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Abstract. In this paper we initiate the study of Ehrenfeucht-Fraı̈ssé games for some standard finite struc-
tures. Examples of such standard structures are equivalence relations, trees, unary relation structures, Boolean
algebras, and some of their natural expansions. The paper concerns the following question that we call
Ehrenfeucht-Fraı̈ssé problem. Givenn ∈ ω as a parameter, two relational structuresA andB from one of the
classes of structures mentioned above, how efficient is it to decide if Duplicator wins then-round EF game
Gn(A,B)? We provide algorithms for solving the Ehrenfeucht-Fraı̈ssé problem for the mentioned classes of
structures. The running times of all the algorithms are bounded by constants. We obtain the values of these
constants as functions ofn.

1 Introduction

Ehrenfeucht-Fraı̈ssé (EF) games constitute an important tool in both finite and infinite model
theory. For example, in infinite model theory these games can be used to prove Scott Isomor-
phism Theorem showing that all countable structures are described (up to isomorphism) in
Lω1,ω-logic. In finite model theory these games and their different versions are used for estab-
lishing expressibility results in the first order logic and its extensions. These results can be
found in standard books in finite and infinite model theory (e.g. [6], [11]) or relatively recent
papers (e.g. [2], [12]). In this paper all EF games are considered on finite structures.

Despite significant use of EF games in finite and infinite model theory there has not been,
with some exceptions, much work in addressing efficiency of these games. M. Grohe studied
EF games with fixed number of pebbles and showed that the problem of deciding the winner
is complete for PTIME [5]. E. Pezzoili showed that deciding the winner of EF games is
PSPACE-complete [14]. In [9] P. Kolaitis and J. Panttaja prove that the following problem is
EXPTIME-complete: given a natural numberk and structuresA andB, does Duplicator win
the k pebble existential EF game onA andB? In [1] sufficient conditions are provided for
Duplicator to win EF games. These conditions are then used to prove some inexpressibility
results, e.g reachability in undirected graphs is not in monadic NP. These results suggest that
developing tools and algorithms for finding winners of EF are of interest. We also point out
that there has recently been an interest in EF games to collapse results in database theory
[16]. In addition, we think that algorithms that solve EF games can be used in data matching
and data transformation problems in databases.

In this paper we initiate the study of EF games for some standard finite structures. Ex-
amples of such standard structures are equivalence relations, trees, unary relation structures,



Boolean algebras, and some of their natural expansions. The paper concerns the following
question that we call the Ehrenfeucht-Fraı̈ssé problem. Givenn ∈ ω as a parameter, two rela-
tional structuresA andB, how efficient is it to decide if Duplicator wins then-round EF game
Gn(A,B)? We provide algorithms for solving the Ehrenfeucht-Fraı̈ssé problem for the struc-
tures mentioned above. The running times of all the algorithms are bounded by constants. We
obtain the values of these constants as functions ofn.

By a structure we always mean a finite relational structure over a language without func-
tional symbols. LetA andB be structures andn ∈ ω. EF game, denoted byGn(A,B), on
these two structures is played as follows. There are two players, Duplicator and Spoiler, both
provided withA andB. The game consists ofn rounds. Informally, Duplicator’s goal is
to show that these two structures are similar, while Spoiler needs to show the opposite. At
roundi, Spoiler selects structureA or B, and then takes an element from the selected struc-
ture. Duplicator responds by selecting element from the other structure. Say, the players have
produced the following play consisting of pairs of elements (a1,b1), . . . , (an,bn), whereai ∈ A
andbi ∈ B for i = 1, . . . , n. Note that if Spoiler selectedai (or bi) then Duplicator selectedbi

(or ai, respectively). Duplicator wins the play if the mappingai → bi, i = 1, . . . , n, extended
by mapping the values of constant symbolscA to cB, is a partial isomorphism betweenA
andB. It is clear that ifA andB are isomorphic then Duplicator wins the gameGn(A,B) no
matter whatn is. The opposite is not always true. However, for largen if Duplicator wins the
gameGn(A,B) thenA andB are isomorphic. Thus, solving the EF problem can be thought
as an approximation to the isomorphism problem.

One can do the following rough estimates for finding the winner of the gameGn(A,B).
There are finitely many, up to logical equivalence, formulasφ1, . . ., φk of quantifier rankn
(see for example [11]). It is well known that Duplicator winsGn(A,B) if and only if for all
φi ( with i = 1, . . . , k) the structureA satisfiesφi if and only if B satisfiesφi [11]. Thus,
the question if Duplicator winsGn(A,B) can be solved in polynomial time. However, there
are two important issues here. The first issue concerns the numberk that depends onn; k is
approximately bounded by then-repeated exponentiations of 2. The second issue concerns the
degree of the polynomial for the running time that is bounded byn. Thus, the questions arise
as to for which standard structures the value ofk is feasible as a function ofn, and whether the
degree of the polynomial for the running time can be pushed down. As an example consider
the class of linear orders. It is well-known that Duplicator winsGn(A,B), whereA andB
are linear orders, if and only if either|A| = |B| or both |A| > 2n and |B| > 2n (e.g. [11]). In
this example, the numberk, roughly, equals to 2n. The degree of polynomial for the running
time is 0. Thus, whenn is fixed the winner of the game can be found in constant time, and
the constant that bounds the time is 2n.

A brief overview of this paper is as follows. The next section gives an elementary solution
to EF games in the case when the language contains unary predicates only. The third, fourth
and fifth sections are quite technical and devoted to solving EF games for equivalence struc-
tures and some of their extensions. Equivalence structures are natural models of university
or large company databases. For example, in a university database there could be theSame-
Facultyand theSameDepartmentrelations. The first relation stores all tuples (x, y) such that



x andy belong to the same faculty; similarly, the second relation stores all tuples (u, v) such
thatu andv are in the same department. These relations are equivalence relations. Moreover,
the set-theoretic connection between these relations is that the relationSameDepartmentis
a subset of theSameFacultyrelation. We call such structures embedded equivalence relation
structures. Section 6 reduces the question of deciding EF games for trees of a given height
to solving the EP games for embedded equivalence structures introduced in the previous sec-
tions. Finally, the main structures in the last section are Boolean algebras with distinguished
ideals.

