream with high quality

resolution (1980 x 1820 pixels) with the following options:

1. Implementation of the generated IP on FPGA side.

2. Implementation of the C++ source code on programming side (ARM proces-

sor).

The generated IP was able to process the input image in high-resolution quality

with real-time speed on FPGA side. The average of processing time on FPGA side

was 90 frame per second (fps) using a video file with 1900 pixel wide and 1200 pixel

height. However, the ARM processor (Software side) performed the same algorithm

with the same input with the average speed of 20 fps (implementation was vectorised

(SIMD)).

4.3 Border Detection Using Colour Features

In section 4.2, we discussed use of edge detection for finding the borders of skin

lesions. However, we realised that the accuracy of this method was not promising.

In this section, we propose a semi-automated algorithm to increase the accuracy of

lesion segmentation. This method investigates the power of the colour features of a

clinical image and then uses clustering classification to assign labels to each pixel of

the image. This method enables the user to select a small subset of the lesion and

Table 4.1: Accuracy of edge detection algorithms for border detection.

Edge Detector H S V R G B

5× 5 LoG 22.44% 16.92% 51.30% 31.95% 29.92% 30.14%
5× 5 Kirtch 19.31% 17.92% 52.45% 34.19% 32.15% 33.01%
5× 5 Sobel 17.15% 18.97% 58.39% 56.86% 53.32% 55.98%
3× 3 Sobel 16.52% 16.02% 55.65% 50.15% 47.36% 49.32%
3× 3 Canny 15.31% 17.19% 61.51% 53.15% 49.53% 52.11%
5× 5 Prewitt 19.83% 18.31% 62.97% 54.34% 53.13% 55.91%
5× 5 Canny 24.23% 21.18% 65.32% 58.65% 54.39% 59.46%
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specify the foreground lesion area. The proposed method consists of the following

steps:

1. Pre-processing: the pre-processing step is performed to enhance and correct

undesirable features remaining after image acquisition. The presence of arte-

facts such as hairs, ruler marks, shadows and variable illumination in clinical

and dermoscopy images may affect lesion segmentation and result in an in-

accurate diagnosis. Previous algorithms for pre-processing images for lesion

detection can be generally categorised into artefact removal, shade removal

and illumination (colour) correction. There are popular algorithms for hair

removal such as Dullrazor [70]. Our image dataset includes a limited num-

ber hairy images and we used Dullrazor hair removal algorithm for removing

hairs from our images. In addition, in the present study, we simply adopted

the approach proposed in [87] for shading effect enhancement as our image

dataset included shade effects. The conventional RGB was converted to the

HSV domain and then Equation (4.8) was applied to the Value (V) channel

in order to improve the highlight effects present in the images. Equation (4.8)

is used for shading attenuation:

New V (x, y) =
V (x, y)

M(x, y)
(4.8)

where V (x, y) is the Value channel of HSV image, M(x, y) is the image ob-

tained by morphological erosion of V (x, y) (a disk = 20 is used for the structur-

ing element of morphological operation) and (x, y) represents the pixel point.

Figure 4.5 shows the result of illumination correction. Following the pre-

processing step, the input RGB image is converted to Lab colour domain.

2. Select a small subset (rectangular) by manually clicking as the region of interest

(ROI) inside the lesion (binary mask = ROI).

3. Assign the normal skin area (background) by complementing the ROI.

4. Extract the mean value of colour intensities (based on Lab colour image) from

both the ROI (lesion) and background pixels.

5. Apply clustering classification using the K nearest neighbour (kNN) (K=3)

algorithm using the extracted mean value of colour intensities and assign image

pixels to lesion and background classes.

6. Applying morphological operations (dilation and erosion) for smoothing and

removing unwanted artefacts to obtain a clean mask.

7. Remove objects that touch the frame border of the image. The main idea

behind applying this operation is that generally a lesion is positioned in the
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middle of a clinical image; remaining objects such as ruler markers or shading

effects are generally located near the frame boundary of the image.

8. Multiply the original image to the created mask to obtain the segmented lesion.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 4.5: Example of images including shading and illumination issues; (a-
d):original image and (e-h) corrected images.
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4.3.1 Experimental Results

Figure 4.6 shows the results of the pre-processing and border segmentation phases.

It indicates that using the proposed method the border of the lesion is well de-

tected (Figure 4.6 (d)) compared with the threshold based (edge detection) lesion

segmentation discussed in Section [4.2] (Figure 4.6 (c)).

Figure 4.6: Result of proposed border detection method using colour features; a)
original image, b) applying preprocessing (hair removal and shade correction), c)
result of edge detection method proposed in Section 4.2, d) result of the proposed
method.

A dataset of clinical images containing 150 images; 70 melanomas and 80 benign

nevi was used for evaluating the accuracy of the lesion border detection. Ground

truth images were determined manually for each image. The Tanimoto coefficient

(Equation (4.9)) of similarity [195] was used to evaluate the accuracy of proposed

method using the following equation:

TC(A,B) =
C

A+B − C
× 100 (4.9)

where A is the total number of pixels in the ground truth image, B is the total

61



number of pixels in the segmented image and C is the total number of pixels that

are common in both A and B. For each image, the TC index between the ground

truth and the proposed method, were computed for all images. The mean TC’s

value of the proposed algorithms are compared with two other methods presented

in [79, 108] using same testing image dataset and listed in Table 4.2. However, it

should be note that the algorithms presented in [79, 108] are based on histogram

thresholding. The difference in these approaches is mainly the method proposed for

illumination correction.

Table 4.2: Comparison of the accuracy of the proposed system with two other
methods.

Method Accuracy

Our Method 89.32%

Cavalcanti [108] 71.87%

Glaister [79] 82.35%

In addition, the visual results of using the proposed border segmentation are

illustrated in Figure 4.7. It can be seen that using this method the lesion’s border is

well detected in spite of the fact that other objects such as artifacts may exist. For

example, in Figure 4.7-(a), it can be seen that there are ruler markers as well as a

logo; however, the border is detected without the need to remove these objects. This

is the main advantage of this method compared with edge-based border detection.

However, the main issue with the proposed method is that it is a semi-automated

application.

In addition, we investigate the accuracy of this method via Jaccard index and

the same testing image dataset used for edge-based border detection. The proposed

method achieved the accuracy of 80.23% and the experimental result showed that

the suggested method can be used as a proper lesion detection tool in a practical

CAD system for melanoma detection.

4.4 Lesion Border Detection Using Deep Learn-

ing and Convolutional Neural Network

The accuracy of the algorithm proposed in previous section was relatively high; but

there are two main issues with this algorithm:

1. When applied to photographs including illumination reflectance from the skin
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Figure 4.7: Result of applying the proposed method: Lesion border detection re-
sults by applying the proposed method, (a) and (c-f): malignant melanoma; (b):
Seborrheic Keratosis; (g-i): benign nevus.
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surface, any part of the healthy skin that is darker will be segmented as part

of the lesion, resulting in an inaccurate segmentation.

2. The proposed method is a semi-automatic approach, meaning that the user

needs to select a region of interest (a part of the lesion area).

Therefore, reflected illumination from the skin surface can affect the border detec-

tion result. The existing general illumination correction algorithms are not useful

when applied to skin lesion images. In this work, we proposed a novel automatic

method that uses Convolutional Neural Networks (CNN) for lesion border detection

in clinical images. To the best of our knowledge, this method has not been applied

to border detection in clinical images so far. The main advantage of the proposed

method is that no pre-processing algorithm (such as hair removal or illumination

correction) is required, unlike previous border detection methods.

4.4.1 Convolutional Neural Networks (CNN)

CNNs are a category of feed-forward artificial neural networks [196, 197]. In this

approach, each neuron responds to an overlapping region in the visual field of view.

CNNs are a variation of Multilayer Perceptrons (MLPs) and were inspired by the

biological process of the human brain. These methods are used in the context of

machine learning as well as machine vision, requiring a minimal amount of pre-

processing e.g. object recognition [198].

CNNs are trainable architectures that consist of multilayers of small neuron

groups that investigate small pieces of the input image, named receptive fields.

The results of these small pieces are grouped in a way that they cover a good

representation of the original image. The input image and output of each layer are

collections of arrays called feature maps. In our method, the input is a colour (RGB)

image and the feature maps are two-dimensional arrays including a colour channel of

the RGB input. The feature map (in output) contains a feature which is extracted

from entire pixels in the input image. CNNs may consist of multiple layers at each

stage followed by a classifier. A key aspect of CNNs is the use of shared weight in

convolutional layers. In other words, the equal weighted filter is applied for each pixel

of feature maps in the layer, this decreases the required memory size and increase

the speed of processing [199, 200]. In addition, the network learns the filters or

features. Therefore, CNNs are less dependent on prior knowledge and sophisticated

hand-crafted features. Using learned features instead of hand-engineered features

for object classification is one the main benefits of CNNs. The four CNN layers are

described as follows:
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4.4.1.1 Spatial Convolutional Layer

One of the main features of CNNs is that the convolutional parameters in every filter

in a CNN are trained towards the back-propagation process, while traditional convo-

lutional kernels such as Sobel, Canny, LoG, Roberts and Prewitt contain particular

coefficients. In the convolutional layer, an arbitrary number of filters are applied to

the input image. For instance, in our design, the first layer includes sixteen 15× 15

filters. Each filter is convolved with the input image; therefore, the result of each

operation is a 2D image called the feature map. This procedure can be applied for

the next layer of the CNN as well. However, if the prior layer is convolutional, each

feature map is used as the input of the layer. These shared weights across the image

are used to detect features without considering their location. Convolving these

filters enables each filter to recognise different and distinctive features.

