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ABSTRACT 

During phonation, the vocal folds collision during the glottal closure is considered to be 

a risk factor for pathological development. This thesis is aimed at designing a 

dependable finite element analysis (FEA) model of the vocal folds for frequency and 

dynamic analysis and for calculating the impact stress between the vocal folds during 

glottal closure. A three-dimensional model with irregular geometry and a layered 

structure was designed. The measured viscoelastic properties of the vocal-fold mucosa 

and the transverse isotropic elastic properties of the vocal fold muscle are applied to the 

model. The boundary conditions are assumed to be fixed on lateral, anterior and 

posterior surfaces based on anatomical structure analysis. This model is symmetrical 

about the right and left vocal folds. 

The frequency and dynamic characters are presented using the software ABAQUS. The 

FEA model is validated by both experimental modal analysis (EMA) model results and 

in-vivo experimental results from the literature. 

In the vibration analysis, the eigenfrequency and eigenmode of the FEA model are 

determined. The model results compare well with the experiments performed on a 

silicone vocal fold model. The eigenmodes show the vibration direction at different 

excitation frequencies. In the closure process, the closure and collision dynamic results 

are obtained. The results show that: (1) the closure process is independent of the 

subglottal pressure; (2) the glottal opening amplitude and closing velocity vary 

approximately linear with the subglottal pressure; (3) the maximum impact stress occurs 

on the mid area of the inferior surfaces; (4) the impact stress is approximately linear 

with the subglottal pressure; and (5) the impact stress will cause vocal fold tissue 

damage when the subglottal pressure is over 800 Pa. 

It is anticipated that the model will help to identify voice disorders such as vocal-fold 

paralysis and vocal-fold nodules. 
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NOMENCLATURE 

Symbol             Meaning 
 

B  The constant of the damper 

D  The depth of the vocal folds 

d  The thickness of the cover 

E   The Young’s modulus in the transverse plane 
E′   The Young’s modulus along the y axis  

Eb  Body tissue’s Young’s modulus   

Ec  Young’s modulus of the cover 

0e   Constant strain 

ε  Strain tensor 

F  The collision force 

F1   Forces acting on M1 

F2  Forces acting on M2 

G  The gap normal to the contact surface  

g  The coefficient that describes the nonlinearity of the spring 

G′  The elastic shear modulus 

G″  The viscous shear modulus  

( )sG ω   The storage modulus 

( )lG ω   The loss modulus 

G∞  The long-term shear modulus 

h  The vertical distance below the superior surface 

K  The constant of the spring 

k  The non-linear stiffness  

kb  the stiffness of the body tissue 

ck   Mass connecter spring 

kl  the stiffness between the cover and body 

ku  the stiffness of the cover tissue and.  

mλ   Relaxation times 

L  the length of vocal folds  

M  The weight of mass 
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M1  Mass of block one 

M2  Mass of block two 

N  The unit normal vector of the contact surface 

η  The dynamic viscosity 

Ps  Subglottal pressure 

ρ  Poisson’s ratio  

σ   Stress  

s  A shaping factor 

T  The thickness of the vocal folds 

U  The strain energy 
μ   The shear modulus in the transverse plane 

μ′   The shear modulus along the y axis 

V  The volume of the element 

ν   The Poisson’s ratio in the transverse plane 

ν ′   The Poisson’s ratio along the y axis 

pW   The virtual work 

w  The angular deviation of the superior-medial edge with respect to 
the vertical mid-plane of the glottis.  
 

ω  The angular frequency 

y  The displacement from the anterior surface to the node 
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Chapter 1   INTRODUCTION 

1.1 Background 

Voice is essential to most of people in their personal and professional lives. From birth, 

human beings use their voice as the most common way to communicate with others. In 

the social life, people talk to others to deliver their message to, sing a song to show their 

emotions, or talk in talk show to entertain the audience.  

The human’s voice comes from the vocal organ. As shown in Figure 1.1, the human’s 

vocal organ includes three voice subsystems. These are the air pressure, the vibratory 

and the resonating systems [1].  

 
Figure 1.1 - Diagram of voice tract [1] 
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Air pressure system produces voice starting with airflow from the lungs, which is 

coordinated by the action of the diaphragm, abdominal and chest muscles. Vibratory 

system consists of a larynx and the vocal folds which are the vibratory system of the 

vocal organ. Resonating system is the organ in which people produce recognizable 

sound and form their personal quality of voice.  

Of various elements of these three systems, the vocal folds in the larynx are the most 

important for phonation. During phonation, the air pressure system provides and 

regulates air pressure to the larynx which causes the vocal folds to vibrate. The vocal 

folds abduction (open) and adduction (close) controls the airflow through the larynx. 

The basic sound produced by the vibration of the vocal folds is called "voiced sound". 

Voiced sound is amplified and modified by the resonating system which consists of 

vocal tract resonators (the throat, mouth cavity, and nasal passages) and the vocal tract 

articulators (the tongue, soft palate, and lips). The first part produces a person's 

recognizable voice. The second part which modifies the voiced sound is responsible for 

the formation of recognizable words [2]. A human’s sound is in a sequence of vibrator 

cycles with a speed from about 100 to 300 Hz [3]. A higher voice is produced by 

increasing the frequency of the vocal folds vibration and a louder voice is formed by 

increasing the amplitude of the vocal folds vibration.  

During phonation, the vocal folds will touch each other at the end of each cycle. The 

collision between the vocal folds is associated with aerodynamic factors that are linked 

to voice quality [4]. Furthermore, the increased stress on the surfaces during collision is 

considered as an important reason for tissue damage [5]. It is commonly believed that 

vocal nodules which are benign growths on the vocal folds result from repeated 

collision of the vocal folds during phonation and the strain component is relevant to the 

assessment of the impact of vocal fold collision on potential tissue damage. Vocal 

nodules will cause voice disorders, such as hoarseness, breathiness, harshness and so on. 

Clinical observations suggest that people with higher-pitched (higher frequency) voices 

and louder (higher amplitude) voices tend to be more susceptible to vocal nodules [6]. 

Thus, it is assumed that both the frequency and amplitude of the vocal folds’ vibration 

play important roles in the vocal folds damage. 

The vocal folds’ biomechanical tissue characteristic is one of the primary factors in 

voice production. As it is impossible to do experiments on human beings and even hard 
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to observe the physical movement details during phonation, a theoretical model will be 

an excellent tool to describe the process of phonation.  

One of the aims of this research is to obtain a realistic value of the impact stress during 

vocal folds collision. Finite element analysis (FEA), which gives the possibility of 

accurate detail geometry and material properties in a model, is used in this work.  

 

1.2 Vocal Folds 

The vocal folds’ shape and mechanical properties determine their frequency 

characteristics like frequency and dynamic amplitude. Therefore, for the purposes of 

this research, it is important to fully understand the geometrical and mechanical details 

of the vocal folds in order to set up a dependable model.  

1.2.1 Anatomy of the Vocal Folds 

Vocal folds used to be called vocal cords because they were thought to be vibrating like 

strings on a guitar. Careful anatomical examination has shown this to be incorrect.  

Figure 1.2 and Figure 1.3 show the position of the vocal folds in the larynx. The vocal 

folds are formed from ligament-like tissue located in the middle of the larynx and fixed 

on arytenoid cartilages and the thyroid cartilage. They are stretched horizontally across 

the larynx from front to back. When they are open, the glottis is a V-shape, with the 

wide part of the V at the back and the point of the V at the front. 

 
Figure 1.2 - Section view of larynx [7] 
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Figure 1.3 - Top view of larynx [7] 

 

The muscles in the larynx control the adduction and abduction of the vocal folds. The 

muscles and cartilages shown in Figure 1.4 control the movement of the vocal folds. 

Posterior cricoarytenoid muscles are the only muscles which control abduction. In 

breathing process, the glottis opens when posterior cricoarytenoid muscles contract, and 

pull the back ends of the arytenoid cartilages up. This pulls the front ends apart which 

attach the vocal folds. The other muscles which relate to the vocal folds control 

adduction. Their contraction will change the vocal folds’ properties such as length, 

tension and thickness, which will affect the voice’s frequency and amplitude. 

 

Figure 1.4 - Top view of larynx with muscles and cartilage exposed [2] 
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1.2.2 The Vocal Folds’ Multilayer Structure 

The vocal fold’s structure is multilayer. Figure 1.5 [8] shows a drawing of the layered 

structure of the right vocal fold. The outermost layer is named the epithelium which is 

made of stratified squamous tissue of 0.05-0.1 mm thick [9]. The epithelium 

encapsulates softer, fluidlike tissue, somewhat like a balloon filled with water [10]. 

Between the epithelium and muscle, a layered system which is called lamina propria 

(LP) consists of nonmuscular tissues. The whole LP is made up of collagens and 

elastins. However, various types of collagens and elastins are found in the LP of the 

human vocal folds. The three types are elaunin, oxytalan and elastin fibres. Oxytalan is 

composed of microfibrils 10 to 12 nm in diameter. Elaunin has these microfibrils and a 

small amorphous component. Elastin fibres have a larger amorphous component as a 

core, with the microfibrils surrounding the core [8]. The LP consists of three layers: the 

superficial layer, the middle or intermediate layer and the deep layer. The superficial 

layer of the LP consists primarily of loosely organized elastin fibres surrounded by 

interstitial fluids and about 0.5 mm thick. The intermediate layer is made up primarily 

of oxytalan, whose fibres are more uniformly oriented in the anterior-posterior direction. 

The deep layer is made up primarily of elastin fibres that are like a cotton thread which 

is nearly inextensible and run parallel along the anterior-posterior direction.  

 
 

Figure 1.5 - Multilayered structure of the vocal fold's tissue 

 

Figure 1.5 shows the summary of the different simplified schemes used to describe the 

structure of the vocal folds, namely the theory of Hirano [11] (a three-layer scheme) and 

the cover-body theory (a two-layer scheme).  
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Figure 1.6 - Different schemes used for describing the layered structure of the vocal folds 

 

The three-layer scheme is the most popular theory presented by Hirano [11] who 

differentiates between various layers on a relative basis. The outer tissue layer is called 

the “mucosa.” It is a combination of the epithelium (mucus membrane) and the 

superficial mucus layer in Hirano’s terminology. Its thickness is 0.5 mm at the posterior, 

and tapers to half of this value towards the anterior. The next layer, a combination of 

what Hirano has termed the intermediate and deep transition layers of the lamina 

propria, will be given the more common term “ligament”. It is 1 mm thick at the 

posterior and also tapers linearly to half of that value at the anterior portion. The 

remainder is muscle.  

The cover-body theory is founded on relating the properties of different layers in the 

vocal folds [12]. As shown above, the superficial layer and the middle layer are made of 

loosely organized microfibrils and small components, and the epithelium consists of 

softer, fluidlike tissue. These three layers show similar mechanical properties of 

viscoelasticity and isotropicity. The deep layer and the muscle present the properties of 

elasticity and direction dependence. Therefore, the studies of the vocal folds suggest 

that epithelium, lamina propria’s superficial and middle layers could be effectively 

represented together as the cover with the deep layer and muscle represented as the 

body [13]. The general thickness of the cover is 1 mm at posterior portion and tapers 

linearly to half of this value at anteriority. Figure 1.7 shows the thickness of different 

layers. 

Three-layer scheme Layers in the vocal fold Two-layer scheme

 
                                                          Epithelium  
                Mucosa 
                                                      Superficial layer                              Cover 
 
                                                          Middle layer 
               Ligament                                                        
                                                           Deep layer 
                                 Body 
                Muscle                                 Muscle                                                                  
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Figure 1.7 - Thickness of different layers[13] 

 

1.3 Finite Element Analysis 

A theoretical model of the vocal folds could be an excellent tool to investigate their 

frequency characteristics and dynamic response during phonation. However, the 

geometry of the vocal folds is difficult to describe due to the layered structure and the 

curved surface, making the model hard to solve manually. Finite element analysis (FEA) 

could supply a more accurate solution and provide excellent visual aids. A combination 

of 3D design software and finite element analysis software are used.  

The finite element method is a numerical procedure which can model the behaviour of a 

structure with great accuracy. It can deal with complicated one-, two- and three- 

dimensional geometry, variations in material properties, and various structural restraints. 

Following the general FEA procedure, there are six steps in the model’s creation:  

(1) Definition of dynamic finite element equations;  

(2) Identification of the target geometry (anatomical properties);  

(3) Determination of constitutive equations and material properties (e.g., tissue elasticity, 

density, and incompressibility);  

(4) Specification of the boundary conditions and constraints;  
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(5) Implementation of the finite elements (discrimination of the domain and assembly of 

element equations); 

(6) Solution of the model with numerical results. Quantities such as fibre length, area, 

and orientation were classified as anatomical properties, while passive and 

contractile characteristics of the intrinsic fibres were classified as material properties. 

To define the target geometry, SolidworksTM could be used. SolidworksTM 3D 

Mechanical Design Software is used as the standard 3D mechanical design program. It 

is particularly well suited for three-dimension perspective structure. It offers unmatched 

performance and value, leadership in innovation, and the largest community of users, 

allowing people to get product design work done quickly and accurately.  

To solve the system governing equations and find the characteristics and response, 

particular software may be used. ABAQUS (HKS Inc.; Pawtucket, RI) is one of the best 

FEA programs currently available worldwide. It provides finite element solution 

techniques to simulate a wide variety of nonlinear, transient dynamics and quasi-static 

events in an accurate, robust, and efficient manner. ABAQUS has four analysis products: 

ABAQUS/Standard, ABAQUS/Explicit ABAQUS/Aqua, and ABAQUS/Design. 

ABAQUS/Explicit is a special-purpose analysis product that uses an explicit dynamic 

finite element formulation. It is suitable for modelling brief, transient dynamic events, 

such as impact and blast problems, and is also very efficient for highly nonlinear 

problems. The focus of this research is on calculating the impact stress between two 

vocal folds during phonation. The impact stress on vocal fold tissue is considered as one 

of the most important factors for the etiology of vocal nodules. The impact force is a 

type of force in physics which describes the effect that time has on accelerating bodies. 

It usually takes place in a very short time period of about 0.01 second. The model’s 

geometry and material properties are nonlinear; therefore the problem is nonlinear too. 

This requires that the FEA software which calculates the deformation and force is good 

at solving nonlinear analysis. Therefore, ABAQUS/Explicit is appropriate software for 

this research. 
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1.4 Literature Review 

The idea of using a theoretical model or experimental model to simulate the vocal folds 

is not new. There are three kinds of models used in the literature: mass-spring-damper 

system model, FEA model and silicone model.   

The mass-spring-damper model of the vocal folds  was built by Flanagan and Landgraf 

in 1968 [14] as shown in Figure 1.8. In this model, the mass represents the vocal-fold 

length, the area of intraglottal surface and the vocal-fold weight. The spring and damper 

represent the viscoelastic property of the vocal fold tissue. The system is excited by a 

force F(t), given by the subglottal air pressure P(s) on the intraglottal surface. The force 

acts on the surface of the vocal folds as shown in Figure 1.8 (a).  

