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ABSTRACT

This paper introduces a word boundary  detection
algorithm that works in a variety of noise conditions
including what is commonly called the ‘cocktail party’
situation.   The algorithm uses the direction of the
signal as the main criterion for differentiating between
desired-speech and background noise.  To determine the
signal direction the algorithm calculates estimates of the
time delay between signals received at two microphones.
These time delay estimates together with estimates of
the coherence function and signal energy are used to
locate word boundaries.  The algorithm was tested using
speech embedded in different types and levels of noise
including car noise, factory noise, babble noise, and
competing talkers.  The test results showed that the
algorithm performs very well under adverse conditions
and with SNR down to -14.5dB.

1. INTRODUCTION

Word boundary detection has been the theme of a
significant number of research activities during the last
two decades.  The increasing interest in this theme is
driven by the search for excellence in many speech
applications such as speech recognition and speech
enhancement, as well as discontinuous transmission
(DTX) in cellular mobile telephone systems.  Word
boundary detection contributes to the performance of
systems working in the above areas in various degrees.
For example, an evaluation of a discourse system using
an isolated-word recogniser [1] showed that more than
half the recognition errors were due to the word
boundary detector.  In the area of mobile phones, it has
been estimated that the use of DTX  could
approximately double the capacity of the radio system.
A variety of algorithms have been proposed for speech
detection, each of which is based on some criteria to
differentiate between speech and silence or noise.  The
algorithms also vary in terms of the level of noise levels
they can cope with and the detection quality
emphasised.  For example, while algorithms targeting
speech recognition applications may put high emphasis
on accuracy, those targeting speech logging or speech
enhancement may compromise accuracy for robustness
under severe noise conditions.

2. A REVIEW OF DETECTION CRITERIA

Word boundary detection algorithms presented in the
literature rely on a variety of criteria to differentiate
between speech and silence or background noise.   In
the following some commonly used criteria are reviewed
with emphasis on their underlying strengths as well as
restrictions.

2.1  Signal Energy
A number of algorithms use the signal energy  as the
main criterion for detecting word boundaries.  A
commonly used algorithm for isolated word recognition
systems [2] uses signal energy to produce one or more
sets of word  endpoint sets.   The algorithm is in a
hybrid form that depends on feedback from the
recognition scores to select the most likely endpoint sets
for a particular utterance.  It can however be used in an
explicit form with little degradation to its performance.
Another algorithm that was described by Savoji [3] uses
energy metrics based on some statistical knowledge of
speech for broadly detecting word endpoints. The
endpoints are then adjusted using measures of signal
energy and zero crossing. The main strength of the
above algorithms is their ability to cope with speech
artefacts and multi-syllabic words.  The later algorithm
has an added advantage that it can be easily
implemented in real-time. The underlying assumption
in the above algorithms, however, is that the noise level
is fairly constant and significantly lower than the speech
such that an increase in the signal energy indicates
speech. An energy based algorithm that is more robust
to noise was described by Junqua et al. [4]. The
algorithm was tested on a HMM recogniser using noisy
speech of SNR down to 5dB and with different types of
noise. The obtained recognition accuracy when using
the algorithm was almost as good as when using manual
labelling.  However, the algorithm was not tested with
SNRs below 5dB which is typical in many speech
enhancement applications.   Moreover, none of the
above algorithms has the capability to differentiate
between one speech signal and another.

2.2   Periodicity
An algorithm that is based on a periodicity measure of
the input signal was described by Tucker [5].  The
algorithm relies on the periodic nature of the voiced
parts of the speech to detect speech embedded in
background noise.  A least-squares periodicity



estimator (LSPE) is calculated and speech is detected
whenever this estimator exceeds a fixed threshold.  The
algorithm was shown to operate  reliably in SNRs down
to 0dB and detects most speech at -5dB.  Nevertheless,
the algorithm is intended to be used mainly in speech-
logging applications and does not aim to find the exact
word boundaries.  The restriction on using this
algorithm for applications where accuracy is of a prime
importance stems from the fact that the algorithm does
not detect unvoiced parts of the speech and that it takes
6 frames of 25ms each before a decision can be made.
To differentiate between speech and other periodic
interference a pre-processor is used to detect, and if
possible remove, expected types of interference.  The
pre-processor, however, has to be tuned to a specific
type of interference.

