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Abstract

Background and Objective: Augmented Reality is one of the fastest-growing fields,
increasing funding for the last few years, as people realise the potential benefits of
rendering virtual information in the real world. As the equipment gets more commer-
cialised, the cost would get lowered while the performance also goes up. However,
most of today’s Augmented Reality marker-based applications would use local features
detection and tracking techniques. The disadvantages of applying these techniques are
that the markers must be modified to match the unique classified algorithms or suffer
from lower detection accuracy. Machine learning is a perfect solution to overcome the
current drawbacks of image processing in Augmented Reality applications.

Methods: This thesis is split into two investigation directions. The first investigation
is to implement new Augmented Reality markers with concealed information such
as bar-code or quick response code while keeping most of the visual information of
the original texture. The second investigation demonstrates the Augmented Reality
marker without using any embedded codes and original texture modification required
by immersing the machine learning technology into the marker detection process. The
new approach incorporated Machine Learning using deep neural networks to detect and
track the Augmented Reality application’s marker targets. The research implemented the
auto-generated dataset tool, which uses for the Machine Learning dataset preparation
step. The final iOS prototype application was developed to incorporate object detection,
object tracking and Augmented Reality. The Machine Learning model was taught to
recognise the differences between targets using YOLO’s most famous object detection
methods. The model was trained by either Pytorch, and the final product uses a valuable
toolkit for developing the Augmented Reality application called ARKit.

Results: Several different experimental exercises have been conducted to qualify the
proposed methods on technical performances. The experimental outcomes indicated
that the object detection model could achieve over 80% precision, over 90% recall,
and over 70% mean average precision using proposed synthetic datasets. The proposed
method significantly improves object detection accuracy where it could achieve at least
18% higher than the real-world dataset. The iOS prototype can detect the target markers
and display the augmented objects under different lighting conditions at an average rate
of 50 frames per second.
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Chapter 1

Introduction

Parts of this Chapter have been published in paper 2 listed in the publication list

1
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The combination of natural and un-real environments sounds like a fiction

story in the mid 20th century, but it is now real after a long history of research

and failure. The result is “Augmented Reality”, where the virtual information

is rendered upon the natural objects in real-time. However, due to the detection accuracy

and usability limitations, Augmented Reality is still far from reality. The Machine

Learning’s advancement in computer vision on another hand significantly increased

object detection accuracy, and the interest in computer vision applications in many

diverse areas have gained more attention. One clear example is that Augmented Reality

could be a valuable and handy knowledge delivery tool for both students and teachers to

replace the original hard copy materials in the education sector. The development of

vision-based Machine Learning to distinguish objects is crucial in the computer vision

field. Therefore, this thesis aims to improve the Augmented Reality object detection

capability by incorporating Machine Learning using deep neural networks.

1.1 Inspiration

Augmented Reality has a great potential to provide information and direct assistance

virtually for daily activities, and there has been significant research and commercial

interested in this field. Marker-based is the most used type of Augmented Reality where

the application is implemented to recognise and track the targeted marker to active

the experience. However, there are still many challenging issues that are waiting to be

discovered and improved. One of the significant issues is that there are many different

Augmented Reality markers with unique encoded information algorithms available

in the market (Rekimoto & Ayatsuka, 2000; Kan, Teng & Chou, 2009; Liu, Tan &

Chu, 2010; Le & Nguyen, 2017; Nguyen, Tran, Le & Yan, 2017), such as template

(Figure 1.1a), bar-code (Figure 1.1b) or pictorial bar-code (Figure 1.1c) markers. Most

of them usually require the users to modify either partially or entirely their contents.
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However, the users are not always happy to change their existing materials to match the

Augmented Reality markers requirements (Koch, Neges, König & Abramovici, 2014).

The marker recognition process could be another issue where the traditional computer

vision-based techniques, such as scale-invariant feature transformations (Lindeberg,

2012) or histograms of oriented gradients (Lowe, 1999) are used for the classifica-

tion task. These mathematical methods are vulnerable to unanticipated real-world

lighting (Wu et al., 2013), marker orientation (Cheon, Lee, Hyun & Park, 2011), and

unexpected noises (Bobeshko, 2017).

(a) Template marker (b) Bar-code marker (c) Pictorial bar-code marker

(d)

Figure 1.1: A few of Augmented Reality markers usually present unuseful information
that requires users to modify the original pictorial either partially or fully (a, b, and c).

The Machine Learning inference performance among different phone models using
InceptionV3 (d).
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The revolutionary of Machine Learning using deep learning convolutional neural net-

works hopes to overcome the traditional computer vision issues after AlexNet won

the ImageNet challenge in 2012 (Krizhevsky, Sutskever & Hinton, 2012). Later im-

provement in the Machine Learning field has achieved human-like accuracy in object

recognition (Acharya, Hayes & Kanan, 2020) and real-time data processing (Tan, Pang

& Le, 2020), making the ideas of Augmented Reality and Machine Learning combina-

tion more and more possible than ever.

Another inspiration is that the Apple bionic computing processing unit is getting more

powerful (Figure 1.1d). Since the release of the A11 chip on the iPhone X model, the

new neural engine accelerator’s combination gives nine times faster Machine Learning

calculations than a regular CPU 1. It means that the tiny mobile devices are now easier

and more efficient in executing the heavy deep learning-Augmented Reality-based

applications. However, deep learning requires typically massive data sets to train on, and

it could be non-beneficial and have fewer quality data, which can reduce the accuracy

rate. The high time-consuming of trainable data preparation is another limitation of deep

learning, where it is usually done manually (Mamoshina, Vieira, Putin & Zhavoronkov,

2016).

1.2 Thesis goal and research questions

This research’s purpose is to enhance Augmented Reality experiences by developing

a robust vision-based application. The ultimate goal was to use the meaningful images

as the markers within the Augmented Reality applications. Furthermore, the research is

split into two investigation directions:

1Chandra, H. (2018). Hardware acceleration for Machine Learning on apple and android devices. Re-
trieved from https://heartbeat.fritz.ai/hardware-acceleration-for-machine-learning-on-apple-and-android-
f3e6ca85bda6
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The first investigation is the implementation of the new Augmented Reality markers

with concealed information such as bar-code or quick response code while keeping

most of the visual information of the original texture. The details are demonstrated in

Section 3.4.

The second investigation demonstrates the Augmented Reality marker without using

any embedded codes and original texture modification required by immersing the

Machine Learning technology into the marker detection process. This investigation

direction proposed a new way to generate the Machine Learning dataset synthetically

to overcome the extensive time consuming during the manual data annotation process.

The implementation plan will be described in Section 1.3, and details demonstrated in

Chapter 5.

The following research questions (RQs) have been addressed in order to accomplish the

described research goals:

RQ 1 (described in detail in Chapter 3): How well do the new proposed markers

perform comparing the original Augmented Reality markers? If so, what disadvantages

could the new proposed markers have?

RQ 2: (described in detail in Section 6.2) How well does the synthetic dataset perform

during the neural network training and testing process?

RQ 3 (described in detail in Section 6.3): What type of natural environments could

be complex for the deep learning model?

RQ 4 (described in detail in Section 6.4): How well does the implemented application

perform under real-world situations?
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1.3 SARM implementation planning

The second investigation of this thesis aims to use Machine Learning techniques to

enhance Augmented Reality experiences by using the original texture as the target

Augmented Reality marker. The proposed method can classify any images as Augmented

Reality markers without the need for users to modify the contents. The process also

requires a minimal amount of time to produce the marker as quickly as possible. The

proposed system is called "Synthetic data annotation system for Augmented Reality

Machine learning-based application" or SARM. The practical implementation is divided

into three different modules to present the proposed system in more detail:

Figure 1.2: The raw images (a) are processed through the graphic rendering unit and
augmentation algorithms to output the class name and coordinates for further deep

learning neural network training (b).

Module 1 - Synthetic data annotation is a critical step during the deep learning

neural network training process (as shown in Figure 1.2). The main principle of this

process applies domain-specific techniques to the original data and generates new

data in different forms and conditions using available graphic rendering software. This



Chapter 1. Introduction 7

new method is quicker than traditional data annotation, which can produce up to 20

training dataset images per second on a graphic rendering unit. It also gives an excellent

opportunity to regenerate or modify the dataset faster for an additional training class or

improve the deep learning model quality.

Module 2 - Deep neural network training provides the learning capability for the

system to determine the potential marker from the scene. Many different convolutional

neural networks, including image classification and object detection models such as

AlexNet, ResNet, or YOLO, were successfully implemented and gave outstanding

results. This uses a suitable deep learning model to train with the previous module’s

dataset and evaluate the training and test outputs.

Figure 1.3: Machine learning and Augmented Reality incorporation module where the
object detection algorithm using the deep neural network (a) can easily find the marker

in the scene and produce the Augmented Reality experience (b).

Module 3 - Machine learning and Augmented Reality incorporation allows the
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system to combine object prediction and project the 2D coordinates to the natural world

3D coordinates in the Augmented Reality scene (as shown in Figure 1.3). The system

then renders the virtual information, such as a 3D model, on the top of the predicted

marker based on its identity. In short, the markers and new methods proposed in this

thesis demonstrated four primary contributions, which will be presented in the next

Section.

1.4 Principal contributions of this thesis

This thesis purpose is to examine the use and performance of newly proposed Aug-

mented Reality markers that can conceal the encrypted information and another

marker that does not require the original texture modification (SARM) by using the

Machine Learning techniques. In short, this thesis makes four main contributions that

are listed below, along with their related publications:

1. Investigation of new Augmented Reality markers that could conceal the hid-

den codes and provide minimal original texture modification. In many Aug-

mented Reality applications, visual content markers (also known as template

markers) are often used to provide meaningful pictorial information (Lepetit,

Lagger & Fua, 2005; Lepetit & Fua, 2006). However, they required manual image

registration and a collection of registered images for comparison processing. On

the other hand, data marker such as a bar-code or quick response (QR) code

provides a capability to improve template markers drawbacks. They are designed

with many black and white lines, bars, or patterns. These usually present binary

numbers of "0" or "1" and take relatively little time to decode computation-

ally (Rekimoto & Ayatsuka, 2000; Mohan, Woo, Hiura, Smithwick & Raskar,

2009; Olson, 2011). However, these data markers generally do not present much

helpful information to users unless extra graphical contents are added to the sides.
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Consequently, both template and data markers have their pros and cons. The

proposed markers aim to fill the missing gap to consider both makers’ technical

advantages in providing a proper graphical content presentation and improving

detectability performance. More details on the proposed markers are presented in

Section 3.4.

Related publications:

• Nguyen, M., Le, H., Yan, W. Q. (2020, February). Red-Green-Blue Aug-

mented Reality Tags for Retail Stores. In International Conference on Ad-

vanced Concepts for Intelligent Vision Systems (pp. 467-479). Springer,

Cham. https://doi.org/10.1007/978-3-030-40605-9_40 (Published)

• Nguyen, M., Lai, M. P., Le, H., Yan, W. Q. (2019, November). A web-based

augmented reality plat-form using pictorial QR code for educational pur-

poses and beyond. In 25th ACM symposium on virtual reality software and

technology (pp. 1-2). https://doi.org/10.1145/3359996.3364793 (Published)

• Le, H., Nguyen, M., Yan, W. Q. (2018, November). CSPM: a Novel Cur-

tain Style Pictorial Marker for Enhancing Augmented Reality Experiences.

In 2018 International Conference on Image and Vision Computing New

Zealand (IVCNZ) (pp. 1-6). IEEE. https://doi.org/10.1109/IVCNZ.2018.8634

697 (Published)

2. Investigation of the performance of object detection deep neural network

training and detectability using the synthetic dataset. The image recognition

accuracy using computer vision-based features extraction techniques such as

histogram of oriented gradients (Lowe, 1999) or scale-invariant feature trans-

form (Lindeberg, 2012) usually come with some issues. These mathematical

algorithms are susceptible to unexpected real-world illumination (Wu et al., 2013)
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or orientation (Cheon et al., 2011) and could be unreliable when the noise objects

partially cover the markers (Bobeshko, 2017). The revolution of Machine Learn-

ing and convolutional neural networks gives a promising solution of overcoming

the traditional computer vision issues (Krizhevsky et al., 2012). However, as

described in Section 1.1, it typically requires massive datasets for the Machine

Learning training process, and it could be non-beneficial and have fewer quality

data, which can reduce the detection accuracy rate. The trainable data preparation

time requirements are another limitation of Machine Learning where this step is

usually done manually. The newly proposed method generates a synthetic dataset

and labels each data item automatically using various computer graphics render-

ing techniques to overcome this issue. The figures of chosen Machine Learning

trainable classes are randomly blended into different natural-looking backgrounds

and other ambient lighting conditions and mixed camera orientation. The trained

model using the proposed synthetic dataset could achieve over 80% precision,

over 90% recall, and over 70% mean average precision against the real-world test

dataset.

Related publications:

• Le, H., Nguyen, M., Yan, W. Q, S. Lo. (2021, December). Training object

detection neural network with synthetic dataset for transportation signs. In

2021 36th International Conference on Image and Vision Computing New

Zealand (IVCNZ) (Accepted)

• Le, H., Nguyen, M., Yan, W. Q., Nguyen, H. (2021). Augmented Reality

and Machine Learning Incorporation Using YOLOv3 and ARKit. Applied

Sciences, 11(13), 6006. https://doi.org/10.3390/app11136006 (Published)

• Le, H., Nguyen, M., Yan, W. Q. (2020, November). Machine Learning
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with Synthetic Data–a New Way to Learn and Classify the Pictorial Aug-

mented Reality Markers in Real-Time. In 2020 35th International Con-

ference on Image and Vision Computing New Zealand (IVCNZ) (pp. 1-6).

IEEE. https://doi.org/10.1109/IVCNZ51579.2020.9290606 (Published)

• Le, H., Nguyen, M., Nguyen, Q., Nguyen, H., Yan, W. Q. (2020, October).

Automatic Data Generation for Deep Learning Model Training of Image

Classification used for Augmented Reality on Pre-school Books. In 2020

International Conference on Multimedia Analysis and Pattern Recognition

(MAPR) (pp. 1-5). IEEE. https://doi.org/10.1109/MAPR49794.2020.9237760

(Published)

Related research project:

• The international collaborative computer vision and artificial intelligence

related project between Auckland University of Technology (New Zealand)

and Pontificia Universidad Católica de Valparaíso (Chile), Jan. 2021

3. Investigation of the detectability performance of different Augmented Real-

ity markers without modifying the original figure contents. This investigation

presents a new method for incorporating Machine Learning to detect and track

Augmented Reality applications’ marker targets using deep neural networks. The

synthetic dataset described in the previous contribution was used as the training

dataset for the deep neural network model. The YOLOv3 model (Redmon &

Farhadi, 2018) is used as the main object detection model and ARKit (Linowes

& Babilinski, 2017) as the primary software tool for developing the application

prototype. The proposed method achieved an 80% accuracy rate with an average

of 60 frames per second for real-time detection on a mobile device. The results

indicated that the detection process is effective in poor lighting conditions with
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an acceptable detection accuracy rate. This means that a synthetic dataset can

produce a similar result for Augmented Reality marker detection without modify-

ing the original content.

Related publications:

• Le, H., Nguyen, M., Yan, W. Q., Nguyen, H. (2021). Augmented Reality

and Machine Learning Incorporation Using YOLOv3 and ARKit. Applied

Sciences, 11(13), 6006. https://doi.org/10.3390/app11136006 (Published)

4. Investigation of a low-cost platform that could immerse the Augmented Re-

ality experiences to enhance learning efforts. Lacking teaching materials is one

of the common issues of the education system, especially in developing countries.

The teachers attempt to give as much theoretical knowledge as possible to students

while forgetting to train them with practical activities and ways of self-thinking.

This way of teaching has been producing the generations of students with theory

rather than practical. Augmented Reality technology can overlay virtual informa-

tion onto educational textbooks, making them more attractive, motivating students

to learn. An online learning platform is proposed that uses the advantages of

Augmented Reality to enhance students’ imagination. A redesigned transparent

QR code sticker will be added to the existing education book figure. The students

then can use their mobile devices to scan the QR code that contains an encrypted

URL which allows them to render 3D graphics or animations virtually. That

virtual information will allow the students to learn and understand the teaching

theory much more intuitively. Moreover, the proposed method is implemented as

an online platform; thus, no specific software installation is needed. It provides

a stress-free, low-cost, portable, and promising solution to be used in school

textbooks of all grades, to enhance the teaching and learning experiences.
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Related publications:

• Le, H., Nguyen, M. (2020). An Online Platform for Enhancing Learn-

ing Experiences with Web-Based Augmented Reality and Pictorial Bar

Code. In Augmented Reality in Education (pp. 45-57). Springer, Cham.

https://doi.org/10.1007/978-3-030-42156-4_3 (Published)

• Le, H., Nguyen, M., Yan, W. Q. (2019, November). A Web-Based Aug-

mented Reality Approach to Instantly View and Display 4D Medical Images.

In ACPR (2) (pp. 691-704). https://doi.org/10.1007/978-3-030-41299-9_54

(Published)

• Nguyen, M., Lai, M. P., Le, H., Yan, W. Q. (2019, November). A web-based

augmented reality plat-form using pictorial QR code for educational pur-

poses and beyond. In 25th ACM symposium on virtual reality software and

technology (pp. 1-2). https://doi.org/10.1145/3359996.3364793 (Published)

• Wang, I., Nguyen, M., Le, H., Yan, W., Hooper, S. (2018, November).

Enhancing visualisation of anatomical presentation and education using

marker-based augmented reality technology on web-based platform. In 2018

15th IEEE International Conference on Advanced Video and Signal Based

Surveillance (AVSS) (pp. 1-6). IEEE. https://doi.org/10.1109/AVSS.2018.863

9147 (Published)

1.5 Thesis structure

This thesis consists of seven Chapters. The first Chapter, which is the current Chapter,

introduces the thesis idea and answers the question about why this thesis project is

needed. Chapter 2 describes the conceptual background of Augmented Reality, in-

cluding its history, application domains and demands for the future. The differences
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between Augmented Reality and other technologies such as Virtual Reality and Mixed

Reality are also presented. Following in Chapter 3 introduces different Augmented

Reality marker-based techniques and the mathematical framework or image processing

techniques used to encrypt and decrypt information. Chapter 4 primarily focuses on

Machine Learning and how it inspires the goal of this thesis. Chapter 5 then describes

the methods to answer the research questions, which are stated in Chapter 1. Moreover,

it includes the synthetic data generation techniques, deep learning model used, and

software implementation to merge Machine Learning and Augmented Reality. The

experimental results and the iOS prototype are presented and evaluated in Chapter 6.

Finally, the Chapter 7 concludes the thesis and its limitations and future work.



Chapter 2

Background: The Rise of Augmented

Reality

Parts of this Chapter have been published in paper 2, paper 4, paper 5, paper 7,

paper 8, paper 9, paper 10, and paper 11 listed in the publication list

15
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Have you ever thought that the line between your imagination and the natural

world does not exist? It is possible with Augmented Reality and easily

accessible by most modern information devices (Figure 2.1). Augmented

Reality is a relatively new technology that can overlay virtual digital information onto a

physical environment (Craig, 2013). It is a perfect solution for visualising events that

are impossible or impractical to see. However, this does not mean it is impossible to

make further contributions in this exciting field. This Chapter reviews the literature on

defining Augmented Reality, its historical background and related information.

Figure 2.1: Augmented Reality applications are widely used around the world in
different domains such as: games, navigation, and education.

2.1 What is Augmented Reality?

Augmented Reality is a computer vision field where the physical environment is im-

mersed and overlayed with computer-generated information to create an interactive

space. Its main principle is to augment parts of natural objects with virtual information

in real time (Carmigniani & Furht, 2011). Milgram and Kishino stated that "display of

an otherwise real environment is augmented by means of virtual (computer graphic)

objects" (Milgram & Kishino, 1994). Another meaning is that the Augmented Reality

aims to present to the users the virtual contents and keep them staying in the real

world simultaneously. In general, it is defined as a system that includes the following
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characteristics (Azuma, 1997):

• Capability to combine the natural and the virtual world.

• Presents the natural and virtual interactable environment in real-time.

• Ability to view virtual information in three-dimensional spaces.

Figure 2.2: Milgram and Kishino’s Mixed Reality Continuum.

Virtual Reality and Mixed Reality are mentioned most of the time but how they are

related to Augmented Reality? Figure 2.2 presents the Mixed Reality continuum that

shows the Mixed Reality as a convergence of the virtual world and the natural envi-

ronment along a digital information continuum. The Virtual Reality environment is

entirely generated by computer graphics, which disconnects users from the real world

and transfer them to an artificial digital environment. These immersive experiences are

usually applied in training, education, and video games. Augmented Reality lies between

Reality or the natural world and Virtual Reality to integrate virtual information into the

actual physical world’s live view. By combining the physical world and the additional

digital information, Augmented Reality has successfully created a new experience to

allow users to interact and gain knowledge much more efficiently (Fisher & Baird,
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2006; Narzt et al., 2006). Developers use different solutions and tools to implement

Augmented Reality experiences but, in general, the Augmented Reality related applica-

tions are usually designed in one of two ways:

1 - Augmented Reality marker-based is the most commonly applied method that uses

a physical object as a trigger. The trigger needs to be detected by the device camera; it

then decodes the trigger’s input confidential information and displays the corresponding

virtual information. In these applications, the users will use a hard-copy marker as

the trigger and view the overlay as the computer graphics generated. This method is

usually suitable for indoor use such as education or product instruction. An example

of this is shown in Figure 2.3 in which the images in a textbook can be used as the

Augmented Reality markers to display virtual content, such as 3D models used in

geography application (Figure 2.3a) or in the biology application (Figure 2.3b). More

details on the Augmented Reality marker-based method is discussed in Chapter 3.

2 - Markerless Augmented Reality is different from the marker-based Augmented

Reality application since it does not require the physical marker. The markerless Aug-

mented Reality uses non-physical trigger tools like Global Positioning System (GPS),

on-device compasses or the internet to recognise the user’s location. The system updates

the Augmented Reality presentation whenever the users move or their device changes

orientation. For example in Figure 2.3, the users can use built-in GPS and compass

functions to display directions to a particular location on a street (Figure 2.3c) or display

a game character (Figure 2.3d).
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(a) Geography application 1 (b) Biology application 2

(c) Augmented Reality Google map
application 3

(d) Pokemon Go game 4

Figure 2.3: Augmented Reality applications can be either marker-based (a and d) using
a hard-copy printout as the trigger or markerless (b and c) using GPS or other

location-tracking tools as the trigger.

2.2 How does it work?

A basic Augmented Reality system will consist of three main layers, as shown in Fig-

ure 2.4.

1Retrieved from https://i.ytimg.com/vi/Qw7HJPol8ZQ/maxresdefault.jpg
2Retrieved from https://trainingindustry.com/content/uploads/2017/09/12.7.15-Health-Care-

Gamification.jpg
3Retrieved from https://geektech.me/wp-content/uploads/2020/10/ed3e8d559e2da1d45e03f5441c985ab5.jpeg
4Retrieved from http://www.technokraft.co/assets/img/resize-ar.jpg
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Figure 2.4: Augmented Reality systems consist of three different layers: input layer,
computing layer, and output layer.

1 - Input layer is where the device camera captures the natural scene and other prop-

erties such as GPS information if a markerless approach is being used. This layer also

records the object distance and orientations related to the device camera. The device

needs to understand the environment around the user based on the content captured on

the camera feed. This helpful information allows the application to present the digital

content relevant to what the user is looking at.

