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Abstract: The recent advancement in computational capabilities and deployment of smart meters 

have caused non-intrusive load monitoring to revive itself as one of the promising techniques of 

energy monitoring. Toward effective energy monitoring, this paper presents a non-invasive load 

inference approach assisted by feature selection and ensemble machine learning techniques. For 

evaluation and validation purposes of the proposed approach, one of the major residential load 

elements having solid potential toward energy efficiency applications, i.e., water heating, is 

considered. Moreover, to realize the real-life deployment, digital simulations are carried out on low-

sampling real-world load measurements: New Zealand GREEN Grid Database. For said purposes, 

MATLAB and Python (Scikit-Learn) are used as simulation tools. The employed learning models, 

i.e., standalone and ensemble, are trained on a single household’s load data and later tested 

rigorously on a set of diverse households’ load data, to validate the generalization capability of the 

employed models. This paper presents a comprehensive performance evaluation of the presented 

approach in the context of event detection, feature selection, and learning models. Based on the 

presented study and corresponding analysis of the results, it is concluded that the proposed 

approach generalizes well to the unseen testing data and yields promising results in terms of non-

invasive load inference. 

Keywords: machine learning; neural networks; ensemble learning; load inference; event detection; 

feature selection; water heating 

 

1. Introduction 

Energy monitoring is considered an integral part of the future smart power grid system. With 

an increasing number of prosumers and microgrid systems, it is vital to monitor the energy 

consumption effectively and predict the consumption behavior for the long-term stability of a power 

grid. In this context, advanced metering infrastructure (AMI) plays a significant role by enabling the 

utilities not only to monitor the energy consumption of customers [1] but also to offer numerous 

incentive-based programs to consumers toward energy efficiency [2,3]. AMI is a closed loop where 

the feedback regarding energy consumption to consumers can be broadly classified into direct and 

indirect feedback. Direct feedback refers to real-time appliance/circuit level energy consumption 

information (segregated energy monitoring), while indirect feedback relates to monthly bills 

(aggregated energy monitoring) [4]. 
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1.1. Motivation 

Today the smart grid concept transforms the end-users from passive to active consumers, who 

can play a significant role in energy efficiency [5]. However, without direct feedback, it is unrealistic 

to expect consumers to play an effective role in a sustainable and efficient energy system [4]. As with 

direct feedback, consumers are not only able to monitor their electricity consumption effectively but 

also contribute to energy saving [4,6]. In this context, Martinez et al. [7] present a comprehensive 

review of more than 60 studies regarding feedback mechanism and concluded that direct feedback 

leads to more energy savings as opposed to indirect feedback. Therefore, towards energy saving and 

successful development of the smart grid system, effective energy monitoring at the segregated level, 

i.e., direct feedback, is inevitable. Segregated energy monitoring could not only contribute to the 

stability of the grid but also facilitate numerous real-world applications in the context of energy 

efficiency and conservation. 

1.2. Literature Review 

One of the techniques toward segregated energy monitoring is referred to as load 

disaggregation, also known as energy disaggregation [8] or power disaggregation [9]. Load 

disaggregation refers to a broad range of methodologies where the accumulated load profile is 

converted into a segregated one using numerous techniques. Mostly, it can be classified into two 

categories, namely hardware methods and software methods. The former is categorized into 

intrusive load monitoring (ILM) techniques and smart appliances. Hardware methods are relatively 

simple to deploy, however, not widely used because of constraints like scalability, reliability, 

interoperability, and high cost [10,11]. An alternative and attractive load disaggregation technique is 

a software method commonly referred to as non-intrusive load monitoring (NILM). The NILM 

process employs numerous pattern recognition techniques to estimate the individual 

appliance/circuit operation state within the aggregated load data, i.e., acquired from a single 

metering point [12]. Because of single-point measurements and its non-invasive nature, NILM not 

only provides a cost-effective segregated energy monitoring solution but also address consumers’ 

privacy concerns [13]. The NILM methodologies can be grouped into two categories: event-based and 

eventless, in the context of working principles. Event-based NILM systems are computationally more 

efficient compared to the eventless approach, as for the latter, all the samples of the acquired load 

data are considered for inference [14]. An event-based NILM system comprises four building blocks, 

namely data acquisition, event detection, feature extraction, and load classification. Further details of 

the existing state of the art on NILM methodologies are presented in [15–17].  

Data acquisition is a prerequisite of the NILM process that impacts the following stages in terms 

of the selection of tools/methodologies as well as the type/number of appliances to be accurately 

classified [6]. Numerous datasets have been collected at a different data granularity level and publicly 

released. Some of the NILM datasets are Reference Energy Disaggregation Dataset (REDD) [18], 
Building-Level fUlly-labeled dataset for Electricity Disaggregation (BLUED) [19], UK Domestic 

Appliance Level Electricity (UK-DALE) [20], GREEN Grid [21], and Pecan Street Inc. Dataport [22]. 