Each of these sections provides an algorithm that decides EF gamesGn(A,B), whereA
andB are structures considered in the section. These algorithms run inconstant timeswith
n being a parameter. We also bound the value of the constants as a function ofn. Clearly,
the constants obtained depend on the representations of the structures. In each case, it will be
clear from the content how we represent our structures. As an example we state two results
of Sections 4 and 5. Section 4 is devoted to structures of the type (A; E,P1, ...,Ps), whereE
is an equivalence relation onA andP1, ...,Ps are unary predicates. We call these structures
equivalence structures withs colors. The main result of Section 4 is the following:

Theorem 5Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gameGn(A,B) on equivalence structures withs colors. The
constant that bounds the running time isn2s+1.

Section 5 is devoted to the structures of type (A; E1, . . . ,Eh), where eachEi is an equiv-
alence relation onA andE1 ⊆ E2 ⊆ . . . ⊆ Eh. These structures are called embedded equiva-
lence structures of heighth. The main result of Section 5 is:

Theorem 7Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gameGn(A,B) on embedded equivalence structures of height
h. The constant that bounds the running time is(n + 1)...

(n+1)n

where the tower has heighth.

2 Simple Example: Structures With Unary Predicates

This is an elementary section that gives a full solution for EF games in the case when the
language contains unary predicates only. Here is the main result of this section.

Theorem 1. Fix the languageL = (P1, . . . ,Ps), where eachPi is a unary predicate symbol.
Letn ∈ ω. There exists an algorithm that runs in constant time and decides whether Duplica-
tor wins the gameGn(A,B) on structuresA andB of the language. The constant that bounds
the running time is2s · n.

Proof. LetA = (A; P1,P2, ...,Ps) andB = (B; P1,P2, ...,Ps) be structures of the language
given. For structureA = (A; P1,P2, ...,Ps), we setPs+1 =

⋂
i ¬Pi.

Lemma 1. SupposeP1,P2, ...,Ps are pairwise disjoint. Then Duplicator winsGn(A,B) if
and only if for all1 ≤ i ≤ s+ 1 if |PA

i | < n or |PB
i | < n then|PA

i | = |PB
i |. In particular, when

Duplicator wins it is the case that for all1 ≤ i ≤ s+ 1, |PA
i | ≥ n if and only if |PB

i | ≥ n.



To prove the lemma suppose that there is 1≤ i ≤ k + 1 such that|PA
i | < n but |PA

i | , |PB
i |.

Assume|PB
i | < |PA

i |. Then Spoiler selects|PA
i | elements fromPA

i . This strategy is clearly a
winning strategy for Spoiler. For the other direction, assume that hypothesis of the lemma
holds. Duplicator has a winning strategy as follows. At roundk, assume that the players have
produced thek-round play (a1,b1), ..., (ak,bk) such that for each 1≤ i ≤ k, ai ∈ A,bi ∈ B.
If Spoiler selectsak+1 ∈ A, then Duplicator responds by selectingbk+1 ∈ B as follows: If
ak+1 = ai for somei then bk+1 = bi. Otherwise ifak+1 ∈ PA

j for some 1≤ j ≤ k, then
bk+1 ∈ PB

j so thatbk+1 < {b1, . . . , bk}. The case when Spoiler selects an element fromB is
treated similarly. The strategy is clearly winning. ut

Now assume that for a structureA, the unary predicatesP1,P2, ...,Ps are not necessar-
ily pairwise disjoint. For each elementx ∈ A, define thecharacteristic of x, ch(x), as a
binary sequence (t1, t2, ..., ts) such that for each 1≤ i ≤ s, ti ∈ {0,1} if x ∈ Pi and ti = 0
otherwise. There are 2s pairwise distinct characteristics, and we order them in lexicographic
order: ch1, ..., ch2s. Construct the structureA′ = (A; Q1, ...,Q2s) such that for all 1≤ i ≤ 2s,
Qi = {x ∈ A | ch(x) = chi}. The following is now an easy lemma.

Lemma 2. Duplicator winsGn(A,B) if and only if Duplicator winsGn(A′,B′). ut
We now representA andB by 2s lists, and thei th list lists all elements with characteristic

chi. To solve the gameGn(A′,B′), the algorithm checks the conditions in Lemma 1 by reading
the lists. The process takes time bounded by 2s · n as required. ut

3 Equivalence Structures

An equivalence structure is a structureA of the type (A; E) whereE is an equivalence
relation onA. We list all the equivalence classes ofA asA1, ...,Ak such that|Ai | ≤ |Ai+1| for
all 1 ≤ i < k. Let qA be the number of equivalent classes inA; for eacht < n, let qA

t be the
number of equivalence classes inA with sizet. Finally, letqA≥r be the number of equivalence
classes inA of size at leastr. For an equivalence structureB we have similar notations asB1,
B2, . . . to denote its equivalence classes, and the associated numbersqB, qBt , andqB≥r .

Lemma 3. If Duplicator wins the gameGn(A,B) on equivalence structuresA andB, then
the following must be true:

1. If qA < n or qB < n thenqA = qB; and
2. qA ≥ n if and only ifqB ≥ n. ut

In our analysis below, by the above lemma, we always assume thatqA = qB or qA ≥ n
if and only if qB ≥ n. We need the following notation for the next lemma and definition. For
t ≤ n, let qt = min{qA≥t,q

B
≥t}. LetAt andBt be equivalence structures obtained by taking out

exactlyqt equivalence classes of size≥ t fromA andB respectively. We also setn− qt to be
0 in caseqt ≥ n; and otherwisen− qt has its natural meaning.

Lemma 4. 1. Assume that there is at < n such thatqAt , qBt andn − qt > t. Then Spoiler
wins the gameGn(A,B).



2. Assume that there is at ≤ n such thatn− qt > 0 and one of the structuresAt or Bt has an
equivalence class of size≥ n− qt and the other structure does not. Then Spoiler wins the
gameGn(A,B)

Proof. We prove the first part of the lemma. The second part is proved similarly. Assume,
without loss of generality, thatqAt > qBt andn − qBt > t. Spoiler’s strategy is the following.
First, select elementsa1, . . . , aqBt

from distinct equivalence classes of sizet inA. Next, select
t distinct elements in the equivalence class of sizet inA. This leads Spoiler to win. ut

Definition 1. 1. We say thatGn(A, B) has small disparity if there is at < n such that either
qAt , qBt andn− qt > t.

