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Abstract

The dynamic partial sorting problem asks for an algorithm that maintains

lists of numbers under the link, cut and change value operations, and queries

the sorted sequence of the k least numbers in one of the lists. We examine

naive solutions to the problem and demonstrate why they are not adequate.

Then, we solve the problem in O(k · log(n)) time for queries and O(log(n))

time for updates using the tournament tree data structure, where n is the

number of elements in the lists. We then introduce a layered tournament tree

data structure and solve the same problem in O(log∗ϕ(n) · k · log(k)) time for

queries and O(log2(n)) for updates, where ϕ is the golden ratio and log∗ϕ(n) is

the iterated logarithmic function with base ϕ. We then perform experiments

to test the performance of both structures, and discover that the tournament

tree has better practical performance than the layered tournament tree. We

discuss the probable causes of this. Lastly, we suggest further work that can

be undertaken in this area.
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Chapter 1

Introduction

Sorting is one of the oldest (and most widely-used) problems in computer science; sorted

data is easier to manipulate, and allows a wider variety of efficient operations (such as

searches) than unsorted data. Frequently, it is important to ensure that data remains

sorted even under modification, insertion and removal of data, while not requiring

expensive operations to re-sort it every time an update is made. This is the basis of

various algorithms and data structures designed to maintain dynamic data in a sorted

form.

A common use case for sorted data is the extraction of order statistics – this can

range from a database query in SQL using the SORT ASCENDING and LIMIT com-

mands, to Reddit’s trending subreddits feed. In both of these, and many other cases,

the order statistics are desired for relatively few items as compared to the total number

of items in the collection (consider a ‘Top 10’ list, that could be drawn from thousands,

or possibly millions of items). Additionally, both of these cases require operation on

real-time data, which could change very rapidly. Both of these cases make the more

traditional approach of sorting and then maintaining that data to be impractical.

In such cases, it is desirable to maintain collections information in a way that is

amenable to performing the fastest queries possible, ideally with minimal influence from

the number of items in the entire collection – only the size of the query. These collections

should also be dynamic, allowing modification of existing information, insertion of new

information and deletion of other information while maintaining the speed of queries.

We refer to a structure that can perform this as a partially-sorted list.

We seek to examine the problem of implementing a partially-sorted list, analyze the

performance of such implementations, and then test them in practice to see which gives

better performance. We initially discuss some naive solutions and their deficiencies,

and then present two different data structures that can implement a partially-sorted

list – the tournament tree and the layered tournament tree. We analyze their perfor-

7
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mance, and then describe experiments that were conducted to test their performance

in practical terms. We determine that, while the layered tournament tree has better

independence from the size of the collection being queried, in practice, the tournament

tree has better performance.

1.1 Problem setup

This thesis seeks to present a solution to the following problem: maintain a dynamic

data structure D representing a partially-sorted list of n pairwise-disjoint numbers,

permitting the following operations:

• psort(D, k): Perform a partial sort operation on the numbers stored in D. This

must return k numbers, or every number stored in D, whichever is smaller. The

numbers returned must be in monotonically increasing order.

• changeval(D, i, n): Change the value at index i in D to n.

• link(D,D′): Combine D and another partially-sorted list D′ to form a single

structure. The numbers stored in D′ must sequentially follow those stored in D.

• cut(D, i): Separate D into two partially-sorted lists D1, D2 such that D1 stores all

numbers up to and including the number at index i, and D2 stores the remaining

numbers, preserving the same order as D.

We assume that in changeval and cut, we have a reference to the ith element avail-

able, allowing access to that element in O(1).

Additionally, the psort operation should have an asymptotic time complexity that

depends as little on the number of numbers stored inD as possible. We also aim to allow

the update operations (changeval, link, cut) to be performed in as close to O(log(n)) as

possible.

We refer to this as the dynamic partial sorting problem.

1.2 Contribution

The goal of this thesis is to design a solution to the dynamic partial sorting problem

with good time complexities for all of the operations required. We describe two solu-

tions based on dynamic trees. We also prove their correctness and analyze their time

complexity.

We demonstrate that our first solution, based on a ‘tournament tree’ (or TT) data

structure, is able to perform psort(D, k) in O(k · log(m)), and changeval(D, i, n) and
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cut(D, i) in O(log(m)), where m is the number of numbers stored. We also show that

we can perform link(D,D′) in O(| log(x)− log(y)|), where x is the number of numbers

stored in the larger of D,D′, and y is the number of numbers stored in the smaller of

D,D′.

We also describe an extension of the tournament tree, which we call the ‘layered tour-

nament tree’ or LTT. We demonstrate that this solution is able to perform psort(D, k) in

O(log∗ϕ(m) · k · log(k)), and changeval(D, i, n) and cut(D, i) in O(log2(m)), where m

is the number of numbers stored. We also show that we can perform link(D,D′) in

O(log2(|x− y|), where x is the number of numbers stored in the larger of D,D′ and y

is the number of numbers stored in the smaller of D,D′.

Lastly, we demonstrate the performance of both structures experimentally by testing

each of the psort, changeval, link and cut operations.

1.3 Related work

To the author’s knowledge, there has not been work formally addressing the dynamic

partial sorting problem. We describe related work dealing with the maintenance of

sorted lists dynamically, theoretical work relating to partial sorting, and solutions to

similar problems.