A recent trend revolves around high data granularity; consequently, most of the research is based on 

high sampling NILM systems [23]. In this context, Guillén-García et al. [24] acquired voltage and 

current measurements at 8 kHz of the sampling rate for electrical load identification using the C-

means algorithm. De Baets et al. [25] employed two distinct publicly available datasets that include 

voltage/current measurements sampled at 30 kHz and 44 kHz respectively. Gupta et al. [26] proposed 

a single point sensing approach for household electrical event detection and classification, where the 

data acquisition system works in the range of 36–500 kHz. Moreover, Chang [27] proposed an 

approach based on the wavelet transform of the time-frequency domain where the data granularity 

is approximately 30 kHz. As high data granularity leads to transient features, consequently, it leads 

to the inference of a greater number of appliances with higher accuracy [6,15]. However, the said 

performance comes at a price of high cost and computational complexity due to the requirement of 

additional high-end measurement devices [28]. Moreover, on social grounds, high data granularity 
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also raises concerns regarding consumers’ privacy as their activities can be detected [29]. Most 

importantly, high data granularity is not compatible with the existing metering infrastructure. 

Recent advancements in computational capabilities significantly aided the NILM classification 

methodologies. In this context, numerous techniques are adopted by the research community for the 

NILM process, which include but are not limited to dynamic time wrapping [28,30], optimization 

[12,31], machine learning [32–36], neural networks [25,37], and deep learning [38,39]. However, in the 

context of NILM, supervised machine-learning models are more frequently used as compared to 

other methodologies. For NILM classification, most of the existing research mainly focuses to employ 

the learning models in a standalone configuration, where some research work presents a comparative 

analysis of different independent learning models. For example, Azaza and Wallin [40] presented a 

comparative performance evaluation of five different machine learning models, where the presented 

study is based on a high data granularity of 30 kHz.  

Based on the review of the existing NILM literature, it is observed that most of the research is 

based on high data granularity. However, the existing metering infrastructure, e.g., revenue meter, 

is generally not capable of high sampling data measurements, consequently, the high sampling NILM 

systems are not a viable option for the existing metering infrastructure. Furthermore, load 

classification in the NILM domain is mostly carried out using standalone machine learning models. 

However, in the machine learning domain, “one size fits all” is not a case, consequently, standalone 

machine learning models’ performance varies from case to case. In this context, ensemble learning, 

i.e., combining different machine learning models to form a single optimal model, is a promising 

technique to balance the performance of different standalone models. However, it is noted that very 

little research has been done in terms of ensemble learning techniques in the context of NILM 

systems. 

1.3. Contributions 

To address the aforesaid limitations of the existing NILM literature, this research work proposes 

a low complexity and low data granularity based non-invasive load inference approach for the 

existing metering infrastructure. The proposed approach is assisted by ensemble learning techniques 

and only relies on mean power as an input variable. Moreover, to realize the real-world applications, 

the proposed approach is evaluated using one of the most significant and high-potential demand 

response residential load elements, i.e., water heating. Further, in the context of NILM, categorical 

key contributions of this research work are summarized as: 

1. To realize the real-world implementation, the proposed approach is,  

a. Thoroughly evaluated on real-world load measurements acquired at low data granularity 

of 1/60 Hz, i.e., 1-min interval measurements; 

b. Based on only a single input variable, i.e., mean power (in Watts). 

2. Event Detection: As an extension of our previously proposed event detection algorithm [41], a 

post-processing criterion is incorporated to further improve the event detection performance. 

The extracted results are validated using an extensive sensitivity analysis. 

3. Load Features: Four distinct load features are extracted for each detected event and further 

analyzed using correlation-based feature selection methodology to identify the most significant 

load features. 

4. Classification: To facilitate the classification performance, this research work introduces two 

diverse ensemble learning techniques, based on a combination of machine learning and artificial 

neural network models, in the context of the NILM domain and comprehensive performance 

evaluation and comparative analysis are presented.  

5. A brief outlook in the context of real-world applications of the proposed approach is presented. 

Overall, the proposed non-invasive inference approach for the residential water-heating circuit 

is based on low sampling real-world load measurements and assisted by improved event detection, 
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feature selection, and ensemble learning techniques, aiming to facilitate the real-world deployment 

of NILM systems. 

The rest of the paper is organized as follows: Section 2 presents the details of the system 

formulations in terms of the problem statement, methodologies, and performance evaluation criteria. 

Section 3 discusses the simulation studies carried out in this research work and the corresponding 

analysis of the extracted results. Section 4 presents a brief outlook of the proposed approach. Finally, 

Section 5 concludes this research paper. 

2. System Formulation  

This section describes the overall proposed system architecture presented in this paper, i.e., 

problem statement and research methodologies regarding data acquisition, event detection, feature 

extraction, and classification toward NILM-based load inference. 

2.1. Problem Statement 

At a single metering point, the monitored time-series aggregated power load profile can be 

weighed as an algebraic summation of m numbers of individual circuits’ power load profile, as 

presented mathematically in (1).  