        
 

Figure 1.8 - One-mass model of the vocal folds [14] 

 
The equation of this model is  
 
 ( ) ( ) ( ) ( )Mx t Bx t Kx t F t′′ ′+ + =  (1.1) 
 
where  

x(t)  =    Displacement of mass M  

M    =    The weight of mass 

K     =    The constant of the spring 

B     =    The constant of the damper 

The one-mass model provides the simplest mechanical model of the vocal folds and 

produces just an acceptable synthesis of voice sounds and acoustic wave. However, it is 

a very simple model of one degree of freedom which describes an idealised case of 

opening and closing movement during phonation.  
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A more completed model which could simulate the physiological details in the 

behaviour of the vocal folds is needed. Multiple-mass representations of the vocal folds 

were considered. In 1972, Ishizaka and Flanagan [15] built a simple and efficient 

mathematical model (IF72) by connecting two masses with springs and dampers as 

shown in Figure 1.9.  

 

Figure 1.9 - Two-mass model of the vocal folds [15] 

The model is a system with two degrees of freedom which could produce longitudinal 

and vertical phase differences. Each vocal fold consists of two mass-spring-damper 

oscillators. The masses are coupled through a third spring ck . The model is assumed to 

be symmetrical: both sides of the vocal folds consist of the same components. For the 

accurate simulation of the elastic properties of the fold, the springs 1S  and 2S  are non-

linear, which represent the tension in the vocal folds. The nonlinear relation between the 

deflection from the position of equilibrium and the force required to produce this 

deflection is given by Equation 1.2, where f is the force required to produce a deflexion 

x, k is the non-linear stiffness and g is the coefficient that describes the nonlinearity of 

the spring S. The mass connecter spring ck  is linear. The viscous forces are modeled as 

linear damping terms, with B1 and B2 respectively.  

 2(1 )f kx gx= +  (1.2) 

 

The equations that describe the dynamics of the system (the vocal folds) are given by 
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 1 1 1 1 1 1 1 2 1

2 2 2 2 2 2 2 1 2

( ) ( ) ( )
( ) ( ) ( )

c

c

M x S x B x k x x F
M x S x B x k x x F

′′ ′+ + + − =⎧
⎨ ′′ ′+ + + − =⎩

 (1.3) 

 

where F1 and F2 are forces acting on M1 and M2 over their displacements x1 and x2, 

given in terms of mean pressures acting on the vocal folds exposed faces and the 

subglottal pressure Ps. 

The success of IF72 led to more accurate lumped mass systems. As many as 16 masses 

[16, 17] were used which were predicted to lead to a better understanding of the 

aerodynamic and produce a more natural sounding artificial voice. The classical IF72 

model is essentially a “cover” model rather than the entire vocal fold model.  

In 1995, Story and Titze [18] built a three-mass model (ST95) to simulate the body and 

cover structure as shown in Figure 1.10. This model is essentially based on IF72 two-

mass model.  The cover portion of the vocal fold is divided into two equally thick 

elements. A third larger mass is added to simulate the body layer of the vocal fold. The 

springs ku and kl are used to represent the stiffness of the cover tissue and the stiffness 

between the cover and body. Spring kb represents the stiffness of the body tissue. 
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Figure 1.10 - Lumped-element representation of the body-cover structure of the vocal folds [18]. 

 

The equations that describe the dynamics of this system can be written as follows:  

 

[ ]

u u u ku du kc eu uCol

l l l kl dl kc el lCol

b b b kb db ku dl kl dl

F m x F F F F F

F m x F F F F F

F m x F F F F F F

′′= = + − + +⎧
⎪
⎪⎪ ′′= = + + + +⎨
⎪
⎪

′′= = + − + + +⎪⎩

                                                   (1.3) 

 

where the following forces are identified as 

duF , dlF  and dbF    forces due to damping 

kuF , klF  and kbF  lateral spring forces 

kcF  spring force due to the coupling of mu and ml 

uColF  and lColF  forces generated only during collision with the opposite vocal fold 

euF  and elF  external forces generated by the glottal flow 

uF , lF  and bF  forces of the accelerating masses 

The equations of motion (1.3) describe the collision force between each vocal fold. 

Because the whole cover portion is replaced by two brick-shaped masses and 

concentrates into a few point masses, the collision force calculated in this model is 

limited to the transient collision period and causes an instantaneous stop, which is quite 

different from the real situation. Although nonlinear springs and collision dampers [15] 

are used in the ST95 model to increase the energy losses during the collision, it is hard 

to find the correlation between the physiologically realistic model and ST95’s 

components. Another problem is the result of the impact stress, which is a very 

important parameter for vocal fold damage. Because the contact masses are brick-

shaped, the contact area of ST95 remains constant during collision, which is highly 

unnatural and thus the impact stress calculated or measured in ST95 is meaningless. 

However, because of the simplification of the two-mass model, most study of speech 

synthesis has been based on the two-mass system. The challenge of this model is how to 

define the components’ parameters. From 1994 [19, 20], scientists started to use FEA 

model to determine realistic values for the two-mass model’s parameters. Furthermore, 
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Jiang and Qiu [21] used FEA model to obtain more data including both healthy vocal 

folds and pathological vocal folds. Their results show that the two-mass system can 

simulate the vibration behaviour of normal and pathological vocal folds in a more 

realistic way. Nevertheless, the usage of the lumped mass system is limited for two 

reasons: First, it is simple brick-shaped geometries and spring-damper components (as 

shown in Figure 1.9, Figure 1.10). Second there is no direct correlation between the 

spring stiffness, damper viscosity and the tissue properties. A better model is required to 

predict the geometry and the viscoelastic properties of the vocal folds adequately and to 

investigate the voice disorders or special vocal qualities. 

Continuum models of the vocal folds have also been considered. The advantage of 

continuum models is their ability to directly relate the geometric, viscoelastic, and 

aerodynamic characteristics of the vocal folds. In 1996,  Berry and Titze [22] developed 

a continuum model of vocal fold tissues which was built to calculate eigenmodes and 

eigenfrequencies. The folds were assumed to be the simplest shape of a rectangular 

parallelepiped. In this model, the basic equations of motion, the boundary conditions, 

and material properties were defined. The potential energy and the Ritz method [22] are 

introduced to solve the continuum mechanical problem.  

In traditional continuum mechanics, FEA is a widely used method to solve the problems. 

The advantages of FEA are the ability to handle complex boundaries and driving forces. 

The potential energy is based on the principle of virtual work, which is a fundamental 

statement of mechanics. Ritz method was elaborated by Courant [23, 24] in 1943, which 

is an approximate solution to simple geometric shapes while FEA utilises such concepts 

and extends that to complex structures by discretizing the geometry into simple finite 

elements which can be solved numerically with given boundary conditions. Alipour [25] 

developed a FEA model of the vocal fold from the basic laws of continuum mechanics 

to obtain the oscillatory characteristics of the vocal folds. This model is able to describe 

the irregular geometry, layered structure and anisotropic viscoelastic material properties 

as a completion of Berry and Titze’s model [22]. Alipour assumed all vocal fold tissues 

are transverse isotropic (such as fibre) and the longitudinal movements of are restricted 

by defining the longitudinal Poisson’s ratio as zero. Therefore, only the displacement in 

transversal planes was calculated in this model. The simplification reduced all nodes 

freedom from three directions to two directions. Additionally, the collision between the 

vocal folds is obtained by bounding the tissue displacement: when the surface nodes 
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touch each other, they lose one degree of freedom in order to avoid the vocal folds 

penetrating into each other.  

In 2002, Gunter set up a FEA model of the vocal folds collision with high spatial and 

temporal resolution [26]. This model has the spatial resolution that could calculate the 

submillimeter scale of vocal-fold displacement and represent the small size of nodules, 

injure and surgery repair. The temporal resolution could capture the submillisecond 

time scale of the vocal folds’ collision and show the stage of the collision process 

explicitly. Gunter assumed that the model was an entire mass made of isotropic, linear 

elastic material instead of the layered structure and viscoelastic material. In her research, 

the initial conditions are that the vocal folds were assumed to be in static excited by a 

certain account of airflow and possessing no self-oscillation. The impact stress was 

calculated between the rigid midline surface and the vocal fold. In the real case, the 

impact stress is reduced and the contact time increased because of the effect of the 

material’s viscosity.  

The first physical model of the larynx was made to study intraglottal pressure profiles 

and asymmetric motions [27]. That model is 7.5 times larger than the normal vocal 

folds and made of Plexiglas which is a stiff material. It is not suited to studying the 

dynamic characteristics. However, a physical model which could represent the human 

vocal folds closely is given available by Thomson [28]. It is made of a three-component 

liquid polymer which is a mixture of a 2-part polyurethane addition cure polymer and 

EverflewTM. A high-speed digital camera was employed to obtain sequential images of 

the model motion. Because of the geometrical, mechanical and dynamic similarities to 

the human vocal folds, the results of the model are similar to the data from anatomical 

samples. Further study of the model [29] shows that the model vocal folds behaviour is 

close to actual physiological data.  As shown in Figure 1.11, this model still can’t 

represent the layered structure and the lateral shape should be a curve surface instead of 

a flat plane. 
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Figure 1.11 - Model vocal folds [29] 

 

Although the above methods are good and physically acceptable, nevertheless they lack 

generality and accuracy. The mathematical models are based on either two-dimensional 

geometry or too simplified materials.  The physical model is good to represent the 

physiological situation closely. But it is too complex to simulate pathological vocal 

folds. In this thesis, a more general and accurate model is proposed and compared with 

other available model. The model will be three-dimensional and made of nonlinear 

materials. 

 

1.5 Objective 

The main objective of this research is to calculate the frequency characteristics of the 

vocal folds and dynamic response during phonation. To achieve this goal, the following 

work is undertaken: 

1) Build a complete FEA model to simulate the vocal folds and determine the 

geometry and material parameters in the model. 

 

2) Validate the FEA model for simulation. 

 

3) Compare the frequency results from the mathematical model and the 

experimental results of the silicone model and study the frequency 

characteristics of the vocal folds.  
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4) Compare the dynamic results from the mathematical model and the experimental 

results and study the dynamic response of the vocal folds.  
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Chapter 2  FINITE ELEMENT MODEL 

2.1 Introduction 

Nowadays numerical modelling plays an important role in research and development. A 

detailed three-dimensional layered theoretical model which incorporates the geometrical 

structure is described in this chapter. To represent the submillimeter and submillisecond 

scale of the collision process between two vocal folds during phonation, the finite 

element method is applied. The geometry of the model is based on the anatomical 

structure of human’s vocal folds and described by series of simplified equations. 

According to the cover-body theory [12], the theoretical model is divided into two 

layers. All the materials assigned on the model are biomechanical materials. As 

discussed in section 1.2, the mucosa layer is assumed to be isotropic viscoelastic 

material; however, the muscle part is assumed transverse isotropic elastic. The finite 

element method is used to calculate the dynamic motion during phonation process.  

 

2.2 Geometrical Model  

The geometry of the proposed model is one of the most important part of the modelling 

process. Because this research focuses on the collision between two vocal folds, the 

other parts of the oral organ such as the cartilages of larynx and so on are ignored in the 

model. As most parts of the human organs, the geometry of the vocal folds in the human 

body is standard nonlinear. Simplified equations and cover-body theory are applied in 

building the geometry.  

2.2.1 Mathematical Description of the Vocal Fold 

In the literature, the structure of the vocal fold is mostly based on Titze’s theory [30], 

which uses the nominal parameters based on the average male’s vocal folds measured in 

vitro to describe the structure. The model is defined in Cartesian coordinates as shown 
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in Figure 2.1. The x dimensions indicate lateral distance from the glottal midline, 5 mm 

wide anteriorly, and 10 mm wide posteriorly. The y dimensions define the distance from 

the posterior to anterior, which is 14 mm long.  

 

Figure 2.1 - Vocal folds structure based on Titze's theory [27, 29] 

 

The parameters from Figure 2.1 are defined as follows: 

L = the length of vocal folds as measured from the vocal processes to the anterior    

commissure; nominal value 14 mm. 

 

T = the thickness of the vocal folds, including the top mucosal layer, the ligament, and a 

portion of the conus elastics region; nominal value 5 mm. 

 

D = the depth of the vocal folds, decreasing from a maximum at the vocal processes (10 

mm) to a minimum (5 mm) according to the following factor [30]  

 

 
2 21 0.5 /f y L= −  (2.1) 

 
y = the displacement from the anterior surface to the node 
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w = the angular deviation of the superior-medial edge with respect to the vertical mid-

plane of the glottis. This parameter adjusts the position of the vocal process, and 

therewith the superior vocal-fold abduction; nominal value 0.0 rad. 

 

s = a shaping factor, which controls the remainder of the medial surface contour with 

respect to the vertical mid-plane of the glottis. The nominal value of parameter s is 

0.05rad. The contour is quadratic and provides additional abduction below the 

superior surface, as shown in Figure 2.1. 

  
Mathematically the two dimensional glottal width g is given by [30]  
 
 2( , ) 2 ( ) 2[ ( ) ( )]g y z w L y s T z T z f= − + − − + −  (2.2) 

To simplify Equation 2.2, the following equation is used [26]. 

 
2(0.5 5 ) 0.45 0.19( 5) 0.02( 5)g mm h mm h h≤ ≤ = + − + −  (2.3) 

where h (mm) is the vertical distance below the superior surface. Equation 2.2 uses 

three variables while Equation 2.3 contains just one variable which can be determined 

from an experimental set-up. The effect of this simplification which could be 

determined experimentally will be discussed later. 

The minimum glottal width of 0 mm that occurs at the inferior end of the fillet (equal to 

0.5 mm) indicates that the undeformed vocal fold is tangent to the glottal midline. To 

create a smooth contour in the coronal plane, this geometry is modified by applying a 

fillet with a radius of 0.5 mm to the superior medial curve. 

2.2.2 Building the Model Using Solidworks 

Using the parameters listed above, it is possible to build the geometry part of the model 

in Solidworks as required. However, Solidworks doesn’t support geometry equations as 

an input. To solve this problem, the vocal fold’s upper part ( 0z ≥ ) is divided by six 

parallel planes from z = 0 to z = 5 mm. All the points on the planes which are calculated 

from Equation 2.1, Equation 2.2 and Equation 2.3 by Matlab are shown in Table AI.1. 

Figure 2.2 and Figure 2.3 show drawings based on the data from Table AI.2 and Table 

AI.3. For each drawing the spline function was used to connect the points to form a 

smooth curve and a straight line was used to connect the curve at the end points.  
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Figure 2.2 - Drawing based on Equation 2.2 

 
Figure 2.3 - Drawing based on Equation 2.3 

The upper part (z > 0 mm) of the model is built by using the Loft function to connect the 

sketches together. The stratum part is formed by extruding the bottom sketch (the sketch 

at plane z = 0 mm) and drafting the extension part by the angle q = 0.7 radians. A fillet 

with a radius of 0.5 mm is applied to the superior medial curve in order to create a 

smooth contour in the coronal plane. Figure 2.4 and Figure 2.5 show the final solid 

bodies for model 1 and model 2 respectively. 

 
Figure 2.4 - Model 1 based on Equation 2.2 
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Figure 2.5 - Model 2 based on Equation 2.3 

 

2.2.3 Testing of Model Geometry in ABAQUS 

The simplification of geometry should be acceptable without sacrifice in accuracy.  

Therefore, Model 1 and model 2 have been tested by using ABAQUS.  

In the test, the material properties are isotropic and linear, with a Young’s modulus E of 

36.1 kPa, a Poisson’s ratio υ of 0.3 and a density of 1.1 g/cm3. These parameters are 

based on experimental measurements on human vocal ligament samples by Min [31], 

and are valid for strains of less than 15%. In the two models, the anterior, posterior, and 

lateral surfaces are fixed to represent their attachment to the laryngeal cartilages.  

