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Abstract. In this paper we initiate the study of Ehrenfeucht-Fraissé games for some standard finite struc-
tures. Examples of such standard structures are equivalence relations, trees, unary relation structures, Boolean
algebras, and some of their natural expansions. The paper concerns the following question that we call
Ehrenfeucht-Fraissé problem. Giver w as a parameter, two relational structufand? from one of the

classes of structures mentioned above, hfigient is it to decide if Duplicator wins the-round EF game

Gn(A, B)? We provide algorithms for solving the Ehrenfeucht-Fraissé problem for the mentioned classes of
structures. The running times of all the algorithms are bounded by constants. We obtain the values of these
constants as functions of

1 Introduction

Ehrenfeucht-Fraissé (EF) games constitute an important tool in both finite and infinite model
theory. For example, in infinite model theory these games can be used to prove Scott Isomor-
phism Theorem showing that all countable structures are described (up to isomorphism) in
L., »-logic. In finite model theory these games and thefifedent versions are used for estab-
lishing expressibility results in the first order logic and its extensions. These results can be
found in standard books in finite and infinite model theory (e.g. [6], [11]) or relatively recent
papers (e.g. [2], [12]). In this paper all EF games are considered on finite structures.

Despite significant use of EF games in finite and infinite model theory there has not been,
with some exceptions, much work in addressifticeency of these games. M. Grohe studied
EF games with fixed number of pebbles and showed that the problem of deciding the winner
iIs complete for PTIME [5]. E. Pezzoili showed that deciding the winner of EF games is
PSPACE-complete [14]. In [9] P. Kolaitis and J. Panttaja prove that the following problem is
EXPTIME-complete: given a natural numbeand structuresA and8, does Duplicator win
the k pebble existential EF game oA and8? In [1] suficient conditions are provided for
Duplicator to win EF games. These conditions are then used to prove some inexpressibility
results, e.g reachability in undirected graphs is not in monadic NP. These results suggest that
developing tools and algorithms for finding winners of EF are of interest. We also point out
that there has recently been an interest in EF games to collapse results in database theory
[16]. In addition, we think that algorithms that solve EF games can be used in data matching
and data transformation problems in databases.

In this paper we initiate the study of EF games for some standard finite structures. Ex-
amples of such standard structures are equivalence relations, trees, unary relation structures,



Boolean algebras, and some of their natural expansions. The paper concerns the following
guestion that we call the Ehrenfeucht-Fraissé problem. Givew as a parameter, two rela-
tional structuresA and3, how dficient is it to decide if Duplicator wins theround EF game

Gn(A, B)? We provide algorithms for solving the Ehrenfeucht-Fraissé problem for the struc-
tures mentioned above. The running times of all the algorithms are bounded by constants. We
obtain the values of these constants as functioms of

By a structure we always mean a finite relational structure over a language without func-
tional symbols. LetA and 8 be structures and € w. EF game, denoted b$,(A, B), on
these two structures is played as follows. There are two players, Duplicator and Spoiler, both
provided with:A and 8. The game consists af rounds. Informally, Duplicator’s goal is
to show that these two structures are similar, while Spoiler needs to show the opposite. At
roundi, Spoiler selects structurd or 8, and then takes an element from the selected struc-
ture. Duplicator responds by selecting element from the other structure. Say, the players have
produced the following play consisting of pairs of elemeanisly,), . . ., (a,, b,), wherea, € A
andb; € Bfori = 1,...,n. Note that if Spoiler selected (or b;) then Duplicator selectel
(or &, respectively). Duplicator wins the play if the mappag— b;,i = 1,...,n, extended
by mapping the values of constant symbofsto c?, is a partial isomorphism betweefi
ands. Itis clear that ifA and8 are isomorphic then Duplicator wins the ga@®g A, 8) no
matter whan is. The opposite is not always true. However, for langeDuplicator wins the
gameG, (A, B) thenA and$B are isomorphic. Thus, solving the EF problem can be thought
as an approximation to the isomorphism problem.

One can do the following rough estimates for finding the winner of the gaxté, 8).
There are finitely many, up to logical equivalence, formuas. . ., ¢ of quantifier rankn
(see for example [11]). It is well known that Duplicator wiBg(A, B) if and only if for all
¢i (withi = 1,...,Kk) the structureA satisfiesy; if and only if 8 satisfiesg; [11]. Thus,
the question if Duplicator win&,(A, 8) can be solved in polynomial time. However, there
are two important issues here. The first issue concerns the nlntibar depends on; k is
approximately bounded by timerepeated exponentiations of 2. The second issue concerns the
degree of the polynomial for the running time that is bounded.Byhus, the questions arise
as to for which standard structures the valuk isffeasible as a function of and whether the
degree of the polynomial for the running time can be pushed down. As an example consider
the class of linear orders. It is well-known that Duplicator wiig.A, 8), whereA and 8
are linear orders, if and only if eith¢f| = |B| or both|A] > 2" and|B| > 2" (e.g. [11]). In
this example, the numbdéy roughly, equals to2 The degree of polynomial for the running
time is 0. Thus, whem is fixed the winner of the game can be found in constant time, and
the constant that bounds the time fs 2

A brief overview of this paper is as follows. The next section gives an elementary solution
to EF games in the case when the language contains unary predicates only. The third, fourth
and fifth sections are quite technical and devoted to solving EF games for equivalence struc-
tures and some of their extensions. Equivalence structures are natural models of university
or large company databases. For example, in a university database there coul®amée
Facultyand theSameDepartmemelations. The first relation stores all tuplesy() such that



x andy belong to the same faculty; similarly, the second relation stores all tuplesguch

thatu andv are in the same department. These relations are equivalence relations. Moreover,
the set-theoretic connection between these relations is that the refatioaDepartmens

a subset of th&ameFacultyelation. We call such structures embedded equivalence relation
structures. Section 6 reduces the question of deciding EF games for trees of a given height
to solving the EP games for embedded equivalence structures introduced in the previous sec-
tions. Finally, the main structures in the last section are Boolean algebras with distinguished
ideals.