 Ƿ
д
(t )= � Ƿ

i
(t) + n(t)

m

i=1
  (1) 

where  Ƿ
д
(t)  is the aggregated power load at the metering point at time instant t, Ƿ

i
(t) 

represents power load of ith circuit at time instant t, m represents the total numbers of individual 

circuits, and n(t) is the measurement noise. In the context of this research work,  Ƿ
д
(t)  can be 

redefined as shown in (2).  

 Ƿ
д
(t) = Ƿ

ϢϦ
(t) + Ƿ

ᴎ
(t) + n(t)  (2) 

where Ƿ
ϢϦ

(t) refers to the power load profile of the water-heating circuit and Ƿ
ᴎ
(t) encompasses all 

other miscellaneous circuits’ power load profiles that are not under consideration within the scope 

of this research work. Within the scope of this paper, the main task is to infer the operating status of 

the water-heating circuit with the only information of the main circuit, i.e., aggregated power load. 

Water heating is not only one of the major load elements in the residential sector [42–44] but is also a 

flexible/interruptible load element [45]. The said properties of the water-heating circuit make it a high 

potential load toward numerous real-world energy efficiency applications, e.g., demand response 

[44,46], power regulations [43], and peak shifting, and frequency response [47]. Consequently, non-

invasive inference of water-heating circuit is of utmost importance in the context of real-world energy 

efficiency applications.  

2.2. Methodology 

An event-based low sampling NILM system, depicted in Figure 1, is employed in this research 

work. It is worth noting that within the scope of this research the presented methodology is employed 

for non-invasive inference of water-heating circuits, however, this can be further extended for the 

non-invasive inference of other load elements; depending on the availability of load disaggregation 

databases. Details of employed techniques at each stage/block presented in Figure 1 are explained 

below. 
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Figure 1. Research methodology. 

2.2.1. Data Acquisition and Preprocessing 

For this research work, New Zealand (NZ) based electricity database, namely GREEN Grid 

(https://reshare.ukdataservice.ac.uk/853334/)[21] is used. The recently released database is first of its 

kind for New Zealand, where the data have been collected from 2014 to 2018 from a sample of 45 

households, as part of the Renewable Energy and the Smart Grid (NZ GREEN Grid) project, a joint 

venture of the University of Canterbury and the University of Otago, New Zealand. The NZ GREEN 

Grid dataset contains a 1-min interval measurement of mean power (in watts) data for individual 

circuits and main (total incoming power) circuit. 

As the acquired load data are based on real-world measurements, numerous measurement 

uncertainties, e.g., noise, data spikes, and missing values are inevitable. Therefore, the acquired data 

have been thoroughly pre-processed to take care of the said measurement uncertainties. Initially, for 

simulation purposes, data are acquired from the timeframes that have consistent measurement 

entries without any missing or error values. Further, the acquired raw data are re-arranged in a more 

categorical (tabular) form for better visualization and validation for later stages. In terms of 

eliminating the noise/data spikes that interfere with event detection, the acquired aggregated load 

data are processed using the median filtering technique: a digital filtering technique that preserves 

the edges while eliminating the undesirable noise/data spikes. A detailed explanation of median 

filtering and its working phenomenon is presented in [48]. 

2.2.2. Event Detection 

An event is defined as a transient portion within a signal when it deviates from the previous 

steady-state and lasts until the next one [49]. The aggregated load power profile varies with each 

transition in individual loads’ power profile. Event detection algorithms detect these changes in the 

aggregated profile initiated by individual loads. So far, numerous event detection algorithms have 

been proposed that can be broadly classified into three categories, namely expert heuristics, matched 

filters, and probabilistic models [50].  

This research work relies on an extended version of our recently proposed event detection 

algorithm known as the mean absolute deviation-sliding window (MAD-SW) algorithm [41]. The 
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MAD-SW algorithm is extended by incorporating a post-processing step to further improve the event 

detection performance. Table 1 presents a detailed description of the extended MAD-SW algorithm. 

Table 1. Event detection algorithm methodology.  

MAD-SW 

Input 

Preprocessed aggregated load data, x 

Process 

1. Select sliding window width, ω 

2. Initialize the filter having window width, ω, with the MAD value of input x 

MAD =
1

N
� �xi  −  µ

x
�

�

i=1
 

                     where, 

µ
x
 =

1

N
� xi

�

i=1
 

3. Using the sliding window concept and pre-selected window width, ω, compute iteratively 

the MAD value 

4. Select a threshold value, δ, and compute the thresholding signal as 

         for i = length of x do 

            if MAD ≤ δ then 

               thresholding_signal(i) = 0 

                 else  

               thresholding_signal(i) = 1 

                 end if 

         end for 

5. Use derivative to compute the edges and extract the corresponding starting and ending 

time instances of the detected events 

6. Post-processing 

a. Ending time instance delay correction because of window width 

b. Final event approval 

c. Delay tolerance incorporation, i.e., the detected event is considered a true event if,  

      |tgound_truth − tdetected| ≤ ∆t  

where, tground_truth, tdetected, and ∆t represent the ground-truth event starting time instance, 

detected event starting time instance, and delay tolerance, respectively. 