Table 2-1 - Natural frequencies of model 1 and model 2 

Natural Frequency Model 1 Model 2 

First 135.86 Hz 130.33  Hz 

Second 218.21 Hz 211.61 Hz 

Third 231.61 Hz 232.29  Hz 

Forth 249.58 Hz 247.62  Hz 

Fifth 262.36 Hz 260.60 Hz 

 

The results show that, there is no significant difference between the two models. The 

natural frequency of an adult male vocal fold is about 127 Hz, which was measured in 

vivo and was consistent with resonance frequencies as measured by Kaneko [32]. 

Model 2’s first frequency is quite near the experimental data. Therefore, the FEA model 

and experimental sample will be based on model 2, Equation 2.3. 
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2.2.4 Cover and Body Theory 

The vocal fold’s structure has been shown to be multilayered (refer to section 1.2.2). 

Following the cover-body theory discussed in Chapter 1, the whole vocal fold is divided 

into two parts, the cover part and the body part. The thickness of the cover is 1 mm at 

the posterior portion and tapers linearly to half of this value at the anteriority. The 

thickness of the cover part is modelled by using the following equation.  

 (28 )*1.0 / 28d y mm= −  (2.4) 

d = the thickness of the cover 

The eventual Solidworks cover part and the body part are shown in Figure 2.6 and 

Figure 2.7. 

 
Figure 2.6 - Cover part of the model 

 

 
Figure 2.7 - Body part of the model 

 

The ideal model is capable of representing all possible healthy or pathologic situations 

of the vocal folds. However, using in the current techniques, it is hard to achieve that 
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purpose. In this study, the healthy situation is considered. Commonly, it is observed that 

most healthy human vocal folds are symmetric. As shown in Figure 2.8, the model is 

layered and symmetric. 

 

Figure 2.8 - A pair of layered vocal folds model 

 

2.3 Materials Definition in the Model 

As illustrated in Chapter 1, the cover part of the vocal fold is made of loosely organized 

microfibrils small components and softer, fluid-like tissue. A material which exhibits 

both “elastic” and “viscous” properties is called a viscoelastic material. In the current 

literature, the vocal folds’ cover part is normally considered to be a viscoelastic material. 

Furthermore, the viscoelastic and isotropic material is usually assumed to be the 

simplest viscoelastic material: linear, isotropic viscoelastic material. 

Most research shows that the dynamic viscoelastic behaviour depends on temperature 

[33]. For biological tissues, an analogous range of temperature is located at 5-37 °C, in 

which there is no structural change of tissues [34]. The vocal folds’ temperature 

depends on the exhaled air flow temperature and the body temperature. A typical 

breathing cycle temperature distribution is shown in Figure 2.9 [35].  
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Figure 2.9 - Temperature of the breathing system [35] 

 

Exhaled air which vibrates the vocal folds during phonation is almost fully saturated 

with moisture at the body temperature of 35°C regardless of the breathing rate. In a 

living human, the body temperature is about 37°C and the vocal fold’s temperature 

should be between the body temperature and the exhaled air temperature, which is about 

35-37°C. Therefore, the temperature effect on the cover material is ignored. 

The body part of the vocal fold consists of the deep layer and the muscle fibres. As 

discussed in Chapter 1, these fibres are nearly inextensible and run parallel to the 

anterior-posterior direction. As for most fibre-like materials, the fibre body tissue is 

generally stiffer in the direction of fibres. Furthermore, it is observed that the vocal 

folds vibration occurs mainly at the surface of the thin layer of the non-muscular tissue 

[18]. This means that the viscosity of the vocal folds’ body part plays a small role in the 

vocal folds’ vibration process. Therefore, the body part is assumed to be pure elastic 

transverse isotropic material [36]. On the basis of this assumption, the defined 

mechanical properties are independent of the orientation of deformation (isotropy) in 

one plane (x-z plane in this model) transverse to the essentially parallel tissue fibres, but 

different in the longitudinal direction (y direction in this model) of the fibres. The 

direction of the model is shown in Figure 2.8. 

The following two sections will describe the mathematical model of different materials 

in finite element analysis. In these two sections both elastic and viscoelastic parameters 

of the body part and the cover part are defined. 
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2.3.1 Elastic Material (body part) 

The body part mainly consists of the thyroarytenoid muscle. In a small strain situation, 

the human muscles are assumed to be linear and transverse isotropic materials. The 

conversion of stress to displacement follows Hooke’s law as  

 [ ]Sσ ε=  (2.5) 
 

where σ is stress, ε is strain tensor, and [S] is a stiffness matrix. In general, [S] is a 6×6 

symmetric matrix with 21 independent constants. For the case of transverse isotropic 

material about the y axis, the inverse of [S] could be expressed in terms of five 

independent mechanical constants [37]. The stress tensor is expressed as, 

 ( )Tx y z xy yz zxσ σ σ σ τ τ τ=       (2.6) 
  
the strain as, 
 

 

u x
v y
w z

y x x y
z y y z
x z z x

ε

∂ ∂⎧ ⎫
⎪ ⎪∂ ∂⎪ ⎪
⎪ ⎪∂ ∂

= ⎨ ⎬∂ ∂ + ∂ ∂⎪ ⎪
⎪ ⎪∂ ∂ + ∂ ∂
⎪ ⎪
∂ ∂ + ∂ ∂⎩ ⎭

 (2.7) 

 
and the material properties as, 
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E
S
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⎜ ⎟
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⎜ ⎟
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⎝ ⎠

 (2.8) 

 

Due to the isotropic and linear assumptions, the parameters in [ ]S  can take the form  
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( )

1111 3333

1122 2233

1212 2323

3131 3333 1133
1
2

E E
E E
E E

E E E

=⎧
⎪ =⎪⎪
⎨ =
⎪
⎪ = −
⎪⎩

 (2.9) 

 

Equation (2.10) is inversed to obtain the displacements expressed by stresses,  

 [ ] 1Sε σ−=  (2.10) 
 
 

 

/ 1/ / / 0 0 0
/ / 1/ / 0 0 0
/ / / 1/ 0 0 0

/ / 0 0 0 1/ 0 0
/ / 0 0 0 0 1/ 0
/ / 0 0 0 0 0 1/

x

y

z

xy
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u x E E E
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x z z x

σν ν
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σν ν
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⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′ ′ ′∂ ∂ − − ⎜ ⎟⎜ ⎟ ⎜ ⎟
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⎜ ⎟⎜ ⎟ ⎜ ⎟′∂ ∂ + ∂ ∂
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜∂ ∂ + ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

⎟

(2.11) 

 

where E is the Young’s modulus in the transverse plane, E′ is the Young’s modulus 

along the y axis, μ′ is the shear modulus along the y axis, ν is the Poisson’s ratio in the 

transverse plane, and ν ′ is the Poisson’s ratio along the y axis.  

Another constant μ  (the shear modulus in the transverse plane), can be expressed by 

 
2(1 )

Eμ
ν

=
+

 (2.12) 

 

In a continuum model, the solutions are usually calculated by differential or partial 

differential equations under certain boundary conditions. This requires regular boundary 

geometry. However, it is difficult to impose boundary conditions on the function if the 

boundary geometry is non-linear and irregular. In finite element method, the problem is 

solved by assigning the boundary conditions along the boundary nodes. 

In a three-dimensional model, a tetrahedral element is one of the simplest and practical 

ways to mesh the complicated geometry. The state of displacement of a point is defined 

by three displacement components, u, v, and w, in the directions of the three coordinates 

x, y, and z respectively. Thus  
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u

U v
w

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (2.13) 

 

Using the finite element concept, the displacements within an element have to be 

uniquely defined by these twelve values ( 1 12~α α ). The simplest representation is 

clearly given by three linear polynomials  

 
1 2 3 4

5 6 7 8

9 10 11 12

u x y z
v x y z

w x y z

α α α α
α α α α
α α α α

= + + +⎧
⎪ = + + +⎨
⎪ = + + +⎩

 (2.14) 

 

i, j, m, p are four nodes on the tetrahedral element as shown in Figure 2.10.  

 
Figure 2.10 - A tetrahedral volume 

 

Equating the values of the displacements of the nodes in u direction, we have four 

equations of the type 

 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

i i i i

j j j j

m m m m

p p p p

u x y z
u x y z

u x y z
u x y z

α α α α
α α α α
α α α α
α α α α

= + + +⎧
⎪ = + + +⎪
⎨ = + + +⎪
⎪ = + + +⎩

 (2.15) 
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The displacement field can be written for each element as  

 
i i j j m m p p

i i j j m m p p

i i j j m m p p

u N u N u N u N u
v N v N v N v N v

w N w N w N w N w

⎧ = + + +
⎪ = + + +⎨
⎪ = + + +⎩

 (2.16) 

The interpolation function (shape function) , , ,i j m pN N N N  consists of four linear 

polynomials, defining the shape of the displacement field for each tetrahedral element. 

In this model the linear shape functions are assumed to be 

 
( )( ) ,

6
( )

( , )
6

i i i i
i

j j j j
j

a b x c y d zN i m
V

a b x c y d z
N j p

V

+ + +⎧ =⎪⎪
⎨ + + +⎪ = −
⎪⎩

 (2.17) 

 

where V is the volume of the element which can be calculated by  

 

1
11 det
16
1

i i i

j j j

m m m
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V
x y z
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=  (2.18) 

 
and , , ,i i i ia b c d are coefficients calculated from the nodal coordinates. 
 

 

1
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p p p p
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c x z d x y
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= = −
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 (2.19) 

 

The shape function would be solved by substituting Equation (2.15) into Equation 

(2.14). The stiffness and mass matrices will be defined in ABAQUS. The nodal force 

vector acting on each element is the aerodynamic pressure force, which can be 

calculated from Equation (2.5) by using the corresponding nodes. 
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2.3.2 Viscoelastic Material (cover part) 

Viscoelastic phenomena are characterized by the fact that the rate at which inelastic 

strain depends not only on the current state of stress and strain, but, in general, also on 

the full history of their development. 

The constitutive equation for linear viscoelasticity can be given in the form of a 

differential equation. The constitutive equation is written as a linear elastic part with an 

added series of partial strains q.  

 ( )
0

1
( ) ( ) ( )

M
m

m
m

t D t D q tσ ε
=

= +∑  (2.20) 

 

where for a linear model the partial stresses are solutions of the first-order differential 

equations  

 ( ) ( )m m
mq T q ε+ = &&  (2.21) 

 

with mT a constant matrix of reciprocal relaxation times and 0 , mD D constant moduli 

matrices. 

Equation (2.19) is suitable for both isotropic and anisotropic linear viscoelastic 

materials. To describe more detail about isotropic models, the stress is split into two 

terms, as follows: 

 s mpσ = +  (2.22) 
 

where s is the stress deviator, p is the mean stress and m is [ ]1 1 1 0 0 0 T . The 

deviatoric part is stated as differential equation models, in which the constitutive 

equation may be written as  

 ( )
0

0
2 ( )

M
m

m
m

s G e qμ μ
=

= +∑  (2.23) 

 

where e is the stress deviator and mμ  are dimensionless parameters satisfying  
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1

1
M

m
m

μ
=

=∑  (2.24) 

 

The integral equation form for the deviatoric stresses is expressed in terms of a 

relaxation modulus function which is defined by an idealized experiment, in which, at 

time (t = 0), a specimen is subjected to suddenly applied and constant strain, 0e , and the 

stress response, s(t) is measured. For linear material, the relation obtained is as follow, 

 0( ) 2 ( )s t G t e=  (2.25) 
 

where ( )G t is the shear relaxation modulus function. ( )G t could be described by the 

form of generalization to the Maxwell model, which is in a Prony series form 

 

 0
1

( ) exp( / )
M

m m
m

G t G tμ μ λ
=

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑  (2.26) 

 

where mλ  are relaxation times. However, the time domain data is hard to obtain from 

experiment as the vocal fold mucosa is too small as a test material, so frequency 

dependent test data was expected to replace them. The conversion of the test data to 

Prony series will be described in ABAQUS model building. 

 

2.4 Equilibrium Equations of the Model  

The following sections state the equilibrium equations of motion, contact definition, and 

boundary conditions to solve the finite element model. 

2.4.1 Equations of Motion 

For infinitesimal displacements in an elastic continuum object, Newton’s second law of 

motion is written as 
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 (2.27) 

 

where u, v and w are displacements in the x, y and z directions; ρ is the density of the 

material; σi are normal stresses; τij are shear stresses (i, j = x, y, z); and Fx, Fy and Fz are 

the body forces. Consequently, the general tissue displacement vector about the 

equilibrium position is written as  

 ( , , , ) ( , , , ) ( , , , ) ( , , , )x y z t u x y z t i v x y z t j w x y z t kΨ = + +  (2.28) 
 

Equations (2.27) and (2.28) contain both stresses and displacements as variables. To 

solve the equations, either stresses or displacements should be chosen and converted to 

the others. The model of vocal-fold collision needs spatial resolution that is capable of 

representing an explicit vocal-fold collision. Therefore, it is more appropriate to use 

displacements as variable in this research. The relationship between stresses and 

displacements depends on the nature of the material. 

However, using stress-displacement equations are too involved and a bit complicated to 

solve explicitly. Another numerically oriented approach is normally used. Virtual work 

principle is the numerically oriented approach of motion. Problems of elasticity are 

intimately related to the energy principles which define equilibrium conditions. The 

concept of energy principles is very important in the solution of elasticity problems. The 

potential energy of the deformed vibrating continuum is  

 pU Wπ = −  (2.29) 
 

where U is the strain energy calculated from energy density as  

 1 ( )
2 x x y y z z xy xy yz yz zx zxV

U dVσ ε σ ε σ ε τ γ τ γ τ γ= + + + + +∫∫∫  (2.30) 

 

and pW is the virtual work defined as, 
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 ( ) ( )p x y z x y zV A
W F u F v F w dV S u S v S w dA= + + + + +∫∫∫ ∫∫  (2.31) 

 

In Equation (2.30), , ,x y zF F F  are components of the body force (inertia) and , ,x y zS S S  

are components of the surface forces. The equations of motion are obtained by setting 

the variations of potential energy with respect to nodal displacement to zero. The virtual 

work principle is considered as a statement of mechanics more fundamental than the 

traditional equilibrium conditions of Newton’s laws of motion. Therefore, in this model, 

the virtual work principle is used to solve the equilibrium of motions. 

2.4.2 Contact Problem 

The physical contact problem occurs when two or more bodies touch each other. In 

larynx, the vocal folds push and slide against each other, changing their shapes.  

On the contact surfaces, the traction forces acting are called contact forces. The contact 

forces deform the objects. In this model, the simulation uses a contact algorithm 

(considering pure master-slave) to deal with the contact problem: all collided nodes (on 

the surface that interact with the other) are collected with the purpose of calculating the 

required forces to avoid body interpenetration. Such forces are calculated in terms of 

how deep one vocal fold can enter into each other. A typical iterative algorithm repeats 

two operations until it finds a stable solution as shown in Figure 2.11: 

• Find the section where two objects penetrate. 

• Apply forces to push back the penetrating section. 

 

 

Figure 2.11 - Typical steps for solving the contact problem. 
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The contact forces are the same as the push back forces in the final stable configuration. 

In conventional methods, the direction of a push back force, or the “normal”, is chosen 

as the direction from a penetrating surface point to the closest projection. 