2. We say thatGn(A, B) has large disparity if there exists at ≤ n such thatn− qt > 0 and
one of the structuresAt or Bt has an equivalence class of size≥ n − qt and the other
structure does not.

Lemma 5. Duplicator wins the gameGn(A,B) if and only if the gameGn(A,B) has neither
small nor large disparity.

Proof. The previous lemma proves one direction. For the other, we assume that neither
small nor large disparity occurs in the game. We describe a winning strategy for Duplicator.

Let us a assume that the players have produced ak-round play (a1,b1), (a2,b2), ..., (ak,bk).
In casek = 0, we are at the start of the gameGn(A,B). Our inductive assumptions on this
k-round play are the following:

1. E(ai ,aj) is true inA if and only if E(bi ,bj) is true inB, and the mapai → bi is one-to-one.
2. For allai, |[ai]| ≥ n− i if and only if |[bi]| ≥ n− i, where [x] denotes the equivalence class

of x.
3. For ai if |[ai]| < n− i then|[ai]| = |[bi]|.
4. LetA′ andB′ be the equivalence structures obtained by removing the equivalence classes

[a1], . . ., [ak] from A and the equivalence classes [b1], . . ., [bk] from B, respectively. We
assume thatA′ andB′ satisfy the following conditions:
(a) In gameGn−k(A′,B′) no small disparity occurs.
(b) In gameGn−k(A′,B′) no large disparity occurs.

Assume that Spoiler selectsak+1 ∈ A. Duplicator responds by choosingbk+1 as follows. If
ak+1 = ai thenbk+1 = bi. Otherwise, ifE(ai ,ak+1) is true inA then Duplicator chooses a new
bk+1 such thatE(bi ,bk+1) is true inB. Assumeak+1 is not equivalent to any of the elements
a1, . . . , ak. If |[ak+1]| ≥ n− k then Duplicator choosesbk+1 such thatbk+1 is not equivalent to
any of the elementsb1, . . . , bk and|[bk+1]| ≥ n− k. Duplicator can select such an element as
otherwise large disparity would occur in the game. If|[ak+1]| < n− k then Duplicator chooses
bk+1 such that|[bk+1]| = |[ak+1]| andbk+1 is not equivalent to any of the elementsb1, . . . , bk.
The case when Spoiler selects an element fromB is treated similarly.

Now we show that the (k + 1)-round play (a1,b1), (a2,b2), ..., (ak,bk), (ak+1,bk+1) satisfies
the inductive assumptions. The inductive assumptions (1), (2), and (3) can easily be checked



to be preserved. To show that the assumption (4) is preserved, consider the equivalence struc-
turesA′′ andB′′ obtained by removing the equivalence classes [a1], . . ., [ak], [ak+1] from A
and the equivalence classes [b1], . . ., [bk], [bk+1] fromB, respectively. In gameGn−k−1(A′′,B′′)
small disparity does not occur as otherwise the gameGn−k(A′,B′) would have small disparity.
Thus, assumption (4a) is also preserved. Similarly, ifGn−k−1(A′′,B′′) had large disparity then
the gameGn−k(A′,B′) would also have large disparity contradicting the inductive assump-
tion. Hence, the strategy described must be a winning strategy due to the fact that Duplicator
preserves the inductive assumption (1) at each round. ut

For the next theorem, we represent each equivalence structureA andB in two lists. For
example, the first list for the structureA lists all equivalence classes ofA in increasing order;
the second list isqA, qA1 , qA≥1, qA2 , qA≥2, . . .. The lemmas above give us the following:

Theorem 2. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gameGn(A,B) on equivalence structuresA = (A; E) andB =

(B; E). The constant that bounds the running time isn. ut
We can extend the above theorem by defining the following structures:

Definition 2. A homogeneous equivalence structureis (A; E,P1, . . . ,Ps) such that

– (A; E) is an equivalence structure; and
– EachPi is a homogeneous unary relation onA meaning that for allx, y ∈ A if E(x, y) then

x ∈ Pi if and only ify ∈ Pi.

For a homogeneous equivalence structureA, define the characteristicch(x) of an element
x ∈ A as in Section 2. RepresentA as a disjoint union of equivalence structuresA1, . . .,A2s,
whereAε consists of elements with characteristicε. The above theorem is thus extended to:

Theorem 3. There exists an algorithm that runs in constant time and decides whether Du-
plicator wins the gameGn(A,B) on homogeneous equivalence structuresA and B. The
constant that bounds the running time is2s · n. ut

4 Equivalence Structures With Colors

In this section structuresA are of the form (A; E,P1, ...,Ps), whereE is an equivalence rela-
tion onA andP1, ...,Ps are unary predicates onA. We call theseequivalence structures with
s colors. We start with the case whens = 1. The case fors> 2 will be explained later.

LetA = (A; E,P) be a equivalence structure with one color. Sayx ∈ A is colored if P(x)
is true; otherwisex is non-colored. An equivalence classX hastype tp(X) = (i, j), if the
number of colored elements ofX is i, non-colored elements isj; thus,i + j = |X|.
Definition 3. Given two types(i, j) and (i′, j′) respectively. We say that(i, j) is colored n-
equivalent to (i′, j′), denoted by(i, j) ≡C

n (i′, j′), if the following holds.

1. If i < n theni′ = i; otherwisei′ ≥ n.



2. If j < n− 1 then j′ = j; otherwisej′ ≥ n− 1.

We say that(i, j) is non-colored n-equivalent to (i′, j′), denoted by(i, j) ≡N
n (i′, j′), if the

following holds.

1. If j < n then j′ = j; otherwisej′ ≥ n.
2. If i < n− 1 theni′ = i; otherwisei′ ≥ n− 1.

For X ⊆ A, we use (X; E � X,P � X) to denote the equivalence structure obtained by
restrictingE andP on X. Note that given two equivalence classesX andY of types (i, j) and
(i′, j′) respectively, if (i, j) is colored (non-colored)n-equivalent to (i′, j′), then Duplicator
wins then-round game played on structures (X; E � X,P � X) and (Y,E � Y,P � Y), given
the fact that Spoiler chooses a colored (non-colored) element in the first round.