Output 

Starting and Ending time instances of the detected events 

The output of the MAD-SW algorithm in the form of starting and ending time indices (successive 

ones) are linked together to acquire all the detected events (transient portions), within the aggregated 

load power profile, for further processing according to the methodology presented in Figure 1. 

2.2.3. Feature Extraction and Selection 

The output of the event detection is merely an indication of transitions that occurred at different 

time instances within the aggregated load and does not provide any information regarding explicit 

circuits’ identification and corresponding status, i.e., turn-on or turn-off. To identify this, different 

load features (also known as signatures) are extracted for each detected event, to be used as an input 

to classification models. Features refer to the unique consumption pattern of a circuit and enable the 

appropriate monitoring and classification of an explicit status of the given circuit from the aggregated 

load profile.  

In this research work, a feature set (F) comprising of four distinct load features based on 

statistical, power, and geometrical features have been extracted. The proposed F is expressed in (3). 
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F = �SƐ, σ, Ppeak2peak, C
Disp.

�   (3) 

SƐ , CDisp. , σ, and Ppeak2peak  represent the slope, coefficient of dispersion, standard deviation, and 

peak-to-peak power magnitude of the detected events, mathematically given as in (4)–(7), 

respectively. 

SƐ = 
PowerEvent_End – PowerEvent_Start

Time_InstanceEvent_End – Time_InstanceEvent_Start

   (4) 

CDisp. = 
σ2

µ
  (5) 

σ = �
1

N
 � (x

i
–µ)2

N

i=1

  (6) 

Ppeak2peak =  PowerEvent_End – PowerEvent_Start  (7) 

where µ and σ2 represent the mean and variance of the transient portion, i.e., event, given as in (8) 

and (9), respectively.  

µ = 
1

N
 � xi

N

i=1

 (8) 

σ2 = 
1

N
 � (x

i
− µ)2

N

i=1

 (9) 

Within the scope of this research work, the extracted load features are further evaluated using 

feature selection methodology, i.e., correlation analysis, to identify the most significant load features 

for further processing. Correlation analysis is employed to identify the highly correlated features 

within the extracted feature set, F , as features with high correlation are linearly dependent, 

consequently, having the same effect on target class in the context of classification. The employed 

methodology will not only identify the most significant load features as an input to learning models 

for better classification performance but also reduce the feature space dimensionality that plays a key 

role in reducing algorithm complexity and training time. 

2.2.4. Classification 

The selection of classification models for a specific domain is a critical phase. A variety of factors 

are involved when evaluating a classifier that includes but is not limited to features selection, training 

set size, the dimensionality of the problem, and parameter tuning [51]. This research work aims to 

introduce ensemble learning models for NILM classification. The ensemble learning [52] refers to a 

range of methodologies that combine independent (base) learning models to generate one optimal 

learning model/classifier for the given problem. It is mostly employed to improve the classification 

performance and is considered a trustworthy methodology in the said context [53]. Ensemble 

learning methodologies can be broadly classified into two categories, namely sequential and parallel 

ensemble learners. In the former, the base-learners are sequentially generated, however, the latter 

refers to a technique where the base-learners are generated in parallel. Both methodologies are 

employed in this research work, where AdaBoost- and Voting-based classifiers are used in the context 

of sequential and parallel ensemble techniques, respectively. The AdaBoost algorithm uses a weak 

base-learner to build a strong learning model by adaptively adjusting the weights at each iteration 

[54]. The Voting classifier merges several base-learners and the final prediction is based on a voting 

system, namely hard voting or soft voting [55]. Hard voting refers to the majority voting, where soft 

voting is based on average predicted probabilities. 
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Furthermore, for the employed sequential and parallel ensemble learners, the homogeneous 

(employs single base-learner) and heterogeneous (employs diverse base-learners) structure, 

respectively, are adopted. For said purposes, three independent and diverse supervised learning 

models including two machine learning models, i.e., logistic regression (LR) [56], decision trees (DT) 

[57], and one neural network model, i.e., multi-layer perceptron-artificial neural network (MLP-

ANN) [58], are used to build the diverse ensemble learning models. Figure 2 graphically depicts the 

detailed methodologies of the proposed ensemble learning models, employed in this research work. 

 

Figure 2. Ensemble learning models: (a) AdaBoost Ensemble; cDT
n (x) and CAb(x) represent the DT 

and generated AdaBoost ensemble classifier, respectively (b) Voting Ensemble; cMLP-ANN(x), cDT(x), 

cLR(x), and CV(x) represent the MLP-ANN, DT, LR, and generated Voting classifier, respectively. 