Mathematically, all the collided nodes follow the restriction: 

 
( ) * 0

* 0
* 0

TG X Y N
L F N
G L

= − ≥
= ≥

=
 (2.32) 

 
G = the gap normal to the contact surface  

F = the collision force 

N = the unit normal vector of the contact surface 

L = the contact force normal to the contact surface 

It means that the gap (G) between two nodes (X and Y are the spatial position of two 

nodes on master and slave surfaces of the vocal folds) should be non-negative and that 

the collision force F should always take the bodies apart. Equation (2.29) points out that 

both the inequalities are exclusive: when one condition is achieved, the other one is 

automatically equal to zero.  

2.4.3 Boundary Conditions 

As already mentioned, fixed boundaries are imposed at the lateral, anterior, and 

posterior surfaces, and free boundaries at the medial, superior, and inferior surfaces.  

 

2.5 ABAQUS Analysis 

This research focuses on figuring out the frequency characteristics and calculating the 

impact stress between two vocal folds during phonation. The impact force is a type of 

force in physics which describes the effect that time has on accelerating bodies.  

In ABAQUS analysis, the following steps will be used to build a FEA model and do 

analysis. 

• Build geometry parts 
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• Define material properties 

• Assemble model 

• Define interaction 

• Define steps 

• Define load and boundary condition 

• Mesh 

• Results 

2.5.1 Build Geometrical Parts 

All of the geometrical parts are built by Solidworks and saved as .igs file which can be 

imported by ABAQUS. See section 2.2.  

2.5.2 Define Material Properties  

Computer simulations of speech and voice demonstrate that knowledge of tissue 

mechanical properties is required to predict tissue forces and deformation. Standard 

human tissue is a viscoelastic material, which will increase computational costs greatly. 

It is necessary to simplify the material in order to reduce the cost. 

2.5.2.1 The Property of the Cover  

The density of human body is about 1 to 1.1 g/cm3, because human body consists of 

75% water. Perlman’s research (cited in Hunter, 2003, page1949 [38]) on the larynx 

gave an accurate value for the vocal folds (including the cover and body part) of     

1.043 g/cm3. 

In ABAQUS, the elastic modulus is defined in “Linear elastic behaviour”, with a 

Young’s modulus (Ec) of 41.9 kPa (instantaneous modulus time scale for viscoelastic) 

and Poisson’s ratio (ρ) of 0.47 [39]. 

Frequency dependent test data are widely used in the study of viscoelastic properties. 

Chan and Titze [36] extensively investigated the vocal fold cover’s properties. They 

obtained data of the elastic shear modulus (G′) and the viscous shear modulus (G″) from 
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a vocal fold cover tissue sample at frequencies of 0.01-15 Hz. G′ gives information 

about the elasticity or the energy stored in the material during deformation, whereas G″ 

describes the viscous character or the energy dissipated as heat. The dynamic viscosity η 

is related to the loss modulus G″ by [36]: 

 

 Gη
ω
′′

=  (2.33) 

 

However, G′ and G″ can’t be used by ABAQUS directly. The Prony series is used for 

the definition of viscoelastic properties definition. It can also be calibrated by using 

frequency-dependent test data. The expressions for the shear moduli, obtained by 

converting the Prony series terms from the time domain to the frequency domain by 

making use of Fourier transforms, can be written as follows: 
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Where ( )sG ω is the storage modulus, ( )lG ω is the loss modulus, ω is the angular 

frequency, and N is the number of terms in the Prony series. In comparison, the elastic 

shear modulus (G′) is the storage modulus; the viscous shear modulus (G″) is the loss 

modulus.  

In ABAQUS, the viscoelasticity defined by frequency needs the following 

data: ( ) ( ) ( ) ( )* * * *, , ,g g k kω ωξ ω ωξℜ ℜ , f 

1. Real part of *gω .  

 ( )* /lg G Gω ∞ℜ =  (2.36) 

2. Imaginary part of *gω . 

 ( )* /sg G Gωξ ∞=  (2.37) 
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Real part and imaginary part of *kω  are ignored if the material is incompressible. 

Frequency f is in radian per second. 
 

In Equation (2.33) and Equation (2.34), G∞ is the long-term shear modulus. This data 

line is repeated as often as necessary to define the second, third, etc., terms in the Prony 

series. The number of terms in the Prony series is N. 

The vocal fold cover consists of a fluid-like material whose bulk modulus is similar to 

water, B = 2.2×108 Pa. The amount of compression of water is assumed to be very 

small and can therefore be ignored. Hence, ( ) ( )* *,k kω ωξℜ are ignored in the material 

definition. Figure 2.12 and Figure 2.13 show the storage modulus (G′) and the loss 

modulus (G″) measured by Chan and Titze [36]. 

 
Figure 2.12 - Elastic shear modulus of the human vocal fold cover (59-year-old-  male) as a function 

of frequency[36] 
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Figure 2.13 - Viscous shear modulus of the human vocal fold cover (59-year-old-male) as a fuction 

of frequency [36]  

 

The data from Figure 2.12 and Figure 2.13 and calculated data for ABAQUS are 

displayed in Table AII.1. 

2.5.2.2 The Property of Body 

In a linear elastic continuum model, a transverse isotropic material in principle requires 

five independent tissue mechanical constants for the constitutive equations. These 

elastic constants include the longitudinal Young’s modulus E′ (an indication of tensile 

elasticity or stiffness along the direction of tissue fibres), the transverse and the 

longitudinal Poisson’s ratios ν and ν′, respectively (an indication of tissue 

compressibility or the change of tissue volume upon deformation), and the transverse 

and longitudinal shear modulus μ and μ′.  

The definition of transverse isotropy in ABAQUS uses the material editor: 

Mechanical Elasticity Elastic: Type: Engineering Constants 

Transverse isotropy is characterized by a plane of isotropy at every point in the material. 

In this model, the x–z plane is the plane of isotropy at every point, so transverse 

isotropy requires that 
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 x z t pE E E E= = =  (2.38) 

 yx yz tpν ν ν= =  (2.39) 

 xy zy ptν ν ν= =  (2.40) 

 xy zy tG G G= =  (2.41) 

 

where p and t stand for “in-plane” and “transverse,” respectively. Thus, vtp has the 

physical interpretation of the Poisson's ratio that characterizes the strain in the plane of 

isotropy resulting from stress normal to it. vtp characterizes the transverse strain in the 

direction normal to the plane of isotropy resulting from stress in the plane of isotropy. 

In general, the quantities vpt and vtp are not equal and are related by 

 / /tp t pt pE Eν ν=  (2.42) 

 

The stress-strain laws reduce to 
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where vp is the Poisson’s ratio in plane 

 ( )/ 2 1p p pG E ν μ= +  (2.44) 

 

The parameters used in ABAQUS are listed as follows: transverse and longitudinal 

Poisson’s ratios (ν and ν′), transversal and longitudinal Young’s modulus ( E and E′ ) 

and longitudinal shear modulus (μ′ ).  

As most parts of the human’s body, the vocal folds contain more than 75% water [40]. 

So they are considered to be nearly incompressible. To simplify the model, it is 

assumed to be ν = ν′ = 0.45 which is standard value for incompressible materials. For 
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low-strain, body tissue’s Young’s modulus is Eb = 20.7 kPa [39]. As described in 

Equation (2.38), the parameters are calculated to be Et = Ep = Eb = 20.7 kPa. The 

longitudinal shear modulus is defined µ' = 30 kPa [22].  

All the data used above agree with the present study: (1) For low strains, the value of E′ 

(Young’s modulus along y axis) for the body, cover and ligament are all on the order of 

105 dyn/cm2 (10000 Pa). (2) At low strains, the cover has about twice the stiffness of the 

body as estimated with the longitudinal Young’s modulus [36]. 

2.5.3 Define Step 

There are two types of analysis results required in this research. One is the frequency 

analysis and the other is dynamic analysis. They are defined separately and saved in 

different ABAQUS files.  

1. Frequency analysis 

In the step module, a new step is created with the procedure as following: Step  

Create  Linear Perturbation  Frequency. ABAQUS uses eigensolver to 

figure out the frequency problems. The matrix solver is chosen symmetric and the 

normalized eigenvectors are by displacement. 

2. Dynamic analysis 

Two steps are defined by the same process, Step  Create  General  

Dynamic Explicit. The first step is 0.004 second, which is the process of air flow 

excitation. The seconds step is 0.015 second, which is the process of the model 

free vibration.   

During the analysis of the mathematical model and physical model, Jiang [41] found 

that the liquid on a vibrating band tend to accumulate toward the midpoint of the band. 

Clinically, vocal fold nodules tend to occur at the mid-membranous fold. Therefore, it is 

more useful to figure out the dynamic response around the midpoint of the vocal folds. 

A small area is partitioned and selected as shown in Figure 2.14. The maximum glottal 

opening amplitude, closing velocity and contact stress are predicted occurring on the 

selected area.  
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Figure 2.14 - Selected area in the middle of the vocal fold model 

 

In the Field Output Request, the output variables are contact stress, contact normal force 

and stress components. In History Output Requests, the total contact area, total contact 

force, velocity and displacement of selected nodes are required.  

2.5.4 Assemble Model, Define Interaction, Load and Boundary Condition 

These steps are used to set the model’s conditions as in the larynx. The two vocal folds 

are symmetrical about the mid-plane where they are set tangent at the top in the closed 

state. The contact area in the original position is assumed to be zero.  

In real vocal folds, there is no obvious line of different layers. The air pressure, shear 

force will act on the whole organ. To make sure there is no opposite slide between the 

cover part and the body part during the vocal fold movement, it is necessary to define 

the constraint conditions between them. In ABAQUS, the constraint condition is 

defined as surface based tie which makes each of the nodes on the slave surface to have 

the same translational and rotational motion as well as the degrees of freedom as the 

point on the master surface to which it is closest. The adjust function is turned on to 

move the tied nodes on slave surface onto the master surface in the initial configuration, 

without any strain.  

The medial surfaces of the vocal folds form a contact pair. Normally, the healthy vocal 

folds are covered with mucus as lubricant and the friction ratio between them is nearly 

zero. It is observed that there is little relative motion between the vocal folds while they 
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touch each other. Therefore, interactive property between two vocal folds’ surfaces is 

assumed to be frictionless. Furthermore, the contact forces on the medial surfaces are 

only normal to the surface and in medial–lateral  direction. 

The subglottal pressure sP leads to deformation of the vocal fold model during the 

simulation. A distributed load applied perpendicularly to the element faces that form the 

inferior and medial surfaces as shown in Figure 2.15. Several of the sP  values are 

applied for various subglottal pressures. The static pressure sP = 600, 800, 1000, 1200 

and 1500 Pa are tested.  

 

Figure 2.15 - Distributed load (due to the subglottal pressure) on the inferior surface   

 

As discussed in Chapter 1, the vocal folds are fixed on arytenoids cartilages and thyroid 

cartilage in the larynx. Although the cartilages in the larynx should be flexible with a 

stiffness of 30 MPa, they are much stiffer than the vocal folds (stiffness of 20-40 kPa), 

and considered to be stationary in the analysis to simplify the algorithm. As shown in 

Figure 2.16, the anterior, posterior and lateral boundary conditions are fixed. 

Furthermore, the boundary conditions are defined as no movement and rotation in all 

directions (U1 = U2 = U3 = UR1 = UR2 = UR3 = 0). The vocal folds’ superior and 

medial surfaces are allowed to move freely. 
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Figure 2.16 - Assembled model with defined boundary conditions 

2.5.5 Mesh 

The hex element is the best way to solve the finite element problems. However, the 

geometry of this model is nonlinear and it is hard for it to be meshed in that way. As 

discussed before, four nodes, a three-dimensional tetrahedral element is used to mesh 

the model. The layer part is divided by the element of 250 µm which is 2-fold fewer 

than the thinnest section of the layer part. The size of elements should be fine enough 

for the analysis. The element dimension of the body part is 0.5 mm. The meshed model 

is shown in Figure 2.17. 

 
Figure 2.17 - Meshed by tetrahedral element (in ABAQUS) 

 

The analyses were repeated by using a model with smaller mesh elements which were 

100 µm in the cover part and 200 µm in the body part. The difference of impact stress 
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between the two models is within 3%, which indicates that the mesh is fine enough to 

achieve convergence of results. 

2.6 Closure 

Finite element analysis (FEA) of the ABAQUS is adopted in this work to link the 

relationship between the analytical and numerical modelling in the vocal folds structure 

while searching for the dynamic response in application to phonation process simulation. 

The model used the Titze and Talkin [30] geometry and viscoelastic material properties 

measured by Chan [36, 42]. The simplification of the geometry has been proved to be 

possible and make it easy to build experimental model in the further research. The using 

of viscoelastic material will make the FEA model results more accurate. 

In summery, numerical modelling can be a good approximation, depending on the 

chosen structure and material properties, to the analytical solution as shown in 

experimental data validation.   
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Chapter 3   EXPERIMENT INVESTIGATION 

3.1 Introduction 

The main goal of this research is to use the finite element analysis to investigate the 

frequency characteristics and dynamic response of the vocal folds. Furthermore, 

experimental validation will enhance the results and also give them more validity. 

Clearly, it is much more accessible to do fundamental studies of the vocal folds by 

using a larynx model than by using human larynxes with invasive testing. Therefore, a 

physical model of larynx was fabricated to represent the human vocal folds in terms of 

the key parameters discussed in Chapter 2. This model has been constructed using a 

skin-like silicone casting and it exhibits a shape similar to the human larynx.  

Two types of experiments were conducted. The first one used forced vibration to 

determine the frequency characteristics of the model and the second one used excitation 

by air flow to simulate the process of speaking. The purpose of this chapter is to 

confirm the accuracy of the FEA model described in Chapter 2 and to represent the 

vibratory deformation of the human vocal folds.  

 

3.2 Modal Analysis and Testing 

Modal analysis is a basic technique used to analyse many vibration structures. It is the 

process of using mathematical formulation for simulating the inherent dynamic 

characteristics of a system in terms of resonance frequencies, damping factors and mode 

shapes [43, 44].  The limitation of modal analysis is that it is just available in linear 

systems. Modal testing is also called experimental modal analysis (EMA). In this 

method, the normal modes or frequencies of the vibrating system could be observed 

immediately after pulse excited, or during a sinusoidal force excitation. In practice, 

many of the nonlinear systems could be assumed approximately linear in small 

amplitude vibration. Compared to the finite element analysis (FEA) introduced in 

Chapter 2, EMA is based on experiment while FEA depends on computer analysis.  
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EMA model is primarily performed to validate the accuracy of an FEA model. If an 

EMA model and an FEA model on the same structure both yield the same modes and 

the same natural frequencies, then it can be assumed that both could be accurately 

characterizing that structural dynamics. Once the FEA model has been validated, it can 

be used to simulate the vocal folds under various conditions. 

A typical EMA MODEL may require a lot of measurements, and will give the results 

for many degrees-of-freedom (DOFs). In the human body, the vocal folds are fixed to 

the surrounding cartilages on three sides, so that the main freedom of the vocal folds is 

almost in the vertical direction. The three-dimensional diagram of the vocal fold is 

shown in Figure 2.1. However, for a single degree of freedom, the equation of motion 

may be written as [43] 

 ( ) ( ) ( ) ( )mx t cx t kx t f t+ + =&& &  (3.1) 

Where m, c, k, x and t are defined as the mass, damping factor, stiffness, displacement 

and time respectively. 