2 - Computing layer is used to process and track the target information from the input

layer. The system usually uses template matching (Brunelli, 2009) if it is a marker-based

application or Simultaneous Localisation and Mapping (SLAM) (Mur-Artal, Montiel

& Tardos, 2015; Mur-Artal & Tardós, 2017) if a markerless approach is being used

to distinguish the target identity. The template matching technique tracks potential 2D

images with unique properties, such as black borders, after quantising the image to

a specified resolution matrix (Kato & Billinghurst, 1999). More details on marker-

based detection and tracking is presented in Section 3.1. Markerless applications use

a built-in sensor and SLAM to remove natural features and textures and reach real-

time performance with sufficient accuracy. However, this method usually requires a
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high volume of data flow over the internet; hence, it is not excellent for low-cost and

un-professional users. The system then gets the digital content related to the target’s

identity ready for rendering in the output layer. To instruct the output layer on rendering

the virtual contents correctly, Augmented Reality uses a six degree-of-freedom matrix

(6DOF) (Van Krevelen & Poelman, 2007), consisting of three in translation and three in

orientation. This unique characteristic makes it different from Virtual Reality, where

three degree-of-freedom (3DOF) are used (K.-M. Lee & Shah, 1988). The 6DOF matrix

includes three perpendicular axes (x,y,z) for the positions combined with orientation

changes via rotation (pitch, yaw, and roll). At the same time, the 3DOF only tracks the

position changes (Figure 2.5).

Figure 2.5: Augmented Reality uses six degree-of-freedom (a) to present the changes in
the virtual content’s position and orientation, whereas virtual reality uses three

degree-of-freedom (b).

3 - Output layer renders the virtual content at the location in the natural scene. How-

ever, making this step fast and realistic is a challenging task. Augmented Reality systems

consider computer vision as the inverse rendering, which means that computer vision

recognises and understands 3D objects from their 2D images. The system then can

present the 3D content that is rendered onto the 2D display screen. This transformation
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is called camera pose estimation (Quan & Lan, 1999) which is described in more detail

in Section 3.2. The generated content’s shapes and orientations are changed when the

device or target situation changes to give the users a full view of the 3D experience.

2.3 The History of Augmented Reality

Figure 2.6: The first HMD prototype was introduced by Ivan Sutherland’s research
team (a) 1. The night vision device introduced by the US Army during the Vietnam war

allows viewing targets in low light and range estimation (b).

The Augmented Reality idea started in the 1960s when the first workable prototype

was introduced by Ivan Sutherland and his colleagues (Sutherland, 1968), as shown in

Figure 2.6a. This prototype is one of the first head-mount display (HMD) that allows

users to view 3D computer-generated graphics via its display optics. Later, during

the peak of the Vietnam War, the US Army introduced a night vision device (GEN

1,2,3 - NVD) (Braybrook, 1998). The GEN system was designed to mount on weapons

allowing soldiers to view targets in levels of light approaching total darkness together

with range estimation (as shown in Figure 2.6b). While Virtual Reality became more

popular with investments during the 1970s and 1980s, Augmented Reality was forgotten

due to hardware limitations and the lack of potential application ideas. However, people

did not need to wait for so long for Augmented Reality to reappear again due to the

significant growth of technology in the early 1990s (Caudell & Mizell, 1992; Bajura,

1Retrieved from https://glassdevelopment.files.wordpress.com/2014/04/cascosutherland.jpg
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Fuchs & Ohbuchi, 1992). This is the first time Boeing researcher Tom Caudell used

the word "Augmented Reality" in his research on mounting cables in airplanes (Janin,

Mizell & Caudell, 1993). In the late 1990s, the Columbia University Computer Science

research group demonstrated the prototype of an interaction wearable device (S. Feiner,

MacIntyre, Hollerer & Webster, 1997). Since the expansion of the smartphone market

in the beginning of the 21st century, Augmented Reality concepts have been gaining

more public attention, increasing the number of supported technologies and research.

In 2016, Goldman Sachs’ annual investment banking report predicted that Augmented

Reality revenue would reach 80 billion USD in 2025 (Figure 2.7) 1.

Figure 2.7: The Goldman Sachs annual report on Augmented Reality future estimated
revenue in US dollars.

1Heather Bellini, M. S. M. S. S. A. D. T., Wei Chen. (2016). Profiles in innovation virtual and
augmented reality. Retrieved from http://www.goldmansachs.com/our-thinking/pages/technology-driving-
innovation-folder/virtual-and-augmented-reality/report.pdf
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(a) Google Glass 1 (b) HoloLens 2

(c) Game developed with Apple’s ARKit 3

Figure 2.8: The devices allow users to experience Augmented Reality (a) or interact
with the virtual world (b). The software development kit helps developers implement

Augmented Reality-related applications on mobile devices quicker and easier (c).

In the last ten years, many major technology companies have made the significant

investments in both software and hardware for this high-potential profit industry. Google

is one of the first competitors to introduce to the public their own designed of Augmented

Reality equipment called “Google Glass” (Figure 2.8a) (Rauschnabel, Brem & Ro,

2015). Google Glass is intended to be a mini wearable HMD that allows the users

1Retrieved from http://nanoday.com/blog_cover_photo/myglass.png
2Retrieved from https://cc-prod.scene7.com/is/image/CCProdAuthor/augmented-

reality_P1_900x420?$pjpeg$jpegSize=200wid=900
3Retrieved from https://www.techrepublic.com/article/apple-ios-12-cheat-sheet/
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to experience Augmented Reality via the glass optics. In 2016, Microsoft announced

HoloLens (Furlan, 2016) that enables the users to experience Augmented Reality and

interact with the virtual environment with their own hands simultaneously (Figure 2.8b).

Apple went one step further in 2017 by re-configuring their iPhone processing chip 2 and

introducing the software development kit (SDK) called “ARKit” to enable Augmented

Reality experiences on mobile devices (Figure 2.8c).

2.4 Augmented Reality Applications

Augmented Reality can be found as the supported technologies in many different appli-

cation domains such as advertising, navigation, entertainment and education (K. Lee,

2012). It is becoming an irreplaceable technology of daily lives, and it could be the

future method of how humans collect, process, and interact with data (S. K. Feiner,

2002).

2.4.1 Broadcasting and Entertainment

Each of us has watched the weather forecast on TV at least once, where the reporters

are standing in front of changing weather backgrounds. However, there is no dynamic

weather background in the TV studio. The reporters always stand in front of a single

colour background (which is usually green, as shown in Figure 2.9a) while the images

of weather are generated by digital graphics, which are sometimes called chroma-keying

techniques. The green background acts as the marker which can be overlayed with

different pictures or videos. This technique allows us to re-use the television station

for other TV programs and reduces setup time. An example of an Augmented Reality

entertainment application is Pokémon GO, launched in 2016 (Figure 2.9b) (Serino,

2Caughill, P. (2017). Here’s why apple’s custom gpu and a11 bionic chip are utterly revolution-
ary. Retrieved from https://futurism.com/heres-why-apples-custom-gpu-and-a11-bionic-chip-are-utterly-
revolutionary/
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Cordrey, McLaughlin & Milanaik, 2016). The game uses a markerless-based technique

to locate virtual Pokémon characters in natural scenes and simultaneously interact with

other nearby players.

Figure 2.9: Examples of Augmented Reality in the broadcasting industry (a) and mobile
gaming (b) 1.

2.4.2 Education

In recent years, the demand for Augmented Reality applications in the education sector

has increased. Educators and students believe that Augmented Reality-related technol-

ogy can help them improve the teaching and learning process. People usually struggle

with the imagination of 3D objects when most graphical educational content presents

them as 2D images from one angle. Augmented Reality can visualise spatial relation-

ships as virtual 3D views without any extra physical teaching tools (Chang, Wu & Hsu,

2013; Billinghurst & Duenser, 2012). Magic Book was one of the first marker-based

applications for educational books developed by Mark Billinghurst at Hiroshima City

University in 2001 (Figure 2.10a) (Billinghurst, Kato & Poupyrev, 2001). At the same

time, Rainer Malaka and their team designed a storytelling Augmented Reality-based

application to allow visitors to view historic site ruins virtually at the exact location
1Retrieved from https://thewebappmarket.com/wp-content/uploads/2020/08/AR-VR-Technology-

1.png
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they were (Figure 2.10b) (Malaka, Schneider & Kretschmer, 2004; Kretschmer et al.,

2001). By viewing virtually reconstructed landmarks, visitors could understand more

about the site’s history. This idea allows the users to learn the past and allows them to

live and breathe with the history.

Figure 2.10: Examples of Augmented Reality applications in education include a
marker-based educational book (a) and a historic site reconstruction (b).

2.4.3 Navigation

Navigation is currently the most common commercial use of Augmented Reality such as

the navigation and reverse system in vehicles (Figure 2.11a). This is an example of mark-

erless Augmented Reality using GPS data to provide drivers with useful information

such as vehicle speed, virtual road lanes and virtual directions via the head-up display

(HUD) located in the front of the vehicle. The HUD allows the driver to keep their

eyes on driving direction or navigate the vehicle easier while reversing to minimise the

chance of an accident. Some restaurant suggestion applications like Yelp (Figure 2.11b)

embed an Augmented Reality function to provide users the most convenient method

to find somewhere to eat, drink or shop via virtual directions in real-time (Kipper &

Rampolla, 2013).
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Figure 2.11: Augmented Reality is used as a supported technology in automobile
navigation systems (a) 1 or in applications for shopping store recommendation (b) 2

2.4.4 Military

Augmented Reality research in the military started almost simultaneously as the first

workable prototype introduced by Sutherland’s team (Sutherland, 1968). However, most

of their research information remained forbidden due to the national security policy.

The head-up display (HUD) now seen in modern cars was proposed by the US Navy

in 1955 (Previc & Ercoline, 2004). This early HUD concept consisted of three main

components: (1) a projector unit, (2) a combiner, and (3) a digital-generated video

display. This design did not require the fighter pilot focusing on the outside view after

looking at the nearer instruments (Figure 2.12a). Later in the 1980s, the US Air Force

launched the Integrated Helmet and Display Sighting System (IHADSS) for AH-64

Apache pilots (Hiatt, Rash, Harris & Gilberry, 2004). This gives the pilots a wider field

of view and does not require them to turn their helicopter toward the direction of the

target. The new system automatically locks the selected target using the information

captured by the symbology monocular display located in the front of the pilot’s eye

(Figure 2.12b). Hence, increasing the pilot’s survival chance and combat performance.

1Retrieved from https://miro.medium.com/max/1400/1*1D9xe8JKGHMNCPTUoniPBQ.jpeg
2Retrieved from https://s.hdnux.com/photos/67/30/40/14518276/3/1200x0.jpg
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Figure 2.12: Augmented Reality is used as the military combat equipment such as in
the head-up display on fighter jets (a) 1 or in integrated target engagement helmets (b) 2

2.5 Summary

This Chapter presents the literature to understand Augmented Reality, where it came

from, and how it got into today’s stage. It clearly showed that Augmented Reality is

a very high-demand and exciting field for both kinds of research and commerciali-

sation. There are different ways to implement Augmented Reality technology, such

as markerless and marker-based. However, due to the goals of this thesis, the marker-

based technique is only considered. The next Chapter will describe different types of

Augmented Reality markers and the decoding principles behind them.

1Retrieved from https://i.pinimg.com/736x/71/e4/86/71e48638792c55f36f8cb1967affd797–fighter-
aircraft-fighter-jets.jpg

2Retrieved from https://i.pinimg.com/564x/c6/82/62/c68262156a85bd3eb6b717313c6a13f3.jpg
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Markers are the critical component of marker-based Augmented Reality ap-

plications. There are many different types of Augmented Reality markers

designed for various purposes and development-supported tools. However,

all of them can be organised in one of three main categories: (1) barcode markers, (2)

template markers, and (3) barcode pictorial markers. The rest of Chapter will focus on

the following discussions:

• The significant steps to encrypt and decrypt the markers hidden information

(Section 3.1).

• The principle of pose estimation that is used to display the virtual 3D objects

(Section 3.2).

• The differences between some popular Augmented Reality markers (Section 3.3).

• The advantages of newly-designed Augmented Reality markers over the original

markers (Section 3.4).

3.1 Marker detection procedure

The marker-based detection process includes several different steps to identify the

hidden marker information. Firstly, the system needs to find the outlines of potential

markers and determine their boundaries. Many image processing techniques could

quickly do marker boundary detection. The system should also be capable of identifying

the marker information within the confirmed boundary. In addition, there will be

different algorithms that are used for the marker information identification based on the

marker type. In theory, the marker-based detection process consists of the following two

main steps: (1) Marker boundary detection, (2) Marker information identification
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3.1.1 Marker boundary detection

The intensity image (grey-scale image) needs to be obtained first in the marker boundary

detection. The system must convert the captured image to grey-scale format from RGB

format using the formula as shown in the following Equation.

Y = 0.2126R + 0.7152G + 0.0722B (3.1)

The system will then use the thresholding technique (Chowdhury & Little, 1995)

to search for the potential marker from the binary image and the edge detection

method (Canny, 1986) to identify the marker boundary. The thresholding technique

usually uses the adaptive thresholding method to determine the illumination changes in

the picture (Bradley & Roth, 2007), as shown in Figure 3.1. As long as the illumination

changes in the image are identified, the system can classify which objects are most

likely to be the marker area.

(a) (b) (c)

Figure 3.1: The adaptive thresholding image can be obtained (c) from the originally
captured image (a) by converting it into a grey-scale image (b).

Canny edge detection is a widely used method to detect a wide range of edges in an

image, as shown in Figure 3.2. The algorithm processes the result from the thresholding

step to determine the figure boundary and this can be broken down into five smaller

steps:
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1. Use a Gaussian filter to remove high-frequency noise.

2. Compute the image intensity (Figure 3.2a).

3. Apply non-maximum suppression to remove “false” responses to edge detection.

4. Apply thresholding using a lower and upper boundary on the gradient values

(Figure 3.2b).

5. Use hysteresis to track edges; the weak edges that are not connected to strong

edges will be suppressed (Figure 3.2c).

(a) (b) (c)

Figure 3.2: The edge detection process (a) uses a threshold image (Figure 3.1) with
superimposed contours onto the initially captured image (b). It then produces the

remaining detected edges after applying the noise removal algorithm (c).

3.1.2 Marker information identification

As described in the previous Sections, many different types of markers are available on

the market, but they fall into two main categories: template markers and data markers.

Each marker category provides various ways to store and encrypt information. The

information will be encrypted using either the template matching technique (template

marker) or the data decoding method (data marker). The difference between these data

encryption methods will be described in detail in the following subsections.
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Template matching

The template matching technique identifies the detected marker identity by comparing

it with each sample image stored in the database (Brunelli, 2009). However, the detected

marker’s size, location and orientation are unknown, as the detected marker is not

warped. The system then scales the detected marker to the exact size of the sample

image and examines it in four different positions according to four possible orientations.

The sample image that gives the Highest Similarity Value (HSV) is the correct marker.

The orientation of the detected marker is also defined as the same as the position of

the matching sample image. This orientation information can be used for future display

purposes, such as the orientation of virtual objects. However, if the HSV is lower than

the threshold, the detected marker is rejected. The HSV can be easily calculated based

on either the Sum of Squared Differences (SSD) or cross-correlation (Lewis, 1995).

(a) (b) (c)

Figure 3.3: The example of the undesired similarity between markers where they look
entirely different to human eyes (a) and (b), but the template matching process may

confuse them as their presentation areas are almost overlapping (c).

As the system needs to match the detected marker against each of the dataset sample

images four times, it is clear that more time is required for the marker identification.

Therefore, it would be inefficient in practice if there was a large data set. Another

disadvantage of template matching is that the detection process can produce a poor
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outcome due to the undesired similarity (Tikanmäki & Röning, 2011) of images despite

looking entirely different to the human eye, as shown in Figure 3.3.

Data decoding

The data decoding method is generally used for data markers consisting of black and

white data cells. Black colour represents as "1" in binary code and white is "0". The

system uses this principle to obtain a series of binary values, which can be represented

as the marker data. As the binary series are unique, this decoded binary number is

the same as a marker ID or identity, as shown in Figure 3.4. This method gives an

advantage over template matching in terms of processing time and undesired similarity

of markers. Another advantage of data decoding is that it also provides error detection

and correction capability besides encoding information. This feature cannot be used on

template markers without altering the graphical area. The Hamming codes (Hamming,

1950) and Reed—Solomon codes (Reed & Solomon, 1960) are the two most used error

detection and correction methods.

Figure 3.4: The data decoding technique will decode the cells of the original data code
marker (a) to a binary (100101100) number (b) and then to a decimal (300) number.

The Hamming codes algorithm uses parity bits that determine whether the number
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"1" in a particular binary string is even or odd. There are two types of bit parity: odd

parity and even parity. The odd parity equals one when the number "1" is even and

zero if otherwise. The even parity equals one when the number "1" is odd and zero if

otherwise. The added parity bit to data can detect the error of one single bit in that binary

string. One parity bit can only reveal one single-bit error of the entire binary series.

Therefore, more than one parity bit is generally added for binary string error detection

and correction. The binary string or data is usually divided into blocks (e.g., four bits),

and each block is encoded separately. The Hamming (7,4) adds three additional parity

bits to every block of four data bits in a binary string. It can detect all single-bit errors

and correct any of them. However, there will not always be a single bit of error in

practice. The Hamming (8,4) is an extended version of Hamming (7,4) suitable for both

single error correction and double error detection. In other words, the more parity bits

that are added, the more errors can be detected and corrected. Irving Stoy Reed and

Gustave Solomon invented the Reed-Solomon codes in 1960. The codes operate on

m-bit symbols, whereas the Hamming codes operate on the individual bit. The codes

are defined as polynomials operating over finite fields. They are designed to detect and

correct multiple symbol errors. The number of t check symbols will be added to the

original data; the codes can detect up to t erroneous symbols or correct up to t
2 symbols.

The Reed-Solomon codes are usually used in DVDs, CDs, satellite communications and

complex barcodes, such as quick response code where a high degree of data reliability

is required (Plank et al., 1997). Therefore, the Hamming codes are often preferred for

error detection and correction in simple data markers.

3.2 Marker pose estimation

To render virtual information on a physical marker, the system needs to find the marker

pose estimation. This step begins with determining the camera position related to the
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marker. The system then can use this information to blend the virtual information into

the real-world environment (physical marker). It means that the Augmented Reality

system needs to transfer the 3D coordinates of the virtual object in the real world to

2D coordinates and present them on the display screen. In most Augmented Reality

systems, there are three different coordinate systems or transformations:

World coordinates (MW ): define the location of the trackable physical marker or

virtual information that is rendered in the real-world scene. The world coordinate system

is presented as Xw, Yw, and Zw in 3D space. This process is sometimes called pinhole

camera transformation which will be described in Section 3.2.1.

Camera coordinates (MC): define the position and orientation (pose) of the video

camera that is currently in use to view the natural world scene. All the physical points

of the natural world (including the virtual information) scene are defined relative to the

camera in this transformation. The details of camera coordinates will be discussed in

Section 3.2.2.

Display screen coordinates (MS): define a projection from the real-world coordinates

(3D) to the 2D coordinates which are used to render the pixels on the digital display

device. However, to maintain the realism of the augmented scene, a high level of

accuracy for all three geometric transformations (MW , MC , and MS) is required.

3.2.1 Pinhole camera model

The pinhole camera model (Sturm, 2014) projects 3D points (3D coordinates of P)

into the camera screen using a perspective transformation as shown in Figure 3.5. The

optical axis is presented as the line through the centre of focus of the camera O and

is perpendicular to the camera screen at point C (Z axis). The focal length (f) is the

distance between the centre of focus of the camera and the camera screen. Firstly, the 3D
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coordinate of point P where P = [U,V,W ] on the camera screen needs to be projected.

Then the 2D projection of point P is the intersection point between the camera screen

and the line which goes through point P and the centre of focus of the camera; donated

by p’ = [x, y]. The values of x, y can be expressed by the following formulas:

x = f X
Z

(3.2)

y = f Y
Z

(3.3)

Figure 3.5: Relationship between the marker coordinates and the camera coordinates
using the pinhole camera model.

3.2.2 Camera parameters

There are two different camera parameters used to define the relationships between the

coordinate systems in most Augmented Reality applications: extrinsic camera parame-

ters and intrinsic camera parameters. Figure 3.6 shows how the camera parameters are

used within the virtual information rendering process.
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Figure 3.6: The camera coordinates consist of two different types of camera parameters:
extrinsic camera parameters and intrinsic camera parameters.

Extrinsic camera parameters

The extrinsic camera parameters identify the transformation between the unknown

camera coordinate (MC) and the world coordinate (MW ), including the coordinates of

the rendered virtual information. The extrinsic camera parameters are external to the

camera and may change with respect to the world frame. Augmented Reality technology

uses six degrees of freedom (6DOF) (Van Krevelen & Poelman, 2007) for rendering

and updating virtual information orientation and location. This means that the virtual

information has only two kinds of transformation forms on a static camera: translation

and rotation. The translation motion occurs when the camera is moved from its current

location (X,Y,Z) to a new location (X ′, Y ′, Z ′) in 3D space, as shown in Figure 3.7a.

The rotation motion is absorbed when the camera is rotated about the X, Y and Z

axes. The camera rotation motion is often represented by using Euler angles (Diebel,

2006) (roll, pitch and yaw), or the direction of rotation angles (α, β, γ) as shown in

Figure 3.7b.
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(a) (b)

Figure 3.7: The orientation matrix can be expressed with rotation (b) angles (α, β, γ)
around axes (X,Y,Z) and the new location (X ′, Y ′, Z ′) in 3D space is defined by

translations (a) along the axis (X,Y,Z)
.

The translation motion occurs when the camera is moved from its current location

(X,Y,Z) to a new place (X ′, Y ′, Z ′) in 3D space. It has three degrees of freedom and

represented by vector t which can be calculated as in the followed Equation:

t = (X ′ −X,Y ′ − Y,Z ′ −Z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tx

ty

tz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

The rotation motion is absorbed when the camera rotates about the X, Y and Z axes.

Camera rotation motion is often represented by using Euler angles (Diebel, 2006) (roll,

pitch and yaw), a 3×3 matrixR or a direction of rotation and angle as shown in Equation

below:

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r00 r01 r02

r10 r11 r12

r20 r21 r22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.5)
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or can be expressed in homogeneous coordinates:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r00 r01 r02 tx

r10 r11 r12 ty

r20 r21 r22 tz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.6)

Intrinsic camera parameters

The intrinsic camera parameters are internal and fixed to individual camera properties or

setup. Most of the time, the intrinsic camera calibration matrixK (Hartley & Zisserman,

2003) needs to be calculated (Equation 3.7) first before starting the tracking process.

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fx s cx

0 fy cy

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.7)

Where fx and fy are the camera focal length in the x and y directions. The coordinates

of image centre point C is donated by (cx, cy). s is the axis skew due to projected image

distortion. However, in most modern cameras, pixels are often square and columns and

rows are straight. Thus, the value of s can be discarded; thus, s = 0 and fx = fy.

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f 0 cx

0 f cy

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.8)

3.3 Augmented Reality Markers

There are different types of Augmented Reality markers used for varying purposes.

These markers provide various methods to encrypt and decrypt confidential information
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and have unique pros and cons. This section will demonstrate different examples of

Augmented Reality markers with their unique encryption/decryption algorithms.

(a) Original marker (b) Marker structure (c) QR code embedded

Figure 3.8: There are many different Augmented Reality markers available in the
market, such as: the original tag (a) could be embedded with a QR code to improve the
detectability accuracy (b); ARToolkit marker designed with thick black border where

the border area occupies over 60% of the marker content (c).

3.3.1 ARToolkit marker

The ARToolkit marker was one of the first programmable markers and was designed by

Hirokazu Kato (Kato, Billinghurst, Weghorst & Furness, 1999) in 1999 (Figure 3.8).

This marker is the default optical input of the open-source computer tracking library,

also referred to as ARToolkit. The design of the ARToolkit marker has few tricky rules

that the marker designers must follow:

• The marker must be a square shape.

• The border must be a single colour in either black or white.