Each of these sections provides an algorithm that decides EF gat(i@ds8), whereA
and$ are structures considered in the section. These algorithms onstant timesvith
n being a parameter. We also bound the value of the constants as a functioQlefrly,
the constants obtained depend on the representations of the structures. In each case, it will be
clear from the content how we represent our structures. As an example we state two results
of Sections 4 and 5. Section 4 is devoted to structures of the &g, Py, ..., Ps), whereE
is an equivalence relation ohandPq, ..., Ps are unary predicates. We call these structures
equivalence structures withcolors. The main result of Section 4 is the following:

Theorem 5Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gan@,(A, B) on equivalence structures withcolors. The
constant that bounds the running timen&+*.

Section 5 is devoted to the structures of typeK,, ..., E,), where eaclk; is an equiv-
alence relation o andE; C E, C ... C E;. These structures are called embedded equiva-
lence structures of height The main result of Section 5 is:

Theorem 7Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gan@,(A, 8) on embedded equivalence structures of height
h. The constant that bounds the running timéis- 1)~~(”+1) where the tower has height

2 Simple Example: Structures With Unary Predicates

This is an elementary section that gives a full solution for EF games in the case when the
language contains unary predicates only. Here is the main result of this section.

Theorem 1. Fix the languagd. = (P,..., Ps), where eactP; is a unary predicate symbol.
Letn € w. There exists an algorithm that runs in constant time and decides whether Duplica-
tor wins the gam&,, (A, B) on structuresA and B of the language. The constant that bounds
the running time i2° - n.

Proof. Let A = (A; Py, P, ..., Ps) andB = (B; Py, Po, ..., Pg) be structures of the language
given. For structureA = (A; P, Py, ..., Ps), we setPs; = ), = P.

Lemma 1. SupposeP,, P,, ..., Ps are pairwise disjoint. Then Duplicator wins,(A, B) if
and only if forall1 < i < s+ 1if [P} < nor |P?| < nthen|P? = |PP|. In particular, when
Duplicator wins it is the case that for all < i < s+ 1, |P4| > nif and only if|P| > n.



To prove the lemma suppose that there is il< k + 1 such thatP?| < n but|P#| # |PE].
Assume|PB| < |PA. Then Spoiler select$”| elements fromPA. This strategy is clearly a
winning strategy for Spoiler. For the other direction, assume that hypothesis of the lemma
holds. Duplicator has a winning strategy as follows. At rodndssume that the players have
produced the&-round play &, by), ..., (a, by) such that foreach X i < k, a € A /b, € B.

If Spoiler selects,; € A, then Duplicator responds by selectibg; € B as follows: If
a1 = & for somei thenb,,; = b,. Otherwise ifa., € Pf for some 1< j < k, then
b1 € ij so thatby,, ¢ {bs,...,b}. The case when Spoiler selects an element fBm
treated similarly. The strategy is clearly winning. O

Now assume that for a structurg, the unary predicateB,, P, ..., Ps are not necessar-
ily pairwise disjoint. For each elemenrte A, define thecharacteristic of x, ch(x), as a
binary sequencett,,...,ts) such that foreach ¥ i < s, tj € {0,1} if x € P; andt; = O
otherwise. There are®pairwise distinct characteristics, and we order them in lexicographic
order: chy, ..., chys. Construct the structur@’ = (A; Qu, ..., Q) such that for all 1< i < 25,

Qi = {xe A| ch(X) = ch}. The following is now an easy lemma.
Lemma 2. Duplicator winsGp(A, B) if and only if Duplicator winsG,(A’, 8'). O

We now representl andB by 28 lists, and the'™" list lists all elements with characteristic
ch. To solve the gam&,(A’, B’), the algorithm checks the conditions in Lemma 1 by reading
the lists. The process takes time bounded by2as required. O

3 Equivalence Structures

An equivalence structureis a structureA of the type A; E) whereE is an equivalence
relation onA. We list all the equivalence classes#@fasAy, ..., A such thatAj| < |A4| for
all 1 <i < k. Letgx be the number of equivalent classesAnfor eacht < n, let g be the
number of equivalence classes#hwith sizet. Finally, letqZ; be the number of equivalence
classes irA of size at least. For an equivalence structufewe have similar notations &,
B,, ... to denote its equivalence classes, and the associated numbefs ando?..

Lemma 3. If Duplicator wins the gam&, (A, B) on equivalence structured and B, then
the following must be true:

1. If q4 < norgg < ntheng4 = gg; and
2. g4 > nifand only ifgg > n. O

In our analysis below, by the above lemma, we always assume|thatgg or gz > n
if and only if gg > n. We need the following notation for the next lemma and definition. For
t < n, letq = min{gZ, g%}. Let A; and B, be equivalence structures obtained by taking out
exactlyqg' equivalence classes of sizet from A andB respectively. We also set- g to be
0 in caseq' > n; and otherwisa — ' has its natural meaning.

Lemma 4. 1. Assume that there ista< n such thatg?® # ¢ andn — g > t. Then Spoiler
wins the gam&, (A, B).