The Laplace transformation of this time domain equation is given by:  

 2

( )( ) ( ) ( )F sX s G s F s
ms cs k

= =
+ +

 (3.2) 

To get the frequency response, s is replaced by jω, where ω is the angular frequency (in 

radians/s) and j is the imaginary number.  

The theoretical basis of the modal analysis is the fact that the vibration responses at one 

location due to the excitation at the same or another location can be determined as a 

function of excitation frequency. This relationship is called frequency response function 

(FRF). The vibration response is a set of simple harmonic motions and the natural 

frequencies resulting from the linear time-invariant dynamic system are the Fourier 

series of the functions. 
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3.3 Experimental Set-up 

The two experimental setups used in the research are shown in Figure 3.1. Figure 3.1-a 

shows the forced vibration experimental set-up. The setup consists of an 

electromagnetic shaker which is driven by a signal generator through a power amplifier. 

The response is picked up by a Polytec OFV505 laser which is connected to a Polytec 

OFV505 acquisition system. The output signal is displayed on a TDS1012 oscilloscope 

and a PC. The first setup is used in determining the forced response. 

The second setup, in Figure 3.1-b, is used to determine the vocal folds deformation due 

to speaking. The larynx model is driven by an air flow while the signal is picked up by 

the laser detector as in the first experiment. 

 

a 

 
b 
 

Figure 3.1 - (a) A block diagram of the forced vibration experimental set-up  (b) A block diagram 

of the second experimental set-up 
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The results from both experiments will be compared with the theoretical results from 

the ABAQUS model and discussed in the next chapter. 

 

3.4 Physical Model 

The physical model is designed to simulate three key parameters of the human vocal 

folds: 

(1) the mechanical properties (including density, stiffness and viscosity); 

(2) geometry (including dimensions and shape), also known as the static, undeformed 

shape; and 

(3) the boundary condition, fixed with unmovable cartilage.  

3.4.1 Vocal Folds Model 

Human tissues are soft, extensible and nearly incompressible [45]. Since the 1960s, 

silicone has been introduced into many biomedical application and today is one of the 

most used and important biomaterials [46]. A two-component liquid silicone is used to 

make the vocal fold models which are cast by rigid moulds. The rigid moulds were 

made of polymer clay, which is both easy to shape and accessible. The general size of 

the male vocal fold is approximately 1.4cm×1cm×1cm [30]. In order to show the 

dynamic response of the model clearly, the model is enlarged to be double the size of a 

realistic vocal fold. The model shape is an idealistic vocal fold based on the geometry 

described in Chapter 2. 

The vocal folds model is made from silicone PROSIL 8® which is classified to be 

prosthetic grade RTV silicone. It is very soft, skin safe silicone for use in prosthetic and 

orthopaedic applications [47]. The mixing ratio of part A and part B of PROSIL 8® is 

2:1. Before pouring the mixture into the moulds, the inter-surfaces of the moulds were 

coated with a thin layer of silicone lubrication to smooth the model’s surface and to 

make it easier to remove the model from the moulds. The curing process took 

approximately about 8 hours and the environmental temperature kept around 30ºC. After 

curing, the silicone was removed from the mould. The silicone model of the left side 

vocal fold is shown in Figure 3.2.  
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Figure 3.2 - The silicone model of the left side vocal fold 

3.4.2 Material Testing 

The parameters of cured silicone are listed in the product handbook [47]. The key 

parameters are: density 1.08 g/cm3, hardness 8A (in SI unit, about 50 kPa, very flexible, 

floppy, and similar to skin), and viscosity 1.5 Pa·s (15 poise). All of the parameters are 

quite near to human vocal folds’ mechanical parameters: density 1.043 g/cm3 , hardness 

40.7 kPa, viscosity 0.8 Pa·s [31, 39, 48]. However, as shown in most of the literature, 

human tissues are usually nonlinear materials with response dependent on the strain. 

The stress-strain curve is a good way to describe the elasticity of the material. It is a 

graph derived by measuring the load (stress, σ) versus extension (strain, ε) for a sample 

of a material. The male vocal folds’ stress-strain curves are shown in Figure 3.3 (curve 

M1L, the highlighted curve) and Figure 3.4 [39, 48]. 

 

Figure 3.3 - Stress-strain curves with the vocal fold length of the lowest vibration frequency as a 

reference. M1L = man #1, the left vocal fold [48] 
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Figure 3.4 - Stress-strain curves of a sample of vocal fold cover tissue stretched and released from 

high to low frequencies [39]  

 

To calculate the stress-strain relationship for silicone PROSIL 8®, a material testing 

machine (Tinius Olson HK505-S, Figure 3.5-a) was used. Five silicone PROSIL 8® 

beam samples were prepared for the force and extension test. The silicone beams were 

tested by stretching them within the strain of 100% before they were broken.  

           

   a      b 

Figure 3.5 - HK505-S benchtop material testing machine 
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Before the stress-strain test, all of the specimens were preconditioned. They were 

subjected to 20 tension-compression cycles to a strain amplitude of 0.5 at a frequency of 

0.1 Hz. Their rebound to the original (unstrained) condition between two load cycles 

was very small. The results illustrated that the internal structure of the silicone 

specimens were stable. 

The viscoelastic material is usually strain rate sensitive. The loading speed of the test 

was started from 20 mm/min and then changed to 50mm/min. It was found that this 

changed the loading force slightly. Thus, the silicone material can be regarded as being 

insensitive to the used strain rate. 

As shown in Figure 3.5-b, the samples were placed between the holders and firmly 

clamped at both ends. The lower holder was fixed while the upper holder was connected 

to a motor which was driven at preset speed. The upper holder was connected to a force 

sensor with an accuracy of 0.1 N. During the stretching process, the force sensor 

transferred measured force to a display. The force and extension reports data are given 

in Appendix III. The force and extension data were converted to stress and stain and 

shown in Table AIII 1-5. The stress (σ) is obtained by dividing the load by the original 

area of the cross section of the sample and the strain (ε) is obtained by dividing the 

elongation of the sample by the original length of the sample. 

 2

F N
A m

σ ⎡ ⎤= ⎢ ⎥⎣ ⎦
 (3.3) 

 
0

l
l

ε Δ
=
Δ

 (3.4) 

The stress-strain curve based on the test data is shown in Figure 3.6. The slope of the 

stress-strain curve in the elastic region is known as material’s Young's Modulus E 

which is the ratio of the stress to the strain. 
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Figure 3.6 – Silicone elasticity and strain test data 

 

Comparing Figure 3.6 with Figure 3.3 and Figure 3.4, it is clear that the elasticity 

(Young’s modulus) of silicone PROSIL 8® is similar to the human vocal fold in vitro 

throughout the entire strain range.  

Another key parameter of the vocal folds is the viscosity. The test data of the vocal fold 

is 5-8 Poise [31, 36] and the viscosity of silicone PROSIL 8® is about 15 Poise [47]. 

This will result in the silicone having a slightly longer response delay than the human 

vocal fold in vivo testing. However, the difference of the two materials will not affect 

the final results significantly, and can be ignored. In conclusion, the silicone PROSIL 

8® is a suitable material to represent the vocal folds tissue. 

3.4.3 Boundary Conditions 

A larynx frame was made to place the silicone vocal folds as shown in Figure 3.7. The 

anterior-posterior ends and lateral surface of the models were attached to a rigid clay 

frame using a liquid adhesive (super glue). In the frame, the two silicone vocal folds are 

symmetric about the mid-plane and are tangent at the top in the closed state. The surface 

of the polymer was coated with a thin layer of talc to reduce the surface tackiness. 

Before fixing the frame into the duct, the vocal folds model was tested in a forced 

vibration experiment to determine that they are rigid enough to resemble clamped 

support.  
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Figure 3.7 - The silicone vocal folds model fixed in the cartilage mould 

 

3.4.4 Larynx Model 

The physical larynx model was situated in a rectangular duct (wind tunnel). The edges 

between the frame and the wind duct were sealed so that the supplied air only flowed 

through the glottal between the two silicone vocal folds. This is different from the 

anatomical structure shown in Figure 1.2, where the trachea’s diameter is about 1.4 cm 

[49]. The purpose of the wind tunnel is to supply stable and uniform air pressure to the 

vocal fold models and to sustain the model oscillation. Therefore the wind tunnel is 

more than three times larger than the normal size in order to supply stable air pressure.  

 

3.5 Experimental Equipment 

Referring to Figure 3.1, the two experimental setups still require a detection system and 

a vibration system.  

3.5.1 Vibration System 

The vibration system consists of: electrodynamic shaker, signal generator and power 

amplifier.  

The electrodynamic shaker (Ling Dynamic Systems Ltd., LDS V203, shown in Figure 

3.8-a) is a permanent magnet electrodynamic shaker designed for vibration test 

applications including modal and structural analysis. The shaker is driven by a power 

amplifier at constant excitation power.  



 

 53

The power amplifier (LDS PA25E, shown in Figure 3.8-b) was designed to operate with 

support LDS vibration test systems that use permanent magnet shakers which use 

separate field power supplies.   

The signal generator (TTi TG230, shown in Figure 3.8-c) offers all of the standard 

generator functions including sine, square, triangle waveforms, variable DC offset, and 

variable symmetry output. An additional internal sweep generator with linear or log 

sweep and a variable sweep rate is also provided.  

    

Figure 3.8 - Equipment of vibration system 

3.5.2 Detection System 

The detection system includes a laser sensor, vibrometer controller, computer and 

oscilloscope. 

Due to the small size of the model and the softness of the material, if any contact 

sensors are used they will cause some errors. Non-contact sensing is a better choice for 

the test.  A vibrometer Polytec OFV-505 coupled to an OFV-5000 modular controller 

acquires data by measuring back-scattered laser light from a reflective paper based on 

the Doppler principle (Figure 3.9-a). It offers achievable velocity range of 0-1000 

(mm/s)/V. For accurate measurement, the best distance between the laser sensor and the 

measured point is approximate 30 cm and with a vibrometer warm-up time of at least 20 

minutes for proper operation.  

The output signal was sent from the OFV-5000 modular vibrometer controller to a 

Tektronix digital storage oscilloscope (TDS 1012) as shown in Figure 3.9-b. This 
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oscilloscope has a 200 MHz bandwidth and a 2 GS/s sample rate and was used to 

observe the dynamic response during closure. This data was then transferred to a PC. 

       
   a      b 

Figure 3.9 - Laser sensor head, vibrometer controller and oscilloscope 

 

3.6 Experimental Procedures  

Forced vibration test and air flow excitation test are introduced to find out the EMA 

model’s frequency characteristics and dynamic response. 

3.6.1 Forced Vibration 

Forced vibration is the vibration that takes place under the excitation of external forces. 

When the excitation is oscillatory, the system is forced to vibrate at the excitation 

frequency. If the frequency of excitation coincides with one of the natural frequencies of 

the system, a condition of resonance is encountered. 

As shown in Figure 3.10, the model was clamped in a vice which was attached to a rigid 

surface. The electrodynamic shaker (LDS V203) with an extended pointer was placed in 

contact with the sample at one end and acted as a vibration exciter. The shaker pointer 

was positioned just touching the sample location and the vibration amplitude was kept 

very small to avoid “over-driving” the sample. The excited amplitude of the shaker was 

controlled by the power amplifier (LDS PA25E). The excited frequency of the shaker 

was driven by the signal generator (TTi TG230). The predicted dominant resonance 

frequencies of the model were between 50 and 180 Hz. Therefore, the frequency range 

of TTi TG230 was set 0 ~ 200 Hz. Sinusoidal signal of constant input power was 

delivered to the shaker and the frequency was linearly increased at a sweep rate of 20 

Hz/second.  
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As demonstrated previously (see section 3.5.1), the vibration amplitude varied at 

different frequencies during the sweep process. Furthermore, it was observed that the 

amplitude changed slightly and decreased smoothly during the sweep process. 

Therefore, the change of shaker vibration amplitude is ignored in this experiment. 

 
Figure 3.10 - Photo of the position of the shaker and the model 

 

As shown in Figure 3.7, the measured points were on the middle of the vocal fold model, 

which were assumed to present maximum deformation. Because the model size and 

amplitude of forced vibration was very small, the sensitivity of the sensor was set to 

maximal ~ 5 (mm/s)/V. During the excitation process, the movement of the measured 

point was converted into a voltage signal and displayed on the screen of the 

oscilloscope (TDS 1012). The oscilloscope recorded the results and displayed the 

frequency domain data using a Fast Fourier Transform (FFT). FFT analysis is the most 

common method to calculate the RFR in modal analysis. In this process, two peaks 

were detected, which show the resonance frequencies of the model. The saved data was 

then transferred to a computer for analysis.  

Since at a resonance frequency, the motion may grow to quite large values, the vibration 

frequency was controlled manually and set to approximately the resonance frequency 

found from last step to confirm the resonance frequency found through FFT data. The 

time domain data at different frequencies was saved and compared to previously 

acquired data. 

The experiment was repeated several times and both sides of the model were tested to 

ensure the accuracy of the results. 
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3.6.2 Air Flow Excitation 

In this experiment, an impulse input is introduced and the closure process occurs in less 

than 10 ms, which is beyond the capabilities of the oscilloscope. Therefore, the 

waveform was captured and recorded using LabVIEWTM software which is a graphical 

software system for developing high-performance scientific and engineering 

applications. The connection between the oscilloscope and the PC was via RS-232 

standard plug-in I/O board − NI-DAQ7. The output data was saved in a text file which 

was transferred into Microsoft ExcelTM for further data processing and analysis. 

A new LabVIEW file was created to record the data as show in Figure 3.11. In this file, 

channel 4 was chosen as the I/O port. The scan rate was set 40000 scans/sec to make 

sure most of the motion would be recorded.  

 

Figure 3.11 - LabVIEW file 

As shown in Figure 3.12, the larynx model was fixed on a board which was clamped on 

the table and the laser sensor (Polytec OFV-505) was placed approx 30 cm from the 

larynx model. On the other side of the wind duct, the larynx model was connected to an 

air pipe which supplied static air pressure to the wind duct. 

The supplied air pressure was simulated in a step input as shown in Figure 3.13. Initially, 

the air pressure was at 3000 Pa, defined as the threshold pressure. After a few seconds, 
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due to material damping, the model became static. The air flow supply was then ceased, 

and the vocal folds model started to close. 

 
Figure 3.12 - Photo of the position of the laser head and larynx model 

 

 

Figure 3.13 - Air flow supply process 

It was supposed that the maximum velocity of the midpoint would be approximately 

100 mm/s. Therefore, the measurement sensitivity of modular vibrometer controller was 

set to be 25 (mm/s)/V with the voltage output range from -5 V to +5 V. Furthermore, 

the maximum frequency was set to 1.5 MHz in order to capture as much data as 

possible during the closure. The settings on the TDS 1012 oscilloscope were set to 1 

V/division on the Y-axis and 100 ms/division on the X-axis. For each experiment, data 

was acquired as soon as the pressure was reduced until the vocal folds model in static 

state.  

Figure 3.7 shows positions of reflective paper on the model. Two pieces of reflex paper 

were placed on the midpoints of both sides of the vocal folds to obtain the vocal fold’s 

response result. Another piece of reflex paper was placed on the edge of the model to 

get the response of rigid part in the larynx model and to ensure that the vibration of the 

whole model wouldn’t produce significant noise and affect the final results of the 

experiment.  
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3.7 Summary 

This chapter introduced a new larynx model used to validate the FEA. Due to 

equipment being unavailable, measurements were made only to determine the natural 

frequencies and velocity in the experiment. No attempt was made to measure the mode 

shape in frequency test and deformation shape in the phonation simulation process. The 

results of the experiment will be presented in Chapter 4 and compared with theoretical 

results.  
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Chapter 4    RESULTS 

4.1 Introduction 

This chapter presents the frequency and dynamic results of the vocal folds analysis. 