2.3  Coherence
Le Bouquin and Faucon [6] describe a voice activity
detector that is based on Magnitude Squared Coherence
(MSC). The algorithm calculates the MSC for signals at
two microphones separated by 73cm then compare it
with a predefined threshold, and whenever the MSC is
higher than the threshold speech is detected. The
performance of the algorithm was reported using speech
recorded in a car with SNR down to 0dB. The
performance of the algorithm was not reported in other
environments where other types of noise exist or for
SNRs below 0dB. The algorithm also  assumes that  the
disturbing noises are spatially decorrelated while
speech is highly correlated, conditions that are not valid
in many situations.  Moreover, in a cocktail party
situation, the coherence may  not differentiate between
one speaker and the other.

2.4  Linear Prediction Parameters and Cepstrum
An LPC based algorithm [7] has been used for the more
complex problem of voiced-unvoiced-silence detection.
A spectral characterisation of each of the three classes is
obtained during a training session. An LPC distance
measure is then used together with an energy distance
for discriminating between the classes. In another
algorithm cepstral analysis was also used for voice
activity detection [8].   In this algorithm models for
speech and non-speech are created during training.  The
signal cepstra are then compared with these models and
a speech/ non-speech decision is taken based on the
similarity between the models and the calculated
cepstra.  The problem with the above two algorithms is
that they require training under conditions similar to
those encountered by the algorithm during its operation.
This requirement becomes impractical if the algorithm
is to work in a variety of noisy conditions.  Another LPC
based algorithm that does not require training is
described in [9].  Word boundaries are estimated by
comparing the squared residual prediction error of the
speech signal with a threshold.  The use of this criterion
is based on  empirical observations that showed a strong

correlation between the squared residual prediction error
and the nominal endpoints.   The algorithm, however,
can only cope with short transient pulses and low level
noises such as those generated by breathing and small
microphone movements, and not with higher noise
levels.

In addition to the above criteria, zero crossing is used
extensively to detect weak fricatives at the boundaries of
speech utterances usually at a refinement stage. In
general, speech detection algorithms use more than one
measure for more accurate detection of speech
endpoints.  For example an algorithm described by B.S.
Atal, and L.R. Rabiner [10] uses five measurements for
voiced-unvoiced-silence classification of speech.  For
each speech segment, the algorithm computes a non-
Euclidean distance measure from the set of
measurements and the segment is assigned to the class
with the minimum distance. Nevertheless, even when a
number of parameters are used, word boundary
detection at low SNR and in the presence of competing
talkers is still far from being a solved problem. This was
the motivation for developing the algorithm described
below.

3. AN ALTERNATIVE SOLUTION

An alternative criterion to differentiate between desired-
speech and undesired-speech or noise is the physical
position of the signal sources. Although the talker
position has been used previously in multi-mrophone
based techniques to enhance noisy speech e.g. [11], its
use in endpoint detection has not been thoroughly
investigated before.  The motivation of this criterion
stems from simple observation of users of speech
processing applications such as speech recognition
systems, hands free phones, and hearing aids. In the
above applications the position of the wanted speech
source can, in most of the cases, be estimated to be
within a predefined area, usually facing the
microphones.   An algorithm that is based mainly on the
above criterion is here described.  The algorithm
assumes a viewing zone within which a speech source is
considered to be wanted-speech and signals coming
from outside  this zone are considered noise. This
approach has the advantage of being able to differentiate
between wanted-speech and other unwanted-speech
signals. The algorithm uses the time delay between
signals received at two microphones to estimate the
direction of the dominant signal source. This estimate
together with an estimate of the coherence function
between the two signals are used to determine initial
values for word boundaries. The use of the coherence
function serves to isolated spatially un-correlated noise
and reduce the effect of reverberation. The initial
boundary positions are then refined using measures of
the signal energy. With the use of a third microphone,
the algorithm can be easily modified to detect the source



position rather than direction. The time delay between
the signals received at the two microphones; x1, and x2
is estimated using the maximum likelihood (ML)
estimator method described in [12].  In the ML method
the estimated time delay is defined as the time τ at
which the generalised cross correlation function
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Where γx1x2 is the coherence function between x1(t), and
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Where Gx1x2 is the cross spectral density between the two
input signals, while  Gx1x1, and Gx2x2 are the autospectral
densities.  All spectral densities were estimated using
time averaging by a simple recursive formula [13].

