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Abstract 

Seaweeds play important roles in coastal ecosystems such as providing habitat, feeding 

grounds and improving water quality. It is crucial to map their distribution to quantify 

biodiversity and assess changes over time especially due to invasive species. The 

seaweed Undaria pinnatifida (Harvey) Suringar, native to north-western Asia, is one of 

the top 100 invasive species in the world and has become established across much of 

New Zealand (NZ), competing and co-existing with native seaweed species. Remote 

sensing is an efficient tool for mapping since current seaweed mapping practices in NZ 

such as snorkelling and SCUBA surveys can be time-consuming and do not cover large 

extents. Despite the invasive nature of U. pinnatifida, there was no spectral information 

available that would assist in remote sensing surveys in NZ. 

A hyperspectral library of common NZ native and invasive seaweed species was 

created to identify the key wavelengths that discriminated NZ seaweed species at both 

inter- and intra- taxonomic levels. The hyperspectral data of the native and invasive 

seaweed species collected from field survey were subjected to two supervised 

classification methods - Partial Least Square Discriminant Analysis (PLS-DA) for 

wavelength selection/classification and random forest for validating the wavelengths 

from PLS-DA. The seaweeds were separable at broad taxonomic level (red, green and 

brown seaweeds) with accuracies > 85% using PLS-DA. Some of the influential 

wavelengths identified were consistent with pigment absorption peaks unique to red and 

brown seaweeds. U. pinnatifida differed from native browns in the visible (574 nm) and 

near-infrared (716 – 721, 750 nm) region of the electromagnetic spectrum and the 

classification accuracies were 97.7% and 90.7% using random forest and PLS-DA, 

respectively. 
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Variations in season or location may affect the spectral reflectance which in turn 

would affect the accuracy of mapping aquatic and terrestrial vegetation from remote 

sensing surveys. Such variations are widely studied in terrestrial plants compared to 

seaweeds. The hyperspectral data of the  two commonly found New Zealand native 

seaweed species, Ecklonia radiata (C. Agardh) J. Agardh. and Carpophyllum 

maschalocarpum (Turner) Grev from four locations across four seasons were used to 

analyse spatial and seasonal effects on their spectral reflectance values using mixed-

effects modelling. The modelling showed that season affects spectral reflectance of the 

seaweed species across the four locations, specifically in summer, which is likely due to 

the higher rates of photosynthesis. 

There are many studies on the effect of depth and turbidity on seaweeds at broad 

taxonomic level globally. However, a detailed study on the depth and turbidity effects 

on seaweeds in New Zealand at broad taxonomic and species level is lacking. The 

hyperspectral data  of the two seaweed species, U. pinnatifida and E. radiata, at five 

depths and two turbidity levels were used in two different models for different purposes. 

Mixed-effects modelling that was used to understand the effect of depth and turbidity on 

the spectral reflectance values of the seaweed species showed depth significantly 

affected the spectral reflectance of the seaweed species compared to turbidity. Random 

forest model was used to assess the feasibility to discriminate the two seaweed species 

from each other across different depths within a turbidity level. Two sets of 

wavelengths were used as explanatory variables to assess the suitability of bands for 

discrimination – wavelengths that discriminated U. pinnatifida from rest of the brown 

seaweed species and wavelengths that matched the Micasense RedEdge-m sensor. This 

comparison would help understand if existing multispectral sensors would suffice or if 

it would be better to customise the sensor for the application. The former set of 

wavelengths (574, 716-718, 720-721, 750 nm) discriminated the two seaweed species 
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from each other better with accuracy in the range of 57 – 87% and the accuracy 

increased with the depth. The overall accuracy of the discrimination of the two seaweed 

species from multispectral data was better at flight height of 30m (63%, kappa = 0.45) 

compared to that at flight height of 10m (60%, kappa = 0.38).  

This is the first study on the spectral variability of seaweeds due to season and 

location, globally. This research is a significant step towards mapping common habitat 

forming NZ native and invasive seaweed species using remote sensing. This study 

identified key wavelengths for discriminating emerged seaweeds (out of water) at 

species level using robust discriminatory models developed. A novel image pre-

processing technique that reduced noise was implemented before image classification. 

The study is also the first to use 5-band multispectral UAV data to classify two 

submerged spectrally similar invasive and native brown seaweed species of New 

Zealand. 
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Chapter 1. Introduction 

Aquatic ecosystems are home to diverse flora and fauna that depend on each other to 

ensure the stability and biodiversity of the system (Krecker, 1939). Submerged aquatic 

vegetation, which includes both vascular plants and seaweeds, is an ecologically and 

economically significant part of aquatic ecosystems due to their multifaceted role in 

both freshwater and coastal ecosystems. This vegetation provides habitat (Cacabelos et 

al., 2010; Pallas et al., 2006), feeding grounds for various organisms (Lorentsen et al., 

2004; Persson et al., 2012), improves water clarity, filters nutrients and runoff, helps 

settle sediment in water (Cho et al., 2012), is a source of raw materials for alginate 

extraction and provides kelp fishery (Vásquez et al., 2014) and prevents coastal erosion 

(Hu et al., 2015).   

Imbalances in ecosystems affect the effective functioning of the ecosystem. For 

example, invasive species may affect the local biodiversity (Aneece & Epstein, 2016), 

growth of undesirable seaweeds like filamentous Cladophora in dense mats due to 

eutrophication disrupts the benthic flora/fauna by reducing dissolved oxygen and pH 

levels in lakes/rivers and the recreational value of the nearshore plummets (Flynn & 

Chapra, 2014; Wezernak & Lyzenga, 1975). Other effects of imbalanced ecosystem also 

include the disappearance of kelp forests possibly due to invasive non-native species 

like U. pinnatifida (Russell et al., 2007), large grazers like sea urchin (Perreault et al., 

2014), mesograzers (Davenport & Anderson, 2007), pollution (Smith, 2000), increase in 

seawater temperature associated with El Nino events (Deysher, 1993) and harmful 

fishing practices (Christie et al., 1998). Therefore, increasing knowledge on the 

distribution and composition of New Zealand seaweed communities offers several 

benefits including biosecurity, ecological and commercial considerations.  
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The kelp species, U. pinnatifida, is a seaweed native to Japan that has invaded 

and established in numerous temperate coastal habitats around the globe (Morelissen et 

al., 2016). It is one of only two seaweeds listed in the top 100 most invasive species of 

the world (Lowe et al., 2000). It spreads mainly by fouling on boat hulls (MPI, 2016). It 

can form dense stands underwater, potentially competing for light and space and leading 

to the exclusion or displacement of native plant and animal species (MPI, 2016). 

However, since 2010 the New Zealand Ministry for Primary Industries Biosecurity unit 

has allowed harvesting of U. pinnatifida from artificial structures (such as mussel 

farms) as well as farming in already heavily infested areas. Although conventional 

surveying methods employing SCUBA diving can provide high accuracy and 

resolution, it is very expensive, time-consuming, inaccessible in certain parts of the 

ocean and requires extensive human power to cover long stretches of coastline (Flynn & 

Chapra, 2014; Vahtmäe et al., 2006). Remote sensing (RS) has the potential to be a 

valuable, efficient and low-cost tool to monitor seaweed communities and provide 

detailed information from surrounding areas over time (Dehouck et al., 2012). 

Therefore, a remote sensing approach for U. pinnatifida detection could have 

management and commercial opportunities. Remote sensing is the measurement of 

specific parts of the electromagnetic energy absorbed, transmitted, reflected or scattered 

by the various features on the earth surface. A detailed explanation of remote sensing 

related to vegetation both terrestrial and aquatic are in section 1.3. 

1.1 Introduction to Undaria pinnatifida 

1.1.1 Distribution of U. pinnatifida in New Zealand 

U. pinnatifida is an invasive species of kelp that has established in temperate coastal

habitats around the world (Morelissen et al., 2016) and is one of the least studied 

invasive seaweed species (Jiménez et al., 2015). It was first recorded in Wellington 
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Harbour in New Zealand in 1987 (Hay, 1990) and has since been found in various ports 

along the east coast of North and South Island (Figure 1). 

Figure 1: Location of U. pinnatifida and the year it was first observed in brackets. 
Adapted from Russell et al., (2007). 

1.1.2 Biology of U. pinnatifida 

1.1.2.1 Morphology and growth 

U. pinnatifida has a holdfast, stipe, blade, midrib and sporophyll on the mature plant

(Figure 2). In New Zealand, it reaches lengths of 1-2m, midrib width of 1-3cm and 

blades about 50-80 cm (Hay, 1990). Dean and Hurd (2007) investigated U. pinnatifida 

in Otago Harbour, New Zealand and inferred average sporophyte lengths increased from 

around 30 cm in May to roughly 2.5 times that length from July to September and then 

started decreasing in October and November. The stipe was on average 15 cm long. 

Chen (2012) inferred that the maximum growth of U. pinnatifida in Marlborough 

Sounds, New Zealand was in November.  
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1.1.2.2 Reproduction by dispersal mechanism 

U. pinnatifida is an annual seaweed and has two life stages; sporophyte stage

(macroscopic) and gametophyte stage (microscopic) (Thompson & Schiel, 2012). The 

spores of U. pinnatifida remain viable for many days and are usually dispersed short 

distances in the order of 100m (Forrest et al., 2000). Reproduction (spore release) of U. 

pinnatifida takes place in autumn and a large number of juvenile sporophytes were 

found in winter and spring. When the day length increased, sporophyll started forming 

in U. pinnatifida in spring (Chen, 2012). However, they spread further as spores in 

ballast water in recreational and commercial vessels (MPI, 2016); fragments or whole 

plants can drift up to 10km (Sanderson, 1997). Sometimes, they also spread from 

mussel farms to the nearby shores if the receiving coastal site is appropriate (James & 

Shears, 2016a). 

Asexual zoospores (Figure 2) are released by the mature sporophyll of U. 

pinnatifida in millions, these drift until they find a suitable substrate to attach to (Hay & 

Gibbs, 1996). Once settled these zoospores germinate into female and male 

gametophytes (Parsons, 1995). While the egg produced by female gametophyte remains 

in place, the sperm produced by male gametophyte is mobile and fertilizes the egg 

which later develops into sporophytes (Parsons, 1995).  
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Figure 2: The life cycle of U. pinnatifida. Adapted from (White et al., 2014). 

1.1.2.3 Mortality 

In Japan, mature U. pinnatifida degenerate and new sporophytes establish themselves in 

late summer/early autumn. However, in New Zealand sporophytes are present 

throughout the year presumably due to the narrow range of annual sea temperature 

compared to Japanese and Korean coastal waters (Hay & Villouta, 1993). Various 

stages of the life cycle of U. pinnatifida depends on sea surface temperature (Saito, 

1975). 

1.1.3 Ecology of U. pinnatifida in New Zealand 

1.1.3.1 Interaction with conspecifics and other species 

Along the Otago coastline, Russell et al (2007) found that in wave-dominated shores U. 

pinnatifida extends into Lessionia variegata and Marginariella boryana zones; in 

deeper sheltered subtidal areas they invaded Macrocystis pyrifera forests and competed 

with Ecklonia radiata and Landsburgia quercifolia. A detailed account of seaweed 

growing and competing with U. pinnatifida is given in Parsons (1995). If the coast is 
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teeming with native algal species, recruitment of U. pinnatifida is unlikely unless there 

is a disturbance to the native population (Morelissen et al., 2016) due to their low 

competitive ability (Thompson and Schiel, 2012).  

Thompson and Schiel (2012) found the following from their study: maximum 

recruitment of U. pinnatifida occurred where there was no mature U. pinnatifida canopy 

and where the substratum was dominated by coralline turf (Corallina officinalis); U. 

pinnatifida recruitment occurred during spring; when U. pinnatifida die off in summer 

other native alga like Carpophyllum maschalocarpum occupy the space and recruitment 

of U. pinnatifida in these areas again is less likely; no recruitment of U. pinnatifida on a 

thin encrusting form of coralline algae and recruitment is less likely on brown alga 

Halopteris congesta.  

1.1.3.2 U. pinnatifida - environment relationship 

U. pinnatifida occurs throughout temperate regions where the maximum temperatures

range between 13.5 ° – 29.5 ° C and minimum temperatures range between 0.1 ° – 15.5 

° C (James et al., 2015). It is found in low intertidal to subtidal depths of 15m in 

sheltered to exposed coastal environments (MPI, 2016). A recent study by James and 

Shears (2016b) in New Zealand revealed U. pinnatifida was found at high densities at 0-

3 m below mean low water in the shallow subtidal or very low intertidal zone. U. 

pinnatifida readily attached themselves to manmade structures or floating objects in 

harbours or boat hulls (MPI, 2016) compared to a natural coastal environment.  

According to James and Shears (2016b) U. pinnatifida thrives in aquaculture 

sites like mussel farms as the competition from other seaweed species is less likely and 

due to absence of herbivorous grazers. They have also found that mussel farms enable 

the longer annual presence of U. pinnatifida due to sporophytes suspended in shallow 

waters with good light levels and no tidal variation with enhanced water flow. James 
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and Shears (2016b) suggests it is likely that U. pinnatifida is more prevalent in waters 

with high clarity and greater water motion.  It was observed mostly in the top two 

metres of water and declined with depth. 

1.1.4 Economic importance of U. pinnatifida 

U. pinnatifida is an invasive seaweed and has a high economic value to it. White et al.

(2014) outline the importance of U. pinnatifida in industrial applications such as soap, 

toothpaste, animal feed, fertilizer and fuel. They also mention the incorporation of the 

two main natural bioactive compounds, fucoidan and fucoxanthin from U. pinnatifida, 

in food and nutraceuticals has increased significantly over the years. Global estimate of 

the wholesale value of U. pinnatifida and products made from it is between 1.6 – 2.2 

billion US dollars (White & Wilson, 2015). In New Zealand, U. pinnatifida has been 

used for producing food and fucoidan products, feeding Paua, manufacturing 

seasonings, other innovative products and organic fertilizers (White & White, 2020). By 

harvesting it from heavily infested areas, the ecological impact is reduced, and revenue 

generated. Waikaitu Ltd in NZ has collaborated with mussel farms to hand-harvest U. 

pinnatifida from mussel lines to turn invasive pest species into organic fertilisers (White 

& White, 2020). These farm owners go through a manual, expensive and time-

consuming process of physically driving a boat to check each mussel line in the farms to 

estimate U. pinnatifida yield. With UAV remote sensing, much of the operational cost 

associated with manpower and boat time can be reduced and also enable accurate 

estimation of biomass. 

1.2 Concepts of Remote Sensing 

1.2.1 Electromagnetic Spectrum 

All matter above absolute zero (K) radiates electromagnetic waves of various 

wavelengths. Electromagnetic (EM) spectrum is the collation of this entire range of 

wavelengths from gamma to radio waves (Figure 3).  
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Figure 3: Electromagnetic Spectrum 

The optical range of the spectrum extends from X-rays through to far-infrared. 

The visible part of the spectrum consists of blue, green and red (400 to 700nm) and near 

infra-red (NIR) region is between 700 – 2500nm. The EM spectrum interacts differently 

with a variety of features on the Earth’s surface and atmosphere, especially the aquatic 

environment (Figure 4) since water absorbs energy at wavelengths beyond 700nm. 

EM energy incident (Ei) on earth interacts with various features and gets 

reflected (Er), absorbed (Ea) and transmitted (Et): 

Ei = Er + Ea + Et (Lillesand et al., 2004) 

Different features on earth reflect incident energy at varying levels and a sensor 

detects this reflected energy across the EM spectrum as spectral reflectance (SR) or 

spectral signature. SR is the proportion of reflected energy (upwelling radiance) to 

incident energy (downwelling irradiance).  

There are two types of remote sensing: passive and active. Passive sensors 

record the electromagnetic radiation that is reflected or emitted from the earth (Jensen, 

2016). Sun is the main source of EM radiation in passive remote sensing system. Most 

earth observation satellites used for, but not limited to, emergency response, precision 

agriculture, land use/land cover, forestry, geology applications, bathymetry mapping, 
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aquatic habitat mapping use passive remote sensing. Active sensors use their source of 

energy which is mostly in the microwave region of the EM spectrum and records the 

energy reflected from the feature of interest (EarthData, 2020). Some of the applications 

of active sensors include detecting wind speed and direction, creating elevation models, 

measuring temperature/humidity/cloud composition.  

Figure 4: Interaction between the electromagnetic spectrum and aquatic 
environment. Reprinted from Remote sensing for lake research and monitoring – 
Recent advances (p 108), by Dörnhöfer & Oppelt, 2016. Elsevier. Copyright (2020) 
by Katja Dörnhöfer and Natascha Oppelt. Reprinted with permission. 

1.2.2 Types of resolution in remote sensing 

A remotely sensed image is assessed based on four different types of resolution. The 

type of resolutions needed depends on the application that it is used for. 
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i) Spatial resolution

A measure of the smallest angular or linear separation between two objects that 

can be resolved by remote sensing (Jensen, 2016). Pixels are normally represented on 

computer screens and in hard-copy images as rectangles with length and width (Jensen, 

2016). 

ii) Spectral resolution

The number and dimension (size) of wavelength intervals (bands) in the EM 

spectrum to which a remote sensing instrument is sensitive (Jensen, 2016).  For 

example, a remote sensing sensor with four spectral bands (red, green blue, infra-red) of 

bandwidth 60nm each is considered to have low spectral resolution compared to a 

sensor with 10 spectral bands of bandwidth 10nm each. The following are some of the 

passive sensors with different spectral resolutions: 

Multispectral 

Multispectral sensors record energy in multiple bands of EM spectrum. They 

typically have four or more wavelength bands. Most satellites have multispectral sensors 

with broad wavelength bands. Ünsalan and Boyer (2011) provides a detailed understanding 

of spatial and spectral resolution and revisit times of some of the earth 

observation/commercial satellites in the past and the present (Table 1).

Hyperspectral 

Hyperspectral sensors have hundreds of contiguous bands of narrow bandwidth. 

These narrow bandwidths are sensitive to various biochemical and biophysical constituents 

found in plants species and most of them identified are in the near infrared (NIR) and 

shortwave infrared (SWIR) region of electromagnetic radiation (George et al., 2014; 

Ollinger, 2011). Hyperion is the first hyperspectral sensor in space onboard the Earth 
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Observing-1 satellite. It can resolve 220 spectral bands (400 to 2500 nm) with a 30 m spatial 

resolution (USGS, 2017). 

Field Spectroradiometer 

Field spectroradiometers are handheld devices that measure the intensity of radiation 

reflected from a target over several wavelengths. These are calibrated against a standard 

reflectance panel such as Spectralon® to calculate reflectance values. These instruments are 

usually of very high resolution, for example, an STS-VIS mini spectroradiometer has a 

wavelength range of 350-800nm with a spectral resolution of 3nm whereas an ASD 

Handheld spectroradiometer (ASDInc., 2017) has a wavelength range of 325 – 1025nm with 

a spectral resolution of 3nm. 

iii) Temporal resolution

Temporal resolution refers to how often and when the sensor records imagery of a

particular area (Jensen, 2016). 

iv) Radiometric resolution

Radiometric resolution can be described as the sensitivity of a remote sensing detector to

differences in signal strength as it records the radiant flux reflected, emitted or backscattered 

from the terrain (Jensen, 2016). 
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Table 1: Summary of sensor characteristics (Satellite Imaging Corporation; 
Ünsalan and Boyer, 2011) 

Sensor Spatial Resolution 
Corporation  

Spectral range 
(nm) 

Revisit interval (days) 

Landsat 15 450 – 2350 16 

SPOT 2.5 500 – 1750 5 

IRS 5 500 – 1700 5 

IKONOS 1 450 – 850 3 

QuickBird 0.61 450 – 900 3 

FORMOSAT 2 450 – 900 1 

CARTOSAT 2.5 N/A 5 

WorldView 0.46 400 – 1040 1.1 

ALOS 2.5 420 – 890 2 

GeoEye 0.41 450 – 900 3 

Airborne 1 to 25 420 - 14000 N/A 

Pleiades 0.5 430 – 950 Daily 

1.2.3 Image classification techniques 

Remotely sensed images can be classified using three types of classification techniques 

– visual, unsupervised and supervised. Visual interpretation is a manual, time-

consuming technique that requires extensive knowledge from the interpreter. 

Unsupervised classification technique classifies a remotely sensed image based on user-

defined parameters such as the number of classes and iterations of the algorithm. This 

technique requires less time to process since it does not require a training dataset for 

classification. Supervised classification technique uses training dataset to classify 

images. The training dataset is a collection of spectral data of various features obtained 

from a remotely sensed image by an expert. 
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1.3 Remote sensing for seaweed mapping 

1.3.1 Spectral signature of plants 

Green plants have a unique spectral characteristic where they have low reflectance in 

the visible region and high reflectance in NIR which is exploited to create spectral 

indices for mapping, monitoring and managing vegetation (Giri et al., 2007). The green 

leaf absorbs light in the blue and red region due to the presence of pigments, reflects 

light in the green region of the spectrum and the peak reflectance in NIR is a result of 

leaf density and canopy structure effects (Figure 5). Spectral reflectance of plants varies 

primarily due to pigment composition (Kieleck et al., 2001). However, there are also 

other causes of variability in the plant signal (Table 2).  

Table 2: Causes for variability in spectral reflectance at leaf scale and canopy scale 
(Blackburn, 2007; Mulla, 2013) 

Leaf level Canopy level 

Internal structure Variation in the number of leaf layers 

Surface characteristics Orientation 

Moisture content Canopy to ground coverage ratio 

 Areas of shadow 

Other causes of spectral variability in plant signals are physiological status of 

vegetation, physiological stress and mixing of water with plant signal, in the case of 

submerged/emerged aquatic vegetation, reduces the reflected radiation in near to mid-

infrared region due to strong water absorption (Silva et al., 2008).  
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Figure 5: Typical spectral reflectance curve of a green leaf 

1.3.2 Spectral signature of seaweed 

Seaweeds are macroscopic algae subdivided into three groups – Chlorophyta (green), 

Phaeophyceae (brown) and Rhodophyta (red). All three groups show differences in 

pigment composition (Table 3). Their spectral reflectance characteristics are similar to 

those of terrestrial plants and so are the factors affecting the spectral signatures of 

seaweeds. However, Kotta et al (2014) suggest that differences in seaweed canopy 

orientation only marginally contributes to absolute spectral reflectance values. Pigment 

composition (Kieleck et al., 2001) and leaf structure (Cho et al., 2012) affect the visible 

and NIR region of the spectral signature of seaweed, respectively. 

Reflectance properties of a species of marine vegetation can vary spatially and 

seasonally (Fyfe, 2003). There is little information on reflectance properties of a single 

marine vegetation species across different seasons (Casal et al., 2013). Researchers who 

have mapped eelgrass in shallow waters of Canada (O’Neill et al., 2011), discriminated 

invasive Caulerpa seaweed species from native species in the Mediterranean (Kišević et 

al., 2011) and mapped seaweeds in Baltic Sea (Kotta et al., 2014) have all recommended 
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more research on reflectance properties of individual species across different seasons 

and locations. This would support mapping applicability across different region and 

seasons, accurate characterisation of the discriminating spectral features of the species 

in question or true representation of training dataset for spectral library classification 

approach. 

Table 3: Spectral characteristics of pigments present in seaweed groups (Casal et 
al., 2012) 

Seaweed group Pigments present Absorption peak (nm) 

Chlorophyta (Green seaweed) Chlorophyll-a 

Chlorophyll-b 

β-Carotene 

435, 675 

480, 650 

427, 449, 475 

Phaeophyceae (Brown seaweed) Chlorophyll-a 

Chlorophyll-c 

Fucoxanthin 

435, 675 

460, 633 

426, 449, 465 

Rhodophyta (Red seaweed) Chlorophyll-a 

β-Carotene 

α-carotene 

Biliprotein 

Phycoerythrin 

Phycocyanin 

Allophycocyanin 

435, 675 

427, 449, 475 

423, 444, 475 

 

543, 568 

553, 618 

654 

With the increasing number of remote sensing studies in the marine 

environment, information available on the spectral signatures of various seaweed 

species are similarly increasing, globally. However, there is no published spectral 

information on native and invasive seaweed species in New Zealand. Collecting spectral 

signatures of various seaweed species is an important step towards mapping them from 

various water depths. 
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1.3.3 Challenges of mapping submerged/emerged seaweeds from remote 
sensing data 

Glint 

The factors that impede object identification underwater are mainly sun glitter, 

subsurface illumination, shadowing and surface glare (the reflection of diffuse light) 

(Mount, 2005). Sun glint is dependent on viewing geometry, sun elevation, azimuth, 

illumination conditions, wind speed and direction (Kutser et al., 2013). According to 

Mount (2005), images with wider Field of Views (FOVs) are subjected to greater glitter. 

While Mount (2005) discusses ways to avoid sun glint in data capture, Kutser et al. 

(2013) discuss a simple glint removal procedure for field radiometer data without any 

requirement for auxiliary data. This method is explained in detail in Chapter 4. 

However, this method does not work for areas shallower than 0.4m or if there is large 

coverage of high order plants on the water surface where the water-leaving radiance is 

not zero at 900nm. Glint removal is not possible when NIR values are higher than 

Ultraviolet (UV) values (Kutser et al., 2016). Other glint removal techniques are 

presented by Gould et al. (2001) where the remote sensing reflectance at 750nm is 

subtracted across the spectrum to remove sun glint; Hedley et al. (2005) where they 

assume NIR reflectance over water is caused by sun glint and their magnitudes are 

linearly related, the glint spectrum can be derived from NIR reflectance and subtracted 

from each pixel to obtain glint free values. Mount (2005) states that sun angle, 

reflection and refraction exaggerate subsurface illumination. Sun angle affects the 

amount of energy received by earth surface for a given square meter. Consequently, the 

lower the sun angle, lesser the illumination leading to a lower response from the 

seafloor.  
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Water depth and turbidity 

The main challenge of remote sensing of submerged aquatic plants is to isolate 

plant signal from the overall water column interference (Silva et al., 2008). Reflectance 

can be measured in-water or above the water surface and they both have problems 

associated with them. The above-water reflectance of an object is influenced by two 

components – surface reflectance and water leaving signal (Gould et al., 2001). Not all 

wavelengths of the electromagnetic spectrum are useful for mapping 

submerged/emerged aquatic vegetation. In an aquatic environment wavelengths 

between 450 – 550 nm are desirable as these wavelengths pass through the water 

column (Kieleck et al., 2001). Water absorbs red and infrared/NIR and scatters blue 

light which makes vegetation mapping in aquatic ecosystem challenging just using the 

visible region for discriminating species. The spectral range between 500 and 600 nm is 

useful for kelp detection at various depths as two suitable spectral features (528 ± 18nm 

and 570 ± 10nm) are located in this region (Uhl, Bartsch, and Oppelt, 2016). 

Turbidity, determined by the constituents in the water column such as 

phytoplankton, suspended organic and inorganic matter,  promotes spectral scattering 

thereby affecting the spectral reflectance properties of submerged vegetation (Pu, Bell, 

Baggett, Meyer, and Zhao, 2012). Cho and Lu (2010), Lu and Cho (2011) and 

Washington, Kirui, Cho, and Wafo-Soh (2012) used experimentally driven algorithms 

to determine the water absorption or volumetric scattering of the water column in 

varying levels of turbidity and improved the reflectance values in NIR region. Zoffoli, 

Frouin, and Kampel (2014) compared various water column correction techniques 

available but did not conclude with the best method. This is because the methods 

identified by the authors are applicable for different water types (whether Case I, Case 

II or Case III), sensor characteristics, mapping purpose and available in-situ data. 
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1.4 Discrimination of seaweeds 

Many remote sensing studies have been conducted globally on seaweed discrimination. 

Space-borne multispectral sensors like IKONOS have been successful in discriminating 

seaweed from other surrounding substrates (Sagawa et al., 2012 and Mikami, 2012) and 

Worldview-2 in discriminating benthic coral habitats (Botha et al., 2013). Dierssen et al 

(2015) successfully discriminated floating brown seaweed, Sargassum, from floating 

seagrass species, Syringodium filiforme using airborne hyperspectral imaging sensor. 

Kieleck et al. (2001) used laser-induced selective fluorescence imaging to identify 

thresholds that successfully separated three seaweed species each belonging to the red, 

green and brown taxonomic group at various depths down to a maximum of 5m even in 

turbid waters. Gameiro et al (2015) also used laser-induced fluorescence (LIF) 

technique to partially identify seaweed species to the higher taxonomic level (red, green 

and brown).  

Using field spectroradiometer, some researchers have collected in-situ spectral 

data for various substrates at different depths (Hochberg and Atkinson, 2000) while 

some others collected spectral data over seaweed species out of the water and modelled 

the spectral reflectance at various depth and turbidity levels using radiative transfer 

model software (Kutser et al., 2006a; Vahtmäe et al., 2006). Both types of spectral 

libraries were used to identify wavelengths that best discriminated various seaweeds 

from each other at different taxonomic levels. Most studies like that of Kutser et al 

(2006b), Vahtmäe et al. (2006), Casal et al (2013), Casal et al (2011), Casal et al (2012), 

Hochberg et al (2003), Chao Rodríguez et al (2017) used spectral library approach to 

discriminate seaweeds at broad taxa level. The first three studies even successfully 

discriminated or assessed the feasibility of discrimination at broad taxa level (red, green 

and brown) at various water depths which concluded 4 – 5 m as the optimum depth for 

discrimination at broad taxa level. 
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 There are only a modest number of studies on species-level discrimination of 

seaweeds mainly due to the interference of water column which absorbs reflectance in 

NIR region where the subtle differences between species are located. Casal et al (2013) 

assessed the feasibility of discriminating 17 seaweed species belonging to the three 

taxonomic groups and was only successful in discriminating three of them. Similarly, 

Pu et al (2012) and Fyfe (2003) successfully identified optimal wavelengths that 

discriminated seagrass at the species level. The study by Rossiter et al (2020) uses high 

spatial and spectral resolution remote sensing data to successfully discriminate between 

intertidal seaweed species. 

Spectral signatures of green, brown and red seaweed are uniquely consistent in 

different parts of the world (Hochberg et al., 2003; Maritorena et al., 1994), however, 

there is no such study on NZ seaweeds available at taxa level or species level.  To detect 

and map U. pinnatifida, it is important to understand its spectral characteristics and that 

of other native seaweed species to discriminate U. pinnatifida effectively. Kotta et al 

(2014) state there is significant variation in pigment composition and quantity among 

broad taxonomic groups and even within species.  

1.4.1 Spectral data analysis techniques 

This research has identified some of the common techniques used for discriminating 

aquatic vegetation both at broad taxa level and at species level using field spectroscopy 

(Table 4).  
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Table 4: Spectral data analysis techniques 

No Technique Function Reference 

1 Analysis of 
Similarity test 
(ANOSIM) 

Provides information about within 
and between species variability. 
Does not give information on 
specific spectral bands where the 
main differences occur or what 
species are differentiable from each 
other 

Casal et al. (2013); 
Fyfe, (2003) 

2 Kruskal-Wallis 
test 

Determine significant differences 
between seaweed species at each 
wavelength 

Casal et al., (2013) 

3 Kruskal-Wallis 
post-hoc test 

Shows seaweed pairs that are 
significantly different at each 
wavelength band 

Casal et al., (2013) 

4 Non-metric 
multidimensional 
scaling (nMDS) 

 Casal et al., 
(2013)(Fyfe, (2003) 

5 t-tests Showed a statistically significant 
difference in absorption features of 
two invasive seaweed species 

Identified 5 optimal bands to 
discriminate 3 seagrass species 

Kišević et al., (2011) 

 

Pu et al., (2012) 

 

6 Wilks’ lambda, 
F-value / 
Stepwise 
selection 

Lower Wilks’ Lambda combined 
with high F-value helps identify the 
narrow bands that discriminate 
different classes 

Manjunath et al., 
(2011) Hochberg and 
Atkinson, (2000) 

7 Derivative 
analysis 

Detects subtle features in the raw 
reflectance spectra and reduces the 
large datasets into smaller useful 
information 

Removes the effect of illumination 
variation in spectral reflectance of 
the target 

Hochberg and 
Atkinson, (2000); 
Louchard et al., (2003); 
Chao Rodríguez et al., 
(2017) 

 

Pu et al., (2012) 

 

8 Linear 
discriminant 
analysis 

Identifies linear combination of 
wavelengths that separate the 
seaweed species at broad taxa level 

Hochberg and 
Atkinson, (2000) 
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9 True Skill 
Statistics 
Optimal Bands 
(TSS-OB) 

Identifies the optimal boundary 
separation between two taxonomic 
groups 

Chao Rodríguez et al., 
(2017); Kotta et al., 
(2014) 

10 RGB (Red Green 
Blue) 
Colorimetry 

Performs linear classification of 
three seaweed taxonomic groups 
based on the sample colours 

Chao Rodríguez et al., 
(2017) 

1.4.2 Image classification approach for seaweed mapping  

This research looked at various classification techniques employed by researchers for 

submerged aquatic vegetation studies (Table 5). Although there were some 

classification studies using band indices/band ratios (e.g. Dierssen et al. (2015)) and 

unsupervised (e.g. Casal et al. (2011)) only those that used supervised or unsupervised 

techniques were considered. Most studies used supervised classification technique like 

Maximum Likelihood Classification (MLC) which derives training and validation 

dataset from the images used for classification. Studies also used Spectral Angle 

Mapper (SAM) classifier which used spectral data collected a) in-situ without water 

column interference, b) in-situ with water column interference, c) spectral signatures 

derived from images, d) modelled spectral signatures of a) to various water column 

properties based on the study site, to classify images. However, SAM technique using a 

spectral library is advantageous as the spectra do not have to be collected at the time of 

data acquisition and the existing spectral library can be modified to suit sensors with 

different spectral resolution (Kutser et al., 2006a).  
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Table 5: A literature review of some of the image classification approaches 
relevant to the study. SAM - Spectral Angle Mapper, MLC - Maximum Likelihood 
Classifier, ACE - Adaptive Cosine Estimator, MDis - Mahalonobis Distance 
classifier, MD - Minimum Distance classifier, FD – Feature detection processor, 
LSU – Linear Spectral Unmixing classifier, SVM – Support Vector Machine and 
WV2 – WorldView-2 satellite imagery with eight multispectral bands. 

