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The paper describes the technique of introducing a new variable in some calculus 

problems that helps students to master the skills of integration and evaluating limits. This 

technique is algorithmic and easy to apply; it is especially useful in teaching weak 

students. 
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1. Introduction 

In our practice of teaching tertiary mathematics we want students to gain both 

conceptual and procedural knowledge and develop their problem solving abilities. On 

the tertiary level, the dominance of procedural mathematics is a characteristic of 

mathematics itself. Tossavainen [1] wrote: “Mathematical theories are based on 

axioms and derivation rules, thus this knowledge is highly procedural by nature: it 

must be derived from the fundamental definitions and axioms by a finite sequence of 

logical steps.” Also understanding a mathematical concept often does not provide the 
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relevant procedural knowledge, for example the definitions of a limit, a derivative or 

an integral are not directly linked to the methods of their evaluation. 

In constructivism, in particular in Piaget’s theory of cognitive development [2], 

conceptual knowledge and procedural knowledge are both integral parts of the 

learning process. Rittle-Johnson, Siegler, & Alibali [3] developed these views further 

in the “iterative model”. Their research shows the causal relations between conceptual 

and procedural knowledge: concepts and procedures develop iteratively reinforcing 

each other. Increased conceptual knowledge leads (through training) to gains in 

procedural and problem solving abilities. Use of correct procedures leads to improved 

conceptual understanding. 

The authors of this paper share the iterative views. Therefore in our teaching 

practice we look for effective methods to improve students’ procedural knowledge 

that will in turn enhance their conceptual knowledge. Here we describe a non-

traditional technique that we used in calculus courses at the Auckland University of 

Technology and the Moscow Technological University for several years. The 

technique is based on a change of variable that simplifies the calculus task. This 

teaching strategy helps students to master calculus skills faster. The first type of 

problems that we describe are limits of the form    , 



  and  
0
0

. 

2. Evaluating limits 

To evaluate a limit of the form  xf
ax

lim   we recommend to introduce a new variable 

t  with  0t ; the new limit is usually easier to evaluate. When  a =  , the 

appropriate change of variable is  
x

t 1
 . Here are a few examples.  
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Example 1.  
 






















t
x

x
t

x
xxxlim

x 1

1

32
4134

4

224

                       

   
2
7

02
01034

32
4134

32

41134

4

42

0

4

224

0



















 


 t

ttlim

t

tttlim
tt

.   ■ 

As 0t , we have     ttt   11 . This fact will be used in the following 

three examples.  

Example 2.     







t
x

x
t

xxxlim
x 1

1

32 









 ttt
lim

t

131
20

       

   
2
32

313
2
11131

000














 


 t

tt
lim

t

tt
lim

t
tlim

ttt


.      ■ 

Example 3.       







t
x

x
t

xxxxlim
x 1

1

322 2

 


















 


321211

20 tttt
lim

t
     











2
1

22
1

0
321211 ttt

t
lim

t
 

 














 





tttt

t
lim

t
2

0 2
3111   22

0






 t

ttlim
t


.      ■ 

In Examples 1, 2 and 3 other techniques can be used but they are more various 

and require more inventiveness and memorizing that the change of variable. Also 

some students have difficulties understanding and applying the concept of infinity; the 

change of  x   to 0t  helps them to overcome these difficulties. 
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To evaluate a limit of the form  xf
ax

lim  with a finite a we recommend to 

introduce the new variable t = x  a; then 0t . The following three examples 

illustrate the finite case.  

Example 4.  














 1
1

0
0

1
12

31 tx
xt

x
xx

lim
x





 11

212
30 t

tt
lim
t

 

 

 























 


 11

2
11212

3
1

2
1

2
1

0 t

tt

lim
t

 

 



















 

 tt

ttt
lim
t





3
1

4
11

2
11

2
0

 

 

  4
23

3
1
4
1

2

3

42
0







 tt

tt

lim
t




.    ■ 

Example 5.  















2

2
0
0

cos
3cos5coslim

2





tx

xt

x
xx

x
 

 
  88

sin
3sin5sin

2
cos

2
33cos

2
55cos

000















 







 






 


 tt

ttlim
t

ttlim
t

tt
lim

ttt 






. 

(Using the fact that   ttt sin  as 0t ).           ■ 

Example 6.  
 
  















 3
3

0
0

1
52ln

sin3 tx
xt

e
xlim xx 

  
  




 1
532ln

3sin0  tt e
tlim  

 
 

 
    










 tt
ttlim

e
tlim

ttt 


 sin
2

1
21ln

0sin0
  

 
  

 22
0





 tt
ttlim

t
. 

(Using the fact that     ttt 1ln  and  tte t 1   as 0t ).        ■ 
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The change of variable axt   is also helpful in evaluating the limits of 

rational functions of the indeterminate form 
0
0 . This method allows to avoid 

factorising, which involves trial and error process and can be sometimes quite 

difficult. Here are a few examples. 

Example 7.  














 1
1

0
0

32
13

2

234

1 tx
xt

xx
xxxlim

x
 

     
   







 3112
11113

2

234

0 tt
tttlim

t
 




 tt
ttttlim

t 52
714113

2

234

0
 

5
7

52
714113 23

0






 t

tttlim
t

.    ■ 

Example 8. 