2. Assume that there ista< n such thain—g' > 0 and one of the structured; or 8; has an
equivalence class of sizen — ¢ and the other structure does not. Then Spoiler wins the
gameG, (A, B)

Proof. We prove the first part of the lemma. The second part is proved similarly. Assume,
without loss of generality, that® > g® andn - ¢® > t. Spoiler’s strategy is the following.
First, select elements, . . ., ags from distinct equivalence classes of staa A. Next, select
t distinct elements in the equivalence class of simeA. This leads Spoiler to win. O

Definition 1. 1. We say thaG(A, B) has small disparityif there is at < n such that either
g’ # g andn-q' > t.

2. We say thaG(A, B) has large disparity if there exists & < n such thatn — ¢* > 0 and
one of the structuresd; or B; has an equivalence class of sizen — ¢ and the other
structure does not.

Lemma 5. Duplicator wins the gam&,(A, B) if and only if the gam&,, (A, B) has neither
small nor large disparity.

Proof. The previous lemma proves one direction. For the other, we assume that neither
small nor large disparity occurs in the game. We describe a winning strategy for Duplicator.

Let us a assume that the players have produdecband play &, b,), (az, b), ..., (&, bx).
In casek = 0, we are at the start of the gar@g(A, B). Our inductive assumptions on this
k-round play are the following:

1. E(a;, ) istrue inA if and only if E(b;, b;) is true in8B, and the majg; — by; is one-to-one.

2. For allg, |[[a]] = n—i ifand only if [[b]] > n—i, where K] denotes the equivalence class
of X.

3. Forg if [[a]| < n—ithen|[a]| = |[b]l.

4. LetA’ andB’ be the equivalence structures obtained by removing the equivalence classes
[ai], ..., [a] from A and the equivalence classés][ .. ., [bk] from B, respectively. We
assume tha#’ and#’ satisfy the following conditions:

(&) In gameG, «(A’, B’) no small disparity occurs.
(b) In gameG,_(A’, B’) no large disparity occurs.

Assume that Spoiler seledg,; € A. Duplicator responds by choosibg, ; as follows. If
a1 = a thenby,; = b;. Otherwise, ifE(a;, ax,1) is true inA then Duplicator chooses a new
bk.1 such thate(b;, by,,) is true inB. Assumeay,; is not equivalent to any of the elements
ai,...,a. If |[ak1]l = n—kthen Duplicator choosds,; such thaty,; is not equivalent to
any of the elements,, ..., bs and|[bk,1]| = n — k. Duplicator can select such an element as
otherwise large disparity would occur in the gameldf,1]| < n—k then Duplicator chooses
bk,1 such that[by,1]| = |[ax.1]| andby,; is not equivalent to any of the elemertis. . ., by.
The case when Spoiler selects an element fBoimtreated similarly.

Now we show that thek(+ 1)-round play &, b,), (&, by), ..., (&, bx), (a1, bk, 1) satisfies
the inductive assumptions. The inductive assumptions (1), (2), and (3) can easily be checked



to be preserved. To show that the assumption (4) is preserved, consider the equivalence struc-
turesA” andB” obtained by removing the equivalence classgk [ . ., [&], [&k:1] from A

and the equivalence classeg][ . . ., [bk], [bk:1] from B, respectively. In gam&,,_y_1 (A", B”)

small disparity does not occur as otherwise the gémg(A’, B’) would have small disparity.

Thus, assumption &} is also preserved. Similarly, @, «_1(A"”, B”) had large disparity then

the gameG, «(A’, B’) would also have large disparity contradicting the inductive assump-
tion. Hence, the strategy described must be a winning strategy due to the fact that Duplicator
preserves the inductive assumption (1) at each round. O

For the next theorem, we represent each equivalence struétarel 8 in two lists. For
example, the first list for the structus lists all equivalence classes@fin increasing order;
the second listis™, a;', o}, @', a5, . ... The lemmas above give us the following:

Theorem 2. Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gant&,(A, 8) on equivalence structured = (A; E) and B =
(B; E). The constant that bounds the running time.is O

We can extend the above theorem by defining the following structures:

Definition 2. A homogeneous equivalence structures (A; E, Py, ..., Ps) such that

— (A; E) is an equivalence structure; and
— EachP; is a homogeneous unary relation &imeaning that for alk,y € Aif E(x,y) then
x € P;if and only ify € P;.

For a homogeneous equivalence structdrelefine the characteristati(x) of an element
x € Aas in Section 2. Represefttas a disjoint union of equivalence structurgs ..., Ays,
whereA, consists of elements with characteristicThe above theorem is thus extended to:

Theorem 3. There exists an algorithm that runs in constant time and decides whether Du-
plicator wins the gamés, (A, B) on homogeneous equivalence structus@sand 8. The
constant that bounds the running time2s n. O

4 Equivalence Structures With Colors

In this section structuregl are of the form A; E, Py, ..., Ps), whereE is an equivalence rela-
tion onAandP;, ..., Psare unary predicates gh We call thesequivalence structures with
scolors. We start with the case when= 1. The case fos > 2 will be explained later.

Let A = (A; E, P) be a equivalence structure with one color. SayA is colored if P(x)
is true; otherwisex is non-colored An equivalence clasX hastype tp(X) = (i, j), if the
number of colored elements #fis i, non-colored elements is thus,i + j = |X|.

Definition 3. Given two typegi, j) and (i’, j’) respectively. We say thét j) is colored n-
equivalentto (i’, j’), denoted byi, j) =¢ (i’, j’), if the following holds.

1. If i < ntheni’ =i; otherwisei’ > n.



2. If j <n-1thenj = j; otherwisej’ > n— 1.

We say thati, j) is non-colored n-equivalent to (i’, j’), denoted by(i, j) =\ (i’, j), if the
following holds.