No Reference Technique Accuracy Platform/Sensor Classes  

1 Flynn and 
Chapra 
(2014) 

SAM 

ACE 

 

92% (OA) 

90% (OA) 

UAV/GoPro3 
RGB camera 

Green algae 
(Cladophora), 
background 

2 Reshitnyk, 
Costa, 
Robinson, 
and Dearden 
(2014) 

MLC 75% (OA) WV-2 At <3m depth, 
eelgrass, brown, 
green, unvegetated 
surface 

3 Hoang, 
Garcia, 
O'Leary, and 
Fotedar 
(2016) 

MDis 

MD 

SAM 

94% (OA) 

97% (OA) 

88% (OA) 

WV-2 Canopy algae, 
seagrass, algal 
turf, mixed 
submerged aquatic 
vegetation, sand, 
limestone, 
unclassified 

4 Johnsen, 
Ludvigsen, 
Sørensen, 
and Sandvik 
Aas (2016) 

SAM n/a Underwater 
Hyperspectral 
Imager 

Three coral 
species and 
sponge 

5 Uhl, Bartsch, 
and Oppelt 
(2016) 

FD 

MLC 

80% (OA) 

57% (OA) 

Airborne 
hyperspectral 
AisaEAGLE 

Submerged kelp 
down to 6m depth 

6 Uhrin and 
Townsend 
(2016) 

LSU >85% (OA) 3 band RGB 
aerial imagery 

Seagrass 

7 Kutser et al. 
(2006a) 

SAM Unavailable 
due to 
insufficient 
field data 

Hyperion Coral, dead 
coral/rubble, 
green algae, 
brown algae, red 
algae, sand and 
deep water 

8 Casal et al. 
(2011) 

MLC >90% (OA) CHRIS – Proba 
mode 2 

Shallow and deep 
submerged sand, 
seaweeds in less 
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SAM 

 

 

 

 

Insufficient 
field data 

than 5m water 
depth and 
seaweeds in water 
depths between 5 
-10m 

Red, green and 
brown seaweeds 

9 O’Neill, 
Costa, and 
Sharma 
(2011) 

MD 

 

 

MLC 

63% (OA) 
on all 
wavelength 
bands 

83% (OA) 
on reduced 
wavelength 
bands 

Airborne 
hyperspectral 
AisaEAGLE 

Shallow and deep 
eelgrass, shallow 
and deep sand, 
shallow green 
algae, exposed sea 
asparagus and 
exposed brown 
algae 

10 Casal et al. 
(2012) 

MLC 

MD 

MDis 

 

SAM 

>95% (OA) 

n/a 

n/a 

 

Insufficient 
field data 

Airborne 
hyperspectral 
scanner (AHS) 

Shallow and deep 
sand, emerged 
rock, emerged and 
submerged 
seaweed 

 

Red, green, brown 
seaweeds and 
sand down to 5m 
water depth 

11 Vahtmäe and 
Kutser 
(2013) 

MLC 

 

SAM 

77.5% 

71.6% 

70.8% 

64.6% 

CASI 

WV-2 

CASI 

WV-2 

 

From areas of 
water depth < 2m, 
Dense high order 
vegetation, dense 
Charophytes, hard 
bottom with 
filamentous green 
algae, sparse 
vegetation on the 
soft bright bottom 
and optically deep 
water (>2m) 

12 Tait et al. 
(2019) 

SVM 79 – 90% UAV 
multispectral 

Ten exposed 
habitat classes – 
including three 
brown seaweed 
species, Ulva, red 
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seaweed  

13 Rossiter et al. 
(2020) 

MLC 

SAM 
(image-
derived 
spectra) 

SAM (in-
situ 
spectra) 

94.7% 

81.1% 

 

 

71.4% 

UAV 
hyperspectral 
pushbroom 
sensor 

Five brown 
seaweed species 
(emerged), green 
seaweed 
(emerged), 
submerged 
seaweed and 
substratum 

1.5 Remote sensing scale of mapping emerged/submerged seaweed 

Depending on the characteristics of target features and project goals, different types of 

remote sensing data are utilised, from aerial photos to multi- and hyperspectral satellite, 

airborne or UAV data (Skowronek et al., 2016) for various application at different 

spatial, spectral and temporal resolution (Jensen, 2016). Early remote sensing used 

various platforms like kites and balloons (Estes, 1985), aircraft (Chiang and Meyer, 

1974) and satellite (Driscoll, Francis, Smith, and Mead, 1974) for a variety of 

environmental applications.  

The basic characteristic of remote sensing data is spatial resolution and it is 

analogous to the scale of observation (Woodcock and Strahler, 1987). For example, 

Hyperion data with spatial resolution of 30m were used successfully to map 

broadleaved evergreen and conifer forest species in Western Himalayas (George et al., 

2014). Whereas, it was a challenge in the floristic mapping of rainforests due to 

complex vegetation canopies and a 30 x 30m pixel of Hyperion usually contained a 

mixture of other canopy species that can reduce the accuracy (Somers and Asner, 2014). 

Mixed pixel is a pixel that contains a mixture of spectral reflectances from various 

endmembers. Endmember is the spectra of a target object. Precision agriculture needs 

detailed crop parameters to assess crop growth and yield amongst a variety of other 

applications and the data requirements depend on the intended application (Gevaert, 
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Suomalainen, Tang, and Kooistra, 2015). For example, crop biomass or yield estimation 

demands a relatively fine-scale spatial (1-3m), temporal and spectral resolution whereas 

for variable rate application of fertilizer the scale if information could be coarser (5-

10m) and 0.5-1m for weed control applications (Mulla, 2013). For such applications, 

satellite sensors are inadequate in providing the required spatial, spectral and temporal 

resolution (Gevaert et al., 2015).  

Kelp monitoring using Satellite Pour l'Observation de la Terre (SPOT) data 

(20m) was challenging as it did not resolve kelp beds smaller than 10 ha due to the low 

spatial resolution (Deysher, 1993). Vahtmäe and Kutser (2013) showed that benthic 

habitat mapping needs to be done at high spatial resolution due to the small-scale 

heterogeneity of these habitats. Submerged aquatic vegetation or seaweed patches 

greater than the pixel size will be resolved clearly in remote sensing data. For example, 

pixel size or spatial resolution of 2m can resolve homogenous seaweed patches of size 

4m2 or more. In the current satellite remote sensing scenario, the higher the temporal 

resolution requirement, the lower the spatial requirement and vice versa (Jensen, 2016). 

There are trade-offs associated with different resolutions when acquiring a satellite data 

due to technical limitation in attaining high spatial and spectral resolution all in one data 

in addition to high temporal resolution (Ashraf et al., 2012; Gevaert et al., 2015).  

Although there have been many studies conducted using conventional field 

surveying techniques, highlighting the morphological characteristics, habitat 

preferences of U. pinnatifida in different parts of New Zealand, however, there have 

been no studies conducted using remote sensing techniques. Given the characteristics of 

U. pinnatifida in section 1.1, it is important to identify the best spatial resolution to 

detect U. pinnatifida.  
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1.5.1 UAV seaweed mapping  

While seaweeds at broad taxa level and a homogenous cover of same seaweed species 

have been mapped accurately, there are not many classification studies mapping 

seaweeds at the species level, especially within a taxonomic group (Rossiter et al., 

2020). Such studies are limited due to non-availability of remote sensing data with high 

spatial and spectral resolution. Recently, unmanned aerial vehicle (UAV) is evolving to 

be a popular platform to obtain remote sensing data of high spatial, spectral and 

temporal resolution (von Bueren et al., 2015) due to advancement in miniature sensors 

(Flynn and Chapra, 2014) and the ability to fly them anytime anywhere given the right 

weather conditions. The study by Rossiter et al. (2020) is the first that has discriminated 

seaweeds at species level using UAV hyperspectral data. However, these hyperspectral 

sensors are disadvantageous for the following reasons: a) they produce high 

dimensional voluminous data (Adão et al., 2017; Dye, Mutanga, and Ismail, 2011; 

O’Neill et al., 2011), b) they make UAV integration difficult due to weight (Jakob, 

Zimmermann, and Gloaguen, 2016) and c) they are very expensive expensive. In order 

to keep it cost- and time- effective, this study analysed the use of ultra-high spatial 

resolution multispectral remote sensing data for species-level discrimination of 

seaweed. 

1.5.2 Challenges of processing UAV borne multispectral images 

There are four basic steps to process remote sensing data ready for further analysis – 

radiometric calibration, geometric correction, georeferencing and mosaicking. 

Radiometric calibration is the conversion of raw data that contain digital numbers (DN) 

for pixel values into reflectance. Digital numbers of each pixel in an image represent the 

intensity values and radiometric resolution of an image is expressed in bits. For 

example, 8-bit imagery consists of DN values between 0 – 255 (28-1) or 16-bit imagery 

consists of DN value between 0 – 65535 (216-1). Geometric correction is the process of 
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correcting distortions due to camera lens or camera orientation or the terrain below to 

assign correct positional values to each pixel. For an image over the aquatic 

environment, the effect of the terrain is assumed to be nil due to lack of relief features. 

Most commercial satellite imagery is supplied after geometric correction and can be 

radiometrically corrected if need be. Georeferencing is the process of aligning an image 

to a coordinate system to do simple observations such as measuring area or distance or 

advanced analysis such as estimating biomass of vegetation or feature classification. 

This is usually achieved by identifying ground control points (GCPs) in the study area 

with known coordinates. Mosaicking is the process of aligning multiple georeferenced 

images of a study area into one image. 

The above process is applicable for most satellite images, however, UAV image 

processing is made easy by specialised software such as Pix4D Mapper or Agisoft 

professional scan that automatically perform radiometric calibration, geometric 

corrections, georeferencing and mosaicking. Such software employ a Structure for 

Motion (SfM) (Ullman and Brenner, 1979) technique that uses photogrammetric 

methods to calculate the orientation of various images by collecting matching keypoints 

in multiple images. It created a three-dimensional scene of the study area and 

georeferenced them using GCPs. Keypoints matching relies heavily on the feature 

identified on all images to remain static. However, in a dynamic aquatic environment 

finding such keypoints can be tricky especially if there are no static features in all the 

images. Also, such image processing software does not allow single image processing 

since the process is all built-in as one. A bespoke flowline needs to be developed for 

processing and direct-georeferencing the images to the ground. 
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1.6 Rationale and significance of the study 

The Japanese kelp, Undaria pinnatifida, is a highly invasive opportunistic seaweed that 

could potentially displace native seaweed, animal species and alter existing trophic 

relationships (Jiménez et al., 2015; MPI, 2016). Therefore this seaweed is of particular 

interest to New Zealand’s Ministry of Primary Industries (MPI); it is classed as an 

unwanted organism and has been subjected to extensive research to understand its 

biology, ecology and occurrence, especially in New Zealand (Chen, 2012; Forrest et al., 

2000; Hay and Luckens, 1987; James and Shears, 2016b; Parsons, 1995; Russell et al., 

2007). Previous research efforts to map aquatic vegetation have been conducted using 

conventional methods such as snorkel or SCUBA, which are time-consuming and 

expensive (Flynn and Chapra, 2014). Therefore, there is a need to detect U. pinnatifida 

and map the extent effectively, non-invasively and at less cost. Remote sensing has been 

identified as a potential tool for this research (Cho, Mishra, and Wood, 2012) as aquatic 

plants can be digitally identified using their spectral reflectance (Silva et al., 2008 and 

Costa, 2008). Spectral reflectance is the digital signature unique to individual plant 

species (Kieleck et al., 2001 and Cariou, 2001) collected using lab or field-based 

spectroradiometer. A repository of spectral reflectances is called a spectral library and 

can be used to classify remote sensing data to detect and map the extent of a species of 

interest (Shanmugam and SrinivasaPerumal, 2014). There are no remote sensing studies 

relating to detection of U. pinnatifida. This research will fill this knowledge gap by, 

firstly, creating a spectral library with spectral reflectance of U. pinnatifida, and other 

commonly found seaweed species and substrates associated with U. pinnatifida. This 

library will be the reference to conduct further feasibility studies in the detection of U. 

pinnatifida using remote sensing data from a platform such as an unmanned aerial 

vehicle (UAV). This research will also develop a methodology to map U. pinnatifida 
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using remote sensing data. A potential species level mapping solution at such a high 

resolution would be of interest to relevant parties such as MPI.   

While there have been significant advances in the remote sensing of terrestrial 

vegetation, remote sensing of submerged aquatic vegetation has been challenging due to 

the effect of water and the constituents of the water column (Cho et al., 2012). This 

research aims to understand these effects of water on U. pinnatifida by experimental and 

observational methods. 

1.7 Research questions 

This research aims to address the following questions: 

1. What are the best spectral bands for discriminating U. pinnatifida from other 

seaweed species? 

2. Does season and/or location affect the spectral signatures of seaweeds? 

3. Do depth and turbidity affect spectral signature of U. pinnatifida and E. radiata? 

4.  To what depth, and in what water clarity conditions, can U. pinnatifida be detected 

using spectral reflectance data? 

5. Can U. pinnatifida be reliably detected and discriminated at ultra-high spatial 

resolution multispectral data? 

1.8 Thesis structure 

Chapter 1 introduced the importance of the aquatic ecosystem and the threats faced, 

followed by a focus on a particular threat by invasive seaweed species, U. pinnatifida. It 

also reviews the literature on remote sensing techniques for mapping seaweeds and 

other substrates in general while identifying the knowledge gaps.  
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Chapter 2 describes the data collection of spectral signatures of common seaweeds for 

New Zealand, identifies wavelengths that discriminate U. pinnatifida from other NZ 

seaweed species using two classification techniques for multidimensional data. It will 

also analyse the spectral library for discrimination between seaweed species at a broad 

taxonomic level and species level and review how this compares to other studies around 

the world. 

Chapter 3 analyses the spectral data of two common habitat-forming seaweeds, E. 

radiata and C. maschalocarpum, to examine the effect of location and season on 

spectral reflectance and identify the wavelengths affected. It also identifies the likely 

causes for the variation. 

Chapters 2 and 3 have been developed into manuscripts and submitted for peer-

reviewed publication. 

Chapter 4 analyses the spectral data of U. pinnatifida and E. radiata for the effect of 

depth and turbidity on the spectral reflectance of the two seaweed species. It studied the 

feasibility of discriminating both the seaweed species using wavelengths identified in 

Chapter 1 and using wavelengths matching multispectral Micasense RedEdge-M sensor. 

This chapter studied the accuracy of discrimination using an experimental method and 

implemented the method on data collected along the rocky reef in Waiheke Island. 

Chapter 5 summarises the findings of the study, proposes further improvements to the 

study and identifies further relevant research applications.  
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Chapter 2. Discrimination of common New Zealand 
native seaweeds from the invasive Undaria pinnatifida using 
hyperspectral data 

Chapter 2 cover picture. Undaria pinnatifida fouling a dropper line in a mussel farm in 

Marlborough Sounds, South Island, New Zealand.  

This chapter is published in a peer-reviewed journal 

In this chapter, I collected spectral signatures of common NZ native and 

invasive seaweed species to analyse discrimination of an invasive seaweed species, U. 

pinnatifida from the native seaweed species. This is the first step towards understanding 

the spectral differences of seaweeds in NZ at species level within a taxonomic group 

and discriminate U. pinnatifida from the rest. This chapter aimed to identify 

wavelengths that achieve discrimination of U. pinnatifida from other co-occurring 

seaweed species. 

This study collected 198 spectral signatures of seaweeds belonging to red, green 

and brown taxonomic group. Out of which 110 were selected for training models and 88 

were used for validating the trained models. Despite mixed conclusion on species-level 

studies in the past, interestingly, the analysis in this chapter revealed species-level 

discrimination was achievable within a taxonomic group.  
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2.1 Introduction 

Seaweed communities around the world are threatened by various factors (James, 2016; 

Martínez et al., 2018; Nelson, 2019; Nicastro et al., 2013) but invasive species are 

among the most serious threats (Gallardo et al., 2016; Maggi et al., 2015; Thomsen et 

al., 2014). Invasive species not only can displace native species and affect biodiversity 

(James, 2016; Maggi et al., 2015) but can also adversely affect the economy by fouling 

aquaculture farms (Fitridge et al., 2012).   

Undaria pinnatifida (Harvey) Suringar is a prolific invasive species that has 

established in numerous temperate coastal habitats around the world (Morelissen, et al., 

2016). It is one of only two seaweeds listed in the top 100 most invasive species of the 

world (Lowe et al., 2000). In New Zealand, it was first recorded in Wellington Harbour 

in 1987 (Hay, 1990) and has since spread throughout much of the country. It spreads by 

many vectors including via spores in ballast water in recreational and commercial 

vessels (MPI, 2016), as fragments or whole plants which can drift up to 10 km 

(Sanderson, 1997) and as a result of mussel farming activities (James et al., 2016). 

There are aspects of the ecology of U. pinnatifida and its relationship with the 

environment that have yet to be investigated and as a result, the spatial limits of this 

species are uncertain (South et al., 2017). Thus, methods that can more effectively 

quantify the distribution and composition of New Zealand’s native and invasive 

seaweed communities would be beneficial from biosecurity, ecology, and commercial 

perspectives. Current seaweed mapping/monitoring techniques include conventional 

methods, such as manual SCUBA or snorkel surveys, which are time-consuming and 

expensive (Flynn et al., 2014). Remote sensing is potentially a very powerful tool for 

mapping submerged vegetation as it is non-invasive and less time consuming than 

conventional methods, and can map large extents effectively (Silva et al., 2008).  
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Traditionally, classification of remote sensing data is image-based i.e., they are 

specific to a sensor, location and season that make the approach untransferable (Kutser 

et al., 2003). To overcome this, a common approach to discriminate plant species is to 

generate a spectral library through which key differences between wavelengths can be 

identified (Prospere et al., 2014; Kutser et al., 2006a; Vahtmäe et al., 2013). Developing 

a spectral library for seaweeds in New Zealand would help in differentiating native from 

invasive species (Bradley, 2013; Skowronek et al., 2016). This spectral library can then 

inform decisions on the selection of sensors that include the key wavelengths or lead to 

the design of custom sensors that could detect and record those wavelengths (De 

Backeret al., 2005) or develop classification algorithms for hyperspectral sensors. While 

many spectral libraries have been created for terrestrial plants (Manjunath et al., 2013; 

NASA, 2019), less attention has been paid to aquatic species, including seaweeds 

(Kutser et al., 2006a; Wolf et al., 2017). There is currently no published spectral 

information for common New Zealand native and invasive seaweed species, an issue 

this research addresses.  

There have been considerable attempts to map seaweeds using multispectral and 

hyperspectral data to discriminate dominant, habitat-forming seaweeds. Reshitnyk et al 

(2014) utilised 8-band multispectral WorldView-2 data to classify two seaweed species 

each representative of brown and green taxa and eelgrass in Canada with a total 

accuracy of 75%. Sagawa et al (2012) used IKONOS data to discriminate five different 

substrates including three species of brown seaweed in Japan with a total accuracy of 

97%. Casal et al (2013) created a hyperspectral library of 17 species of seaweed in 

Spain whilst this study was able to differentiate these species at a broad taxonomic level 

only three species could be clearly distinguished in reality. Kotta et al (2014) produced 

a hyperspectral library with 11 species of seaweed and three species of seagrass in the 

Baltic Sea. They demonstrated significant differences at broad taxonomic levels but not 
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at the species level. Kišević et al. (2011) is the only study to attempt to distinguish 

between native and invasive seaweed species in the Adriatic Sea. They identified 

regions of the electromagnetic spectrum where the invasive Caulerpa differed from 

local species. Hochberg, Atkinson, and Andre´foue¨t (2003) successfully classified 

various substrates at 11 locations across the world, including red, green and brown 

seaweeds with an accuracy greater than 85%. Kieleck, Bousquet, Le Brun, Cariou, and 

Lotrian (2001) used laser-induced fluorescence imaging technique to identify three 

seaweed species each belonging to one of three broad taxonomic level (reds, greens and 

browns). Though it was conducted in a controlled environment, the classification rate 

was high with the thresholding method, even successful down to a simulated depth of 

5m and with turbidity. Chao Rodríguez, Domínguez Gómez, Sánchez-Carnero, and 

Rodríguez-Pérez (2017) created an extensive 36 seaweed species-rich spectral library 

and utilised three different methods to discriminate them at broad taxa level successfully 

with Cohen’s kappa more than 0.65. While the highlighted studies have met with some 

success at broad taxa level, none incorporate common New Zealand species. 

U. pinnatifida, a brown seaweed, has been known to compete with native brown 

seaweeds (Russell, Hepburn, Hurd, and Stuart, 2007) or replace red and green seaweed 

species at mean low water neap tide level (Parsons, 1995). Previous studies (some of the 

above mentioned) suggest that it is difficult to see clear separation within a taxonomic 

group (Casal et al., 2013; Kotta et al., 2014). Depending on the diversity of seaweeds at 

a location and variable scale of remote sensing surveys, a given dataset may not have 

red, brown and green seaweed species present to discriminate U. pinnatifida from. 

Therefore, a focused classification strategy targeting each major group could be 

beneficial. Despite the highly invasive nature of U. pinnatifida, there have been no 

attempts to use the spectral signature of this seaweed to map its spread or prevalence to 
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date. Before a full survey, it is prudent to assess the feasibility to discriminate U. 

pinnatifida from common New Zealand seaweed species.  

In this study, we created a spectral library consisting of U. pinnatifida and 

habitat-forming and/or common New Zealand seaweeds and discriminated between 

higher taxonomic levels (red, brown and green). We also evaluated discrimination of U. 

pinnatifida from common New Zealand browns, reds and greens by each taxonomic 

group or all species combined. 

2.2 Materials and Methods 

2.2.1 Seaweed collection and spectral measurements 

Five to ten individuals of common low intertidal and subtidal seaweed species were 

collected between May 2017 and December 2018, either at low tide or on snorkel, from 

the Hauraki Gulf and West Coast of northern New Zealand and Pelorus Sound in South 

Island (Figure 6). Most of the habitat-forming, common seaweeds of New Zealand were 

found within these identified locations. These species were, the brown seaweeds (Class 

Phaeophycaea) Ecklonia radiata (C. Agardh) J. Agardh., Carpophyllum 

maschalocarpum (Turner) Grev., Carpophyllum plumosum (A. Rich), J. Agardh, 

Carpophyllum flexuosum (Esper) Grev., Cystophora retroflexa (Labill.) J. Agardh, 

Cystophora torulosa (R.Br.) J. Agardh, Dictyota ocellata J. Agardh, Hormosira banksii 

(Turner) Decne., Xiphophora chondrophylla (Turner) Mont. ex Harv.; the reds (Phylum 

Rhodophyta): Pterocladia lucida (Turner) J. Agardh, Corallina officinalis Linnaeus, 

Melanthalia abscissa (Turner) J.D.Hooker and Harvey, Cladhymenia oblongifolia 

J.D.Hooker and Harvey, Gigartina alveata (Turner) J. Agardh, Pachymenia lusoria

(Grev.) J. Agardh, Gigartina circumcincta J. Agardh, Gigartina atropurpurea (J. 

Agardh) J. Agardh, Pyropia plicata W.A.Nelson; the greens (Phylum Chlorophyta) 

seaweed: Ulva spp. and the invasive brown and green seaweeds, U. pinnatifida and 
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Codium fragile (Suringar) Harvey, respectively. All individuals were collected from 

rocky reef habitats, except for U. pinnatifida, which was also collected from mussel 

farms in Awakiriapa Bay in the North Island and Pelorus Sound in the South Island 

(Figure 6) since they were found in large numbers in mussel farms and were easier to 

acquire for sampling. 

 

Figure 6: The North Island sites were mainly located near Auckland, in the 
Hauraki Gulf in the east and one off the western coast. The South Island sites were 
in Pelorus sound in Marlborough Sounds. 
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Individuals were removed from the water for the spectral readings as water 

absorbs red and infrared/Near Infrared (NIR) and scatters blue light (Kieleck, Lotrian, 

Bousquet, Le Brun, and Cariou, 2001), and NIR is the main component for 

discriminating vegetation (Cho, Mishra, and Wood, 2012). Each individual was placed 

on a black mat (Figure 7) to avoid background noise. Only slight differences in true 

reflectance are found when seaweeds are removed from the water for spectral readings 

and positioning of the blades only marginally affects the reflectance spectra (Kotta et 

al., 2014). However, depending on the thickness of the seaweed, the black background 

could affect the measured reflectance (i.e., light transmitted through the tissue is 

absorbed rather than reflected from the substrate back through the tissue). 

Measurements were taken using an ASD Handheld2 VNIR spectroradiometer with a 

spectral range of 325-1075 nm and a sampling interval of 1 nm and a fibre optic input 

(FOV 25 deg). This was calibrated against a Spectralon® panel. 

 

Figure 7: Seaweed species, Xiphophora chondrophylla, Carpophyllum 
maschalocarpum and Pterocladia lucida (left to right), placed against a black mat 
for measurement of spectral reflectance to minimise any background noise 

The spectrometer was held approximately 10 cm directly above the individual 

and ten measurements were taken over the blade, stipe, and holdfast, where possible the 

black background was avoided in the field of view (FOV). All measurements were 

taken within two hours of solar noon.  
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2.2.2 Data analysis 

The data set, created from 198 seaweed individuals, comprised 350 numeric 

wavelengths of the reflectance values between 400 – 750 nm and the categorical 

variable “seaweed species”. These wavelengths were selected to encompass the 

expected transmission window range in water (450–550 nm) (Kieleck et al., 2001) and 

to expand the field of investigation to wavelengths in the NIR region that have been 

shown by others to result in the greatest discrimination between species (Casal et al., 

2013; Cho et al., 2012; Fyfe, 2003; Laba et al., 2005). 

Two supervised analysis techniques, suited to handle multi-dimensional 

collinear data with a low number of samples such as spectral data, were adopted to 

discriminate seaweed species at a broad taxonomic level and species level. The broad 

taxonomic level is the grouping of seaweed species at a higher level as red, green and 

brown seaweeds. Firstly, a partial least square discriminant analysis (PLS-DA) model 

was implemented to check for variability between seaweed taxa or between target and 

non-target species and to identify influential wavelengths using a backward variable 

selection method. PLS-DA discriminates high dimensional and highly collinear data 

into classes by the projection of original predictors as latent variables (uncorrelated 

linear combination of original variables) to explain variance in the response variable 

(Gold et al., 2019). It was implemented in R using the ‘mdatools’ package, version 0.9.4 

(Kucheryavskiy, 2018). PLS-DA method in ‘mdatools’ package performs one-class 

modelling implicitly. One class PLS-DA is defined as a method where one target class 

is discriminated from the rest of the classes (Pomerantsev and Rodionova, 2018). For 

example, in a dataset with three classes for discrimination, pls-da method implicitly 

performs three models (class-1 vs (class-2 + class-3), class-2 vs (class-1 + class-3), 

class-3 vs (class-1 + class-2)). This method performs better for three or less number of 

classes. If there are more than three classes, it is better to explicitly define the model to 
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discriminate a class of interest against the rest. Discriminant methods are usually unable 

to classify new samples that do not belong to any of the predefined classes, however, a 

one-class PLS-DA method corrects for these inabilities (Pomerantsev and Rodionova, 

2018). Sensitivity, specificity and accuracy of calibration, cross-validation and external 

validation were used to measure the performance of the PLS-DA model. Sensitivity is 

defined as the true positive rate, i.e., seaweed individuals correctly identified to 

respective broad taxonomic group. Specificity is defined as the true negative rate, i.e., 

seaweed individuals that do not belong to a particular taxonomic group correctly 

identified as not belonging to it. Secondly, a ‘random forest’ classification approach, 

was used to validate the influential wavelengths extracted from the optimal PLS-DA 

model. Random forest model uses multiple decision trees to classify data accurately due 

to randomness in feature selection and is better suited for spectral data (Breiman, 2001). 

This was performed using the ‘randomForest’ package (Liaw and Wiener, 2002) in R. 

Sensitivity, specificity and kappa were the three random forest model performance 

statistics. Kappa measured the performance of the classifier especially on an unbalanced 

dataset and values greater than 0.6 meant the accuracy is substantially agreeable and the 

model performed very well (Hartling, 2012). While PLS-DA is better suited for feature 

selection (Peerbhay et al., 2013; Möckel et al., 2014) and random forest for higher 

classification accuracies (Dye et al., 2011), they are comparable because they capture 

the interaction between predictors directly or indirectly (Gold et al., 2019). 

A total of 198 spectral signatures of red, brown and green seaweeds were 

collected, out of which 110 spectral signatures were selected as the “training” dataset 

(collected in May, June, August, October of 2017 and August, December of 2018) while 

the remaining 88 spectral signatures were the “testing” dataset for external validation 

(collected in April, August and December 2018 with dates in August and December not 

overlapping with that of training dataset).  
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2.2.2.1 Pre-processing 

Five individuals of each native seaweed species and ten individuals of U. pinnatifida 

were used for model calibration, cross-validation and external validation as the variation 

among individuals was low across the wavelengths used in the analysis. The spectrum 

of each seaweed individual used for analysis was a mean of ten readings taken across 

different parts of each individual. Raw spectra were standardised by subtracting the 

mean of values at all the wavelengths, for each individual, from each spectral value and 

dividing the difference by standard deviation of values of the individual spectrum 

following Kotta et al. (2014). Data were downloaded, read and compiled into a database 

in R software (R Core Team, 2019). 

2.2.2.2 Discrimination of common seaweeds at a broad taxonomic level  

A full PLS-DA model, including all wavelengths considered for investigation, was built 

using the standardised spectral dataset with 110 observations (55 brown, 10 green and 

45 red seaweed individuals) and leave-one-out cross-validation was used. ‘mdatools’ 

package in R allowed integration of component selection based on a parameter 

(ncomp.selcrit = ‘min’ or ‘wold’) within the model. ‘min’ method used in the model is 

the point at which the root mean squared error (RMSE) of calibration is minimum. 

Subsequently, an optimal model was built by eliminating wavelengths with variable 

importance of projection (VIP) scores of less than 1 from full and interim models. VIP 

is defined as a variable’s importance to a PLS-DA model. An optimal model is defined 

as a model that discriminates the seaweed species at broad taxa level with accuracy 

similar to the full model but with lesser wavelengths. Component selection for the 

optimal model was further refined by visually selecting the number of components that 

had minimum RMSE from cross-validation curve in the RMSE plot. The optimal model 

was validated using a testing dataset with 88 observations (43 brown, 10 green and 35 

red seaweed individuals) from different dates and/or locations that were not included in 
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model calibration and cross-validation. During validation, any new observations that 

were not identified by the optimal model as belonging to any of the specified classes 

were classified as ‘None’. The influential wavelengths identified from the optimal 

model were chosen using VIP scores for further validation using random forest 

technique.   

A random forest model was built using the influential wavelengths identified 

above. The model gave an “out-of-bag” error estimate, which was a prediction error 

estimated using bootstrapped cross-validation. The model was run with a default 

parameter setting for the number of trees (ntree) built and wavelengths tried at each 

point where the tree splits (mtry). The model’s error rate was plotted to prune the forest. 