• The border thickness must be 25% of the marker edge length by default.

• The edge dimension of the inner graphical content must be 50% of the marker

edge, and the colour must be significantly different from the border.
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The marker uses a Quick Response (QR) code as an embedded corner image to increase

the detection accuracy, as shown in Figure 3.8c. This marker design is compelling,

as it can be identified in many different lighting conditions and is not too difficult

to implement on digital devices. However, it conveys less meaning to users due to

limitations of the displayable content area.

3.3.2 Data Marker

The data markers, also known as binary markers (Figure 3.9a), are usually designed as

the black and white data cells inside thick borders. Each type of these binary markers

has its own decoded binary string representing the black and white cell patterns to

present the unique identity (Figure 3.9). The more encoded data, the larger the marker

size; it means almost no limitation of the number of encrypted messages. The most

significant advantage of this marker design is built-in error detection and correction,

which is discussed in Section 3.1.2. There are many data markers, such as QR (Soon,

2008; Kato & Tan, 2007) (Figure 3.9b), data matrix (Stevenson, 2005) (Figure 3.9c), or

PDF147 (Wang, 1993) (Figure 3.9d). Data matrix markers can hold up to 3,116 encoded

characters with extensions and recover 30% of faulty content using Reed-Solomon

codes. The QR code is the most famous member of the data marker family, introduced

by the Japanese corporation Denso-Wave in 1994. The advantage of the QR code over

other binary codes is that it can store non-alphabet characters such as Kanji, one of

the essential scripts in Japanese writing. Ynjiun Wang invented the PDF417 code at

Symbol Technology in 1991. It usually appears in a rectangle shape and is primarily

used in transport or entertainment tickets. A single PDF417 code consists of four data

bars that can hold up to 1850 alphanumeric characters or 1108 bytes of data. These data

marker designs are easy to implement on any digital system, making them the most used

recognition symbol globally. However, they mainly appear with uninteresting colours



Chapter 3. Theory and Practice of Existing and Our Newly-Designed Augmented
Reality Markers 45

and provide non-meaningful information to users.

(a) Binary marker (b) QR code marker (c) Data matrix marker

(d) PDF147 code

Figure 3.9: Data marker examples.

3.3.3 Vuforia marker

The Vuforia marker is one of the most well-known Augmented Reality marker types

(Figure 3.10), designed by Qualcomm Technologies (Vuforia, 2021). Compared to data

markers, Vuforia markers can provide more meaningful information to the users while

keeping the image content almost unchanged. This design mainly uses the template

matching techniques (as described in Section 3.1.2) to recognise the potential marker

target in the real world. Users can generate Vuforia markers in two ways: (1) raw image

or (2) frame marker. As shown in Figure 3.10a, the frame marker is similar to other
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barcodes or ARToolkit markers, which use the computer vision techniques to identify

the potential marker target. The template marker (Figure 3.10b) does not require the

black boundary and can be applied to any coloured figures such as photos, books,

posters, etc. The system will retrieve the natural features available on each registered

image target and use them as the unique identity of the image itself (Figure 3.10c).

(a) Frame marker (b) Original natural image (c) Image features

Figure 3.10: Vuforia marker designs give users the option to use the marker frame
design as another version of the barcode tag (a) or register natural images as the

template marker (b,c).

However, this design has a significant drawback when the markers are detected under

different unexpected lighting conditions. When users’ register their image targets, the

images are usually prepared with ideal lighting conditions. However, when the system

scans for the marker in the natural environment, different lighting conditions can lead to

poor detection accuracy. Hence, Vuforia recommends the following features in image

targets to help improve the detection accuracy:

• The marker should be designed with rich details with good contrast graphical

content.

• The marker should not include repetitive patterns.

The Vuforia marker is always the top choice for Augmented Reality marker-based
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applications due to its usability. However, in practice, it is difficult to control natural

factors such as lighting, noise, faulty graphical content, or similarity which could impact

the accuracy of the final detection values.

3.4 Newly-designed Augmented Reality Markers

During the research of this thesis, several newly designed Augmented Reality markers

have been developed to overcome the disadvantages of the aforementioned Augmented

Reality markers in the previous Section. These markers are designed to keep the original

pictorial information as much as possible and improve detection accuracy. In short, the

newly proposed markers are:

1. Pictorial marker with hidden bar-code (Section 3.4.1).

2. Curtain style pictorial marker (Section 3.4.2).

3. Tile-based Quick Response code marker (Section 3.4.3).

4. Removable transparent Quick Response code marker (Section 3.4.4).

5. Red-green-blue Augmented Reality marker (Section 3.4.5).

3.4.1 Marker 1: Pictorial marker with hidden bar-code (PMBC)

Pictorial marker with hidden bar-code (PMBC) uses the idea of stereogram to con-

ceal a multi-level bar-code optically. The demo video of PMBC concealed code de-

cryption process can be reachable via https://www.youtube.com/watch?v=

fOwu318KY0w. The design is demonstrated in Figure 3.11 which presents some no-

table advantages over others:

• Extensive range of data: The multi-level bar-code can hold LN different num-

bers, with L being the number of levels in each bar, and N , the number of bars.

https://www.youtube.com/watch?v=fOwu318KY0w
https://www.youtube.com/watch?v=fOwu318KY0w
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• Virtually Pictorial: The image inside each PMBC marker is made from mean-

ingful illustrations rather than black bars, squares, or dots.

• The flexibility of Pattern: The decoded information is independent of image

patterns; a broad range of images can be used to encode the same bar-code.

Each PMBC marker is a rectangle with a dimension D =M ×N measured in pixels

or millimeters; border thickness t is relatively small (t = 4% of D). The quadrilateral

property of the rectangles can be used to detect their four straight lines and four corners;

these are used for detecting the marker. The internal image is a stereogram (size W ×H)

made of three regions. The central area is a fixed image (region A that fills up ≥ 50%

of the stereogram) and two repeated patterns on both sides of the region A (region B

and region C with ≤ 25% of the stereogram each). Hidden inside each stereogram is

a bar-code with many horizontal bars of the same thickness. Each bar is coated with

different grey levels between black and white; these levels represent different depth

levels inside the stereogram. Figure 3.11c displays an example of 4-level binary bar-code

with 10 horizontal bars. Each bar can hold four levels: 0, 1, 2, 3, corresponding to black,

dark grey, light grey, and white. Thus, this barcode can store as many as 410 = 1,048,576

different numbers.
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(a) Pictorial marker with hidden bar-code proposed idea.

(b) Marker design. (c) Multi-level barcode.

(d) Pictorial marker with hidden bar-code information encrypted principle.

Figure 3.11: The design of Pictorial marker with hidden bar-code that optically hides a
multi-level encrypted bar-code.
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Figure 3.12 demonstrates the necessary steps of creating PMBC marker. As de-

scribed, the PMBC marker has a black border to quickly and reliably detectable under

various circumstances. In theory, the internal stereogram of the PMBC marker can

encode any 1D bar-code such as Code11, Code 32, Code 49, Code 93, Code 128,

EAN-8, and EAN-13.

Figure 3.12: The proposed marker information encrypted process from a multi-level
bar-code and a picture (Ironman). The middle 50% of the marker is a fixed illustration
of the Ironman figure. The marker is also a side-by-side stereo image pair (red/cyan
painted).

In order to decrypt the concealed information, we could use the internal stereogram

image of the detected PMBC to rebuild the hidden multi-level bar-code. This step is

equivalent to a stereo reconstruction process applied on two stereo images C1 and C2;

C1 is the left half of the stereogram and C2 is the right half of the stereogram. The

disparity levels (ranged between 0, dMAX) are known from the width of the internal

stereogram. The intensity-based stereo matching is a complex algorithm; they can be

categorized into at least three families below:

• Local matching algorithms: Sum of Absolute Differences (SAD), Sum of

Squared Differences (SSD), and Cross-correlation based block matching stereo

algorithm (BMS) (Konolige, 1997).
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• Global stereo matching algorithms in 1D (one scan-line at a time): Dynamic

Programming Stereo (DPS) (Birchfield & Tomasi, 1999), Symmetric Dynamic

Programming Stereo (SDPS) (Gimel’farb, 1999), and Belief Propagation - 1D

version (1DBP) (Gong, 2011).

• Global stereo matching algorithms in 2D: Graph Cuts Stereo (GCS) (Kolmogorov

& Zabih, 2002).

We use a technique that guides DPS using pre-computed BMS depth map, thus restrict-

ing and guiding the DPS search for optimal profile related to signals in 2D. Previously

being evaluated in (Nguyen, Chan, Delmas & Gimel’farb, 2013), both DPS and BMS

are fast but GCS is not; therefore, to achieve a good speed, we combine BMS and

DPS for the guidance method: Stereo SGBM - the semi block matching algorithm.

The profiles made from BMS are used as a guiding profile. In addition to its general

dynamic programming calculation, quantitative guiding scores are added to DPS’s

structure so that the method can follow these guiding profiles to establish a more

accurate stereo matching. The algorithm uses Dynamic Programming described by

Birchfield and Tomasi (Birchfield & Tomasi, 1999), to make the stereo matching more

robust as the computation of disparities is cast as an energy minimisation problem.

BMS uses windows to match correspondences; its results are influenced by pixels in

multiple scanlines. The cooperation of BMS and DPS should eliminate the effect of the

straight strikes made by single scanline reconstruction of DPS. On Middlebury Stereo

Evaluation website (Middlebury Stereo Vision webpage, 2001), this SGBM algorithm

obtains approx. 76% matching accuracy.

Figure 3.13 displays a disparity map results of some sample AR markers. The disparity

range d is set to be between -32 and +31 pixels (64 levels). We calculate the SAD value
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at each disparity d:

SADd(x, y) =
k

∑
a=−k

k

∑
a=−k

∣Il(x + a, y + a) − Ir(x + a + d, y + a)∣ (3.9)

The disparity map is normalised to 0 and 255 and display to users along with the left

and right stereo images. Mainly, the brighter the pixel, the closer the 3D point is, and

vice-versa. If dynamic programming fails to obtain a disparity value for a point, it

returns a value of −1.

(a) Left stereo image (b) Right stereo image (c) Resulted disparity

Figure 3.13: Left and right stereo images extracted from Spider man marker and its
disparity map, read from top down: 131102004 = 2998410.

This barcode can be recognised using basic image processing methods, depth level of

each bar is averaged, and a unique number can be calculated accordingly using the

following Equation:

A = bN−1LN−1 + bN−1LN−2 + .. + b1L1 + bk−1L0 (3.10)
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Where A is the number presented by the hidden bar-code, bi is depth level at ith bar, L

is number of depth levels at each bar, and N is the number of bars.

The controlled zone is a horizontal bar at the bottom of the bar-code; it is used to

self-check the validity of the bar-code and specifies the bar-code version. The controlled

bar has the same thickness as a vertical bar, and always have the lowest depth level

(black colour). Currently, we define five different versions of this multi-level bar-code

as shown in Table 3.1. The Higher version has more vertical bars and more levels

presenting in each bar; thus storing a larger range of numbers. For instance, version 0

can only represent numbers between 0 and 63 using 6 bars and two levels each. On the

other hand, version 6 may store up to 7.95 × 1025 different numbers using 24 bars and

12 levels each.

Version Controlled
Zone

Number of bars
(N)

Depth levels
(L)

Presentation
Range

0

1

2

3

4

1
4 width
1
8 width
1
12 width
1
16 width
1
24 width

6

8

12

16

24

2

4

6

8

12

0 – 63

0 – 6.55 × 104

0 – 2.18 × 109

0 – 2.81 × 1014

0 – 7.95 × 1025

Table 3.1: Specification of different versions of multi-level bar-code

3.4.2 Marker 2: Curtain style pictorial marker (CSPM)

The Curtain Style Pictorial Marker (CSPM) aims to conceal the more incredible amount

of encrypted information by using the quick-response code (QR) encoding (Figure 3.14).

The proposed marker provides a proper graphical content presentation and improves

detection performance and security issues. The demo video of CSPM concealed code de-

cryption process can be reachable via https://www.youtube.com/watch?v=

https://www.youtube.com/watch?v=ciYq0Ke8i1U
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ciYq0Ke8i1U and sample 3D pose estimation at https://www.youtube.com/

watch?v=DYCltnvkyYg. This proposed marker has been successfully published at

the 33rd International Conference on Image and Vision Computing New Zealand

(IVCNZ 2018), which presents the following novel contributions:

• Large data storage capacity: The concealed QR code could hold at least 133

encoded data items with the lowest version and up to 23,648 encoded data items

with the highest version (Kieseberg et al., 2010).

• The flexibility of Pattern: The images are approximately similar to each other

that can be used without worrying about the undesired similarity as the decoded

information and the image patterns are independent.

• Virtually Pictorial: The image inside CSPM is made from meaningful illustra-

tions rather than black and white patterns as in data marker, which provides no

real pictorial information.

• Error detection and correction capability: The capability to restore at approx.

30% of codewords.

Figure 3.14: The curtain style pictorial marker design allows the QR code to be embed-
ded on the edges of the original figure.

https://www.youtube.com/watch?v=ciYq0Ke8i1U
https://www.youtube.com/watch?v=ciYq0Ke8i1U
https://www.youtube.com/watch?v=ciYq0Ke8i1U
https://www.youtube.com/watch?v=DYCltnvkyYg
https://www.youtube.com/watch?v=DYCltnvkyYg
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The encryption process of CSPM is shown in Figure 3.15; it will have a black colour

border which is used to ease the marker recognition, detection and segmentation. Given

an image with the dimension of H ×W where H is the height and W is the width. The

border thickness t is equal to 2% of the image longest edge or t =max(H,W ) × 2%.

The central area A is a fixed original image pattern that occupies 50% of the CSPM

area. Other two repeated patterns on both sides of region A (region B and region C with

25% each). Assume that a unique string: "Peacock" needs to be encrypted into a QR

code. Thus, there is a QR code being generated, called IQR, and resized it to W
2 ×H

pixels. Then the two curtain-edged regions (B and C) will be used to hold this binary

QR code.

Figure 3.15: Hidden QR code encryption process.

The region B is read the left half of the QR Code IQL; if the QR block is black, the

1-to-1 from the central colour image to the curtain-like region is copied. If the block

is white, a block with the highest illuminant difference in the curtain is generated.

Region C is done similarly, using the right half of the QR Code IQR. The brief idea of

CSPM is that when the left region is subtracted from the right region, it will produce a

binary QR Code. The concealed data decryption process is demonstrated in Figure 3.16.

The procedure includes three steps: (1) internal image detection, (2) QR code regions

detection, and (3) QR code reconstruction and decoding.
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Step 1 - Internal image detection. The marker border needs to be identified first to

retrieve the internal image. This is a typical image processing-related problem which

could be solved effectively by using the contour approximation method (Kim, 1998).

The steps to detect marker border are outlined below:

• Convert the input image from RGB to greyscale

• Perform an adaptive binary thresholding method to detect contours in the image.

• If there are four vertices in the contour, it should be identified as a quadrilateral.

• Apply Perspective Transform (OpenCV, 2008) to retrieve the internal image of

the marker as shown in Equation 3.11.

I′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

tix′i

tiy′i

ti

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
map
matrix

M .

I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi

yi

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.11)

where M is a map matrix, I ′ is the internal image created from the four corners

g(xi, yi), i = 0,1,2,3 of the original image I . Once the internal image is identified, it

could be used to obtain further decoding.

Step 2 - QR code regions detection. After the internal image is discovered, the image

is cut into halves vertically: A and B. For half A, it is also cut into halve: AL and AR.

To achieve the first half of the QR Code, the image subtraction between the two AL and

AR is performed:

Adiff = ∣∣AL −AR∣∣ (3.12)

Repeat the same steps with half B of the image to getBdiff . In the end, the twoAdiff and

Bdiff are combined to reconstruct the entire QR code image. Some further histogram
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equalisations would be used to compensate for the illumination difference and some

thresholding.

Step 3 - QR code reconstruction and decryption. The complete detected QR code

can now be used to extract the hidden information and present the marker’s orientation.

There are many available open-source barcode reading libraries such as Zbar 1 or

ZXing. Each of those libraries can read an image frame and automatically detect the

QR code. The meaningful text can be then decoded and the code orientation by defining

the four corners of the QR code. The system then can use this information to render

computer-generated graphics on the marker.

3.4.3 Marker 3: Tile-based Quick Response code marker

The tile-based Augmented Reality marker is another proposed marker that can conceal

the encrypted quick response (QR) code information. This marker is motivated by

the 3D illusion created by looking at a kitchen or bathroom tiled wall, as shown in

Figure 3.17. If both eyes are paralleled and virtually looked at a point behind that

wall, the tiles appear to float at different layers of depth. The effect is very similar

to autostereogram, or magic eye pictures described in (Tyler & Clarke, 1990). The

irregular gaps between the tiles create the various depths of individual tiles. If a QR

code M ×M is considered as the tiled wall, and the black and white dots are simply

many tiles lying at different depth levels, then a wall that optically hides a QR code can

be built using this principle. The tiles are all having the same size, but the gaps between

them are different. However, there are only two sizes of gaps for a row of tiles: larger

and smaller for binary values of ‘1’ and ‘0’, respectively. The marker is thus pictorial

and yet robust enough to be detected under various lighting conditions. Moreover, gaps

are small compared to tiles; on average, 80-90% of the original picture is retained.

1Brown, J. (2007). Zbar bar code reader. Retrieved from http://zbar.sourceforge.net/
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Figure 3.16: Hidden QR code decryption process.

There are only two components are needed for the creation: a colour picture and a

QR code. QR codes are now easily obtained by either an online tool such as www

.qr-code-generator.com or a public library such as QRcode python library at

pypi.python.org/pypi/qrcode. Assume a QR code with dimension M ×M ,

mapped on a colour picture of dimension W ×H pixels. In order to build a tiled walled,

that neatly fit in the image, (M + 1) ×M rectangular tiles are required. Each tile should

have the same size of wt, ht pixels. The components of the vertical cap (gy) need to be

www.qr-code-generator.com
www.qr-code-generator.com
pypi.python.org/pypi/qrcode
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Figure 3.17: The tile-based Augmented Reality marker design allows the QR code to be
concealed as the tile blocks on the indoor walls.

calculated first by using the following Equation:

gy =
H −M × ht

M
(3.13)

The horizontal big gap gxb for black QR dot and horizontal small gap gxs for white QR

dot are calculated differently for each horizontal line ith of the QR code. Assume that a

QR scan-line i has a black dots and b white dots: a + b =M , and the big gap gxb is n

times the small gap gxs. They are calculated as follow:

gxs(i) =
W − (M + 1) ×wt

n + 1
(3.14)

gxb(i) = n × gxs(i) (3.15)
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When all the components (tiles and gaps) are defined, they can be placed accordingly

on top of the provided picture. Each tile is a transparent glass with a black frame; the

gaps are filled with white cement. After that, a black border is placed with width = 1%

of the image on top. This rectangular border is used for marker recognition, detection,

and segmentation (the quadrilateral property of the squares can be used to detect their

four straight lines and four corners).

Figure 3.18: The tile-based Augmented Reality marker concealed information decryp-
tion process.

Figure 3.18 shows four steps of the proposed marker decryption steps: (1) rectangular

marker detection, (2) gap region segmentation, (3) binary gap classification, and (4)

QR Code reconstruction from gap’s distances. Steps 1 and 4 are similar to steps 1 and 3

of the curtain style pictorial marker decryption process described in Section 3.4.2.

Step 2 - Gap Region Segmentation. After the internal tiled image is detected, it will

be resized to a suitable dimension (1024 × 1024 pixels in this case). A simple flood

filling algorithm (Nosal, 2008) can be applied with the knowledge of the white colour

gaps between tiles, and each tile has a thin black frame. This is also called seed fill
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algorithm, which determines the area connected to a given node in a multi-dimensional

array. Shadows and lights can change the appearance of the photo; for a robust segmen-

tation, eight seed points at the corners and boundaries of the image are set, as seen in

Figure 3.18 top-right. At each seed point, the below flood fill algorithm is applied:

1 d e f f l o o d F i l l ( x , y , f i l l C o l o r , i n t e r i o r C o l o r ) :

2 g e t P i x e l ( x , y , c o l o u r )

3 i f c o l o u r i s s i m i l a r t o i n t e r i o r C o l o r :

4 s e t P i x e l ( x , y , f i l l C o l o u r )

5 f l o o d F i l l ( x +1 , y , f i l l C o l o r , i n t e r i o r C o l o r )

6 f l o o d F i l l ( x −1 , y , f i l l C o l o r , i n t e r i o r C o l o r )

7 f l o o d F i l l ( x , y +1 , f i l l C o l o r , i n t e r i o r C o l o r )

8 f l o o d F i l l ( x , y −1 , f i l l C o l o r , i n t e r i o r C o l o r )

Step 3 - Binary Gap Classification. The Flood fill segmentation is used to separate

gaps and tiles as shown in Figure 3.18 bottom-left. In general, it does not expect all

the gaps are detected due to many constraints such as noises and lighting conditions.

However, there is an assumption that a majority of the gaps are segmented. The tiles

can be reconstructed to find the marker orientation. All the components such as the

dimensionM×M of QR code, the size of each tilewt, ht pixels, the vertical cap (gy), the

big horizontal gap gxb and small horizontal gap gxs; can also be estimated statistically.

After segmentation, the result is similar to what shown in Figure 3.18 bottom-left, every

horizontal and vertical scan line are analysed to create collections of:

• Number of horizontal and vertical black and white gaps.

• Sizes of horizontal and vertical black and white gaps.

If the statistics mode value (the data value that appears most often) of horizontal white
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gaps for all scan lines is one value higher than the mode value of vertical white gaps for

all scan lines, then the marker is at correct orientation or upside-down orientation. If

not, a rotation needs to apply to the image. The mode value of all horizontal black gaps

is the estimate of the width of each tile wt. Thus, the mode value of all vertical black

gaps is the height ht of each tile. The vertical gap gy is found from the statistics mode

of all vertical white gaps. The gap sizes are harvested horizontally, the known width wt

of each tile is used to control the quality to ensure no gaps are missing. The tiles can be

separated from the collection into two groups: big with size gxb and small gaps with

size gxs. The big gaps represent black dots, and small gaps represent white dots of the

QR code.

3.4.4 Marker 4: Removable transparent Quick Response code marker

The removable transparent quick response (QR) code marker is designed for real-life

production to keep the original texture information as much as possible and could be

applicable on any texture with the minimum cost (Figure 3.19a). The proposed marker

is a part of an online deployment platform powered by web-based AR.js that allows real-

time display of virtual information such as 3D models on the top of the given texture.

This idea was successfully published at the 25th ACM Symposium on Virtual Reality

Software and Technology (VRST 2019) and at the 5th Asian Conference on Pattern

Recognition (ACPR 2019), where they presented the uses of the proposed marker

for the medical application domain. The application demo video can be reachable via

https://www.youtube.com/watch?v=fOwu318KY0w. In short, this marker

and online deployment system produce the following advantages:

• All in one Augmented Reality marker. The proposed system does not require

the installation of specific software like other Augmented Reality applications.

The user can scan the QR code to access the website, and the 3D model is

https://www.youtube.com/watch?v=fOwu318KY0w
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displayed right on the marker.

• Light-weight and portable application. There will be no pre-loaded process for

virtual information such as 3D models. The information will be loaded when the

marker identity is detected; hence less disk space is required.

• Transparent QR code. The website URL is encrypted in a QR code located on

the left top of the tag. The code sticker is primarily transparent to preserve most

of the original information of the given texture. QR codes allow us to reuse the

same code on different textures and display various models by using the same

code (Figure 3.20).

(a) (b)

Figure 3.19: The example of transparent QR marker (a) and its encryption/decryption
steps (b).