1. If j < nthenj’ = j; otherwisej’ > n.
2. If i < n—1theni’ =i; otherwisei’ > n - 1.

For X € A, we use K;E [ X,P | X) to denote the equivalence structure obtained by
restrictingE andP on X. Note that given two equivalence classéandY of types {, j) and
(i’, ) respectively, if {, j) is colored (non-colored)-equivalent to i(, j’), then Duplicator
wins then-round game played on structure§ € | X,P [ X)and (,E [ Y,P | Y), given
the fact that Spoiler chooses a colored (non-colored) element in the first round.

Lemma 6. If either (", ') =} (i, j) or (i, ") =) (i, j), then(i’, j') =7, (i, j) and(i", |') =,
(i, J). O
For an equivalence structum® = (A; E, P), we need the following notations:

— For type (, j) andk > 1, SetC(fifj),k be the se{X | X is an equivalence class oA and
'z_p(_))() = (i, ). SetN({‘j)’k be the setX | X is an equivalence class &1 andtp(X) =
L))
; AC _ | ~A AN _ A
— Fortype (, j) andkcz 1, Sei[q(i’j)*"c_ |C;(iéj)’k|, ansteq(i’j)’k = lN(ii\P’kl-BN
— ForAandB, setqg | = min(q;y e s andaly, = mln{g(’if’j)’k, Al
— SetA((i, j), k) be the structure obtained from by removmgqﬁ ik equivalence classes

inCAh. .
(i,)).k
— SetAN((i, j), k) be the structure obtained fromi by removingqg{

in N7
Observe the following. If Spoiler selects a colored element from an equivalencexclass

in A, and Duplicator responds by selecting a colored element from an equivalence class

such thattp(Y) =S tp(X), there is no point for Spoiler to play insid¢ because this will

guarantee a win for Duplicator. Conversely, suppose Spoiler selects a colored element from

an equivalence class in A, and there is no equivalence classBrwhose type is colored

n-equivalent tap(X). Then Spoiler has a winning strategy by playing insidandY.

ik €quivalence classes

Definition 4. Consider the gamé&,(A, B) played on equivalence structures with one color.
We say that @olored disparity occurs if there exists a tyde j) andn > k > 0 such that the
following holds:

1. k=qo5, ..
(i,j),n—k
2. In one ofA°((i, j),n — k) and B°((i, j), n — k), there is an equivalence class whose type
is colored(n — k)-equivalent to(i, j), and no such equivalence class exists in the other
structure.

We say that amon-colored disparity occurs if there exists a tyde j) andn > k > 0 such
that the following holds:



1. k=g, ..
(i.j).n—k
2. In one of AN((i, j),n - k) and BN((i, j), n— k), there is an equivalence class whose type is
non-colored(n — k)-equivalent td(i, j), and no such equivalence class exists in the other
structure.

Lemma 7. SupposeA and B are two equivalence structures with one color. Duplicator wins
the gameG, (A, B) if and only if neither colored disparity nor non-colored disparity occurs
in the game.

Proof. If either colored or non-colored disparity occurs in the game, then itis not too hard
to see that Spoiler wins the game. Suppose that neither colored disparity nor non-colored
disparity occurs in the gan®,(A, B), we describe a strategy for Duplicator. Let us assume
that the players have producell-eound play @1, b1), (a2, by), ..., (&, k). Let (i, ji) and ([, j;)
be the types of andby,respectively with 1< | < k. Our inductive assumptions on ths
round play are the following:

1. Forany 1< | <k, a is a colored element if and onlyli is a colored element.

2. Forany 1< |, m< k, E(a, an) if and only if E(by, by).

3. Forany 1< | <k, (i, ji) =5, (if, j;) and {, ji) =N, (0}, §)).

4. Let A" and B’ be the equivalence structures obtained by removing equivalence classes
[ad, ....[a] from A and 4], ..., [by] from B, respectively. We assume in gag « nei-
ther colored disparity nor non-colored disparity occurs.

Assume that Spoiler selects an elemant € A. Duplicator responds to this move by
choosingby,; as follows. Ifa,,; = a thenby,; = b. Otherwise, ifE(ax,1, &) is true inA,
then Duplicator chooses a ndw.; such thate(by,1, b)) andag,; is a colored element if and
only if by, is a colored element. By (3) of the inductive assumption, Duplicator can always
select such an elemet, ;.

Assumeay,; is not equivalent to any of the elememt ..., ac. Let X be the equivalence
class ofay,; in A. If a1 is a colored element, then Duplicator chooses a colored element
b1 from an equivalence clasé of 8 such thattp(X) =&, tp(Y). If a4 is a non-colored
element, then Duplicator chooses a non-coldigd from an equivalence claséof 8 such
thattp(X) =N, tp(Y). Note that such an equivalence classnust exist in8 as otherwise
either colored or non-colored disparity would occuiGp x(A’, B’) as witnessed byp(X)
and 0. The case when Spoiler selects an element Basireated in a similar manner.

On the play &, b,), ..., (&, by), (a1, bks1), the inductive assumption (1) and (2) can be
easily checked to hold. To prove that inductive assumption (3) holdsijlet j¢.1) and
(iky 1> Jpeq) DE the type ofdy.1] and [by.1] respectively. The strategy ensures ondQfi ( jx.1) zﬁ_k
(i,k+1’ j,k+1) and (k+l’ jk+l) Erl:l_k (i,k+1’ j,k+1) is true, and by Lemma 6i’k(~l’ jk+1) Eﬁ_k_l (i’k+1a jf<+1)
and (i1, jie1) =N 1 (f.1s Jr,p)- Itis Nnow routine to show, by using Lemma 6, that inductive
assumption (4) is preserved.