‘tuneRF’ method was used to find the optimal ‘mtry’ with least out-of-bag error and the 

model was rerun. The same training and testing datasets used for building and 

validating the PLS-DA model were used for random forest classification. 

Multidimensional scaling (MDS) plots, using a proximity matrix from the random forest 

model, were used to visualise grouping of the classes. Proximity was measured as the 

proportion of times, across the trees in the forest, where two individuals were found to 

be similar and fell in the same terminal node; two individuals with a value of 1 

indicated they were similar whereas 0 indicated two dissimilar individuals (Quach, 

2012). MDS mapped this proximity matrix of ‘n’ objects into an abstract co-ordinate 

space of (n-1) dimensions.  

2.2.2.3 Discrimination of Undaria pinnatifida from native seaweed species 

The analysis techniques to discriminate U. pinnatifida from native brown or red or 

green or all seaweed groups together were similar to those described in the previous 

sections. Firstly, four full explicitly defined one-class PLS-DA models  were built using 

standardised data for discriminating U. pinnatifida from the three seaweed groups (U. 



42 
 

pinnatifida (n = 10) vs browns (n = 45), U. pinnatifida (n = 10) vs greens (n = 10), U. 

pinnatifida (n = 10) vs reds (n = 45)) and from all groups combined together (U. 

pinnatifida (n = 10) vs browns + greens + reds (n = 110)).  For each full model, the 

optimal model with similar accuracy to full model but reduced suite of wavelengths was 

identified. The optimal models were externally validated with testing dataset (U. 

pinnatifida (n = 10) vs browns (n = 33), U. pinnatifida (n = 10) vs greens (n = 10), U. 

pinnatifida (n = 10) vs red (n = 35)) and from all groups combined together (U. 

pinnatifida (n = 10) vs browns + greens + reds (n = 78)). Component selection for each 

of the four models was performed as explained in section 2.2.2.3. The influential 

wavelengths from each of the four optimal models were chosen using VIP scores for 

further validation using random forest technique. Random forest classification was 

carried out as above. 

2.3 Results  

The spectral data of brown seaweed has reflectance peaks at 600 and 650 nm and a 

shoulder at 580nm (Figure 8). Most of the red seaweeds had clear peaks at 600 and 

650nm, however, there was another peak at 525nm for Gigartina atropurpurea, 

Gigartina circumcincta and Pyropia plicata. Green seaweeds such as Codium fragile 

had a peak reflectance at 568 nm and an absorption feature at 650 nm while Ulva spp. 

had a peak reflectance at 554 nm and an absorption feature at 670 nm. Chlorophyll 

absorption was apparent near 675 nm in all the seaweed species. 
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Figure 8: Reflectance spectra of all the common New Zealand seaweed species used 
in this study grouped at a broad taxa level - brown, red and green. 

2.3.1 Discrimination between seaweed taxa (brown, green and red) and 
influential wavelengths 

Extraction of influential wavelengths 

The full PLS-DA model performed with 100% sensitivity and specificity in classifying 

the seaweed species as belonging correctly to each taxon. The optimal model achieved a 

100% sensitivity and specificity in both calibration and cross-validation for all three 

taxa, except for brown, which had a specificity of 98.2% (cross-validation) using ten 

components. External validation of the optimal model using the testing data set resulted 

in the following by using ten components (Figure 9); brown taxa had the lowest 

sensitivity (74.4%) compared to the green (80%) and red (100%), and green taxa had 

the highest specificity (100%) compared to brown (97.8%) and red (96.2%). Some Ulva 

spp. and brown individuals were classified as ‘None’. 25 influential wavelengths were 

identified for discriminating all three taxa using the optimal PLS-DA model –572, 633–

635, 640, 657, 658, 660, 661, 687, 704–714, 741, 742, 749, 750 nm (Figure 10).  
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Figure 9: Performace statistics of external validation of models built using PLS-DA 
and random forest techniques. Sensitivity is defined as the true positive rate, i.e., 
U. pinnatifida individuals correctly identified as U. pinnatifida. Specificity is 
defined as the true negative rate, i.e., non-U. pinnatifida individuals correctly 
identified as non-U. pinnatifida individuals. Accuracy is defined as the total 
number of true positive and true negative out of the total number of samples. 
Solid, shaded and no fills represent the classification statistics for brown, red and 
green seaweeds, respectively. 

 

Figure 10: The graph shows the influential wavelengths that discriminate each 
seaweed taxon (brown seaweed taxa represented in black, green seaweed taxa 
represented by white and red seaweed taxa represented by grey) from the other 
two taxa. Wavelengths with VIP scores >1 are classified as influential. Higher the 
VIP scores, more influential the wavelengths are in the model. 
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Validation of the influential wavelengths extracted from the PLS-DA model 

The random forest classification model (ntree = 300, mtry = 5) built using the 

training dataset and 25 influential wavelengths identified in the above process resulted 

in an estimated out-of-bag error of 3.64%. Classification errors for brown, green and red 

were 3.64%, 20% and 0%, respectively. The random forest model was validated with 

the testing dataset. The ability to classify seaweed individuals to correct seaweed taxa in 

the testing dataset was relatively strong, with 87.5% accuracy and kappa of 0.7769. 

While 95.4% of brown and 97% of red seaweeds were classified correctly only 20% of 

green seaweeds were correctly classified (Figure 10). All three seaweed taxa were 

grouped with little overlap between classes in a multidimensional scaling plot (MDS) 

(Figure 11).  

Figure 11: Multidimensional Scaling (MDS) plot using a proximity matrix of 
n=110 individuals from the between-taxa random forest classification model for 
brown, green and red seaweeds. X- and Y- axes are first and second dimension, 
respectively, in 109 (n-1) dimensional cartesian space. 
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2.3.2 Classification of Undaria pinnatifida relative to New Zealand native 
seaweed species 

Extraction of influential wavelengths 

Optimal models were obtained for all the four PLS-DA models (U. pinnatifida vs 

browns, U. pinnatifida vs greens, U. pinnatifida vs reds and U. pinnatifida vs browns + 

greens + reds). Each of these four optimal models produced 100% sensitivity and 

specificity in both calibration and cross-validation.  

The optimal model was subjected to external validation using the testing data 

and the results are as follows (Table 6): U. pinnatifida was discriminated from both 

brown and green seaweed individuals with 100 % sensitivity and specificity using five 

and six components, respectively. While discriminating U. pinnatifida from red 

seaweed individuals, all U. pinnatifida individuals were correctly classified using 15 

components. However, only 83% of red seaweed individuals were correctly classified as 

not belonging to U. pinnatifida and all P. plicata individuals were misclassified as U. 

pinnatifida. When U. pinnatifida was discriminated against all three seaweed 

individuals combined (including red, green and brown individuals), sensitivity and 

specificity were 90% and 75.6%, respectively, using 14 components.  

Influential wavelengths that discriminated U. pinnatifida from common brown 

seaweeds, obtained from VIP scores (Figure 12), were in the green (574 nm) and the 

NIR spectral region (716-718, 720-721, 750 nm). Green seaweeds were discriminated 

from U. pinnatifida by 17 wavelengths in green (541, 547, 548 nm), red (601–604 nm) 

and NIR (717, 718, 724–731 nm) region with wavelengths in the red region being 

highly influential. Red seaweeds were discriminated from U. pinnatifida by 11 

wavelengths in green (567–569 nm), red (698 nm) and NIR (703, 704, 716, 717, 720, 



47 

721, 750 nm) region. 22 influential wavelengths discriminated U. pinnatifida from all 

seaweed groups combined (Figure 12). 

Figure 12: Influential wavelengths discriminating Undaria pinnatifida from other 
seaweed species in each of the four PLS-DA models – U. pinnatifida vs (A) brown, 
(B) green, (C) red and (D) all seaweed species. Each subplot shows the influential
wavelengths in the X-axis and the degree of influence represented as VIP scores on
the Y-axis.

Validation of the influential wavelengths extracted from the PLS-DA model 

Standardised data were subjected to further validation using random forest classification 

with the wavelengths chosen from PLS-DA modelling. Random forest model out-of-bag 

error rates were 1.82% (U. pinnatifida vs all), 5.45% (U. pinnatifida vs brown), 3.64% 

(U. pinnatifida vs red) and 0% (U. pinnatifida vs green) (Table 6). The sensitivity of the 

random forest model remained the same as that of the PLS-DA model but the specificity 

of U. pinnatifida vs red random forest model increased by 2.8% and that of U. 

pinnatifida vs all model increased by 15.4% (Table 7). However, the specificity of U. 

pinnatifida vs brown random forest model decreased by 3% compared to that of the 

PLS-DA model, nevertheless, it remained high. Multidimensional Scaling (MDS) plot 

from the random forest models suggested clear grouping of the two classes in each 
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model, except for the U. pinnatifida vs all seaweed groups combined model (Figure 13) 

which has some individuals from the ‘None’ class overlapping the group of U. 

pinnatifida individuals. 

Figure 13: Multidimensional Scaling plots of two class random forest models – U. 
pinnatifida (circle) vs (A) all seaweed groups combined (triangle), vs (B) brown 
(triangle), vs (C) green (triangle), vs (D) red (triangle). X- and Y- axes are first and 
second dimension, respectively, in (n-1) dimensional cartesian space. ‘n’ is the total 
number of samples used in each model. 



49 

Table 6: Random forest model calibration parameter settings and performance 
statistics. 

U. pinnatifida vs Brown Green Red All 

Number of trees 80 100 120 100 

Number of wavelengths tried at 
each split 

2 4 3 4 

OOB estimate of error rate 5.45% 0% 3.64% 1.82% 

Class Classification error 

None 0.02 0 0.02 0 

UP 0.2 0 0.1 0.2 

Table 7: Model performance statistics from external validation using both random 
forest and PLS-DA techniques. Acc is accuracy, Sens is sensitivity, Spec is 
specificity, K is kappa, ncomp is the number of components selected for PLS-DA 
models and UP is U. pinnatifida. 

Model performance statistics – External validation of optimal models 

Random Forest PLS-DA 

Acc K Sens Spec Acc Sens Spec ncomp 

UP Vs Brown 0.977 0.937 1 0.969 0.907 1 0.879 5 

UP Vs Green 1 1 1 1 1 1 1 6 

UP Vs Red 0.889 0.727 1 0.857 0.822 1 0.771 15 

UP Vs All 0.909 0.616 0.8 0.923 0.773 0.9 0.756 14 

2.4 Discussion 

This study provides the first detailed investigation of the spectral reflectance of New 

Zealand native seaweed species and their spectral differences from the wide-spread 

invasive seaweed Undaria pinnatifida. In the terrestrial environment, spectral libraries 

have been useful in investigative studies such as discriminating tropical wetland species 

(Prospere et al., 2014), mangrove species (Vaiphasa et al., 2007), and invasive wetland 

species (Laba et al., 2005). This study adds to some of the studies that have been 
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conducted on aquatic vegetation, particularly seaweeds (Casal et al., 2013; Fyfe, 2003; 

Kotta et al., 2014).  

Species-level discrimination using remote sensing in aquatic or marine 

environments has been rarely successful (Fyfe, 2003), especially between species within 

a broad taxon (Casal et al., 2013; Kotta et al., 2014). However, this work demonstrated 

that it is possible to distinguish U. pinnatifida, a brown seaweed species, from other 

brown seaweeds with high accuracy and most of the discriminating wavelengths are in 

the NIR region. Casal et al (2013) found that not all species within a broad taxon 

showed discrimination but those that did, had differences at wavelengths in the NIR 

region. This clustering of influential wavelengths in the NIR region possibly explains 

the reason for discrimination of U. pinnatifida from other browns using lesser 

components compared to other models in PLS-DA. This is most likely because brown 

seaweeds have similar pigment composition and are mainly different in the NIR part of 

the spectrum which is affected by the blade structure (Cho et al., 2012). This clustering 

of wavelengths in one part of the electromagnetic spectrum would likely mean less 

confusion in discrimination comparatively. It is promising to note that there is a 

wavelength in the visible region of the spectrum (574 nm), which will not be attenuated 

as much with increasing water depth, that distinguishes U. pinnatifida from other native 

brown seaweed species. This was not detected in other species-level discrimination 

studies. This study offers a start to a deeper understanding of the spectral differences 

underpinning U. pinnatifida and other common native seaweed species for remote 

sensing applications. 

Our research showed that discrimination of common native and invasive 

seaweed species in New Zealand at a broad taxonomic level (red, brown and green) is 

possible and the results concur with similar studies conducted globally (Casal et al., 
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2013; Hochberg, 2003; Kieleck et al., 2001; Kutser et al., 2003). The MDS plots from 

the random forest models here suggest that red seaweed individuals may be more-

readily discriminated from brown and green seaweeds. Although there was a clustering 

of brown and green seaweed groups, there is some degree of overlap in spectral 

qualities in multidimensional space. Red and brown seaweeds have similar, unique 

pigments such as phycoerythrin and chlorophyll-c that have absorption peaks at around 

570 and 633 nm, respectively (Casal et al., 2012; Hedley and Mumby, 2002). Our 

results corroborate this with two of the influential wavelengths (571 and 634 nm) 

identified as influential in discriminating reds from browns and greens (Figure 9) and, 

browns from reds and greens (Figure 9). Kutser et al (2003) found similar results where 

red seaweeds were discriminated from browns (at 570 nm) and greens (at 550 nm). 

Other influential wavelengths identified in this study e.g. 567, 572, 657 and 658 nm are 

the same as those identified by Kotta et al (2014). Although these results are not 

surprising because the pigment composition is diagnostic for algal groups, it shows the 

algorithms used in the study are fit for further exploration such as discrimination at the 

species level. 

Sensitivity and specificity of class ‘U. pinnatifida’ during external validation 

was high for all PLS-DA models except for U. pinnatifida compared to browns + greens 

+ reds where sensitivity and specificity were 90% and 75.6%, respectively. In 

applications such as mapping invasive species, sensitivity is more important than 

specificity even at the cost of little specificity. Misclassification can be expensive and 

uneconomical but the consequences of missing the invasive species can be disastrous 

(Pyšek et al., 2012; Schmidt et al., 2012). Across our models, the sensitivity and 

specificity of the random forest models were better than that of PLS-DA, suggesting 

that PLS-DA may be better-suited for feature/wavelength selection than classification. 

Of some of the plant species discrimination studies using PLS-DA techniques on 
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hyperspectral imagery in a terrestrial environment, Peerbhay et al (2013) and Möckel et 

al (2014) both achieved better classification accuracies for predictive models using 

variables selected via PLS-DA. On the other hand, using the same selected features, the 

random forest models classified the testing data better than PLS-DA. This is consistent 

with the conclusions drawn by Dye et al (2011) that, regardless of the number of 

wavelengths selected, the classification accuracy remained high with the random forest 

model. 

It was expected that U. pinnatifida would be discriminated from green and red 

seaweed species based on the difference in colour. However, it was unclear whether U. 

pinnatifida could be discriminated from common brown seaweeds since there are not 

many studies supporting successful intra-taxon separation. Results from PCA, PLS-DA 

and random forest at fine-scale, confirm it is possible to discriminate U. pinnatifida 

from green and red and indeed from other brown seaweed species with high accuracy. 

Results also indicate that U. pinnatifida can be distinguished from each broad seaweed 

taxa separately with greater accuracy than from all combined. Such a fine-scale 

approach proved successful in other aquatic applications and some of these studies 

scaled high-resolution spectral reflectance down to commercially available imaging 

sensors to assess the suitability for aquatic vegetation mapping (Casal et al., 2013; Fyfe, 

2003; Vahtmäe and Kutser, 2013). U. pinnatifida, a classified unwanted organism by 

the New Zealand Ministry of Primary Industries, needs constant monitoring to stop its 

invasion into pristine environments such as Fiordland (MPI, 2019). These results give 

promise to the possibility of developing a remote sensing survey solution for mapping 

U. pinnatifida. A tailored solution to identify U. pinnatifida specifically would not only

be accurate but also quicker and cost-effective to map and, cover larger areas in a short 

time compared to conventional methods.   
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The wavelengths used for this study were expanded to include the NIR region of 

the spectrum even though water strongly absorbs those wavelengths. Studies in a 

controlled setting have shown that algorithms can be developed to improve the 

reflectance in the NIR region of the spectrum (Cho and Lu, 2010; Lu and Cho, 2011). 

However, this retrieval depends on the sensor’s signal-to-noise at those wavelengths 

along with environmental conditions. Since most of the wavelengths that discriminate 

U. pinnatifida from other common native brown seaweeds lie in NIR region, and U. 

pinnatifida is usually found in low intertidal/sub-tidal zones (James and Shears, 2016b; 

MPI, 2016) where water absorption is high in NIR region, further studies accounting for 

depth and turbidity would help understand the possibility of discrimination in a real-

world scenario. 

2.5 Conclusions 

This study is the first step towards discriminating seaweed species at all levels with high 

accuracy, including within brown taxa. Further steps include investigation of 

differences due to location, season, water depth, and water clarity. Ultimately, spectral 

discrimination of U. pinnatifida will require integration of all these factors into 

operational retrieval algorithms that can utilize existing or forthcoming remote sensing 

systems. 
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Chapter 3. Effects of location and season on seaweed 
spectral signatures 

Chapter 3 cover picture. Two seaweed species used in this study, Carpophyllum 

maschalocarpum (left) and Ecklonia radiata (right). 

This chapter is published in a peer-reviewed journal. In this chapter, spectral 

signatures of two common NZ native seaweed species were collected across four 

different locations in the Hauraki Gulf in different seasons. This is the first 

comprehensive study on the effect of season and location on spectral signatures of 

seaweed. The results of the study will help make decisions on remote sensing data 

acquisition or using appropriate spectral signatures for data already acquired. 

Spectral readings from 224 seaweed individuals (E. radiata and C. 

maschalocarpum) across four locations and over four seasons were acquired and 

analysed. Both the seaweed species showed separation from each other with little 

overlap. The study also showed season affected the spectral reflectance significantly. 
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3.1 Introduction 

Remote sensing surveys use multispectral and hyperspectral sensors to map vegetation 

based on the unique spectral signature of the individual plant species. Typically for 

healthy plants, there is low spectral reflectance in the visible region and high reflectance 

in the near-infrared region of the spectrum attributed to its biochemical and biophysical 

properties (Clark et al., 2005). Effects of physiological stress due to disease, insects or 

drought change the plant’s spectral signature and such characteristic spectral features 

can be exploited (using remote sensing) to address mass scale outbreaks by early 

detection (Abdullah et al., 2018; Kanemasu, 1974; Silva et al., 2008). However, in the 

terrestrial environment, there is also spectral variability within a single healthy plant due 

to natural variations such as season, substrate features, illumination or phenological 

stages (Bue et al., 2015; Silva et al., 2008) which if accounted for, can improve 

mapping accuracy (Somers and Asner, 2014).  

Anthropogenic activities such as urbanisation, deforestation and farming directly 

impact the coastal environment globally (Seers and Shears, 2015), especially benthic 

seaweed communities (Benedetti-Cecchi et al., 2001), by reducing the amount of light 

that these communities receive for photosynthesis. These effects are of growing concern 

to fast urbanising New Zealand, particularly in the Hauraki Gulf located on the 

northeast of North Island (Blain and Shears, 2019). The Hauraki Gulf is home to 

riverine estuaries, sheltered harbours, coastal beaches and open-coast shores with 

recreational, cultural and economic importance (Seers and Shears, 2015) and high 

impacts of sedimentation on the coastal environment makes it essential to monitor the 

health of its benthic habitats (Kelly, 2014). Besides, seaweeds are affected by other 

natural factors such as season, varying growth cycle in different seasons, nutrient flow 

or environment conditions (Fung et al., 2013; Kotta et al., 2014). While spectral 

variability due to natural variations are being explored in terrestrial environment and 
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seaweeds are being mapped using satellite/aerial data around the world (Uhrin and 

Townsend, 2016), very little research has investigated the variability of spectral 

characteristics of seaweeds.  

Reflectance properties of a species of marine vegetation can vary spatially and 

seasonally (Fyfe, 2003). There is little information on reflectance properties of a single 

marine vegetation species at different seasons (Casal et al., 2013). Researchers who 

have undertaken studies on eelgrass mapping in shallow waters in Canada (O’Neill et 

al., 2011), discrimination of invasive seaweed Caulerpa species in the Mediterranean 

(Kišević et al., 2011) and seaweeds in Baltic Sea (Kotta et al., 2014) have all 

recommended more research on reflectance properties of individual species across 

different seasons and locations for wide-scale mapping applicability, accurate 

characterising of the discriminating spectral features of the species in question or true 

representation of training dataset for spectral library classification approach.  

Spectral signatures from hyperspectral data enable us to identify the subtle 

differences in plant species better than multispectral datasets despite the common 

chemical composition within species (Cochrane, 2000; George et al., 2014). Therefore, 

in this study, using hyperspectral data, we analyse the effects of location and season on 

spectral characteristics of two commonly found, dominant, habitat-forming seaweed 

species, Ecklonia radiata (C. Agardh) J. Agardh. and Carpophyllum maschalocarpum 

(Turner) Grev. in the Hauraki Gulf. 

3.2 Materials and Methods 

3.2.1 Seaweed collection and spectral measurements 

Seven individuals of each species, Ecklonia radiata and Carpophyllum 

maschalocarpum, were collected from each of four locations (Figure  B-1) located 

approximately 10km apart from Te Haruhi Bay (174º 49’ 2” E, 36º 37’ 5” S) north to 
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Motuora Island (174° 47' 36.59" E, 36° 30' 30.31" S), Kawau Island (174° 52' 33.02" E, 

36° 27' 3.93" S), and Takatu Point (174° 51' 59.89" E, 36° 22' 12.18" S) in Autumn 

(October 2017), Spring (April 2018), Winter (June 2018) and Summer (December 

2018). Seasons were chosen as December to February (summer), March to May 

(autumn), June to August (winter), September to November (spring). Spectral readings 

of seaweed individuals, taken out of the water and placed on a black mat, were 

measured using ASD Handheld-2 field spectrometer with a wavelength range of 325 – 

1075 nm and 1 nm sampling interval. The spectrometer was held at 10 cm above the 

individuals looking at nadir and ten readings of each seaweed individual over blade and 

stipe were recorded. Several calibration readings were taken depending on the cloud 

conditions using the Spectralon® panel. Readings in each location were recorded within 

an hour of taking the samples out of water. Every effort was taken to collect the 

readings within 2 hours of solar noon but some were collected beyond the range and the 

location description was recorded (Table  B-1).  

3.2.2 Data analysis 

3.2.2.1 Data pre-processing 

The spectral data set from seven individuals of each seaweed species from four seasons 

and four locations comprised: 1120 readings for C. maschalocarpum, 1119 readings for 

E. radiata, 350 numeric wavelengths of the reflectance values between 400–750 nm and

the categorical variables “seaweed species”, “season” and “location”. There is a missing 

data point for E. radiata due to an erroneous reading. The wavelengths included those 

that lie within the water transmission window (450–550 nm) (Kieleck et al., 2001) as 

well as the NIR region that shows the greatest discrimination between species (Fyfe, 

2003). The data were standardised using the Standard Normal Variate (SNV) technique. 

SNV scaling was performed on the data across the columns for each row to remove 

multiplicative noise from each spectrum (Wehrens, 2011). It was performed by 
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subtracting the mean of values at all wavelengths, for each spectral signature, from the 

reflectance values at each wavelength and dividing the difference by standard deviation 

of the spectrum (Kotta et al., 2014). 

3.2.2.2 Qualitative separation of seaweed species 

Principal Component Analysis (PCA) was performed to qualitatively assess the 

separation between E. radiata and C. maschalocarpum. In case of good separation of 

the two species, the seaweeds were assessed for spatial and seasonal effect, separately. 

R statistical software package was used for the analysis (Team, 2019). 

3.2.2.3 Spatial and seasonal variability in spectral reflectance 

Due to the high dimensionality of the data, it was decomposed to a few principal 

components (PCs) that encompassed the variation from influential wavelengths. This 

was implemented using PCA on the standardised data for the two seaweed species, 

separately. Principal component (PC) with most variance was chosen and the 

wavelengths that influenced this PC were selected based on the loading values using 

‘factoextra’ package in R software (Kassambara and Mundt, 2017). For each seaweed 

species, to identify a significant difference in spectral reflectance across various 

locations and seasons, a linear mixed-effect model was built with each contributing PC 

as the response variable, location and season as fixed effects, and seaweed individuals 

as the random effect. The difference between the individuals due to any in-plant 

variation in each location and season was modelled by the random effect. The linear 

mixed model separates the variance due to random sampling from the fixed effect (Zuur 

et al., 2009). The explanatory variables location, season and seaweed individuals were 

factor variables with four, four and seven levels, respectively. The full model was built 

including both location, season and the interaction between the two using maximum 

likelihood (ML) method which was compared against a model with a term dropped 
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(Table  B-2). The best model was selected using Akaike Information Criterion 

Vaiphasa, Skidmore, de Boer, and Vaiphasa (2007) and the full model was run with all 

the terms included using the method Restricted Maximum Likelihood (REML). ‘nlme’ 

package in R was used for this analysis (Pinheiro et al., 2018). The final model 

prediction plot with +/- 2 Standard deviations at 95% confidence interval was plotted 

using ‘AICcmodavg’ package in R software (Mazerolle, 2019). The goodness-of-fit of 

the model was assessed using marginal and conditional R2 value suited for the mixed-

effects model (Nakagawa et al., 2013) and implemented using ‘MuMIn’ package in R 

software (Barton, 2018). Marginal R2 value explains the variance due to fixed effects, 

conditional R2 value explains the total variance due to fixed and random effects. 

3.3 Results 

3.3.1 Data pre-processing and PCA 

PCA on SNV data of the two seaweed species combined showed clear grouping of E. 

radiata and C. maschalocarpum with the maximum variance of 86.5% on the first PC. 

The two seaweed species were separated (Figure 14) for further analysis of the effect of 

location and season on spectral reflectance using a linear mixed-effects model.   
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Figure 14: Principal component analysis of Ecklonia radiata and Carpophyllum 
maschalocarpum showing the separation of the two seaweed species 

3.3.2 Spatial and seasonal variation on the spectral reflectance of 
Carpophyllum maschalocarpum using linear mixed modelling 

PCA on standardised spectral data of C. maschalocarpum resulted in the maximum 

variance in the first PC (93.4%). 

3.3.2.1 Variables contributing to PC1 

Based on loading values, wavelengths that contributed to the variation in PC1 were 

597– 608 nm, 693–718 nm and 733–750 nm (Figure  B-2). The spectral reflectance 

values of influential wavelengths between 733–750 nm were positively correlated to 

PC1 scores while that between 597–608 nm and 693–718 nm are negatively correlated 

and the latter has a higher magnitude. 

3.3.2.2 Effect of season and location on PC1 

The results of mixed effects modelling on PC1, using likelihood ratio test, showed that 

location, season and the interaction between them had significant effect on standardised 

spectral reflectance of C. maschalocarpum. Data is more likely under model A than it is 
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under model B (L = 197.02 (df = 9, p < 0.001)) or model C (L = 1433.19 (df = 12, p < 

0.001)) or model D (L = 423.77 (df = 12, p < 0.001)). The final model A performed 

well with marginal and conditional R2 of 0.735 and 0.741, respectively. 

Winter and spring affect spectral reflectance at wavelengths between 733 – 750 

nm but there was no significant difference between the two seasons at each location 

(Figure 15).  However, in summer, spectral reflectance between 693–718 nm described 

C. maschalocarpum in Motuora Island and was significantly different compared to the

rest of the locations. The spectral reflectance between 597–608 nm described the 

seaweed in Autumn across all locations. 



62 

Figure 15: (A) Model predictions plot with two standard deviations (and 95% 
confidence interval) of PC1 for Carpophyllum maschalocarpum in different 
locations within each season, X-axis represents seasons and Y-axis represents PC1 
scores and the interpretation of wavelengths contributing to PC1 axis (B) Model 
predictions plot with two standard deviations (and 95% confidence interval) of 
PC1 for Carpophyllum maschalocarpum in different seasons within each location, 
X-axis represents locations and Y-axis represents PC1 scores and the
interpretation of wavelengths contributing to PC1 axis.

3.3.3 Spatial and seasonal variation on the spectral reflectance of Ecklonia 
radiata using linear mixed modelling 

PCA on standardised spectral data of E. radiata resulted in the maximum variance of 

83.4 % in first PC and variance of 9.3% in the second PC. 
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3.3.3.1 Important variables contributing to components PC1 and PC2 

Based on loading values, wavelengths that contributed to the variation in PC1 were 

572–613 nm, 693–715 nm and 730–750 nm (Figure  B-3). The spectral reflectance 

values in wavelengths between 730–750 nm are positively correlated to PC1 scores 

while that between 572–613 nm and 693–715 nm are negatively correlated and the latter 

has a higher magnitude. 

3.3.3.2 Effect of season and location on PC1  

The results of mixed-effects modelling on PC1, using the likelihood ratio test, showed 

that location, season and the interaction between them had a significant effect on 

wavelengths that contributed to PC1. The test revealed that data is more likely under 

model A with AIC of 2522.54 than it is under model B (L = 479.82 (df = 9, p < 0.001)) 

with AIC of 2984.36 or model C (L = 616.35 (df = 12, p < 0.001)) with AIC of 3114.89 

or model D (L = 570.21 (df = 12, p < 0.001)) with AIC of 3068.75. The final model A 

performed well with marginal and conditional R2 of 0.457 and 0.465, respectively. 

Autumn and spring had a similar effect pattern on the spectral reflectance values 

in wavelengths 572–613 nm in all locations (Figure  B-4A). There was no seasonal 

effect on spectral reflectance values in wavelengths 730–750 nm that described the E. 

radiata in Kawau Island (Figure  B-4B).  

In summer, the wavelengths that described E. radiata in Motuora Island and Te 

Haruhi Bay were 693–715 nm and, in Kawau Island and Takatu point were 730–750 nm 

(Figure  B-4A). Location does not have a significant effect on the spectral reflectance of 

E. radiata in winter and the seaweed was described by wavelengths between 730–750

nm. 
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3.4 Discussion 

This study provides the first detailed investigation into the influence of season and 

location on the spectral signatures of E. radiata and C. maschalocarpum and addresses 

the shortcomings of past research that did not account for natural variations. Season and 

location were expected to affect the spectral reflectance of the two commonly found 

New Zealand native seaweed species. This study has found that wavelength regions 

describing E. radiata and C. maschalocarpum varies with season within each location 

which is indicated by significant location and season interaction in the mixed-effects 

modelling. The result of this study is consistent with other studies that account for 

temporal and spatial variation in terrestrial (Somers and Asner, 2014) and marine 

environments (Fyfe, 2003). 

The season affects spectral reflectance of E. radiata. The wavelengths that 

describe E. radiata varies in summer but remains the same in winter (730–750 nm) 

across all locations. This indicates that the lowest irradiance level is in winter and the 

subsequent increase in Chlorophyll-a pigment (Blain and Shears, 2019) levels remain 

the same across all locations. Photosynthetic pigments such as Chlorophyll-a and 

accessory pigments such as Chlorophyll-c and Fucoxanthin present in brown seaweeds 

such as E. radiata and C. maschalocarpum are responsible for the unique spectral 

signatures depending on the pigment concentration levels (Casal et al., 2012). Although 

it is reported that the wavelengths correlated to Chlorophyll-a are in green (550–560 

nm) and red edge (680–750 nm) region, it is difficult to quantify the concentration 

levels of individual pigments remotely (Huang et al., 2015). In summer, the 

wavelengths that describe E. radiata in Motuora Island and Te Haruhi Bay is different 

from that in Takatu point and Kawau Island. This is likely due to the high irradiance 

levels in summer (Blain and Shears, 2019) and varying wave exposure levels in 

different locations, for example, sites in Te Haruhi Bay and Motuora Island are 
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sheltered while that in Kawau Island and Takatu point are very exposed. Variations in 

the degree of water movement around plants among other factors influence 

photosynthesis (Hillman et al., 1989) and in turn, affects the spectral response of 

seaweed. 

There is a very different seasonal pattern exhibited in spectral data of C. 

maschalocarpum across all locations compared to E. radiata despite both species being 

collected from the same locations. C. maschalocarpum individuals were spectrally 

similar across all locations in winter and spring and were described by wavelengths 733 

– 750 nm. This is likely due to the lower irradiance levels during those seasons and no

chlorophyll production. However, in summer, the wavelengths (597–608 nm and 693–

718 nm) that described C. maschalocarpum varied significantly from those in spring 

and winter. Expectedly high photosynthetic activity in summer may likely cause some 

variation in wavelengths describing C. maschalocarpum in different locations (Figure 

15A). The spectral reflectance values of both seaweed species in summer is 

significantly different in Motuora Island compared to other locations (Figure 15B and 

Figure  B-4B). This could be due to the nature of the location (Table  B-1) enabling 

higher photosynthetic activity. 