The proposed marker encryption/decryption steps are presented in Figure 3.19b. The

four black boxes and their surrounding (yellow boxes) are preserved for reliable detection

of the QR Tag. All other dots are squeezed into 20% of their original sizes. All other

spaces are made transparent to achieve the QR Code. This transparent QR code can be

pasted on top of a colour image digitally as seen on the figure or physically by sticking

this on a textbook page. Alternatively, the QR code can be printed on adhesive plastic

paper using a printer. Notes: Most printers do not have white ink (as they print on white
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paper; therefore, white ink is unnecessary). This is why the yellow colour is used for

the white square in the above transparent QR code. This use of transparent QR codes

has some benefits compared to the traditional one. For instance, it does not fully cover

the pictorial feature of the RGB images; users can stick it to any region of the image.

Moreover, from the experiment, the performance of this transparent QR code is also

equivalent to the original one (approx. 90% of detection and decryption rate).

Figure 3.20: Virtual 3D models displayed on the top of proposed removable transparent
QR code marker.



Chapter 3. Theory and Practice of Existing and Our Newly-Designed Augmented
Reality Markers 65

3.4.5 Marker 5: Red-green-blue Augmented Reality marker

The red-green-blue (RGB) Augmented Reality marker aims to encode three unique

pictures (1) an oriented marker, (2) a bar-code and (3) a graphic image into three

respective three colour channels: green, blue and red. This proposed marker has been

successfully published at the Advanced Concepts for Intelligent Vision Systems:

20th International Conference (ACIVS 2020).

(a) Red oriented marker (b) Blue bar-code (c) Green texture

(d) Result after RGB channels combined

Figure 3.21: The proposed Red-green-blue Augmented Reality marker design.

The marker design idea is demonstrated in Figure 3.21. The red channel is used to

store an orientation robust squared marker (Figure 3.21a); the blue channel holds the
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product bar code (Figure 3.21b); and the green channel is used to display the original

image of the product (Figure 3.21c). The choice of the colour is decided carefully as

the human eyes are most sensitive to yellowish-green colour, then to red, and not very

sensitive to blue colour. However, to computers, they are relatively the same. The green

colour is considered to present the product photo because it is the most important visual

information for retailers and shoppers. Blue is for the bar-code because it is complex

and distracting. Red is then kept for the orientation figure.

Red Oriented Tag

To blend between the real and virtual environments harmoniously, it is essential that the

3D graphics are well aligned with the real-world objects. The bordered marker is stored

in the blue channel for tracking relative position and orientation to the camera. Our

marker is made of two parts: solid black square and inner white square. The position

of the black square determines the 3D graphics position, while the white square is for

orientation. Like other computer vision projects, there is a primary pipeline for marker

detection as well: Thresholding, Labeling, Extract contours, Find four corners, and

Get information and verification. The converted grayscale image is segmented (the

black square is separated from the rest of the image) and a binary image created by

thresholding technique. The principle of the thresholding technique is to separate the

light and dark regions. Each pixel below a certain threshold is turned to zero, and each

pixel above that threshold is transformed to one.

Labelling seeks groups of connected pixels and ultimately identifies the closed area in

the image. Each pixel that satisfies the thresholding will obey the following algorithms:

First, scan all pixels row by row and assign a preliminary label; Second, merge the

equivalent regions that have different labels into one single label. Next is finding the

contours of the objects for further determination of the curve, which stands for the
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solid border of a marker. Future extraction of the corner markers will be by this curve.

Also, the edge detection algorithms can draw out the contour. Canny edge detection is a

multi-stage edge detection algorithm with noise suppressed at the same time. The first

stage is using a Gaussian filter to smooth the image for the noise and unwanted details

and textures reduction. The process of smoothing the image I with a Gaussian filter G

can be written as

G(x) = exp(−x2/2σ2)/2πσ2 (3.16)

I(x, y) = [G(x)G(y)] ∗ f(x, y) (3.17)

In the above equation, σ is the Gaussian filter spread, the smoothing degree is determined

by it. The second stage is the calculation of the gradient direction and magnitude. A

2×2 neighboring area is often selected in the Canny edge detection algorithm to acquire

the corresponding magnitude and direction gradient image. Through the following

formulas, the first order partial derivatives in the directions of x and y can be gained:

M(x, y) =
√
N2
x(x, y) +N2

y (x, y)) (3.18)

D(x, y) = arctan[Ny(x, y)/Nx(x, y)] (3.19)

Nx = (−S1 + S2 − S3 + S4)/2 (3.20)

Nx = (S1 + S2 − S3 − S4)/2 (3.21)

Here M(x, y) represents the gradient magnitude of the image, and D(x,y) stands for the

gradient direction of the image, also the pixel values of the image (x, y), (x, y + 1),

(x+1, y), (x+1, y+1) are stated by S1, S2, S3, S4 respectively. After gaining the gradient

magnitude imageM and gradient direction imageD, we need to perform non-maximum

with the goal to detect the edge and avoid the occurrence of false edges efficiently. A

3 × 3 adjacent area is chosen in the Canny algorithm to compare a pixel with its two
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adjacent pixels along the gradient direction. If the magnitudeM(i, j) is more significant

than the two interpolation results on the gradient direction, a candidate edge point will

be arranged to the pixel. Otherwise, a non-edge point will be assigned to it (Neubeck

& Van Gool, 2006). After applying non-maxima suppression, canny methods employ

double thresholds, which consist of low and high thresholds to detect and connect edge

points. If a pixel has a gradient magnitude that is bigger than the high threshold, an

edge point will be assigned to the pixel, while a pixel with a smaller gradient will be

assigned with a non-edge point. For those gradient magnitudes between high and low

thresholds, if there is a point around the pixel more significant than the high threshold,

then it is the edge point. Following these steps, the edge image is acquired.

After finding the contours of the marker, we need to find further the polygon ap-

proximations of the contours for the marker square using the polygon approximation

algorithm (Wikipedia, 2017). This algorithm can reduce the number of points in a curve,

which is approximated by a series of points. The functions of this algorithm are to

find the distance dimension on the line for each point and conduct the simplified curve

reconstruction. Finally, the points of the simplified square can be seen as the marker

corners. After identifying the marker corner coordinates, which should be vertical, the

2D and 3D coordinates need to be mapped in the real world so that the 3D objects

appear as if they are positioned on top of the marker. The camera is positioned in the

origin of the coordinate system of the camera, looking along the Z-axis. Two axes of the

coordinate marker system are parallel to the sides of the squared marker. To establish

the mapping relationship between the marker coordinates and screen coordinates, we

need to get transformation between them.

In the circumstance of coding, all these transformations are a matrix. Also, the trans-

formation is represented by a matrix in linear algebra. Here, we can use homogeneous

coordinates (Li, Hestenes & Rockwood, 2001) to perform the matrix. The scientific
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name of matrix C is the camera internal reference matrix, and matrix Tm is referred to

as the camera external reference matrix, where camera calibration obtains the internal

reference matrix in advance, and the external reference matrix is unknown. Thus, we

need to define it according to the screen coordinates (xc, yc) in advance according to the

marker’s coordinate system and internal parameter matrix. Then, based on Tm, we can

draw the graphic on it. After marker detection and verification, it is possible to display

the 3D model on the AR marker. We want to keep track of the marker’s orientation so

that the 3D graphics can rotate consequently as the marker rotates from the camera.

We will use the small inner square to orient. The detection steps are almost the same

as the previous processes to find the large square. Once we finish detecting the solid

outer border, next step is to detect the small square that designates the vertex of the

large square closest to the small square as "first”.

Blue Product Bar Code

Most products are printed with barcodes for the ease of detecting and calculating the

final prices. The commonly used barcode formats in commodity products are EAN-8,

EAN-13, and UPC. They are one-dimensional barcodes which can be readable by most

Laser scanners used in retails. The same 1D barcode of a particular product can be used

for this Blue Product Bar Code. Nowadays, 2D barcodes are more and more frequently

used, such as QR code, due to its higher storing capacity and better error correction rates.

QR code was introduced by Denso Wave in 1994 (Kieseberg et al., 2010). Since then,

the QR code has obtained wide popularity in many diverse industries, like construction,

marketing, healthcare, tourism, life sciences, and education. The reason for its popularity

due to the data stored in QR code is of a higher density than the information in a barcode.

Another reason is that it is convenient and straightforward to download and install a

code detector onto a mobile, enabling data to be quickly retrieved. Furthermore, it has

the advantage that either electronic or static media efficiently distribute data in QR
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code. Today, QR code can act as either an identifier or a database itself. Likewise, our

RGB tag is also capable to store 2D QR code in its blue channel.

Green channel Texture Image

The texture image is the photo of the product, which is stored in the marker’s green

channel so that users can have an essential first sight of what the 3D graphics will be. As

stated, human’s eyes are most sensitive to green colour. Also, contrast sensitivity of the

human visual system plays another important part (Barten, 1999). If the contrast of the

image is high, this provides a better perception of human vision. Contrast refers to the

separation of the bright and dark areas present in an image. The difference between the

colour and brightness of the object and its background determines the image contrast.

Contrast enhancement aims to enhance the visibility of the object by improving the

difference between the brightness of the object and its background.

The most widely used technique for increasing the contrast of images is the grey-

histogram method. This is a graph displaying the number at which each grey level occurs

in an image, plotting the number of pixels for each tonal value (Bora & Gupta, 2016).

The contrast of an image can be enhanced by changing its grey histogram: distributing

the image value to cover a wide range on the graph. Here, we use a method called

“Contrast Limited Adaptive Histogram Equalisation (CLAHE)”, which is optimised

based on the adaptive histogram equalisation method (AHE). The difference between

AHE and CLAHE is the contrast limit as the CLAHE introduced clipping limit to

overcome the noise amplification problem (Zuiderveld, 1994). CLAHE was firstly

introduced to process the medical image and has proven to be an effective method for

enhancing a low-contrast image. The principle behind this method is that the image is

segmented into several non-overlapping regions with nearly equivalent sizes (Sasi &

Jayasree, 2013). The steps in this approach are described below:
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• First, calculate the histogram of each region.

• Then, based on the required restrictions for contrast expansion, acquire a limit of

the clip for clipping histograms.

• Next, for that height, does not exceed the clip restriction, distribute each histogram

in the same way again.

• Finally, with the aim of grayscale mapping, determine cumulative distribution

functions (CDF) of the generated contrast limited histograms. In the CLAHE

technique, pixel mapping can be achieved by integrating the outcomes resulting

from the mappings of the four nearest regions linearly.

Combination of the three channels

After identifying the components (1) an oriented marker, (2) a bar-code and (3) a

graphic image; we can store them in red, green and blue channels of the final image.

Figure 3.22a display such a RGB tag (Version 1) created from the original picture of the

Spiderman in Figure 3.22d. As we are not very sensitive to blue colour, the QR code

is not too visible; however, the red square of the oriented marker is quite obvious and

distracting. The Spiderman is relatively visible with low contrast due to the use of only

one channel.

When we use QR Code as the embedded bar-code, it is known that the QR codes them-

selves include position detection patterns that could be used to identify the orientation

for the tag. Thus, the oriented marker is needed anymore if QR code is used. Thus, one

red channel is saved and we may use it for presenting the texture image, to increase

the contrast. Figure 3.22b shows the effect of elimination of red orientation marker

(Version 2). The contrast definitely increase and the figure of the Spiderman is relatively

visible to most people; however, the figure is greyscaled. We slightly improve the look
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of it by retaining the original red and green colour channels of the Spiderman figure

to achieve its version 3 (Figure 3.22c). Comparing this tag with the original images in

Figure 3.22d; we do not see much difference; most pictorial information still remains

correctly and the viewer can very quickly recognise that it is a Spiderman figure.

(a) Version 2 (b) Version 2

(c) Version 3 (d) Original image

Figure 3.22: The proposed Red-green-blue Augmented Reality marker with QR code as
the concealed information.
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3.5 Summary

This Chapter has demonstrated different types of Augmented Reality markers, their

encrypting and decrypting techniques. The original Augmented Reality markers have

their strong points and drawbacks. It also demonstrated the newly-designed markers

which aim to overcome the original marker disadvantages. In short, the proposed

markers have remarkably improved encrypting, decrypting, and visualising information

compared to the other markers as summarised in Figure 3.23. They can easily overcome

the drawbacks of the original markers where they can provide meaningful information

and give the high accuracy detected under different unexpected conditions to avoid

the undesired similarity between template markers. However, another significant issue

for the newly-designed markers is that they often require the users to modify their

original graphical material, either partial or complete, which is usually not acceptable.

Hence, a novel solution that does not require changes to the original texture and could

keep the reliability at the acceptance level is needed; as shown as our ideal marker

in Figure 3.23. This is the overall of this thesis that will be described in detail in the

following Chapters. In the next Chapter, another interesting topic – Machine Learning is

demonstrated that is the critical solution to help overcome the issues of the Augmented

Reality markers using traditional computer vision techniques.
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The term of Machine Learning was started in 1959 by Arthur Samuel (Samuel,

1959; Provost & Kohavi, 1998), but the outcome only stops at the proposal

or prototype level due to the low public demand and lacking supported tools.

However, with the storm of new technologies in both hardware and software today, the

application of Machine Learning can easily be found in many sectors of daily life. The

implementation of Machine Learning has become more accessible than before with

many affordable training devices available in the market. Therefore, it is one of the

critical inspirations in this research. The rest of this Chapter primarily focuses on the

following aspects:

• The theoretical background surrounding Machine Learning in general, its func-

tions, and training styles (Section 4.1, 4.2 , 4.3, and 4.4).

• Introduction of the most suitable Machine Learning model for the proposed

Augmented Reality system in this thesis (Section 4.5).

• Identifying the primary drawbacks during the Machine Learning training process

and propose the potential solution to overcome them (Section 4.6).

4.1 What is Machine Learning?

The Machine Learning is defined as a sub-field of artificial intelligence (Mitchell et

al., 1997) that focuses on building the applications that learn from sample data to make

decisions or predictions without being programmed to do so (Koza, Bennett, Andre

& Keane, 1996). The principle theory of Machine Learning is the same as how the

humans learn new concepts. The Machine Learning algorithm is a sequence of statistical

processing steps trained to find the specific patterns or features in a massive amount of

data to predict the new or unseen sample accurately later (Bishop, 2006; Schapire &

Freund, 2012). The approaches of Machine Learning are generally divided into three
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main types of learning:

Supervised learning is when the system is fed with sample inputs and their desired

outputs (also called labelled outputs) (Russel & Norvig, 2003), and the goal is studying

the general pattern that maps the inputs with outputs.

Unsupervised learning is slightly different from supervised learning when there is no

output given to match the inputs. The system needs to find its structure based on its

given inputs (Hinton, Sejnowski et al., 1999).

Reinforcement learning is different from supervised and unsupervised learning, where

there is a specific goal that the system must perform under a dynamic environment

without providing inputs and outputs (Van Otterlo & Wiering, 2012).

The supervised learning is considered in this thesis where a massive amount of sample

data could feed into the system to recognise unseen images. In supervised learning,

the system estimates the probability P (y∣x) where y is the output of a given input x.

A wide range of supervised learning algorithms are available, but the artificial neural

network is highly considered due to its effectiveness and relevance.

4.2 Artificial neural network

The artificial intelligence neural networks, usually called neural networks, are the

Machine Learning algorithm inspired by the biological neural networks of the human

brains, as shown in Figure 4.1. The neural network consists of many artificial neurons

that take the inputs from the user or previous layers, sum them together and pass them

through an activation function to give the predicted outputs.
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(a) Artificial neural network (b) Biological neural network

Figure 4.1: The artificial neural network (a) is inspired by the biological neural network
of the human brain (b).

4.2.1 Artificial neuron

Warren McCulloch and Walter Pitts introduced the idea of the artificial neuron in 1943

with the first form called Linear Threshold Unit (Anthony, 2001). An artificial neuron is

an elementary unit of the neural network that sums up the inputs after being multiplied

with the corresponding weights and sent through the activation function, as shown in

Figure 4.2. For a given artificial neuron Y , let there be n inputs with the signals started

from x1 to xn and the corresponding weights from w1 to wn. The following Equation

can describe the output Y :

Y = ϕ(b +
n

∑
i=1

wi ∗ xi) (4.1)

where ϕ is the activation function and b is the bias. The term of bias first appeared in

the research title, “The need for biases in learning generalizations”, by Tom Michell in

1980 (Mitchell, 1980). The bias occurs when Machine Learning prediction results are

systemically prejudiced due to erroneous assumptions during the training process.
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Figure 4.2: The overview of the Machine Learning perceptron structure.

4.2.2 Activation functions

The activation function ϕ takes the sum of the neurons to define the output by deciding

whether they should be fired (activated). The concept of activation functions started in

the late 1960s (Fukushima, 1969). Since Machine Learning gets more public attention,

the activation functions enable better training of the deeper networks (Glorot, Bordes &

Bengio, 2011). Today, there are many activation function options to choose from, as

shown in Figure 4.3:

The rectified linear unit (ReLU) is the activation function that will ignore all the neg-

ative input values by shifting them to zero; otherwise, output the input values directly. It

is useful when the negative values generally do not make sense, as shown in Figure 4.3a.

It is the default activation function of many neural networks to produce the probabil-

ity of identifying whether the input belongs to a specific class. The ReLU is described as:

y = max(0, x) (4.2)
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(a) ReLU (b) Sigmoid (c) Tanh

Figure 4.3: The example of few popular activation functions.

The Sigmoid activation function is the most frequently used in neural networks, as

shown in Figure 4.3b. The Sigmoid function aims to solve the non-linear nature problems

by keeping the input values between 0 and 1. The advantage of using Sigmoid is that

it can present the infinite values in the range (0,1) to avoid the vanishing of activation

value to allow the learning to happen. However, the gradient vanishes when it gets

smaller and converges to 0 or nothing to learn. The optimisation algorithm that reduces

the training errors now can be attached to the local minimum values, which cannot

maximise the model’s performance. The Sigmoid function can be calculated by using

the following formula:

y = 1

1 + e−x (4.3)

The Tanh activation function is the hyperbolic tangent function that shifts the values

to either -1 or 1, as shown in Figure 4.3c. Its structure is very similar to Sigmoid, but

the range is defined as (−1,+1) instead of (0,+1). The most significant advantage of

using Tanh over Sigmoid is that its derivative can cover more values to make the model

learning and grading faster. The Tanh function can be calculated by using the following

formula:

y = 2

1 + e−2x − 1 (4.4)
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The Softmax activation function, also called softargmax (Goodfellow, Bengio &

Courville, 2016), is often used to normalise the neural network’s output to the probabil-

ity distribution over the predicted classes. Its structure is very similar to the Sigmoid

function; hence, it performs well when used as a classifier. Its difference from other

functions is preferred in the output layer, where the model needs to classify more than

one class. The following Equation shows how Softmax function is implemented:

σ(v⃗)i =
evi

∑Cj=1 evj
(4.5)

Where σ is the Softmax value, v⃗ is the input vector, evi is the standard exponential func-

tion of the input vector, C is the number of classes, and evj is the standard exponential

function of the output vector.

4.2.3 Loss functions

Humans make mistakes, so it is possible for machines to also make mistakes during

the training process. In the beginning, the training process typically outputs the wrong

prediction because it depends on the initial random weight values. It then needs to

identify how far it was from the actual output values and recalculate the direction in

the network to make the errors as small as possible. For this reason, the loss function

is the primary method to handle neural network errors during the training process.

There are different loss functions for various applications and training purposes. Mean

Square Error (MSE) and Mean Absolute Error (MAE) are the most common loss

functions. The MSE measures the average of square differences of predictions and the

actual observations (shown in Equation 4.6). This loss function always gives the positive

values, and the values closer to zero are better (Lehmann & Casella, 2006). It means
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that the predictions that give the values further away from the actual values are mostly

to be ignored due to the consequence of the squaring.

MSE = ∑
n
i=1(yi − ŷi)2

n
(4.6)

Where n is the number of training samples, i is the position of the training sample in

the dataset, yi is the ground truth value of the ith training sample (observation), and the

ŷi is the prediction of the training sample at the position ith.

The MAE, on the other hand, measures the average sum of absolute differences of

predictions and the actual observations (shown in Equation 4.7). This loss function

is more robust to the outliers as it will fit the data based on the median. However, it

requires more complicated tools such as linear programming to compute the gradients,

whereas the MSE is easier to implement. Hence, the MEA is less common than MSE,

where the MSE is usually implemented as the default function to calculate the loss.

MAE = ∑
n
i=1 ∣yi − ŷi∣

n
(4.7)

4.2.4 Optimisers

After the loss is calculated, the neural network will make changes to itself to improve

the performance. It is when the actual learning taking place, also called the Back-

propagation process. The principle behind backpropagation is to go backwards in the

network from the output to compute the gradient of the loss function corresponding

to the weights. Another meaning is that the system will track back to the respected

weights and change their values to make the error values as small as possible. The

backpropagation idea was born in the 1970s as the general optimisation method of the
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complex nested automatic differentiation functions (Werbos, 1994). It was then stated

to be the essential algorithm of the neural networks in the 1980s by Rumelhart, Hinton

Williams (Rumelhart, Hinton & Williams, 1986). The popular method for minimising

the error is Gradient Descent (GD) to find the local minimum of a differentiable

function. It simply finds the coefficient values that minimise the function cost as far as

possible, as shown in Figure 4.4.

Figure 4.4: The illustration of gradient descent on a series of level sets (a) and how it
could be used to update the weight values in the neural network (b).

The GD ∆wi of of the weight w at position i in the dataset can be calculated with the

following Equation:

∆wi = −η
∂E

∂wi
(4.8)

Where ∂E is the derivative of the differential loss function E which could be one of

the loss functions described in Section 4.2.3, ∂wi is the derivative of the weight w

at location i, and η is the constant called the learning rate. In the backpropagation

process, picking a suitable learning rate is very important. The learning rate needs to be

an appropriate value that is neither too high nor small. If it is too high, the system takes

greater steps, and it may not reach the local minima, as shown in Figure 4.5a. On the
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other hand, if the learning rate value is too small, it may take much longer to reach the

local minima or high resources consumption during training, as shown in Figure 4.5b.

(a) (b)

Figure 4.5: The outcome differences between using large value (a) and small value (b)
for learning rate.

The Stochastic gradient descent (SGD) is the extension of the GD aiming to overcome

the disadvantage of consuming higher memory during the training process when using

the GD. In SGD, the derivative is computed by taking a point per time instead of loading

the entire dataset of n points in GD. The most significant advantage is that the system

requires less memory and reduces missing local minima. Hence, it is almost infeasible

to use GD when the training dataset size is vast. The following Equation can calculate

the value of SGD f(x):

f(x) = ∑
n
i=1Ei(x)
n

(4.9)

Where Ei(x) is the loss function of the training data at the location i in the dataset with

the size n.
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The Adaptive moment estimation (Adam) is one of the most popular optimiser func-

tions, seen as the combination of SGD and RMSprop. The RMSprop keeps an expo-

nentially decaying average of past squared gradients st, whereas the SGD keeps an

exponentially decaying average of past gradients pt. The Adam holds a running average

of both gradients and can be expressed by using the following equations:

pt = β1pt−1 + (1 − β1)g(t) (4.10)

st = β2st−1 + (1 − β2)g2(t) (4.11)

Where β1, β2ε [0,1]

4.2.5 Hidden layers

In reality, a neural network usually has more than one layer. It usually consists of the

input layer that connects to each neuron in the following layers, and throughout many

different layers, it will reach the final output layer. The layers between input and output

are called hidden layers, where each neuron connects to all the neurons in the previous

and the following layers, as shown in Figure 4.6. The networks with multi hidden layers

are considered as the deep neural network or another famous term Deep Learning.