Thus, the strategy is winning for Duplicator by inductive assumptions (1) and (2)c

For the next theorem we represent colored equivalence structureghree lists. The
first one lists equivalence classes#fin increasing order of their types; the second and the
third list the sequence{sr(’i‘fﬁk}og, iken and{q(’i‘f’j')“’k}og, iken respectively:



Theorem 4. Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gant&,(A, B) on equivalence structures with one colérand
B. The constant that bounds the running timeds O

Fix s > 1, let A be an equivalence structure wisimany colors. For each elemexof
A, define thecharacteristic of x as defined in the previous sections. There &rdi&inct
characteristics. Order them in lexicographic oraé; ..., chys. Construct the structur@l’ =
(AE, Qq, ..., Q) such thatforall I<i < 25 Q; = {x € A| ch(X) = ch}. Clearly, for distinct
characteristicgh; andch; we haveQ; N Q; = 0. Moreover,A and 8 are isomorphic if and
only if A’ and®’ are isomorphic.

For an equivalence clas§ we define thaype of X, tp(X), as a sequence(io, ..., i)
such that inX the number of element with characteristig isi; forall 1 < j < 25,

Definition 5. Letk = (ig,....is) and 4 = (if, ..., i%) be two types of equivalence classes. For
1< j <25 we say thak is (j, n)-equivalentto 1, denoted by =} 1, if the following holds.

1. If ij < ntheni} = i}, otherwise > n; and
2. Forall 1 < | < 2°wherel # j, if iy < n— 1theni/ =i}, otherwisd| > n- 1.

Let X andY be equivalence classes of typemnda respectively. Ik =l A, then Duplicator
wins then-round EF game played on structure§ E [ X,P; [ X,..,Ps [ X)and (Y;E |
Y,P1 [Y,...,Ps ['Y), given that Spoiler selects an elemerd X with characteristich;.
Fortyped,1< j <2°andk > 1, we s.et:fl’(j be the setX | X is an equivalence class gt
andtp(X) zf( A}. Similar to the case of equivalence structures with one color, one introduces
notationsay, g}, andA} (4, k).

Definition 6. Consider the gam&, (A, B) played on equivalence structures wafcolors.
For 1 < j < 2% we say that aisparity occurs with respect to ch; if there exists a type
A = (ig,...,1s) andn > k > 0 such that the following holds:

1. k=g, ,
2. In one ofA!(1, n — K), there is an equivalence class whose typ@,is — k)-equivalent to
4, and no such equivalence class exists in the other structure.

The proof of the following are similar to Lemma 7 and Theorem 4 :

Lemma 8. Let A and 8 be equivalence structures withcolors. Duplicator wins the game
G (A, 8) if and only if no disparity occurs with respecteb; for any1 < j < 25, O

Theorem 5. Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gan@,(A, ) on equivalence structures withcolors. The
constant that bounds the running timenis*L. O



5 Embedded Equivalence Structures

An embedded equivalence structure of heighis a structureA = (A; Ey, E,, ..., Ey) such
that eachE;, 1 <i < h, is an equivalence relation, afgl € E; for i < j. In this section we
give a full solution for EF played on embedded equivalence structures of HeigVe start
with the case wheh = 2. The case foh > 2 will be explained later.

LetA = (A; E1, E2) be an embedded equivalence structure of height 2. We say tkat an
equivalence clasX has typap(X) = (qu, . .., @) if the largestE; -equivalence class contained
in X has sizet and for all 1< i < t, g is the number oE;-equivalence classes of size
contained inX. Thus,Y.!_,(q x i) = |X|. For two typesr = (qy, ..., q,) andr = (N
we sayo =7if y =t andg =g forall 1 <i <t;.

For X C A, we use K; E; | X) to denote the equivalence structure obtained by restricting
E; on X. Given twoE,-equivalence classes andY of typeso andt respectively, we say
thato is n-equivalent tor, denoted byr =, 7, if Duplicator wins then-round game played
on structuresX; E; [ X) and (Y; E; [ Y). Note that ifo =, 7, theno =; rfor alli < n.

We need the following notations:

— For typeo andi > 1, setCZfi be the se{X | X is an E,-equivalence class qff and
tp(X) = o}

— Setq; = [CTil.

— For embedded equivalence structifiend B, setq”™ = min{qﬁfi, q{f’i}

— SetA(o, 1) be the embedded equivalence structure of height 2 obtained ftd re-
movingq”™ equivalence classes whose typesiagquivalent tar.

Observe in round of the gameG,(A, B), if Spoiler selects an element from &-
equivalence clasX in A, and Duplicator responds by selecting another element from an
E,-equivalence clas¥ in 8 such thatp(Y) =_x tp(X), there is no point for Spoiler to keep
playing insideX because this will guarantee a win for Duplicator. Intuitive§(o, n — k)
contains all theE,-equivalence classes for Spoiler to choose elements fromggftef many
E,-equivalence classes whose types are k)-equivalent tar have been chosen.

Definition 7. Consider the gam&,(A, B) played on embedded equivalence structures of
height 2. We say that disparity occurs if there exists a type andn > k > 0 such that the
following holds.

1. k=g
2. In one of A(c, n — k) and B(co, n — k), there is anE,-equivalence class whose type is
(n— k)-equivalent tar, and no suclE;-equivalence class exists in the other structure.

Lemma 9. SupposeA and 8 are two embedded equivalence structures of height 2. Dupli-
cator wins the gam&,,(A, B) if and only if no disparity occurs.

Proof. Suppose disparity occurs @ (A, B) withessed by andk, in A(c, n - K) there is an
E,-equivalence class whose type iis{k)-equivalent tar, and no suclk,-equivalence class
exists inB(c-, n — k). Using these, it is not hard to prove that Spoiler wins the game.