4.4.1.2 Rectified Linear Unit Layer (ReLU)

ReLU layer is one the state-of-the-art algorithms used in neural networks as an

alternative to traditional sigmoid function [201]. This non-saturating function in-

creases the non-linearity of the network in a way that the receptive fields in each

layers remain unaffected. One advantage of using ReLU function is that the network

trains significantly faster compared to sigmoid function.

4.4.1.3 Sub-sampling (pooling) Layer

The sub-sampling layer down-samples the input (size reduction). Several methods

have been widely used to sub-sample 2D arrays, including max pooling, average

pooling and stochastic pooling. In this work, we used max pooling in our CNN

design. Max pooling divides the input image into several non-overlapping rectan-

gular partitions and returns the maximum value of each sub-divided region. The

main advantages of using max-pooling are dimensional reduction, and the fact that

it enables the networks to become translation invariant for object recognition.

4.4.1.4 Fully-Connected Layer

The final layer in a CNN is the fully-connected layer, which connects all single

neurons from the previous layers. This layer behaves similarly to a traditional

classifier such as an MLP classifier. The 2D outputs from the previous layer are

reshaped to one-dimensional before applying the classification process.
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4.4.2 Experimental Result

4.4.2.1 Training and Testing Dataset

In order to train the network, we created a large dataset from our initial image

dataset (described in previous section), with two main classes labelled as lesion

and background. The background class includes normal skin (with hairs and ruler

marker artefacts) and the lesion class contains lesion images. The training dataset

contains 480 lesion and 1200 background images. The testing image set is same as

the dataset used in previous section.

Given that lesions in a clinical image dataset are multi-scale, the main issue in

using a CNN for lesion segmentation was that the window sizes of convolutional

layers are fixed; therefore, the first layer may not see the entire lesion in the kernel

window when sliding filters on the input image. In order to overcome this issue,

we divided each image into 50 × 50 image patches and labelled each tile (patch) as

lesion or background. No other pre-processing method, such as hair or ruler-marker

removal, or colour/illumination correction was done during training.

4.4.2.2 Experimental Setup

In this experiment, our model is detailed as follows.

The first layer consists of:

• Spatial convolution layer: input is a 2D image (3 channels of dimension 50×50

of RGB input); it outputs 16 feature maps of dimension 36× 36 (filter size is

15 × 15);

• Spatial Max-pooling layer which down-samples the 16 feature maps to a di-

mension of 18× 18;

• ReLU non-linearity function.

The second layer consists of:

• Convolutional layer: input is 16 feature maps. It outputs 64 feature maps

with a size of 5 × 5 (filter size is 14 × 14);

• Threshold;

• ReLU non-linearity layer.
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a) lesion samples

b) skin samples

Figure 4.8: Sample of training image dataset.
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The final layer consists of:

• Convolutional layer: input: 64 feature maps, output is 128 feature maps with

dimension size of 1× 1 (filter size is 5 × 5);

• ReLU non-linearity function.

Table 4.3 summarise the detail of the architecture of the trained network.

Table 4.3: Architecture of the CNN network used for training in our experiment

CNN layer 1 2 3

# channels 16 64 128

Filter Size 15× 15 14× 14 5× 5

input size 50× 50 18× 18 5× 5

The output of the third layer including 128 channels of 1×1 array is connected

to a MLP classifier. The MLP classifier contains 64 hidden layers and its output is

a binary number (0 as the lesion and 1 as the background). In order to apply the

proposed method to a large image (e.g. 460 × 380), the algorithm scans each 50

×50 block of the input image and assigns a label to each block. The output of the

algorithm is a binary mask labelling the segmented lesion with a smaller size than

the original input image. Therefore, in order to lay the labelled segmented mask

over the original images, it should be resized.

4.4.2.3 Results

Figures 4.9, 4.10 and 4.11 show the results of applying the trained network. Results

show that the lesion is well detected in each image (see the second columns in Figures

4.9, 4.10 and 4.11). However, it can be seen that the initial segmented area is larger

than the size of the lesion and the lesion borders are not detected accurately. The

main reason is due to selecting a larger size of filter for training the CNN. However,

if we change the size of filters to a smaller size, we need to increase the number

of layers of the CNN which produces a tiny mask at the output. This issue causes

to generate a larger segmented lesion area after resizing with a low resolution. In

order to overcome this issue, it was necessary to smooth the border of the lesion by

applying a post-processing algorithm. We investigated different methods in order

to determine the border more precisely, including:

1. Kmeans clustering for lesion segmentation.
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2. Considering an active contour to detect the edges of the lesion using the initial

mask obtained from the network.

3. Segmentation based on thresholding methods: Otsu’s thresholding.

4. Interactive segmentation using the method proposed in [94].

5. Applying morphological operation: dilation filter by a disk (r=15) on the

initial mask.

Based on our experiments, the best result was achieved by applying morphological

operations (closing operation). We also tried to test the most challenging images

mentioned in [79] for segmentation. The proposed method achieved an accuracy of

86.67% using the same image dataset used in Sections 4.2 and 4.3. Figures 4.9 , 4.10

and 4.11 show the visual results obtained by applying the proposed CNN method

based on the most challenging clinical images without using any pre-processing

method.

Figure 4.9: Result of the proposed method: (a), (d), (c) and (d) rows: the 1st
column is the original images; the 2nd column is the initial result of CNN and the
3rd column is the output of CNN after post-processing.
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Figure 4.10: Result of the proposed method: (a), (d), (c) and (d) rows: the 1st
column is the original images; the 2nd column is the initial result of CNN and the
3rd column is the output of CNN after post-processing
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Figure 4.11: Result of the proposed method: (a), (d), (c) and (d) rows: the 1st
column is the original images; the 2nd column is the initial result of CNN and the
3rd column is the output of CNN after post-processing.
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4.4.3 Summary

The effect of applying morphological filters and edge detection algorithms to skin

lesion images in order to detect the borders of PSLs is discussed with reference to the

use of a ZYNQ-7000 single SoC. The results show that the extended 5×5 Canny edge

detection implemented on the proposed embedded platform performed better than

other reported methods. It can segment the lesion, which is an important step be-

fore image analysis and feature extraction for melanoma detection. Moreover, using

C-to-FPGA technology and VIVADO HLS software, we can increase the produc-

tivity and performance of the system compared with current FPGA programming

approaches. However, there is a trade-off between strong edge detection and noise,

as is apparent when comparing the Sobel and Prewitt operators. It was found that

pre-processing of the image may, in some circumstances, result in less noise in the

output. Synthesizing the IP used in this application allows a real-time result. This

is achieved by the fact that the edge detection IP is working in parallel for RGB

images. The throughput is achieved by running processes in parallel rather than all-

out speed. Employing other optimisation techniques for image analysis can enhance

performance. The advances in high-definition media in recent years, the develop-

ment of high-speed embedded systems and the growth of applications in health-care

systems provide the opportunity to revolutionise skin cancer diagnosis. In this work,

using state-of-the-art FPGA technology as an example, we implemented the funda-

mental image processing algorithms on an SoC and demonstrated rapid processing

power that supports such a transition.

In this chapter, a semi-automatic border detection method was also proposed and

the accuracy of the algorithm was compared with two other methods. The proposed

method achieved an accuracy of 80.23% (Jaccard index) and the experimental result

showed that the suggested method can be used as a proper lesion detection tool in a

practical CAD system for melanoma detection. However, the main drawback within

this method is that it is user-dependent and performs semi-automatically.

Finally in this chapter, a CNN-based method was proposed for as our preferred

border detection algorithm. The experimental results of this study show that le-

sion borders can be detected for lesion segmentation of challenging clinical images

without applying a pre-processing step such as hair removal and/or illumination

correction. The suggested method can be used as a proper lesion detection tool in a

practical CAD system for melanoma detection. It achieved an accuracy of 86.67%

(using Jaccard index). The following chapter discusses the methods used for feature

extraction and the feature selection algorithms we used in this study.

The following chapter discusses the methods we use for feature extraction and

feature selection algorithms we used for this study.
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Chapter 5

Feature Extraction and Feature

Selection

5.1 Introduction

Development of an accurate and efficient CAD system is necessary for a practical

diagnostic process. A CAD system for melanoma diagnosis consists of several stages;

image acquisition, lesion border segmentation, feature extraction, feature selection,

and classification. Lesion border detection was discussed in the previous chapter.