Figure 4.6: The example of a deep neural network with each neurons in the input layer
(green) connecting with all neurons in the hidden layers (blue) to lead to the output

layer (red).
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4.2.6 Overfitting

In the deep neural network, less time for training can lead to the low performance of the

model. However, it does not mean that a longer training time produces higher perfor-

mance, but sometimes it could worsen. This situation is called overfitting (Figure 4.7b),

where the model can perform exceptionally well in the training dataset but fails to

predict the incoming samples or in the validation/test dataset (Hawkins, 2004). The

overfitting occurs when the model has been over-trained and could learn the data noise

in the training dataset, negatively impacting the unseen samples.

(a) Good fit (b) Overfitted

Figure 4.7: The good fit model (a) with the line follows the data structure, whereas the
overfitted model (b) is too dependent on the data. Hence, it is likely to have a higher

error rate on the new unseen samples.

The overfitting situation can be prevented by randomly cutting off the layers during

the training process; this method is called the dropout (Srivastava, Hinton, Krizhevsky,

Sutskever & Salakhutdinov, 2014). The dropout may be implemented in few or all

hidden layers and the visible layers but not in the output layer. Another powerful method

is cross-validation, where the initial training dataset is split into the smaller train-test

set to tune the model faster (Stone, 1974). Data augmentation is another efficient

method to reduce overfitting when the available dataset appears diverse (Shorten &

Khoshgoftaar, 2019). The model can look at a single data sample from a different
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perspective to prevent the model from learning the dataset’s characteristics.

4.3 Convolutional neural networks

Computer vision is the most popular applied field of Machine Learning and neural

network. Computer vision deals with digital graphical content to gain a high-level

understanding of the underlying meaning. The convolutional neural network (CNN)

is the standard approach to most image processing tasks in the computer vision field.

Since the revolutionary of Machine Learning and CNN (Krizhevsky et al., 2012), the

CNN models can achieve nearly human-like accuracy in real-time (Acharya et al., 2020;

Tan et al., 2020). The CNN uses a deep neural network structure by feeding the data

through the hidden and visible layers, but some perform the convolutions (as shown in

Figure 4.8).

Figure 4.8: The data of a convolutional neural network flows from left to right. The
network is divided into two different sections. The feature learning usually includes
several convolution layers and pooling functions to discover the classification from the
raw input data. The classification contains the fully connected layers (hidden layers) to
predict a class label for a given example of input data.
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4.3.1 Convolutional layers

The convolutional layers make CNN more efficient compared to the original neural

networks in terms of computational power. For example, the network would need to

process more than two million inputs with the standard high definition image of size

1280 × 720. So instead of using every single pixel as the input, the network will use

the convolutional layers to slide over the input image and convolve the texture infor-

mation. Each convolutional layer uses the filters or kernels to filter the characteristics

of the current input texture (Shawe-Taylor, Cristianini et al., 2004). Each kernel has a

corresponding feature map in a 3D feature maps stack of the output. The kernel can

be seen as a single 3 × 3 or 5 × 5 matrix used for edge detection, blurring, sharpen,

or other specific image processing tasks. The convolution matrix is different from the

matrix multiplication, where it multiplies the value of each image pixel in the matrix

and its corresponding value in the kernel. Then it will add the results together to present

a single value corresponding to one cell in the feature map (Figure 4.9). The system

will repeat the same procedure until it slides over the whole input image and produces a

completed feature map.

Figure 4.9: An example of convolutional operation.
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However, in practice, it is essential not to change the size of the feature map. For ex-

ample, if the size of a single input image is 4 × 4 and the kernel size of 3 × 3, then the

output feature map would be 2 × 2. To keep the dimension of the feature map remaining

unchanged, the sizes of the original input can be padded with zeros (Figure 4.10). This

procedure is called “zero-padding”.

Figure 4.10: An example of convolutional operation with zero-padding.

4.3.2 Pooling layers

A single pooling layer is usually used to connect one convolutional layer with other. Its

job is transferring the input to a lower dimension without losing the critical information;

this procedure is called "sub-sampling". The most common pooling operator is max

pooling, where it calculates the maximum value of a particular spatial region and discard

the rest (Figure 4.11). Other popular pooling methods are average (Figure 4.12) and

sum (Figure 4.13) pooling, where they take the average or the total of all values within

the spatial region, respectively.
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Figure 4.11: An example of max pooling with 2 × 2 layer and a stride of 2.

Figure 4.12: An example of average pooling with 2 × 2 layer and a stride of 2.

Figure 4.13: An example of sum pooling with 2 × 2 layer and a stride of 2.
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4.3.3 Fully connected layers

The fully connected layers are usually sitting at the very end of the neural network. The

shape of these layers is flattened or can be seen as a long vector instead of a matrix

form. The role of the fully connected layers is to define the meaning of the previous

layers to come up with a potential prediction. However, a neural network usually has

more than one fully connected layer stacked next to each other, with the last layer acting

as the prediction, which has multiple output neurons. Each neuron in the prediction

layer represents a single class that model would like to predict.

4.4 Transfer Learning

Training an extensive deep neural network entirely from scratch is costly in time and

computing power consumption. Especially for a smaller project where it is nearly

impossible to have enough data required for training. Therefore, using a pre-trained

network for training is more efficient in practice. The neural network can re-use the

universal characteristics like edge, colour, and shape without retraining them again

since the convolutional layers in the pre-trained network can recognise them easily. It

means that the neural network only needs to run the backpropagation on the last fully

connected layer to fit the purpose of the model. For example, the CNN models usually

use the ImageNet (Krizhevsky et al., 2012) dataset for training, and it contains 1,000

different categories, or the model should have 1,000 neurons at the last layer. Hence,

the final task is to modify the last layer to match the number of classes that the model

needs (Figure 4.14).
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Figure 4.14: The comparison between transfer learning using a pre-trained model and
model training from scratch.

4.5 Real-time object detection

Object detection using a CNN can be categorised into two different types: region

nomination and regression. Region nominations such as R-CNN (Girshick, Donahue,

Darrell & Malik, 2014), SPP-Net (He, Zhang, Ren & Sun, 2015), Fast R-CNN (Girshick,

2015), and Faster R-CNN (Ren, He, Girshick & Sun, 2015) use step-by-step detection

strategy algorithms. They first extract the proposal regions on the image using selective

search and then classify the image within the proposal regions. The output accuracies

of these models are consistently above 80%. However, the frame per second (FPS) rate

reduces dramatically. Only seven FPS is possible for Faster R-CNN, which is one of

the fastest models but is still far from the real-time FPS standard. On the other hand,

the YOLO model can reach 45 FPS, which is suitable for real-time detection tasks,
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especially for the Augmented Reality applications. It means that the YOLO model

is a strong candidate for this thesis deep neural network backbone. YOLO (Redmon,

Divvala, Girshick & Farhadi, 2016) uses the regression method to predict the object

bounding box and class name instead of using the proposed region method. However,

due to the simpler network architecture, the detection accuracy reduces when the frame

rate increases.

4.5.1 You Only Look Once (YOLO)

The main principle of YOLO is using the entire image as the input to the network

and directly returning the bounding box coordinates and corresponding class name.

YOLOv3 (Redmon & Farhadi, 2018) is the next generation of YOLOv2 (Redmon &

Farhadi, 2017) and contains significant improvements. YOLOv2 uses Darknet-19 as

its backbone and an additional 11 object detection layers. However, YOLOv2 struggles

with detecting small objects whereas the YOLOv3 can perform the state-of-the-art by

using residual blocks, skip connections and upsampling, as shown in Figure 4.15. It uses

Darknet-53 as the backbone, which is reported to be more efficient than Darknet–19,

ResNet-101 and ResNet-152 (He, Zhang, Ren & Sun, 2016).

Figure 4.15: YOLOv3 neural network architecture.
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The main difference of YOLOv3 to its predecessors is predicting three different scale

levels. Each of the input images is downsampled by 32, 16 and 8, respectively. The

detection first made at 82nd layer after the downsampling process of the original input

from the previous 81 layers. The 81st layer has a stride of 32, meaning that if the image

size is 416 × 416, then the resultant feature map would be 13 × 13 × depth. Then the

feature map from 79th layer upsampled by 2 to dimensions of 26 × 26 × depth is depth

concatenated with the feature map from 61st layer. The combination feature maps are

subjected through a few convolutional layers before reaching the 94th layer, where the

second detection occurs. The same procedure is executed again where the feature map at

94th layer is subjected through a few convolutional layers and depth concatenated with

the feature map from the 36th layer. The final detection occurs at 106th layer yielding

the feature map of 52×52×depth. Detections in three different scale levels help address

the limitations around detecting small objects in YOLOv2. The 82nd prediction layer

is responsible for detecting large-scale objects. The last prediction layer is responsible

for detecting the small-scale objects, whereas the 94th prediction layer is suitable for

medium-scale objects. The predictions are made by applying 1 x 1 detection kernels on

the feature map, as shown in Figure 4.16. At the tensor procedure level, the YOLOv3

network divides the input image into an S × S grid of cells. Each cell is responsible for

predicting bounding boxes B and class probabilities C of the potential objects whose

centres are inside the grid cell. Each bounding box has five attributes: four bounding

box coordinates (tx, ty, th, tw) and object confidence score Po. The confidence score

represents the probability of a box containing an object and usually falls between 0 and

1.
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Figure 4.16: YOLOv3 detection procedure at tensor level.

In YOLOv3, the loss function L can be calculated using the following Equation:

L = Errorboxes −Errorconfidence −Errorclasses (4.12)

Where the Errorboxes is the bounding box coordinate regression, which can be defined

as follows:

Errorboxes = λcoordinate
S2

∑
i=0

N

∑
j=0

lobjij [(tx − t′x)
2 + (ty − t′y)

2 + (tw − t′w)
2 + (th − t′h)

2]

(4.13)

Where S2 = S × S cells, N is the number of bounding boxes in each predicted cell

with the corresponding coordinates (tx, ty, th, tw), and λcoordinate is the coordinate error

weight. The Errorconfidence is used to calculate the loss of confidence of the existing

object in the bounding box which can be defined as follows:

Errorconfidence =
S2

∑
i=0

N

∑
j=0

lobjij [c′ilog(ci) + (1 − c′i) log (1 − ci)]+

λconfidence
S2

∑
i=0

N

∑
j=0

lconfidenceij [c′ilog(ci) + (1 − c′i) log (1 − ci)]

(4.14)
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Where c is the number of classes, λconfidence is the confience error weight. The final

Errorclasses can be calculated using the following Equation:

Errorclasses =
S2

∑
i=0

lobji ∑
cεclasses

[p′i(c)log(pi(c)) + (1 − p′i(c))log(1 − pi(c))] (4.15)

4.5.2 Model evaluation metrics

The following metrics used in MS COCO (Lin et al., 2014) and Pascal VOC (Everingham,

Van Gool, Williams, Winn & Zisserman, 2010) dataset are beneficial to measure the

accuracy of the object detection model:

The recall metric evaluates how well the objects have been detected (Equation 4.16)

and can be calculated by obtaining the intersection-over-union (IoU ) value. The IoU

determines the overlap between the predicted bounding and the ground truth over their

area union (Figure 4.17). If the IoU value is greater than a threshold value (generally

set to 0.5), it is considered as true-positive (TP ), otherwise false-positive (FP ). The

false-negative (FN ) is made when no prediction is made for a particular ground truth

bounding box.

recall = TP

TP + FN (4.16)

Figure 4.17: The Intersection Over Union can be calculated by dividing the area of
overlap between the bounding boxes by the area of the union.

The mean average precision (mAP ) metric calculates the mean value of average
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precision over the IoU thresholds, where the precision can be obtained using Equa-

tion 4.17. In precision equation, the value of false-negative is replaced by false-positive

(FP ).

precision = TP

TP + FP (4.17)

The average precision AP can then be defined by finding the area under the

precision-recall curve, as shown in the following Equation:

AP = ∫
1

0
Precision(recall)dr. (4.18)

The final mAP can be calculated as:

mAP = 1

n

c=n

∑
c=1

APc (4.19)

where APc is the AP value of the class c and n is the number of classes. The YOLOv3

model also uses mAP0.5 or mean average precision 50 with a static threshold of 0.5 for

IoU . Another mAP metric is mAP [0.5 ∶ 0.95], where the threshold is from 0.5 to 0.95.

4.6 The issue of Machine Learning and the proposed

method

Machine learning is potent for solving classification problems; however, there are also

many limitations of standard algorithms. One is the lack of understandings of the exact

underlying laws of the input data. In other words, to estimate the best output, a large

number of input data must be needed that covers as many test cases as possible. For in-

stance, to use the Machine Learning method to efficiently recognise one particular book

page (out of a hundred pages - a classification problem), the model would need to train

with hundreds or thousands of pictures of each book page. The training takes time, but
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it can be automated; however, the acquisition of the dataset is not. Hundreds of pictures

still need to be acquired manually. This is very time-consuming and labour-intensive. If

the dataset could be generated synthetically, the data preparation process could be much

more efficient, and the results could be improvable.

Task Synthetic Manual

Preparing 30 raw images

Preparing 60 backgrounds

Preparing 10k of trainable images

30 minutes

60 minutes

15 minutes

30 minutes

60 minutes

350 hours

Table 4.1: Time requirements for synthetic and manual data generation

The newly method purpose is to achieve Augmented Reality marker recognition and in-

crease the marker detection rate by using the power of Machine Learning while reducing

the limitation of manual data preparation (data annotation). A Machine Learning model

only becomes stable after being trained by thousands of manually labelled images.

This proposed method aims to achieve a stable Machine Learning detection model with

minimal effort. The details of the proposed method implementation is presented in

Chapter 5, and it requires two key steps:

Synthetic dataset generation. This newly proposed method aims to generate a syn-

thetic dataset and label them automatically using various computer graphics rendering

techniques. The figures of chosen deep neural network trainable classes are randomly

blended into different natural-looking backgrounds and other ambient lighting condi-

tions and mixed camera orientation. This new way of data-generating is much quicker

than traditional data annotation, where it could produce up to 20 training dataset images

per second on a graphics processing unit (as shown in Table 4.1). It also gives an

excellent opportunity to regenerate or modify the dataset faster for an additional training
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class or improve model quality.

Deep neural network training with synthetic dataset. The synthetic dataset gener-

ated in the previous step could be trained through an object recognition deep neural

network model to boost the Augmented Reality marker detection performance.

4.7 Summary

This Chapter reviews the principles behind deep learning using neural networks. It also

nominated the potential object detection model for this project’s main deep learning

training backbone. The YOLO model clearly shows that it could process and classify

the input images in real-time, which is suitable for Augmented Reality applications.

However, the time-consuming and labour-intensive issues of data annotation are the pri-

mary drawbacks during the Machine Learning training process. Hence, the new method

that uses digital graphics to produce the data synthetically is proposed to overcome

the current data annotation issues and improve the model training performance. The

next Chapter focuses on the design and implementation, such as generating data, what

training parameters the model uses to train the model, and the application prototype

implementation.
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Chapter 5

Design and Implementation of

Synthetic Data Annotation Method

(SARM)

Parts of this Chapter have been published in paper 1, paper 2, and paper 4 listed in

the publication list

101



Chapter 5. Design and Implementation of Synthetic Data Annotation Method
(SARM) 102

This Chapter will cover the methods that are used to achieve the goals of this

thesis that described in the Section 1.2. Furthermore, it will focus on the

following key aspects:

• The proposed dataset generation technique (Section 5.1).

• The discussion about the object detection deep neural network training process

(Section 5.2).

• Describe how the deep neural network outcome would be implemented onto the

Augmented Reality - iOS application (Section 5.3).

• Describe the frameworks and software requirements are used within this thesis

(Section 5.4).

5.1 Synthetic data generation

Developing an accurate object detection requires training data that has good quality and

can represent the real-world environment well is a challenging task—especially when

developing a classifier where the data and environments are unknown. One example

is when the book images are the target markers for an AR application which occurs

infrequently and could be existing in many unexpected environments. Therefore, there

are not many existed data that could be used to train the deep neural network model.

In these rare scenarios, synthetic data appears to be a helpful method for generating

high-quality and diverse training data in the minimum amount of time. To generate

the synthetic dataset, it is necessary to collect all possible images used as the target

markers in the AR application as the first step. Identifying all possible complex natural

environment situations such as lighting, orientation, and backgrounds are the most

significant task that helps to improve the quality of the training dataset. For example, if
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the application will be used primarily by students and teachers, the backgrounds should

be indoor, and the light conditions are warm and medium-level. Once all necessary

environment components are identified, they can be imported into a game engine such as

Unity (Haas, 2014) to generate the image dataset used for deep neural network training

and testing, as shown in Figure 5.1. This proposed method aims to give a significant

improvement in dataset quality and data collection time.

Figure 5.1: Overview of the comparison of the proposed method and traditional
data labelling technique. The traditional method is done with manual data labelling
that requires more time and labour cost to complete, while the proposed method can
reduce these drawbacks by using the auto rendered computer graphics to generate the
synthetic dataset for the deep neural network model.

The marker image pool contains the AR marker images, saved as individual image files.

Each image width will be cropped to a size of 1280. For the background images, over

1,400 indoor images, including day and night time, are used as the "background images

pool", and they are cropped to the sized of 1,500 × 2,250. The process of synthetic data

generation is described as follows (Figure 5.2).
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Figure 5.2: Synthetic dataset preparation process. (a) The real-world images of
different Augmented Reality markers stored in the marker image pool. (c) Synthetic
dataset generation where the images are generated by combining the AR markers with
random background images (b) together with various augmentation filters. The details
of generated ground-truth label (bounding box) are shown at the bottom.

Firstly, one or multiple images will be randomly selected from the "marker images

pool" and carefully pasted to the transparent canvas of size 1,500 × 2,250. The proba-

bility of displaying single or multiple images on the same background is set to 50.

Secondly, another image of the background is selected from the "background images
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pool". The selected marker images then will be augmented by applying random filters

such as rotation, the x and y coordinates, scaling, blur, noise. However, the coordinate

values are restricted to a specific range so that the signs do not exceed the background

size. They are dependent on the size of the marker image after scaling and its rotation

angle.

Lastly, the AR marker is pasted to the transparent canvas according to the described

parameters, and the canvas will be pasted on the top of the selected background. During

the synthetic dataset generation, the bounding box with the same size as the marker

image is created along with its label name. The size and the coordinates of the bounding

boxes are normalised between 0 and 1 by dividing by the width and height of the

background. This procedure can generate image size of 1,500 × 2,250 with the AR

markers randomly oriented inside a random indoor background. It takes three hours to

produce over 40,000 trainable images and their corresponding labels files. While in the

real world, it would take weeks or months to complete a similar process.

5.1.1 Augmented reality marker images

There are approximately 22 different rectangular-shaped images integrated as the marker

images. Each of these images has a different design, and some of them have a very

similar colour. This setup helps to qualify how good the dataset is in identifying the

similarity objects. The images were from four different categories: (1) trading/business

cards, (2) posters, (3) children’s educational books, and (4) food advertisements. The

details of target markers are presented in Table 5.1 and Figure 5.3.
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Figure 5.3: The Augmented Reality marker images with their label name are described
below each image.
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Label name Width Height Sample generated

aut

aut fifth page

aut first page

aut fourth page

aut last page

aut second page

aut third page

book cover

book first page

book food page

tangela

ships

pokemon online

pokemon

milkshake

match attax

marill

liverpool fc

coragunk

chocolate

bread

book santa page

9 cm

21 cm

21 cm

21 cm

21 cm

21 cm

21 cm

21 cm

21 cm

21 cm

6 cm

35 cm

8.5 cm

6 cm

7 cm

6 cm

6 cm

6 cm

6 cm

13 cm

13 cm

21 cm

5.5 cm

21 cm

21 cm

21 cm

21 cm

21 cm

21 cm

21 cm

21 cm

21 cm

8.5 cm

60 cm

6 cm

8.5 cm

11 cm

8.5 cm

8.5 cm

8.5 cm

8.5 cm

17 cm

17 cm

21 cm

3,890

3,309

3,179

3,319

3,324

3,285

3,427

3,205

3,192

3,853

2,514

2,258

3,869

2,542

2,308

2,518

2,552

2,356

2,558

2,763

2,870

3,877

Table 5.1: Details of target markers and their label name, width, height and number of
generated samples in the dataset.

5.1.2 Data labelling

YOLO is used as the primary deep neural network for this thesis and is described

in detail in Section 4.5.1. In YOLO, the bounding box has four values, [object_id,
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x_centre, y_centre, width, height], as shown in Figure 5.4. [object_id] represents the

number corresponding to the object index in the class names list. [x_centre, y_centre]

represents the centre point coordinate of the bounding box, which is normalised to

between 0 and 1 by dividing by the width and height of the image. [width, height]

represents the width and height of the bounding box, which is normalised to between 0

and 1 by dividing by the width and height of the image.

Figure 5.4: Examples of formats representing coordinates of a bounding box in
YOLO training.

5.2 Deep neural network training

The original YOLOv3 was evaluated on the Microsoft COCO (Common Objects in

Context) dataset (Lin et al., 2014). Most of the training parameters remain unchanged,

as described in the original YOLO paper (Redmon & Farhadi, 2018). However, the

training data is replaced by the proposed synthetic data, as described in Section 4.5.1.

This could be done by changing the number of filters and classes in each yolo layer in
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the .yaml file. The number of filters can be calculated using the following Equation:

filters = (4 + 1 +C) × 3 (5.1)

Where C is the number of classes, or the filters would be 81 if there are 22

different classes available for classification. The network is trained for 80 iterations

using 80% of the dataset for training and the rest for validation. The batch size of 16

and sub-division of 8 matched the training hardware requirement for Nvidia RTX 2080

Super. Pytorch (Paszke et al., 2019) is used as the training framework instead of Darknet

due to its Core ML conversion capability for implementing iOS applications. The full

details of the training parameters are presented in Table 5.2.

Hyper parameter Value

Activation

Backbone

Batch size

Decay

Epochs

Filter size

Learning rate (final)

Learning rate (initial)

Momentum

Number of classes

Optimiser

Sub-division

Linear, Leaky

Darknet-53

8

0.0005

80

64, 128, 256, 512, 1024

0.2

0.01

0.937

22

SGD

4

Table 5.2: Training parameters and their values for the deep neural network.
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The in-training data augmentation techniques are also applied to increase available

data during the training process. They are applied randomly to the images in the dataset.

The augmentation techniques are used during the model training process includes:

Reflection is the technique to flip the image vertically or horizontally. The reflection

probability value is set to 50% to allow the images are flipped in both horizontal and

vertical ways. Hence, the reflection points of an image (x, y) over the x − axis and

y − axis to the new point (x′ , y′).

Saturation is the famous value to change the saturation value of the image or defines the

portion of grey in a unique colour. The probability for changing the value of saturation

is set to ±70%.

Brightness is the component that works in conjunction with saturation to control the

image’s brightness or intensity. The brightness value usually falls from 0 to 100, where

0 is the most darkness and 100 is the brightest level of colour. The probability for

changing the value of brightness is set to ±40%.

Hue is the value that defines the portion of red, yellow, green, cyan, blue, and magenta

as a number from 0 to 360 degrees. The probability for changing the value of the hue is

set to ±1.5%.

Scale is another technique to rescale the image by a particular portion value of the width

or height of the image. This implementation’s percentage change of scaling is set to

±50%.

The translation is one of the most common used augmentation techniques to relocate

the image along the x − axis or y − axis.
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5.3 iOS application implementation

The iOS application was built using Xcode and Swift 5.0 and developed for iOS 14.0

or above. The application was tested on the iPhone X, but it should also work on other

recent iPhone models that support ARKit 4.0 and have the Bionic A11 chip or later

built-in.

5.3.1 Integrating the pre-trained model to Xcode

The neural network model (as discussed in Section 5.2) usually takes much com-

putational power. However, smaller computational devices such as smartphones can

efficiently run most pre-trained neural network models. CoreML format is used for

deploying Machine Learning models into Apple built products such as iPhone, iPad,

Apple Watch, and Mac applications. The model can be integrated and accessed using the

CoreML framework installed on macOS devices. Apple also allows training the neural

network model directly on macOS devices using the Create ML application. However,

Create ML has limitations on the number of functionalities that can be accessed and

modified. The most approachable way is training the neural network using PyTorch,

then convert the PyTorch pre-trained model into CoreML format. This conversion can

be broken down into the following steps.