Suppose that no disparity occurs in the ga@éeA, 8), we describe a strategy for Du-
plicator. Let us assume that the players have produdedoand play &, b,), (a;, b,), ...,
(ax, by). Let oy andt; be the types o andh;, respectively with 1< i < k. Our inductive
assumptions on thisround play are the following:

1. The mapa; — by is partial isomorphism.

2. Foralll<i <k, o= 7.

3. Let A" and B’ be the equivalence structures obtained by removing&hequivalence
classesd]g,,. - .,[&]g, from A and the equivalence classés]E,, . .., [bk]g, from B,
respectively. We assume in gag ((A’, B’) no disparity occurs.

Assume that Spoiler selects an elemant € A. The case when Spoiler selects an el-
ement fromB is treated as below. Duplicator responds to this move by chodsingas
follows. If a1 = & thenby,; = bj. Otherwise, IfE;(a, ak,1) is true inA, then Duplicator
chooses a newy,; such thate;(b;, by,1). If Ex(a;, a.1) is true inA and there is ng such
that E;(a;, ax.1), then Duplicator chooses a nédw,, such thatE,(b;, by,1) and there is ng
such thatE;(b;, by.1). By (2) of the inductive assumption Duplicator can always select such
an elemenby,, by following its winning strategies.

Assumeay, ; is not equivalent to any of the elemeats..., ax. Let X be theE,-equivalence
class inA that containsag, ;. Duplicator select$y,; from an E,-equivalence clas¥ in 8
such thatp(X) =,_« tp(Y). Duplicator is able to select such an element as otherwise disparity
would occur as witnessed by the type>oaind 0.

The inductive assumption (1) and (2) can be easily checked to hold on thaplby){. . .,

(ax, bk), (8ks 1, bks1). To show that the assumption (3) is preserved, consider the strugitires
andB” obtained by removingdle,, . . ., [a]e,, [A+1]le, @and bale,, - - -, [b] e, [Dki1]e, from
A andB, respectively. Suppose disparity occurSing_1(A”, B”) as withessed by some type
T andt < n— k- 1. There are two cases.tip([ax;1]) =nkt-1 7, thentp([bk;1]) =nkt1 7,
and disparity must occur i6,,_«(A’, B’) as witnessed by andt + 1. If tp([ak:1]) #n-kt-1 T,
thentp([bx.1]) #n k1 7, and disparity must occur G, «(A’, B’) as withessed by andt,
contradicting our assumption. Hence the strategy is a winning strategy. O

Theorem 6. Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gan@,(A, 8) on embedded equivalence structures of height
2. The constant that bounds the running timénis- 1)".

Proof. We represent structutd = (A; Ey, E;) by a tree and a list. The tree has height 3.
The leaves of the tree are all elementinTwo leavesx, y have the same parentH (X, ),
andx, y have the same ancestor at level E}{x, y). Intuitively, we can view the root of tree
asA, the internal nodes at level 1 representtgHequivalence classes @ and the children
of eachE,-equivalence clasX at level 2 are alE;-equivalence classes containeddnWe
further require that representationskEyf and E;-equivalence classes are put in left-to-right
order according to their cardinalities.

The listisq? ,,....q7 ;... 47 - - - O n Where eachr; is a type ofEx-equivalence
class, ancqﬁf, ; is as defined above. an(lﬁf’ ; has a value between 0 andand if it is greater



thann, we set it ton. The algorithm checks whether disparity occur€Gg(A, B) by ex-
amining the list. There can be at most« 1)" pairwise nona-equivalent types. Therefore,
checking disparity requires a time bounded by-(1)". O

For the case wherl and$8 are two embedded equivalence structures of hdighthere
h > 2, we give a similar definition of the type of df,-equivalence class. We can then
describe the winning conditions for Spoiler and Duplicator in a similar way.

Let A be an embedded equivalence structure of heighthereh > 2. For anEg-
equivalence clasX, we recursively defingép(X), the type ofX. Settp(X) be @, --,0)
that satisfies the following property.

1. Eacho is the type of ark;,_;-equivalence class.

2. oy is the maximum type in lexicographic order among all typesEgf;-equivalence
classes contained iX.

3. The listoy, ..., oy contains all possible types &i,_;-equivalence classes less or equal to
ot ordered lexicographically.

4. Forall1<i <t, q,, is the number of alE;,_;-equivalence classes containedXinvhose
type areo.

We note that these types allow us to solve the isomorphism problem for embedded equiv-
alence structures of heightin linear time on the size of the structures.

Letk = (Qyys .- Qo) @NAA = (Q,,, ..., ;) b€ types of twaEs-equivalence classes and
Y, respectively. We say = 1if s=tandq, = ¢, foralll <i < s We sayk =, 1if the
structuresX;E; ' X,...,En.s P X)and (Y;EL 1 Y,...,En 1 YY) aren-equivalent.

Similarly to the case of embedded equivalence structures of height 2, we re-introduce the
notionsCZ,, g7, g™, A(o, i) and disparity in the gam@,(A, B).

o

Lemma 10. SupposeA and B are two embedded equivalence structures of heighihere
h > 2. Duplicator wins the gam&,(A, B) if and only if no disparity occurs. O

The number of pairwise non-equivalent types oE,-equivalence classes is at mosty
1)-""" where the tower ofr(+ 1) has heighh. Thus, by the lemma above, we have:

Theorem 7. Fix n € w. There is an algorithm that runs in constant time and decides if
Duplicator wins the gam&,,(A, 8) on embedded equivalence structugsind 8 of height
h. The constant that bounds the running timénis 1)~ where the tower has height O

6 Trees

In this section we are interestedtiees these are finite structures of the type= (T, <),
where the relatiort is a partial order o such that/™ has the greatest element (the root),
and the sety | x < y} for any givenx € T is a linearly ordered set under. We call an
element aleaf of the tree7 if it is a minimal element; otherwise we call it anternal
node A path in 7 is a maximal linearly order subset @ The length of a given path is
the number of elements in the path. Theght of 7 is the length of the largest path f.