Both theoretical model and experimental model are considered. For the experimental 

model, the resonance frequencies and dynamic response are obtained by forced 

vibration and step input. For theoretical model, the results are calculated using 

ABAQUS software. 

 

4.2 Experimental Results 

All of the test data were exported to Microsoft Excel, and shown in a graphical format 

for easier inspection. 

4.2.1 Forced Vibration Results 

The main purpose of the experiment was to determine the resonance frequencies of the 

experimental model, at which the vocal folds exhibit maximal amplitudes of vibration. 

When the excited vibration was swept from 10 Hz to 200 Hz, the output results were 

displayed in the frequency domain using the Fast Fourier Transformation (FFT) mode. 

The peaks observed on the oscilloscope screen demonstrate the resonance frequencies.  

Exported from the oscilloscope, Figure 4.1 and Figure 4.2 show samples of the graphs 

of vibration intensity versus frequency of the midpoint of the vocal fold model. The two 

peaks of the left vocal fold element are 75 Hz and 131 Hz. However, in the right vocal 

fold element, they are 79 Hz and 133 Hz. 
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Figure 4.1 - Frequency response of the left vocal fold element 
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Figure 4.2 - Frequency response of the right vocal fold element 

 

Time domain data can also be used to find out the resonance frequencies of the system. 

Figure 4.3 and Figure 4.4 show the response amplitude when the excitation frequency 

was changed around 131 Hz.  
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Figure 4.3 - Excited motion at frequencies 130, 140 and 150 Hz(left) 
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 Figure 4.4 - Excited motion at frequencies of 110, 120 and 130 Hz (left) 
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4.2.2 Air Flow Results 

The following figures represent the velocity of the vocal fold midpoint during the model 

closure. Figure 4.5 shows the data from the left vocal fold element, and Figure 4.6 

shows the data from the right element. 
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Figure 4.5 - Closure process of the left model 
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Figure 4.6 - Closure process of the right model 
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4.3 Finite Element Results 

The finite element results are determined using ABAQUS software. The whole model 

was divided into 276701 three-dimensional tetrahedral elements which consist of 57174 

nodes. The total number of variables (degrees of freedom plus any Lagrange multiplier 

variables) in the model is 171522. The mass of each of the model elements is 0.60749g. 

4.3.1 Vibration Results 

In ABAQUS, the frequency analysis utilizes the eigensolver to determine the 

eigenvalue and eigenfrunction. Implementing the geometrical dimensions, physical and 

mechanical properties results in eigenfrequency are shown in Figure 4.7. For various 

mode numbers, there are corresponding eigenfrequencies.  

In most structural analysis, only the first few modes are of interest. Thus in this work 

only the first three eigenmodes and eigenfrequencies are considered. Figure 4.7 

indicates that the first three natural frequencies for the realistic vocal folds are 125 Hz, 

184.88 Hz and 220.5 Hz. 

 

Figure 4.7 - Eigenfrequencies for different modes 

Each eigenfrequency contrasts with an eigenmode. In previous study, Berry [19] found 

that the combination of the first two eigenmodes captures more than 95% of the 

variance of the vocal-fold vibration in normal phonation and more than 70% of irregular 

vocal-fold vibration. Thus, in this research, only the first two eigenmodes and 
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eigenfrequencies will be discussed. Figure 4.8 shows the first two eigenmodes of the 

vocal fold. The first eigenmode at 125.07 Hz is the shape for the fundamental mode. 

 
a 

 
b 

Figure 4.8 - Vocal fold eigenmodes at (a) 125.07 Hz, fundamental frequency (b) 184.88 Hz, the first 

harmonic  
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4.3.2 Dynamic Response 

Glottal dynamics are an important output of the model. It consists of glottal closure and 

collision dynamics. The model behaviour during closure process is recorded and will be 

compared with clinical observation in the literature. The applied subglottal pressure are 

static with different amplitude ( sP = 600, 800, 1000, 1200 and 1500 Pa). 

4.3.2.1 Glottal Closure Dynamics 

Figure 4.9 shows the glottal closure process. The image of the up-left-side (t = 0 ms) 

represents the initial condition before the vocal folds closing. The up-right and down-

left images represent the deformation of vocal folds at 1.0 ms and 1.8 ms after the vocal 

folds closure. The last image shows the full closure process taken about 2 ms. 

          
                                t = 0 ms                                                        t = 1.0 ms 
 

                 
                                t = 1.8 ms       t = 2.05 ms 

Figure 4.9 - The vocal folds model’s closure process. 

 

Five nodes were selected on the inferior portion of the right vocal fold edge as shown in 

Figure 4.10, which is the first portion of collision with the opposing fold. Node 249 is 

the midpoint of the edge, and the distance between the nearby nodes is 2.5 mm. 
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Figure 4.10 - Selected nodes for glottal opening test 

 

Figure 4.11 shows that the movement of the selected nodes during closing process. 

Figure 4.12 shows the velocity of the selected nodes on the inferior edge. Both of the 

figures illustrate that, the portion near the midpoint of the inferior edge presents the 

greater displacement and collision velocity. 

 
Figure 4.11- Closing time of different nodes (Ps = 800 Pa) 



 

 67

 
Figure 4.12 - Closing velocity of different nodes on inferior edge of the right vocal fold. (Ps = 800 Pa) 

 

From ABAQUS output, node 250 (5.51-6, 6.75-3, 4.44-3) is found to be the point of 

glottal opening amplitude and maximum impact velocity. It is just next to the midpoint 

(5.51-6, 7.00-3, 4.44-3) on the medial edge of the vocal fold. The model deformation 

varies with the subglottal pressure magnitude, which excited the model in the first step. 

Figure 4.13 shows the x position of node 250 during closure process. The arrow which 

points to the time of full closure and the curves shows the glottal opening amplitude. 

Furthermore, the relationship between the glottal opening amplitude and the subglottal 

pressure is shown in Figure 4.14. 
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Figure 4.13 - Effect of the subglottal pressure on the vocal fold movement. 
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Figure 4.14- Glottal opening amplitude in x-direction 

 

Figure 4.15 shows the velocities of node 250 in the x-direction excited by various 

subglottal pressures. During the collision, the velocity of the node changes to zero 

within 2.7-5 second and independent on the subglottal pressure. The impact velocity 

versus the subglottal pressure is approximately linear as shown in Figure 4.16. 
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Figure 4.15 - Node 250 closing velocity under various subglottal pressures 
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Figure 4.16 - Closing velocity of node 250 in x-direction 

 

4.3.2.2 Glottal Collision Dynamics 

Normally, the contact force includes contact normal force (CNORMF) and frictional 

shear force (CSHEARF). Because the interaction between the folds was assumed 
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frictionless, the frictional shear force between the vocal fold surfaces is zero. The 

contact force as shown in Figure 4.17  is the total force due to contact stress. The 

contact area is another important data in the glottal closure dynamics and is shown in 

Figure 4.18. 

 
Figure 4.17 - Total contact normal force under various subglottal pressures (Ps=600, 800, 1000, 

1200 and 1500 Pa) 

 

 
Figure 4.18 - Total contact area under various subglottal pressures (Ps=600, 800, 1000, 1200 and 

1500 Pa) 
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As discussed in Chapter 2, the area around the midpoint of the vocal fold receives the 

maximum contact force and pressure [50]. From Figure 4.19, it is clear that, most of the 

points which receive the maximum contact normal were included in the selected area 

shown in Figure 2.14. 
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Figure 4.19 - Comparison of the max contact force between selected points and the whole model 

points (Ps = 800 Pa) 

 

For general contact, CPRESS is calculated as the magnitude of the net contact normal 

force (the CNORMF vector) per unit area. If the contact stress is over 10 kPa, this may 

cause tissue damage [5]. From Figure 4.20, it is clearly indicated that some parts of the 

vocal folds are exposed to a contact stress over 10 kPa during the vocal folds closure 

with an excited subglottal pressure of 800 Pa. 
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Figure 4.20 - Maximum contact stress of the selected points during closure (Ps = 800 Pa) 

 

However, there are still too many nodes in the selected area. The research need to 

concentrate on a smaller area with few nodes. From the resulting data, the following 

nodes, highlighted in Figure 4.21 were chosen. The elements around the selected nodes 

receive most of the maximum contact stress during the closure process. 

 
Figure 4.21 - The highlight points present the maximum contact normal force and contact stress 

during glottal pressure. 
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The node number of the highlighted points from left to right is 242 ~ 253 and their 

coordinates are from node 242 (5.51-6, 8.50-3, 4.44-3) to node 253 (5.51-6, 5.75-3, 4.44-3). 

Figure 4.22 shows the contact stress during closure when the subglottal pressure is    

800 Pa.  
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Figure 4.22 - Contact stress of the highlight points (Ps = 800 Pa) 
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Chapter 5   DISCUSSION 

5.1 Introduction  

To the best of our knowledge, no previous work was found in the open literature on 

using layered structure with nonlinear material and geometry to study the frequency 

characteristics and dynamics response of the vocal folds. This chapter provides 

discussion on the frequency characteristics and dynamics response during closure of the 

experimental vocal folds tested in Chapter 2, the FEA models in Chapter 3 and 

comparison with some results from the literature.  

 

5.2 FEA Model Validation 

The general geometry and boundary conditions are validated by the experimental modal 

analysis results. The layered structure and viscoelastic material properties are validated 

by comparing with the in-vivo experimental results from published literature. 

5.2.1 Experiment Validation  

In this work, the experimental tests were generated to validate the theoretical results. 

The forced vibration experiment was based on the concept of vibrational resonance and 

modal analysis. The air flow excited experiment shows the dynamic characteristics 

under a step input.  

5.2.1.1 Forced Vibration Test 

As given in Chapter 3, the EMA (experimental modal analysis) model structure is 

slightly different from the real structure which the FEA model based on. This requires a 

new FEA model based on the same structure as EMA model. The main differences 

between the EMA model and the real structure are listed as follows:   

1. The geometry size is twice larger than the real size.  
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2. The whole EMA model is made of a silicone material instead of layered structure. 

3. The properties of the silicone material are different from the real human tissue. They 

are obtained by the stress-strain test and given in Appendix III.  

In the finite element analysis theory, a linear system can be decomposed into a set of 

independent vibration patterns which are called eigenmodes. Each of the eigenmodes 

corresponds to a natural frequency or eigenfrequency. Both the eigenmodes and the 

eigenfrequencies are characteristics of the system, and independent on the source of 

excitation. In real structures, every vibrating system possesses a unique resonance 

structure. The resonance frequencies and resonance modes can be seen as practical 

approximations of the eigenfrequencies and eigenmodes of the vocal folds [51].  

The eigenfrequencies of the new FEA model were calculated using ABAQUS software 

as shown in Figure 5.1. The first two eigenfrequencies are: 81.87 Hz, 127.72 Hz.  

 

Figure 5.1 - Eigenfrequencies of different modes 

 

Phasing resonance frequency is the simplest method to find out the resonance frequency 

in experimental modal analysis. That could be approached by both time domain data 

and frequency domain data.  
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(1) Frequency domain results 

For the EMA model, resonance frequencies obtained from the FFT results are 

shown in Figure 4.1 and Figure 4.2. The first two resonance frequencies are 75 Hz 

and 131 Hz for the left element and 79 Hz and 133 Hz for the right element. As can 

be seen there are three or more peaks observed within the experimental sweep range 

10~200 Hz in the experiment. However, only two peaks were detected. This is 

attributes to the fact that the amplitude of excitation generates the shaker was too 

small to excite large frequencies. Furthermore, the two figures indicate that the 

maximum peak flatten due to the system’s damping. Also the damping attribute to 

the elimination of higher frequency. Thus higher resonance frequencies can’t be 

detected.  

(2) Time domain results 

Figure 4.3 and Figure 4.4 show that when any excitation frequency changes around 

131 Hz, the response of the system decreases. The definition of resonance frequency 

is that at resonance frequency, any change, no matter how small, in the frequency of 

excitation causes a decrease in the response of the system [44]. Then this is 

confirmed that 131 Hz is one of the resonance frequencies of the left vocal fold 

model.  

Table 5-1 Comparison of theoretical results and experimental results 

The natural frequencies 

FFT results (Hz)  ABAQUS  

(Hz) left right 

Time domain 

results (Hz) 

First 81.87 75 79 Not detected* 

Second 127.72 131 133 131 

* the reason will be discuss in section 5.3 

5.2.1.2 Air Flow Test 

To simulate a step input, a constant pressure air flow was applied to the vocal folds and 

then suddenly removed. At this stage, the folds moved freely with a bit of oscillation. 

The results of this test are presented in Figure 4.5 and Figure 4.6, for the left and right 

element of the model respectively. The two figures indicate that there is no positive 
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velocity (opening direction) during the closure process of the experimental model. That 

means the vocal folds will not come back to its original position. Evidently, this does 

not agree with the clinical observation or the ABAQUS simulation results. However, 

this discrepancy is attributed to the inaccuracy in the experimental setup. The laser 

sensor is a non-contact sensing device which measures the movement of a point along 

the laser ray; i.e. it traces the movement along a straight line. In the present case when 

the vocal folds bent, different points were detected by the same laser. This is illustrated 

in Figure 5.2. Unfortunately there was no displacement tracking device available when 

this experiment was undertaken. 

 

Figure 5.2 - The detected point will change if the object bends. 

 

Figure 5.3 shows the closure process of the right element of the model. It is clearly 

indicated that the frequency of out-of-plane self-oscillation is between 130 – 140 Hz. 

This is in agreement with the first experiment which showed that one resonance 

frequency is 131 Hz and the theoretical value. A more accurate result of this work 

should have been done using a high speed movie camera which was not available at the 

time of experiment. 
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Figure 5.3 - Closure process of the right model 

 

As shown in Table 5-1, the experimental results of the resonance frequencies and the 

theoretical results of eigenfrequencies agree quite well. From the experiment, it is 

believed that the ABAQUS model does represent the complex model with nonlinear 

geometry and viscoelastic properties. Although the resonance modes of the system 

could not be observed in the experiment, the frequency agreement is strong enough to 

validate the FEA model geometry, boundary conditions and mesh method. 

5.2.2 Comparison with Literature 

Experimental resonance studies of the vocal folds have been performed on excised 

larynxes, and on in vivo human subjects [52-54]. Summarizing the results on excised 

larynxes, Kaneko [54] indicated that two prominent resonances appeared in the excised 

larynxes, with no tension applied. The frequencies of the first two resonances were 120 

and 180 Hz, respectively. In 2000, Svec [52] duplicated Kaneko’s experiment utilizing 

new equipment such as an endoscope. This study detected three resonances in the folds 

at 110, 170 and 240 Hz.  

In the present FEA model designed in Chapter 2, the first three eigenfrequencies are 125 

Hz, 184.88 Hz and 220.5 Hz. Table 5-2 shows that these frequencies are in excellent 

agreement with the in-vivo experimental testing. The agreement corroborate the layered 

structure and material properties assigned in the FEA model. Thus the FEA model 
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developed in Chapter 2 is a dependable tool which could be used for future 

development and investigation.  