Multispectral and hyperspectral sensors have the capability of capturing high 

resolution (spatially and spectrally) data that could resolve individual seaweeds. Due to 

the nature of the water current and movement of seaweed underwater, it is important to 

understand the within plant spectral variation across various parts of the seaweed 

individual such as blade and stipe. This study accounts for that variation and has found 

very low spectral variation within each sample indicated by the minimal difference 

between marginal and conditional R2 values of mixed modelling for both species. 
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Detecting within species spectral variation due to factors such as season and 

location using remote sensing imaging sensors could be difficult. When combined with 

other factors such as water column properties, depth and turbidity, detecting these 

inherent within-species differences could prove more difficult. Modelled spectral 

signatures have been used for distinguishing three seaweeds belonging to each broad 

taxon at different turbidity levels and depths (Vahtmäe et al., 2006), classifying 

seaweeds at a broad taxa level from hyperspectral images (Casal et al., 2013). However, 

spectral signatures from this study could be modelled for various water column 

properties using radiative transfer models or approached empirically for further 

research. 
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Chapter 4. Discrimination of Undaria pinnatifida from 
Ecklonia radiata using multispectral unmanned aerial vehicle 
(UAV) images and hyperspectral data: Role of depth and 
turbidity  

4.1 Introduction 

Undaria pinnatifida, an invasive seaweed in New Zealand (NZ) but native to Japan, has 

spread all over the coast and human-made structures in NZ. Biosecurity NZ has it 

classed as ‘under management’ (NIWA, 2020). Along the Otago coastline, Russell et al. 

(2007) found that in wave-dominated shores U. pinnatifida extends into habitats of 

Lessionia variegata and Marginariella boryana; in deeper sheltered subtidal areas U. 

pinnatifida invaded Macrocystis pyrifera forests and competed with Ecklonia radiata 

and Landsburgia quercifolia.  

Current seaweed monitoring/management techniques include manual SCUBA 

surveys which can be time-consuming and expensive (Flynn and Chapra, 2014). 

Remote sensing is a powerful tool to map such invasive plant species over a large extent 

in both terrestrial and aquatic environments (Bradley, 2013; Kišević et al., 2011). 

Previous research used high spatial resolution (0.5m to 2.5m) multispectral data such as 

IKONOS, QuickBird, SPOT and WorldView to map substrates such as coral, emerged 

and submerged seaweed classes, floating seagrass or seaweed wrack, sand and rock in 

the aquatic environment at a broad level due to the width of multispectral bands (Casal 

et al., 2011a; Deysher, 1993; Lekan and Coney, 1982; Reshitnyk et al., 2014; Sagawa et 

al., 2012; Wezernak and Lyzenga, 1975). Hyperspectral sensors have found detailed 

terrestrial applications such as the derivation of various indices to study water and 

chlorophyll content (Haboudane, 2002; Penuelas, 1997), identification of markers for 

plant diseases (Mahlein, 2013) and even discrimination of spectrally similar crops 

(Manjunath et al., 2011) or tree species (Peerbhay et al., 2013; Somers and Asner, 
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2014). Whereas in the marine environment, hyperspectral sensors such as CHRIS 

PROBA and Airborne Hyperspectral Scanner have been able to discriminate seaweeds 

at taxa level and from other substrates underwater (Casal et al., 2012; Casal et al., 

2011). Although the spectral resolution is very high (>18 spectral bands), sometimes the 

taxa level discrimination does not yield high accuracy due to heterogeneity of the 

seaweed patch and insufficient spatial resolution (Ashraf et al., 2010; Casal et al., 

2011). Also, the collection and processing of hyperspectral imagery can be quite 

expensive, depending on the size of the area to be studied (Cho et al., 2012).  

A multispectral or hyperspectral sensor carried on a UAV, a popular low-cost 

remote sensing platform, presents a promising solution for seaweed mapping as it offers 

a high spatial, temporal and spectral resolution. Rossiter et al. (2020) utilized a 

hyperspectral imaging sensor onboard UAV to assess an intertidal seaweed community, 

especially an ecologically important brown seaweed species, Ascophyllum nodosum, 

and is the only study of this kind. However, such hyperspectral imaging sensors produce 

high dimensional voluminous data (Adão et al., 2017; Dye et al., 2011; O’Neill et al., 

2011), make UAV integration difficult due to weight (Jakob et al., 2016) and the 

sensors are very expensive making it disadvantageous for such applications. There are 

miniature hyperspectral spot spectrometers and ever-evolving multispectral imaging 

sensors such as Micasense’s Rededge-m that are lightweight and lower-cost solutions. 

von Bueren et al (2015) compared four different sensors (Infrared camera, RGB camera, 

multispectral camera and STS miniature spot spectrometer) onboard a UAV platform 

for correlation of reflectance across the wavelengths between sensors and ASD field 

spectrometer over the grassland. He found that STS and ASD reflectances were similar 

but different in magnitude, the multispectral sensor showed a low correlation with STS 

and ASD in green and red bands. Doughty and Cavanaugh (2019) used a RedEdge 

sensor onboard UAV to study the variation in saltmarsh biomass and productivity at 
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fine spatial and temporal scale. Taddia et al (2019) used a RedEdge-m sensor to detect 

submerged seaweed in shallow water over some time. These multispectral sensors are 

purpose-built for terrestrial vegetation mapping, with many studies on terrestrial 

vegetation, but they have not been extensively used for mapping submerged aquatic 

vegetation such as seaweeds especially at species level at fine spatial scales.  

Traditional satellite- and air-borne images used for marine habitat mapping have 

large footprints, and the study area may not need a lot of images to cover the area of 

interest. Also, the images will include some land features which will be used for 

collecting keypoints between scenes to match and mosaic into single geo-rectified 

image in a semiautomated fashion. Whereas, the need for ultra-high spatial resolution 

often results in smaller UAV footprint (due to reduced flight height) and therefore 

increases the number of images needed to cover the study area. Proprietary software 

such as Pix4D Mapper pro or Agisoft PhotoScan professional automates UAV image 

processing by converting raw digital numbers (DNs) to reflectance and employing a 

structure from motion (SfM) method to match several keypoints in multiple images to 

build a point cloud of the study area. They often use ground control points (GCPs) to 

create an accurately georeferenced ortho-rectified image mosaic. This method works 

well for a terrestrial application where several keypoints can be identified and GCPs 

located before the survey due to the static nature and accessibility of most of the 

environment. Unlike terrestrial environment, an aquatic environment is dynamic and 

harder to obtain enough keypoints from the imagery, especially if the UAV image 

footprint is covered entirely with water. Georeferencing such images in these 

circumstances fail. For example, some images in the study by Taddia et al. (2019) failed 

to align due to lack of keypoints. In such cases were GCPs cannot be obtained, direct 

georeferencing is the key. Direct georeferencing enables imagery to be georeferenced 

without GCPs (Turner et al., 2014) and the technique is only as accurate as of the 
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Global Positioning System (GPS) and Inertial Measurement Unit (IMU) associated with 

the sensor used. While it is cost-effective to use UAV over traditional airborne 

platforms for high accuracy surveys, it is crucial to automate or semi-automate image 

processing to minimise costs (Turner et al., 2014). Currently, there are image processing 

python libraries that help with converting raw data from RedEdge-m sensor to 

reflectance (Micasense, 2018). With no software readily available for processing UAV 

images over the marine environment, a flowline for single image processing and direct-

georeferencing would be beneficial.  

Previous studies have shown that it is easier to discriminate seaweeds at broad 

taxa level than at species level but most species within a group showed variability 

(Casal et al., 2013; Fyfe, 2003). Chapter 2 studied the importance and lack of seaweed 

spectral library in NZ, discriminated some of NZ seaweeds at taxa level and 

discriminated U. pinnatifida from rest of the brown seaweed species. It also identified 

key wavelengths suitable for discrimination at both levels. While this discrimination 

study was using the in-air spectral library (seaweed individuals were taken out of water 

for spectral measurements), it was important to conduct a similar study with the effect 

of water depth and turbidity since U. pinnatifida is subtidal to over 10m deep. Water 

absorbs light energy in red and longer wavelengths of the spectrum (Silva et al., 2008) 

and reflectance in most of the wavelengths useful for discriminating seaweed lie in the 

red and near-infrared (NIR) region of the spectrum are lost with the increasing water 

depth (Vahtmäe and Kutser, 2013). Turbidity, determined by the constituents in the 

water column such as phytoplankton, suspended organic and inorganic matter, promotes 

spectral scattering thereby affecting the spectral reflectance properties of submerged 

vegetation (Pu et al., 2012). Casal et al (2013) modelled spectra for many seaweed 

species belonging to three broad taxa level (red, green and brown) to obtain spectra at 

various depth levels for defined turbidity level and found that the seaweeds were 
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separable at taxa level down to 4m depth. Vahtmäe and Kutser (2013) mapped high 

order vegetation, charophytes, filamentous green algae, using CASI and Worldview-2 

data with high accuracy down to a depth of 2m. It was optically too deep beyond 2m to 

map any substrates. The effects of depth and turbidity on spectral reflectance of 

seaweeds have been widely studied around the world, however, such a study is lacking 

for seaweeds in New Zealand.   

In this study, I created a spectral library of invasive seaweed U. pinnatifida and 

common NZ native seaweed E. radiata at five depth levels and two turbidity levels. I 

also acquired ultra-high spatial resolution multispectral data of the two seaweed species 

at different depth and turbidity levels using RedEdge-m sensor onboard UAV. I look to 

answer the following questions using the above-mentioned data: 

• Do depth and turbidity affect the spectral signatures of invasive seaweed U. 

pinnatifida and common NZ native seaweed E. radiata? 

• Is it feasible to discriminate the two seaweed species in a water depth of down to 

2m in two turbidity levels using the five bands of RedEdge-m multispectral sensor 

and wavelengths identified in Chapter 2? 

• Can U. pinnatifida and E. radiata be reliably discriminated using ultra-high spatial 

resolution multispectral (RedEdge-m) data? If so, up to what depth can it be 

discriminated? 

4.2 Materials and Methods 

4.2.1 Spectral data collection and processing 

An experiment was designed to collect spectral signatures of E. radiata and U. 

pinnatifida. This will be referred to as the ‘depth experiment’. The setup included two 

frames of 2m and 1m height made of polyvinyl chloride (PVC) pipes that slid into each 

other. The 2m high frame had a white plate at the base for placing seaweed samples on 
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and the 1m frame held the spectrometer on the top (Figure 16). A mini-

spectroradiometer called STS-VIS (STS-VIS, 2020) with a spectral range of 350-800 

nm was used (Figure 17). It was set up with a field of view (FOV) of 3 degrees, the 

integration time of one second, boxcar width of two and average of five scans for each 

reading. A green laser (560nm) was attached parallel to the spectroradiometer as a guide 

to identifying the sampling area. The PVC frame was marked at every 50 cm for easy 

referencing of depth at the time of measurement. Before the experiment, a Secchi disk 

was used to get a measure of turbidity. The disc, with black and white marked quarters, 

was immersed in the water at the study area until the depth at the which the disk is not 

visible anymore. A lower value of Secchi depth indicates higher turbidity level and vice 

versa.  
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Figure 16: Panoramic shot of depth experiment setup with STS-VIS spectrometer 
on the top and white base plate for holding seaweed on the bottom (right), team 
assisting with the depth experiment for moving the setup through the water 
column, changing the depth and seaweed individual identifiers on top of the boat 
and flying the UAV at the same time as the experiment while I was validating and 
collecting spectral readings on the computer (top left), a wooden plate with STS-
VIS spectrometer setup that was attached to the top of the PVC setup (bottom 
left). Bowing of the structure is an artefact of the panoramic shot. 

Figure 17: STS-VIS spectroradiometer used for collecting hyperspectral data over 
the depth experiment. 
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Five to ten individuals of subtidal seaweeds U. pinnatifida and E. radiata were 

used for this experiment over two days (Table 8). Seaweed samples were collected in 

October and November 2018 from Awakiriapa Bay in Waiheke Island. U. pinnatifida 

and E. radiata samples were collected on snorkel from mussel farm and adjacent rocky 

reefs respectively. The snorkeller observed the abundance of both the seaweed species 

along the rocky reef. The experiment was carried out near the mussel farm as it was 

sheltered for calmer water conditions (Figure 18). Dark noise reading of STS-VIS 

spectrometer was measured by closing the optical fibre with the cap after a 30-minute 

warm-up time. This set of values were subtracted from all the irradiance measurements. 

A white base was used for calibration in the field and was later calibrated with a known 

reference, a Spectralon® panel, separately. This set of values were used for calculating 

spectral reflectance of the seaweed samples to a known standard. After calibration 

measurements, each seaweed individual was placed on the base of PVC setup and 

absolute irradiance was recorded at six different points –just below the surface (<0.1m) 

(D1), 0.5 m (D2), 1m (D3), 1.5m (D4) and 2m (D5) as the setup went downwards and 

upwards the water column. This was achieved by immersing the PVC setup and 

recording the readings at each depth as it went down and came back up the water 

column. The height of the sensor above the water surface varied at spectral 

measurements at each depth from ~3m to minimum of 1m. The influence of this 

variability on the resulting spectral reflectance is assumed to be minimal. Calibration 

measurements to correct for irradiance conditions were taken every hour or when the 

conditions change.  
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Table 8: Information on sample, sea state and sky condition 

Date Seaweeds Individuals 
per 
seaweed 
species 

Secchi 
depth (m) 

Wind Sky 
condition 

24/10/2018 U. pinnatifida, 
E. radiata 

5 6 Very 
windy 

Cloudy to 
start with and 
cleared 
during the 
day 

23/11/2018 U. pinnatifida, 
E. radiata 

10 3.25 No wind Clear sky 

Files from STS-VIS spectrometer were downloaded in ‘.txt’ format. Each file 

contained irradiance values of seaweed individual for wavelengths between 335 – 822 

nm. Text files were processed in the R statistical software package to combine them into 

one data frame. Details of each spectrum such as the species name, depth, Secchi depth, 

date, replicate number were added to the data frame. The STS-VIS spectrometer was 

calibrated with the white base during the experiment, it was later calibrated against 

Spectralon® using the following formula. 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑜𝑜𝑜𝑜 𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 

The irradiance of Spectralon® out of the water at the time of the experiment was 

calculated using the following parameters. The reflectance of the white base calibrated 

to Spectralon® is known from a separate experiment and the irradiance of the white 

base was recorded during each experiment. Irradiance is the amount of light reflected by 

an object in absolute terms. Reflectance is the amount of light reflected by an object in 

relation to a known standard. The irradiance of Spectralon® out of the water was used 

to calculate reflectance of all the seaweed samples using a workflow that was built in R. 

Spectral data at five depth and two turbidity levels consisted of 150 readings of E. 

radiata and 150 readings of U. pinnatifida across wavelength region of 335 – 822 nm. 



76 
 

However, only readings within the wavelength region of 400 – 750 nm were considered 

for the analysis as water absorbs electromagnetic radiation drastically beyond 750 nm 

(Kieleck et al., 2001). 

Raw spectral data were standardised, following Kotta et al. (2014) for each 

spectrum, by subtracting the mean of all values at the wavelengths from each spectral 

value and dividing the difference by standard deviation of values. Standardised 

hyperspectral data were used for further analysis which is explained in the following 

data analysis section.  

A spectral library of U. pinnatifida and E. radiata at five depth and two turbidity 

levels, resampled to Micasense RedEdge-M® sensor bands in R, using both raw and 

standardised data was created in ENVI. Spectral signatures of a seaweed individual in 

the library were not averaged to preserve the spectral variability between individuals, 

following Kotta et al. (2014). The spectral libraries were used for further classification 

of Unmanned Aerial Vehicle (UAV) borne multispectral data. 
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Figure 18: Seaweed sample collection, UAV data collection and experiment 
location. Orange points represent data collected by UAV multispectral sensor at 
flight height of 10m, Blue points represent data collected by UAV multispectral 
sensor at flight height of 30m. Yellow point represents the location where both 
depth and UAV experiment was conducted on the 24th October 2018. 
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4.2.2 UAV data collection and image processing 

The equipments used for UAV data collection consisted of the following, 

Phantom 4 (P4) Pro (UAV) 

The DJI Phantom 4 Pro (Figure 19) is a comprehensive off-the-shelf platform 

that has been seen as a paradigm shift in the field of remote sensing due to its 

lightweight and high-quality integrated camera. AUT further enhanced the capabilities 

of the P4 Pro through the development of a customised mounting solution to allow the 

Rededge-m multispectral camera as an additional payload. It has flight endurance of 

~12 minutes with the additional sensor weight, real-time video link, planned flight 

paths, 4k RGB camera and obstacle avoidance sensors. It uses GPS/GLONASS satellite 

positioning systems. With GPS positioning it has a horizontal accuracy of +/- 1.5m 

(DJI, 2020). 

Micasense RedEdge-m® and Downwelling Light Sensor (DLS) 

Micasense’s RedEdge-m (Figure 19) is a multispectral sensor that captures 

images in five different spectral bands at very high spatial resolution. This sensor has 

been developed for agriculture and is under-explored for mapping submerged aquatic 

vegetation. Table 9 lists the specifications for the RedEdge-m used for this research. The 

DLS (Figure 19) is mounted on the top of the UAV and captures the downwelling 

irradiance at the time of image capture and accounts for changes in irradiance. This 

helps improve the radiometric quality of the data by correcting for changes in lighting 

conditions during the flight. 
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Table 9: Rededge-M specifications (Micasense, 2020) 

Weight 170 grams (6 oz) (includes DLS and 
cables) 

Dimensions 9.4 cm x 6.3 cm x 4.6 cm (3.7 in x 2.5 in x 
1.8 in) 

Spectral Bands (centre wavelength, full 
width half maximum) 

Blue (475, 20) 

Green (560, 20) 

Red (668, 10) 

Rededge (717, 10) 

Near-InfraRed (840, 40) 

Ground Sample Distance (GSD) 8 cm per pixel (per band) at 120 m (~400 
ft) AGL 

Capture rate 1 capture per second (all bands), 12-bit 
RAW 

Field of View 47.2° HFOV 

 

Ground control software 

Specialised ground control software (UgCS version 3.0) was used to monitor the 

UAV status. This allowed for optimum endurance per flight and ensured safe operation, 

providing the pilot with full situational awareness including video, real-time location 

and telemetry. 

Known reflectance panel 

Calibration panel with unique ID (RP03-1731212-SC) and known reflectance 

values at each spectral band (blue -0.55, green - 0.55, red - 0.54, NIR - 0.49, rededge - 

0.53) was used for calibration of multispectral images. Images of the reflectance panel 

were acquired before and after each flight by holding the UAV setup at 1m above the 

panel. The readings from reflectance panel in conjunction with the measurements from 
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the DLS, improved the radiometric quality of the multispectral images  (Taddia et al., 

2019). 

The DJI Phantom 4 Pro UAV mounted with Micasense Rededge-m sensor and 

DLS will be referred to as “UAV setup”. To test the suitability of spectral libraries for 

image classification, on 24th October 2018, two types of UAV data were collected. One 

type of data captured was where the ‘UAV setup’ was flown at 10m and 30m height 

obtaining multispectral images of the seaweed samples at each of five depth levels at the 

same time as the ‘depth experiment’ (Figure 18). The seaweed samples on the base plate 

are referred to as the reference seaweed To identify the depth and the seaweed species 

from multispectral images, a set of identifiers (Table 10) were placed on top of the boat. 

An identifier was not used for identifying seaweed species itself as the order was noted - 

the spectral readings of U. pinnatifida were obtained first followed by E. radiata. 

During this time, the boat was secured in place next to a mussel line. The multispectral 

data at flight height (FH) of 10m had sub-centimetre spatial resolution and that at FH of 

30m had a spatial resolution of ~2.7cm/pixel. 
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Figure 19: UAV setup including Micasense RedEdge-m sensor on the base, DLS 
sensor with GPS unit on top of Phantom 4 Pro. Known reflectance panel (bottom 
right). Photo credit: Graham Hinchliffe. 

Table 10: UAV data collection identifiers 

Seaweed individual Depth 

1  <0.1m  

2  0.5m  

3  1m  

4  1.5m  

5  2m  
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While the snokeller was collecting E. radiata samples for the depth experiment 

in the rocky reef, the snorkeller identified 20 U. pinnatifida locations by show of hand 

out of the water and the locations were captured by Phantom 4’s RGB camera keeping 

the snorkeller approximately in the centre of the photo. The tide was high during this 

time. RedEdge-m multispectral data was captured along the same path after the 

experiment. The UAV setup was first flown south at 30m height and turned around to 

cover the same area at 15m height. It was ensured that the coverage included U. 

pinnatifida locations identified. The tide was falling during that time. 

A flowline was developed for single image processing, direct-georeferencing 

and mosaicking of UAV images. Image processing included converting raw data to 

reflectance data with the help of metadata (data about data) stored in each band, 

aligning individual bands, image stacking and copying metadata over from raw to 

processed images. Georeferencing is a method of relating camera coordinate system to 

ground co-ordinate system either by using parameters intrinsic to the images (known as 

direct georeferencing) or by using pre-planned ground control points (GCPs) in the 

study area. Direct georeferencing spatially locates an image using altitude, image centre 

co-ordinates, rotational angles (yaw, pitch and roll) of the UAV, image size and sensor 

width.  

RedEdge-M multispectral data from the depth experiment were sorted based on 

the identifiers (Table 10) visible on each image and flying height into respective folders. 

Those images where the identifiers were not visible were not considered. Similarly, 

multispectral images along the rocky reef were sorted into a respective folder based on 

the flying height of 15 and 30m. Both types of UAV multispectral images were 

processed to create raw reflectance and standardised reflectance images but the data 

over the depth experiment was not georeferenced as it was only to assess the suitability 
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of the raw reflectance and standardised spectral libraries for classifying E. radiata and 

U. pinnatifida. The reflectance converted multispectral images were converted to a 

standardised image by subtracting the mean of each cell stack from the corresponding 

cell at each spectral band and dividing by the standard deviation of the cell stack. UAV 

data over the rocky reef in Awakiriapa Bay were processed, direct geo-referenced and 

mosaicked. Photo centre points from Phantom 4’s RGB camera of 20 U. pinnatifida 

locations were plotted in ArcGIS Pro to approximately locate U. pinnatifida positions 

identified by the snorkeller.  

4.2.2.1 Implementation steps - UAV single image processing 

The raw images from Micasense RedEdge-m® sensor consisted of five spectral 

bands (in the order - blue, green, red, NIR, rededge) with digital numbers for pixel 

values and saved as five separate 16-bit unsigned ‘.TIF’ files. These raw images need to 

be processed prior to analysis. The routines for processing the images were writen using 

a combination of a) Python and implemented in the Jupyter Notebook, a platform- and 

language-independent interface (Anaconda Software Distribution) b) Model builder in 

ArcGIS Pro.  

The first step was to convert these raw images to reflectance in conjunction with 

the Downwelling Light Sensor (fitted to the top of the UAV) and Micasense’s 

calibration panel. DLS’s irradiance information at the time of image capture was stored 

as metadata in each multispectral image. . The conversion of raw digital numbers to 

reflectance values was performed using libraries in ‘micasense/imageprocessing’ 

package (Micasense, 2018).  

The second step was the alignment of the individual spectral bands that are 

slightly offset with each other due to the nature of arrangement of sensors in the 

RedEdge-m multispectral camera. This was implemented using a feature matching 
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algorithm called Scale- invariant feature transform or ‘SIFT’ (Lowe, 2004) in Python’s 

OpenCV package (Bradski and Kaehler, 2008). This algorithm has since been patented.  

The third step was to stack the individual aligned bands into a single ‘composite’ 

image. This was implemented in the ‘ModelBuilder’ environment in ArcGIS Pro. This 

step was necessary to perform supervised image classification in ENVI version 5.5 

(Exelis Visual Information Solutions, Boulder, Colorado). The order of the spectral 

bands in ‘composite’ images and that in the spectral library used for supervised 

classification must match. In this case, the order of composite images was – Blue, 

Green, Red, NIR, Rededge and the spectral library was processed to match this order.  

Once the images were processed, the fourth step was to copy the metadata from 

raw files to processed composite files using ‘exiftool’ (Harvey, 2018).  

The fifth step was to georeference the images using direct geo-referencing 

technique to enable seaweed mapping. Direct geo-referencing of processed images can 

be achieved by two methods – a) creating control points for image corners and b) 

creating world files. Method (a) required list of image co-ordinates and their respective 

projected coordinates in a text file. Method (b) required six parameters as defined by 

ESRI (2020) – A (pixel size in the x-direction in map units/pixel), D (rotation about the 

y-axis), B (rotation about the x-axis), E (pixel size in the y-direction in map units, 

almost always negative), C (x-coordinate of the centre of the upper-left pixel), F (y-

coordinate of the centre of the upper-left pixel) in six subsequent lines in the same order 

in a world file created with extension ‘.tfw’ for each associated image. For both 

methods, the top left corner of an image was the origin (0,0). Both methods require 

corner points for the images in the projected coordinate system. To calculate these 

projected corner points; image centre coordinates, the altitude of UAV, orientation 
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angles (yaw, pitch, roll), image size (960 x 1280) and sensor width (4.8mm) were 

required. This information was stored as EXIF or XMP tags in image metadata.  

The image centres were in WGS84 (geographic coordinate system) as they were 

the output from GPS (Global Positioning System) which were converted to 

NZGD2000/NZTM (projected coordinate system) using ArcPy python package in 

ArcGIS Pro. To obtain projected corner points, yaw, pitch and roll (orientation angles of 

the UAV for navigation co-ordinate system) were converted to kappa, phi and omega 

(orientation angles defining the relationship between image coordinate system and 

projected coordinate system) using Pix4D companion notes (Pix4D, 2020b). 

The multispectral images acquired were nadir (camera pointing straight down). 

However, the sensor does not always face perfectly straight down due to UAV 

movement, wind or other factors. Therefore, in addition to the yaw of the UAV, the 

projected corner point calculation accounted for pitch and roll as well.  

Method (a) was implemented in Python in a two-step process where parameters 

for geo-referencing were calculated and saved as text files in a Jupyter environment and 

the text files were read as a batch process for all the images in a hosted ArcGIS 

Notebooks in ArcGIS Pro. It is important to note that the text files were saved in the 

same location as the images. 

The final step was to mosaic the individual geo-referenced images to create a 

single new image dataset for further analysis. The codes for the above processes are in 

Appendix C. 
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4.2.3 Data analysis 

4.2.3.1 Field spectroscopy - sun glint removal and data pre-processing 

According to Kutser et al. (2013), only 2% of their measurements had above water 

reflectance close to remote sensing reflectance. It was necessary to remove the glint 

effects from field radiometry data before analyses. Removal of sun glint from each 

reading was attempted using the technique described in Kutser et al. (2013) where 

reflectance values in wavelengths between 350 – 380nm and 890 – 900 nm were used to 

obtain a glint curve using a power function. This was performed in R software. 

4.2.3.2 Effect of depth and turbidity on the spectral reflectance of Undaria pinnatifida 
and Ecklonia radiata 

High dimensional spectral data was reduced to principal components that capture 

variation in reflectance across the influential wavelength region. This was performed 

using PCA (principal component analysis) on the standardised spectral data of U. 

pinnatifida and E. radiata, separately. Linear mixed models were built to identify a 

significant difference in spectral reflectance influenced by depth and turbidity (Table 

11). The response variable was the principal component with the highest variance while 

explanatory variables were turbidity (Secchi depth) and water depth as factors with two 

and five levels, respectively. The model that best represented the data was chosen based 

on Akaike Information Criteria (AIC). Model prediction plot with +/- two standard 

deviations at 95% confidence interval was used to interpret the influence of depth and 

turbidity on spectral reflectance. 

All the analyses were implemented in the R software (R Core Team, 2019). Mixed-

effects modelling was performed using ‘nlme’ package (Pinheiro et al., 2018), the 

prediction plot was built using ‘AICcmodavg’ package (Mazerolle, 2019). Marginal and 

conditional R2 values were calculated using ‘MuMIn’ package to assess the goodness-

of-fit of the best model (Barton, 2018). 
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Table 11: Various models used in mixed-effects modelling to test the significance of 
each term 

Model Formula Terms deleted 

A 
(Full) 

PC ~ secchiDepth + depth + 
secchiDepth:depth 

None 

B PC ~ secchiDepth + depth secchiDepth:depth 

C PC ~ secchiDepth Depth, secchiDepth:depth 

D PC ~ depth secchiDepth, 
secchiDepth:depth 

4.2.3.3 Discrimination of Undaria pinnatifida from Ecklonia radiata at various depth 
and turbidity levels using field spectroscopy data 

In addition to understanding the effect of depth and turbidity on spectral reflectance, the 

hyperspectral data from STS-VIS spectrometer was analysed to see if the two seaweed 

species, U. pinnatifida and E. radiata, could be discriminated at various depth and 

turbidity levels using two sets of spectral band combinations. One was using 

wavelengths that discriminated U. pinnatifida from other browns in Chapter 2 (Dataset 

A) and the other was the spectral band combination of Micasense Rededge-M sensor 

(Dataset B). This analysis would help understand usability of existing multispectral 

sensors compared to a sensor customised for the application. To produce Dataset B, 

hyperspectral data were resampled to proxy a Micasense RedEdge-m sensor by 

averaging the raw spectral reflectance values at the wavelength ranges in Table 9. After 

averaging, Dataset B was standardised following Kotta et al. (2014). Some of seaweed 

sample readings were duplicated and will be different from that in Table 12. The 

discrepancy was very small. 

Random forest modelling was used to discriminate U. pinnatifida from E. 

radiata at five depths and two turbidity levels. ‘randomForest’ package in R was used to 

build random forest models (Liaw and Wiener, 2002). Starting default parameter 

settings, the number of trees (ntree) and wavelengths to try at each node (mtry), were 
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tuned using the ‘tuneRF’ method in ‘randomForest’ package. It was assumed that there 

was no variation in the turbidity within the study area at the time of acquisition. Two 

models were built for each dataset (A and B) where each model represents the spectral 

data of the two seaweed species within the relevant turbidity level using two sets of 

wavelength information to assess overall discrimination between the two species at all 

depths down to 2m. While this analysis provides overall accuracy of classification, a 

further assessment was necessary to determine the accuracy of discrimination at 

different depths. So, the two datasets were further split to discriminate the two seaweed 

species at each of five depth levels within a turbidity level and ten models were built for 

each dataset. Random forest models produced an “out-of-bag” error estimate, which 

was a prediction error estimated using bootstrapped cross-validation. 



89 
 

Table 12: Spectral data description 

Seaweed Species Water 
Depth (m) 

Turbidity 
(Secchi Depth in 
m)  

Readings count 
per seaweed 
species (n/species) 

E. radiata and U. 
pinnatifida 

0.1 6 10 

E. radiata and U. 
pinnatifida 

0.5 6 10 

E. radiata and U. 
pinnatifida 

1 6 10 

E. radiata and U. 
pinnatifida 

1.5 6 10 

E. radiata and U. 
pinnatifida 

2 6 10 

E. radiata and U. 
pinnatifida 

0.1 3.25 20 

E. radiata and U. 
pinnatifida 

0.5 3.25 20 

E. radiata and U. 
pinnatifida 

1 3.25 20 

E. radiata and U. 
pinnatifida 

1.5 3.25 20 

E. radiata and U. 
pinnatifida 

2 3.25 20 

4.2.3.4 Discrimination of Undaria pinnatifida from Ecklonia radiata at various depth 
levels within a turbidity level using UAV-collected multispectral data 

Hyperspectral data (from STS-VIS spectroradiometer) resampled to Micasense 

RedEdge-m sensor were used to assess discrimination between U. pinnatifida and E. 

radiata in the section above. In this section, the spectral reflectance data for U. 

pinnatifida and E. radiata at various depth and turbidity levels were assessed for their 

ability to classify processed multispectral (RedEdge-m) UAV data. The assessment was 

a two-step process where, in the first step (Figure 20), only those spectral signatures 

relevant to the seaweed species at a specific depth in the image were used for 
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classification using both raw and standardised images. For example, a processed image 

of E. radiata ‘individual 1’ at a 50 cm depth (identified using the identifiers visible on 

the image) was classified using spectral signatures of E. radiata at a 50 cm depth. This 

step was performed to identify the image type (whether raw reflectance or standardised) 

that best classified the known seaweed pixels while the non-seaweed pixels remained 

unclassified.  