Valid speech was assumed when:

       Estimated time delay � Tmax                 (5)
and        Estimated coherence  � Cmin        (6)

Where Tmax  is fixed and is calculated based on the
desired viewing zone, and Cmin  is a function of an
average of the signal energy Eav calculated as:

Eav= λ * Eav + (1-α) * E(m).                      (7)

where m is the frame index, and α is a forgetting factor
(0�α �1). The speech endpoints are then refined by
adding a ‘Head’ and ‘Tail’ frames at the beginning and
the end of the estimated wanted-speech. The number of
these frames is in turn functions of Eav.

4. EXPERIMENTS AND RESULTS

A number of experiments were conducted to evaluate
the performance of the proposed algorithm. Speech and
noise material from Noisex-92 corpus were used. The
speech utterances were a sequence of digits that differs
from one speaker to the other. Two sets of tests were
conducted. In the first set, the noisy speech was
recorded in a medium size room (6*8*5m) using two
omni-directional microphones 20 cm apart. Three
recordings were made: the first one represents a typical
factory unit with factory noise sources distributed in the
room, an unwanted-speech source and a wanted-speech
source.  In the second recording, car noise was played in

the background with one wanted-speech source, the
SNR was measured for this recording and was found to
be -14.5dB (segmental with all silent periods excluded
from the calculations). The third recording represents a
typical office environment with one wanted-speech and
two unwanted-speech sources in addition to noises from
other office equipment.
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Fig 1 Factory background noise experiment. (a) noisy speech.
(b) original wanted-speech. (c) output of the speech detector

Fig 3 Office environment experiment.  (a) noisy speech.
b) original wanted-speech. (c) output of the speech detector

Fig 2 Car background noise experiment. (a) noisy speech. (b)
original wanted-speech. (c) output of the speech detector
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In the second set of tests, speech and noise signals were
mixed using simulation software that takes into account
the position of the signal sources, as well as,
reverberation. Three noise sources were used: 2 speech
babble noise, and one factory noise distributed in a
6x8x6 m room. Noises were added at 6 levels of SNR
ranging from 18dB to -12dB, in 6dB steps.  A total of
24 utterances were used with  each utterance comprising
4 words spoken discretely. In all experiments, both the
time delay and the coherence function between signals
received at the two microphones were estimated with 10
msec overlapping frames (62.5% overlap).  Figures 1-3
show the results of the first set of experiments.
Alternatively, Table 1 presents a summary of the results
of the second set. For each word, the average and
standard deviation of the  endpoint estimates at the
various SNR’s are reported alongside with manual
labelling. Endpoints are estimated in ‘no. of frames’
with each frame corresponding to 3.75msec.

word no.1 word no.2 word no.3 word no.4
Start End Start End Start End Start End

Speaker 1
Manual 91 197 530 682 952 1102 1393 1546
Auto  Av. 85 190 533 697 963 1094 1392 1562
         stdev 7.9 12 12 19 9.8 7.3 7.2 11
Speaker 2
Manual 81 192 515 633 928 1076 1362 1520
Auto  Av. 76 179 504 617 955 1065 1376 1510
         stdev 12 8.7 12 6.6 11 10 8.8 7.9
Speaker 3
Manual 100 222 495 645 893 1031 1288 1441
Auto  Av. 103 196 490 663 899 1018 1289 1423
         stdev 2.4 15 6.1 9 10 18 4.4 30
Speaker 4
Manual 111 210 494 587 895 1020 1298 1417
Auto  Av. 104 199 489 583 902 1020 1299 1405
         stdev 1.1 14 5.5 9.3 9.3 16 8.9 7.1

Table 1 Average and standard deviation for endpoint estimates
for the second set of experiments.

The results of the first set of experiments show that all
the speech parts were detected and no false detection
occurred even under the most severe noise conditions.
Gaps in multi-syllable words were detected as non-
speech which is suitable for speech enhancement
applications. If these gaps are to be considered as
speech, e.g. for speech recognition applications, some
statistics about the on-off pattern of speech [14] can be
used for that purpose as in [2] and [3].  The results of
the second set of experiments show that automatically
estimated endpoints are very close to those obtained
manually, and in general less than 70ms different from
the manual labels in the various noise conditions.

5. CONCLUSION

A word boundary detection algorithm is presented that
is based on the position of signal source.  The algorithm

was tested in a variety of noise conditions including
competing talkers in both real and simulated
environments with SNRs down to -14.5dB and proved
to be both robust and accurate.  Moreover the algorithm
can be implemented in real-time applications. These
properties make it suitable for the majority of word
boundary detection applications in areas such as speech
enhancement, and speech recognition.
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