This chapter presents the algorithms that we used for feature extraction, and

feature selection. First, it presents the goal of the feature extraction algorithms

that are used for the melanoma detection system. For feature extraction, the pro-

posed attributes are based on shape, colour and texture features. In addition, the

methodology for feature selection is discussed.

5.2 Feature Extraction

The aim of feature extraction is to estimate particular attributes and differentiate

one object pattern from another in the photographs. It is crucial to identify the most

robust and effective features to be extracted from skin lesions that will be used for

diagnosis of the melanoma by a classifier. In our case, feature extraction involves

measuring particular properties of the pixels of the segmented lesion. Several feature

extraction methods were found in the literature that applied to clinical images; these

approaches can be categorized into three groups: shape-based (geometrical features),

colour-based, and texture based.
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5.2.1 Shape Analysis

Geometrical features of the skin lesions can provide important information in the

diagnosis of melanoma. The main procedure for extracting shape features is the anal-

ysis of segmented masks, obtained from the border detection step. It is necessary

here to clarify exactly what is meant by shape features. Shape feature extraction

is a process in which a number of parameters from the binary mask of the seg-

mented lesion are calculated. The parameters measured for shape analysis included

area, perimeter, eccentricity, compactness, thinness, dispersion, circularity, kurtosis,

skewness, major and minor axis length.

Distance: Distance is a real-valued function of two image points, satisfying the

following properties:

d
{

(p1, p2)
}
≥ 0 (5.1)

d
{

(p1, p2)
}

= d
{

(p2, p1)
}

(5.2)

d
{

(p1, p2)
}

+ d
{

(p2, p3)
}
≥ d

{
(p1, p3)

}
(5.3)

where pi = (xi, yi) is the image pixel points. By calculating the distance param-

eter, we can define various parameters for shape features. The “Euclidean distance”

is one of the most common functions that is used in image analysis [202] by given:

dE =
[
(p1 − p2)2

] 1
2

(5.4)

Area: The area of each segmented lesion within an image can simply obtained by

counting the total number of pixels in the segmented lesion.

Perimeter: The perimeter of each object is equal to the total number of pixels

around the border of the segmented lesion starting at an random initial point and

returning to the initial point.

Circularity: To measure and quantify the asymmetry of the lesion, a circularity

index can be calculated. This value can be obtained using the area (A) and perimeter
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(P ) of the skin lesion as:

Circ =
4πA

P 2
(5.5)

Major and Minor Axis Length: The major and minor axes are obtained by

measuring the distance of area between the two halves of the segmented lesion,

taking the major symmetry axis (Equation (5.6)) and the minor axis of symmetry

(by rotating the major axis by 90◦), where θ is the orientation of the major symmetry

axis [114].

tan 2θ =
2
∑n

i=1 xiyi∑n
i=1 x

2
i −

∑n
i=1 y

2
i

(5.6)

Following calculation of the major and minor axes, the binary mask is folded along

these two lines and the distance between the two halves of the lesion are measured

using XOR operation [114]. The asymmetry feature can be obtained by:

Asymmetry Index =
AD

A
× 100 (5.7)

where AD is the distance between the two halves [114].

Longest Diameter (LD): The length of the distance between two farthest border

points which passes across the lesion centroid (C), is the longest diameter [114]. This

parameter can be obtained by:

(xC , yC) =
(∑n

i=1 xi

n
,
∑n

i=1 yi
n

)
(5.8)

where n is the total number of pixels inside the segmented lesion, and (xi, yi) are

the coordinates of the ith pixel [114].

Shortest Diameter (SD): The distance between two closest border points which

passes across the lesion centroid [114].

Irregularity Index A (IrA):

IrA =
P

A
(5.9)

Irregularity Index B (IrB):

IrA =
P

LD
(5.10)
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Irregularity Index C (IrC):

IRC = LD − SD (5.11)

5.2.2 Colour-based Features

Colour analysis is one of the most important methods for analysing medical images.

In the skin image analysis field, typically the original RGB image is transformed

to different colour domains (e.g. HSV, CIELAB, YUV) in order to measure cor-

responding colour information from colour channels. Other image formats may be

superior for a specific application [128].

Colour moments can be used as colour features in image processing. Colour

moments estimate the representation of colour distribution in an image and specify

a measurement for colour similarity between images. They are scaling and rotation

invariant and encode both shape and colour information for feature extraction. In

image processing, colour moments are measured per channel (e.g. nine moments for

an HSV image). Computation of colour moments of an image can be interpreted in

a similar manner on the basis of probability distributions (e.g. normal distribution).

Mean: The first colour feature is the average colour in an image, and it can be

measured by:

Ei =
N∑
j=1

1

N
Pij (5.12)

where N is the total number of pixels of the image and Pij is the intensity value of

the jth pixel at the ith channel of the image.

Standard Deviation: The standard deviation is the second colour feature and

can be obtained by taking the square root of the variance of the colour histogram

[203].

σi =

√√√√ 1

N

N∑
j=1

(Pij − Ei)2 (5.13)

where Ei is the mean value (the first colour feature) of the ith colour channel plane.

Skewness: The third colour feature is the skewness and determines the asym-

metrical distribution the colour histogram for each colour channel.Thus, it provides
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information about the shape of the colour distribution [203]. Skewness can be ob-

tained by the following equation:

si = 3

√√√√ 1

N

N∑
j=1

(Pij − Ei)3 (5.14)

Kurtosis: Kurtosis is the fourth colour features, and it also provides information

about the shape of the colour distribution. However, Kurtosis determined that “how

flat or tall the distribution is in comparison to normal distribution” [203].

ki = 4

√√√√ 1

N

N∑
j=1

(Pij − Ei)4 (5.15)

Energy: This descriptor is considered based on gray-level distribution. The max-

imum value is where the image contains a constant value and is defined as follows:

Energy =
r−1∑
i=0

c−1∑
j=0

{
P (ij)2

}
(5.16)

where r and c denote the number of rows and columns respectively.

Colour Distribution Entropy (CDE): This colour feature is proposed to mea-

sure colour spatial details in an image [204]. It is defined based on a Normalised

Spatial Distribution Histogram (NSDH) and entropy measurement [205, 206]. Ai is

considered as the set of pixels with colour bin i of a channel of an image and |Ai| is

the number of elements in Ai. Ci and ri are the centroid and the radius of colour

bin i, respectively. Therefore, N concentric circles can be drawn when jri
N

is the

radius for each 1 ≤ j ≤ N . Besides, |Aij| is the count of the pixels of colour bin

i inside circle j. Thus, the annular colour histogram can be written as (|Ai1| ,|Ai2|
,· · · , |AiN |) [206] (Figure 5.1).
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Figure 5.1: Annular Colour Histogram[206]

Considering the Annular Colour Histogram, the NSDH is computed as Pi and

Pij:

Pi = (Pi1, Pi2, · · · , PiN) (5.17)

Pij =
|Aij|
Ai

(5.18)

thus the CDE of the colour bin i is equal to:

CDE = −
N∑
j=1

Pij log2 Pij (5.19)

5.2.3 Texture-based Features

Texture analysis is a technique for extraction and analysis of shape and spatial

structure of images such as smoothness, coarseness, roughness and regular patterns.

In this study, texture features were extracted from the grey level co-occurrence

matrix (GLCM). The GLCM (also referred to as the second-order histogram,) is

a statistical approach that uses measuring of co-occurrence probabilities based on

spatial relations of gray level pixels in different angular directions. The GLCM is

calculated from the segmented lesions and created by averaging different orientations

matrices (angles of 0, 45, 90 and 135 degree). The distance is the pixels between

the pairs of pixels that are used for the second-order statistics, and the angle refers

to the angle between the pixel pairs.

Mathematically, the co-occurrence matrix is obtained by:

C∆x∆y(i, j) =
m∑
p=i

n∑
q=j

 1, if I(p, q) = i and I(p+ ∆x, q + ∆y) = j

0, otherwise
(5.20)
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where C is the co-occurrence matrix for a m × n image, i and j are the image

intensity of image I, p and q are the pixel points. In addition, the offset of the

image is denoted by ∆x and ∆y which is depended on the direction of θ and the

distance where the matrix is computed d [123].

Numerous features have been proposed via the above-mentioned method, but in

this work, five of the most powerful features are used: energy, inertia, correlation,

inverse difference and entropy [207]. We extracted these features based on segmented

RGB images. We used the average of these features for the four angles, where Cij

is considered as the element of the co-occurrence matrix and is normalised by the

number of pixel pairs in the matrix. The features are as follows:

Energy: is related to homogeneity (smoothness) and is obtained by calculating

the distribution among the grey levels.

Energy =
∑
i

∑
j

C2
ij (5.21)

Inertia: is a parameter to calculate the contrast.

Inertia =
∑
i

∑
j

(i− j)2Cij (5.22)

Correlation: is a parameter to find the similarity between pixels at the defined

distance.