The Spectral Angle Mapper (SAM) supervised classification technique in ENVI was 

used for classifying multispectral images. This technique classifies a pixel based on the 

similarity in the shape of the reference spectrum and pixel spectra by calculating the 

angle between the pair of spectra in n-dimensional space (Kruse et al., 1993). The lower 

the angle between the reference and classification spectra, the better the accuracy of 

classification. On a calibrated reflectance data, this technique is insensitive to 

illumination effects (Vahtmäe and Kutser, 2013). The source of the reference spectrum 

can be from either the spectrometer or the spectral images. In this case, a maximum 

angle threshold of 0.2 radians was defined in ENVI for classification. Any pixel with 

values larger than the threshold value will not be classified. Data used for accuracy 

assessment was compiled for each of the classified images based on an equalised 

stratified random sampling technique using 500 random points. The accuracy 

assessment results were aggregated based on each seaweed species at a specific depth 

and spatial scale. In this case, five seaweed individuals per species were used in the 

experiment. Before accuracy assessment, polygon outlines of reference seaweed species 

were manually mapped in ArcGIS Pro from the processed UAV images and saved to a 

shapefile along with details of seaweed type, depth, individual number, and flying 

height. Thus, 250 validation points were randomly distributed within the reference 

seaweed polygon and the remaining 250 points within the non-seaweed area. There 

were seaweeds (mostly U. pinnatifida) present on the mussel line next to the boat when 
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the UAV data was collected at a height of 30m; these pixels were considered as a non-

seaweed class for simplicity. This will affect the classification but the low coverage of 

the seaweed laden mussel line in the image at that scale (~14%) compared to non-

seaweed area and the low chance of accuracy assessment points falling on the mussel 

line classification in large numbers reduces the potential impact on the classification 

accuracy. It is safer to be conservative on the classification accuracy than mislead with 

errors of commission.  

The classification was assessed using four performance statistics: user’s accuracy, 

producer’s accuracy, overall accuracy and kappa. User’s accuracy suggests the 

frequency of occurrence of the class on the ground, also known as reliability. Producer’s 

accuracy quantifies the proportion of the class correctly classified. Kappa is a statistical 

measure of the level of agreement of the reference and the classification corrected by 

chance, indicating if the classifier performed better than by chance (Oreti et al., 2020). 

Producer’s accuracy was the total number of correct classifications for a class divided 

by the total number of reference (column) in that class. User’s accuracy was the total 

number of correct classifications for a class divided by the row total. Overall accuracy 

was the total number of correctly classified values in all classes divided by the total 

number of reference values in all classes combined. Cohen’s kappa (𝑘𝑘) was calculated 

using the formula (Cohen, 1960): 

𝑘𝑘 =
𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑒𝑒
1 − 𝑝𝑝𝑒𝑒

 

where 𝑝𝑝𝑜𝑜 was the observed accuracy and 𝑝𝑝𝑒𝑒 was the expected accuracy. In this case, 

classification was assessed based on the producer’s accuracy of non-seaweed class and 

user’s accuracy of seaweed class. It is important to note that this depth experiment 

included one seaweed individual per image classification.  
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In the second step, the image type (raw reflectance or standardised reflectance) 

that best classified the seaweed species was utilised for further classification and 

assessment. Before classification, more reference spectra such as that of boat, buoy, 

water and glint from one of the multispectral images captured from a flight height of 

10m were added to the spectral library. Consequently, the whole spectral library 

containing image-derived spectra (of boat, buoy, water, glint) and spectrometer-derived 

spectra (of both seaweeds at all five depth and two turbidity levels); this was the dataset 

used for classifying the multispectral UAV data of all individuals of both seaweed 

species at five depth levels at flight heights of 10m and 30m. This classification was 

performed to assess discrimination between U. pinnatifida and E. radiata if any. SAM 

classification technique was implemented in ENVI with maximum angle threshold of 

0.2 radians.  

Accuracy assessment was performed at three levels in this step – level 1 

(collation of individuals), level 2A (collation of each species) and level 2B (collation of 

both species) (Figure 21). Accuracy for each of the classified images was assessed for 

classification of reference seaweed species (U. pinnatifida or E. radiata) at any given 

depth vs classification of both seaweed species at all five depth levels and unclassified 

pixels. In addition to those pixels that remained unclassified, water, glint, boat and buoy 

were reclassified as unclassified pixels since those pixels were not of interest in 

classification assessment. At level 1, the results from the accuracy assessment were 

compiled based on the classification of a reference seaweed species at a specific depth 

across both the seaweed species at five depth levels each, at two spatial scales and 

unclassified. This includes aggregated values from five seaweed individuals per species. 

Assessment at this level provides insights into the similarity of spectral signatures of 

reference seaweed at a specific depth with that of other seaweed species at different 

depth levels. At level 2A, the results from the accuracy assessment were compiled based 
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on the classification of a reference seaweed species class across both the seaweed 

species classes and unclassified class at two spatial scales based on flight heights of 10 

and 30m. Based on the results from level 1, this level provides insight into the influence 

of misclassification of reference seaweed at various depth levels to the classification 

accuracy. At level 2B, the results from the accuracy assessment were compiled based on 

the classification of the two reference seaweed species classes across both the seaweed 

species classes and unclassified class at two spatial scales. To calculate the 

classification accuracy of E. radiata and U. pinnatifida combined, E. radiata and U. 

pinnatifida classes were aggregated including all points but the unclassified column in 

the collated tables (Table  C-29 and Table  C-30) was halved. This step was necessary 

since the area surrounding the reference seaweed on base plate remains unchanged 

while the reference seaweed varied between E. radiata and U. pinnatifida. It was 

assumed the misclassifications in the unclassified area remained the same in both sets of 

seaweed species classification images. 
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Figure 20: Step 1 in seaweed classification from UAV multispectral data 

 

Figure 21: Step 2 in seaweed classification of UAV multispectral data 
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4.2.4 Application: Classifying U. pinnatifida and E. radiata along rocky 
reef using high spatial resolution RedEdge multispectral data 

Having classified and analysed U. pinnatifida and E. radiata at a greater resolution in 

the depth experiment, the spectral library was used for classifying seaweeds along the 

rocky reef in Awakiriapa Bay in Waiheke Island. Pixels with reflectance values below 

0.08 in NIR band were reclassified as water pixels and the rest were reclassified as land. 

NIR band absorbs water, therefore, the reflectance values of water pixels are close to 

zero.. Those shallow water pixels with seaweed or rocks had values slightly more than 

zero in NIR band, so the threshold value was adjusted to include shallow-water 

substrates. This was all implemented in model builder in ArcGIS Pro.  

The image type (raw reflectance or standardised data) that was used for classification of 

rocky reef UAV data was determined by the first step in section 4.2.3.4. After masking, 

spectral library including image-derived and spectrometer-derived spectra of both 

seaweed species at depths 10cm, 50cm and 1m at two turbidity levels and non-seaweed 

spectra was used to classify UAV multispectral data over the rocky reef. SAM 

classification technique with maximum angle threshold of 0.2 radians was implemented 

in ENVI. The results from initial classification were reorganised to combine all levels of 

E. radiata as one class and those of U. pinnatifida as another class. The seaweed 

individuals measured from the study were in the range of 30 – 50 cm. A 20cm buffer 

was drawn around the validation points to allow for the detection of blades or stipe of 

seaweed that may be spread outwards in the classified UAV data. Accuracy of rocky 

reef classification was assessed two ways. One way was to use level 2B classification 

accuracy from depth experiment. Another way was to visually assess the presence of U. 

pinnatifida at the 20 validation locations identified by the snorkeller. 
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4.3 Results 

4.3.1 Glint removal and data pre-processing 

Raw spectral data (Figure 22) indicate a drop in reflectance values in Red-NIR region of 

the electromagnetic spectrum as the water depth increases. A similar pattern was 

observed in the visible region of the electromagnetic spectrum but not as drastic as in 

Red-NIR region.  

The glint removal process yielded negative values in some parts of the spectrum 

(Figure 22). This was likely caused by the choice of wavelengths used for the 

correction, especially in the NIR region. Due to extreme noise in the data between 350 – 

360 nm only reflectance values in wavelengths between 360 – 380 nm were used 

instead of the recommended range of 350 – 380 nm. Reflectance at 820 nm was used as 

the recommended wavelength range (890-900 nm) was beyond the spectral range of 

STS-VIS spectrometer. Therefore, the glint removal technique was not used for further 

analysis. 

The calibration panel was used to correct for changing illumination and different 

days, however, these effects were clearly visible on a mixed day (cloudy and clear sky) 

(Figure 22B) compared to a clear day (Figure 22A). Therefore, the standardisation 

technique described in section 4.2.3.1 was applied for all of the spectral data so it is 

comparable and also to enhance the spectral features at various water depth levels 

(Figure 23). 
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Figure 22: Raw (blue) and glint corrected (orange) spectral reflectance values of U. 
pinnatifida at five depth and two turbidity levels. SD – Secchi depth. “Out of 
water” spectral readings of the seaweeds were not collected on the 24th October 
2018 (data in B). 
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Figure 23: Standardised spectral reflectance values of U. pinnatifida at five depth 
and two turbidity levels. SD – Secchi depth. 

4.3.2 UAV data collection and image processing 

UAV multispectral data of depth experiment produced five individual spectral bands 

(Figure 24) with raw digital numbers that were processed and stacked into a single 
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processed image with raw reflectance values (Figure 25). The edges of the processed 

file have some noise due to the placement of all five sensors and the variation in image 

footprint that they capture. This was removed using a mask layer. 60 multispectral 

images over the depth experiment were processed for further analysis. 

Similarly, multispectral images acquired over rocky reef were processed and noisy 

edges removed. However, direct geo-referencing using orientation angles (yaw, pitch 

and roll) from image metadata did not produce an accurate result. Near feature in 

ArcGIS Pro was used to obtain the orientation angles from UAV telemetry points 

(obtained from the ground control software) closest to the photo centres of the 

multispectral images. Only 18 of those multispectral images that covered the identified 

U. pinnatifida locations were directly geo-referenced. The image overlap helped 

remove/reduce the glint in the northern section of each image by reordering the images 

(Figure 26). While direct geo-referenced images using telemetry from UAV were 

approximately in its place, they still needed some manually identified tie points between 

each pair of images to make a seamless mosaic. 

Photo centres of 20 UAV RGB images representing U. pinnatifida locations that were 

plotted using metadata  (Figure 27) were compared with rocky reef mosaic along with 

RGB photos (Figure 28, Figure C-1 to C-6). The photo centres were off by 10 – 14m at 

the ends of the mosaic whereas some locations in the centre were off by 3 – 6m. The 

photo centres were manually adjusted to represent the true locations of U. pinnatifida in 

the processed multispectral mosaic by comparing with RGB photos (Figure 28). Even 

though the photo centres were over U. pinnatifida, the accuracy of GPS on Phantom 4 

pro and that of Rededge-m sensor did not allow for precision in identified U. pinnatifida 

locations. This step is crucial for validating the classification accurately. 
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Figure 24: In the depth experiment, E. radiata on the base plate immersed in water 
at <10cm depth was captured in five spectral bands by Rededge-M sensor on 
Phantom 4 Pro at FH of 10m. 

 

Figure 25: Individual spectral bands of E. radiata at <10cm water depth captured 
on Phantom 4 Pro at FH of 10m were stacked into a single file to create various 
band combinations, in this case, true colour RGB image. Noise from stacking is 
visible on the edges. Yellow circle highlights the visible identifiers. 
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Figure 26: (A) Direct geo-referenced images of the rocky reef at FH of 30m 
showing glint in the top half of the images, (B) direct georeferenced images with 
additional tie points to match the locations, reordered to remove glint and 
mosaicked as a single image. 
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Figure 27: Photo centres automatically plotted from image metadata (represented 
in yellow), plotted photo centre manually adjusted to represent true U. pinnatifida 
locations by comparing with UAV's RGB photos (represented in red). 
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Figure 28: Adjusted U. pinnatifida locations 6 and 7 on the multispectral mosaic 
(left) compared to RGB photos (right) with snorkeller in the centre of each photo. 

4.3.3 Effect of depth and turbidity on the spectral reflectance of Undaria 
pinnatifida 

A PCA on standardised spectral data of U. pinnatifida showed a maximum variance of 

84.85% explained by the first principal component (PC1). Wavelengths between 690 –

and 750 nm were most strongly, and negatively, associated with PC1 (Figure 29).  

 

Figure 29: Variables contributing to PC1 for Undaria pinnatifida 
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Linear mixed-effects modelling. A mixed-effects model including depth, 

turbidity and the interaction between best explained variation in PC1 for U. pinnatifida, 

with marginal and conditional R2 of 0.946 and 0.946, respectively. A likelihood ratio 

test revealed that the best model, model A (AIC = 921.28), had more statistical support 

than the three other alternative models (Table 13). 

Table 13: Likelihood ratio test of models explaining difference in spectral 
signatures of U. pinnatifida across four locations and four seasons 

Model Likelihood ratio test AIC 

B L = 83.85 (df = 8, p < 0.001) 997.13 

C L = 441.27 (df = 4, p < 0.001) 1346.55 

D L = 109.58 (df = 7, p < 0.001) 1020.87 

The wavelengths that describe U. pinnatifida at depths of 0.1m and 0.5m at 

turbidity (Secchi depth) of 3.25m and 0.1m water depth at turbidity (Secchi depth) of 

6m were between 690 – 750 nm. At depths between 1m and 2m, at both turbidity levels, 

the wavelengths (based on loading values, they were between 418 – 567 nm) that 

described U. pinnatifida were not significantly different (Figure 30). Turbidity does not 

significantly affect the spectral reflectance at the wavelengths describing U. pinnatifida 

within each depth except at 0.5m depth (Figure 30). 
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Figure 30: Model predictions plot with two standard deviations (and 95% 
confidence interval) of PC1 for Undaria pinnatifida at different Secchi depth levels 
(m) within each water depth level (m) 

4.3.4 Effect of depth and turbidity on the spectral reflectance of Ecklonia 
radiata 

A PCA on standardised spectral data of E. radiata showed a maximum variance of 

83.49% explained by the first principal component (PC1). Wavelengths between 688 

and 750 nm were most strongly, and negatively, associated with PC1 (Figure  C-7). 

Linear mixed-effect modelling. A mixed-effects model including depth, turbidity and 

the interaction between best explained variation in PC1 for E. radiata, with marginal 

and conditional R2 of 0.96 and 0.97, respectively. A likelihood ratio test revealed that 

the best model, model A (AIC = 850.15), had more statistical support than the three 

other alternative models (Table  C-1). 

The wavelengths that describe E. radiata at depths of 0.1m and 0.5m at turbidity 

of 3.25m Secchi depth and 0.1m water depth at turbidity of 6m Secchi depth were 

between 688 – 750 nm. At depths 1.5m and 2m, at both turbidity levels, the 

wavelengths (based on loading values, they were between 426 – 567 nm) that described 
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E. radiata were not significantly different (Figure  C-8). Turbidity did not have a 

significant effect on the spectral reflectance at the wavelengths describing E. radiata 

within each depth except at 0.5m depth (Figure  C-8). 

4.3.5 Discrimination of Undaria pinnatifida from Ecklonia radiata at 
various depth and turbidity levels using field spectroscopy data 

Resampling the hyperspectral data to match low spectral resolution Micasense Rededge-

m sensor to create Dataset B resulted in a loss of spectral fidelity (Figure 31). Tuned 

parameter settings for the random forest models produced better accuracy than the one 

with default parameter settings (Table 14 and Table  C-2). At low turbidity, 

discrimination between the two seaweed species using dataset A is better than dataset B 

(Figure 32). Dataset A includes spectral reflectance values at wavelengths 571, 716-721 

and 750 nm. Dataset B includes spectral reflectance values from hyperspectral data 

resampled to match Micasense Rededge-m spectral bands. On further assessment, the 

two seaweed species are discriminated with good accuracy in both datasets (A and B) 

and the accuracy increases with increasing depth (Figure  C-9). At both turbidity levels, 

discrimination between the two seaweed species was better using Dataset A compared 

to Dataset B at a depth of 0.1 by 14% (lower turbidity) and 23% (higher turbidity). At 

depths of 0.5m and 1.5m, discrimination between the two species at lower turbidity was 

better using dataset A than dataset B by 15% and 5%, respectively. Overall, the 

discrimination was better at higher turbidity (Secchi depth of 3.25m) compared to lower 

turbidity (Secchi depth of 6m) at all depth levels for both datasets. 
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Figure 31: Raw hyperspectral reflectance values (top) and Rededge-m resampled 
spectral reflectance values (bottom) of E. radiata and U. pinnatifida. The x-axis 
represent wavelengths in nm (top) and index numbers 1, 2, 3, 4 and 5 represent 
blue, green, red, NIR and rededge, respectively (bottom). The y-axis represent the 
reflectance values and it ranges between 0 – 1. 
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Table 14: Parameter settings for each of the random forest models across all 
depths within a turbidity level. ‘ntree’ is the number of trees created in the model, 
mtry is the number of wavelengths tried at each split. Dataset A includes 
wavelengths 517, 716 – 721, 750 nm while dataset B includes wavelengths 
resampled to Micesense RedEdge sensor. 

Dataset Turbidity (Secchi depth in m) ntree mtry 

A 
6 280 1 

3.25 300 5 

B 
6 500 2 

3.25 500 2 

 

Figure 32: Comparison of the overall accuracy of random forest model 
classification using two types of datasets for two turbidity levels across all depths. 
Dataset A includes spectral reflectance values at wavelengths 571, 716-721 and 750 
nm (represented in yellow). Dataset B includes spectral reflectance values from 
hyperspectral data resampled to match Micasense Rededge-M spectral bands 
(represented in blue). WL – wavelengths.  
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4.3.6 Discrimination of Undaria pinnatifida from Ecklonia radiata at 
various depth and turbidity levels using UAV-collected multispectral data 

After sorting the processed multispectral images to respective folders using the 

identifiers visible on top of the boat, only three out of five individuals each of U. 

pinnatifida and E. radiata could be verified to images. For the first step of determining 

the image type that best classified both the seaweed species, there was a total of 60 

multispectral UAV images each of raw reflectance and standardised image type over the 

depth experiment that were classified using raw reflectance and standardised spectral 

libraries resampled to Micasense RedEdge-m sensor, respectively.  

Visual assessment of 132 classified images of both seaweed species at five depth 

levels was conducted. While raw reflectance spectral library on raw reflectance 

multispectral image classified both seaweed species better than that of standardised 

data, it classified many non-seaweed areas as seaweed pixels (Figure 33 and Figure  

C-10) – error of commission. The level of such noise only increased with depth (Figure 

34). However, noise in classified images of standardised multispectral data and the 

coverage of correctly classified reference seaweed individuals were less.  

Spectrometer-derived spectra of both seaweed species at depths 1m, 1.5m and 

2m did not classify the reference seaweed pixels in standardised data with high accuracy 

and large areas of non-seaweed pixels were being misclassified as seaweed. To 

overcome this issue, spectra samples over reference seaweed individuals of both species 

were derived from standardised images. This procedure was performed on images 

captured at FH of 10m as the pixels were pure at such a high spatial resolution. 
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Figure 33: Screenshot of images of three different E. radiata individuals at 10cm 
below water surface classified using raw reflectance spectral signature of E. radiata 
at 10cm water depth on raw reflectance multispectral data (top set of 9 images) 
and standardised reflectance spectral signature of E. radiata at 10cm water depth 
on standardised multispectral data (bottom set of 9 images). The data was 
captured at FH of 10m. 
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Figure 34: Screenshot of images of three different U. pinnatifida individuals at 1m 
below water surface classified using spectrometer-derived raw reflectance spectral 
signature of U. pinnatifida at 1m water depth (top set of 9 images), the 
spectrometer-derived standardised spectral signature of U. pinnatifida at 1m water 
depth (middle set of 9 images), the image-derived standardised spectral signature 
of U. pinnatifida at 1m water depth (bottom set of 9 images). The data was 
captured at FH of 30m. 
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Based on the producer’s accuracy of non-seaweed class and user’s accuracy of 

seaweed class, classification of standardised UAV data using the standardised 

spectrometer-derived spectral library for both seaweed species at depths 10 cm and 50 

cm produced better results than raw reflectance data (Figure 35). Whereas for reference 

seaweeds at depths 1m, 1.5m and 2m, classification of standardised reflectance UAV 

data using image-derived spectra yielded good results (Figure 35). For detailed 

classification accuracy assessment refer to  Tables C-5 to C14 in Appendix C.  

For the second step of classification, a modified standardised spectral library 

including spectrometer-derived spectra of both seaweed species at depths 10cm, 50cm 

and image-derived spectra of the boat, buoy, water, glint and both seaweed species at 

depths 1m, 1.5m, 2m was created. All the spectral signatures were utilised to classify 60 

standardised UAV multispectral images of U. pinnatifida and E. radiata at five depth 

levels captured at FH of 10m and 30m. 

Visual assessment of these classified images showed some misclassification 

between the two seaweed species at shallow depths such as 10cm, 50cm and 1m within 

the reference seaweed area (Figures C-11 to C-13 and C-16 to C-18). However, on 

images captured at FH of 30m, most of the reference seaweed pixels at depths 1.5m and 

2m remained unclassified (Figures C-14, C-15, C-19 and C-20). At FH of 10m where 

the spatial resolution was very high, the shadow of the boat was being classified as E. 

radiata or U. pinnatifida at depths 1.5m and 2m. U. pinnatifida at depths of 10cm and 

50cm remained mostly unclassified with the threshold value of 0.2 radians on images 

acquired at FH of 30m. The values were increased to 0.4 radians for better 

classification.  
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Figure 35: Classification accuracy assessment of U. pinnatifida at five depth levels and two spatial 
scales at FH 10 and 30m. FH – flight height. Shades of blue represent the producer’s accuracy of 
non-seaweed class and shades of yellow represent the user’s accuracy of seaweed class. Dots and 
vertical lines represent accuracy using raw and standardised reflectance signature from 
spectroradiometer, solid fill represents standardised reflectance signature from multispectral 
image. 
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At level 1 (collation of individuals), producer’s accuracy of the reference seaweed class 

at each depth varied between 21 – 38% and 3 – 39% for E. radiata on images acquired 

at FH of 10m and 30m, respectively. Whereas the producer’s accuracy varied widely for 

U. pinnatifida at FH 10m (12 – 55%) and FH 30m (0.01 – 31%). The depth level 

classification accuracy assessments of reference seaweed classes are provided in tables 

C-15 to C-24.  

At level 2A (collation of each species), the low producer’s accuracy and kappa value of 

both seaweed species at depths of 1.5m and 2m from images collected at FH of 30m 

(Tables C-18, C-19, C-23, C-24) decreased the overall accuracy and kappa values 

(Figure 36)., As a result, only accuracy values of both seaweed species at depths 10cm, 

50cm and 1m were considered for next level of classification. Detailed classification 

accuracy assessment results are presented in Tables C-25 to C-28 in Appendix C.  

Accuracy assessment at level 2B (collation of both species) revealed the two seaweed 

species were discriminated from each other better in data acquired at FH of 30m than at 

FH of 10m (Figure 37).  Detailed classification accuracy values are presented in Tables 

C-29 and C-30.  
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Figure 36: Classification accuracy assessment of Ecklonia radiata and Undaria 
pinnatifida collated across depth levels at two spatial scales. Shades of blue 
represent overall accuracy (OA) and shades of yellow represent kappa (K) values. 
The lighter shade of both colours represents OA and K where assessment is 
collated at five depth levels combined. The darker shade of both colours represents 
OA and K where assessment is collated at depths 10cm, 50cm and 1m. 

 

Figure 37: Collated classification accuracy assessment of both seaweed species at 
all depth levels combined at two spatial scales. 
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4.3.7 Application: Classifying Undaria pinnatifida and Ecklonia radiata 
along rocky reef using high spatial resolution Rededge-m multispectral UAV 
data 

True colour RGB image created from the multispectral bands using red, green and blue 

bands in the red, green and blue channels, respectively, represents what our eyes see 

(Figure 38A). Whereas certain combinations of these spectral bands in the red, green 

and blue channels in the software enhance features of interest depending on the 

combination – the image is called false colour composite. For example, a combination 

of NIR, red and green in red, green and blue channels respectively enhances the 

vegetation which appears in red (Figure 38B). This helped in visual assessment of 

classification where the seaweed classification can seem misleading in certain areas in 

true colour RGB. 

The multispectral rocky reef mosaic was standardised since this technique 

reduced the noise in classification (based on the analysis in step 1 (Figure 20)). The land 

was masked before the SAM classification (Figure 39).  The rocky reef AOI was 

classified using a Spectral Angle Mapper (SAM) classification technique using the 

standardised spectral library that includes a) spectrometer-derived spectral signatures of 

both seaweed species from two turbidity and two depth levels (10cm and 50cm) and b) 

image-derived spectral signatures of glint, water and both seaweed species at a depth of 

1m. 

While rocky reef classification produced both seaweed species at five depth levels, all 

classes of E. radiata were combined into one E. radiata class and all classes of U. 

pinnatifida were combined into one U. pinnatifida class. From the classification, areas 

covered by U. pinnatifida and E. radiata within the rocky reef AOI were 76 sqm and 

108 sqm, respectively (Figure 40). The classification accuracy aggregated at level 2B 

from depth experiment translates to the rocky reef classification since the area was 
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mostly covered by E. radiata and U. pinnatifida (from diver’s observation) and the data 

was acquired on the same day as depth experiment. On data acquired at FH of 30m over 

depth experiment, 60% of U. pinnatifida was classified correctly, however, only 54% of 

classified U. pinnatifida pixels were reliable. Whereas, 43% of E. radiata was classified 

correctly and 59% of classified E. radiata pixels were reliable. Overall classification 

accuracy was 63% with a kappa of 0.45 indicating moderate agreement. Additionally, 

the classification was visually assessed for the presence of U. pinnatifida within the 

20cm buffer of each of the 20 validation points (Figure 41). 
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Figure 38: (A) True colour RGB image of a section of the AOI, (B) False colour 
composite enhancing vegetation of the same area. 
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Figure 39: (A) True colour RGB image of a section of the AOI with the land area 
masked (in black), (B) standardised RGB image of the same area with the land 
masked (in red). 
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Figure 40: Rocky reef classification. Classification of U. pinnatifida is in red and 
that of E. radiata is in green. 
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Figure 41: Screenshot of classification of U. pinnatifida (red) and E. radiata (green) 
within a buffer of 20cm radius (black circle) at 20 validation locations in the rocky 
reef 
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4.4 Discussion 

U. pinnatifida is a prolific invasive seaweed in NZ. In order to apply remote sensing 

techniques to map these seaweed species, it is crucial to understand its spectral 

reflectance characteristics and the ability to discriminate it from other spectrally similar 

commonly found NZ native seaweed species such as E. radiata. This is the first detailed 

empirical study to assess various remote sensing aspects of E. radiata and U. 

pinnatifida from assessing its hyperspectral signatures to discriminating the two 

seaweed species on multispectral ultra-high spatial resolution images. The study shows 

that depth has a significant impact on the spectral variability irrespective of the turbidity 

levels and the discrimination of spectrally similar seaweed species, E. radiata and U. 

pinnatifida, is feasible from both field-spectroscopy and multispectral ultra-high 

resolution UAV images. 

Depth affects the spectral reflectance values of both E. radiata and U. 

pinnatifida down to 1m depth, however, deeper than 1.5m there is no significant effect. 

This result is consistent with other submerged vegetation studies around the world 

(O’Neill et al., 2011; Uhl et al., 2016) and vegetation signal rapidly decreases within the 

first 2m of water depth (Vahtmäe and Kutser, 2013). However, turbidity did not 

influence spectral reflectance within each depth (0.1m, 1m, 1.5m and 2m) except at 

0.5m depth.  The effect of reduced turbidity (i.e. where 6m Secchi depth) on spectral 

reflectance values at 0.5m water depth was relatively similar to that at 1m water depth 

(Figure C-8 and Figure 30). It is expected to be similar to the effect at 0.1m water depth 

as there was still some reflectance from rededge (~700nm) region of the spectrum 

(Figure 31). Therefore, the difference in the effect of turbidity at 0.5m depth could 

likely be due to the composition of the water column particles at that depth. This in turn 

causes higher reflectance in the visible region. In addition to the sky conditions and 

glint, the effects could likely be confounded. The glint removal technique on 
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hyperspectral readings from spectrometer did not perform very well due to the 

insufficient wavelength regions to model the glint spectrum. 

This study used hyperspectral readings of the two seaweeds to assess the 

feasibility of using available low-cost remote sensing technology such as Micasense 

Rededge-m sensor on UAV for ultra-high spatial resolution mapping. Since both U. 

pinnatifida and E. radiata belong to the Phaeophyceae taxonomic group (brown 

seaweeds), the feasibility of using wavelengths that discriminated U. pinnatifida from 

other brown seaweed species which was identified in Chapter 2 was assessed. The 

accuracy of discriminating the two seaweeds varied with turbidity and depth. The 

overall accuracy at 10cm water depth was 43% in relatively clear waters (turbidity 6m) 

and actually improved to 65% in more turbid waters (turbidity 3.25m) when using 

Micasens Rededge-m sensor. However, the overall accuracy could be increased to 57% 

(turbidity 6m) and 87.5% (turbidity 3.25m) when using the target wavelengths 

identified in this study. Although accuracy increased with the increasing water depth, 

the water constituents (CDOM, TSM, Chl-a) at depths of 1m and deeper will contribute 

more towards the spectral signatures of these seaweed species, depending on its 

composition in the water column. These water constituents can increase the reflectance 

in the visible region. 

 The UAV borne multispectral reflectance images were standardised before 

image classification. This standardisation technique enabled the use of all the spectral 

signatures in the spectral library from the depth experiment for classification. It reduced 

a lot of noise (Wehrens, 2011) which in turn reduced misclassification of non-seaweed 

pixels. Image classification using reflectance values classified all of the seaweed 

individual but that was not the case with standardised reflectance values (Figure 33).  
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However, for applications such as biomass estimation, it is crucial to have the entire 

individual classified, if possible.  

Although the overall accuracy of classification of U. pinnatifida and E. radiata 

remained similar between the two spatial scales at which multispectral images were 

acquired (i.e. FH 10m and FH 30m), classification of data acquired at FH of 30m 

performed slightly better than that at FH of 10m. Classification accuracy of E. radiata 

and U. pinnatifida on data acquired at FH 30m improved with the exclusion of accuracy 

values at depths 1.5m and 2m. This is likely due to the presence of the shadow of the 

boat in the image-derived (FH of 10m) spectral data of E. radiata and U. pinnatifida at 

depths 1.5m and 2m. On data acquired at FH of 30m, some areas of both seaweed 

species at 1.5m water depth were being classified by spectra associated with both 

seaweed species at depths between 0.1m to 1m (Tables C-18 and C-23, Figures C-14 

and C-19).  

On the rocky reef classification data that was acquired on the same day as the 

depth experiment, some of the points were directly over U. pinnatifida pixels such as 

points 4, 5, 10, 11, 14 and 15 (Figure 41). Classification at validation point 7 was 

different from the rest of the points due to the absence of E. radiata class within the 

buffer and the presence of adjacent sand substrate. There have not been many intra-

taxon studies on seaweeds at ultra-high spatial resolution multispectral data. However, 

the accuracy of SAM classification was comparable to a study by Rossiter et al. (2020) 

that used ultra-high spatial resolution hyperspectral data to also classify various brown 

seaweed species using an in-situ spectral library. It is important to note that the brown 

seaweed species in the study area for that study were not submerged in water, 

nevertheless, the accuracy was 71%. Taddia et al. (2019) also used ultra-high spatial 
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resolution Rededge-m data to map submerged green seaweed with high accuracy (the 

exact number was not mentioned in the study).  

Direct georeferencing process in the study needs further work to georeference 

images of various orientations correctly. It works for images with yaw angle of 180 

degrees but not for that of 0 degrees. Also, the use of Real-Time Kinematic (RTK) or 

similar high-accuracy GPS solutions co-mounted onboard the UAV and connected to 

the multispectral imaging sensor would improve the locational accuracy. This is a 

correction technique that corrects the location of data in real-time (Pix4D, 2020a). This 

would be particularly beneficial in applications were GCPs are difficult to obtain and 

high accuracy is vital such as change detection studies over aquatic habitat, especially 

identifying invasive species from baseline data.  
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Chapter 5. Conclusion 

This research aimed to evaluate remote sensing techniques and technology for 

discriminating seaweeds in NZ, with a focus on the separability of invasive species U. 

pinnatifida from other common native seaweed species. It is the first study to 

investigate the key wavelengths that discriminated U. pinnatifida from other common 

habitat forming NZ native seaweed species; analyse the effect of season and location on 

NZ native seaweed species, C. maschalocarpum and E. radiata; discriminate 

submerged seaweeds, U. pinnatifida and E. radiata, using multispectral ultra-high 

resolution UAV images. This chapter will discuss the findings from chapters 2, 3 and 4 

and provide future research ideas. 