2.3. Performance Evaluation 

For evaluation purposes, well-known performance metrics namely, f-score, recall, and precision 

are used. F-score is a measure of a test’s accuracy and is defined as harmonic-mean of the recall and 

precision, mathematically defined as in (10) [59]. 

F�Score = �
Precision–1 + Recall–1

2
�

–1

= 2 × 
Precision × Recall

Precision + Recall
  (10) 

Recall is defined as the number of relevant items selected, where precision refers to the number 

that selected items are relevant. Recall and precision are mathematically given as in (11) and (12), 

respectively [59]. 

Recall = 
TP

TP + FN
 (11) 

Precision = 
TP

TP + FP
  (12) 

Accuracy is another performance metric used for the evaluation of classification models and is 

defined as the fraction of predictions the model classifies correctly [60], given as in (13). 

Accuracy = 
TP + TN

TP + TN + FP + FN
 (13) 

The terminologies of TP, FP, FN, and TN represent true positive, false positive, false negative, 

and true negative respectively, and are well defined in [35]. 
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3. Simulations and Results 

Based on the presented research methodologies, comprehensive digital simulation studies have 

been carried out using Core i7 (8th Generation) desktop PC having 32 GB RAM. Moreover, in terms 

of simulation tools, MATLAB® R2018b and Python 3.6.7 (scikit-learn (https://github.com/scikit-

learn/scikit-learn) version 0.21.3 [55]) are used. The following subsections present the details of 

simulation studies in terms of simulation parameters, extracted results, and corresponding analysis 

for each building block of the research methodology presented in Figure 1. 

3.1. Event Detection Results  

For event detection simulation, 30 days of load measurements are acquired from a real-world 

household of the NZ GREEN Grid database. To accommodate the diversity of consumption patterns 

of different load elements, the acquired load data are taken from different months of a year. For event 

detection simulation purposes, the details of the acquired load data and event detector parameters 

are presented in Table 2. 

Table 2. Load data and event detection attributes. 

Household Data ID rf_01 

Data Timeframe 

(In 2014) 

11–15 March; 11–13 April; 12–13 May 

12–15 June; 14–15 July; 11–15 August 

11–14 September; 11–15 October 

Duration; No. of Data Samples 30 Days; 43,200 

Threshold Value 150 W 

Based on the attributes presented in Table 2, comprehensive simulations are carried out to assess 

different input parameters on the performance of the event detection algorithm. Table 3 presents a 

detailed performance evaluation of the event detection algorithm at different values of window 

width, where the delay tolerance is fixed at 0, i.e., exact match. 

Table 3. Performance evaluation in the context of window width. 

Delay Tolerance (mins) 0 

Window Width (Samples) 2 * 3 4 5 6 

Total Detected Events 3651 3367 2853 2412 2005 

True Positive 3058 3016 2495 2042 1639 

False Positive 593 351 358 370 366 

False Negative 651 698 1224 1684 2093 

Precision % 83.76 89.58  87.45  84.66  81.75  

Recall % 82.45 81.21  67.09  54.80  43.92  

F-Score % 83.10 85.19  75.93  66.54  57.14  

* Minimum two sample values are required to extract meaningful MAD values. 

From Table 3, it is observed that MAD-SW performs optimally at a window width of 3 yieldings 

to the results of around 81, 89, and 85 percent in terms of recall, precision, and f-score, respectively. 

It is also observed that a continuous drop in all concerned performance metrics has been occurred 

with an increase in window width. The observed decline in recall performance metric is due to the 

drastic upsurge in false negative detection with an increase in window width. The same phenomenon 

was observed in [41] for the load data of the Pecan Street Inc. Dataport [22] database. 

Further, Table 4 presents MAD-SW performance evaluation and sensitivity analysis in terms of 

delay tolerance “Δt” where the window width is kept constant at ω = 3 because of the optimal 

performance of MAD-SW as shown in Table 3. 

  



Inventions 2020, 5, 57 10 of 20 

Table 4. Performance evaluation in the context of delay tolerance. 

Window Width (Samples) 3 

Delay Tolerance (mins) 0 1 2 3 4 

True Positive 3016 3208 3253 3286 3307 

False Positive 351 159 114 81 60 

False Negative 698 386 228 123 69 

Precision (%) 89.58 95.28 96.61 97.59 98.22 

Recall (%) 81.21 89.26 93.45 96.39 97.96 

F-Score (%) 85.19 92.17 95.01 96.99 98.09 

It is evident from Table 4 that the incorporation of Δt significantly improves the performance of 

the MAD-SW algorithm. As a consistent increase in true positive detection with an increase in delay 

tolerance value is recorded, consequently, leading to a persistent increase in algorithms overall 

performance. This determined that Δt defines the event detector accuracy and is directly proportional 

to the performance [61], however, an optimal value must be selected to minimize the tradeoff 

between event detection performance and estimation of energy consumption at later stages. Hence, 

based on the presented results in Table 4, Δt = 2 is selected as an optimal value. For Δt > 2, the event 

detection f-score improvement is marginal, however, at a later stage larger Δt will lead to higher error 

in the estimated and actual energy consumption. Figure 3 depicts the overall performance trend of 

the event detection algorithm in terms of ω and Δt. 