Lemma 6. If either (i′, j′) ≡C
n (i, j) or (i′, j′) ≡N

n (i, j), then(i′, j′) ≡C
n−1 (i, j) and(i′, j′) ≡N

n−1
(i, j). ut

For an equivalence structureA = (A; E,P), we need the following notations:

– For type (i, j) andk ≥ 1, SetCA(i, j),k be the set{X | X is an equivalence class ofA and
tp(X) ≡C

k (i, j)}. SetNA(i, j),k be the set{X | X is an equivalence class ofA and tp(X) ≡N
k

(i, j)}
– For type (i, j) andk ≥ 1, setqA,C(i, j),k = |CA(i, j),k|, and setqA,N(i, j),k = |NA(i, j),k|.
– ForA andB, setqC

(i, j),k = min{qA,C(i, j),k,q
B,C
(i, j),k} andqN

(i, j),k = min{qA,N(i, j),k,q
B,N
(i, j),k}

– SetAC((i, j), k) be the structure obtained fromA by removingqC
(i, j),k equivalence classes

in CA(i, j),k.
– SetAN((i, j), k) be the structure obtained fromA by removingqN

(i, j),k equivalence classes
in NA(i, j),k.

Observe the following. If Spoiler selects a colored element from an equivalence classX
in A, and Duplicator responds by selecting a colored element from an equivalence classY
such thattp(Y) ≡C

n tp(X), there is no point for Spoiler to play insideX because this will
guarantee a win for Duplicator. Conversely, suppose Spoiler selects a colored element from
an equivalence classX in A, and there is no equivalence class inB whose type is colored
n-equivalent totp(X). Then Spoiler has a winning strategy by playing insideX andY.

Definition 4. Consider the gameGn(A,B) played on equivalence structures with one color.
We say that acolored disparity occurs if there exists a type(i, j) andn > k ≥ 0 such that the
following holds:

1. k = qC
(i, j),n−k.

2. In one ofAC((i, j),n − k) andBC((i, j),n − k), there is an equivalence class whose type
is colored(n − k)-equivalent to(i, j), and no such equivalence class exists in the other
structure.

We say that anon-colored disparity occurs if there exists a type(i, j) andn > k ≥ 0 such
that the following holds:



1. k = qN
(i, j),n−k.

2. In one ofAN((i, j),n− k) andBN((i, j),n− k), there is an equivalence class whose type is
non-colored(n− k)-equivalent to(i, j), and no such equivalence class exists in the other
structure.

Lemma 7. SupposeA andB are two equivalence structures with one color. Duplicator wins
the gameGn(A,B) if and only if neither colored disparity nor non-colored disparity occurs
in the game.

Proof. If either colored or non-colored disparity occurs in the game, then it is not too hard
to see that Spoiler wins the game. Suppose that neither colored disparity nor non-colored
disparity occurs in the gameGn(A,B), we describe a strategy for Duplicator. Let us assume
that the players have produced ak-round play (a1,b1), (a2,b2), ..., (ak,bk). Let (i l , j l) and (i′l , j′l )
be the types ofal andbl,respectively with 1≤ l ≤ k. Our inductive assumptions on thisk-
round play are the following:

1. For any 1≤ l ≤ k, al is a colored element if and only ifbl is a colored element.
2. For any 1≤ l,m≤ k, E(al ,am) if and only if E(bl ,bm).
3. For any 1≤ l ≤ k, (i l , j l) ≡C

n−l (i′l , j′l ) and (i l , j l) ≡N
n−l (i′l , j′l ).

4. Let A′ andB′ be the equivalence structures obtained by removing equivalence classes
[a1], ..., [ak] from A and [b1], ..., [bk] from B, respectively. We assume in gameGn−k nei-
ther colored disparity nor non-colored disparity occurs.

Assume that Spoiler selects an elementak+1 ∈ A. Duplicator responds to this move by
choosingbk+1 as follows. Ifak+1 = al thenbk+1 = bl. Otherwise, ifE(ak+1,al) is true inA,
then Duplicator chooses a newbk+1 such thatE(bk+1,bl) andak+1 is a colored element if and
only if bk+1 is a colored element. By (3) of the inductive assumption, Duplicator can always
select such an elementbk+1.

Assumeak+1 is not equivalent to any of the elementa1, ..., ak. Let X be the equivalence
class ofak+1 in A. If ak+1 is a colored element, then Duplicator chooses a colored element
bk+1 from an equivalence classY of B such thattp(X) ≡C

n−k tp(Y). If ak+1 is a non-colored
element, then Duplicator chooses a non-coloredbk+1 from an equivalence classY of B such
that tp(X) ≡N

n−k tp(Y). Note that such an equivalence classY must exist inB as otherwise
either colored or non-colored disparity would occur inGn−k(A′,B′) as witnessed bytp(X)
and 0. The case when Spoiler selects an element fromB is treated in a similar manner.

On the play (a1,b1), ..., (ak,bk), (ak+1,bk+1), the inductive assumption (1) and (2) can be
easily checked to hold. To prove that inductive assumption (3) holds, let (ik+1, jk+1) and
(i′k+1, j′k+1) be the type of [ak+1] and [bk+1] respectively. The strategy ensures one of (ik+1, jk+1) ≡C

n−k
(i′k+1, j′k+1) and (ik+1, jk+1) ≡N

n−k (i′k+1, j′k+1) is true, and by Lemma 6, (ik+1, jk+1) ≡C
n−k−1 (i′k+1, j′k+1)

and (ik+1, jk+1) ≡N
n−k−1 (i′k+1, j′k+1). It is now routine to show, by using Lemma 6, that inductive

assumption (4) is preserved.

Thus, the strategy is winning for Duplicator by inductive assumptions (1) and (2).ut
For the next theorem we represent colored equivalence structuresA in three lists. The

first one lists equivalence classes ofA in increasing order of their types; the second and the
third list the sequences{qA,C(i, j),k}0≤i, j,k≤n and{qA,N(i, j),k}0≤i, j,k≤n respectively:



Theorem 4. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gameGn(A,B) on equivalence structures with one colorA and
B. The constant that bounds the running time isn3. ut

Fix s > 1, letA be an equivalence structure withs many colors. For each elementx of
A, define thecharacteristic of x as defined in the previous sections. There are 2s distinct
characteristics. Order them in lexicographic order:ch1, ..., ch2s. Construct the structureA′ =

(A; E,Q1, ...,Q2s) such that for all 1≤ i ≤ 2s, Qi = {x ∈ A | ch(x) = chi}. Clearly, for distinct
characteristicschi andchj we haveQi ∩ Q j = ∅. Moreover,A andB are isomorphic if and
only if A′ andB′ are isomorphic.