Step 1 - PyTorch to ONNX. The ONNX is an open cross-platform deep learning model

that helps developers move their trained models into different training frameworks.

The converter then takes the pre-trained PyTorch model (.pth) as the input, and instead

of running on the actual neural net, it will identify torch.onnx.export as the built-in

PyTorch API to export to an ONNX formatted model (Figure 5.5).

Exporting the ONNX format from PyTorch is essentially tracing the network, and the

system internally runs the network on ’dummy data’ to generate the graph, as shown in
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Figure 5.5: The example of ONNX exported model visualisation.

the example below:

1 # Load PyTorch model

2 model = a t t e m p t _ l o a d ( " i n p u t . p t " , m a p _ l o c a t i o n = t o r c h . d e v i c e ( ’ cpu ’ ) )

3 model . e v a l ( )

4 l a b e l s = model . names

5

6 # Checks

7 gs = i n t ( max ( model . s t r i d e ) )

8 o p t . i m g _ s i z e = [ c h e c k _ i m g _ s i z e ( x , gs ) f o r x in o p t . i m g _ s i z e ]

9

10 # I n p u t

11 img = t o r c h . z e r o s ( 1 , 3 , * o p t . i m g _ s i z e )

12

13 # Update model

14 f o r k , m in model . named_modules ( ) :

15 m. _ n o n _ p e r s i s t e n t _ b u f f e r s _ s e t = s e t ( )

16 i f i s i n s t a n c e (m, models . common . Conv ) :

17 i f i s i n s t a n c e (m. a c t , nn . Hardswish ) :

18 m. a c t = Hardswish ( )

19 e l i f i s i n s t a n c e (m. a c t , nn . SiLU ) :

20 m. a c t = SiLU ( )

21

22 model . model [ − 1 ] . e x p o r t = True

23 y = model ( img )

24

25 # T o r c h S c r i p t e x p o r t
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26 t r y :

27 # f i l e n a m e

28 f = ’ i n p u t . t o r c h s c r i p t . p t ’

29 t s = t o r c h . j i t . t r a c e ( model , img )

30 t s . s ave ( f )

31 e xc ep t E x c e p t i o n as e :

32 p r i n t ( ’ T o r c h S c r i p t e x p o r t f a i l u r e : %s ’ % e )

33

34 # ONNX e x p o r t

35 t r y :

36 import onnx

37

38 # f i l e n a m e

39 f = ’ i n p u t . onnx ’

40 t o r c h . onnx . e x p o r t ( model , img , f , v e r b o s e = F a l s e ,

o p s e t _ v e r s i o n =12 , inpu t_names =[ ’ images ’ ] ,

41 ou tpu t_names =[ ’ c l a s s e s ’ , ’ boxes ’ ] i f y i s

None e l s e [ ’ o u t p u t ’ ] )

42

43 # Checks

44 # load onnx model

45 onnx_model = onnx . l o a d ( f )

46 # check onnx model

47 onnx . c h e c k e r . check_model ( onnx_model )

48 e xc ep t E x c e p t i o n as e :

49 p r i n t ( ’ONNX e x p o r t f a i l u r e : %s ’ % e )

Listing 5.1: Python code to convert Pytorch model to ONNX format.

Step 2 - ONNX to CoreML. The ONNX can then be converted to the CoreML model

format by using the built-in onnx_coreml package, as shown in the example below:
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1 import s y s

2 from onnx import onnx_pb

3 from onnx_coreml import c o n v e r t

4

5 model_ in = " i n p u t . onnx "

6 model_out = " o u t p u t . co reml "

7

8 m o d e l _ f i l e = open ( model_in , ’ rb ’ )

9 mode l_p ro to = onnx_pb . ModelPro to ( )

10 mode l_p ro to . P a r s e F r o m S t r i n g ( m o d e l _ f i l e . r e a d ( ) )

11 coreml_model = c o n v e r t ( mode l_pro to , image_ inpu t_names =[ ’ 0 ’ ] ,

12 image_ou tpu t_names =[ ’ 186 ’ ] )

13 coreml_model . s ave ( model_out )

Listing 5.2: Python code to convert ONNX format to CoreML format.

The CoreML model then can be imported by dragging and dropping the model file into

the Xcode project. Xcode will generate a new Swift class for the newly imported model,

and it can easily be accessed by creating an instance of this class.

5.3.2 Class diagrams

The class diagram in Figure 5.6 presents the relationship between different Swift classes

and how they fit and work together under the application system. The diagram is

divided into three parts: (1) ViewController, (2) Yolo, and (3) AlteredImage. The

ViewController class (code detailed shown in Appendix A.1) is the main controller of

the application that holds the ARSCNView. This class is responsible for rendering the

virtual objects and updating the application states. Every instruction is executed on the

main UI thread as the system does not capture the camera’s input frame in this class.

Hence, there is no main thread blocking issue due to the video feedback execution.
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The Yolo class (code detailed shown in Appendix A.2) is where the actual deep neural

network predicts the incoming frame from the camera. The prediction time interval is

set to 0.03 seconds, which means the system will run the prediction process every 30

milliseconds if no prediction process is currently running. This set-up helps to reduce the

system workload by classifying a single frame for every given interval of time instead of

all of the frames. Each predicted frame is converted to MLMultiArray and fed into the

deep neural network model. The advantage of working directly with MLMultiArray’s

memory is that this speeds up the CoreML prediction performance significantly. Every

process within this class is run on the background thread to avoid blocking the main UI

thread. After the bounding box of the input frame is found, the system starts searching

for the closest rectangle in the 3D world that matches the predicted bounding box.

After identifying the matched rectangle in the natural scene, the AlteredImage class

(code detailed shown in Appendix A.3) will keep a copy of the rectangle as the reference

image and create a 3D plane of the rectangle with its exact dimension in the real world.

The virtual object is retrieved based on the predicted identification and rendered in

the scene using SCNNode class. Each virtual object node is grouped under one root

node, meaning all nodes are defined relative to the transformation or orientation of the

same root node. The reference image tracking time interval is set to 0.03 seconds so

that the system will start searching for the saved reference image every 30 milliseconds,

and it will begin the actual YOLO prediction process if the reference image cannot be

found via the AlteredImageDelegate protocol. Hence, this reduces the workload for

the neural engine.
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Figure 5.6: The class diagram of the iOS application.

5.3.3 Virtual 3D objects in ARKit

ARKit 4 itself does not read any 3D formats, it instead uses the rendering engine to read

and render the 3D object onto the scene. The rendering engine only accepts four 3D

model formats: (1) Collada’s Digital Asset Exchange .dae, (2) Pixar’s Zipped Universal
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Scene Description .usdz, (3) Native Scene Format .scn, and (4) Reality Composer

Format .rcproject or .reality. The built-in 3D scene inspector can be used to adjust the

model characteristics such as lighting, animation or music background (Figure 5.7).

Figure 5.7: The view of 3D scene inspector in Xcode.

5.4 Frameworks and software

The deep neural network training process or prototype application implementation

described in this thesis can never be done without the supported tools. This section

will focus on the software and development frameworks used to support this project’s

implementation and testing step.

5.4.1 Unity and C#

Every game developer or gamer might have heard the term of the game engine at

least one. It provides the developers with different ways to add and control the game

components such as physics, rendering, scripting, etc. Unity is considered as the primary
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game engine to render and produce the synthetic dataset for this thesis (Figure 5.8).

Unity is not the only game engine that can provide excellent rendering capability, but it

has the unique standouts that could be the best candidate for this thesis.

Figure 5.8: An example of the project view in Unity.

Simplicity. Unity engine architecture is simpler to understand and work with. It provides

the capability to enable on-device graphics processing unit (GPU), which is very

important for texture rendering. It is written in C#, which is not as difficult to use and

learn as C++ used in the Unreal game engine (Pv, 2021).

Flexibility and scalability. Using C# is another advantage over using blueprints as

Unreal, where the user has the greater flexibility to control and customise the game

components. It is also easier when the size of the project is required to expand.

Community and supports. The Unity and C# community are also massive, which is

very helpful for seeking questions and help. Most Unity game assets are free to use,

which is very handy for researchers when the budget is one of limitations.
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5.4.2 PyTorch and Python

Many different deep learning frameworks are available on the market, such as Tensor-

flow (Abadi et al., 2016), PyTorch (Paszke et al., 2019), Caffe (Jia et al., 2014), etc.

However, PyTorch is indicated as the future of the deep learning framework. It is chosen

as the primary deep neural network framework due to its unique standouts.

Easy to learn. PyTorch has the same structure as the famous Python programming

language. Hence, it is not too difficult to get started and learn due to its simplicity, and

well-documented developer supported community.

Productivity. PyTorch is designed to incorporate Python and many powerful built-in

APIs that could be implemented in both Windows and Linux OS. It can also enable the

NVIDIA tensor cores, which could speed up to 10X in AI training.

Data Parallelism. PyTorch can efficiently distribute the computational tasks among

multiple CPUs and GPU at the same time to accelerate the neural network training

process.

5.4.3 CoreML framework

As mentioned in the introduction, the thesis goal is to implement an iOS application to

run the pre-trained deep neural network model. Hence, CoreML is the most suitable

Machine Learning framework that can be used across different Apple products (macOS,

iOS or iPadOS). The CoreML framework is built for quick prediction performance and

low inference that allows the application to perform the real-time prediction of live

images or video (Figure 5.9).
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Figure 5.9: An example of deep neural network execution process using CoreML
framework.

As Apple keeps optimising its hardware and software to give the best user experience

and system performance, CoreML is not an exception. The CoreML works efficiently

with the bionic chip, which gives the best prediction performance with low energy

consumption. Since the first generation of the bionic chip (A11), Apple has integrated

and increased the neural processing unit (NPU) cores used to execute and accelerate

the Machine Learning tasks. The latest bionic chip can perform at least 600 billion

calculations per second or 600 GFLOPS, where it requires approximate 160 GFLOPS

for an average YOLO model to be executed. The partial deep neural network execution

process now can be run on NPU instead of CPU to minimise the system work-loaded

and improve the performance. Low latency is the most considered crucial factor for the

application prototype. In general, it does not need to make a network or external API

call to send the data and wait for the response as every process will be done within the

device and built-in APIs. Another advantage of using CoreML is privacy. If privacy

is a big concern for most of today artificial intelligence-based applications, it is not

a problem with CoreML. All of the input data will be process offline and within the

user’s device, and no external APIs called means the private data would never leave the
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device.

5.4.4 ARKit

Figure 5.10: An Xcode setup of the iOS project using ARKit and its runnable application
on real-time input images.

ARKit is the AR development framework designed by Apple to quickly and easily

build AR experiences into games and applications (Figure 5.10). It uses the device’s

camera, processor, and built-in sensors to create immersive interactions. According to

Apple, ARKit is suitable for any devices that run on iOS 11 or later, which means it

could be runnable on most Apple build smartphone and iPad products nowadays. As the

product is fully designed and supported by Apple, the processing time on each frame is

expected to be shorter and generates better AR algorithm performance. Less time on

frame processing means more CPU/ GPU available for more realistic rendering graphics

and virtual scenes. Another advantage of using ARKit is simplicity and integration

capability. ARKit can be easily accessed and modified using Xcode and Swift. It also

can work efficiently with other Apple-build frameworks or APIs such as CoreML and

Vision to give the best performance with low latency.
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Conducting several experiments against different scenarios is the primary step

to qualify the proposed method. As described in Section 1.2, one of the

thesis investigations aims to immerse the Machine Learning technology into

the Augmented Reality marker detection process. Therefore, the following Sections

of this Chapter will analyse the performance of both Machine Learning training using

the proposed synthetic dataset and the Augmented Reality application. In short, these

experiments will focus on the following aspects:

• Synthetic datasets generation is one of the primary proposed features to improve

the detectability of Augmented Reality markers without modifying the original

texture. This aspect introduces several different synthetic datasets that use the

proposed method described in Section 5.1. These datasets are generated based on

real-world purposes such as education, business, entertainment, or transportation

(more details will be demonstrated in Section 6.1).

• Deep neural network training outcome using the synthetic datasets is the

most crucial experiment to qualify the performance of the proposed synthetic

dataset generation method. This experiment compares the performances between

the synthetic datasets with the real-world datasets using the model evaluation

metrics described in Section 4.5.2, such as recall, precision, or mAP (more details

will be demonstrated in Section 6.2).

• Prediction performance under natural conditions gives a broader picture of

how well the deep neural network model trained by the proposed synthetic datasets

when it shifted from the experimental environment to real-world situations (more

details will be demonstrated in Section 6.3).

• Lastly, the performance of the pre-trained deep neural network model on

the implemented iOS application will be analysed. This experiment reviews
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the overall performance of the proposed idea and gives the chance to indicate

future improvements to overcome any potential limitations (more details will be

demonstrated in Section 6.4).

6.1 Synthetic datasets

The first synthetic dataset (40K) contains 22 different book and poster related cate-

gories that consist of over 40,000 trainable images and their corresponding labels files

(Figure 6.1). It is the primary dataset that will be used to train the deep neural network

model for the iOS application described in Section 5.3. The full details of the 40K

dataset image categories and generation steps are described in Section 5.1. However,

the result of one single synthetic dataset does not provide enough information to qualify

the proposed method performance. Thus, several other synthetic datasets are generated

using the same principle but for different application sectors to optimal the findings.

Figure 6.1: The examples of different images that the 40K dataset contains.
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The first related application sector is the standard 52-card pack (McGuigan, 2020) com-

monly used for magic tricks, card games, etc (Figure 6.2). The original deck contains 52

standard white backgrounds of playing cards. However, the number of training classes

are minimised to 13 by grouping 52 playing cards by their ranks, and this dataset is

called S13. The S13 dataset consists of 26,000 training images, and each image could

contain one or multiple playing cards with random locations and orientations. S6 dataset

is a smaller version of the S13 dataset where it consists of only 12,000 training images,

and it contains only six different classes (nine, ten, jack, queen, king, and ace) instead

of 13 classes.

Figure 6.2: The examples of different images that the S6, S13, K13, and M6 datasets
contain.

In order to evaluate the proposed synthetic dataset, this experiment also uses a syntheti-

cally made Kaggle open-source playing cards 13 classes dataset (Hugo Paigneau, 2020)
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and another six classes manually made dataset. The Kaggle 13 classes dataset (K13)

initially consists of 52 different cards, but the cards are grouped into their according

ranks to minimise the number of training classes to 13. The K13 dataset was generated

using OpenCV and Python by taking the images of each playing card in 10-second

videos. The whole process was done with a CPU instead of using GPU. The manually

made 6 classes dataset (M6) contains real-world images of animals, indoor/outdoor

objects with different lighting conditions, and a random number of cards and their

orientations. The M6 dataset was generated using the iPhone camera by taking hundreds

of playing cards, including individual and overlapping items.

The other related application sector is the transportation sign. This experiment uses

the New Zealand standard road signs that are categorised into three different types: (1)

compulsory, (2) warning, (3) information. All the details of the transportation signs can

be obtained at the NZ Transport Agency official website 1. In general, it has hundreds of

different transportation signs in New Zealand; but only the top 50 common road signs

are used for this experiment (Figure 6.3) : Speed limit (R1-1, R1-1.1, R1-1.2); Speed

Limit Derestriction (R1-3); Stop (R2-1); No Stopping (R6-10.1); Disabled Parking

(R6-55); Bus Parking (R6-53); Motorcycle Parking (R6-51); No Parking: Bus Stop

(R6-71); No Parking (R6-70); No Parking: Taxi Stand (R6-72); Attention (TW-2);

Road Works (T1A); Turn Left or Right (R3-11); Turn Left (R3-8); Turn Right (R3-10);

Go Straight (R3-9); Priority Over Oncoming Vehicles (R2-8); Wrong Way (R3-7);

No Turn Left (R3-1); No Turn Right (R3-2); No U-Turn (R3-3); Road Closed (R3-6);

Traffic lights ahead (W10-4); Must Turn Left/Right (R4-1); May Proceed Straight or

Turn Left/Right (R4-3); Must Proceed Straight (R4-2); Give Way (R2-2); Give Way

at Roundabout (R2-3); Give Way to Oncoming Vehicles (R2-7); Except Bus (R3-5.1);

Bus Lane (R4-7); Buses Only (R4-7.1); No Entry (R3-4); School; No Exit (A40-1);

1https://www.nzta.govt.nz/roadcode/
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One-way traffic (R3-12); Temporary (R1-8).

Figure 6.3: The real-world images of top 50 common New Zealand road signs with their
codes described above each image.

There are two synthetic datasets generated using the proposed method; one has 50
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different class names (T100K), and the other consists of 35 class names (T350). A

real-world dataset (M350) is also prepared that consists of 350 images of transportation

signs taken using different photography equipment such as digital or build-in mobile

cameras (Figure 6.4). Each image has a size of 1,500 x 2,250 and contains single or

multiple images of the transportation signs. The labelling process is done manually with

the online open-source RoboFlow (https://blog.roboflow.com/labelme/). This manual

process takes more than two weeks to complete with the help of over 30 volunteers. The

software and hardware requirements keep the same where a single Radeon Pro 560X

GPU and Unity version 2019.4.18f1 were used to generate all of the described datasets.

Figure 6.4: The examples of different images that the T100K, T350, and M350
datasets contain.

Table 6.1 indicates the primary differences between the synthetic datasets using the

proposed method and the datasets that were generated manually. The results show that

synthetic datasets generated using GPU took remarkably less time than other datasets

using different methods. The proposed method took four times faster than the synthetic

dataset generated using CPU and could reach approximately 200 times faster than the

https://blog.roboflow.com/labelme/
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manually made dataset. Regarding the amount of manual processing work needed, the

proposed synthetic datasets require fewer people, whereas others might require more.

This concrete evidence confirms that the GPU synthetic dataset will produce a much

more efficient dataset quantity and labour cost than the manually made version.

Dataset Generated
method Dataset szie Time consumed No of

labour

40K (Ours)

S6 (Ours)

S13 (Ours)

T100K (Ours)

T350 (Ours)

K13

M6

M350

Synthetic (GPU)

Synthetic (GPU)

Synthetic (GPU)

Synthetic (GPU)

Synthetic (GPU)

Synthetic (CPU)

Manual

Manual

44,000

12,000

26,000

100,000

350

6,000

364

350

3 hours

50 minutes

1 hour 48 minutes

6 hours 56 minutes

1 minute 30 seconds

1 hour 30 minutes

5 hours

Two weeks

1

1

1

1

1

1

1

30

Table 6.1: The comparison details between the synthetic datasets using the proposed
method and manually made datasets.

6.2 Deep neural network training performance

The synthetic and manual made datasets are trained on the same Linux system that

used Python 3.8 with Intel i7-9700F 3.0 GHZ CPU and Nvidia RTX 2080 Super (8 GB

memory). The training parameters were kept the same for all datasets as described in

Section 5.2. The open-source online Machine Learning platform Weight & Biases 2

is used as the primary tool to collect and analyse the results. This platform uses the

number of steps to track and visualise the results instead of using epochs, and there are

2https://docs.wandb.ai/
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1,034 steps approximately for 80 training epochs.

6.2.1 Learning curves

Analysing the learning curves during training and validation is the most common

method to diagnose the model behaviour. There are three common learning curves

categories:

1. Overfitting happens when the model has learnt the training dataset too well,

including noises described in detail in Section 4.2.6. The model is then likely to

perform poorly when the new data is being fed through the model.

2. Underfitting is another example of poor model training performance. It hap-

pens when the model has not adequately learnt the training dataset to score a

sufficiently low loss value. The underfitting can be easily identified when the

loss continues to decrease at the end of the training period. Not having enough

training data is the most common reason for this situation to occur.

3. Good fitting is the goal of the training process. The curves are identified as

good fitting curves when they decrease to the point of stability, and their gap is

minimal.

There are two essential loss parameters that are used to examine the results of all learn-

ing curves:

The first parameter is classification loss value which indicates how well the model

is to classify the object’s class correctly from other classes. Figure 6.5 presents the

classification loss differences between training and validation of 52-card pack related

datasets. The result indicates that the proposed synthetic datasets (S6 and S13) can

efficiently perform the good fitting behaviour with the minimal gap is approximate
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0.001 on average at the final step. On the other hand, the synthetic K13 that used a dif-

ferent algorithm created approximate five times greater learning curves gap differences

with more noise occurring. The manual made dataset (M6) exhibits overfitting learning

curves since the training loss value decreases while the validation loss value increases.

Figure 6.5: The classification loss comparison during model training (solid curves) and
validation (dashed curves) using 52-card pack related datasets (S6, M6, S13, and K13).

Figure 6.6 presents the other classification loss differences between training and vali-

dation of New Zealand transportation sign related datasets. The result shows that the

proposed synthetic dataset (T100K) performs the lowest score on the training and vali-

dation loss differences, approximate 0.006. The T100K dataset also gives less noise than

others, especially the manually made dataset (M350) which creates the most remarkable
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learning gap differences. The proposed synthetic dataset reached the stabilise point at

80% of training time (T100K), whereas the manually made dataset could not.

Figure 6.6: The classification loss comparison during model training (solid curves)
and validation (dashed curves) using New Zealand transportation sign related datasets
(T100K, T350, and M350).

The other loss parameter is the bounding box value that indicates how well the pre-

dicted bounding box can cover an object and how well the predicted centre coordinate

would be compared to the ground truth values. Figure 6.7 presents the bounding box

loss differences between training and validation of 52-card pack related datasets. The

proposed synthetic datasets (S6 and S13) gave the best results on stabilisation since

they both could reach their stability points at 80% of training time, whereas the other
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datasets could not. However, their gap difference values were the greatest and produced

less noise than other datasets.

Figure 6.7: The bounding box loss comparison during model training (solid curves) and
validation (dashed curves) using 52-card pack related datasets (S6, M6, S13, and K13).

The other comparison is on New Zealand transportation signs related datasets (Fig-

ure 6.8). This comparison demonstrated a clear difference since the proposed synthetic

dataset with the high number of training data (T100K) could produce the minor gap

differences between training and validation loss at approximate 0.002 at the final step.

It could also reach the stability point very quickly at approximate 10% of training

time. The two comparison results confirm that it is possible to improve the learning

performance and get close to the good fitting training behaviour by increasing the size
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of the training dataset.

Figure 6.8: The bounding box loss comparison during model training (solid curves)
and validation (dashed curves) using New Zealand transportation sign related datasets
(T100K, T350, and M350).

Overall, the learning curves results indicated that the proposed synthetic datasets are

most likely to achieve good fitting training behaviour. It means that they provide less

noise, reduce errors during training and improve the model learning performance.
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6.2.2 Model evaluation

This subsection indicated how well the model would be using different datasets. The

model evaluation metrics (described in Section 4.5.2) are used in the following compar-

isons.

Dataset Recall Precision mAP0.5 mAP[0.5:0.95]

40K (Ours)

S6 (Ours)

S13 (Ours)

T100K (Ours)

T350 (Ours)

K13

M6

M350

0.993

0.999

0.999

0.982

0.842

0.999

0.365

0.6

0.987

0.998

0.996

0.873

0.359

0.998

0.365

0.356

0.993

0.995

0.995

0.907

0.735

0.995

0.314

0.538

0.605

0.994

0.994

0.576

0.432

0.955

0.152

0.349

Table 6.2: Full model evaluation. The table describes the evaluation results of the
proposed synthetic datasets (presented in bold) and the other three datasets conducted
using the manual data annotation process and other different synthetic algorithm. The
recall and precision values are set at the IoU threshold of 0.5. The mean average
precision (mAP) values are set at the IoU threshold of 0.5 (mAP0.5) and from 0.5 to
0.95 (mAP[0.5:0.95]).