. 

Figure 3. Event detection performance results (a) window width, (b) delay tolerance (shaded region 

represents the best results). 

Based on the extracted results and the presented analysis, ω = 3 and Δt = 2 are selected as the 

optimal parameters for further event detection simulations. Table 5 presents different attributes of 

diverse real-world households employed in this research work for non-invasive load inference of 

water heating, along with the corresponding event detection results based on the optimal parameters 

for event detection algorithm. 
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(b) 
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Table 5. Training and testing household data attributes and event detection results. 

 
Training 

Data  
Testing Data 

Data ID rf_02 rf_02 rf_31 rf_36 rf_42 

Data Timeframe 
11–30 May 

2014 

1–10 July 

2014 

1–7 September 

2016 

21–27 June 

2017 

7–13 January 

2017 

No. of 

Days/Samples 
20/28800  10/14400 7/10080 7/10800 7/10800 

Detected Events 1504 898 166 390 60 

It is worth noting that all the selected (testing) households, presented in Table 5, possess mostly 

different individual load circuits along with diverse consumption patterns. Even the similar load 

circuits in different testing households have different installation configurations, e.g., household ID 

rf_42 has a single circuit configured for laundry and freezer having a circuit label of “Laundry & 

Freezer$4128” [62]. In contrast, household ID rf_36 has two dedicated circuits for the said having the 

circuit labels of “Washing Machine$4146” and “Kitchen Appliances$4145” [62]. Likewise, household 

ID rf_42 has a load circuit labeled as “Lighting (inc heat lamps)$4129” where household ID rf_36 has 

a load circuit labeled as “Lighting$4149,” which potentially implies that the latter has no heat lamps. 

A detailed layout of the individual circuits within the employed testing residential households are 

depicted in Figure 4, where further details can be found in [62]. All these constraints lead to a widely 

varied consumption pattern which is not only hard to predict precisely but also yield variable 

inference performance. 

 

Figure 4. Testing households’ circuits configuration (a) rf_02, (b) rf_31, (c) rf_36, and (d) rf_42. 

3.2. Feature Extraction and Selection Results 

As per the methodology presented in Section 2.2.3, four distinct load features, as given in (3), are 

extracted for each detected event of all households given in Table 5. The extracted load features are 

further evaluated using correlation analysis to identify the most significant ones for accurate load 
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classification. Figure 5 presents the feature selection, i.e., correlation analysis, results for different 

testing households’ data. 

 

Figure 5. Correlation analysis based feature selection results for different testing households data (a) 

rf_02, (b) rf_31, (c) rf_36, (d) rf_42. 

It is evident from the results presented in Figure 5 that for all testing households the load 

features, i.e., SƐ  (Slope) and Ppeak2peak  (P2P Power) are highly correlated to each other, i.e., ≥0.9. 

Similarly, CDisp. (Coef. Disp.) and σ (St. Dev.) are highly correlated to each other with a correlation 

≥0.83. Hence, from the larger perspective of models’ performance, complexity, and computational 

need, the highly correlated features are excluded and a new feature set, FInput, is formulated that will 

act as an input to the models for classification purposes within the scope of this research work. The 

newly formulated load feature set, FInput, is expressed as in (14).  

FInput = �SƐ, CDisp.�   (14) 

3.3. Classification Results 

For classification purposes, the methodologies discussed in Section 2.2.4 are employed and 

comprehensive simulation studies are carried out on load data presented in Table 5. To further 

validate the effectiveness of the proposed approach in terms of generalization capability of learning 

models, four different households, as given in Table 5, are employed for evaluation purposes. It is 

worth noting that the employed households for training and testing purposes of the learning models 

have dedicated water-heating load circuits, however, the other individual circuits may vary in terms 

of availability and installation configuration [62]. Initially, all employed models are evaluated using 

k-fold cross-validation to validate their effectiveness toward unseen testing data. Later, all employed 

learning models are trained on 20 days of load data from a single (training) household and rigorously 

tested on a diverse set of testing households. The testing households also include the same household 
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as used for training purposes, however, the data acquired for testing purposes are entirely unseen 

for the training phase. In the given context, Table 6 presents the details of different learning models’ 

parameters adopted for the digital simulation within the scope of this research. 

Table 6. Learning models’ parameters. 

Models Parameter * 

MLP-ANN activation = ‘relu’; solver = ‘sgd’; hidden_layer_size = (100) 

DT criterion = ‘gini’; splitter = ‘best’ 

Voting Ensemble voting = ‘hard’ 

AdaBoost Ensemble N = 50; algorithm = ‘SAMME.R’ 

* Explanation and further details of the given parameters can be found in [55]. 