We say that thdevel of a nodex € T is j if the distance fronx to the root isj. We fix
numberh > 2, and restrict ourselves to the cla§gof all trees of height at mos$t Deciding
Ehrenfeucht-Fraissé games on trees friican be done directly by using the techniques
from the previous section. Instead, we reduce the problem of deciding Ehrenfeucht-Fraissé
games on trees i, to one for embedded equivalence structures of hdighl.

We transform trees from the clag§, into the class of embedded equivalence structures
of heighth in the following manner. Le7 be a tree ink;,. We now define an embedded
equivalence structur#(7") as follows. The domail of A(T) isnowT U {ay | Xis a leaf of
7°}. We define the equivalence relatign, 1 < i < h, on the domain as follows. The relation
E, is the minimal equivalence relation that contajfis ay) | X is a leaf of77}. Let xq, ..., Xs
be all elements of at levelh—i + 1, where 1< i < h. Let77, ..., 75 be the subtrees of
7 whose roots arey, ..., Xs , respectively. SeE; be the minimal equivalence relation that
containsE;_; U T2 U ... U T2 Itis clear thatE; C Ej, for all 1 < i < h. Thus we have the
embedded equivalence structufi€T) = (D; E, ..., Ep).

Lemma 11. For trees7; and 7, , 71 = 7, if and only if A(77) = A(T>). In particular,
Duplicator winsG, (771, 7>) if and only if Duplicator wingG,(A(7 1), A(T>»)).

Proof. Suppose/ is a tree in the clask,. Take an element € T. By construction of
A(T), the following statements are true.

— xisaleafin7 if and only if {y | E1(X, ¥)}| = 2 in A(T).
— xis the root of7” if and only if |{y | En(X, ¥)}| = 1 in A(T).

We define thdevel of x in A(7") as follows. Ifx is the root of7", the level ofx is 0.
Otherwise, ifx is an internal node, the level ofin A(7") is the largest such that({y |
Enaa (XY} > 1. If xis a leaf, we define the level ofin A(7") to be the largedt+ 1 such
that there is an internal nogesuch that;,_,1(X, y).

By definition, for allx € T, the level ofx in 7 is the level ofx in A(7). Forx,y € T,
x <yin 7 if and only inA(7") x has levelsandy has levek such thats > t andEy, ¢,1(X, Y).
Thus, for two trees fronkKj, 7; and7,, and a mappindg : T; — T,, f is an isomorphism
betweer7; and7 if and only if f is an isomorphism betweefi(71) andA(7>).

To prove the second part of the lemma, one direction is clear. For the other direction,
assume that there is a winning strategy for Duplicator on the ga(i€;, 7). We describe
a strategy for Duplicator on the gani®(A(71), A(7T2)) where A(71) = (Dgy; Eg, ..., Ep)
andA(7>2) = (Dg; Ey, ..., Ep). Let us assume that the players have produckdgaund play
(X1, Y1), (X2, ¥2), . . ., (X, Yk)- Assume on thig-round play the mapg; — v, is a partial isomor-
phism betweetA(77) andA(7>).

Assume that Spoiler selects an elemgnt € D;. Duplicator responds to this move by
choosingxy,; as follows. Ifx,1 = X thenyk,; = y;. Otherwise, ifx,; € Ty, then Duplicator
selects an element, 1 € T, according to its winning strategy @y (771, 7>). If X1 = ax for
some leafx € 77. Then Duplicator responds by selectng; = a, wherey is the leaf inT,
that corresponds tw in Duplicator’s winning strategy i, (71, 72). It is clear thatg — y;



where 1< i < k+ 1is also a partial isomorphism betwegt{7) andA(7>). Therefore the
strategy described is a winning strategy for Duplicator on g&{eA(7 1), A(7>2)). O

Using the lemma above, one can now prove this:

Theorem 8. Fix n € w. There is an algorithm that runs in constant time and decides if
Duplicator wins the gamé&,(71,72), where71,7, € K. The constant that bounds the

. . . n+1)N+1) .
running time is(n + 1)-"""" where the tower has height O

7 Boolean Algebras with Distinguished Ideals

A Boolean algebra (BA) with distinguished idealss a structureA = (A; <,0,1,14,..., 1),
where @; <,0,1) forms a BA and each; is an ideal of the algebraA(<,0,1). The set of
atoms of A, denotedAt(A), is the sefa | Yy(0 <y <a — y = 0Vvy = a)}. Since we
restrict ourselves to finite structures, the BA £, 0, 1) can be identified with the structure
(2%; C, 0, Xp), whereX, = At(A) and 2 is the collection of all subsets &fy. Moreover, for
each ideal ; there exists a sei; c At(A) such that; = 2%. Hence the original structurd
can be identified with the structure:X2c, 0, Xa, 2, ..., 2%). For each element € At(A),
define thecharacteristic of x, ch(x), as a binary sequenceg,(,, ...,ts) such that for each
1<i<stef{01},t =1if xe A andt; = 0 otherwise. For each characteristie {0, 1}°
consider the sef, = {x € At(A) | ch(x) = ¢)}. This defines the idedl in the Boolean
algebra (2»; ¢, 0, X,). Moreover, we can also identify this ideal with the Boolean algebra
(2%;c,0,A,). There are 2pairwise distinct characteristics. Let, . . ., es be the list of all
characters. We denote b¥ the following structure: (2, C,0, X, 2%, ..., 2%s).