Table 5-2 Comparison of theoretical results and in-vivo experimental results 

Natural frequencies 

In-vivo Experimental results (Hz) 
 ABAQUS results (Hz) 

Kaneko Svec 

First 125 120 110 

Second 184.88 180 170 

Third 220.5 Not available 240 

 

5.3 Frequency Analysis 

As mentioned before, the combination of the first two eigenmodes captures more than 

95% of the variance of the vocal-fold vibration in normal phonation and more than 70% 

of irregular vocal-fold vibration [19]. 

       
a 

 

      
b 

Figure 5.4 Eigenmodes (a) one (at 81.87 Hz) (b) two (at 127.72 Hz) 
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Therefore, it is worth to focus on the first two resonance frequencies, 75 Hz and 131 Hz. 

Figure 5.4 shows the first and second eigenmodes of the EMA model. 

The first one is associated with in-plane (medial–lateral) oscillation. Resonance at this 

frequency will cause the two elements (right and left) of the model open and close. This 

mode is responsible for abduction and adduction of the folds in a vibration cycle. The 

second frequency, 131 Hz, is associated with both in-plane (medial–lateral) and out-of-

plane (superior-inferior) vibration of the folds. That is to say, at this resonance, the folds 

will vibrate in the transverse direction. This plays an important role in glottal shaping 

which presents the up-down motion of the vocal folds. However, the laser sensor used 

in the experimental investigation can only detect the out-of-plane vibration (superior- 

inferior) and then detect the vibration generating at 131 Hz rather than at the 75 Hz. The 

frequency characteristic gives the reason why it was hard to detect the resonant 

vibration at the first resonance frequency using one-dimensional detection equipment. 

The eigenmodes of the FEA model based on the real structure are shown in Figure 4.8. 

It is clear that they are similar as the eigenmodes of the EMA model discussed above. 

Therefore, in the FEA model, the first natural frequency 125.07 Hz is associated with 

in-plane vibration and the second natural frequency 184.88Hz is associated with out-of-

plane vibration.  

During phonation, when the subglottal airflow is periodic input around the fundamental 

frequency 125 Hz, the responses of vocal folds vibration will increase dramatically. The 

impact stress between the vocal folds will be much larger than that under a step input. 

When the glottal airflow is at the second natural frequency, the main movement of the 

vocal folds vibration will be out-of-plane. The main force between the vocal folds will 

be the shear force. If the vocal folds are in healthy situation, the friction ratio between 

the vocal folds will be very small and shear force could be ignored. If the vocal folds 

keep work for a long time, and the mucus doesn’t work very well, the shear force will 

increase and damage the vocal folds tissue. There is no experimental data about the 

friction ratio between the vocal folds and what shear stress magnitudes cause tissue 

failure. Therefore, it is impossible to comment on which stress is the main risk of tissue 

damage in this situation. 
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5.4 Dynamic analysis 

The glottal dynamics is separated into two parts: closure dynamics and collision 

dynamics.  

5.4.1 Glottal Closure Dynamics 

From Figure 4.9, it is shown that the glottal closure starts from the anterior and posterior 

ends, and proceeds towards the middle region. For more details, as shown in Figure 

4.11, the node 269 near the posterior end achieves the mid-plane first, and then the node 

229 near the anterior end reaches the mid-plane and finally the midpoint node 249. 

Because the two vocal folds are designed symmetric in this model, the movement of the 

vocal folds are symmetric too. Thus, once the inferior surfaces arrive to the mid-plane, 

they will contact with each other.  

As demonstrated in Chapter 4, node 250 is the point of maximum glottal opening and 

maximum impact velocity and it is the last point contacting with the opposing fold. 

Therefore, in this discussion, we will focus on the movement of node 250 rather than 

the whole vocal fold.  

In previous observations of in vivo testing of fully abduction and adduction [55], the 

glottal opening amplitude responds positively to the magnitude of the subglottal 

pressure. That is to say as the pressure increase, the opening amplitude increase too. 

Figure 4.13 and Figure 4.14 show that the displacement in x-direction is also positive 

and approximately follow a linear trend with the subglottal pressure.  

The full glottal closure time is another important characteristic of this investigation. 

This time is from the initial closure condition (t = 4 ms in this model) to full closure 

which is defined as zero glottal area. Figure 4.13 shows that the full glottal closure time 

is constant of about 2.05 ms under various subglottal pressures. In conclusion, it is 

independent of the subglottal pressure. Figure 4.13 and Figure 4.15 show the 

displacement and velocity behaviour of node 250 during closure process in x-direction. 

This process may be divided into two steps:  

(1) The first step takes about 0.72 ms from the initial condition. The acceleration is 

approximately constant in this step.  
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(2) The second step is from the end of the first step to fully glottal closure. This step 

takes about 1.33 ms. In this step, the velocity is constant until the contact of 

opposite fold. The impact velocity in the lateral direction (x-direction) is also 

approximately linear in relation with the subglottal pressure as illustrated in 

Figure 4.16.  

The impact velocity is the most important factor when two bodies collide. However, it 

is very difficult to determine within the experimental setup of this work and there are no 

experimental data about it in the open literature.  

5.4.2 Glottal Collision Dynamics 

Figure 4.17 and Figure 4.18 show the contact area and impact force of the entire vocal 

fold during collision. The total contact area and contact force in the FEA model are in 

the range of available experimental results [50].  

The impact phase occurs when one of the vocal folds first gets in contact with the 

opposing fold. Contact stresses between the vocal folds rise very quickly and reach peak 

values. During this phase, the vocal folds collision generates very large impact stresses 

(normal stress in this model). This pressure can be determined by, 

 FP
A

=  (5.1) 

F = impact force 

A = impact area 

An impact force is a large force applied over a short period of time. Such a force can 

have a large effect on the vocal folds. Using Newton’s second law, the contact force can 

be calculated by  

 
vf ma m
t

= =
�

�
 (5.2) 

It is shown in Figure 4.12 that, the points near the midpoint have very high collision 

velocity, and shorter acceleration time period. Compared with the total impact phase, 

the mid area of vocal fold is the main injury risk area during the collision. Figure 4.22 
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gives the contact stress of the selected points shown in Figure 4.21. An example of the 

collision velocity and period of node 250 is listed as follow, 

v� = 37.6 mm/s, 47.5 mm/s, 78.5 mm/s (Ps = 800 Pa, 1000 Pa, 1500 Pa) 

t�  ≈ 2.7-5 s 

Because the impact period is the same and the mass of each selected nodes are similar, 

the relationship between the subglottal pressure and the impact force is approximately 

linear. The relationships between the impact force and the superficial tissue mechanical 

stress can be obtained in the model collision process. Although, the total contact area 

varies with the subglottal pressure magnitudes, the contact area selected in Chapter 4 

always contact with the opposing vocal fold. Furthermore, the contact area for each 

node in the selected area is constant during the vocal folds collision. This depends on 

ABAQUS mesh size rather than the subglottal pressure. Therefore, in the middle 

portion of the vocal folds, the relation between the peak impact stress and the subglottal 

pressure is approximately linear. 

In medical theory, vocal nodule is believed to be caused by trauma. Furthermore, lots of 

observations illustrate that the vocal fold trauma occurs after collisions [56]. If the 

collision pressure is over 10 kPa, the impact stress may squish the vocal folds tissue and 

cause tissue failure.  

As shown in Figure 4.22, when the subglottal pressure is over 800 Pa, the peak impact 

stress will be over the vocal fold tissue damage level. Most of vocal nodule occurs at the 

middle of membranous fold [56]. The locations of the nodules match with the locations 

of the maximum impact force in this model. Therefore, the impact stress is assumed to 

be one of the most important factors of vocal nodule.   

 

5.5 Summary 

The FEA was validated by both EMA model results and published in-vivo experimental 

results. The eigenmodes show the vocal fold vibration directions at various excitation 

frequencies. In the dynamic analysis, the vocal folds closure process corresponds to 

clinical observation. In the mid area of the vocal folds inferior surface, the closure 

velocity, impact force and impact stress are linear with subglottal pressure. When the 
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subglottal pressure is over 800 Pa, the maximum impact stress will be more than 10 kPa, 

which is assumed to have the capacity to cause the vocal fold trauma.  
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Chapter 6 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions  

The objective of this thesis was to develop a finite element model to simulate the 

process of vocal folds closure. The vocal fold vibrations and dynamic responses are 

investigated using an ABAQUS model which incorporates the inhomogeneity and 

anisotropy of the materials, the irregularity of the geometry and the layered structure. 

The initial aims set out in Chapter 1 have been achieved as following: 

1) Build a complete mathematical model to simulate the vocal folds and determine 

the geometry and material parameters in the model. 

The geometry of the model was based on Titze's theory [27, 29] and simplified for the 

FEA model. In the model, the vocal folds were divided into two layers: the cover part 

(assigned as an isotropic viscoelastic material), and the body part (considered as a 

transverse isotropic elastic material). Both of the material properties were obtained from 

experimental results in the literature. The experimental data was selected and converted 

to a Prony series form which can be used in ABAQUS. The boundary condition was 

determined by anatomical structure analysis. In this thesis, the vocal folds are assumed 

to be symmetric in a healthy situation. 

2) Validate the mathematical model for simulation. 

A silicone vocal fold model was developed as described in Chapter 3. Testing of the 

material mechanical properties is discussed in Chapter 3 and Chapter 4. The silicone 

material used has similar mechanical properties to the vocal fold tissue including 

density and elasticity. In the frequency analysis, the experimental results and finite 

element analysis results are in good agreement with each other. This validates the 

geometry and boundary conditions of the mathematical model. The theoretical results 

also agree with in-vivo experimental results in the literature. The agreement validates 

the material properties and layered structure in the mathematical model. Therefore, the 
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developed mathematical model is a dependable model for frequency and dynamic 

analysis. 

3) Compare the frequency results from the mathematical model and the 

experimental results of the silicone model and study the frequency 

characteristics of the vocal folds. 

In the frequency analysis, the results were shown as eigenfrequencies and eigenmodes. 

The eigenfrequencies agreed with the resonance frequencies found in the experimental 

tests. The eigenmodes showed the resonance vibration directions at different excitation 

frequencies. This theory explains why some data was missed at the first resonance 

frequency during experiment testing. The results predict that the impact stress will 

increase dramatically when the air flow frequency is around 125 Hz. 

4) Compare the dynamic results from the mathematical model and the 

experimental results and study the dynamic response of the vocal folds.. 

In dynamic analysis, the glottal opening size and closing velocity were approximately 

linear with the subglottal pressure. The mid areas of the inferior surfaces of the vocal 

folds were found to suffer the maximum impact stress during glottal closure. These 

results agree with the experimental results in the literature. The impact stress analysis 

focused on these areas. The results showed that when the subglottal pressure was over 

800 Pa, the impact stress on that area may cause the vocal folds tissue failure. 

 

6.2 Future Work 

This model has the potential to simulate some vocal fold disorders. It is anticipated that 

the model will help to identify voice disorders such as vocal-fold paralysis and vocal-

fold nodules. However, in order to improve on this work, the following issues will need 

to be addressed:   

1. In clinical observations, the vocal folds tissue failure develops after a long time 

due to both higher-pitched (higher frequency) voices and louder (higher 

amplitude) voice. In future, it is necessary to simulate periodical subglottal 

pressure to find the accumulated effect of impact stress during phonation. 
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2. The shear force between the two vocal folds on the inferior surface is also a 

potential risk of tissue damage. This force should be considered if the friction 

ratio is determined in experimental test. 

3. The vocal folds will be used to represent pathological and surgical alterations by 

changing some detail of the geometry and material properties. For example, the 

vocal fold nodule could be represented by adding a small mass onto the inferior 

surface of current the FEA model. 



 

 88

REFERENCES 

1. Learning about the voice mechanism. Voiceproblem.org. Available from: 

<http://www.voiceproblem.org/anatomy/learning.asp#> [Accessed 01/12/2005] 

2. About the voice. Lions Voice Clinic. Available from: 

<http://www.lionsvoiceclinic.umn.edu/page2.htm> [Accessed 10/04/2005] 

3. Aronson, A.E. Clinical voice disorders: Thieme; 1990. 

4. Holmberg, E.B., Hillman, R.E., and Perkell, J.S. Glottal air-flow and 

transglottal air-pressure measurements for male and female speakers in soft, 

normal, and loud voice. Journal of Acoustical Society of America 1988;84 pp: 

511–529. 

5. Titze, I.R. Mechanical stress in phonation. Journal of Voice 1994;8 (99–105) pp. 

6. Greene, M.C.L. The voice and its disorders. Philadelphia: J. B. Lippincott; 1980. 

7. Anatomy and physiology of the voice. The Milton J. Dance, Jr. Head & Neck 

Rehabilitation Center. Available from: 

<http://www.gbmc.org/voice/anatomyphysiologyofthelarynx.cfm> [Accessed 

05/12/2005] 

8. Gray, S.D., Alipour, F., Titze, I.R., and Hammond, T.H. Biomechanical and 

histologic observations of vocal fold fibrous proteins. The Annals of Otology, 

Rhinology & Laryngology 2000;109 (1) pp: 77. 

9. Hirano, M. Structure and vibratory behavior of the vocal folds. Tokyo: 

University of Tokyo Press; 1977. 

10. Titze, I.R. Principles of voice production. Iowa City, Ia: National Center for 

Voice and Speech; 2000. 

11. Hirano, M. Phonosurgery: Basic and clinical inverstigations. In: Official Report 

of the 76th Annual Convention of the Oto-Rhino-Laryngological Society of 

Japan, 1975. 



 

 89

12. Titze, I.R. A framework for the study of vocal registers. Journal of Voice 1988;2 

(3) pp: 183-194. 

13. Kakita, Y., Hirano, M., and Ohmaru, K. Vocal fold physiology. Tokyo: 

University of Tokyo Press; 1981. 

14. Flanagan, J., and Landgraf, L. Self-oscillating source for vocal-tract synthesizers. 

IEEE Trans. Audio Eletroacoust 1968;16 pp: 57–64. 

15. Ishizaka, K., and Flanagan, J.L. Synthesis of voiced sounds from a two-mass 

model of the vocal cords. Bell Syst. Tech. J 1972;51 pp: 1233-1268. 

16. Titze, I.R. The human vocal cords: A mathematical model. I. Phonetica 1973;28 

pp: 129–170. 

17. Titze, I.R. The human vocal cords: A mathematical model. II. Phonetica 1974;29 

pp: 1–21. 

18. Story, B.H., and Titze, I.R. Voice simulation with a body-cover model of the 

vocal folds. Journal of Acoustical Society of America 1995;97 (2) pp: 1249-

1260. 

19. Berry, D.A., and Titze, I.R. Interpretation of biomechanical simulations of 

normal and chaotic vocal fold oscillationswith empirical eigenfunctions. Journal 

of Acoustical Society of America 1994;95 (6) pp: 3595-3604. 

20. Vries, M.P., Schutte, H.K., and Verkerke, G.J. Determination of parameters for 

lumped parameter models of the vocal folds using a finite-element method 

approach. Journal of Acoustical Society of America 1999;106 (6) pp: 3620-

3628. 

21. Jiang, J.Y., Qiu, Q.J., and Xu, K.X. Modeling vocal-fold vibration via 

intergrating two-mass model with finite-element method. Journal of Biomedical 

Engineering 2005;22 (2) pp: 297-302. 