Correlation =
1

σxσy

∑
i

∑
j

(i− µx)(j − µy)Cij (5.23)

where:

µx =
∑
i

i
∑
j

Cij (5.24)

and:

µy =
∑
j

j
∑
i

Cij (5.25)

and:

σ2
x =

∑
i

(i− µx)2
∑
j

Cij (5.26)

and:

σ2
y =

∑
j

(j − µy)
2
∑
i

Cij (5.27)
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Inverse Difference: Inverse difference moment is the measure of local homogene-

ity of the texture and is defined as:

Inverse Difference =
∑
i

∑
j

Cij

1 + (i− j)2
(5.28)

Entropy: this factor provides a measurement for the content of the texture.

Entropy = −
∑
i

∑
j

Cij log2Cij (5.29)

5.3 Feature Selection

Feature selection is an approach for distinguishing the optimal feature set in a

dataset to be used by a classifier. This approach is placed between feature ex-

traction and classification. Feature selection reduces the number of features that

are less dominant while preserving the most discriminating feature subset from the

initial dataset created in the feature extraction step.

Typically, a feature selection algorithm is composed of four key components: the

subset generator, subset evaluator, stopping criterion and a result validation process

(Figure 5.2). The subset generator produces subsets according to a certain search

method. Each generated subset is then evaluated through the subset evaluator by

applying certain criteria. The performance of each subset is compared with the

previous best subset. This procedure is repeated until the best subset is obtained,

then it is stopped using the given stopping criterion. In the result validation step,

a new testing dataset is tested to validate the feature selection algorithm.

Feature subset selection (FSS) determines a reduced subset of features from the

original feature dataset. Feature ranking (FR), also known as feature weighting

(FW) evaluates features separately and assigns weights to each feature based on the

degree of relevance. The key aspects of using feature selection are:

• Increasing the accuracy of the classification system,

• Dimensionality reduction, thus less computational cost,

• Reducing the training time,

• Avoiding over-fitting issues which may occur in the classification process.
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Figure 5.2: Four key steps of a basic feature selection algorithm.

Feature selection methods are mainly divided into three different categories [208]

as follows:

1. Filter-based method: this method uses all features of the data as the input to

analyze the features and select the optimal feature subset(s) without consid-

ering any classification/learning algorithm.

2. Wrapper-based method: in this method, a learning/classification algorithm

is employed to search for features which improve the classification accuracy.

This method is more computationally expensive than the filter-based method.

3. Hybrid model: is a combination of the two above methods.

In this work, we used a correlation-based feature-selection (CFS) method to find

the optimal features. This method is a multivariate filter algorithm that evaluates

and ranks based on a correlation-based heuristic evaluation function [209]. This

algorithm evaluates the value of subsets of features to produce an optimal subset

based on the degree of redundancy between features. The generated subset should

include the features that have highest correlation with the class (label) and lowest

correlation with each other [209]. The CFS algorithm measures two main factors

called Merit and CFS Criterion to be used in an optimisation problem. The Merit

of a feature subset S containing k features is obtained by [210]:

MeritSk
=

krcf√
k + k(k − 1)rff

, (5.30)
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where k is the number of components, rcf is the mean value of all feature-class

correlation and rff is the mean value of all feature-feature correlation. The CFS

criterion is defined by [210, 211]:

CFS = max
Sk

[
rcf1+rcf2+···+rcfk√

k+2(rf1f2+rfifj +···+rfkf1
)

]
(5.31)

where the rcfi and rfifj are referred to correlation. The combination of equation

(5.30) and (5.31), which is a linear programming problem can be solved by using

the three optimisation algorithms described in [212].

We used Weka environment tool [213] for applying feature selection in this work.

The feature selection techniques used/described in this work such as CFS, filter-

based, wrapper-based and embedded-based are available in this tool. The experi-

mental result of applying feature selection algorithm is presented in Section 6.2.3.

5.4 Summary:

In this Chapter, we discussed general feature extraction methods that we used for

extracting melanoma detection. In addition, the purpose of using feature selection

and the method we use for feature selection are discussed. In the following Chapter,

we will present our proposed methods for image classification.
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Chapter 6

Classification

6.1 Introduction

Following the feature extraction and feature selection step, classification is applied

for the diagnosis of melanoma or benign nevi. Chapter 5 discussed feature ex-

traction and the selection algorithms used in this research. This chapter presents

the classification methods for melanoma detection, using the extracted and selected

features.

In Section 6.2.2, we compare the performance of five different classifiers in terms

of different sets of features (colour and texture attributes). In addition, a strategy

for improving accuracy is proposed.

Section 6.2.3 describes an experiment based on more comprehensive extracted

features (combination of shape, colour and texture features). After applying the

feature selection algorithm, the performance of nine different classifiers is assessed

in terms of their sensitivity, specificity and overall accuracy. A cascade architecture

including a rejection option is proposed for further improvement of the diagnostic

capacities and the reliability of the system.

Finally, we investigate the use of Deep Neural Networks based on CNN-based ar-

chitecture in order to investigate the feasibility of melanoma detection, using features

that learned directly from input images with/without applying lesion segmentation;

instead of applying traditional feature extraction algorithms.
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6.2 Classification Based on Feature Extraction

Supervised learning algorithms can be applied for melanoma detection. In the data

mining and machine vision contexts, supervised classification involves distinguishing

a function from labelled training data [214]. In supervised classifiers, each sample

of data should consist of both a vector of features and a label (e.g. melanoma = 1

and benign =0). A number of supervised classifiers that can be used for melanoma

detection are as follows:

• Support Vector Machine SVM: Support vector machines (SVMs) have

been commonly used as one of the most powerful classification algorithms

in the machine learning context. Up to now, a large number of experimen-

tal studies have analysed the accuracy and precision of SVM classifiers for a

wide range of biomedical applications and computer-based diagnosis systems,

e.g. oral cancer using optical images, polyp detection in computed tomog-

raphy (CT) colonography, micro-classification diagnosis from mammograms,

and specifically in melanoma detection from dermoscopy and clinical images

[76, 77, 114, 123, 125–127]. We have also used this classifier in our study. SVMs

are generally classified as supervised learning models; they perform classifica-

tion using a clear gap (functional margin) that is constructed from a set of

N-dimensional hyper-planes to classify the given data instances into known

classes [215]. An optimal classification can be obtained by the largest margin

with the largest possible distance to the nearest training-sample point of any

class; in practice the larger the margin, “the lower the generalization error of

the classifier” [216]. Linear SVM was introduced by Vapnik in 1963. However,

Vapnik et.al later proposed kernel-based functions to perform nonlinear clas-

sification, thereby fitting the optimal margin in a transformed feature space

[217]. The most widely used kernels are Linear, Polynomial, Gaussian or Ra-

dial Basis Function (RBF) and Sigmoid. In this study, we used RBF kernels

for training the SVM.

• K-Nearest Neighbours (KNN):

the KNN algorithm is a non-parametric approach that has been deployed for

classification and regression [218, 219]. This classifier predicts new cases based

on the similarity measure. Therefore, the input data is classified to the k clos-

est training samples. In other word, KNN assigns a class label by applying

a majority vote from its neighbours [220]. KNN algorithms are categorized

into instance-based learning, or lazy learning models and are “among the sim-

plest of all machine learning algorithms” [221]. In order to improve accuracy,

assigning weights to the contributions of the neighbours is a key point. There-
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fore, the nearer neighbour can contribute more to the average than the farther

neighbours.

• Naive Bayes: Naive Bayes NB classifiers (also known as simple Bayes and

independent Bayes) are a branch of simple probabilistic classifiers in which

Bayes’ theorem is applied using a naive independence assumption on feature

space. Naive Bayes classifiers have been studied widely since the 1950s. With

appropriate pre-processing, they are reported to be competitive in this domain

with more advanced methods including SVMs [222, 223]. In a learning prob-

lem, Naive Bayes classifiers are highly expandable, so that an equal number of

linear parameters is needed corresponding to the number of features variables.

• J48:is an implemented version of the C4.5 algorithm in the Weka data mining

tool. C4.5 is a classification algorithm that creates a decision tree based on a

set of labelled input data [224].

• Ensemble Classifiers: Ensemble classifier is a combination of individual

classifiers that are cooperatively trained on data set in a supervised learning

problem [225]. The main ensemble predictors are Bagging, AdaBoost (boost-

ing), Rotation Forest, Random Forest and Dagging.

– Bagging: is a multi-classifier method in which random sets of features

e.g. bootstrap aggregation, random decision forest or random number of

instances can used for this classifier.

– Dagging: is an ensemble classifier similar to bagging, which deployed

split subsets of the training data for the selected base learning algorithm

[213].

– Adaptive boosting: (AdaBoost) can produce a sequence of classifiers.

It can improve the performance of a weak classifier by dedicating a higher

weight to the classifier at each iteration to make examples currently mis-

classified more important. Then it combines the produced classifiers by

weighted classifiers to improve the accuracy. However, one disadvantage

of Adaboost is that it is sensitive to noise and outliers [226].