For an equivalence classX, we define thetype of X, tp(X), as a sequence (i1, i2, ..., i2s)
such that inX the number of element with characteristicchj is i j for all 1 ≤ j ≤ 2s.

Definition 5. Let κ = (i1, ..., i2s) andλ = (i′1, ..., i
′
2s) be two types of equivalence classes. For

1 ≤ j ≤ 2s, we say thatκ is ( j,n)-equivalent to λ, denoted byκ ≡ j
n λ, if the following holds.

1. If i j < n theni′j = i j, otherwisei′j ≥ n; and
2. For all 1 ≤ l ≤ 2s wherel , j, if i l < n− 1 theni′l = i l, otherwisei′l ≥ n− 1.

Let X andY be equivalence classes of typesκ andλ respectively. Ifκ ≡ j
n λ, then Duplicator

wins then-round EF game played on structures (X; E � X,P1 � X, ...,Ps � X) and (Y; E �
Y,P1 � Y, ...,Ps � Y), given that Spoiler selects an elementx ∈ X with characteristicchj.

For typeλ, 1 ≤ j ≤ 2s andk ≥ 1, we setCA, jλ,k be the set{X | X is an equivalence class ofA
andtp(X) ≡ j

k λ}. Similar to the case of equivalence structures with one color, one introduces
notationsqA, j

λ,k, qj
λ,k, andA j(λ, k).

Definition 6. Consider the gameGn(A,B) played on equivalence structures withs colors.
For 1 ≤ j ≤ 2s, we say that adisparity occurs with respect to chj if there exists a type
λ = (i1, ..., i2s) andn > k ≥ 0 such that the following holds:

1. k = qj
λ,n−k

2. In one ofA j(λ,n− k), there is an equivalence class whose type is( j,n− k)-equivalent to
λ, and no such equivalence class exists in the other structure.

The proof of the following are similar to Lemma 7 and Theorem 4 :

Lemma 8. LetA andB be equivalence structures withs colors. Duplicator wins the game
Gn(A,B) if and only if no disparity occurs with respect tochj for any1 ≤ j ≤ 2s. ut

Theorem 5. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gameGn(A,B) on equivalence structures withs colors. The
constant that bounds the running time isn2s+1. ut



5 Embedded Equivalence Structures

An embedded equivalence structure of heighth is a structureA = (A; E1,E2, ...,Eh) such
that eachEi, 1 ≤ i ≤ h, is an equivalence relation, andEi ⊆ E j for i < j. In this section we
give a full solution for EF played on embedded equivalence structures of heighth. We start
with the case whenh = 2. The case forh > 2 will be explained later.

LetA = (A; E1,E2) be an embedded equivalence structure of height 2. We say that anE2-
equivalence classX has typetp(X) = (q1, . . . , qt) if the largestE1-equivalence class contained
in X has sizet and for all 1≤ i ≤ t, qi is the number ofE1-equivalence classes of sizei
contained inX. Thus,

∑t
i=1(qi × i) = |X|. For two typesσ = (q1, . . . , qt1) andτ = (q′1, . . . , q

′
t2),

we sayσ = τ if t1 = t2 andqi = q′i for all 1 ≤ i ≤ t1.
For X ⊆ A, we use (X; E1 � X) to denote the equivalence structure obtained by restricting

E1 on X. Given twoE2-equivalence classesX andY of typesσ andτ respectively, we say
thatσ is n-equivalent toτ, denoted byσ ≡n τ, if Duplicator wins then-round game played
on structures (X; E1 � X) and (Y; E1 � Y). Note that ifσ ≡n τ, thenσ ≡i τ for all i ≤ n.

We need the following notations:

– For typeσ and i ≥ 1, setCAσ,i be the set{X | X is an E2-equivalence class ofA and
tp(X) ≡i σ}.

– SetqAσ,i = |CAσ,i |.
– For embedded equivalence structureA andB, setqσ,i = min{qAσ,i ,qBσ,i}
– SetA(σ, i) be the embedded equivalence structure of height 2 obtained fromA by re-

movingqσ,i equivalence classes whose types arei-equivalent toσ.

Observe in roundk of the gameGn(A,B), if Spoiler selects an element from anE2-
equivalence classX in A, and Duplicator responds by selecting another element from an
E2-equivalence classY in B such thattp(Y) ≡n−k tp(X), there is no point for Spoiler to keep
playing insideX because this will guarantee a win for Duplicator. Intuitively,A(σ,n − k)
contains all theE2-equivalence classes for Spoiler to choose elements from afterqσ,n−k many
E2-equivalence classes whose types are (n− k)-equivalent toσ have been chosen.

Definition 7. Consider the gameGn(A,B) played on embedded equivalence structures of
height 2. We say that adisparity occurs if there exists a typeσ andn > k ≥ 0 such that the
following holds.

1. k = qσ,n−k.
2. In one ofA(σ,n − k) andB(σ,n − k), there is anE2-equivalence class whose type is

(n− k)-equivalent toσ, and no suchE2-equivalence class exists in the other structure.

Lemma 9. SupposeA andB are two embedded equivalence structures of height 2. Dupli-
cator wins the gameGn(A,B) if and only if no disparity occurs.

Proof. Suppose disparity occurs inGn(A,B) witnessed byσ andk, inA(σ,n− k) there is an
E2-equivalence class whose type is (n− k)-equivalent toσ, and no suchE2-equivalence class
exists inB(σ,n− k). Using these, it is not hard to prove that Spoiler wins the game.



Suppose that no disparity occurs in the gameGn(A,B), we describe a strategy for Du-
plicator. Let us assume that the players have produced ak-round play (a1,b1), (a2,b2), . . . ,
(ak,bk). Let σi andτi be the types ofai andbi, respectively with 1≤ i ≤ k. Our inductive
assumptions on thisk-round play are the following:

1. The mapai → bi is partial isomorphism.
2. For all 1≤ i ≤ k, σi ≡n−i τi.
3. Let A′ andB′ be the equivalence structures obtained by removing theE2-equivalence

classes [a1]E2, . . . , [ak]E2 from A and the equivalence classes [b1]E2, . . . , [bk]E2 from B,
respectively. We assume in gameGn−k(A′,B′) no disparity occurs.