Table 6.2 summarised the quantitative evaluation using recall, precision, and mean av-

erage precision (mAP) values. The synthetic datasets using the proposed method could

achieve over 80% of recall values. Significantly, the synthetic dataset could produce

an average of 30% higher than the real-world dataset for the New Zealand transporta-

tion signs category and almost three times better for the 52-card pack category. It

means that the synthetic dataset can predict the bounding box position with the least

false-negative rate. There is the same result with the false-positive value found in the
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precision records (precision values) where the proposed synthetic dataset could achieve

over 87% and an average of 18.7% higher than the real-world dataset for the New

Zealand transportation signs category and 2.5 times better for 52-card pack category

approximately. The mAP values, which were calculated based on the IoU thresholds,

comparable mAP0.5 values scored over 70% for the synthetic dataset. The higher IoU

threshold (mAP[0.5:0.95]) scored over 43% for the synthetic dataset. The experiment

results suggest that the model’s ability to predict the objects and their bounding box is

better in the case of synthetic than real-world images.

6.3 Predictions under natural conditions

A sample image of a 52-card pack with random lighting conditions, orientation, and

card position is chosen for this experiment (Figure 6.9). However, the top and bottom

rows of the original image were cropped to visualise the situation of the partially

covered object. Figure 6.10 presents the prediction results on the pre-trained weights

using different training datasets. The proposed datasets (S6 and S13) are the winners

in this experiment since they can correctly classify over 80% of the objects, whereas

other datasets can only achieve a few or no number of correct predictions. Significantly,

the proposed synthetic dataset can give the correct prediction with an average of 74%

confidence for the partially covered cards and 76% confidence for the unexpected

dazzling lighting condition. Correctly detection under different orientations is another

advantage for the proposed synthetic datasets since they could achieve 84% confidence

whereas other datasets could not. It presents that the proposed method is capable of

providing higher quality datasets for object recognition. The synthetic datasets using

the proposed method gave better accuracy results under different natural lighting and

other unexpected conditions.
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Different experiments were conducted to qualify the model prediction performances

using the New Zealand transportation signs related datasets (Figure 6.11). Several

natural lighting and weather conditions are applied in these experiments, such as night,

daylight, cloudy or foggy. The experimental results indicate that the model trained by

the proposed synthetic datasets (T100K and T350) gave the most outstanding accuracy

outcomes. The model trained by the proposed synthetic datasets could correctly classify

over 85% of the available road signs, whereas less than 50% for the manual-made

dataset (M350). The main reason for this difference is that the proposed synthetic

datasets contain a much higher number of training data representing almost all of the

common real-world scenarios. Significantly, the T100K dataset could predict unexpected

conditions such as low lighting or foggy with approximately 70% confidence value,

approximately 30% higher than the manually made dataset (M350). The T350 dataset

gave an incomparable result to the M350 dataset under unexpected conditions since

the synthetic dataset was failed to predict the road signs in some situations such as

foggy, whereas the M350 dataset could. However, it was dominant under other brighter

lighting conditions such as daylight or cloudy. The following YouTube short clip demos

were conducted using the 100K dataset pre-train model, which presents how well the

model could detect in real-time:

• https://www.youtube.com/watch?v=kkjydYdgI90 was captured by using the

bike helmet dash camera that recorded the daylight urban riding activity footage.

• https://www.youtube.com/watch?v=wVaxdjnSwr8 was captured by using the

high-definition mobile camera that recorded the daylight urban walking activity

footage.

• https://www.youtube.com/shorts/ebXNoEp_w4s was captured by using the

low-definition mobile camera that recorded the sunset rural walking activity

footage.

https://www.youtube.com/watch?v=kkjydYdgI90
https://www.youtube.com/watch?v=wVaxdjnSwr8
https://www.youtube.com/shorts/ebXNoEp_w4s
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Figure 6.12: The model prediction results under different natural lighting conditions
(normal, high, and low) using the 40K dataset for training.
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The final experiment was conducted using the 40K synthetic dataset, the primary

dataset for this research. There are three typical indoor lighting contrast levels (normal,

high, and low) used for this experiment, as shown in Figure 6.12. The result indicates

that the trained model could detect approximate 100% of markers correctly with an

average of 63% prediction confidence for the normal contrast level. On the other hand,

it could achieve only a 30% accuracy rate and approximate 56% prediction confidence

for the low and high contrast levels. In the end, all synthetic datasets using the proposed

method could achieve at least 60% for prediction accuracy rate at the standard natural

condition and over 58% on average for the poor natural condition. Again, these records

indicate that the model can achieve the same or even better prediction accuracy rate by

using the proposed synthetic dataset for training.

6.4 Augmented Reality application

The implemented Augmented Reality iOS application successfully used the trained

YOLOv3 model using the proposed synthetic dataset to detect the target markers without

modifying their original pictorial contents (Figure 6.13). The application performance

test was conducted primarily on the iPhone X model, with 3 GB of RAM and the

Apple-designed A11 Bionic chip. The results showed that the iOS application could

detect the markers under different lighting conditions at an average rate of 60 frames

per second (FPS). The added animations work efficiently at an average rate of above

50 FPS. Significantly, the application can detect and display the virtual object on the

top of the marker under poor lighting conditions. However, due to hardware limitations,

the frame rate drops to 30 FPS after 30 minutes of running. This is a known issue with

current iOS devices where the neural engine (ANE) inside the CPU is responsible for

Machine Learning tasks. The CPU will have thermal throttling after an extended period

using the ANE and forces the system to slow down CPU performance to protect the
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device’s components. Therefore, it could lead to low Augmented Reality experiences

and detection accuracy rates. The following YouTube clip demos demonstrate in detail

how the implemented iOS application works in real-life:

• https://www.youtube.com/watch?v=YcS_5pym9xM demonstrates the 3D ani-

mation under standard indoor lighting conditions.

• https://www.youtube.com/shorts/oFFRx-IQdRk demonstrates the 3D models

under low indoor lighting conditions.

• https://www.youtube.com/watch?v=xLJCvuiKFwg demonstrates the 3D ani-

mation under standard indoor lighting conditions with sound effects (short clip).

• https://www.youtube.com/watch?v=aLfQqJQZoUUt=12s demonstrates the 3D

animation under standard indoor lighting conditions with sound effects (long

clip).

Overall, the results indicated that the implemented application detection process is

effective in poor lighting conditions with an acceptable detection accuracy rate. This

means that the deep neural network trained by the proposed synthetic dataset can produce

a similar result for object detection tasks, which requires less time and labour. Moreover,

this approach could be helpful in education where the textbook figure contents require

to be unchanged, and high detection accuracy is required.

https://www.youtube.com/watch?v=YcS_5pym9xM
https://www.youtube.com/shorts/oFFRx-IQdRk
https://www.youtube.com/watch?v=xLJCvuiKFwg
https://www.youtube.com/watch?v=aLfQqJQZoUU&t=12s
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Figure 6.13: The prototype iOS application shows that deep neural network model
trained by the proposed synthetic dataset can predict the markers under different lighting
conditions and successfully render the corresponding virtual models.
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The research purpose of this thesis is divided into two different distinct di-

rections. One is investigating the new Augmented Reality (AR) markers that

conceal hidden information such as encrypted code into the graphical content

with the minimal modification required. Another is investigating using the deep neural

network trained by the synthetic dataset to classify the marker identity without modify-

ing the original content. The proposed system introduced in the second investigation

is called “Synthetic data annotation system for Augmented Reality Machine learning-

based application” or SARM.

The newly designed AR markers introduced in the first investigation direction provide

a higher detection accuracy rate under unexpected natural conditions and better error

detection and correction capabilities. They also present meaningful information to the

audiences with minimal modification of the original graphical contents. The commer-

cial perspective also indicated that the newly designed AR markers have great usage

potential in a few application sectors such as education and medicine. However, it also

indicated that the original contents modification requirement is a primary disadvantage

that pulls the proposed ideas further away from the daily commercialised application

level.

Another research direction ultimately ruled out the physical texture content modification

method by applying the object detection capability using the pre-trained deep neural

network model to classify the given markers. This proposed idea combines the two

most promising modern technologies, Machine Learning and Augmented Reality, into

one product. The experimental results have shown that it is possible to use the digital

generated synthetic data to train the deep neural network model and achieve equiva-

lent outcomes when trained using the real data. This novel solution helps to improve

the training performance, real-world object detection accuracy and minimises labour

cost during the data annotation process. In the end, a fully functional prototype was
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implemented and detecting the AR markers efficiently on a 2017 built iPhone X device.

7.1 Limitations

Nothing is perfect, and this thesis also has some unique limitations. The first major

limitation is the negative impact of the COVID 19 pandemic on the research progress.

In the beginning, this project was planned to be completed within three years, starting

from July 2018. However, due to the unexpected national lockdown incidents, the

progress has been delayed for another five months since all the accessible research

facilities and tools had been frozen. However, in the end, the project continued with the

self-funding research equipment and online tools. This limitation somehow gave the

advantage for us as the thesis author to critically proceed with the article proofreading

process.

The second limitation came from the technical disadvantage aspect. The experimental

results and the implemented application used only 2017 built iPhone X as the testing

device. This mobile model contains the A11 bionic chip that is outdated, and it could

lead to poor processing power issues. This chip was designed primarily for facial

recognition and a few other Machine Learning-related tasks and minimal support for

the Augmented Reality feature. Therefore, the performance of the prototype application

started falling after a short period, and the virtual object presentation was not accurate

in texture updating or recalculating the new physical location. However, these technical

issues would be to be addressed readily by future hardware and architectural software

designs.
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7.2 Future research directions

The research clearly showed that Augmented Reality and Machine Learning are the

most demanding technologies for the next couple of decades; hence, our future research

directions will focus on these technical aspects. The first future research direction

could be expanding the current project into other mobile operating systems such as

iPadOS or Android OS since the current implemented application is only runnable

on iOS devices. At the current stage, the proposed system works efficiently well with

any flat 2D objects such as cards, papers, or books. In the future, the other research

direction could be on detecting 3D objects such as 3D spheres, cubes, or cylinder-

shaped objects using the latest built-in LiDAR (Rosell et al., 2009) scanning technology

on most modern iPhone devices. This technology uses the light reflection time latency

to determine how far the individual object is standing away from the phone location

and creates a depth map of the surrounding space. The depth map helps the system

to understand the surrounding environment instantly and accurately deliver the best

Augmented Reality experience.
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A.1 View Controller Class

1 import UIKi t

2 import S c e n e K i t

3 import ARKit

4 import AVFoundation

5

6

7 c l a s s V i e w C o n t r o l l e r : U I V i e w C o n t r o l l e r , ARSCNViewDelegate ,

ARSess ionDelega te , YoloDelega te , A l t e r e d I m a g e D e l e g a t e {

8

9 / / MARK: − I n i t i a l i s a t i o n

10

11 @IBOutlet var sceneView : ARSCNView!

12

13 s t a t i c var i n s t a n c e : V i e w C o n t r o l l e r ?

14

15 var i s C u r r e n t l y P r e d i c t i n g : Bool = f a l s e

16

17 var c u r r e n t E x a m i n e d C l a s s : A l t e r e d I m a g e ?

18

19 var c u r r e n t C l a s s N a m e : S t r i n g = " "

20

21 l e t yo lo = Yolo ( )

22

23 var c u r r e n t S c r e e n T r a n s f o r m : CGAff ineTransform ?

24

25 var i m a g e O r i e n t a t i o n : C G I m a g e P r o p e r t y O r i e n t a t i o n ?

26

27 var sc reenBounds : CGRect ?

28

29
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30 o v e r r i d e func viewDidLoad ( ) {

31 s u p e r . viewDidLoad ( )

32

33 yo lo . d e l e g a t e = s e l f

34

35 / / S e t t h e view ’ s d e l e g a t e

36 sceneView . p r e f e r r e d F r a m e s P e r S e c o n d = 60

37

38 sceneView . d e l e g a t e = s e l f

39 sceneView . s e s s i o n . d e l e g a t e = s e l f

40

41

42 l e t s o u n d S e s s i o n = AVAudioSession . s h a r e d I n s t a n c e ( )

43 t r y ? s o u n d S e s s i o n . s e t A c t i v e ( f a l s e )

44 t r y ! s o u n d S e s s i o n . s e t C a t e g o r y ( . playAndRecord , o p t i o n s : [ .

d e f a u l t T o S p e a k e r ,

45 .

a l l o w B l u e t o o t h ,

46 .

a l l o w A i r P l a y ] )

47 t r y ! s o u n d S e s s i o n . s e t A c t i v e ( t rue )

48

49 }

50

51 o v e r r i d e func viewWil lAppear ( _ a n i m a t e d : Bool ) {

52 s u p e r . v iewWil lAppear ( a n i m a t e d )

53

54 V i e w C o n t r o l l e r . i n s t a n c e = s e l f

55

56 l e t c o n f i g u a r t i o n = A RWo r ld Tra ck i ngC on f ig u ra t i o n ( )

57 c o n f i g u a r t i o n . e n v i r o n m e n t T e x t u r i n g = . a u t o m a t i c

58
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59 sceneView . s e s s i o n . run ( c o n f i g u a r t i o n )

60 r e s e t I m a g e T r a c k ( )

61 }

62

63 o v e r r i d e func v i e w W i l l D i s a p p e a r ( _ a n i m a t e d : Bool ) {

64 s u p e r . v i e w W i l l D i s a p p e a r ( a n i m a t e d )

65

66 / / Pause t h e view ’ s s e s s i o n

67 sceneView . s e s s i o n . pause ( )

68 }

69

70 / / / T h i s method used when t h e program f i r s t s t a r t e d or when t h e

s y s t e m couldn ’ t t r a c k any d e t e c t e d images

71 func r e s e t I m a g e T r a c k ( ) {

72 c u r r e n t E x a m i n e d C l a s s ? . d e l e g a t e = n i l

73 c u r r e n t E x a m i n e d C l a s s = n i l

74 c u r r e n t C l a s s N a m e = " "

75 / / / R e s t a r t t h e s e s s i o n and remove any image anchors t h a t

may have been d e t e c t e d p r e v i o u s l y .

76 r u n I m a g e T r a c k i n g S e s s i o n ( wi th : [ ] , r u n O p t i o n s : [ .

r em oveEx i s t i ng Ancho r s , . r e s e t T r a c k i n g ] )

77 }

78

79 / / / R e s e t t h e image r e f e r e n c e t r a c k i n g i f c u r r e n t image l o s t

80 p r i v a t e func r u n I m a g e T r a c k i n g S e s s i o n ( wi th t r a c k i n g I m a g e s : Set <

ARReferenceImage > ,

81 r u n O p t i o n s : ARSession .

RunOpt ions = [ . r e m o v e E x i s t i n g A n c h o r s ] ) {

82 l e t c o n f i g u r a t i o n = A R I m a g e T r a c k i n g C o n f i g u r a t i o n ( )

83 c o n f i g u r a t i o n . t r a c k i n g I m a g e s = t r a c k i n g I m a g e s

84 c o n f i g u r a t i o n . maximumNumberOfTrackedImages = 1

85
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86 sceneView . s e s s i o n . run ( c o n f i g u r a t i o n , o p t i o n s : r u n O p t i o n s )

87

88 }

89

90 / / MARK: − Methods

91

92

93 func s e s s i o n ( _ s e s s i o n : ARSession , d idUpda te f rame : ARFrame ) {

94 sc reenBounds = s e l f . sceneView . bounds

95 s e l f . c u r r e n t S c r e e n T r a n s f o r m = frame .

d i s p l a y T r a n s f o r m C o r r e c t e d (

96 f o r : i n t e r f a c e O r i e n t a t i o n ,

97 v i e w p o r t S i z e : sc reenBounds ! . s i z e

98 )

99

100 i m a g e O r i e n t a t i o n = . up

101 }

102

103

104 func r e n d e r e r ( _ r e n d e r e r : SCNSceneRenderer , didAdd node : SCNNode

, f o r a nc ho r : ARAnchor ) {

105

106 c u r r e n t E x a m i n e d C l a s s ? . add ( anchor , node : node )

107 }

108

109 func r e n d e r e r ( _ r e n d e r e r : SCNSceneRenderer , d idUpda t e node :

SCNNode , f o r a nc ho r : ARAnchor ) {

110 c u r r e n t E x a m i n e d C l a s s ? . u p d a t e ( a n ch o r )

111 }

112

113

114
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115 func g e t I n t e r s e c t R e c t ( p e r s p e c t i v e I m a g e L i s t : [ CIImage ] ,

o b s e r v a t i o n : Yolo . P r e d i c t i o n ,

116 r e c t a n g l e L i s t : [ VNRec t ang l eObse rva t i on ] ) {

117

118 / / / g e t i o u v a l u e o f y o l o bounding boxes and t h e r e c t a n g l e s

119 l e t i o u I n d e x L i s t : [ I n t ] = c a l c u l a t e I O U ( o b s e r v a t i o n :

o b s e r v a t i o n ,

120 r e c t a n g l e L i s t :

r e c t a n g l e L i s t ,

121

c u r r e n t S c r e e n T r a n s f o r m : s e l f . c u r r e n t S c r e e n T r a n s f o r m ! ,

122 s c r e e n S i z e :

sc reenBounds ! )

123

124 Dispa tchQueue . main . a sync { [ s e l f ] in

125 f o r i o u I n d e x in i o u I n d e x L i s t {

126

127 / / / I g n o r e when t h e i o u i n d e x i s −1 −−> means t h a t

t h e i o u v a l u e i s t o o s m a l l t o be c o n s i d e r e d as a match .

128 i f i o u I n d e x > −1{

129 gua rd s e l f . c u r r e n t E x a m i n e d C l a s s == n i l e l s e {

130 re turn

131 }

132

133 gua rd l e t r e f e r e n c e I m a g e P i x e l B u f f e r =

134 p e r s p e c t i v e I m a g e L i s t [ i o u I n d e x ] .

t o P i x e l B u f f e r ( p i x e l F o r m a t : kCVPixelFormatType_32BGRA ) e l s e {

135 p r i n t ( " E r r o r : Could n o t c o n v e r t r e c t a n g l e

c o n t e n t i n t o an ARReferenceImage . " )

136 re turn

137 }

138
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139 / *

140 S e t a d e f a u l t p h y s i c a l w i d t h o f 50 c e n t i m e t e r s

f o r t h e new r e f e r e n c e image .

141 While t h i s e s t i m a t e i s l i k e l y i n c o r r e c t , t h a t ’ s

f i n e f o r t h e purpose o f t h e

142 app . The c o n t e n t w i l l s t i l l appear i n t h e

c o r r e c t l o c a t i o n and a t t h e c o r r e c t

143 s c a l e r e l a t i v e t o t h e image t h a t ’ s b e i n g

t r a c k e d .

144 * /

145

146 l e t p o s s i b l e R e f e r e n c e I m a g e = ARReferenceImage (

r e f e r e n c e I m a g e P i x e l B u f f e r ,

147

o r i e n t a t i o n : . up ,

148

p h y s i c a l W i d t h : CGFloat ( 0 . 0 7 ) )

149 p o s s i b l e R e f e r e n c e I m a g e . v a l i d a t e { [ s e l f ] ( e r r o r )

in

150 i f l e t e r r o r = e r r o r {

151 p r i n t ( " R e f e r e n c e image v a l i d a t i o n f a i l e d

: \ ( e r r o r . l o c a l i z e d D e s c r i p t i o n ) " )

152 re turn

153 }

154

155

156 gua rd l e t newAl te redImage = A l t e r e d I m a g e (

p e r s p e c t i v e I m a g e L i s t [ i o u I n d e x ] ,

157

r e f e r e n c e I m a g e : p o s s i b l e R e f e r e n c e I m a g e ,

158

className : l a b e l s [ o b s e r v a t i o n . c l a s s I n d e x ] ) e l s e {
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159 re turn

160 }

161

162 newAl te redImage . d e l e g a t e = s e l f

163 s e l f . c u r r e n t E x a m i n e d C l a s s = newAl te redImage

164 c u r r e n t C l a s s N a m e = s e l f . c u r r e n t E x a m i n e d C l a s s

! . c lassName

165

166 s e l f . r u n I m a g e T r a c k i n g S e s s i o n ( wi th : [

newAl te redImage . r e f e r e n c e I m a g e ! ] )

167 }

168

169 }

170 }

171 }

172 }

173

174 func a l t e r e d I m a g e L o s t T r a c k i n g ( _ a l t e r e d I m a g e : A l t e r e d I m a g e ) {

175 r e s e t I m a g e T r a c k ( )

176 }

177 }

A.2 Yolo Class

1 import F o u n d a t i o n

2 import UIKi t

3 import CoreML

4 import V i s i o n

5 import UIKi t
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6

7 c l a s s Yolo {

8

9 / / MARK: − I n i t i a l i s a t i o n

10 / / Per form t h e p r e d i c t i o n each i n t e r v a l o f t i m e

11 p r i v a t e var upda t eT imer : Timer ?

12 p r i v a t e var u p d a t e I n t e r v a l : T i m e I n t e r v a l = 0 . 0 3

13

14 p r i v a t e var e d u c a t i o n M o d e l : VNCoreMLModel?

15

16 weak var d e l e g a t e : Y o l o D e l e g a t e ?

17

18 p r i v a t e var cu r r en tCamera Image : CVPixe lBuf f e r !