– Rotation forest: is another ensemble classification technique with the

aim of improving diversity. Principal component analysis (PCA) is ap-

plied to each randomly disjoint feature subset of the input data that has

been rotated [213]. This method can outperform several other ensemble

methods on some benchmark classification datasets [227, 228].

– Random Forest: is an ensemble classifier which grows a number of

decision trees. To classify an unknown image, each individual tree inde-

pendently classifies the given feature vector and the forest chooses the
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classification result with the most votes, over all the trees in the forest

[114]. Thus, the output of Random Forest is the class label which is the

statistical mode of the class output from individual trees. Random Forest

is a robust classifier in applications with noisy data, datasets containing

missing values, and high-dimensional feature vectors with highly corre-

lated features. These classifiers run efficiently on large datasets and can

operate with thousands of input variables [114].

6.2.1 Dataset

We used 220 clinical images (110 melanoma and 110 benign) in the training dataset

and 180 (90 melanoma and 90 benign) clinical images in the testing dataset. The

image dataset was collected from on-line web resources [17–21]. Each image was

cropped so that the lesion was located in the centre of the image and then each

sample was resized to 512 × 512 pixels. The dataset of non-melanoma images

included atypical (Compound, Junctional, Dermal, and Combined), Dysplastic, Se-

borrheic Keratosis, Blue Nevus, Congenital, Spitz, Halo and Neurofibromatosis. In

bioinformatics applications, over-fitting is one of the fundamental issues in super-

vised learning classification. This phenomenon occurs when a training set is used

as a fixed and small set of data rather than learning from a large amount of data;

therefore, the accuracy would be too optimistic [229]. In order to overcome this

issue, ten-fold cross validation was applied for training and testing of all classifiers

used in our experiments.

6.2.2 Proposed Method 1:

In this section, accuracy performance of five classification algorithms were assessed

based on using different feature sets. KNN (k = 10), Multi Layer Perceptron (MLP),

Naive Bayes (NB), Random Forest (RF) and Support Vector Machine (SVM) using

LibSVM (c = 14, Radial Base Function, γ = 0.08) were used and the accuracy of

each classifier was compared. In this experiment, the following feature sets were

used in order to find the best feature set among colour and texture features:

1. Combination of RGB colour and texture features (25 features),

2. Combination of HSV colour and texture features (25 features),

3. Combination of Lab colour and texture features (25 features),

4. RGB colour features (15 features),
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5. HSV colour features (15 features),

6. Lab colour features (15 features),

7. Texture features (10 features).

The Receiver Operating Characteristic (ROC) curve is a tool that widely used

for performance analysis of classification methods. ROC curve is a graphical plot

that shows the trade-off between sensitivity and specificity. The curve is created

by plotting true positive fraction (TPF), also known as sensitivity, against the false

positive fraction (FPF) or 1− specificity for different thresholds [230]. The area

under the ROC curve (AUC) is a commonly used factor that summarises the overall

performance of a classifier between two groups (disease or non-disease) [231]. The

measured AUC value is always between 0 and 1, so that a perfect classifier would give

AUC of 1 and a completely random predication would give AUC of 0.5. Therefore,

the greater AUC value (closer to 1) represents a better accuracy of a classification

algorithms [230, 231].

AUC can be estimated using parametrically or non-parametrically methods. In

a parametric method, the assumption is that the statistical distribution of the test

results in both population (disease or non-disease) is known. Binormal distribution

is a popular approach in this context and can be applied when test results follow

normal distribution. This method generates the smooth ROC curve [232].

In non-parametric method, the resulting ROC curve is called empirical curve

and obtained without any distributional assumption. The nonparametric estimate

of the area under the empirical ROC curve is given by summation of the areas of

the trapezoids formed by connecting the points on the ROC curve [232]. Several

non-parametric methods for calculating the area under empirical ROC curve and

their differences described in [233–235].

In addition to ROC analysis, measuring other performance factors such as sen-

sitivity, specificity and accuracy are important to test the ability of a classifier for

diagnosing a disease e.g. melanoma. For example, sensitivity determines how ac-

curate the test could be at estimating a disease. Specificity determines that how

correctly a classifier is to identify the patient without disease.

After performing the classification, performance of each classifier was calculated

by measuring the sensitivity (Equation 6.1), the specificity (Equation 6.2), overall

accuracy (Equation 6.3) and the AUC of the ROC based on ten-fold cross validation.

Sensitivity =
True Positives

True Positives + False Negatives
(6.1)
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Specificity =
True Negatives

Fulse Positives + True Negatives
(6.2)

Accuracy =
True Positives + True Negatives

All Instances
(6.3)

In this thesis, the open source software suite Weka for data mining and machine

learning [213] is used for performance analysis of the classification methods. Weka

uses the non-parametric Mann-Whitney statistic method to measure the AUC of

ROC curve [233] and the AUC is measured at the %95 confidence interval. In

statistics, confidence interval includes a range of values that implies as a proposer

estimation of an unknown population parameter [236]. The range calculated from a

particular dataset does not need to be obtained from the true value of the parameter

[237]. In the classification literature, confidence intervals are commonly given at the

%95 confidence interval [237].

Table 6.1 and Table 6.2 illustrate the performance comparison of five classifiers

based on different feature sets. Table 6.1 presents the results based on colour features

and Table 6.2 presents the results based on only Texture as well as combination of

texture and colour features at the %95 confidence interval. In overall, the AUC of

Random Forest (RF) was 85.6% and MLP classifier achieved AUC of 85.5% based

on combination of RGB and texture features. Besides, using HSV colour features,

RF achieved the ROC area of 85.4%. Moreover, the accuracy of these classifiers

were 78.5%, 79.7% and 76.9% respectively. However, distinguishing between these

classifiers is not proper as the differences are not statistical significant with %95

confidence interval.
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Table 6.1: Accuracy comparison of KNN, MLP, NB, RF AND SVM based on colour features.

1

RGB HSV Lab

Classifier SE SP ACC AUC SE SP ACC AUC SE SP ACC AUC

KNN 75.1 70.3 72.8 81.7 77.7 72 75 81.0 82.4 52.6 68.2 69.4

MLP 74.1 78.3 76.0 83.2 74.6 73.7 74.1 81.7 80.8 46.3 64.4 66.2

NB 76.7 71.4 74.1 78.6 78.2 76.0 77.1 81 81.3 49.1 66.0 67.9

RF 77.2 74.9 76.8 84.8 76.2 77.7 76.9 85.4 75.1 54.3 65.2 69.5

SVM 80.8 74.9 77.9 77.8 80.8 74.9 77.98 77.8 87.6 48.6 69.0 68.1

Table 6.2: Accuracy comparison of KNN, MLP, NB, RF AND SVM.

RGB + Texture HSV + Texture Lab + Texture Texture

Classifier SE SP ACC AUC SE SP ACC AUC SE SP ACC AUC SE SP ACC AUC

KNN 71.5 75.4 73.3 82.7 79.8 74.9 77.44 84.7 77.7 66.3 72.2 78.2 63.7 78.9 70.9 79.1

MLP 79.8 78.3 79.0 85.5 80.5 72.3 77.2 81.4 70.5 68 69.3 77.3 63.2 81.7 72.0 78

NB 72 76 73.9 79.8 43.3 85.1 63.3 75.9 78.2 62.3 70.6 76.8 66.3 75.4 70.6 75.5

RF 78.2 78.9 78.5 85.6 77.7 81.1 79.3 83.5 73.1 77.1 75 83.1 69.4 77.7 73.3 80.4

SVM 77.7 76 76.9 84.2 80.8 74.9 77.9 77.8 81.9 51.4 67.3 66.6 74.6 74.9 74.7 74.7

1SE is Sensitivity, SP is Specificity, ACC is Accuracy and AUC is the Area Under an ROC Curve
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Figure 6.1: Classification using proposed cascade classifier.

To further improve the performance of classification and diagnosis, we propose

a cascade classifier (Figure 6.1) as follows:

1. The input training images were divided into dataset1 and dataset2 using a

threshold filter. The filter controls the threshold value of two colour features:

entropy-S and entropy-V. Therefore, dataset1 had more non-melanoma images

(86 benign and 15 melanoma images) and dataset2 contained more melanoma

images (109 benign and 169 melanoma images).

2. An SVM classifier (SVM #1) using normalised HSV colour features (-1, 1)

was applied to dataset1 to classify images into melanoma and non-melanoma.

(HSV features were ranked the most effective features for SVM #1).

3. A second SVM classifier (SVM #2) using a combination of colour (RGB fea-

tures) and texture features is applied to dataset2. At this stage, a correlation-

based feature selection method (CFS) was used in order to find the most

effective features and nine features were selected (2 RGB, 2 texture and 5

HSV features).