5.1 Insights from the study 

The hyperspectral library of common NZ native and invasive seaweeds created for the 

study is the first in NZ for seaweeds. This library has allowed the following: 

discrimination of seaweeds at species level (U. pinnatifida from rest of red, brown and 

green seaweeds) with >70% overall; conclude season and depth influences the spectral 

reflectance of the seaweed species; discrimination of U. pinnatifida and E. radiata from 

ultra-high spatial resolution multispectral images with >60% overall accuracy. Using 

hyperspectral field spectroscopy, it was possible to discriminate seaweed species at 

broad taxonomic levels (red, green and brown seaweeds) which concurs with studies 

around the world where the seaweeds were discriminated at broad taxa level with high 

accuracy. The wavelengths that discriminate the seaweed species at broad taxa level are 

coincident with absorption features of pigments unique to each taxonomic group. The 

findings from this study concludes hyperspectral discrimination could be applicable to 

other species beyond those in the current study. Fucoxanthin content changes for U. 

pinnatifida (Fung et al., 2013) and it was reported to vary significantly with season and 
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life cycle of the algae, peaking between the winter and spring (mature phase of 

sporophyte) and lowest during summer (senescence phase) (Terasaki et al., 2009). Once 

the spectral signature associated with a particular pigment profile is ascertained then the 

variability could be used to identify species or seasonal variability or even relative 

“health” of populations. Conclusions of previous studies are conflicting on species-level 

discrimination of submerged aquatic vegetation where some report difficulty in finding 

differences at the species level (e.g., Casal et al. (2013)) while some are successful (e.g., 

Rossiter et al. (2020)). This current study is a step forward where U. pinnatifida, a 

brown seaweed, is discriminated from other brown seaweeds successfully. Most of the 

wavelengths that were influential in discrimination were in the NIR region of the 

spectrum, similar to the findings by Casal et al (2013). It also identified a wavelength in 

the visible region (574 nm) that will not be attenuated by the water column as much as 

the NIR region. For remote sensing surveys mapping subtidal (submerged) seaweeds, 

presence of discriminatory wavelengths in the visible region of the EM spectrum rather 

than in the NIR region facilitates better chance of information retrieval since much of 

the information is lost due to water absorption in NIR region. The discrimination 

techniques were evaluated and found that PLS-DA and random forest were better suited 

for variable reduction and classification, respectively.  

The PCA revealed a partial overlap between brown and red seaweeds but green 

was separate from browns and reds. Within browns, Hormosira banksii, Ecklonia 

radiata, Dictyota ocellata, Cystophora torulosa, Carpophyllum maschalocarpum and 

Xiphophora chondrophylla could be most clearly differentiated (Figure A-1). However, 

Carpophyllum plumosum, Cystophora retroflexa and Carpophyllum flexuosum could 

not be differentiated. Within reds, all species showed total separation from each other, 

except Cladhymenia oblongifolia and Corallina officinalis that could not be clearly 

differentiated, and Pyropia plicata could not be differentiated from Melanthalia 
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abscissa. These results concur with a study by Tait et al. (2019), where spectrally 

similar H. banksii and C. maschalocarpum were easily separable from the spectrally 

rich dataset and red seaweed species had unique spectral signatures. Most of the species 

in this group were separated due to wavelengths in the NIR region (702–749 nm).  

Among greens, both Ulva spp. and Codium fragile both showed total separation from 

each other. This would mean that using imaging sensors that have the wavelengths that 

discriminate the two species it is possible to map the two green seaweed species from 

UAV remote sensing survey. 

The accuracy of mapping across different dates and locations depends highly on 

accurate spectral reflectance data. It is important to understand the impact of main 

factors such as season, location, water depth and turbidity. Although the focus was on 

U. pinnatifida, two NZ native seaweed species (E. radiata and C. maschalocarpum) 

were used to understand the effect of season and location. E. radiata and C. 

maschalocarpum were considered for the study of the effect of season and location 

since it co-occurs with U. pinnatifida. Without prior knowledge, it was harder to 

ascertain the presence of U. pinnatifida and E.radiata at the same location across all 

seasons. Season affects the spectral reflectance compared to location for both species. 

Wavelengths describing C. maschalocarpum were not significantly different in winter 

or spring across all locations. Wavelengths describing E. radiata were not significantly 

different in winter across all locations. This means any remote sensing data collected for 

both seaweed species during winter across all locations would be comparable. A 

detailed discussion of the effect of season and location is presented in section 3.4. 

In addition to season and location, water depth and turbidity also affect the 

spectral reflectance of submerged seaweeds significantly. Since U. pinnatifida is usually 

found at high densities at 0-3 m below mean low water in the shallow subtidal or very 
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low intertidal zone, it was crucial to understanding the effect of water depth and 

turbidity on its spectral reflectance across these depth zones. E. radiata  is one of the 

commonly found brown seaweeds that also co-occurs with U. pinnatifida. Analysis of 

the spectral data of both seaweed species at five depth and two turbidity levels revealed 

that depth has a significant effect in different parts of the electromagnetic spectrum 

from 10cm down to 1m. However, between the two turbidity levels, there was no 

significant difference in wavelengths describing both seaweed species at each depth. 

Using hyperspectral data from field campaign, U. pinnatifida and E. radiata were 

discriminated from each other successfully at each depth within a turbidity level and the 

accuracy increased with depth. This study used low-cost multispectral sensor onboard 

UAV to map two brown seaweed species at an overall accuracy of 63% and kappa of 

0.45 (moderately agreeable). Along with the direct georeferencing technique 

implemented in this study, it makes mapping of submerged seaweed at species level in 

relatively clear waters affordable and quick.   

Standardization of data from field spectroscopy and UAV multispectral sensor 

improved the quality of classification by reducing noise in the data. This technique can 

be applied out of this study. To the author’s knowledge, there are no studies that use 

standardisation technique on multispectral or hyperspectral images before image 

classification. 

5.2 Future research 

With the availability of the spectral library of seaweeds from various locations and 

seasons obtained out of the water from this research, a radiative transfer model such as 

Hydrolight can be used to model spectral signatures of seaweed for various water 

condition and depth. The modelled spectra can then be used for further studies such as 

the feasibility of discriminating these seaweed species at different depths for various 
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sensors, classifying a submerged habitat and biomass estimation. With classified images 

of earlier years as the base map, further applications are numerous such as habitat 

change analysis over time and impact analysis of invasive seaweed species like U. 

pinnatifida. 

The out-of-water NZ seaweed spectral library can be used as is for mapping 

those seaweed species that are exposed during tidal change. Although multispectral 

UAV images have produced fair classification accuracy, a higher spectral resolution of 

the imaging sensor could potentially yield better classification accuracy at the species 

level. 

The limitation of the UAV image classification study is the use of spectra of 

both seaweed species at depths 1.5m and 2m derived from UAV data obtained at FH 

10m for classification. This resulted in poor classification at those depths which is likely 

due to shadowing of the boat. It would be recommended to obtain spectral signatures 

from UAV data at FH 30m. Correcting the image for glint would also be advantageous 

before spectra collection. The images from the depth experiment were not glint 

corrected due to software issues while attempting the correction following Hedley et al. 

(2005). Despite the limitations, the UAV image classification performed well for the 

rocky reef. Due to the limited number of validation points for U. pinnatifida and lack of 

validation points for E. radiata, only visual analysis of presence or absence of U. 

pinnatifida was performed. Further improvements include cleaning the spectral library 

using the multispectral images of depth experiment as validation.  For example, only 

those spectral signatures that classified the reference seaweed pixels be used for further 

classification. This will likely improve the user’s accuracy of the two seaweed species. 

Also, masking the seaweed-laden mussel line before classification would also increase 

the user’s accuracy of both seaweed species. 
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Lack of static ground control features has limited the area for exploration to 

nearshore using UAV remote sensing. With the single image direct georeferencing 

workflow in this research, the study area does not need any GCPs and will process the 

images only using parameters intrinsic to the imaging sensor. Current process needs 

some manually identified tie points between images to improve mosaic results but 

adding high accuracy RTK GPS and IMU units to the sensor on UAV will potentially 

automate the image processing method. Further improvements and testing of the current 

process is needed to identify errors for various input for each parameter. 

This research used similar remote sensing technology to that in the study by 

Zeng, King, Richardson, and Shan (2017). They fused data from a multispectral 

imaging sensor and hyperspectral spot spectroradiometer onboard UAV to estimate a 

hyperspectral data for each image pixel in multispectral data. Although there were 

numerous uncertainties in the fusion, the study had a significant impact due to the use of 

low-cost sensors and platform to produce a rich dataset. While their research was for 

precision farming applications on land, it would be beneficial to try this method for 

submerged habitat mapping despite the challenges of an aquatic environment. 

Especially since part of the challenge of image georeferencing has been addressed by 

this research. 

The depth experiment in this research was near a mussel farm that was infested 

with U. pinnatifida. Though classified U. pinnatifida pixels from adjacent mussel line 

was not accounted for in the accuracy assessment, nevertheless all U. pinnatifida pixels 

were classified as either U. pinnatifida or E. radiata from the visual assessment. This 

indicates that use of the spectral library for classifying submerged seaweed is achievable 

with accuracy comparable to other marine habitat classification studies. 
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5.3 Summary 

This research has contributed significantly towards understanding the spectral 

difference between the invasive seaweed species, U. pinnatifida and other native 

seaweed species for successfully discriminating and mapping the invasive seaweed. The 

research successfully studied the spectral variability of some of the NZ native seaweed 

species due to season and location which was not studied until now. This will help in 

the decision-making process on the best time to conduct remote sensing survey of 

seaweeds. This research also identified the challenges in processing and georeferencing 

multispectral remote sensing images from the UAV in an aquatic environment and 

developed a workflow to address the issues. A novel image pre-processing technique 

that reduced noise in the classified images was implemented and compared against 

conventional technique. The study is also the first to use 5-band multispectral ultra-high 

resolution UAV image to classify two submerged spectrally similar brown invasive and 

native seaweed species of New Zealand. 

 

 



133 
 

References 

Abdullah, H., Skidmore, A. K., Darvishzadeh, R., Heurich, M., Pettorelli, N., & Disney, 
M. (2018). Sentinel‐2 accurately maps green‐attack stage of European spruce 
bark beetle (Ips typographus , L.) compared with Landsat‐8. Remote Sensing in 
Ecology and Conservation, 5(1), 87-106. DOI:10.1002/rse2.93 

Adão, T., Hruška, J., Pádua, L., Bessa, J., Peres, E., Morais, R., & Sousa, J. (2017). 
Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and 
Applications for Agriculture and Forestry. Remote Sensing, 9(11). 
https://doi.org/10.3390/rs9111110 

Anaconda Software Distribution. Conda. Version 2-2.4.0, Anaconda, Nov. 2016. 
Computer Software. Anaconda, www.anaconda.com 

Aneece, I., & Epstein, H. (2016). Identifying invasive plant species using field 
spectroscopy in the VNIR region in successional systems of north-central 
Virginia. International Journal of Remote Sensing, 38(1), 100-122. 
https://doi.org/10.1080/01431161.2016.1259682 

ASDInc. (2017). HandHeld 2: Hand-held VNIR Spectroradiometer. Retrieved from 
https://www.asdi.com/products-and-services/fieldspec-
spectroradiometers/handheld-2-portable-spectroradiometer 

Ashraf, S., Brabyn, L., & Hicks, B. J. (2012). Image data fusion for the remote sensing 
of freshwater environments. Applied Geography, 32(2), 619-628. 
https://doi.org/10.1016/j.apgeog.2011.07.010 

Ashraf, S., Brabyn, L., Hicks, B. J., & Collier, K. (2010). Satellite remote sensing for 
mapping vegetation in New Zealand freshwater environments: A review. New 
Zealand Geographer, 66(1), 33-43. https://doi.org/10.1111/j.1745-
7939.2010.01168.x 

Barton, K. (2018). MuMIn: Multi-Model Inference. 
Benedetti-Cecchi, L., Pannacciulli, F.,  Bulleri, F., Moschella, P. S., Airoldi, L., Relini, 

G. & Cinelli, F. (2001). Predicting the consequences of anthropogenic 
disturbance: large-scale effects of loss of canopy algae on rocky shores. Marine 
Ecology Progress Series, 214, 137-150. 

Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of 
Experimental Botany, 58(4), 855-867. https://doi.org/10.1093/jxb/erl123 

Blain, C. O., & Shears, N. T. (2019). Seasonal and spatial variation in photosynthetic 
response of the kelp Ecklonia radiata across a turbidity gradient. Photosynth Res, 
140(1), 21-38. DOI:10.1007/s11120-019-00636-7 

Botha, E. J., Brando, V. E., Anstee, J. M., Dekker, A. G., & Sagar, S. (2013). Increased 
spectral resolution enhances coral detection under varying water conditions. 
Remote Sensing of Environment, 131, 247-261. 
https://doi.org/10.1016/j.rse.2012.12.021 

Bradley, B. A. (2013). Remote detection of invasive plants: a review of spectral, 
textural and phenological approaches. Biological Invasions, 16(7), 1411-1425. 
https://doi.org/10.1007/s10530-013-0578-9 

Bradski, G. R., & Kaehler, A. (2008). Learning OpenCV: Computer vision with the 
OpenCV library. Sebastopol, CA: O'Reilly. 

https://doi.org/10.3390/rs9111110
https://doi.org/10.1080/01431161.2016.1259682
https://www.asdi.com/products-and-services/fieldspec-spectroradiometers/handheld-2-portable-spectroradiometer
https://www.asdi.com/products-and-services/fieldspec-spectroradiometers/handheld-2-portable-spectroradiometer
https://doi.org/10.1093/jxb/erl123


134 
 

Breiman, L. (2001). Random Forests. Machine Learning, 40, 5-32. 
Bue, B. D., Thompson, D. R., Sellar, R. G., Podest, E. V., Eastwood, M. L., Helmlinger, 

M. C., . . . Morgan, J. D. (2015). Leveraging in-scene spectra for vegetation 
species discrimination with MESMA-MDA. ISPRS Journal of Photogrammetry 
and Remote Sensing, 108, 33-48. https://doi.org/10.1016/j.isprsjprs.2015.06.001 

Cacabelos, E., Olabarria, C., Incera, M., & Troncoso, J. S. (2010). Effects of habitat 
structure and tidal height on epifaunal assemblages associated with macroalgae. 
Estuarine, Coastal and Shelf Science, 89(1), 43-52. 
https://doi.org/10.1016/j.ecss.2010.05.012 

Casal, G., Domínguez-Gómez, J. A., Kutser, T., Freire, J., & Sánchez-Carnero, N. 
(2012). Assessment of AHS (Airborne Hyperspectral Scanner) sensor to map 
macroalgal communities on the Ría de vigo and Ría de Aldán coast (NW Spain). 
Marine Biology, 159(9), 1997-2013. https://doi.org/10.1007/s00227-012-1987-5 

Casal, G., Kutser, T., Domínguez-Gómez, J. A., Sánchez-Carnero, N., & Freire, J. 
(2011). Mapping benthic macroalgal communities in the coastal zone using 
CHRIS-PROBA mode 2 images. Estuarine, Coastal and Shelf Science, 94(3), 
281-290. https://doi.org/10.1016/j.ecss.2011.07.008 

Casal, G., Kutser, T., Domínguez-Gómez, J. A., Sánchez-Carnero, N., & Freire, J. 
(2013). Assessment of the hyperspectral sensor CASI-2 for macroalgal 
discrimination on the Ría de Vigo coast (NW Spain) using field spectroscopy 
and modelled spectral libraries. Continental Shelf Research, 55, 129-140. 
https://doi.org/10.1016/j.csr.2013.01.010 

Casal, G., Sánchez-Carnero, N., Sánchez-Rodríguez, E., & Freire, J. (2011a). Remote 
sensing with SPOT-4 for mapping kelp forests in turbid waters on the south 
European Atlantic shelf. Estuarine, Coastal and Shelf Science, 91(3), 371-378. 
https://doi.org/http://dx.doi.org/10.1016/j.ecss.2010.10.024 

Chao Rodríguez, Y., Domínguez Gómez, J. A., Sánchez-Carnero, N., & Rodríguez-
Pérez, D. (2017). A comparison of spectral macroalgae taxa separability 
methods using an extensive spectral library. Algal Research, 26, 463-473. 
https://doi.org/10.1016/j.algal.2017.04.021 

Chen, W. W. (2012). Distribution, abundance and reproduction of Undaria pinnatifida 
(Harvey) Suringar from the Marlborough Sounds, New Zealand (Masters 
thesis). Auckland University of Technology (AUT), Auckland. 

Chiang, H. C., & Meyer, M. P. (1974). Remote Sensing Applications to Agricultural 
Monitoring1. EPPO Bulletin, 4(3), 309-315. https://doi.org/10.1111/j.1365-
2338.1974.tb02369.x 

Cho, H. J., & Lu, D. (2010). A water-depth correction algorithm for submerged 
vegetation spectra. Remote Sensing Letters, 1(1), 29-35. 
https://doi.org/10.1080/01431160903246709 

Cho, H. J., Mishra, D., & Wood, J. (2012). Remote Sensing of Submerged Aquatic 
Vegetation. Retrieved from http://www.intechopen.com/books/remote-sensing-
applications/remote-sensing-of-submerged-aquatic-vegetation 

Christie, H., Fredriksen, S., & Rinde, E. (1998). Regrowth of kelp and colonization of 
epiphyte and fauna community after kelp trawling at the coast of Norway. 
Hydrobiologia, 49 - 58. 



135 
 

Clark, M. L., Roberts, D. A., & Clark, D. B. (2005). Hyperspectral discrimination of 
tropical rain forest tree species at leaf to crown scales. Remote Sensing of 
Environment, 96(3), 375-398. doi:https://doi.org/10.1016/j.rse.2005.03.009 

Cochrane, M. A. (2000). Using vegetation reflectance variability for species level 
classification of hyperspectral data. International Journal of Remote Sensing, 
21(10), 2075-2087. DOI:10.1080/01431160050021303 

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and 
Psychological Measurement, 20(1), 37-46. 
https://doi.org/10.1177/001316446002000104 

Corporation, S. I. Pleiades-1A Satellite Sensor. Retrieved 13/02/2017,  from 
http://www.satimagingcorp.com/satellite-sensors/pleiades-1/ 

Davenport, A. C., & Anderson, T. W. (2007). Positive indirect effects of reef fishes on 
kelp performance: The importance of mesograzers. Ecology, 88(6), 1548-1561. 
https://doi.org/10.1890/06-0880 

Dean, P. R., & Hurd, C. L. (2007). Seasonal growth, erosion rates, and nitrogen and 
photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in 
southern New Zealand. Journal of Phycology, 43(6), 1138-1148. 
https://doi.org/10.1111/j.1529-8817.2007.00416.x 

De Backer, S., Kempeneers, P., Debruyn, W., & Scheunders, P. (2005). A band 
selection technique for spectral classification. IEEE Geoscience and Remote 
Sensing Letters, 2(3), 319-323. https://doi.org/10.1109/LGRS.2005.848511 

Dehouck, A., Lafon, V., Baghdadi, N., & Marieu, V. (2012, 2012). Use of optical and 
radar data in synergy for mapping intertidal flats and coastal salt-marshes 
(Arcachon lagoon, France) Retrieved from 
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84873108453&partnerID=40&md5=8d9114135e07bb0bd4154aeef30f448c 

Deysher, L. E. (1993). Evaluation of remote sensing techniques for monitoring giant 
kelp populations. Hydrobiologia, 260(1), 307-312. 

Dierssen, H. M., Chlus, A., & Russell, B. (2015). Hyperspectral discrimination of 
floating mats of seagrass wrack and the macroalgae Sargassum in coastal waters 
of Greater Florida Bay using airborne remote sensing. Remote Sensing of 
Environment, 167, 247-258. 
https://doi.org/http://dx.doi.org/10.1016/j.rse.2015.01.027 

DJI. (2020). Phantom 4 Pro Specs. Retrieved 22/07/2020,  from 
https://www.dji.com/nz/phantom-4-pro/info 

Dörnhöfer, K., & Oppelt, N. (2016). Remote sensing for lake research and monitoring – 
Recent advances. Ecological Indicators, 64, 105-122. 
https://doi.org/10.1016/j.ecolind.2015.12.009 

Doughty, C., & Cavanaugh, K. (2019). Mapping Coastal Wetland Biomass from High 
Resolution Unmanned Aerial Vehicle (UAV) Imagery. Remote Sensing, 11(5). 
https://doi.org/10.3390/rs11050540 

Driscoll, R. S., Francis, R. E., Smith, J. A., & Mead, R. A. (1974). ERTS-1 Data for 
Classifying native plant communities - Central Colorado. 2, 1195-1211. 

Dye, M., Mutanga, O., & Ismail, R. (2011). Examining the utility of random forest and 
AISA Eagle hyperspectral image data to predict Pinus patulaage in KwaZulu-

https://doi.org/10.1111/j.1529-8817.2007.00416.x
http://www.scopus.com/inward/record.url?eid=2-s2.0-84873108453&partnerID=40&md5=8d9114135e07bb0bd4154aeef30f448c
http://www.scopus.com/inward/record.url?eid=2-s2.0-84873108453&partnerID=40&md5=8d9114135e07bb0bd4154aeef30f448c


136 
 

Natal, South Africa. Geocarto International, 26(4), 275-289. 
https://doi.org/10.1080/10106049.2011.562308 

EarthData. (2020). Remote Sensors. Retrieved 29/07/2020,  from 
https://earthdata.nasa.gov/learn/remote-sensors 

ESRI. (2020, 6/16/2020). FAQ: What is the format of the world file used for 
georeferencing images? Retrieved from https://support.esri.com/en/technical-
article/000002860 

Estes, J. E. (1985). Geographic Applications of Remotely Sensed Data. Proceedings of 
the IEEE, 73(6), 1097-1107. https://doi.org/10.1109/PROC.1985.13240 

Fitridge, I., Dempster, T., Guenther, J., & de Nys, R. (2012). The impact and control of 
biofouling in marine aquaculture: a review. Biofouling, 28(7), 649-669. 
https://doi.org/10.1080/08927014.2012.700478 

Flynn, F. K., & Chapra, C. S. (2014). Remote Sensing of Submerged Aquatic 
Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle. 
Remote Sensing, 6, 12815-12836. https://doi.org/10.3390/rs61212815 

Forrest, B. M., Brown, S. N., Taylor, M. D., Hurd, C. L., & Hay, C. H. (2000). The role 
of natural dispersal mechanisms in the spread of Undaria pinnatifida 
(Laminariales, Phaeophyceae). Phycologia, 39, 547–553. 

Fung, A., Hamid, N., & Lu, J. (2013). Fucoxanthin content and antioxidant properties of 
Undaria pinnatifida. Food Chemistry, 136(2), 1055-1062. 
https://doi.org/10.1016/j.foodchem.2012.09.024 

Fyfe, S. K. (2003). Spatial and temporal variation in spectral reflectance: Are seagrass 
species spectrally distinct? Limnology and Oceanography, 48(1), 464 - 479. 

Gallardo, B., Clavero, M., Sanchez, M. I., & Vila, M. (2016). Global ecological impacts 
of invasive species in aquatic ecosystems. Glob Chang Biol, 22(1), 151-163. 
https://doi.org/10.1111/gcb.13004 

Gameiro, C., Utkin, A. B., & Cartaxana, P. (2015). Characterisation of estuarine 
intertidal macroalgae by laser-induced fluorescence. Estuarine Coastal and Shelf 
Science, 167, 119-124. https://doi.org/10.1016/j.ecss.2015.11.010 

George, R., Padalia, H., & Kushwaha, S. P. S. (2014). Forest tree species discrimination 
in western Himalaya using EO-1 Hyperion. International Journal of Applied 
Earth Observation and Geoinformation, 28, 140-149. 
https://doi.org/10.1016/j.jag.2013.11.011 

Gevaert, C. M., Suomalainen, J., Tang, J., & Kooistra, L. (2015). Generation of Spectral 
- Temporal Response Surfaces by Combining Multispectral Satellite and 
Hyperspectral UAV Imagery for Precision Agriculture Applications. IEEE 
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 
8(6), 3140-3146. https://doi.org/10.1109/JSTARS.2015.2406339 

Giri, C., Pengra, B., Zhu, Z., Singh, A., & Tieszen, L. L. (2007). Monitoring mangrove 
forest dynamics of the Sundarbans in Bangladesh and India using multi-
temporal satellite data from 1973 to 2000. Estuarine, Coastal and Shelf Science, 
73(1-2), 91-100. https://doi.org/10.1016/j.ecss.2006.12.019 

Gold, K. M., Townsend, P. A., Herrmann, I., & Gevens, A. J. (2019). Investigating 
potato late blight physiological differences across potato cultivars with 
spectroscopy and machine learning. Plant Science. 
https://doi.org/10.1016/j.plantsci.2019.110316 

https://doi.org/10.1109/PROC.1985.13240
https://doi.org/10.1111/gcb.13004


137 
 

Gould, R. W. J., Arnone, R. A., & Sydor, M. (2001). Absorption, scattering, and 
remote-sensing reflectance relationships in coastal waters: Testing a new 
inversion algorithm. Journal of Coastal Research, 17(2), 328-341. 

Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., Dextraze, L. (2002). 
Integrated narrow-band vegetation indices for prediction of crop chlorophyll 
content for application to precision agriculture. Remote Sensing of Environment, 
81(13), 416 - 426. 

Hartling, L., Hamm, M., Milne, A., et al. (2012). Validity and Inter-Rater Reliability 
Testing of Quality Assessment Instruments [Internet]. Retrieved from 
https://www.ncbi.nlm.nih.gov/books/NBK92295/table/methods.t2/ 

Harvey, P. (2018). ExifTool. Ontario, Canada. Retrieved from https://exiftool.org/ 
Hay, C., & Gibbs, W. (1996). A practical manual for culturing the Asia sea vegetable 

'Wakame' (Undaria pinnatifida): 1: Gametophytes. Nelson, New Zealand. 
Hay, C. H. (1990). The dispersal of sporophytes of Undaria pinnatifida by coastal 

shipping in New Zealand, and implications for further dispersal of Undaria in 
France. British Phycological Journal, 25(4), 301-313. 
https://doi.org/10.1080/00071619000650331 

Hay, C. H., & Villouta, E. (1993). Seasonality of the Adventive Asian Kelp Undaria 
pinnatifida in New Zealand. Botanica Marina, 36(5), 461-476. 
https://doi.org/10.1515/botm.1993.36.5.461 

Hedley, J. D., & Mumby, P. J. (2002). Biological and remote sensing perspectives of 
pigmentation in coral reef organisms. In Advances in Marine Biology (Vol. 43, 
pp. 277-317): Academic Press. Retrieved from 
http://www.sciencedirect.com/science/article/pii/S0065288102430064. 
https://doi.org/https://doi.org/10.1016/S0065-2881(02)43006-4 

Hedley, J. D., Harborne, A. R., & Mumby, P. J. (2005). Technical note: Simple and 
robust removal of sun glint for mapping shallow‐water benthos. International 
Journal of Remote Sensing, 26(10), 2107-2112. 
https://doi.org/10.1080/01431160500034086 

Hillman, K., Walker, D. I., Larkum, A. W. D., & McComb, A. J. (1989). Productivity 
and nutrient limitation. In A. W. D. Larkum, A. J. McComb, & S. A. Shephard 
(Eds.), Biology of seagrasses: a treatise on the biology of seagrasses with 
special reference to the Australian region (pp. 635-685). Amsterdam, The 
Netherlands: Elsevier Science. 

Hoang, T., Garcia, R., O'Leary, M., & Fotedar, R. (2016). Identification and Mapping of 
Marine Submerged Aquatic Vegetation in Shallow Coastal Waters with 
WorldView-2 Satellite Data. Journal of Coastal Research, 75(sp1), 1287-1291. 
https://doi.org/10.2112/si75-258.1 

Hochberg, E., Atkinson, M. J., & Andre´foue¨t, S. (2003). Spectral reflectance of coral 
reef bottom-types worldwide and implications for coral reef remote sensing. 
Remote Sensing of Environment, 85(2), 159-173. https://doi.org/10.1016/s0034-
4257(02)00201-8 

Hochberg, E. J., & Atkinson, M. J. (2000). Spectral discrimination of coral reef benthic 
communities. Coral Reefs, 19(2), 164-171. 
https://doi.org/10.1007/s003380000087 

https://doi.org/10.1515/botm.1993.36.5.461
https://doi.org/10.1080/01431160500034086
https://doi.org/10.1007/s003380000087


138 
 

Hu, C., Feng, L., Hardy, R. F., Hochberg, E. J.(2015). Spectral and spatial requirements 
of remote measurements of pelagic Sargassum macroalgae. Remote Sensing of 
Environment, 167: p. 229-246. 

Huang, J., Wei, C., Zhang, Y., Blackburn, G. A., Wang, X., Wei, C., & Wang, J. 
(2015). Meta-Analysis of the Detection of Plant Pigment Concentrations Using 
Hyperspectral Remotely Sensed Data. PLOS ONE, 10(9), e0137029. 
https://doi.org/10.1371/journal.pone.0137029 

Jakob, S., Zimmermann, R., & Gloaguen, R. (2016, 21-24 Aug. 2016). Processing of 
drone-borne hyperspectral data for geological applications Symposium 
conducted at the meeting of the 2016 8th Workshop on Hyperspectral Image and 
Signal Processing: Evolution in Remote Sensing (WHISPERS) 
https://doi.org/10.1109/WHISPERS.2016.8071689 

James, K. (2016). A review of the impacts from invasion by the introduced kelp Undaria 
pinnatifida Hamilton. Retrieved from 
https://www.researchgate.net/publication/313429187_A_review_of_the_impacts
_from_invasion_by_the_introduced_kelp_Undaria_pinnatifida 

James, K., Kibele, J., & Shears, N. T. (2015). Using satellite-derived sea surface 
temperature to predict the potential global range and phenology of the invasive 
kelp Undaria pinnatifida. Biological Invasions, 17(12), 3393-3408. 
https://doi.org/10.1007/s10530-015-0965-5 

James, K., & Shears, N. T. (2016a). Population ecology of the invasive kelp Undaria 
pinnatifida towards the upper extreme of its temperature range. Marine Biology, 
163(11). https://doi.org/10.1007/s00227-016-2993-9 

James, K., & Shears, N. T. (2016b). Proliferation of the invasive kelp Undaria 
pinnatifida at aquaculture sites promotes spread to coastal reefs. Marine Biology, 
163(2), 34-34. https://doi.org/10.1007/s00227-015-2811-9 

Jensen, J. R. (2016). Introductory digital image processing: A remote sensing 
perspective: Pearson Education Inc. 

Jiménez, M., & Díaz-Delgado, R. (2015). Towards a Standard Plant Species Spectral 
Library Protocol for Vegetation Mapping: A Case Study in the Shrubland of 
Doñana National Park. ISPRS International Journal of Geo-Information, 4(4), 
2472-2495. https://doi.org/10.3390/ijgi4042472 

Johnsen, G., Ludvigsen, M., Sørensen, A., & Sandvik Aas, L. M. (2016). The use of 
underwater hyperspectral imaging deployed on remotely operated vehicles - 
methods and applications. IFAC-PapersOnLine, 49(23), 476-481. 
https://doi.org/10.1016/j.ifacol.2016.10.451 

Kanemasu, E. T. (1974). Seasonal canopy reflectance patterns of wheat, sorghum, and 
soybean. Remote Sensing of Environment, 3(1), 43-47. 
doi:http://dx.doi.org/10.1016/0034-4257(74)90037-6 

Kassambara, A., & Mundt, F. (2017). factoextra: Extract and Visualize the Results of 
Multivariate Data Analyses. 