22. Berry, D.A., and Titze, I.R. Normal modes in a continuum model of vocal fold 

tissues. Journal of Acoustical Society of America 1996;100 pp: 3345-3354. 



 

 90

23. Courant, R. Variational method for the solution of problems of equilibrium and 

variations. Bulletin of the American Mathematical Society 1943;49 pp. 

24. Brauer, J.R., ed. What every engineer should know about finite element analysis. 

New York: Marcel Dekker, Inc.; 1988. 

25. Alipour, F., Berry, D.A., and  Titze, I.R. A finite-element model of vocal-fold 

vibration. Acoustic Society of America 2000;108 (6) pp: 3003-3012. 

26. Gunter, H.E. A mechanical model of vocal-fold collision with high spatial and 

temporal resolution. Acoustic Society of America 2003;113 (2) pp: 994-1000. 

27. Scherer, R.C., Shinwari, D., Kenneth J. De Witt, Zhang, C., Kucinschi, B.R., 

and Afjeh, A.A. Intraglottal pressure profiles for a symmetric and oblique 

glottis with a divergence angle of 10 degrees. Journal of Acoustical Society of 

America 2001;109 (4) pp: 1616-1630. 

28. Thomson, S.L., Mongeau, L., and Frankel, S.H. A physical model of the vocal 

folds. In: International Mechanical Engineering Congress; Washington, D.C.: 

ASME, 2003:1-2. 

29. Mantha, S., Mongeau, L.,  and Siegmund, T. Dynamic digital image correlation 

of a dynmaic physical model of the vocal folds. In: International Mechanical 

Engineering Congress and Exposition; Orlando, Florida USA: ASME, 2005:1-2. 

30. Titze, I.R., and Talkin, D.T. A theoretical study of the effects of various 

laryngeal configurations on the acoustics of phonation. Acoustic Society of 

America 1979;66 (1) pp: 60-74. 

31. Min, Y.B., Titze, I.R., and Alipour, F. Stress–strain response of the human vocal 

ligament. Ann. Otol. Rhinol. Laryngol 1995;104 pp: 563–569. 

32. Kaneko, T., Masuda, T., Akiki, S., Suzuki, H., Hayasaki, K., and komatsu,K. 

Resonance characteristics of the human vocal fold in vivo and in vitro by an 

impulse excitation. Laryngeal Function in Phonation and Respiration 1987 pp: 

349–365. 

33. Lakes, R.S. Viscoelastic solids. Boca Raton: CRC Press; 1999. 



 

 91

34. Chan, R.W. Estimation of viscoelastic shear properties of vocal-fold tissues 

based on time–temperature superposition. Journal of Acoustical Society of 

America 2001;110 (3) pp: 1548-1561. 

35. Cengel, Y.A. Heat transfer: A practical approach: McGraw-Hill College; 2002. 

36. Chan, R.W., and Titze, I.R. Viscoelastic shear properties of human vocal fold 

mucosa: Mearsurement methodology and empirical results. Journal of 

Acoustical Society of America 1999;106 (4) pp: 2008-2021. 

37. Chung, T.J. Applied continuum mechanics. New York, USA: Cambridge 

University Press; 1996. 

38. Hunter, E.J., Titze, I.R., and Alipour, F. A three-dimensional model of vocal fold 

abduction/adduction. Journal of Acoustical Society of America 2003;115 (4) pp: 

1747-1759. 

39. Alipour, F., and Titze, I.R. Elastic models of vocal fold tissues. Journal of 

Acoustical Society of America 1991;90 (3) pp: 1326-31. 

40. Importance of water in the diet. Available from: 

<http://www.chem.duke.edu/~jds/cruise_chem/water/watdiet.html> [Accessed 

12/12/2005] 

41. Jiang, J., Lin, E., and Hanson, D.G. Voice disorders and phonosurgery. I.  Vocal 

fold physiology. Otolaryngol. Clin. North Am 2000;33 pp: 699–718. 

42. Chan, R.W., and Titze, I.R. Viscoelastic shear properties of human vocal fold 

mucosa: Theoretical characterization based on constitutive modeling. Journal of 

Acoustical Society of America 2000;107 (1) pp: 565-580. 

43. He, J. M.  and Fu, Z. F. Modal analysis. Oxford: Butterworth-Heinemann; 2001. 

44. Harris, C. M., Piersol, A. G. Harris’ shock and vibration handbook. New York: 

McGraw-Hill; 2002. 

45. Biomechanics. Available from: <http://en.wikipedia.org/wiki/Human_kinetics> 

[Accessed 12/12/2005] 



 

 92

46. Buddy, D.R., Allan, H., Frederick, S. and Jack, L. Biomaterials science: Elsevier, 

Inc.; 2004. 

47. Condensation cured silicones. Available from: 

<http://www.barnesproducts.com.au/BarnesRTV.pdf> [Accessed 09/09/2005] 

48. Hsiao, T.Y., Wang, C.L., Chen C.N., Hsieh F.J., and Shau, Y.W. Elasticity of 

human vocal folds measured in vivo using color doppler imaging. Ultrasound in 

Medicine and Biology 2002;28 (9) pp: 1145-1152. 

49. Randestad, A., Lindholm, C.E., Fabian, P. Dimensions of the cricoid cartilage 

and the trachea. Laryngoscope 2000;110 (11) pp: 1957-1961. 

50. Jack, J.J., and Titze, I.R. Measurement of vocal fold intraglottal pressure and 

impact stress. Journal of Voice 1994;8 (2) pp: 132-144. 

51. Meirovitch, L. Fundamentals of vibrations. New York: McGraw-Hill; 2001. 

52. Svec, J.G., Horacek, J., Sram, F., and Vesely, J. Resonance properties of the 

vocal folds: In vivo laryngoscopic investigation of the externally excited 

laryngeal vibrations. Journal of Acoustical Society of America 2000;108 (4) pp: 

1397-1407. 

53. Kaneko, T., Komatsu, K., Suzuki, H., Kanesaka, T., Masuda, T., Numata, T. and 

Naito, J.  Mechanical properties of the human vocal fold - resonance 

characteristics in living humans and in excised larynges. In: Vocal fold 

physiology: Biomechanics, acoustics, and phonatory control (Titze, I.R. and 

Scherer, R.C. editors). Denver, CO: The Denver Center for the Performing Arts. 

1983; pp. 304-317 

54. Kaneko, T., Masuda, T., Shimada, A., Suzuki, H., Hayasaki, K. and Komatsu, K.  

Resonance characteristics of the human vocal folds in vivo and in vitro by an 

impulse excitation. In: Laryngeal function in phonation and respiration (Baer, T., 

Sasaki, C. and Harris, K. editors). Boston: Little, Brown. 1986; pp. 349-377 

55. Kim, M.J., Hunter, E.J. and Titze, I.R. Comparison of human, canine, and ovine 

laryngeal dimensions. The Annals of Otology, Rhinology & Laryngology 

2004;113 (1) pp: 60. 



 

 93

56. Nagata, K, Kurita, S, Yasumoto, S, Maeda, T, Kawasaki, H, Hirano, M. Vocal 

fold polyps and nodules. A 10-year review of 1,156 patients. Auris Nasus Larynx 

1983;10 (27-35) pp. 

 

  



 

 94

 
 
 

APPENDIX 

APPENDIX I  Geometry data of the vocal folds model 

APPENDIX II  Frequency domain data of viscoelastic mucosa 

APPENDIX III  Silicone’s elasticity test data 
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APPENDIX I 

(A) The lateral surface data points 

 
Table AI.1 Lateral surface 

x (mm) y (mm) z (mm)

 10 0 0-5 

9.974 1 0-5 

9.898 2 0-5 

9.770 3 0-5 

9.592 4 0-5 

9.362 5 0-5 

9.082 6 0-5 

8.750 7 0-5 

8.367 8 0-5 

7.934 9 0-5 

7.449 10 0-5 

6.913 11 0-5 

6.327 12 0-5 

5.689 13 0-5 

5.000 14 0-5 

 

 

(B) The inferior surface’s points are from Equation 2.3. It is a special plane at z=4.5 mm, 

as all the results at that plane is 0. So that, there is an additional plane z=4.5 mm. 

The glottal width(x) from Equation 2.3 on each plane(z=0 mm to z=5 mm) is 

constant.  

 
Table AI.2 The inferior surface’s points from Equation 2.3 

x (mm) y (mm) z (mm) 

4.5 0-14 0 

2.8 0-14 1 

1.5 0-14 2 

0.6 0-14 3 

0.1 0-14 4 

0 0-14 4.5 

0 0-14 5 
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(C) The inferior surface’s points from Equation 2.2  

 
Table AI.3 The inferior surface’s points from Equation 2.2 

 

 

x (mm) y (mm) z (mm) 

4.5 0 0 

4.489 1 0 

4.454 2 0 

4.397 3 0 

4.316 4 0 

4.213 5 0 

4.087 6 0 

3.937 7 0 

3.765 8 0 

3.57 9 0 

3.352 10 0 

3.111 11 0 

2.847 12 0 

2.56 13 0 

2.25 14 0 
 

x (mm) y (mm) z (mm) 

2.8 0 1 

2.793 1 1 

2.771 2 1 

2.736 3 1 

2.686 4 1 

2.621 5 1 

2.543 6 1 

2.45 7 1 

2.343 8 1 

2.221 9 1 

2.086 10 1 

1.936 11 1 

1.771 12 1 

1.593 13 1 

1.4 14 1 
 

x (mm) y (mm) z (mm)

1.5 0 2 

1.496 1 2 

1.485 2 2 

1.466 3 2 

1.439 4 2 

1.404 5 2 

1.362 6 2 

1.313 7 2 

1.255 8 2 

1.19 9 2 

1.117 10 2 

1.037 11 2 

0.949 12 2 

0.853 13 2 

0.75 14 2 

 

x (mm) y (mm) z (mm) 

0.6 0 3 

0.598 1 3 

0.594 2 3 

0.586 3 3 

0.576 4 3 

0.562 5 3 

0.545 6 3 

0.525 7 3 

0.502 8 3 

0.476 9 3 

0.447 10 3 

0.415 11 3 

0.38 12 3 

0.341 13 3 

0.3 14 3 

x (mm) y (mm) z (mm)

0.1 0 4 

0.1 1 4 

0.099 2 4 

0.098 3 4 

0.096 4 4 

0.094 5 4 

0.091 6 4 

0.087 7 4 

0.084 8 4 

0.079 9 4 

0.074 10 4 

0.069 11 4 

0.063 12 4 

0.057 13 4 

0.05 14 4 

 

 

 

 

 

 

 

 

 

x=0 mm at z=5 mm 
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APPENDIX II 

 

 Frequency domain Storage and Loss modulus of vocal fold cover (59-year-old-male) 

 
Table AII.1 

f loss wR ws' storage wS wr' 

0.01 1.9  0.99641509 7.8 0.985283 0.014717 

0.02 1.9 0.00358491 0.99641509 8 0.984906 0.015094 

0.03 1.95 0.00367925 0.99632075 8.05 0.984811 0.015189 

0.04 1.96 0.00369811 0.99630189 8.1 0.984717 0.015283 

0.05 2 0.00377358 0.99622642 8.3 0.98434 0.01566 

0.07 2.03 0.00383019 0.99616981 8.6 0.983774 0.016226 

0.1 2.2 0.00415094 0.99584906 9 0.983019 0.016981 

0.2 2.5 0.00471698 0.99528302 9.6 0.981887 0.018113 

0.3 2.8 0.00528302 0.99471698 10 0.981132 0.018868 

0.4 3 0.02641509 0.99433962 10.05 0.981038 0.018962 

0.5 3.2 0.00603774 0.99396226 10.6 0.98 0.02 

0.6 3.35 0.00632075 0.99367925 10.8 0.979623 0.020377 

0.7 3.5 0.00660377 0.99339623 11 0.979245 0.020755 

1 3.7 0.00698113 0.99301887 11.5 0.978302 0.021698 

2 4.9 0.00924528 0.99075472 14 0.973585 0.026415 

3 5.9 0.01113208 0.98886792 15 0.971698 0.028302 

4 6.1 0.01150943 0.98849057 18 0.966038 0.033962 

5 6.1 0.01150943 0.98849057 20.5 0.961321 0.038679 

6 6.1 0.01150943 0.98849057 23 0.956604 0.043396 

7 6.2 0.01169811 0.98830189 24 0.954717 0.045283 

8 6.3 0.01188679 0.98811321 25 0.95283 0.04717 

9 6.8 0.01283019 0.98716981 26 0.950943 0.049057 
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APPENDIX III 

 
Figure AIII-1 Extension-force test one 
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Figure AIII-2 Extension-force test two 
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Figure AIII-3 Extension-force test three 
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Figure AIII-4 Extension-force test four 
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Figure AIII-5 Extension-force test five 
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(A) The stress-strain relationship test data of test 1  
Table AIII-1 

Force (N) Stress1 (Pa) Strain1 
0 0 0 
1 12.98701 0.222222 
2 25.97403 0.444444 
3 38.96104 0.666667 

4.3 55.84416 0.888889 
6.2 80.51948 1.111111 
8 103.8961 1.333333 

10 129.8701 1.555556 
12 155.8442 1.777778 

14.2 184.4156 2 
16.5 214.2857 2.222222 
19 246.7532 2.444444 
22 285.7143 2.666667 
25 324.6753 2.888889 
28 363.6364 3.111111 
31 402.5974 3.333333 

33.1 429.8701 3.555556 
 
 
(B) The stress-strain relationship test data of test 2 

Table AIII-2 

Force (N) Stress2 (Pa) Strain2 
0 0 0 
1 13.60544 0.222222 
2 27.21088 0.444444 

3.2 43.53741 0.666667 
5 68.02721 0.888889 

6.7 91.15646 1.111111 
8.2 111.5646 1.333333 

10.2 138.7755 1.555556 
12.2 165.9864 1.777778 
14.2 193.1973 2 
16.5 224.4898 2.222222 
18.3 248.9796 2.444444 
21.7 295.2381 2.666667 
23 312.9252 2.888889 

25.5 346.9388 3.111111 
28 380.9524 3.333333 
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(C) The stress-strain relationship test data of test 3 
Table AIII-3 

Force (N) Stress3 (Pa) Strain3 
0 0 0 
1 13.60544 0.2 
2 27.21088 0.4 

3.2 43.53741 0.6 
5 68.02721 0.8 

6.3 85.71429 1 
8.2 111.5646 1.2 
10 136.0544 1.4 

11.5 156.4626 1.6 
 
 

(D) The stress-strain relationship test data of test 4 
Table AIII-4 

Force (N) Stress4 (Pa) Strain4 
0 0 0 
1 8.714597 0.166667 
2 17.42919 0.333333 

2.8 24.40087 0.5 
3.7 32.24401 0.666667 
4.5 39.21569 0.833333 
6 52.28758 1 

7.4 64.48802 1.166667 
9.5 82.78867 1.333333 
12 104.5752 1.5 

15.5 135.0763 1.666667 
19 165.5773 1.833333 
21 183.0065 2 

23.5 204.793 2.166667 
 
 

(E) The stress-strain relationship test data of test 5 
Table AIII-5 

Force (N) Stress5 (Pa) Strain5 
0 0 0 

1.2 11.11111 0.166667
2.6 24.07407 0.333333
4 37.03704 0.5 

5.2 48.14815 0.666667
6.8 62.96296 0.833333
8 74.07407 1 

9.5 87.96296 1.166667
10.5 97.22222 1.333333
12 111.1111 1.5 
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