Assume that Spoiler selects an elementak+1 ∈ A. The case when Spoiler selects an el-
ement fromB is treated as below. Duplicator responds to this move by choosingbk+1 as
follows. If ak+1 = ai thenbk+1 = bi. Otherwise, ifE1(ai ,ak+1) is true inA, then Duplicator
chooses a newbk+1 such thatE1(bi ,bk+1). If E2(ai ,ak+1) is true inA and there is noj such
that E1(aj ,ak+1), then Duplicator chooses a newbk+1 such thatE2(bi ,bk+1) and there is noj
such thatE1(bj ,bk+1). By (2) of the inductive assumption Duplicator can always select such
an elementbk+1 by following its winning strategies.

Assumeak+1 is not equivalent to any of the elementsa1, ..., ak. LetX be theE2-equivalence
class inA that containsak+1. Duplicator selectsbk+1 from an E2-equivalence classY in B
such thattp(X) ≡n−k tp(Y). Duplicator is able to select such an element as otherwise disparity
would occur as witnessed by the type ofX and 0.

The inductive assumption (1) and (2) can be easily checked to hold on the play (a1,b1), . . . ,
(ak,bk), (ak+1,bk+1). To show that the assumption (3) is preserved, consider the structuresA′′
andB′′ obtained by removing [a1]E2, . . . , [ak]E2, [ak+1]E2 and [b1]E2, . . . , [bk]E2, [bk+1]E2 from
A andB, respectively. Suppose disparity occurs inGn−k−1(A′′,B′′) as witnessed by some type
τ andt < n − k − 1. There are two cases. Iftp([ak+1]) ≡n−k−t−1 τ, thentp([bk+1]) ≡n−k−t−1 τ,
and disparity must occur inGn−k(A′,B′) as witnessed byτ andt + 1. If tp([ak+1]) .n−k−t−1 τ,
thentp([bk+1]) .n−k−t−1 τ, and disparity must occur inGn−k(A′,B′) as witnessed byτ andt,
contradicting our assumption. Hence the strategy is a winning strategy. ut
Theorem 6. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gameGn(A,B) on embedded equivalence structures of height
2. The constant that bounds the running time is(n + 1)n.

Proof. We represent structureA = (A; E1,E2) by a tree and a list. The tree has height 3.
The leaves of the tree are all elements inA. Two leavesx, y have the same parent ifE1(x, y),
andx, y have the same ancestor at level 1 ifE2(x, y). Intuitively, we can view the root of tree
asA, the internal nodes at level 1 represent allE2-equivalence classes onA, and the children
of eachE2-equivalence classX at level 2 are allE1-equivalence classes contained inX. We
further require that representations ofE2 andE1-equivalence classes are put in left-to-right
order according to their cardinalities.

The list isqAσ1,1
, . . . , qAσt ,1

, . . . , qAσ1,n, . . . , q
A
σt ,n where eachσi is a type ofE2-equivalence

class, andqAσi , j
is as defined above. EachqAσi , j

has a value between 0 andn and if it is greater



than n, we set it ton. The algorithm checks whether disparity occurs inGn(A,B) by ex-
amining the list. There can be at most (n + 1)n pairwise non-n-equivalent types. Therefore,
checking disparity requires a time bounded by (n + 1)n+1. ut

For the case whenA andB are two embedded equivalence structures of heighth, where
h > 2, we give a similar definition of the type of anEh-equivalence class. We can then
describe the winning conditions for Spoiler and Duplicator in a similar way.

Let A be an embedded equivalence structure of heighth where h > 2. For anEh-
equivalence classX, we recursively definetp(X), the type ofX. Settp(X) be (qσ1, . . . , qσt)
that satisfies the following property.

1. Eachσi is the type of anEh−1-equivalence class.
2. σt is the maximum type in lexicographic order among all types ofEh−1-equivalence

classes contained inX.
3. The listσ1, ..., σt contains all possible types ofEh−1-equivalence classes less or equal to

σt ordered lexicographically.
4. For all 1≤ i ≤ t, qσi is the number of allEh−1-equivalence classes contained inX whose

type areσi.

We note that these types allow us to solve the isomorphism problem for embedded equiv-
alence structures of heighth in linear time on the size of the structures.

Let κ = (qσ1, ..., qσs) andλ = (q′σ1
, ..., q′σt

) be types of twoEh-equivalence classesX and
Y, respectively. We sayκ = λ if s = t andqσi = q′σi

for all 1 ≤ i ≤ s. We sayκ ≡n λ if the
structures (X; E1 � X, . . . ,Eh−1 � X) and (Y; E1 � Y, . . . ,Eh−1 � Y) aren-equivalent.

Similarly to the case of embedded equivalence structures of height 2, we re-introduce the
notionsCAσ,i, qAσ,i, qσ,i,A(σ, i) and disparity in the gameGn(A,B).

Lemma 10. SupposeA andB are two embedded equivalence structures of heighth where
h ≥ 2. Duplicator wins the gameGn(A,B) if and only if no disparity occurs. ut

The number of pairwise non-n-equivalent types ofEh-equivalence classes is at most (n +

1)...
(n+1)n

where the tower of (n + 1) has heighth. Thus, by the lemma above, we have:

Theorem 7. Fix n ∈ ω. There is an algorithm that runs in constant time and decides if
Duplicator wins the gameGn(A,B) on embedded equivalence structuresA andB of height
h. The constant that bounds the running time is(n+ 1)...

((n+1)
where the tower has heighth. ut

6 Trees

In this section we are interested intrees; these are finite structures of the typeT = (T,≤),
where the relation≤ is a partial order onT such thatT has the greatest element (the root),
and the set{y | x ≤ y} for any givenx ∈ T is a linearly ordered set under≤. We call an
element aleaf of the treeT if it is a minimal element; otherwise we call it aninternal
node. A path in T is a maximal linearly order subset ofT. The length of a given path is
the number of elements in the path. Theheight of T is the length of the largest path inT .