Kelly, S., Sim-Smith, C., Faire, S., Pierre, J., Hikuroa, D. (2014). State of our Gulf 2014 
Hauraki Gulf - Tikapa Moana/ Te Moananui a Toi State of the Environment 
Report 2014. Retrieved from http://hdl.handle.net/2292/25449 

Kieleck, C., Bousquet, B., Le Brun, G., Cariou, J., & Lotrian, J. (2001). Laser induced 
fluorescence imaging: application to groups of macroalgae identification. 

https://doi.org/10.1016/j.ifacol.2016.10.451


139 
 

Journal of Physics D-Applied Physics, 34(16), 2561-2571. https://doi.org/Doi 
10.1088/0022-3727/34/16/324 

Kišević, M., Smailbegović, A., Gray, K. T., Andričević, R., Craft, J. D., Petrov, V., . . . 
Dragičević, I. (2011, 2011). Spectral reflectance profile of Caulerpa racemosa 
var. cylindracea and Caulerpa taxifolia in the Adriatic Sea Retrieved from 
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84255166982&partnerID=40&md5=ca21a813b84810c06bc48c86dbc6a294 

http://ieeexplore.ieee.org/ielx5/6071746/6080842/06080960.pdf?tp=&arnumber
=6080960&isnumber=6080842 
https://doi.org/10.1109/WHISPERS.2011.6080960 

Kotta, J., Remm, K., Vahtmäe, E., Kutser, T., & Orav-Kotta, H. (2014). In-air spectral 
signatures of the Baltic Sea macrophytes and their statistical separability. 
Journal of Applied Remote Sensing, 8(1), 083634. 
https://doi.org/10.1117/1.jrs.8.083634 

Krecker, F. H. (1939). A Comparative Study of the Animal Population of Certain 
Submerged Aquatic Plants [research article](4), 553. Retrieved from 
http://ezproxy.aut.ac.nz/login?url=http://search.ebscohost.com/login.aspx?direct
=true&db=edsjsr&AN=edsjsr.10.2307.1930445&site=eds-live 

Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heidebrecht, K. B., Shapiro, A. T., 
Barloon, P. J., & Goetz, A. F. H. (1993). The spectral image processing system 
(SIPS)—interactive visualization and analysis of imaging spectrometer data. 
Remote Sensing of Environment, 44(2), 145-163. 
https://doi.org/https://doi.org/10.1016/0034-4257(93)90013-N 

Kucheryavskiy, S. (2018). mdatools: Multivariate Data Analysis for Chemometrics. 
Kutser, T., Dekker, A. G., & Skirving, W. (2003). Modelling spectral discrimination of 

Great Barrier Reef benthic communities by remote sensing instruments. 
Limnology and Oceanography, 48(1 II), 497-510. 

Kutser, T., Miller, I., & Jupp, D. L. B. (2006a). Mapping coral reef benthic substrates 
using hyperspectral space-borne images and spectral libraries. Estuarine, 
Coastal and Shelf Science, 70(3), 449-460. 
https://doi.org/10.1016/j.ecss.2006.06.026 

Kutser, T., Vahtmäe, E., & Metsamaa, L. (2006b). Spectral library of macroalgae and 
benthic substrates in Estonian coastal waters. Proc. Estonian Acad. Sci. Biol. 
Ecol., 55(4), 329-340. 

Kutser, T., Vahtmäe, E., Paavel, B., & Kauer, T. (2013). Removing glint effects from 
field radiometry data measured in optically complex coastal and inland waters. 
Remote Sensing of Environment, 133, 85-89. 
https://doi.org/10.1016/j.rse.2013.02.011 

Laba, M., Tsai, F., Ogurcak, D., Smith, S., & Richmond, M. E. (2005). Field 
determination of optimal dates for the discrimination of invasive wetland plant 
species using Derivative Spectral Analysis. Photogrammetric Engineering & 
Remote Sensing, 71(5), 603–611. 

Lekan, J. F., & Coney, T. A. (1982). The Use of Remote Sensing to Map the Areal 
Distribution of Cladophora Glomerata at a Site in Lake Huron. Journal of Great 
Lakes Research, 8(1), 144-152. https://doi.org/http://dx.doi.org/10.1016/S0380-
1330(82)71952-5 

http://www.scopus.com/inward/record.url?eid=2-s2.0-84255166982&partnerID=40&md5=ca21a813b84810c06bc48c86dbc6a294
http://www.scopus.com/inward/record.url?eid=2-s2.0-84255166982&partnerID=40&md5=ca21a813b84810c06bc48c86dbc6a294
https://doi.org/10.1016/j.ecss.2006.06.026
https://doi.org/10.1016/j.rse.2013.02.011


140 
 

Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R 
News, 2(3), 18-22. 

Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote Sensing and Image 
Interpretation (fifth ed.). New York, NY 

Lorentsen, S. H., Grémillet, D., & Nymoen, G. H. (2004). Annual variation in diet of 
breeding Great Cormorants: Does it reflect varying recruitment of Gadoids? 
Waterbirds, 27(2), 161-169. 

Louchard, E. M., Reid, R. P., Stephens, F. C., Davis, C. O., Leathers, R. A., & Downes, 
T. V. (2003). Optical remote sensing of benthic habitats and bathymetry in 
coastal environments at Lee Stocking Island, Bahamas: A comparative spectral 
classification approach [Article]. Limnology and Oceanography, 48(1 II), 511-
521. 

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. 
International Journal of Computer Vision, 60(2), 91-110. 

Lowe, S., Browne, M., Boudjekas, S., & De Poorter, M. (2000). 100 of the World's 
Worst Invasive Alien Species. The Invasive Species Specialist Group (ISSG) a 
specialist group of the Species Survival Commission (SSC) of the World 
Conservation Union (IUCN), 11. 

Lu, D., & Cho, H. J. (2011). An improved water-depth correction algorithm for seagrass 
mapping using hyperspectral data. Remote Sensing Letters, 2(2), 91-97. 
https://doi.org/10.1080/01431161.2010.502152 

Maggi, E., Benedetti-Cecchi, L., Castelli, A., Chatzinikolaou, E., Crowe, T. P., Ghedini, 
G., . . . MacIsaac, H. (2015). Ecological impacts of invading seaweeds: a meta-
analysis of their effects at different trophic levels. Diversity and Distributions, 
21(1), 1-12. https://doi.org/10.1111/ddi.12264 

Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H.W., Plümer, L., Steiner, U., Oerke, E.-
C. (2013). Development of spectral indices for detecting and identifying plant 
diseases. Remote Sensing of Environment, 128, 21 - 30. 

Manjunath, K. R., Ray, S. S., & Panigrahy, S. (2011). Discrimination of Spectrally-
Close Crops Using Ground-Based Hyperspectral Data. Journal of the Indian 
Society of Remote Sensing, 39(4), 599-602. https://doi.org/10.1007/s12524-011-
0099-x 

Maritorena, S., Morel, A., & Gentili, B. (1994). Diffuse reflectance of oceanic shallow 
waters: Influence of water depth and bottom albedo. Limnology and 
Oceanography, 39(7), 1689-1703. https://doi.org/10.4319/lo.1994.39.7.1689 

Martínez, B., Radford, B., Thomsen, M. S., Connell, S. D., Carreño, F., Bradshaw, C. J. 
A., . . . Lahoz-Monfort, J. (2018). Distribution models predict large contractions 
of habitat-forming seaweeds in response to ocean warming. Diversity and 
Distributions, 24(10), 1350-1366. https://doi.org/10.1111/ddi.12767 

Mazerolle, M. J. (2019). AICcmodavg: Model selection and multimodel inference based 
on (Q)AIC(c). 

Micasense. (2018). Micasense Image Processing. Retrieved2018, from 
https://github.com/micasense/imageprocessing 

Micasense. (2020). RedEdge-M User Manual (PDF). Retrieved from 
https://support.micasense.com/hc/en-us/articles/115003537673-RedEdge-M-
User-Manual-PDF- 

https://doi.org/10.1080/01431161.2010.502152
https://doi.org/10.4319/lo.1994.39.7.1689
https://support.micasense.com/hc/en-us/articles/115003537673-RedEdge-M-User-Manual-PDF-
https://support.micasense.com/hc/en-us/articles/115003537673-RedEdge-M-User-Manual-PDF-


141 
 

Möckel, T., Dalmayne, J., Prentice, H., Eklundh, L., Purschke, O., Schmidtlein, S., & 
Hall, K. (2014). Classification of Grassland Successional Stages Using Airborne 
Hyperspectral Imagery. Remote Sensing, 6(8), 7732-7761. 
https://doi.org/10.3390/rs6087732 

Morelissen, B., Dudley, B. D., & Phillips, N. E. (2016). Recruitment of the invasive 
kelp Undaria pinnatifida does not always benefit from disturbance to native algal 
communities in low-intertidal habitats. Marine Biology, 163(12). 
https://doi.org/10.1007/s00227-016-3014-8 

Mount, R. (2005). Acquisition of Through-water Aerial Survey Images. 
Photogrammetric Engineering & Remote Sensing, 71(12), 1407-1415. 
https://doi.org/10.14358/PERS.71.12.1407 

MPI. (2016, 9/6/2016). Pests and Diseases – Undaria. Retrieved from 
http://www.biosecurity.govt.nz/pests/undaria 

MPI. (2019, 26 Jul 2019). Fiordland marine biosecurity. Retrieved2019, from 
https://www.biosecurity.govt.nz/protection-and-response/long-term-pest-
management/fiordland-marine-biosecurity/ 

MPI. (2020). Commercial Harvest of Undaria pinnatifida - Application Form. 
Retrieved from https://www.biosecurity.govt.nz/dmsdocument/15964/direct 

Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key 
advances and remaining knowledge gaps. Biosystems Engineering, 114(4), 358-
371. https://doi.org/10.1016/j.biosystemseng.2012.08.009 

Nakagawa, S., Schielzeth, H., & O'Hara, R. B. (2013). A general and simple method for 
obtainingR2from generalized linear mixed-effects models. Methods in Ecology 
and Evolution, 4(2), 133-142. DOI:10.1111/j.2041-210x.2012.00261.x 

NASA. (2019). EcoSIS Spectral Library. Retrieved 08/06/2019,  from https://ecosis.org/ 
Nelson, W. (2019). Seaweeds: sustaining habitats and harvest. Retrieved 28/02/2019, 

2019, from 
https://www.niwa.co.nz/sites/niwa.co.nz/files/import/attachments/Nelson.pdf 

Nicastro, K. R., Zardi, G. I., Teixeira, S., Neiva, J., Serrão, E. A., Pearson, G. A. (2013). 
Shift happens: Trailing edge contraction associated with recent warming trends 
threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. 
BMC Biology, 11(6). https://doi.org/https://doi.org/10.1186/1741-7007-11-6 

NIWA. (2020). Wakame Asian Kelp. Retrieved 26/07/2020,  from 
https://marinebiosecurity.niwa.co.nz/undaria-pinnatifida-harvey-suringar/ 

O’Neill, J. D., Costa, M., & Sharma, T. (2011). Remote Sensing of Shallow Coastal 
Benthic Substrates: In situ Spectra and Mapping of Eelgrass (Zostera marina) in 
the Gulf Islands National Park Reserve of Canada. Remote Sensing, 3(12), 975-
1005. https://doi.org/10.3390/rs3050975 

Ollinger, S. V. (2011). Sources of variability in canopy reflectance and the convergent 
properties of plants. New Phytol, 189(2), 375-394. 
https://doi.org/10.1111/j.1469-8137.2010.03536.x 

Oreti, L., Barbati, A., Marini, F., & Giuliarelli, D. (2020). Very high-resolution true 
color leaf-off imagery for mapping Taxus baccata L. and Ilex aquifolium L. 
understory population. Biodiversity and Conservation, 29(8), 2605-2622. 
https://doi.org/10.1007/s10531-020-01991-x 

http://www.biosecurity.govt.nz/pests/undaria
https://doi.org/10.1016/j.biosystemseng.2012.08.009
https://ecosis.org/
https://doi.org/https:/doi.org/10.1186/1741-7007-11-6


142 
 

Pallas, A., Garcia-Calvo, B., Corgos, A., Bernardez, C., & Freire, J. (2006). Distribution 
and habitat use patterns of benthic decapod crustaceans in shallow waters: A 
comparative approach. Marine Ecology Progress Series, 324, 173-184. 
https://doi.org/10.3354/meps324173 

Parsons, M. J. (1995). Status of the introduced brown seaweed Undaria in New Zealand 
(112). Department of Conservation, Wellington. 

Peerbhay, K. Y., Mutanga, O., & Ismail, R. (2013). Commercial tree species 
discrimination using airborne AISA Eagle hyperspectral imagery and partial 
least squares discriminant analysis (PLS-DA) in KwaZulu–Natal, South Africa. 
ISPRS Journal of Photogrammetry and Remote Sensing, 79, 19-28. 
https://doi.org/10.1016/j.isprsjprs.2013.01.013 

Penuelas, J., Pinol,  J., Ogaya, R., Filella, I. (1997). Estimation of plant water 
concentration by the reflectance water index WI (R900/R970). International 
Journal of Remote Sensing, 18, 2869–2875. 

Perreault, M.-C., Borgeaud, I. A., & Gaymer, C. F. (2014). Impact of grazing by the sea 
urchin Tetrapygus niger on the kelp Lessonia trabeculata in Northern Chile. 
Journal of Experimental Marine Biology and Ecology, 453, 22-27. 
https://doi.org/10.1016/j.jembe.2013.12.021 

Persson, A., Ljungberg, P., Andersson, M., Götzman, E., & Nilsson, P. A. (2012). 
Foraging performance of juvenile Atlantic cod Gadus morhua and profitability 
of coastal habitats. Marine Ecology Progress Series, 456, 245-253. 
https://doi.org/10.3354/meps09705 

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2018). nlme: Linear and 
Nonlinear Mixed Effects Models. 

Pix4D. (2020a). Do RTK/PPK drones give you better results than GCPs? Retrieved 
27/07/2020,  from https://www.pix4d.com/blog/rtk-ppk-drones-gcp-comparison 

Pix4D. (2020b). Yaw, Pitch, Roll and Omega, Phi, Kappa angles. Retrieved2020, from 
https://support.pix4d.com/hc/en-us/articles/202558969-Yaw-Pitch-Roll-and-
Omega-Phi-Kappa-
angles#How%20to%20convert%20Yaw,%20Pitch,%20Roll%20to%20Omega,
%20Phi,%20Kappa 

Pomerantsev, A. L., & Rodionova, O. Y. (2018). Multiclass partial least squares 
discriminant analysis: Taking the right way-A critical tutorial. Journal of 
Chemometrics, 32(8), e3030. https://doi.org/10.1002/cem.3030 

Prospere, K., McLaren, K., & Wilson, B. (2014). Plant Species Discrimination in a 
Tropical Wetland Using In Situ Hyperspectral Data. Remote Sensing, 6(9), 
8494-8523. https://doi.org/10.3390/rs6098494 

Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M. 
(2012). A global assessment of invasive plant impacts on resident species, 
communities and ecosystems: the interaction of impact measures, invading 
species' traits and environment. Global Change Biology, 18(5), 1725-1737. 
https://doi.org/10.1111/j.1365-2486.2011.02636.x 

Pu, R., Bell, S., Baggett, L., Meyer, C., & Zhao, Y. (2012). Discrimination of Seagrass 
Species and Cover Classes within situ Hyperspectral Data. Journal of Coastal 
Research, 285, 1330-1344. https://doi.org/10.2112/jcoastres-d-11-00229.1 

https://support.pix4d.com/hc/en-us/articles/202558969-Yaw-Pitch-Roll-and-Omega-Phi-Kappa-angles#How%20to%20convert%20Yaw,%20Pitch,%20Roll%20to%20Omega,%20Phi,%20Kappa
https://support.pix4d.com/hc/en-us/articles/202558969-Yaw-Pitch-Roll-and-Omega-Phi-Kappa-angles#How%20to%20convert%20Yaw,%20Pitch,%20Roll%20to%20Omega,%20Phi,%20Kappa
https://support.pix4d.com/hc/en-us/articles/202558969-Yaw-Pitch-Roll-and-Omega-Phi-Kappa-angles#How%20to%20convert%20Yaw,%20Pitch,%20Roll%20to%20Omega,%20Phi,%20Kappa
https://support.pix4d.com/hc/en-us/articles/202558969-Yaw-Pitch-Roll-and-Omega-Phi-Kappa-angles#How%20to%20convert%20Yaw,%20Pitch,%20Roll%20to%20Omega,%20Phi,%20Kappa
https://doi.org/10.2112/jcoastres-d-11-00229.1


143 
 

Quach, A. T. (2012). Interactive Random Forests Plots: Utah State University. 
Retrieved from https://digitalcommons.usu.edu/gradreports/134 

R Core Team (2019). R: A Language and Environment for Statistical Computing: R 
Foundation for Statistical Computing. 

Reshitnyk, L., Costa, M., Robinson, C., & Dearden, P. (2014). Evaluation of 
WorldView-2 and acoustic remote sensing for mapping benthic habitats in 
temperate coastal Pacific waters. Remote Sensing of Environment, 153, 7-23. 
https://doi.org/10.1016/j.rse.2014.07.016 

Rossiter, T., Furey, T., McCarthy, T., & Stengel, D. B. (2020). UAV-mounted 
hyperspectral mapping of intertidal macroalgae. Estuarine, Coastal and Shelf 
Science, 242. https://doi.org/10.1016/j.ecss.2020.106789 

Russell, L. K., Hepburn, C. D., Hurd, C. L., & Stuart, M. D. (2007). The expanding 
range of Undaria pinnatifida in southern New Zealand: distribution, dispersal 
mechanisms and the invasion of wave-exposed environments. Biological 
Invasions, 10(1), 103-115. https://doi.org/10.1007/s10530-007-9113-1 

Sagawa, T., N. Aoki, M., Komatsu, T., & Mikami, A. (2012). Mapping seaweed forests 
with IKONOS image based on bottom surface reflectance (Vol. 8525 85250). 

Saito, G., Seki, H., Uto, K., Kosugi, Y., & Komatsu, T. (2014, 2014). Development of 
hyperspectral imaging sensor, which mounted on UAV for environmental study 
at coastal zone. Asian Association on Remote Sensing. Retrieved from 
http://www.scopus.com/inward/record.url?eid=2-s2.0-
84925433505&partnerID=40&md5=730ffa0b3deced58b2dd060b7f12010b 

Saito, Y. (1975). Undaria. In J. Tokida & H. Hirose (Eds.), Advance in phycology in 
Japan (pp. 304-320). The Hague 

Sanderson, J. C. (1997). Survey of Undaria pinnatifida in Tasmanian coastal waters: 
Tasmanian Department of Marine Resources, Tasmania. 

Schmidt, J. P., Springborn, M., & Drake, J. M. (2012). Bioeconomic forecasting of 
invasive species by ecological syndrome. Ecosphere, 3(5), art46. 
https://doi.org/10.1890/es12-00055.1 

Seers, B. M., & Shears, N. T. (2015). Spatio-temporal patterns in coastal turbidity – 
Long-term trends and drivers of variation across an estuarine-open coast 
gradient. Estuarine, Coastal and Shelf Science, 154, 137-151. 
https://doi.org/https://doi.org/10.1016/j.ecss.2014.12.018 

Shanmugam, S., & SrinivasaPerumal, P. (2014). Spectral matching approaches in 
hyperspectral image processing. International Journal of Remote Sensing, 
35(24), 8217-8251. https://doi.org/10.1080/01431161.2014.980922 

Silva, T. S. F., Melack, J. M., Novo, E. M. L. M., & Costa, M. P. F. (2008). Remote 
sensing of aquatic vegetation: theory and applications. Environmental 
Monitoring and Assessment, 140(1), 131-145. https://doi.org/10.1007/s10661-
007-9855-3 

Sinner, J., Forrest, B., & Taylor, M. (2000). A strategy for managing the Asian kelp 
Undaria: final report. 

Skowronek, S., Ewald, M., Isermann, M., Van De Kerchove, R., Lenoir, J., Aerts, R., . . 
. Feilhauer, H. (2016). Mapping an invasive bryophyte species using 
hyperspectral remote sensing data. Biological Invasions, 19(1), 239-254. 
https://doi.org/10.1007/s10530-016-1276-1 

https://doi.org/10.1007/s10661-007-9855-3
https://doi.org/10.1007/s10661-007-9855-3


144 
 

Smith, S. D. A. (2000). Evaluating stress in rocky shore and shallow reef habitats using 
the macrofauna of kelp holdfasts. Journal of Aquatic Ecosystem Stress and 
Recovery, 7(4), 259-272. https://doi.org/10.1023/A:1009993611262 

Somers, B., & Asner, G. P. (2014). Tree species mapping in tropical forests using multi-
temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. 
International Journal of Applied Earth Observation and Geoinformation, 31, 
57-66. https://doi.org/10.1016/j.jag.2014.02.006 

South, P. M., Floerl, O., Forrest, B. M., & Thomsen, M. S. (2017). A review of three 
decades of research on the invasive kelp Undaria pinnatifida in Australasia: An 
assessment of its success, impacts and status as one of the world's worst 
invaders. Mar Environ Res, 131, 243-257. 
https://doi.org/10.1016/j.marenvres.2017.09.015 

STS-VIS (2020). STS-VIS-L-25-400-SMA. Retrieved from 
https://www.oceaninsight.com/products/spectrometers/microspectrometer/st
s-series/sts-vis-l-25-400-sma/?qty=1 

Taddia, Y., Russo, P., Lovo, S., & Pellegrinelli, A. (2019). Multispectral UAV 
monitoring of submerged seaweed in shallow water. Applied Geomatics, 12(S1), 
19-34. https://doi.org/10.1007/s12518-019-00270-x 

Tait, L., Bind, J., Charan-Dixon, H., Hawes, I., Pirker, J., & Schiel, D. (2019). 
Unmanned Aerial Vehicles (UAVs) for Monitoring Macroalgal Biodiversity: 
Comparison of RGB and Multispectral Imaging Sensors for Biodiversity 
Assessments. Remote Sensing, 11(19). https://doi.org/10.3390/rs11192332 

Thompson, G. A., & Schiel, D. R. (2012). Resistance and facilitation by native algal 
communities in the invasion success of Undaria pinnatifida. Marine Ecology 
Progress Series, 468, 95–105. 

Thomsen, M. S., Byers, J. E., Schiel, D. R., Bruno, J. F., Olden, J. D., Wernberg, T., & 
Silliman, B. R. (2014). Impacts of marine invaders on biodiversity depend on 
trophic position and functional similarity. Marine Ecology Progress Series, 495, 
39-47. https://doi.org/10.3354/meps10566 

Turner, D., Lucieer, A., & Wallace, L. (2014). Direct Georeferencing of Ultrahigh-
Resolution UAV Imagery. IEEE Transactions on Geoscience and Remote 
Sensing, 52(5), 2738-2745. https://doi.org/10.1109/tgrs.2013.2265295 

Uhl, F., Bartsch, I., & Oppelt, N. (2016). Submerged Kelp Detection with Hyperspectral 
Data. Remote Sensing, 8(6), 487. https://doi.org/10.3390/rs8060487 

Uhrin, A. V., & Townsend, P. A. (2016). Improved seagrass mapping using linear 
spectral unmixing of aerial photographs. Estuarine, Coastal and Shelf Science, 
171, 11-22. https://doi.org/http://dx.doi.org/10.1016/j.ecss.2016.01.021 

Ullman, S., & Brenner, S. (1979). The interpretation of structure from motion. 
Proceedings of the Royal Society of London. Series B. Biological Sciences, 
203(1153), 405-426. https://doi.org/10.1098/rspb.1979.0006 

Ünsalan, C., & Boyer, K. L. (2011). Multispectral Satellite Image Understanding: 
Springer London Dordrecht Heidelberg New York. https://doi.org/10.1007/978-
0-85729-667-2 

USGS. (2017, December 13, 2011). Earth Observing-1, Sensors - Hyperion. Retrieved 
22/01/2017,  from https://eo1.usgs.gov/sensors/hyperion 

https://doi.org/10.1016/j.jag.2014.02.006
https://doi.org/10.1016/j.marenvres.2017.09.015
https://www.oceaninsight.com/products/spectrometers/microspectrometer/sts-series/sts-vis-l-25-400-sma/?qty=1
https://www.oceaninsight.com/products/spectrometers/microspectrometer/sts-series/sts-vis-l-25-400-sma/?qty=1


145 
 

Vahtmäe, E., & Kutser, T. (2013). Classifying the Baltic Sea Shallow Water Habitats 
Using Image-Based and Spectral Library Methods. Remote Sensing, 5(5), 2451-
2474. https://doi.org/10.3390/rs5052451 

Vahtmäe, E., Kutser, T., Martin, G., & Kotta, J. (2006). Feasibility of hyperspectral 
remote sensing for mapping benthic macroalgal cover in turbid coastal waters—
a Baltic Sea case study. Remote Sensing of Environment, 101(3), 342-351. 
https://doi.org/10.1016/j.rse.2006.01.009 

Vaiphasa, C., Skidmore, A. K., de Boer, W. F., & Vaiphasa, T. (2007). A hyperspectral 
band selector for plant species discrimination. ISPRS Journal of 
Photogrammetry and Remote Sensing, 62(3), 225-235. 
https://doi.org/10.1016/j.isprsjprs.2007.05.006 

Vásquez, J. A., Zuñiga, S., Tala, F., Piaget, N., Rodríguez, D. C., & Vega, J. M. A. 
(2014). Economic valuation of kelp forests in northern Chile: values of goods 
and services of the ecosystem. Journal of Applied Phycology, 26(2), 1081-1088. 
https://doi.org/10.1007/s10811-013-0173-6 

von Bueren, S. K., Burkart, A., Hueni, A., Rascher, U., Tuohy, M. P., & Yule, I. J. 
(2015). Deploying four optical UAV-based sensors over grassland: challenges 
and limitations. Biogeosciences, 12(1), 163-175. https://doi.org/10.5194/bg-12-
163-2015 

Washington, M., Kirui, P., Cho, H. J., & Wafo-Soh, C. (2012). Data-driven correction 
for light attenuation in shallow waters. Remote Sensing Letters, 3(4), 335-342. 
https://doi.org/10.1080/01431161.2011.597791 

Wehrens, R. (2011). Chemometrics with R: Springer. https://doi.org/10.1007/978-3-642-
17841-2 

Wezernak, C. T., & Lyzenga, D. R. (1975). Analysis of Cladophora distribution in Lake 
Ontario using remote sensing. Remote Sensing of Environment, 4, 37-48. 
https://doi.org/http://dx.doi.org/10.1016/0034-4257(75)90004-8 

White, L., Lu, J., & White, W. L. (2014). Scoping assessment of the economic viability 
of harvesting Undaria pinnatifida from NZ mussel lines and potential uses of the 
collected material. Applied Ecology New Zealand Report14/01. 76p 

White, L. N., & White, W. L. (2020). Seaweed utilisation in New Zealand. Botanica 
Marina(0), 000010151520190089. https://doi.org/https://doi.org/10.1515/bot-
2019-0089 

White, W. L., & Wilson, P. (2015). Chapter 2 - World seaweed utilization. In B. K. 
Tiwari & D. J. Troy (Eds.), Seaweed Sustainability (pp. 7-25). San Diego: 
Academic Press. Retrieved from 
http://www.sciencedirect.com/science/article/pii/B9780124186972000027. 
https://doi.org/https://doi.org/10.1016/B978-0-12-418697-2.00002-7 

Wolf, P., Rößler, S., Schneider, T., & Melzer, A. (2017). Collecting in situ remote 
sensing reflectances of submersed macrophytes to build up a spectral library for 
lake monitoring. European Journal of Remote Sensing, 46(1), 401-416. 
https://doi.org/10.5721/EuJRS20134623 

Woodcock, C. E., & Strahler, A. H. (1987). The factor of scale in remote sensing. 
Remote Sensing of Environment, 21(3), 311-332. 
doi:http://dx.doi.org/10.1016/0034-4257(87)90015-0 

https://doi.org/https:/doi.org/10.1016/B978-0-12-418697-2.00002-7
https://doi.org/10.5721/EuJRS20134623


146 
 

Zeng, C., King, D. J., Richardson, M., & Shan, B. (2017). Fusion of Multispectral 
Imagery and Spectrometer Data in UAV Remote Sensing. Remote Sensing, 9(7), 
696. https://doi.org/10.3390/rs9070696 

Zoffoli, M. L., Frouin, R., & Kampel, M. (2014). Water column correction for coral reef 
studies by remote sensing. Sensors (Basel), 14(9), 16881-16931. 
https://doi.org/10.3390/s140916881 

Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed 
Effects Models and Extensions in Ecology with R (1 ed.): Springer-Verlag New 
York. DOI:10.1007/978-0-387-87458-6 

https://doi.org/10.3390/s140916881


147 
 

Appendix A. Chapter 2 Appendices 

 

Figure  A-1: PCA plots of seaweed grouping at (A) taxa level, (B) grouping of 
seaweed species within brown, (C) within green and (D) within red using 
standardised data 
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Appendix B. Chapter 3 Appendices 

 

Figure  B-1: Seaweed sample locations in Hauraki Gulf, North Island, NZ 

 

Table  B-1: Description of locations where the seaweed individuals were collected 

Site Attributes 

Kawau Island, Hauraki Gulf Patches of seaweed. Diverse seaweed communities. 
Quite exposed. 

Motuora Island, Hauraki Gulf Rocky reef. Sheltered site. 

Takatu Point, Hauraki Gulf Rocky reef with large swathes of seaweed. Very 
exposed but less turbid compared to Gulf Harbour. 

Te Haruhi Bay, Hauraki Gulf Wreck nearby. Sheltered site but very turbid waters. 
Less diverse. 
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Table  B-2: Various models used in mixed-effects modelling to test the significance 
of each term 

Model Formula Term deleted from Model A 

A 
(Full) 

PC ~ location + season + location:season None 

B PC ~ location + season location:season 

C PC ~ season  location, location:season 

D PC ~ location season, location:season 

 

Figure  B-2: Variables contributing to variance in PC1 for Carpophyllum 
maschalocarpum in percentage 

 

Figure  B-3: Variables contributing to variance in PC1 for Ecklonia radiata in 
percentage 
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Figure  B-4: (A) Model predictions plot with two standard deviations (and 95% 
confidence interval) of PC1 for Ecklonia radiata in different locations within each 
season, X-axis represents seasons and Y-axis represents PC1 scores and the 
interpretation of wavelengths contributing to PC1 axis (B) Model predictions plot 
with two standard deviations (and 95% confidence interval) of PC1 for Ecklonia 
radiata in different seasons within each location, X-axis represents locations and Y-
axis represents PC1 scores and the interpretation of wavelengths contributing to 
PC1 axis. 
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Appendix C. Chapter 4 Appendices 

 

Figure  C-1: Adjusted U. pinnatifida locations 1 and 2 on the multispectral mosaic 
(left) compared to RGB photos (right) with snorkeller in the centre of each photo. 
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Figure  C-2: Adjusted U. pinnatifida locations 3, 4 and 5 on the multispectral 
mosaic (left) compared to RGB photos (right) with snorkeller in the centre of each 
photo. 

 

Figure  C-3: Adjusted U. pinnatifida locations 8 and 9 on the multispectral mosaic 
(left) compared to RGB photos (right) with snorkeller in the centre of each photo. 

 

Figure  C-4: Adjusted U. pinnatifida locations 10 and 11 on the multispectral 
mosaic (left) compared to RGB photos (right) with snorkeller in the centre of each 
photo. 
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Figure  C-5: Adjusted U. pinnatifida locations 12 to 16 on the multispectral mosaic 
(top left) compared to RGB photos (bottom and right) with snorkeller in the centre 
of each photo. 
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Figure  C-6: Adjusted U. pinnatifida locations 17 to 20 on the multispectral mosaic 
(top left) compared to RGB photos (bottom and right) with snorkeller in the centre 
of each photo. 

 

 

Figure  C-7: Variables contributing to PC1 of Ecklonia radiata 
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Table  C-1: Likelihood ratio test of models explaining difference in spectral 
signatures of E. radiata across four locations and four seasons 

Model Likelihood ratio test AIC 

B L = 101.6733(df = 8, p < 0.001) 943.82 

C L = 497.48 (df = 4, p < 0.001) 1331.62 

D L = 140.23 (df = 7, p < 0.001) 980.37 

 

 

Figure  C-8: Model predictions plot with two standard deviations (and 95% 
confidence interval) of PC1 for Ecklonia radiata at different Secchi depth levels (m) 
within each water depth level (m) 
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Table  C-2: Parameter settings for each of the random forest models at each depth 
within a turbidity level. ‘ntree’ is the number of trees created in the model, mtry is 
the number of wavelengths tried at each split. Dataset A includes wavelengths 517, 
716 – 721, 750 nm while dataset B includes wavelengths resampled to Micesense 
RedEdge sensor. 