Lemma 12. Let A = (2%;C, 0, Xa, 2%,...,2%) be a Boolean algebra with distinguished
ideals

1. For any two distinct characteristicsands we havd, N |5 = {0}.

2. For any elemena € 2% there are elemenia < |, such thata = U.a..

3. The Boolean algebré2*s; c, 0, X,) is isomorphic to the Cartesian product of the Boolean
algebrasil..

4. A andB are isomorphic if and only #A4” and 8’ are isomorphic. O

The next lemma connects the structuteandA in terms of characterizing the winner of
the games, (A, B).

Lemma 13. Duplicator wins the gamé&,,,1(A, B) if and only if each of the following two
conditions are true:

1. For each characteristie, |A.| > 2" if and only if|B,| > 2".
2. For each characteristie, if |A.| < 2" then|A.] = |B|.

Proof. Assume that for some, we havelA.| # |B and|B,| < 2". Let us assume that
Al > 2". The case wherA,| < 2" is treated in a similar manner. We describe a winning
strategy for Spoiler. Spoiler starts by taking elememisa,, ... in A.. For eachi < nthe



elementa; is such thatAt(a)| > 2", whereAt(a) denotes the set of atoms bel@avThe
elementsy, ay, ... are such that for eadh eithera, c a;_; ora, N a;_; = 0. Consider thek
round play &;,b,), ..., (a, bk) wherek < n. Lete < k be the last round for whichy C ae. If
no suche exists, leta, = 2 andb, = 28. We have the following inductive assumptions.

— |At(a)| > 2"k and|At(ae \ (Ae;1 U ... U &) = 2",
_ Either|At(by)] < 2" or [At(be \ (bes1 U . ... U b))l < 27,

There are two cases.

Case 1 Assume thatAt(by)| < 2" and|At(a,)| > 2. In this case Spoiler selecig, ;
such thata,; C ay, au1 # 0, |At(aeq) > 2751 and|At(a, \ a.1)l > 2"%1. Note that
Duplicator must choosby,; strictly belowb,. Then eitherAt(b..1)| < 2" %1 or |At(by \
Dis1)| < 20K

Case 2 Assume thatAt(b,)| > 2" and|At(ay)| > 2" . In this case, Spoiler selecg,
such thaby,; C @, a1 # 0, 81N (Ber1U. .. UEY) = 0, |Al(a1)| > 2", and|At(ae \ (Be1 U
...Ua))l > 2"%1 Note that by definition of, |At(be)| < 2" and for eacle+1 <i < k-1,
|At(by)| > 2" as otherwisdy, would be belowb;. HencelAt(by \ (De,1 U ... U b)) < 2K,
Duplicator must chooshky,; strictly belowbe and disjoint withbe, 1, . .., bx. Therefore either
|At(D,1)] < 27K or |At(be) \ At(De1 U ... U b,q)| < 2KL,

After n rounds, by the inductive assumption, it is eith&xb,)| = 0 or|At(be \ (be;1 U. ..U
bn))| = 0. If the former, then Spoiler wins by selectiag, c At(a,);otherwise, Spoiler wins
by selectingan,1 C @ \ (es1 U ... U ay).

Now we prove that the conditions stated in the lemm@ i Duplicator to win ther(+
1)-round gameG, (A, B). Let us assume that the players have produc&e@und play
(ag, by), (a2, by), ..., (&, bx). Our inductive assumptions on thigound play are the following:

1. The mapa; — by is a partial isomorphism.
2. Foreacha, 1 <i <Kk letg = U.a, be as stipulated in Lemma 12(2). For eachlete
be the last round such that C a, if there is no such round, then assuae= At(l,). Let
d be the last round such thag C a., if there is no such round, then assume= 0. Let
b = U.b,.. The conditions fob, are the following:
— |At(a. \ ag)l = 2" if and only if |At(b, \ ag)] > 2"'; |At(ae \ )| > 2™ if and only if
|At(be \ be)| > 2™
— If JAt(a \ ag)l < 2™ then|At(b, \ ag)l = |At(a \ ag)l; If |At(a \ &)l < 2 then
|At(be \ b)l = |At(@e \ &)l

Assume that Spoiler selects an elemant € A. Duplicator responds to this move by
choosingby,; as follows. Ifay,; = & thenby,; = b. Otherwise, supposa.; = Ua. as
stipulated in Lemma 12(2). For eaah letd, e be as described in the inductive assumptions.
We select each, by the following rules.

— If |At(a. \ ag)| > 2% then selecb, such thatAt(b, \ ag)| > 2"%1; If |At(ae\ a.)| > 2"+
then|At(be \ b,)| > 21,

— If |At(a, \ ag)| < 2" then selecb, such thatAt(b, \ ag)| = |At(a. \ ag)l; If |At(ae \ a)| <
271 then|At(be \ be)| = |At(ac \ a)l.



Finally, Duplicator selectby,; € B such thaty,; = U.b..

Note the inductive assumptions guarantee that Duplicator is able to make such a move. It
is clear that the inductive assumptions also hold onkké&)-round play &;, b,), . . ., (ak: 1, bks1)-
Hence, the strategy described must be a winning strategy due to the fact that Duplicator pre-
serves the inductive assumption (1) at each round. The lemma is proved. O

For the next result, we represent the Boolean algebras by listing their atoridists 2
where thda™ list lists all atoms with characteristic:

Theorem 9. Fix n € w. There exists an algorithm that runs in constant time and decides
whether Duplicator wins the gant&,, ;(A, 8) on BAsA and B with s distinguished ideals.
The constant that bounds the running tim@3is 2". O
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