We say that thelevel of a nodex ∈ T is j if the distance fromx to the root is j. We fix
numberh ≥ 2, and restrict ourselves to the classKh of all trees of height at mosth. Deciding
Ehrenfeucht-Fraı̈ssé games on trees fromKh can be done directly by using the techniques
from the previous section. Instead, we reduce the problem of deciding Ehrenfeucht-Fraı̈ssé
games on trees inKh to one for embedded equivalence structures of heighth + 1.

We transform trees from the classKh into the class of embedded equivalence structures
of heighth in the following manner. LetT be a tree inKh. We now define an embedded
equivalence structureA(T ) as follows. The domainD ofA(T) is nowT ∪ {ax | x is a leaf of
T }. We define the equivalence relationEi , 1 ≤ i ≤ h, on the domain as follows. The relation
E1 is the minimal equivalence relation that contains{(x,ax) | x is a leaf ofT }. Let x1, . . ., xs

be all elements ofT at levelh − i + 1, where 1≤ i < h. Let T1 , . . ., Ts be the subtrees of
T whose roots arex1, . . ., xs , respectively. SetEi be the minimal equivalence relation that
containsEi−1 ∪ T2

1 ∪ . . . ∪ T2
s . It is clear thatEi ⊆ Ei+1 for all 1 ≤ i ≤ h. Thus we have the

embedded equivalence structureA(T) = (D; E1, ...,Eh).

Lemma 11. For treesT1 andT2 , T1 � T2 if and only ifA(T1) � A(T2). In particular,
Duplicator winsGn(T1,T2) if and only if Duplicator winsGn(A(T1),A(T2)).

Proof. SupposeT is a tree in the classKh. Take an elementx ∈ T. By construction of
A(T ), the following statements are true.

– x is a leaf inT if and only if |{y | E1(x, y)}| = 2 inA(T ).
– x is the root ofT if and only if |{y | Eh(x, y)}| = 1 inA(T ).

We define thelevel of x in A(T ) as follows. If x is the root ofT , the level ofx is 0.
Otherwise, ifx is an internal node, the level ofx in A(T ) is the largestl such that|{y |
Eh−l+1(x, y)}| > 1. If x is a leaf, we define the level ofx in A(T ) to be the largestl + 1 such
that there is an internal nodey such thatEh−l+1(x, y).

By definition, for all x ∈ T, the level ofx in T is the level ofx in A(T ). For x, y ∈ T,
x ≤ y in T if and only inA(T ) x has levels andy has levelt such thats≥ t andEh−t+1(x, y).
Thus, for two trees fromKh, T1 andT2, and a mappingf : T1 → T2, f is an isomorphism
betweenT1 andT2 if and only if f is an isomorphism betweenA(T1) andA(T2).

To prove the second part of the lemma, one direction is clear. For the other direction,
assume that there is a winning strategy for Duplicator on the gameGn(T1,T2). We describe
a strategy for Duplicator on the gameGn(A(T1),A(T2)) whereA(T1) = (D1; E1, ..., Eh)
andA(T2) = (D2; E1, ...,Eh). Let us assume that the players have produced ak-round play
(x1, y1), (x2, y2), . . . , (xk, yk). Assume on thisk-round play the mapxi → yi is a partial isomor-
phism betweenA(T1) andA(T2).

Assume that Spoiler selects an elementxk+1 ∈ D1. Duplicator responds to this move by
choosingxk+1 as follows. Ifxk+1 = xi thenyk+1 = yi. Otherwise, ifxk+1 ∈ T1, then Duplicator
selects an elementyk+1 ∈ T2 according to its winning strategy onGn(T1,T2). If xk+1 = ax for
some leafx ∈ T1. Then Duplicator responds by selectingyk+1 = ay wherey is the leaf inT2

that corresponds tox in Duplicator’s winning strategy inGn(T1,T2). It is clear thatxi → yi



where 1≤ i ≤ k + 1 is also a partial isomorphism betweenA(T1) andA(T2). Therefore the
strategy described is a winning strategy for Duplicator on gameGn(A(T1),A(T2)). ut

Using the lemma above, one can now prove this:

Theorem 8. Fix n ∈ ω. There is an algorithm that runs in constant time and decides if
Duplicator wins the gameGn(T1,T2), whereT1,T2 ∈ Kh. The constant that bounds the

running time is(n + 1)...
(n+1)(n+1)

where the tower has heighth. ut

7 Boolean Algebras with Distinguished Ideals

A Boolean algebra (BA) with distinguished idealsis a structureA = (A;≤,0,1, I1, . . . , Is),
where (A;≤,0,1) forms a BA and eachI j is an ideal of the algebra (A;≤,0,1). The set of
atoms of A, denotedAt(A), is the set{a | ∀y(0 ≤ y ≤ a → y = 0 ∨ y = a)}. Since we
restrict ourselves to finite structures, the BA (A;≤,0,1) can be identified with the structure
(2XA;⊆, ∅,XA), whereXA = At(A) and 2XA is the collection of all subsets ofXA. Moreover, for
each idealI j there exists a setAj ⊂ At(A) such thatI j = 2A j . Hence the original structureA
can be identified with the structure: (2XA;⊆, ∅,XA,2A1, . . . , 2As). For each elementx ∈ At(A),
define thecharacteristic of x, ch(x), as a binary sequence (t1, t2, ..., ts) such that for each
1 ≤ i ≤ s, ti ∈ {0,1}, ti = 1 if x ∈ Ai andti = 0 otherwise. For each characteristicε ∈ {0,1}s
consider the setAε = {x ∈ At(A) | ch(x) = ε)}. This defines the idealIε in the Boolean
algebra (2XA;⊆, ∅,XA). Moreover, we can also identify this ideal with the Boolean algebra
(2Aε ;⊆, ∅,Aε). There are 2s pairwise distinct characteristics. Letε1, . . ., ε2s be the list of all
characters. We denote byA′ the following structure: (2X;⊆, ∅,X,2Aε1 , . . . , 2Aε2s ).