19

20 l e t g r i d H e i g h t = [ 1 3 , 26 , 52]

21 l e t g r i d W i d t h = [ 1 3 , 26 , 52]

22 l e t b l o c k S i z e : F l o a t = 32

23 l e t b o x e s P e r C e l l = 3

24 l e t numClasses = 22

25

26

27 p u b l i c s t a t i c l e t maxBoundingBoxes = 10

28 l e t c o n f i d e n c e T h r e s h o l d : F l o a t = 0 . 3

29 l e t i o u T h r e s h o l d : F l o a t = 0 . 1

30

31 s t r u c t P r e d i c t i o n {

32 l e t c l a s s I n d e x : I n t

33 l e t s c o r e : F l o a t

34 l e t r e c t : CGRect

35 }

36

37 / / MARK: − Methods
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38 p u b l i c i n i t ( ) {

39 e d u c a t i o n M o d e l = {

40 l e t modelConf ig = MLModelConf igura t ion ( )

41 modelConf ig . compu teUni t s = . a l l

42 l e t model = t r y ? VNCoreMLModel ( f o r : Educa t i on_416 (

c o n f i g u r a t i o n : modelConf ig ) . model )

43 re turn model

44 } ( )

45

46 s e l f . upda t eT imer = Timer . s c h e d u l e d T i m e r ( w i t h T i m e I n t e r v a l :

u p d a t e I n t e r v a l , r e p e a t s : t rue ) { [ weak s e l f ] _ in

47 i f l e t c a p t u r e d I m a g e = V i e w C o n t r o l l e r . i n s t a n c e ? .

sceneView . s e s s i o n . c u r r e n t F r a m e ? . c a p t u r e d I m a g e {

48 s e l f ? . p r e d i c t ( i m a g e P i x e l : c a p t u r e d I m a g e )

49 }

50 }

51 }

52

53 p u b l i c func p r e d i c t ( i m a g e P i x e l : CVPixe lBuf f e r ) {

54

55

56 / / I f t h e s y s t e m i s c u r r e n t l y s e a r c h i n g f o r t h e r e c t a n g l e s

−−> STOP

57 guard ! ( V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g )

e l s e {

58 re turn

59 }

60

61 guard V i e w C o n t r o l l e r . i n s t a n c e ! . c u r r e n t C l a s s N a m e == " " e l s e

{

62 re turn

63 }
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64

65 V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g = t rue

66

67 cu r r en tCamera Image = i m a g e P i x e l

68

69 l e t r e q u e s t = VNCoreMLRequest ( model : e d u c a t i o n M o d e l ! ,

c o m p l e t i o n H a n d l e r : { ( r e q u e s t , e r r o r ) in

70

71 gua rd l e t o b s e r v a t i o n s = r e q u e s t . r e s u l t s as ? [

VNCoreMLFeatureValueObservat ion ] e l s e {

72 V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g =

f a l s e

73 V i e w C o n t r o l l e r . i n s t a n c e ! . c u r r e n t C l a s s N a m e = " "

74 re turn

75 }

76

77 l e t p r e d i c t i o n s = s e l f . ge tBoundingBoxes ( f e a t u r e s : [

o b s e r v a t i o n s [ 2 ] . f e a t u r e V a l u e . m u l t i A r r a y V a l u e ! ,

78

o b s e r v a t i o n s [ 1 ] . f e a t u r e V a l u e . m u l t i A r r a y V a l u e ! ,

79

o b s e r v a t i o n s [ 0 ] . f e a t u r e V a l u e . m u l t i A r r a y V a l u e ! ] )

80

81 i f p r e d i c t i o n s . c o u n t > 0{

82 l e t o b s e r v a t i o n = p r e d i c t i o n s [ 0 ]

83

84

85

86 s e l f . s e a r c h F o r R e c t a n g l e ( o b s e r v a t i o n : o b s e r v a t i o n )

87 } e l s e {

88 V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g =

f a l s e
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89 V i e w C o n t r o l l e r . i n s t a n c e ! . c u r r e n t C l a s s N a m e = " "

90 re turn

91 }

92

93 } )

94

95 r e q u e s t . imageCropAndSca leOpt ion = . s c a l e F i l l

96

97 l e t i ma g eR e qu e s t H an d l e r = VNImageRequestHandler (

c v P i x e l B u f f e r : cu r ren tCamera Image ,

98 o r i e n t a t i o n :

( V i e w C o n t r o l l e r . i n s t a n c e ? . i m a g e O r i e n t a t i o n ) ! ,

99 o p t i o n s : [ : ] )

100

101 / / Per form r e q u e s t on background t h r e a d

102 Dispa tchQueue . g l o b a l ( qos : . background ) . a sync {

103

104 do {

105

106 t r y i m ag e Re q ue s tH a nd l e r . pe r fo rm ( [ r e q u e s t ] )

107 } c a t c h {

108 p r i n t ( " E r r o r : V i s i o n r e q u e s t f a i l e d " )

109 V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g =

f a l s e

110 V i e w C o n t r o l l e r . i n s t a n c e ! . c u r r e n t C l a s s N a m e = " "

111 }

112 }

113

114 }

115

116 p u b l i c func ge tBoundingBoxes ( f e a t u r e s : [ MLMultiArray ] ) −> [

P r e d i c t i o n ] {
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117

118

119 a s s e r t ( f e a t u r e s [ 0 ] . c o u n t == ( numClasses +5) *3*13*13)

120 a s s e r t ( f e a t u r e s [ 1 ] . c o u n t == ( numClasses +5) *3*26*26)

121 / / a s s e r t ( f e a t u r e s [ 2 ] . c o u n t == ( numClasses +5) *3*52*52)

122

123 var p r e d i c t i o n s = [ P r e d i c t i o n ] ( )

124

125 var f e a t u r e P o i n t e r = U n s a f e M u t a b l e P o i n t e r < F l o a t 3 2 >(

O p a q u e P o i n t e r ( f e a t u r e s [ 0 ] . d a t a P o i n t e r ) )

126 var c h a n n e l S t r i d e = f e a t u r e s [ 0 ] . s t r i d e s [ 0 ] . i n t V a l u e

127 var y S t r i d e = f e a t u r e s [ 0 ] . s t r i d e s [ 1 ] . i n t V a l u e

128 var x S t r i d e = f e a t u r e s [ 0 ] . s t r i d e s [ 2 ] . i n t V a l u e

129

130 func o f f s e t ( _ c h a n n e l : I n t , _ x : I n t , _ y : I n t ) −> I n t {

131 re turn c h a n n e l * c h a n n e l S t r i d e + y* y S t r i d e + x* x S t r i d e

132 }

133

134 f o r i in 0 . . < 2 {

135 f e a t u r e P o i n t e r = U n s a f e M u t a b l e P o i n t e r < F l o a t 3 2 >(

O p a q u e P o i n t e r ( f e a t u r e s [ i ] . d a t a P o i n t e r ) )

136 c h a n n e l S t r i d e = f e a t u r e s [ i ] . s t r i d e s [ 0 ] . i n t V a l u e

137 y S t r i d e = f e a t u r e s [ i ] . s t r i d e s [ 1 ] . i n t V a l u e

138 x S t r i d e = f e a t u r e s [ i ] . s t r i d e s [ 2 ] . i n t V a l u e

139

140 f o r cy in 0 . . < g r i d H e i g h t [ i ] {

141 f o r cx in 0 . . < g r i d W i d t h [ i ] {

142 f o r b in 0 . . < b o x e s P e r C e l l {

143 l e t c h a n n e l = b * ( numClasses + 5)

144

145 / / The f a s t way :
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146 l e t t x = F l o a t ( f e a t u r e P o i n t e r [ o f f s e t ( c h a n n e l

, cx , cy ) ] )

147 l e t t y = F l o a t ( f e a t u r e P o i n t e r [ o f f s e t ( c h a n n e l

+ 1 , cx , cy ) ] )

148 l e t tw = F l o a t ( f e a t u r e P o i n t e r [ o f f s e t ( c h a n n e l

+ 2 , cx , cy ) ] )

149 l e t t h = F l o a t ( f e a t u r e P o i n t e r [ o f f s e t ( c h a n n e l

+ 3 , cx , cy ) ] )

150 l e t t c = F l o a t ( f e a t u r e P o i n t e r [ o f f s e t ( c h a n n e l

+ 4 , cx , cy ) ] )

151

152

153

154 l e t s c a l e = powf ( 2 . 0 , F l o a t ( i ) ) / / s c a l e pos

by 2^ i where i i s t h e s c a l e pyramid l e v e l

155 l e t x = ( F l o a t ( cx ) * b l o c k S i z e + s igmoid ( t x )

) / s c a l e

156 l e t y = ( F l o a t ( cy ) * b l o c k S i z e + s igmoid ( t y )

) / s c a l e

157

158 l e t w = exp ( tw ) * a n c h o r s [ i ] [ 2 * b ]

159 l e t h = exp ( t h ) * a n c h o r s [ i ] [ 2 * b + 1]

160

161 l e t c o n f i d e n c e = s igmoid ( t c )

162

163 var c l a s s e s = [ F l o a t ] ( r e p e a t i n g : 0 , c o u n t :

numClasses )

164 f o r c in 0 . . < numClasses {

165

166 / / The f a s t way :

167 c l a s s e s [ c ] = F l o a t ( f e a t u r e P o i n t e r [ o f f s e t

( c h a n n e l + 5 + c , cx , cy ) ] )
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168 }

169 c l a s s e s = so f tmax ( c l a s s e s )

170 l e t ( d e t e c t e d C l a s s , b e s t C l a s s S c o r e ) =

c l a s s e s . argmax ( )

171

172 l e t c o n f i d e n c e I n C l a s s = b e s t C l a s s S c o r e *

c o n f i d e n c e

173

174

175

176 i f c o n f i d e n c e I n C l a s s > c o n f i d e n c e T h r e s h o l d {

177 l e t r e c t = CGRect ( x : CGFloat ( x − w/ 2 ) , y

: CGFloat ( y − h / 2 ) ,

178 wid th : CGFloat (w) ,

h e i g h t : CGFloat ( h ) )

179

180 l e t p r e d i c t i o n = P r e d i c t i o n ( c l a s s I n d e x :

d e t e c t e d C l a s s ,

181 s c o r e :

c o n f i d e n c e I n C l a s s ,

182 r e c t : r e c t )

183

184 p r e d i c t i o n s . append ( p r e d i c t i o n )

185 }

186

187 }

188 }

189 }

190

191 }

192 re turn nonMaxSuppress ion ( boxes : p r e d i c t i o n s , l i m i t : Yolo .

maxBoundingBoxes , t h r e s h o l d : i o u T h r e s h o l d )
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193 }

194

195

196 p u b l i c func s e a r c h F o r R e c t a n g l e ( o b s e r v a t i o n : P r e d i c t i o n ) {

197

198 / / Note t h a t t h e p i x e l b u f f e r ’ s o r i e n t a t i o n doesn ’ t change

even when t h e d e v i c e r o t a t e s .

199 l e t h a n d l e r = VNImageRequestHandler ( c v P i x e l B u f f e r :

cu r ren tCamera Image , o r i e n t a t i o n : . up )

200

201 / / Cr ea t e a V i s i o n r e c t a n g l e d e t e c t i o n r e q u e s t f o r r u n n i n g

on t h e GPU.

202 l e t r e q u e s t = V N D e t e c t R e c t a n g l e s R e q u e s t { r e q u e s t , e r r o r in

203 s e l f . c o m p l e t e d V i s i o n R e q u e s t ( r e q u e s t , e r r o r : e r r o r ,

o b s e r v a t i o n : o b s e r v a t i o n )

204 }

205

206 / / Look o n l y f o r one r e c t a n g l e a t a t i m e .

207 r e q u e s t . maximumObservat ions = 5

208

209 / / R e q u i r e r e c t a n g l e s t o be r e a s o n a b l y l a r g e .

210 r e q u e s t . minimumSize = 0 . 2

211

212 r e q u e s t . minimumConfidence = 0 . 0

213

214 / / I g n o r e r e c t a n g l e s w i t h a t o o uneven a s p e c t r a t i o .

215 r e q u e s t . minimumAspectRat io = 0 . 3

216

217 / / You l e v e r a g e t h e ‘ usesCPUOnly ‘ f l a g o f ‘ VNRequest ‘ t o

d e c i d e whe ther your V i s i o n r e q u e s t s are p r o c e s s e d on t h e CPU or

GPU.
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218 / / T h i s sample d i s a b l e s ‘ usesCPUOnly ‘ because r e c t a n g l e

d e t e c t i o n i s n ’ t v e r y t a x i n g on t h e GPU. You may b e n e f i t by

e n a b l i n g

219 / / ‘ usesCPUOnly ‘ i f your app does a l o t o f r e n d e r i n g , or

runs a c o m p l i c a t e d n e u r a l ne twork .

220 r e q u e s t . usesCPUOnly = t rue

221 t r y ? h a n d l e r . pe r fo rm ( [ r e q u e s t ] )

222 }

223

224 p r i v a t e func c o m p l e t e d V i s i o n R e q u e s t ( _ r e q u e s t : VNRequest ? , e r r o r

: E r r o r ? ,

225 o b s e r v a t i o n : P r e d i c t i o n ) {

226 d e f e r {

227 V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g = f a l s e

228 s e l f . cu r r en tCamera Image = n i l

229 }

230 do{

231 gua rd l e t r e c t a n g l e s = r e q u e s t ? . r e s u l t s as ? [

VNRec tang l eObse rva t i on ] e l s e {

232 V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g =

f a l s e

233 V i e w C o n t r o l l e r . i n s t a n c e ! . c u r r e n t C l a s s N a m e = " "

234 re turn

235 }

236

237 gua rd l e t f i l t e r = C I F i l t e r ( name : "

C I P e r s p e c t i v e C o r r e c t i o n " ) e l s e {

238 V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g =

f a l s e

239 V i e w C o n t r o l l e r . i n s t a n c e ! . c u r r e n t C l a s s N a m e = " "

240 re turn

241 }
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242

243 / / Only d e t e r m i n e t h e r e c t a n g l e s c o r r d i n a t e s i f t h e t o t a l

i s a t l e a s t 1

244 i f r e c t a n g l e s . c o u n t > 0 {

245 var p e r s p e c t i v e I m a g e L i s t : [ CIImage ] = [ ]

246 var r e c t a n g l e L i s t : [ VNRec t ang l eObse rva t i on ] = [ ]

247

248 f o r r e c t a n g l e in r e c t a n g l e s {

249 l e t wid th = CGFloat ( CVPixe lBuf fe rGe tWid th (

cu r r en tCamera Image ) )

250 l e t h e i g h t = CGFloat ( C V P i x e l B u f f e r G e t H e i g h t (

cu r r en tCamera Image ) )

251 l e t t o p L e f t = CGPoint ( x : r e c t a n g l e . t o p L e f t . x *

width , y : r e c t a n g l e . t o p L e f t . y * h e i g h t )

252 l e t t o p R i g h t = CGPoint ( x : r e c t a n g l e . t o p R i g h t . x *

width , y : r e c t a n g l e . t o p R i g h t . y * h e i g h t )

253 l e t b o t t o m L e f t = CGPoint ( x : r e c t a n g l e . b o t t o m L e f t

. x * width , y : r e c t a n g l e . b o t t o m L e f t . y * h e i g h t )

254 l e t b o t t o m R i g h t = CGPoint ( x : r e c t a n g l e .

b o t t o m R i g h t . x * width , y : r e c t a n g l e . b o t t o m R i g h t . y * h e i g h t )

255

256 f i l t e r . s e t V a l u e ( CIVec to r ( c g P o i n t : t o p L e f t ) ,

forKey : " i n p u t T o p L e f t " )

257 f i l t e r . s e t V a l u e ( CIVec to r ( c g P o i n t : t o p R i g h t ) ,

forKey : " i n p u t T o p R i g h t " )

258 f i l t e r . s e t V a l u e ( CIVec to r ( c g P o i n t : b o t t o m L e f t ) ,

forKey : " i n p u t B o t t o m L e f t " )

259 f i l t e r . s e t V a l u e ( CIVec to r ( c g P o i n t : b o t t o m R i g h t ) ,

forKey : " i n p u t B o t t o m R i g h t " )

260

261 l e t c i Image = CIImage ( c v P i x e l B u f f e r :

cu r r en tCamera Image ) . o r i e n t e d ( . up )
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262 f i l t e r . s e t V a l u e ( c i Image , forKey :

kCIInputImageKey )

263

264 gua rd l e t p e r s p e c t i v e I m a g e : CIImage = f i l t e r .

v a l u e ( forKey : kCIOutputImageKey ) as ? CIImage e l s e {

265 p r i n t ( " E r r o r : R e c t a n g l e d e t e c t i o n f a i l e d −

p e r s p e c t i v e c o r r e c t i o n f i l t e r has no o u t p u t image . " )

266 V i e w C o n t r o l l e r . i n s t a n c e ! .

i s C u r r e n t l y P r e d i c t i n g = f a l s e

267 V i e w C o n t r o l l e r . i n s t a n c e ! . c u r r e n t C l a s s N a m e =

" "

268 re turn

269 }

270

271 r e c t a n g l e L i s t . append ( r e c t a n g l e )

272 p e r s p e c t i v e I m a g e L i s t . append ( p e r s p e c t i v e I m a g e )

273 }

274

275 d e l e g a t e ? . g e t I n t e r s e c t R e c t ( p e r s p e c t i v e I m a g e L i s t :

p e r s p e c t i v e I m a g e L i s t ,

276 o b s e r v a t i o n : o b s e r v a t i o n ,

r e c t a n g l e L i s t : r e c t a n g l e L i s t )

277

278 } e l s e {

279 V i e w C o n t r o l l e r . i n s t a n c e ! . i s C u r r e n t l y P r e d i c t i n g =

f a l s e

280 V i e w C o n t r o l l e r . i n s t a n c e ! . c u r r e n t C l a s s N a m e = " "

281 re turn

282 }

283 }

284 }

285 }
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286

287 / / MARK: − P r o t o c o l

288 p r o t o c o l Y o l o D e l e g a t e : c l a s s {

289 func g e t I n t e r s e c t R e c t ( p e r s p e c t i v e I m a g e L i s t : [ CIImage ] ,

290 o b s e r v a t i o n : Yolo . P r e d i c t i o n ,

291 r e c t a n g l e L i s t : [ VNRec t ang l eObse rva t i on ] )

292 }

A.3 Altered Image Class

1 import F o u n d a t i o n

2 import ARKit

3 import CoreML

4

5 / / / − Tag : A l t e r e d I m a g e

6 c l a s s A l t e r e d I m a g e {

7 / / MARK: − I n i t i a l i s a t i o n

8 / / / A d e l e g a t e t o t e l l when image t r a c k i n g f a i l s .

9 weak var d e l e g a t e : A l t e r e d I m a g e D e l e g a t e ?

10

11 p u b l i c var className : S t r i n g = " "

12

13 p u b l i c var r e f e r e n c e I m a g e : ARReferenceImage ?

14

15 / / / A S c e n e K i t node t h a t a n i m a t e s images o f v a r y i n g s t y l e .

16 p r i v a t e l e t v i s u a l i z a t i o n N o d e : V i s u a l i z a t i o n N o d e

17

18 / / / A ha nd l e t o t h e anchor ARKit a s s i g n e d t h e t r a c k e d image .

19 p r i v a t e ( s e t ) var a nc ho r : ARImageAnchor ?
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20

21 / / / A t i m e r s t a r t e v e r y second c h e c k i n g whe ther t h e

i m a g e R e f e r e n c e s t i l l d e t e c t a b l e or l o s t

22 p r i v a t e var f a i l e d T r a c k i n g T i m e o u t : Timer ?

23

24 p r i v a t e var t i m e o u t : T i m e I n t e r v a l = 0 . 0 3

25

26 / / MARK: − Methods

27 i n i t ? ( _ image : CIImage , r e f e r e n c e I m a g e : ARReferenceImage ,

c lassName : S t r i n g ) {

28 s e l f . c lassName = className

29 s e l f . r e f e r e n c e I m a g e = r e f e r e n c e I m a g e

30 a nc ho r ? . s e t V a l u e ( className , forKey : " c lassName " )

31 v i s u a l i z a t i o n N o d e = V i s u a l i z a t i o n N o d e ( r e f e r e n c e I m a g e .

p h y s i c a l S i z e , c lassName : c lassName )

32

33 / / S t a r t t h e f a i l e d t r a c k i n g t i m e r r i g h t away . T h i s e n s u r e s

t h a t t h e app s t a r t s

34 / / l o o k i n g f o r a d i f f e r e n t image t o t r a c k i f t h i s one i s n ’ t

t r a c k a b l e .

35 r e s e t I m a g e T r a c k i n g T i m e o u t ( )

36 }

37

38 d e i n i t {

39 v i s u a l i z a t i o n N o d e . r emoveAl lAn ima t ions ( )

40 v i s u a l i z a t i o n N o d e . removeFromParentNode ( )

41 }

42

43 / / / P r e v e n t s t h e image t r a c k i n g t i m e o u t from e x p i r i n g .

44 p r i v a t e func r e s e t I m a g e T r a c k i n g T i m e o u t ( ) {

45 f a i l e d T r a c k i n g T i m e o u t ? . i n v a l i d a t e ( )



Chapter A. Code for implementing the iOS Application Using Swift pogramming
language 180

46 f a i l e d T r a c k i n g T i m e o u t = Timer . s c h e d u l e d T i m e r (

w i t h T i m e I n t e r v a l : t i m e o u t , r e p e a t s : t rue ) {

47 [ weak s e l f ] _ in

48 i f l e t s t r o n g S e l f = s e l f {

49 s e l f ? . d e l e g a t e ? . a l t e r e d I m a g e L o s t T r a c k i n g ( s t r o n g S e l f )

50 }

51 }

52 }

53

54 func add ( _ an ch o r : ARAnchor , node : SCNNode ) {

55 i f l e t imageAnchor = a nc h o r as ? ARImageAnchor , imageAnchor .

r e f e r e n c e I m a g e == r e f e r e n c e I m a g e {

56 s e l f . an ch o r = imageAnchor

57

58 / / Add t h e node t h a t d i s p l a y s t h e a l t e r e d image t o t h e

node graph .

59 node . addChi ldNode ( v i s u a l i z a t i o n N o d e )

60 }

61 }

62

63 func u p d a t e ( _ a nc h o r : ARAnchor ) {

64

65 i f l e t imageAnchor = a nc h o r as ? ARImageAnchor , s e l f . an ch o r

== an ch o r {

66 s e l f . an ch o r = imageAnchor

67 i f ! imageAnchor . i s T r a c k e d {

68 r e s e t I m a g e T r a c k i n g T i m e o u t ( )

69 }

70

71 }

72 }

73 }
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74

75 / / MARK: − P r o t o c o l

76 / * *

77 T e l l s a d e l e g a t e when image t r a c k i n g f a i l e d .

78 In t h i s case , t h e d e l e g a t e i s t h e v iew c o n t r o l l e r .

79 * /

80 p r o t o c o l A l t e r e d I m a g e D e l e g a t e : c l a s s {

81 func a l t e r e d I m a g e L o s t T r a c k i n g ( _ a l t e r e d I m a g e : A l t e r e d I m a g e )

82 }

A.4 Visualisation Node Class

1 import F o u n d a t i o n

2 import S c e n e K i t

3 import ARKit

4

5 c l a s s V i s u a l i z a t i o n N o d e : SCNNode {

6

7 / / MARK: − I n i t i a l i s a t i o n

8 p u b l i c l e t c u r r e n t I m a g e : SCNNode

9

10 p u b l i c l e t className : S t r i n g ?

11 weak var d e l e g a t e : V i s u a l i z a t i o n N o d e D e l e g a t e ?

12

13 / / MARK: − Methods

14 p u b l i c i n i t ( _ s i z e : CGSize , c lassName : S t r i n g ) {

15

16 var p a t h = " "

17 var s o n g Pa t h = " "
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18 var s c a l e : F l o a t = 0

19 i f className == " t a n g e l a " {

20 p a t h = " a r t . s c n a s s e t s / BreakDance_Mouse . dae "

21 s c a l e = 0 .0005

22 s o n g Pa t h = " a r t . s c n a s s e t s / Numb− L i n k i n P a r k . mp3"

23 }

24 e l s e i f className == " c h o c o l a t e " | | c lassName == " b r e a d " | |

c lassName == " m i l k s h a k e " {

25 p a t h = " a r t . s c n a s s e t s / HipHopDancing . dae "

26 s c a l e = 0 .0004

27 s o n g Pa t h = " a r t . s c n a s s e t s /How You Like That . mp3"

28 }

29 e l s e {

30 p a t h = " a r t . s c n a s s e t s / SalsaDance_Mouse . dae "

31 s c a l e = 0 .0005

32 s o n g Pa t h = " a r t . s c n a s s e t s / Numb− L i n k i n P a r k . mp3"

33 }

34

35 c u r r e n t I m a g e = c r e a t e P l a n e N o d e ( s i z e : s i z e , r o t a t i o n : − . p i /

2 , c o n t e n t s : UIColor . c l e a r ,

36 o b j e c t P a t h : pa th , s c a l e :

s c a l e , s o n g Pa t h : s o n g Pa t h )

37 s e l f . c lassName = className

38

39 s u p e r . i n i t ( )

40 addChi ldNode ( c u r r e n t I m a g e )

41 }

42

43 required i n i t ? ( c o d e r : NSCoder ) {

44 f a t a l E r r o r ( " i n i t ( c o d e r : ) has n o t been implemented " )

45 }

46



Chapter A. Code for implementing the iOS Application Using Swift pogramming
language 183

47 func d i s p l a y ( ) {

48

49 }

50

51 }

52

53 / / MARK: − P r o t o c o l

54 / / / T e l l s a d e l e g a t e when t h e f a d e a n i m a t i o n i s done .

55 / / / I n t h i s case , t h e d e l e g a t e i s an A l t e r e d I m a g e o b j e c t .

56 p r o t o c o l V i s u a l i z a t i o n N o d e D e l e g a t e : c l a s s {

57 / / f u n c v i s u a l i z a t i o n N o d e D i d F i n i s h F a d e ( _ v i s u a l i z a t i o n N o d e :

V i s u a l i z a t i o n N o d e )

58 }
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