Based on the simulation studies, the extracted results in terms of individual circuit operation 

status inference and overall performance are presented in Table 7. It is worth noting that in Table 7, 

WHON, WHOFF, Misc.ON, Misc.OFF, P, R, and F represent water-heating circuit turn-on, water-heating 

circuit turn-off, miscellaneous circuit turn-on, miscellaneous circuit turn-off, precision, recall, and f-

score, respectively. Moreover, CAb(x)  and CV(x)  represent the AdaBoost and Voting ensemble 

learning models/classifiers, respectively. 

Table 7. Circuit-level inference results (in percentages). 

  Standalone Models Ensemble Model 

  LR DT MLP-ANN CV(x) CAb(x) 

ID Status P R F P R F P R F P R F P R F 

rf_02 

WHOFF 94 88 91 85 88 87 94 85 90 94 88 91 85 87 86 

WHON 90 85 88 79 84 81 90 87 88 90 87 88 79 84 81 

Misc.ON 91 94 93 90 86 88 92 94 93 92 94 93 90 86 88 

Misc.OFF 93 97 95 93 91 92 91 97 94 93 97 95 92 90 91 

Weighted 

Avg. 
92 92 92 88 87 87 92 92 92 92 92 92 87 87 87 

rf_31 

WHOFF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WHON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Misc.ON 100 83 91 100 73 84 100 82 90 100 83 91 100 73 84 

Misc.OFF 100 72 84 100 69 82 100 72 84 100 72 84 100 71 83 

Weighted 

Avg. 
100 80 88 100 72 83 100 79 88 100 80 88 100 72 84 

rf_36 

WHOFF 87 72 79 72 83 77 86 72 78 87 73 80 78 85 82 

WHON 79 69 74 74 79 76 78 70 74 80 71 75 75 78 77 

Misc.ON 72 82 77 77 72 75 72 81 76 73 82 77 77 74 76 

Misc.OFF 74 88 81 78 64 70 74 87 80 75 88 81 82 74 78 

Weighted 

Avg. 
78 77 77 75 75 75 78 77 77 79 78 78 78 78 78 

rf_42 

WHOFF 71 100 83 38 100 56 71 100 83 71 100 83 38 100 56 

WHON 83 100 91 56 100 71 83 100 91 83 100 91 56 100 71 

Misc.ON 100 96 98 100 84 91 100 96 98 100 96 98 100 84 91 

Misc.OFF 100 92 96 100 68 81 100 92 96 100 92 96 100 68 81 

Weighted 

Avg. 
96 95 95 91 80 82 96 95 95 96 95 95 91 80 82 

As evident from the results presented in Table 7, all the employed learning models attained 

promising performance for unseen testing data at circuit level inference. However, the DT model 

relatively lags in performance compared to the others. It is also observed that household ID rf_31 

makes itself a prominent candidate in terms of water-heating circuit inference results, where all the 
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employed models yield zero inference results. However, it is worth noting that the achieved results 

do not correspond to the worst performance of the employed models, as in reality there was no 

ground-truth water-heating circuit activity for the given data acquisition timeframe of household ID 

rf_31.  

The employed learning models are also evaluated in the context of individual households and 

for the said purpose the accuracy performance metric, given in (13), is employed. The corresponding 

results are presented in Table 8, where all the results are in percentages. 

Table 8. Household-level accuracy performance results (%). 

 Voting Based Ensemble AdaBoost Ensemble 

Testing Households IDs LR DT MLP-ANN CV(x) DT CAb(x) 

rf_02 92.09 87.41 91.87 92.42 87.41 87.08 

rf_31 79.51 71.68 78.91 79.51 71.68 72.28 

rf_36 77.43 74.87 77.17 78.20 74.87 77.94 

rf_42 95 80 95 95 80 80 

For the given testing households, the results presented in Table 8 are further depicted in Figure 

6 to better visualize the performance comparison among different employed ensemble learners and 

their respective standalone base-learner/s. 

Figure 6. Household-level performance comparison. 

As evident from the detailed results presented in Table 8 and performance comparison 

presented in Figure 6, in most of the cases the ensemble learners attained higher accuracy 

performance compared to their respective standalone base-learner/s. Except for a single case, where 

the AdaBoost ensemble learner lags in performance compared to its respective base-learner, i.e., the 

DT model, however, the performance lag is marginal, i.e., 0.33% only. Further, it is also observed that 

the accuracy performance of all the learning models varies from house to house. This is expected 

because of diverse set of testing households as well as the corresponding testing households’ data are 

entirely unseen in the training phase of the learning models. 

The employed learning models are also evaluated in terms of an entire set of diverse testing 

households within the scope of this research work. In this context, Figure 7 (in the form of boxplot) 
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presents an overall accuracy performance of the employed learning models, i.e., ensemble learners 

vs. respective standalone base-learners.  

 

Figure 7. Classifier-level overall accuracy performance comparison, (Left Side): heterogeneous 

parallel ensemble learner vs. respective diverse base-learners, (Right Side): homogeneous sequential 

ensemble learner vs. respective single base-learner (shaded boxes represent the ensemble learners). 