 2
2

0
0

1021143
674

23

23

2 tx
xt

xxx
xxxlim

x
 

     
     










 ttt

tttlim
ttt

tttlim
tt

23

23

023

23

0 43
32

1022121423
627242  

3
143

32
2

2

0






 tt

ttlim
t

.    ■ 

Example 9. 














 1
1

0
0

4352
23

24

2

1 tx
xt

xxx
xxlim

x
 

   
     







 4131512
2113lim 24

2

0 ttt
tt

t
 




 tttt
tt

t 151782
53lim 234

2

0
 

3
1

151782
53lim 23

0






 ttt

t
t

.    ■ 

Clearly most of these limits can be calculated by l’Hôpital’s rule. But introducing 

a new variable gives students the chance to calculate these limits easily before they 

have learned differentiation. 
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3. Change of variable in quadratics 

The rest of the paper describes several types of problems involving quadratics of the 

form  y = ax 2 + bx + c. We suggest to introduce a new variable 
a

bxt
2

  in order to 

eliminate the linear term in the quadratic: 

c
a

batc
a

btb
a

bta

a
btx

a
bxt

cbxaxy 





 






 






422
2

2 2
2

2
2 . 

Eliminating the linear term simplifies solutions of different problems with 

quadratics. We illustrate the method with the following examples; some of them are 

simple algebraic problems and others are harder integration problems. 

Example 10. Completing the square.  





6
5
6
5

253 2

tx

xt
xx  

12
4932

6
55

6
53 2

2







 






  ttt .

12
49

6
53

2







  x     ■ 

Example 11. Quadratic equation. Solve the equation 015812 2  xx .  

Solution: 

3
1
3
1





tx

xt
;    015

3
18

3
112

2







 






  tt ,   0

3
4912 2 t ,    

36
492 t , 

6
7

t .  
3
1

 tx .      
6
5

3
1

6
7

1 x .      
2
3

3
1

6
7

2 x .    ■ 

Example 12. Quadratic equation. Solve the equation 0142  xx . 

Solution: 
2
2




tx
xt

;       01242 2  tt ,   032 t ,   3t .   2 tx . 

231 x .      232 x .    ■ 
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The change of variable helps to solve quadratic equations in an easier way than 

traditional factorising or quadratic formula. The factorising method is not very useful 

in Example 11 because the roots are fractional, and it does not work in Example 12 

because the roots are irrational. The quadratic formula works in all cases but it is 

harder to memorise than the formula  
a

bxt
2

 . 

4. Applications to integration 

The technique of change of variable is widely used for integration. Here we will 

consider the integrals with quadratics, where this technique is not usually applied but 

can be quite useful. The technique is based on the same change of variable  

a
bxt
2

 . It is illustrated on the following examples, which use the table of 

indefinite integrals along with the change of variable.  

Example 13.  











 dt

t
t

tx
xt

dx
xx

x
13
74

1
1

463
34

22  

  





  dt
t

dt
t

t

13

7
13

6
6
4

22        Ctt 3tan
3

713ln
3
2 12  

     Cxxx   13tan
3

7463ln
3
2 12 .    ■ 

Example 14.  











 
25
15

1

5
15

5
1
5
1

52 22
2

t

dt

t

dt

tx

xt

xx
dx

 








 C

t
tC

t

t

15
15ln

2
1

5
1
5
1

ln
2
5

5
1 C

x
x


 25

5ln
2
1 .     ■ 



8 
 

Example 15. 
   












101211

1

102 22 tt

dt
tx
xt

xx
dx  

  CxxxCtt
t
dt




  1021ln9ln
9

22

2
.     ■ 

Example 16. 



 2
2

4 2

tx
xt

dxxx  dtt 24 





ddt

t
cos2
sin2

 

    Cdd  2sin22cos12cos4 2  C cossin22  










  Cttt

2
4

2
2

2
sin2

2
1 Cxxxx










  21 4

2
2

2
2sin2 .    ■ 

Example 17. 







 2

2

41
1

2 tx
xt

dx
xx

x





 dt

t
t

25
3  















  Ctt

t
dtdt

t
t

5
sin35

5
3

5
2

2
1 12

22
 

Cxxx 






 
 

5
2sin341 12 .     ■ 

Example 18. 
 








 4
4

78
32 tx

xt

xx

dx

 








 

ddt

t

t

dt
sinh3
cosh3

9 32
 

 
  Cdd






 coth

9
1

sinh9
1

sinh3
sinh3

23   C



sinh9
cosh  

C
xx

xC
t
t










789
4

99 22
.     ■ 

 

5. Discussion 

The authors used the described teaching strategy for several years in calculus courses 

at the Auckland University of Technology and the Moscow Technological University. 

While a formal statistical analysis of the results is yet to be done, verbal responses 
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from students and their assessment results showed effectiveness of this strategy. The 

students who applied the suggested procedures are more successful than the ones 

using traditional procedures, in technical manipulations as well as in learning the 

relevant concepts. While applying this method the students get answers faster and 

make fewer mistakes on the way.  

The method of introducing a new variable was used to teach the calculus 

problems, where other methods were traditionally applied. The method simplifies 

mastering calculus techniques, especially for weaker students. Also the method is 

algorithmic and eliminates most of guessing and memorizing.  
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