Using the proposed cascade classifier, we achieved sensitivity of 76.7% and speci-

ficity of 84.6%, accuracy of 80.43% with ROC area of 88.4% using ten-fold cross

validation. Figure 6.3 includes the ROC curve for this classifier.
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6.2.3 Proposed Method 2:

Although a number of supervised learning algorithms have been applied to melanoma

diagnosis problems [8], there has been limited study of classification reliability and

interpretation of the classifiers’ outcome. Much of the current literature on image

classification including clinical and dermoscopic images pays particular attention to

producing an accurate classifier with minimum probable errors. In critical circum-

stances such as medical diagnosis (e.g. cancer detection or lesion segmentation) it

is important to assess the reliability of classification.

One key issue to overcome this concern is to set up a rejection option, which al-

lows the withholding of uncertain classifications via an additional decision expressing

doubt [227]. For instance, if the patient needs to be checked for malignant melanoma

via a smart phone (not by a doctor), it is useful to be able to reject a benign lesion

image in the first instance. When there is not sufficient confidence and the cost of

misclassification is high, the rejected instance can be referred on for specialist opin-

ion and more detailed examination. The effectiveness of a reliable system can be

exemplified when faulty lesion border detection occurs in the pre-processing stage.

A mis-segmented instance can represent an extra portion of normal background skin

due to the persistence of hair artefacts, light reflection on the lesion or combinations

of various other interferences.

In this section, nine classification algorithms including SVM, KNN, Random

Forest (RF), Decision Tree, Naive Bayes, J48, RBF Net, Fuzzy Rule, and MLP

classifiers were assessed for their performance using the extracted features. In this

experiment, we tested a combination of all extracted features. The following features

were extracted from the dataset:

1. Shape (geometrical) features based on the binary mask obtained from the

lesion segmentation task: area, perimeter, circularity, major and minor axis

length, longest and shorter diameter, Irregularity index (IrA,IrB and IrC) (10

geometrical features in total).

2. Colour features obtained based on RGB, HSV and Lab colour channels of the

segmented lesion. Colour feature extraction was performed on RGB, HSV and

Lab colour spaces by measuring the average, standard deviation, Skewness,

Kurtosis, and entropy of each colour channel (15 RGB, 15 HSV and 15 Lab

colour features, therefore 45 RGB features in total).

3. Texture features were extracted from the GLCM. Then the following features

were extracted: energy, entropy, correlation, inverse different moments, and

inertia (10 texture features).
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Following the feature extraction, the extracted features are selected based on

the CFS feature selection algorithm (described in Section 5.3). The output of the

feature selection step was a feature subset containing 51 features from the original

feature dataset (8 shaper features, 13 RGB features, 11 features, 9 Lab features and

10 texture features). Table 6.3 provides a list of the selected features.

Table 6.3: List of selected features using CFS method.

Shape features RGB features HSV features Lab features Texture features

area average-R average-H average-L entropy average

perimeter average-G average-S average-a energy average

circularity average-B average-V average-b inertia average

major std-R std-H std-L inertia range

minor std-G std-S std-a entropy range

longest std-B std-V skew-L correlation average

IrA skew-R kurtosis-V skew-b correlation range

IrB skew-G skew- H entropy-L inv-diff moment-1

- skew-B skew-V entropy-b inv-diff moment-3

- entropy-R entropy-V - inv-diff moment-4

- entropy-G entropy-S - -

- kurtosis-B - - -

- kurtosis-G - - -

After performing feature selection, classification is performed. In this experi-

ment, we compared the accuracy of nine classifiers in terms of their accuracy. The

accuracy of each classifier was assessed using the testing dataset as described in

Section 6.2.1 by applying ten-fold cross-validation. Table 6.4 shows the results ob-

tained from the test analysis. It compares nine classifiers in terms of average sen-

sitivity, specificity, overall accuracy and AUC of ROC curve based on 51 selected

attributes.
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Figure 6.2: Block diagram of the second proposed cascade classifier.

Table 6.4: Testing accuracy of nine different classifiers based on combination of all
features (64 features).

Classifier Sensitivity Specificity Accuracy ROC Area

MLP 76.2 72 74.18 81.5

SVM 79.8 72 76.08 85.7

KNN 80.8 77.7 79.34 80.4

RF 79.3 75.4 77.44 87.5

Decision Tree 75.1 72 73.64 78.6

NAIVE 77.7 74.3 76.08 80.3

J48 78.8 77.1 77.98 79.2

RBF Net 69.9 80.6 75 82.8

Fuzzy rule 74.1 75.4 74.72 79.9

Table 6.4 shows that ROC area of RF is the highest (AUC = 87.5%, ACC=

77.44%), followed by SVM (AUC = 85.7% and ACC = 76.08%). Figure 6.3 shows

the ROC curve plotted for SVM, MLP and RF.

Another cascade classifier is proposed in order to improve the classification ac-

curacy. Figure 6.2 shows the block diagram of the proposed system in which the

classifier uses two stages of classification. The first stage consists of nine single clas-

sifiers including MLP, SVM, KNN, Random Forest, Decision Tree, Naive Bayes, J48,

RBF Network and Fuzzy Rule. The result of each predictor is compared with the

others, and majority voting as an appropriate aggregator is used to reject or accept

the classified objects for further analysis. Accepted objects are those images that
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are aggregated by the committee if the majority of prediction is obtained from all

classifiers (five out of nine). Images with insufficient reliability, classified as rejected

ones, are used in stage 2 of the classifier. The purpose of the second stage is to make

better predictions on a smaller set, including the rejected instances, with the aim

of improving the accuracy and reliability of the system. Training dataset for the

second classifier included 95 images. Using Random Forest classifier for the second

stage, the proposed cascade classifier achieved the accuracy of 83.3%, sensitivity of

85.1%, specificity of 80% and AUC of 90%.

Figure 6.3 shows the ROC curves obtained for SVM, MLP and Random Forest as

well as the proposed cascade classifiers. It can be clearly observed that the second

cascade classifier (Cascade2) is the best performing one over much of the regime

with the higher area under the curve. However, Random Forest (RF) outperforms

Cascade2 for every small FPR on the graph. Therefore, depending on where on the

curve is the best place to picking the operating point, the accuracy of the Cascade2

might be better than RF or vice versa.

Figure 6.3: Five ROC curves for the proposed cascade classifiers (Cascade1 and
Cascade2), SVM, MLP and Random Forest (RF). Cascade2 classifier with the higher
area under ROC curve has a better performance over much of the regime than other
classifiers.
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6.2.3.1 System Implementation

In this section, the design process of the proposed cascade classifier using the KN-

IME tool is presented. KNIME is an open source data integration, processing,

analysis and exploration platform for applying classification algorithms [238, 239].

KNIME allows the integration and use of the Weka data mining library (version

3.7) [213] where all classifiers used in this study are available. The first stage of the

proposed cascade classifier was implemented using nine classifier algorithms. Each

classifier reads an equal dataset input from a file-reader node. SVM, KNN, random

forest, Decision Tree Learner, Naive Bayes, J48, RBF Net and Fuzzy rule classifier

nodes were selected from the Weka library (3.7) and MLP Learner was chosen from

Data Mining library of KNIME. In addition, each learner and predictor was placed

between an X-partitioner and an X-aggregator to apply a tenfold cross-validation

procedure. Following the validation of the models, each learner node was connected

to a model writer, so that a model reader could be used for applying the testing

dataset. The output of predictors was then joined via eight cross joiners.

The result was a table containing 11 columns. The first column indicates the

instant ID (e.g. image name), the second column is the corresponding class label,

and the remaining columns are the prediction results of each classifier. A filter was

used for accepting and rejecting objects. The designed filter simply consisted of

two row rule-based filters with the same configuration. While the accepting filter

can include those matched images with a rule e.g. when all predictions are equal,

the rejecting filter can exclude rejected objects for further analysis. However, the

output of the rejecting filter contains only the prediction columns and therefore no

feature dataset. A joiner node was used to add the corresponding feature columns

from the initial file reader. Finally, the output of the joiner was connected to the

second stage prediction model (i.e. rotation forest). A corresponding classifier node

for rotation forest from Weka (3.7) was selected for implementation of the classifier

in stage 2.
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6.3 Classification Based on Deep Learning

In this section, we propose the use of deep neural networks (DNN) for melanoma

detection. DNNs can be trained using labelled image datasets. Basically, these

networks learn effective visual features from images in order to distinguish whether

particular objects exist in an image or not [136]. These visual features usually

involve learning the weighted filters that are obtained by applying labelled (super-

vised learning) or unlabelled input (unsupervised learning) [240]. In this study, we

investigated these two methods with respect to melanoma detection.

Figure 6.4: Block diagram of the DNN architecture for melanoma detection.

6.3.1 CNN Architecture

The proposed architecture is a (DNN) that consists of a two-layer CNN and a

classical MLP classifier. Figure 6.4 shows a basic block diagram of the proposed

CNN architecture. The input of the system is a 3 × 64 × 64 array which forms

a RGB image. To design the CNN, we investigated two methods: supervised and

unsupervised learning.

6.3.2 Supervised Architecture

Figure 6.5 shows the block diagram of the proposed CNN architecture. The proposed

model for this experiment is as follows.
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Figure 6.5: The basic block diagram of the proposed CNN architecture.