Lemma 12. LetA = (2XA;⊆, ∅,XA,2A1, . . . , 2As) be a Boolean algebra with distinguished
ideals

1. For any two distinct characteristicsε andδ we haveIε ∩ Iδ = {∅}.
2. For any elementa ∈ 2X there are elementsaε ∈ Iε such thata = ∪εaε.
3. The Boolean algebra(2XA;⊆, ∅,XA) is isomorphic to the Cartesian product of the Boolean

algebrasIε.
4. A andB are isomorphic if and only ifA′ andB′ are isomorphic. ut

The next lemma connects the structureA′ andA in terms of characterizing the winner of
the gameGn(A,B).

Lemma 13. Duplicator wins the gameGn+1(A,B) if and only if each of the following two
conditions are true:

1. For each characteristicε, |Aε | ≥ 2n if and only if |Bε | ≥ 2n.
2. For each characteristicε, if |Aε | < 2n then|Aε | = |Bε |.

Proof. Assume that for someε, we have|Aε | , |Bε | and |Bε | < 2n. Let us assume that
|Aε | ≥ 2n. The case when|Aε | < 2n is treated in a similar manner. We describe a winning
strategy for Spoiler. Spoiler starts by taking elementsa1, a2, . . . in Aε. For eachi ≤ n the



elementai is such that|At(ai)| ≥ 2n−i, whereAt(a) denotes the set of atoms belowa. The
elementsa1, a2, . . . are such that for eachi, eitherai ⊂ ai−1 or ai ∩ ai−1 = ∅. Consider thek
round play (a1,b1), . . . , (ak,bk) wherek < n. Let e< k be the last round for whichak ⊂ ae. If
no sucheexists, letae = 2Aε andbe = 2Bε . We have the following inductive assumptions.

– |At(ak)| ≥ 2n−k and|At(ae \ (ae+1 ∪ . . . ∪ ak))| ≥ 2n−k.
– Either |At(bk)| < 2n−k or |At(be \ (be+1 ∪ . . . ∪ bk))| < 2n−k.

There are two cases.

Case 1. Assume that|At(bk)| < 2n−k and |At(ak)| ≥ 2n−k. In this case Spoiler selectsak+1

such thatak+1 ⊂ ak, ak+1 , ∅, |At(ak+1)| ≥ 2n−k−1 and |At(ak \ ak+1)| ≥ 2n−k−1. Note that
Duplicator must choosebk+1 strictly below bk. Then either|At(bk+1)| < 2n−k−1 or |At(bk \
bk+1)| < 2n−k−1

Case 2. Assume that|At(bk)| ≥ 2n−k and|At(ak)| ≥ 2n−k. In this case, Spoiler selectsak+1

such thatak+1 ⊂ ae, ak+1 , ∅, ak+1∩(ae+1∪ . . .∪ak) = ∅, |At(ak+1)| ≥ 2n−k−1, and|At(ae\(ae+1∪
. . .∪ak+1))| ≥ 2n−k−1. Note that by definition ofe, |At(be)| < 2n−k and for eache+1 ≤ i ≤ k−1,
|At(bi)| ≥ 2n−i as otherwisebk would be belowbi. Hence|At(bk \ (be+1 ∪ . . . ∪ bk))| < 2n−k.
Duplicator must choosebk+1 strictly belowbe and disjoint withbe+1, . . . , bk. Therefore either
|At(bk+1)| < 2n−k−1 or |At(be) \ At(be+1 ∪ . . . ∪ bk+1)| < 2n−k−1.

After n rounds, by the inductive assumption, it is either|At(bn)| = 0 or |At(be\ (be+1∪ . . .∪
bn))| = 0. If the former, then Spoiler wins by selectingan+1 ⊂ At(an);otherwise, Spoiler wins
by selectingan+1 ⊂ ae \ (ae+1 ∪ . . . ∪ an).

Now we prove that the conditions stated in the lemma suffice Duplicator to win the (n +

1)-round gameGn+1(A,B). Let us assume that the players have produced ak-round play
(a1,b1), (a2,b2), ..., (ak,bk). Our inductive assumptions on thisk-round play are the following:

1. The mapai → bi is a partial isomorphism.
2. For eachai, 1 ≤ i ≤ k, let ai = ∪εaε be as stipulated in Lemma 12(2). For eachaε, let e

be the last round such thataε ⊆ ae, if there is no such round, then assumeae = At(Iε). Let
d be the last round such thatad ⊆ aε, if there is no such round, then assumead = ∅. Let
bi = ∪εbε. The conditions forbε are the following:
– |At(aε \ ad)| ≥ 2n−i if and only if |At(bε \ ad)| ≥ 2n−i; |At(ae \ aε)| ≥ 2n−i if and only if
|At(be \ bε)| ≥ 2n−i.

– If |At(aε \ ad)| < 2n−i then |At(bε \ ad)| = |At(aε \ ad)|; If |At(ae \ aε)| < 2n−i then
|At(be \ bε)| = |At(ae \ aε)|.

Assume that Spoiler selects an elementak+1 ∈ A. Duplicator responds to this move by
choosingbk+1 as follows. If ak+1 = ai then bk+1 = bi. Otherwise, supposeak+1 = ∪aε as
stipulated in Lemma 12(2). For eachaε, let d,ebe as described in the inductive assumptions.
We select eachbε by the following rules.

– If |At(aε \ad)| ≥ 2n−k−1 then selectbε such that|At(bε \ad)| ≥ 2n−k−1; If |At(ae\aε)| ≥ 2n−k−1

then|At(be \ bε)| ≥ 2n−k−1.
– If |At(aε \ ad)| < 2n−k−1 then selectbε such that|At(bε \ ad)| = |At(aε \ ad)|; If |At(ae \ aε)| <

2n−k−1 then|At(be \ bε)| = |At(ae \ aε)|.



Finally, Duplicator selectsbk+1 ∈ B such thatbk+1 = ∪εbε.
Note the inductive assumptions guarantee that Duplicator is able to make such a move. It

is clear that the inductive assumptions also hold on the (k+1)-round play (a1,b1), . . . , (ak+1,bk+1).
Hence, the strategy described must be a winning strategy due to the fact that Duplicator pre-
serves the inductive assumption (1) at each round. The lemma is proved. ut

For the next result, we represent the Boolean algebras by listing their atoms in 2s lists,
where thei th list lists all atoms with characteristicεi:

Theorem 9. Fix n ∈ ω. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gameGn+1(A,B) on BAsA andB with s distinguished ideals.
The constant that bounds the running time is2s · 2n. ut
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