The red horizontal line within the box in Figure 7 represents the median values. Similarly, in 

Figure 7, the yellow and green dotted lines represent the median and minimum performance attained 

by the employed ensemble learners. It is seen in Figure 7 that both ensemble learners attained better 

overall accuracy performance compared to their respective standalone base-learner/s. As the 

AdaBoost learner enhances the performance of the weak base-learner, i.e., the DT model, by attaining 

a median accuracy performance improvement of 1.54%. On the other side, the voting ensemble model 

balances out the individual shortcomings of its respective base-learner members, i.e., LR, DT, and 

MLP-ANN, and attained a median accuracy performance improvement in a range of 0.17% to 8.53% 

compared to its respective base-learner members. From the extracted results, seen in Figure 7 (Left 

Side), it is also noted that the voting ensemble achieves a marginal improvement of 0.17% compared 

to one of its respective members, i.e., the LR model. But it is worth noting that there is a probability 

that in the presence of the best-performing member, the ensemble model does not lead to any 

performance improvement [63]. However, for the given problem, i.e., non-invasive load inference, 

both employed ensemble leaners, i.e., homogeneous and heterogeneous, achieved classification 

performance improvement. 

4. Outlook 

In the context of real-world deployment, low data granularity based non-invasive load inference 

technique is of utmost importance, as it can be extended to disaggregate the major residential load 

elements, e.g., water heating, electric vehicles, air-conditioning units. More importantly, 

disaggregation of these load elements can further facilitate the demand side management strategies 

as the corresponding outcome in form of appliance or circuit level feedback will significantly facilitate 

the consumers to effectively manage their loads’ operation. This could not only help the sustainable 

operation of energy systems but also facilitate the consumers in terms of savings due to load shifting 
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of their high consumption load elements [64]. Non-invasive load inference can also facilitate the 

commercial and industrial sectors, e.g., in the commercial sector, the proposed non-invasive load 

inference approach can play a significant role in terms of monitoring distinct load patterns (energy 

audit) without affecting the individual vendors’ privacy. Moreover, the proposed approach facilitates 

the industrial sector not only in terms of load monitoring, i.e., operation patterns, fault diagnosis, but 

also helps in terms of potential load identification for demand response applications. 

Further, in the context of system perspective, the authors of [65] presented a comprehensive 

overview of NILM applications; exploring numerous NILM-assisted real-world applications 

including but not limited to, homecare monitoring systems, appliance scheduling, energy audit, 

personalized recommendation systems, demand response, and fault detection. The study broadly 

classified numerous NILM applications into four categories, namely consumer-based applications, 

utility-based applications, policy-based applications, and manufacturer-based applications [65]. 

Concisely, the non-intrusive load inference approach has solid potential toward energy efficiency, 

and further research particularly in the context of low data granularity and real-world applications 

will significantly facilitate all the stakeholders including but not limited to utility providers, 

consumers, policymakers, and manufacturers. 

5. Conclusions 

This paper proposed a non-invasive load inference approach for water-heating circuit using 

ensemble machine learning methodologies. For the said purpose, an event-based NILM 

methodology, assisted by correlation-based feature selection technique and diverse machine learning 

models, is adopted, and comprehensive digital simulations are carried out on real-world low 

granularity (1-min sampling rate, i.e., 1/60 Hz) load measurements: NZ GREEN Grid database.  

In the context of event detection, the MAD-SW algorithm’s performance is improved with post-

processing. Similarly, the extracted load features of detected events are further evaluated using 

feature selection methodology to identify the most significant load features for classification 

purposes. For NILM classification, two diverse ensemble learning techniques are introduced to 

facilitate inference performance. Under the given conditions, homogeneous sequential (AdaBoost) 

and heterogeneous parallel (Voting) ensemble learning techniques are successfully employed. Based 

on the presented analysis of the extracted results, it is concluded that the proposed non-invasive load 

inference approach not only attained promising inference results but also showed good 

generalization capabilities in the context of unseen testing data. Further, it is noted that the employed 

ensemble learners provide classification performance improvement compared to their respective 

standalone base-learners. However, it is worth noting that the performance improvement allowed by 

the employed ensemble models came at a price of model complexity and computational power. 

Consequently, a trade-off exists between the performance and computational requirements. Hence, 

it is exclusively the choice of the end-user as well as the sensitivity-level of the given problem to 

prefer performance over computational efficiency or vice-versa. 

Based on the presented research work and corresponding findings, it is concluded that ensemble 

learning can facilitate non-intrusive load monitoring, even at low data granularity. Further, the 

outcome of non-invasive load inference of water heating has a solid potential to facilitate numerous 

real-world energy efficiency applications, e.g., demand response, load forecasting, and load 

scheduling strategies. In the future, this research will be extended in terms of broader applications of 

the proposed approach toward energy efficiency. 
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