The first layer consists of:

1. Spatial-Convolutional layer: it applies a two dimensional convolution over a

3D input array (3 channels of 64 × 64 RGB image); the kernel (filter) size

is 5 × 5 (width and height); it outputs 128 feature maps (y1i) with a size of

(64− 5 + 1)× (64− 5 + 1)= 60× 60.

2. Spatial-Max-pooling layer: yp1 = maxn×n(y1i) with n = 2; this down-samples

the 128 generated feature maps to 128 feature maps with the size of 30× 30;

3. ReLU non-linearity layer.

The second layer consists of:

1. Spatial-Convolutional layer: it applies a two dimensional convolution over the

input planes which are the outputs of the previous layer (128 × 30 × 30) 2D

feature maps); the kernel size is 5 × 5 (width and height); it produces 256

feature maps (yi2) with a size of (30− 5 + 1)× (30− 5 + 1) = 26× 26;

2. Spatial-Max-Pooling layer: yp2 = maxn×n(yi2) with n = 2; this down-samples

the 256 generated feature maps to 256 feature maps with the size of 13× 13;

3. Threshold layer: yi = max(yp2 , T ), where the threshold T = 0.

Down-sampling is applied to the input image by 4 × 4, then the output of the

down-sampled image (3× 16× 16) is concatenated to the output of the CNN.
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In order to connect the outputs generated by the CNN and down-sampled images

to the MLP classifier, first, the 2D feature maps (256 × 13 × 13) should be resized

to 1D (256 × 13 × 13) arrays. In addition, the down-sampled image should be

resized to a 3 × 16 × 16 1D array. Therefore, the input of the MLP classifier is

(256×13×13)+(3×16×16) = 43564. 256 layers are considered for the hidden layers.

The aggregation layer, which outputs two scores, one for each class is applied in the

last layer for each feature maps. These scores are then transformed into posterior

probabilities through a soft-max layer. The output of the MLP is a binary number

(0= melanoma, 1= benign). The sequential layers of the MLP classifier details are

as follows.

1. Linear (43564 →256)

2. Add (ReLU)

3. Linear (256 →2)

4. Add (Soft-Max layer)

Figure 6.6 shows a sample of the filters of layer one.

Figure 6.6: Filters of the layer 1 using supervised learning method.

6.3.3 Unsupervised Architecture

In unsupervised deep networks, back-propagation techniques are used to learn the

weighted filters. However, the issue with back-projection techniques is that they

train based on unlabeled data; therefore, they are unable to calculate an error sig-

nal and more computationally expensive [240]. In a recent work presented in Culur-

ciello et al. in [136] proposed a clustering learning method based on robotic vision

applications for learning the shared filters. In this study, we adapted this method

to obtain the filters of the CNN for investigating an unsupervised architecture for

melanoma detection application. The proposed architecture is the same as that

used in the supervised learning method(described in Section 6.3.1) for building the

DNNs. However, in order to obtained the weighted filters the following calculations

are applied:
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• k-means (clustering leaning) algorithm is applied to learn 128 filters of the first

layer. Then, the filters in the first layer (obtained from supervised learning)

are replaced with these learnt filters.

• k-means clustering algorithm is applied to learn 256 filters of the second layer

and then the filters in the second layer are replaced with these learnt filters.

Figure 6.7 shows the obtained filters of layer one using the unsupervised learning

approach.

Figure 6.7: Filters of layer one obtained by unsupervised learning method.

6.3.4 Experimental Result

The image dataset used in this experiment is same as the dataset described in Section

6.2.1. However, the size of each sample in the dataset is resized from 512 × 512 to

64×64 pixels due to memory restrictions and high computational operations. Figure

6.8 shows some samples of the image dataset. It can be seen that no segmentation

or preprocessing is applied to this dataset. In order to investigate the power of

the proposed method, we also assessed the dataset containing segmented images

(see Figure 6.9 ) as used in the previous chapter, meaning that we compared two

image datasets with the same training and testing data in two versions: a) using

segmented, b) using normal images (no segmentation applied).
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Figure 6.8: Example of images used for training and testing

Figure 6.9: Example of image dataset containing segmented images.

Figure 6.10 shows the accuracy of the DNN based on the supervised learning

method using segmented images. It shows that after 80 iterations, training is com-

pleted (100%); however, the average accuracy on the testing dataset is low(∼54%).

Training procedure can be stopped when the accuracy of training is 100%.

In Figure 6.11, it can be seen that using no segmented images, testing accuracy

is slightly improved (∼63%). In addition, after 120 iterations the training accuracy

is around 100% which shows that the training time is significantly increased.
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Using the unsupervised learning method, Figure 6.12 illustrates that average

testing accuracy is around 58% using segmented images. However, training accuracy

is significantly reduced from 80 iterations to 40 iterations using the unsupervised

learning method. Finally, Figure 6.13 presents the accuracy testing and training

of the proposed system using an unsupervised learning method without segmented

images. It shows that using this method, the average testing accuracy is 78%. In

addition, the training accuracy reached 100% after 10 iterations.

Figure 6.10: Accuracy of proposed DNNs based on supervised learning using seg-
mented image.
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Figure 6.11: Accuracy of proposed DNN based on supervised learning without using
a segmented image dataset.

Figure 6.12: Accuracy of proposed DNN based on unsupervised learning and using
a segmented image dataset.
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Figure 6.13: Accuracy of proposed DNN based on unsupervised learning without
using a segmented image dataset.
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6.4 Summary

Nine different classifiers were selected for evaluation of their diagnostic accuracy

based on the shape, colour and texture features of clinical images. Experimental

results showed that Random forest, Fuzzy rule and SVM classifiers outperformed

the others; however, the overall performance of the classifiers was still insufficient

for accurate discrimination.

We proposed two two-cascade classifiers to improve the accuracy. The second

classifier proposed in this section is a multi-stage classification system including a

rejection option, consisting of nine classifiers at stage one in order to reject am-

biguous diagnoses. We deployed a Rotation forest classifier at the stage two and

the proposed system achieved a sensitivity of 85.1%, specificity of 80%, accuracy

of 83.3% with area under ROC curve of 90%. A possible area for future research

would be to investigate an option to withhold a classifier decision and transfer am-

biguous outcomes for further specialist assessment. In addition, we proposed a

DNN model for melanoma detection. We investigated supervised and unsupervised

learning methods with segmented and non-segmented images. We found that using

unsupervised learning and images without segmentation, we could achieve better

results in melanoma detection. Using the proposed method, the average testing ac-

curacy was 78% and training time reduced significantly. The next chapter presents

concluding remarks and suggests directions for future work.
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Chapter 7

Conclusion

7.1 Introduction

In particular, this thesis focused on computer-aided diagnosis of melanoma using

state-of-the-art image processing algorithms. The first two chapters provide an

introduction and outline the motivation and background and provide a literature

review. In Chapter 3, we investigated the implementation of image processing al-

gorithms in embedded systems to create a basic hand-held application. Findings

from the experimental results helped in the selection of appropriate embedded vi-

sion platforms for a given application. Chapter 4 proposed the extended version of

edge detection methods and a framework for the implementation of the CAD sys-

tem on a ZYNQ-7000 SoC. In addition, two other approaches for border detection

of skin lesions were proposed. The most interesting finding was that CNN could

detect lesions without requiring a pre-processing step. We tested our method based

on the most challenging images in the literature. In Chapter 5, we presented the

feature extraction methods used in this thesis. In Chapter 6, we discussed two

novel classification algorithms to improve the accuracy and reliability of the sys-

tem. In addition, we presented a DNN system for melanoma detection. Supervised

and unsupervised learning methods were investigated based on segmented and non-

segmented images. The rest of this chapter is structured as follows: Section 7.2

concludes our contributions and Section 7.3 suggests future research directions.
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7.2 Conclusions

The contribution of this work is as follows:

• The effect of applying morphological filters and edge detection algorithms on

skin lesion images in order to detect the borders of PSLs is discussed, using

ZYNQ-7000 single SoC. The results show that an extended 5×5 Canny edge de-

tection implemented on the proposed embedded platform performs better than

other reported edge-based methods. Consequently, it can segment the lesion,

which is an important step before image analysis and feature extraction for

melanoma detection. Moreover, using C-to-FPGA technology and VIVADO

HLS software, we increased the productivity and performance of the system

compared with current FPGA programming approaches. However, there is

a trade-off between effective edge detection and noise; this is apparent when

comparing the Sobel and Prewitt operators. It was found that preprocessing

of the image may, in some circumstances, result in less noise on the output.

Synthesizing the IP used in this application allows real-time processing and

acceleration of implementation process. This is achieved by the fact that edge

detection IP is working in parallel for RGB images. The high throughput is

achieved by running processes in parallel rather than at all-out speed.

• A semi-automatic border detection method was proposed and the accuracy of

the algorithm was compared with two other methods. The proposed method

achieved an accuracy of 89.32% (TC index) and the experimental result showed

that the suggested method could be used as a proper lesion detection tool in a

practical CAD system for melanoma detection. However, the main limitation

is that it is not a fully automated technique.