Dataset Turbidity (Secchi depth 
in m) Depth (m) Model ntree mtry 

A 

6  

0.1 1 130 5 

0.5 2 480 1 

1 3 100 1 

1.5 4 160 2 

2 5 200 1 

3.25 

0.1 6 500 4 

0.5 7 410 4 

1 8 300 2 

1.5 9 190 2 

2 10 500 4 

B 

6  

0.1 11 150 4 

0.5 12 400 1 

1 13 500 2 

1.5 14 200 1 

2 15 130 1 

3.25  

0.1 16 210 1 

0.5 17 450 1 

1 18 500 2 

1.5 19 500 2 

2 20 40 2 
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Table  C-3: Random forest model classification statistics for discriminating two 
seaweed species at each depth with two turbidity levels utilising dataset A 
including wavelengths 517, 716 – 721, 750 nm. E – Ecklonia radiata, U – Undaria 
pinnatifida, SD – Secchi depth, OOB – Out-of-bag error, CE – classification error 
of the classes along each row. 

Depth 
(m)  

Turbidity 1 (SD = 6m) Turbidity 2 (SD = 3.25m) 
   

R
ef

er
en

ce
 Classified  OOB (%) Classified OOB (%) 

0.1                                                                                  E U CE 42.9 E U CE 12.5 

E 6 4 0.4 19 1 0.05 

U 5 6 0.45 4 16 0.2 

0.5  E U CE 35 E U CE 15 

E 7 3 0.3 17 3 0.15 

U 4 6 0.4 3 17 0.15 

1  E U CE 30 E U CE 14.6 

E 8 2 0.2 19 2 0.09 

U 4 6 0.4 4 16 0.2 

1.5  E U CE 15 E U CE 7.5 

E 9 1 0.1 18 2 0.1 

U 2 8 0.2 1 19 0.05 

2  E U CE 28.6 E U CE 12.5 

E 6 4 0.4 18 2 0.1 

U 2 9 0.18 3 17 0.15 
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Table  C-4: Random forest model classification statistics for discriminating two 
seaweed species at each depth with two turbidity levels utilising wavelengths 
resampled to Micasense RedEdge-m sensor. E – Ecklonia radiata, U – Undaria 
pinnatifida, SD – Secchi depth, OOB – Out-of-bag error, CE – classification error. 

Depth 
(m)  

Turbidity 1 (SD = 6m) Turbidity 2 (SD = 3.25m) 

   
R

ef
er

en
ce

 
Classified  OOB (%) Classified OOB (%) 

0.1                                                                                  E U CE 57.1 E U CE 35 

E 5 5 0.5 13 7 0.35 

U 7 4 0.64 7 13 0.35 

0.5  E U CE 50 E U CE 5 

E 5 5 0.5 19 1 0.05 

U 5 5 0.5 1 19 0.05 

1  E U CE 25 E U CE 0 

E 7 3 0.3 21 0 0 

U 2 8 0.2 0 20 0 

1.5  E U CE 20 E U CE 0 

E 8 2 0.2 20 0 0 

U 2 8 0.2 0 20 0 

2  E U CE 9.5 E U CE 2.5 

E 8 2 0.2 20 0 0 

U 0 11 0 1 19 0.05 
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Figure  C-9: Comparison of the overall accuracy of random forest model 
classification using two types of datasets for two turbidity and five depth levels. 
Dataset A includes spectral reflectance values at wavelengths 571, 716-721 and 750 
nm. Dataset B includes spectral reflectance values from hyperspectral data 
resampled to match Micasense Rededge-m spectral bands. Turbidity 1 (low) - 
Secchi depth of 6m indicates low turbidity level compared to turbidity 2, Turbidity 
2 -Secchi depth of 3.25m indicates higher turbidity level compared to turbidity 1, 
WL – wavelengths and RE – Micasense Rededge-m sensor. Values for the plot 
were obtained from Table  C-2 and Table  C-3 in appendix C. 
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Table  C-5: Collated accuracy assessment of E. radiata at a depth of 10 cm from 
the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
   

   
   

   
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 603 43 646 0.93  685 63 748 0.92  

S 147 707 854 0.83  65 687 752 0.91  

Total 750 750 1500   750 750 1500   

PA 0.80 0.94  0.87  0.91 0.92  0.92  

K     0.75     0.83 

   
 S

ta
nd

ar
di

se
d 

R
ef

le
ct

an
ce

 Class NS S Total UA K NS S Total UA K 

NS 744 367 1111 0.67  748 231 979 0.76  

S 6 383 389 0.98  2 519 521 0.99  

Total 750 750 1500   750 750 1500   

PA 0.99 0.51  0.75  0.99 0.69  0.84  

K     0.5     0.69 
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Table  C-6: Collated accuracy assessment of E. radiata at a depth of 50 cm from 
the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
   

   
   

   
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 209 1 210 0.99  138 0 138 1  

S 541 749 1290 0.58  612 750 1362 0.55  

Total 750 750 1500   750 750 1500   

PA 0.28 0.99  0.64  0.18 1  0.59  

K     0.28     0.18 

   
St

an
da

rd
is

ed
 R

ef
le

ct
an

ce
 Class NS S Total UA K NS S Total UA K 

NS 679 298 977 0.69  523 416 939 0.56  

S 71 452 523 0.86  227 334 561 0.59  

Total 750 750 1500   750 750 1500   

PA 0.91 0.6  0.75  0.69 0.45  0.57  

K     0.51     0.14 
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Table  C-7: Collated accuracy assessment of E. radiata at a depth of 100 cm from 
the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 205 130 335 0.61  65 141 206 0.32  

S 545 620 1165 0.53  685 609 1294 0.47  

Total 750 750 1500   750 750 1500   

PA 0.27 0.83  0.55  0.08 0.81  0.45  

K     0.1     -0.1 

St
an

da
rd

is
ed

 
R

ef
le

ct
an

ce
 

NS 707 697 1404 0.5  551 533 1084 0.51  

S 43 53 96 0.55  199 217 416 0.52  

Total 750 750 1500   750 750 1500   

PA 0.94 0.07  0.51  0.73 0.29  0.51  

K     0.01     0.02 

St
an

da
rd

is
ed

 R
ef

le
ct

an
ce

 
fr

om
 im

ag
e-

de
ri

ve
d 

sp
ec

tr
a 

NS 706 384 1090 0.65  715 244 959 0.75  

S 44 366 410 0.89  35 506 541 0.94  

Total 750 750 1500   750 750 1500   

PA 0.94 0.49  0.71  0.95 0.67  0.81  

K     0.43     0.63 
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Table  C-8: Collated accuracy assessment of E. radiata at a depth of 150 cm from 
the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 199 29 228 0.87  94 3 97 0.97  

S 551 721 1272 0.57  656 747 1403 0.53  

Total 750 750 1500   750 750 1500   

PA 0.27 0.96  0.61  0.12 0.99  0.56  

K     0.23     0.12 

St
an

da
rd

is
ed

 
R

ef
le

ct
an

ce
 

NS 700 750 1450 0.48  462 604 1066 0.43  

S 50 0 50 0  288 146 434 0.34  

Total 750 750 1500   750 750 1500   

PA 0.93 0  0.47  0.62 0.19  0.41  

K     -0.1     -0.2 

St
an

da
rd

is
ed

 R
ef

le
ct

an
ce

 
fr

om
 im

ag
e-

de
ri

ve
d 

sp
ec

tr
a 

NS 737 330 1067 0.69  719 358 1077 0.67  

S 13 420 433 0.97  31 392 423 0.93  

Total 750 750 1500   750 750 1500   

PA 0.98 0.56  0.77  0.96 0.52  0.74  

K     0.54     0.48 
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Table  C-9: Collated accuracy assessment of E. radiata at a depth of 200 cm from 
the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 165 2 167 0.98  90 0 90 1  

S 585 748 133 0.56  660 750 1410 0.53  

Total 750 750 1500   750 750 1500   

PA 0.22 0.99  0.61  0.12 1  0.56  

K     0.22     0.12 

St
an

da
rd

is
ed

 
R

ef
le

ct
an

ce
 

NS 650 692 1342 0.48  400 534 934 0.43  

S 100 58 158 0.37  350 216 566 0.38  

Total 750 750 1500   750 750 1500   

PA 0.87 0.08  0.47  0.53 0.29  0.41  

K     -0.1     -0.2 

St
an

da
rd

is
ed

 R
ef

le
ct

an
ce

 
fr

om
 im

ag
e-

de
ri

ve
d 

sp
ec

tr
a 

NS 650 198 848 0.77  674 400 1074 0.63  

S 100 552 652 0.85  76 350 426 0.82  

Total 750 750 1500   750 750 1500   

PA 0.87 0.74  0.8  0.89 0.47  0.68  

K     0.6     0.37 
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Table  C-10: Collated accuracy assessment of U. pinnatifida at a depth of 10 cm 
from the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 525 43 568 0.92  629 236 865 0.73  

S 225 707 932 0.76  121 514 635 0.81  

Total 750 750 1500   750 750 1500   

PA 0.7 0.94  0.82  0.84 0.69  0.76  

K     0.64     0.52 

St
an

da
rd

is
ed

 R
ef

le
ct

an
ce

 Class NS S Total UA K NS S Total UA K 

NS 743 393 1136 0.65  710 663 1373 0.52  

S 7 357 364 0.98  40 87 127 0.69  

Total 750 750 1500   750 750 1500   

PA 0.99 0.48  0.73  0.95 0.12  0.53  

K     0.47     0.06 
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Table  C-11: Collated accuracy assessment of U. pinnatifida at a depth of 50 cm 
from the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 378 7 385 0.98  312 0 312 1  

S 372 743 1115 0.67  438 750 1188 0.63  

Total 750 750 1500   750 750 1500   

PA 0.5 0.99  0.75  0.416 1  0.71  

K     0.49     0.42 

St
an

da
rd

is
ed

 R
ef

le
ct

an
ce

 Class NS S Total UA K NS S Total UA K 

NS 736 270 1006 0.73  646 614 1260 0.51  

S 14 480 494 0.97  104 136 240 0.57  

Total 750 750 1500   750 750 1500   

PA 0.98 0.64  0.81  0.86 0.18  0.52  

K     0.62     0.04 
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Table  C-12: Collated accuracy assessment of U. pinnatifida at a depth of 100 cm 
from the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 130 226 356 0.37  82 171 253 0.32  

S 620 524 1144 0.46  668 579 1247 0.46  

Total 750 750 1500   750 750 1500   

PA 0.17 0.69  0.44  0.11 0.77  0.44  

K     -0.1     -0.1 

St
an

da
rd

is
ed

 
R

ef
le

ct
an

ce
 

NS 411 675 1086 0.38  189 578 767 0.25  

S 339 75 414 0.18  561 172 733 0.23  

Total 750 750 1500   750 750 1500   

PA 0.55 0.1  0.32  0.25 0.23  0.24  

K     -0.4     -0.5 

St
an

da
rd

is
ed

 R
ef

le
ct

an
ce

 
fr

om
 im

ag
e-

de
ri

ve
d 

sp
ec

tr
a 

NS 741 546 1287 0.58  731 611 1342 0.54  

S 9 204 213 0.96  19 139 158 0.88  

Total 750 750 1500   750 750 1500   

PA 0.99 0.27  0.63  0.97 0.19  0.58  

K     0.26     0.16 

 



168 
 

Table  C-13: Collated accuracy assessment of U. pinnatifida at a depth of 150 cm 
from the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 130 1 131 0.99  88 0 88 1  

S 620 749 1369 0.55  662 750 1412 0.53  

Total 750 750 1500   750 750 1500   

PA 0.17 0.99  0.59  0.12 1  0.56  

K     0.17     0.12 

St
an

da
rd

is
ed

 
R

ef
le

ct
an

ce
 

NS 555 690 1245 0.45  309 642 951 0.32  

S 195 60 255 0.24  441 108 549 0.19  

Total 750 750 1500   750 750 1500   

PA 0.74 0.08  0.41  0.41 0.14  0.28  

K     -0.2     -0.4 

St
an

da
rd

is
ed

 R
ef

le
ct

an
ce

 
fr

om
 im

ag
e-

de
ri

ve
d 

sp
ec

tr
a 

NS 671 259 930 0.72  739 656 1395 0.53  

S 79 491 570 0.86  11 94 105 0.89  

Total 750 750 1500   750 750 1500   

PA 0.89 0.65  0.77  0.98 0.12  0.55  

K     0.55     0.11 
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Table  C-14: Collated accuracy assessment of U. pinnatifida at a depth of 200 cm 
from the water surface. NS - non-seaweed, S - seaweed, UA - User accuracy, PA - 
Producer accuracy, K - kappa. 

  Flight height – 10 m Flight height – 30 m 
R

aw
 R

ef
le

ct
an

ce
 

Class NS S Total UA K NS S Total UA K 

NS 123 0 123 1  72 0 72 1  

S 627 750 1377 0.54  678 750 1428 0.53  

Total 750 750 1500   750 750 1500   

PA 0.16 1  0.58  0.09 1  0.55  

K     0.16     0.09 

St
an

da
rd

is
ed

 
R

ef
le

ct
an

ce
 

NS 459 631 1090 0.42  405 458 863 0.47  

S 291 119 410 0.29  345 292 637 0.46  

Total 750 750 1500   750 750 1500   

PA 0.61 0.16  0.39  0.54 0.39  0.46  

K     -0.2     -0.1 

St
an

da
rd

is
ed

 R
ef

le
ct

an
ce

 
fr

om
 im

ag
e-

de
ri

ve
d 

sp
ec

tr
a 

NS 651 262 913 0.71  432 252 684 0.63  

S 99 488 587 0.83  318 498 816 0.61  

Total 750 750 1500   750 750 1500   

PA 0.87 0.65  0.76  0.58 0.66  0.62  

K     0.52     0.24 
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Figure  C-10: Screenshot of images of three different E. radiata individuals at 10cm 
below water surface classified using raw reflectance spectral signature of E.radiata 
at 10cm water depth on raw reflectance multispectral data (top) and standardised 
reflectance spectral signature of E.radiata at 10cm water depth on standardised 
multispectral data (bottom). The data was captured at FH of 30m. 
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Table  C-15: Collated accuracy assessment of E. radiata at a depth of 10cm from 
the water surface. uC - unclassified, UA - User accuracy, PA - Producer accuracy, 
K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class column 
represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC E_2 Total UA K Class uC E_2 Total UA K 

uC 568 19 587 0.97  uC 659 29 688 0.96  

E_1 0 0 0   E_1 0 2 2   

E_2 0 240 240 1  E_2 3 290 293 0.99  

E_3 8 89 97   E_3 29 50 79   

E_4 11 1 12   E_4 8 2 10   

E_5 8 0 8   E_5 4 1 5   

E_6 45 0 45   E_6 7 0 7   

U_1 6 0 6   U_1 1 0 1   

U_2 2 5 7   U_2 6 141 147   

U_3 9 394 403   U_3 24 217 241   

U_4 2 1 3   U_4 2 12 14   

U_5 12 1 13   U_5 2 4 6   

U_6 79 0 79   U_6 5 2 7   

Total 750 750 1500   Total 750 750 1500   

PA 0.76 0.32  0.54  PA 0.88 0.39  0.63  

K     0.36 K     0.45 
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Table  C-16: Collated accuracy assessment of E. radiata at a depth of 50cm from 
the water surface. uC - unclassified, UA - User accuracy, PA - Producer accuracy, 
K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class column 
represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC E_3 Total UA K Class uC E_3 Total UA K 

uC 539 55 594 0.91  uC 640 105 745 0.86  

E_1 0 0 0   E_1 0 0 0   

E_2 5 0 5   E_2 0 0 0   

E_3 14 154 168 0.92  E_3 38 271 309 0.88  

E_4 10 130 140   E_4 9 87 96   

E_5 19 11 30   E_5 0 0 0   

E_6 30 2 32   E_6 11 0 11   

U_1 5 0 5   U_1 0 0 0   

U_2 4 0 4   U_2 3 0 3   

U_3 9 333 342   U_3 24 199 223   

U_4 5 63 68   U_4 9 79 88   

U_5 15 2 17   U_5 2 9 11   

U_6 95 0 95   U_6 14 0 14   

Total 750 750 1500   Total 750 750 1500   

PA 0.72 0.21  0.46  PA 0.85 0.36  0.61  

K     0.28 K     0.39 
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Table  C-17: Collated accuracy assessment of E. radiata at a depth of 100cm from 
the water surface. uC - unclassified, UA - User accuracy, PA - Producer accuracy, 
K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class column 
represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC E_4 Total UA K Class uC E_4 Total UA K 

uC 550 115 665 0.83  uC 635 135 770 0.82  

E_1 0 0 0   E_1 0 0 0   

E_2 5 9 14   E_2 3 0 3   

E_3 19 25 44   E_3 48 186 234   

E_4 11 283 294 0.96  E_4 7 60 67 0.89  

E_5 16 109 125   E_5 3 4 7   

E_6 25 46 71   E_6 3 12 15   

U_1 5 0 5   U_1 1 0 1   

U_2 6 1 7   U_2 1 1 2   

U_3 8 89 97   U_3 30 282 312   

U_4 2 45 47   U_4 6 62 68   

U_5 23 24 47   U_5 2 8 10   

U_6 80 4 84   U_6 11 0 11   

Total 750 750 1500   Total 750 750 1500   

PA 0.73 0.38  0.55  PA 0.85 0.08  0.46  

K     0.35 K     0.26 

 



174 
 

Table  C-18: Collated accuracy assessment of E. radiata at a depth of 150cm from 
the water surface. uC - unclassified, UA - User accuracy, PA - Producer accuracy, 
K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class column 
represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC E_5 Total UA K Class uC E_5 Total UA K 

uC 538 102 640 0.84  uC 649 355 1004 0.65  

E_1 0 0 0   E_1 0 0 0   

E_2 5 0 5   E_2 1 1 2   

E_3 7 0 7   E_3 39 84 123   

E_4 18 4 22   E_4 3 0 3   

E_5 9 265 274 0.97  E_5 2 20 22   

E_6 32 200 232   E_6 10 128 138   

U_1 6 0 6   U_1 0 0 0   

U_2 4 0 4   U_2 6 3 9   

U_3 7 0 7   U_3 27 114 141   

U_4 1 0 1   U_4 3 0 3   

U_5 21 73 94   U_5 4 42 46   

U_6 102 106 208   U_6 6 3 9   

Total 750 750 1500   Total 750 750 1500   

PA 0.72 0.35  0.54  PA 0.87 0.03  0.45  

K     0.33 K     0.16 
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Table  C-19: Collated accuracy assessment of E. radiata at a depth of 200cm from 
the water surface. uC - unclassified, UA - User accuracy, PA - Producer accuracy, 
K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class column 
represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC E_6 Total UA K Class uC E_6 Total UA K 

uC 553 290 843 0.66  uC 640 541 1181 0.54  

E_1 0 0 0   E_1 0 0 0   

E_2 3 0 3   E_2 1 0 1   

E_3 13 2 15   E_3 46 55 101   

E_4 8 0 8   E_4 4 0 4   

E_5 14 44 58   E_5 5 9 14   

E_6 44 288 332 0.87  E_6 3 91 94 0.97  

U_1 3 0 3   U_1 0 0 0   

U_2 2 0 2   U_2 2 3 5   

U_3 10 0 10   U_3 27 8 35   

U_4 1 0 1   U_4 2 0 2   

U_5 10 16 26   U_5 3 14 17   

U_6 89 110 199   U_6 17 29 46   

Total 750 750 1500   Total 750 750 1500   

PA 0.73 0.38  0.56  PA 0.85 0.12  0.49  

K     0.28 K     0.11 
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Table  C-20: Collated accuracy assessment of U. pinnatifida at a depth of 10cm 
from the water surface. uC - unclassified, UA - User accuracy, PA - Producer 
accuracy, K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class 
column represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC U_2 Total UA K Class uC U_2 Total UA K 

uC 619 28 647 0.96 uC 671 57 728 0.92 

E_1 0 0 0 E_1 0 0 0 

E_2 0 320 320 E_2 0 116 116 

E_3 4 13 17 E_3 28 44 72 

E_4 5 3 8 E_4 9 10 19 

E_5 7 2 9 E_5 1 1 2 

E_6 18 0 18 E_6 5 0 5 

U_1 3 0 3 U_1 1 0 1 

U_2 0 88 88 1 U_2 1 1 2 0.5 

U_3 7 284 291 U_3 26 491 517 

U_4 2 3 5 U_4 2 23 25 

U_5 13 5 18 U_5 1 5 6 

U_6 72 4 76 U_6 5 2 7 

Total 750 750 1500 Total 750 750 1500 

PA 0.83 0.12 0.47 PA 0.89 0.001 0.45 

K 0.3 K 0.27 
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Table  C-21: Collated accuracy assessment of U. pinnatifida at a depth of 50cm 
from the water surface. uC - unclassified, UA - User accuracy, PA - Producer 
accuracy, K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class 
column represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC U_3 Total UA K Class uC U_3 Total UA K 

uC 631 139 770 0.82  uC 651 54 705 0.92  

E_1 0 0 0   E_1 0 0 0   

E_2 1 1 2   E_2 0 0 0   

E_3 10 83 93   E_3 33 167 200   

E_4 8 80 88   E_4 7 74 81   

E_5 7 10 17   E_5 2 0 2   

E_6 12 10 22   E_6 6 3 9   

U_1 0 0 0   U_1 1 0 1   

U_2 2 0 2   U_2 4 0 4   

U_3 4 413 417 0.99  U_3 30 235 265 0.89  

U_4 2 8 10   U_4 11 209 220   

U_5 15 5 20   U_5 1 8 9   

U_6 58 1 59   U_6 4 0 4   

Total 750 750 1500   Total 750 750 1500   

PA 0.84 0.55  0.69  PA 0.87 0.31  0.59  

K     0.49 K     0.39 
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Table  C-22: Collated accuracy assessment of U. pinnatifida at a depth of 100cm 
from the water surface. uC - unclassified, UA - User accuracy, PA - Producer 
accuracy, K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class 
column represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC U_4 Total UA K Class uC U_4 Total UA K 

uC 591 181 772 0.77  uC 654 269 923 0.71  

E_1 0 0 0   E_1 0 0 0   

E_2 2 0 2   E_2 3 0 3   

E_3 10 3 13   E_3 44 57 101   

E_4 6 123 129   E_4 4 33 37   

E_5 5 92 97   E_5 1 2 3   

E_6 14 52 66   E_6 4 2 6   

U_1 6 0 6   U_1 0 0 0   

U_2 2 2 4   U_2 3 0 3   

U_3 7 29 36   U_3 26 144 170   

U_4 4 155 159 0.97  U_4 6 141 147 0.96  

U_5 10 76 86   U_5 1 95 96   

U_6 93 37 130   U_6 4 7 11   

Total 750 750 1500   Total 750 750 1500   

PA 0.79 0.21  0.49  PA 0.87 0.19  0.53  

K     0.27 K     0.27 
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Table  C-23: Collated accuracy assessment of U. pinnatifida at a depth of 150cm 
from the water surface. uC - unclassified, UA - User accuracy, PA - Producer 
accuracy, K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class 
column represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC U_5 Total UA K Class uC U_5 Total UA K 

uC 610 235 845 0.72  uC 662 636 1298 0.51  

E_1 0 0 0   E_1 0 0 0   

E_2 2 0 2   E_2 1 0 1   

E_3 8 1 9   E_3 34 21 55   

E_4 8 0 8   E_4 3 0 3   

E_5 6 19 25   E_5 0 0 0   

E_6 18 162 180   E_6 4 34 38   

U_1 0 0 0   U_1 0 0 0   

U_2 1 2 3   U_2 5 1 6   

U_3 8 0 8   U_3 33 29 62   

U_4 0 0 0   U_4 4 0 4   

U_5 15 119 134 0.89  U_5 2 21 23 0.91  

U_6 74 212 286   U_6 2 8 10   

Total 750 750 1500   Total 750 750 1500   

PA 0.81 0.16  0.49  PA 0.88 0.03  0.46  

K     0.24 K     0.03 
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Table  C-24: Collated accuracy assessment of U. pinnatifida at a depth of 200cm 
from the water surface. uC - unclassified, UA - User accuracy, PA - Producer 
accuracy, K – kappa. E – E. radiata, U – U. pinnatifida and 1,2,3,4,5,6 in the class 
column represent depth levels at “out-of-water”, <10cm, 50cm, 1m, 1.5m and 2m, 
respectively. 

Flight height – 10m Flight height – 30m 

Class uC U_6 Total UA K Class uC U_6 Total UA K 

uC 628 257 885 0.71  uC 667 710 1377 0.48  

E_1 0 0 0   E_1 0 0 0   

E_2 1 0 1   E_2 2 0 2   

E_3 11 3 14   E_3 33 2 35   

E_4 7 0 7   E_4 8 0 8   

E_5 4 0 4   E_5 0 0 0   

E_6 14 48 62   E_6 10 2 12   

U_1 1 0 1   U_1 1 0 1   

U_2 3 0 3   U_2 0 0 0   

U_3 7 2 9   U_3 16 1 17   

U_4 0 0 0   U_4 4 0 4   

U_5 10 41 51   U_5 1 0 1   

U_6 64 399 463 0.86  U_6 8 35 43 0.81  

Total 750 750 1500   Total 750 750 1500   

PA 0.84 0.53  0.68  PA 0.89 0.05  0.47  

K     0.43 K     -0.01 
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Table  C-25: Collated classification accuracy assessment of E. radiata at all depths. 
uC - unclassified, UA - User accuracy, PA - Producer accuracy, K – kappa. E – E. 
radiata, U – U. pinnatifida. 

Flight height – 10m Flight height – 30m 

Class uC E Total UA K uC E Total UA K 

uC 2748 581 3329 0.825  3223 1165 4388 0.735  

E 379 1902 2281 0.834  287 1353 1640 0.825  

U 623 1267 1890   240 1232 1472   

Total 3750 3750 7500   3750 3750 7500   

PA 0.733 0.51  0.62  0.86 0.36  0.61  

K     0.39     0.35 

 

Table  C-26: Collated classification accuracy assessment of E. radiata at all depths 
excluding 1.5 and 2m. uC - unclassified, UA - User accuracy, PA - Producer 
accuracy, K – kappa. E – E. radiata, U – U. pinnatifida. 

Flight height – 10m Flight height – 30m 

Class uC E Total UA K uC E Total UA K 

uC 1657 189 1846 0.898  1934 269 2203 0.878  

E 226 1099 1325 0.829  173 965 1138 0.848  

U 367 962 1329   143 1016 1159   

Total 2250 2250 4500   2250 2250 4500   

PA 0.736 0.488  0.612  0.86 0.43  0.64  

K     0.4     0.43 
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Table  C-27: Collated classification accuracy assessment of U. pinnatifida at all 
depths. uC - unclassified, UA - User accuracy, PA - Producer accuracy, K – kappa. 
E – E. radiata, U – U. pinnatifida. 

Flight height – 10m Flight height – 30m 

Class uC U Total UA K uC U Total UA K 

uC 3079 840 3919 0.786  3305 1726 5031 0.657  

E 188 1025 1213   242 568 810   

U 483 1885 2368 0.796  203 1456 1659 0.878  

Total 3750 3750 7500   3750 3750 7500   

PA 0.82 0.5  0.661  0.88 0.39  0.64  

K     0.417     0.34 

 

Table  C-28: Collated classification accuracy assessment of U. pinnatifida at all 
depths excluding 1.5m and 2m. uC - unclassified, UA - User accuracy, PA - 
Producer accuracy, K – kappa. E – E. radiata, U – U. pinnatifida. 

Flight height – 10m Flight height – 30m 

Class uC U Total UA K uC U Total UA K 

uC 1841 348 2189 0.84  1976 380 2356 0.839  

E 109 792 901   147 509 656   

U 300 1110 1410 0.787  127 1361 1488 0.915  

Total 2250 2250 4500   2250 2250 4500   

PA 0.82 0.49  0.656  0.878 0.605  0.74  

K     0.426     0.549 
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Table  C-29: Collated accuracy assessment of classification of both seaweed species 
at depths 10cm, 50cm and 1m from images collected at a flight height of 10m. uC - 
unclassified, UA - User accuracy, PA - Producer accuracy, K – kappa. E – E. 
radiata, U – U. pinnatifida. 

Class uC E U Total UA K 

uC 1749 189 348 2286 0.77  

E 167.5 1099 792 2058.5 0.53  

U 333.5 962 1110 2405.5 0.46  

Total 2250 2250 2250 6750   

PA 0.78 0.49 0.49  0.59  

K      0.38 

 

Table  C-30: Collated accuracy assessment of classification of both seaweed species 
at depths 10cm, 50cm and 1m from images collected at a flight height of 30m. uC - 
unclassified, UA - User accuracy, PA - Producer accuracy, K – kappa. E – E. 
radiata, U – U. pinnatifida. 

Class uC E U Total UA K 

uC 1955 269 380 2604 0.75  

E 160 965 509 1634 0.59  

U 135 1016 1361 2512 0.54  

Total 2250 2250 2250 6750   

PA 0.87 0.43 0.6  0.63  

K      0.45 
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Figure  C-11: Classification of E. radiata at 10cm water depth from images 
captured at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 
images). Shades of red represent U. pinnatifida and shades of green represent E. 
radiata at depths between 10cm – 1m. E. radiata at depths 1.5m and 2m is 
represented in cyan and U. pinnatifida at depths 1.5m and 2m are represented in 
yellow. 
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Figure  C-12: Classification of E. radiata at 50cm water depth from images 
captured at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 
images). Shades of red represent U. pinnatifida and shades of green represent E. 
radiata at depths between 10cm – 1m. E. radiata at depths 1.5m and 2m is 
represented in cyan and U. pinnatifida at depths 1.5m and 2m are represented in 
yellow. 
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Figure  C-13: Classification of E. radiata at 1m water depth from images captured 
at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 images). Shades 
of red represent U. pinnatifida and shades of green represent E. radiata at depths 
between 10cm, 50cm and 1m. E. radiata at depths 1.5m and 2m is represented in 
cyan and U. pinnatifida at depths 1.5m and 2m are represented in yellow. 
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Figure  C-14: Classification of E. radiata at 1.5m water depth from images 
captured at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 
images). Shades of red represent U. pinnatifida and shades of green represent E. 
radiata at depths between 10cm, 50cm and 1m. E. radiata at depths 1.5m and 2m is 
represented in cyan and U. pinnatifida at depths 1.5m and 2m are represented in 
yellow. 
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Figure  C-15: Classification of E. radiata at 2m water depth from images captured 
at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 images). Shades 
of red represent U. pinnatifida and shades of green represent E. radiata at depths 
between 10cm, 50cm and 1m. E. radiata at depths 1.5m and 2m is represented in 
cyan and U. pinnatifida at depths 1.5m and 2m are represented in yellow. 
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Figure  C-16: Classification of U. pinnatifida at 10cm water depth from images 
captured at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 
images). Shades of red represent U. pinnatifida and shades of green represent E. 
radiata at depths between 10cm, 50cm and 1m. E. radiata at depths 1.5m and 2m is 
represented in cyan and U. pinnatifida at depths 1.5m and 2m are represented in 
yellow. 
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Figure  C-17: Classification of U. pinnatifida at 50cm water depth from images 
captured at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 
images). Shades of red represent U. pinnatifida and shades of green represent E. 
radiata at depths between 10cm, 50cm and 1m. E. radiata at depths 1.5m and 2m is 
represented in cyan and U. pinnatifida at depths 1.5m and 2m are represented in 
yellow. 
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Figure  C-18: Classification of U. pinnatifida at 1m water depth from images 
captured at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 
images). Shades of red represent U. pinnatifida and shades of green represent E. 
radiata at depths between 10cm, 50cm and 1m. E. radiata at depths 1.5m and 2m is 
represented in cyan and U. pinnatifida at depths 1.5m and 2m are represented in 
yellow. 
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Figure  C-19: Classification of U. pinnatifida at 1.5m water depth from images 
captured at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 
images). Shades of red represent U. pinnatifida and shades of green represent E. 
radiata at depths between 10cm, 50cm and 1m. E. radiata at depths 1.5m and 2m is 
represented in cyan and U. pinnatifida at depths 1.5m and 2m are represented in 
yellow. 
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Figure  C-20: Classification of U. pinnatifida at 2m water depth from images 
captured at FH of 10m (top set of 9 images) and FH of 30m (bottom set of 9 
images). Shades of red represent U. pinnatifida and shades of green represent E. 
radiata at depths between 10cm, 50cm and 1m. E. radiata at depths 1.5m and 2m is 
represented in cyan and U. pinnatifida at depths 1.5m and 2m are represented in 
yellow. 

 

Flowline developed for UAV Rededge-M image processing and direct georeferencing 

of single images can be downloaded from GitHub: https://github.com/sadsel-

AUT/Chapter4-UAV-imageprocessing-directgeoreferencing.git.  

https://github.com/sadsel-AUT/Chapter4-UAV-imageprocessing-directgeoreferencing.git
https://github.com/sadsel-AUT/Chapter4-UAV-imageprocessing-directgeoreferencing.git
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