• A CNN-based method proposed for border detection was investigated. Ex-

perimental results from this study show that lesion borders can be detected

for lesion segmentation of challenging clinical images without applying pre-

processing steps such as hair removal and illumination correction. The sug-

gested method can be used as a proper automatic lesion detection tool in a

practical CAD system for melanoma detection which requires minimum use of

preprocessing algorithms.

• We compared all three methods proposed for border detection of skin lesions.

The result showed that using testing images, CNN-based methods achieved

the highest accuracy of 86.67% (Jaccard index), followed by the presented

colour-based approach with an accuracy of 80.23%. The extended edge-based

method (canny edge) ranked lowest with an accuracy of 65.32%.
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• Chapter 6 reports on the design and evaluation of classifiers in order to dis-

criminate melanoma from non-melanoma lesions. Nine different classifiers were

selected for evaluation of their diagnostic accuracy based on the shape, colour

and texture features of clinical images. Experimental results showed that Ran-

dom forest, Fuzzy rule and SVM classifiers outperformed the others; however,

the overall performance of the classifier was still insufficient for accurate dis-

crimination. Therefore, we proposed a multi-stage classification including a

rejection option, consisting of nine classifiers at stage one in order to reject

ambiguous diagnoses. We deployed a rotation forest classifier at stage two of

the Cascade2 classifier to increase the accuracy. The proposed system achieved

an accuracy of 83.3% with a sensitivity of 85.1%, specificity of 80% and AUC

of 90% using ten-fold cross validation. The study suggested that in a prac-

tical CAD system, it would be beneficial to have a classifier with rejection

options along with reliable decision making for supervised classification. A

possible area for future research would be to investigate an option to withhold

a classifier decision and transfer the ambiguity for further specialist judge-

ment. However, a large image dataset is required for further investigation of

this method.

• Finally, we proposed a multi-layer DNN based on a Convolutional neural net-

work to investigate the power of this system for melanoma detection. We

compared supervised and unsupervised (clustering) approaches for training

the network with two options: a) using images generated from the segmen-

tation step; and b) without considering the segmentation step. It was found

that the proposed system is able to learn the features from the images directly,

in contrast with traditional image classification processes (using hand-crafted

features and feature selection approach). The system achieved an average ac-

curacy of 78%. However, we need a more comprehensive image dataset for

further analysis and improvement.
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7.3 Future Work

Experimental results at this stage have shown good potential for the proposed

scheme. There are many avenues for pursuing further work in this area. Some

of these are as follows:

• Implementing the proposed DNN on the proposed platform to create an effec-

tive portable application.

• Employing other optimization techniques for the image analysis may enhance

performance. The advances in high definition media in recent years, along with

high-speed embedded systems and the growth of applications in health-care

systems provide the opportunity to revolutionize skin cancer diagnosis. In this

work, using state-of-the-art FPGA technology as an example, we implemented

a lesion border detection on an SoC and demonstrated the rapid processing

power that supports such transitions.

• Investigating the implementation of the whole system as a smart-phone appli-

cation and comparing its performance with the proposed embedded system.

• Training the proposed CNN-based border detection method and improving its

performance using more images.

• Improving the post-processing part of the proposed CNN-based border detec-

tion so that the algorithm can detect the lesion edges more efficiently.

• Investigation of DNNs for melanoma detection using a comprehensive image

dataset containing huge number of images for further analysis and improve-

ment.

• Investigation of the use of deep learning combined with current hand-crafted

feature extraction methods for better diagnosis of melanoma.
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[210] H. T. Nguyen, S. Petrović, and K. Franke, “A comparison of feature-selection
methods for intrusion detection,” in Computer Network Security. Springer,
2010, pp. 242–255.

124



[211] P. D. Zegzhda, D. P. Zegzhda, and M. O. Kalinin, “A new approach to security
evaluation of operating systems,” in Computer Network Security. Springer,
2007, pp. 254–259.

[212] H. Nguyen, K. Franke, and S. Petrovic, “Optimizing a class of feature se-
lection measures,” in NIPS 2009 Workshop on Discrete Optimization in Ma-
chine Learning: Submodularity, Sparsity & Polyhedra (DISCML), Vancouver,
Canada, 2009.

[213] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten,
“The WEKA data mining software: an update,” ACM SIGKDD Explorations
Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[214] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine
Learning. MIT press, 2012.

[215] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[216] R. Priya and P. Aruna, “Review of automated diagnosis of diabetic retinopa-
thy using the support vector machine,” International Journal of Applied En-
gineering Research, vol. 1, no. 4, p. 844, 2010.

[217] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal
margin classifiers,” in Proceedings of the Fifth Annual Workshop on Compu-
tational Learning Theory. ACM, 1992, pp. 144–152.

[218] T. M. Cover and P. E. Hart, “Nearest neighbor pattern classification,” IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21–27, 1967.

[219] B. V. Dasarathy, “Nearest neighbor (NN) norms: NN pattern classification
techniques,” 1991.

[220] S. Sabitha, D. Mehrotra, and A. Bansal, “A data mining approach to improve
re-accessibility and delivery of learning knowledge objects,” Interdisciplinary
Journal of E-Learning and Learning Objects, vol. 10, pp. 247–268, 2014.

[221] X. Bai, X. Yang, L. J. Latecki, W. Liu, and Z. Tu, “Learning context-sensitive
shape similarity by graph transduction,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence,, vol. 32, no. 5, pp. 861–874, 2010.

[222] A. Masood and A. Ali Al-Jumaily, “Computer aided diagnostic support system
for skin cancer: a review of techniques and algorithms,” International journal
of biomedical imaging, vol. 2013, 2013.

[223] T. R. Patil and S. Sherekar, “Performance analysis of Naive Bayes and J48
classification algorithm for data classification,” International Journal of Com-
puter Science and Applications, vol. 6, no. 2, pp. 256–261, 2013.

[224] Z. Xiaoliang, W. Jian, Y. Hongcan, and W. Shangzhuo, “Research and appli-
cation of the improved algorithm c4. 5 on decision tree,” in IEEE International
Conference on Test and Measurement (ICTM’09), vol. 2, 2009, pp. 184–187.

[225] A. Rahman and S. Tasnim, “Ensemble classifiers and their applications: A
review,” arXiv preprint arXiv:1404.4088, 2014.

125



[226] R. E. Schapire, “The boosting approach to machine learning: An overview,”
in Nonlinear estimation and classification. Springer, 2003, pp. 149–171.

[227] B. Zhang, “Reliable classification of vehicle types based on cascade classifier
ensembles,” IEEE Transactions on Intelligent Transportation Systems, vol. 14,
no. 1, pp. 322–332, 2013.

[228] K.-H. Liu and D.-S. Huang, “Cancer classification using rotation forest,” Com-
puters in Biology and Medicine, vol. 38, no. 5, pp. 601–610, 2008.

[229] D. de Ridder, J. de Ridder, and M. J. Reinders, “Pattern recognition in bioin-
formatics,” Briefings in bioinformatics, vol. 14, no. 5, pp. 633–647, 2013.

[230] N. A. Obuchowski, “Receiver operating characteristic curves and their use in
radiology 1,” Radiology, vol. 229, no. 1, pp. 3–8, 2003.

[231] X.-H. Zhou, D. K. McClish, and N. A. Obuchowski, Statistical methods in
diagnostic medicine. John Wiley & Sons, 2009, vol. 569.

[232] S. H. Park, J. M. Goo, and C.-H. Jo, “Receiver operating characteristic (ROC)
curve: practical review for radiologists,” Korean Journal of Radiology, vol. 5,
no. 1, pp. 11–18, 2004.

[233] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing the
areas under two or more correlated receiver operating characteristic curves: a
nonparametric approach,” Biometrics, pp. 837–845, 1988.

[234] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a
receiver operating characteristic (ROC) curve.” Radiology, vol. 143, no. 1, pp.
29–36, 1982.

[235] D. Bamber, “The area above the ordinal dominance graph and the area below
the receiver operating characteristic graph,” Journal of mathematical psychol-
ogy, vol. 12, no. 4, pp. 387–415, 1975.

[236] A. Stuart, M. G. Kendall et al., The advanced theory of statistics. Charles
Griffin, 1968.

[237] A. Field, Discovering statistics using SPSS. Sage publications, 2009.

[238] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl,
P. Ohl, C. Sieb, K. Thiel, and B. Wiswedel, KNIME: The Konstanz infor-
mation miner. Springer, 2008.

[239] D. Morent, K. Stathatos, W.-C. Lin, and M. R. Berthold, “Comprehensive
PMML preprocessing in KNIME,” ACM, pp. 28–31, 2011.

[240] E. Culurciello, J. Jin, A. Dundar, and J. Bates, “An analysis of the connec-
tions between layers of deep neural networks,” arXiv preprint arXiv:1306.0152,
2013.

126