Dynamically maintaining a sorted list of numbers is a well-explored topic. Existing

solutions rely on various self-balancing binary search trees, as described in Andersson,

Fagerberg and Larsen [3]. None of these data structures are suitable for the dynamic

partial sorting problem described in Section 1.1, as we require elements in the lists to

preserve their orders while extracting order statistics from the lists. We present some

examples of why this is the case in Chapter 2; in particular, we focus on the red-black

tree and the splay tree as a source of ideas for our solution to the dynamic partial

sorting problem.

The asymptotic time complexity of partial sorting static data has been studied ex-

tensively. The earliest work on this topic was the quickselect algorithm implementa-

tion by Hoare [12], which described a method of retrieving the kth smallest value from

a static collection of numbers in a faster time complexity than sorting the collection.

Floyd and Rivest [8] investigated possible lower bounds for this operation (which they

term the selection problem). Additional work in this area was done by Huang and

Tsai [14] and Kuba [17]. The problem was also generalized to sorting intervals, and

work has been done to analyze the time complexity of such an operation [15].

Several data structures have been proposed to solve similar problems to the one

described in Section 1.1. One such structure was proposed by Navarro and Paredes [18].

However, this structure is designed to be optimal in terms of space, rather than time,
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and is also both amortized and online. Duch et al [7] presented another structure, but

this attempts to solve a somewhat different problem (although the solution can still be

used to perform the psort operation). The structure is also not dynamic, and depends

heavily on the length of the input data.

A practical application of a similar problem to the one described in Section 1.1

was employed to solve problems in common-channel communication over single-hop

wireless sensor networks by Bordim et al [5]. However, this concerns itself primarily

with queries, rather than update operations, and is designed to be distributed, which

our problem does not mention.

1.4 Organization

We begin by describing naive solutions to the dynamic partial sorting problem, as well

as their limitations, in Chapter 2. In this chapter, we will also examine dynamic trees,

and describe why they are particularly suited to solving the dynamic partial sorting

problem. Lastly, we examine two examples of dynamic trees, which form the basis of

the structures defined in this thesis.

In Chapter 3, we introduce the tournament tree data structure. We describe the

structure, and then present algorithms that use that structure to solve the dynamic

partial sorting problem. We prove the correctness of these algorithms, and analyze

their time complexity. We also examine the deficiencies of the tournament tree as a

solution, which we attempt to improve on in Chapter 4.

We attempt to improve on the tournament tree in Chapter 4 by defining an exten-

sion called the layered tournament tree. We describe this structure, and then define

algorithms that allow us to solve the dynamic partial sorting problem with layered

tournament trees. In the process, we also analyze the time complexity of these op-

erations, and prove their correctness. We demonstrate that the layered tournament

tree has better performance with respect to the psort operation, while still retaining

acceptable performance on changeval, link and cut operations.

In Chapter 5, we attempt to experimentally demonstrate the performance of the

tournament tree and layered tournament tree, both in isolation and in contrast with

each other. We describe our implementation and the performance characteristics of

the machine being used to perform the tests, and define how the experiments will be

conducted and with what data. We then plot the results of the tests, and discuss the

outcome.

Lastly, in Chapter 6, we summarize the thesis, discussing the outcomes of the re-

search. We also consider future work that can be undertaken in relation to the dynamic

partial sorting problem.
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1.5 Preliminaries

We make some definitions that are used throughout this thesis. We consider N =

{0, 1, 2, . . .}. We define a list L as a tuple (a1, a2, . . . , an) of pairwise-distinct integers.

1.5.1 Trees

We define a tree T = (V,E) as a directed, labelled arborescence, as per Gross, Yellen

and Zhang [9]. The labels for each v ∈ V are integers.

The size of a tree T is size(T ) = |V |. We define the root of T as the node u with no

parent. We define the leaves of T as all nodes which have no children. As this thesis

will only consider binary trees, we will use ‘tree’ and ‘binary tree’ interchangeably to

refer to binary trees.

We use T (v) to denote the subtree rooted at the node v. A path is a set of nodes

{u0, u1, . . . , um} such that m ∈ N, uo is a leaf and ui+1 is the parent of ui for 0 ≤ i < m.

We call m the length of the path. The height h(T ) of a tree T is the maximum length

of every path in T .

Let u be a node in a tree T . The layer of u is the length of the path from u to the

root of T . We define the first layer of T as layer number 0 (thus, the root), and the

last layer as the layer whose number is the highest for T .

A tree T = (V,E) is balanced if for every node v ∈ V , the height of its left subtree

and its right subtree differ by no more than 1. We call T full if every node has exactly

two children.

We define the concept of tree rotation in the usual way. See Figure 1.1 for an

example of tree rotations.
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p

a u

b c

u

p c

a b

Left rotation on u

p

u c

a b

u

a p

b c
Right rotation on u

Figure 1.1: Tree rotation examples.

1.5.2 Asymptotic and Amortized Complexity

We give the following definition of a concept in asymptotic complexity, based on Cormen

et al [6]:

Definition 1. Let f, g be functions. If there exist positive c, n0 such that for all n ≥ n0,

f(n) ≤ c · g(n), then we say that f(n) is O(g(n)).

In this thesis, we will occasionally describe some operation op as being “a O(f(n))”

operation, or “having time complexity of O(f(n))”, or similar, for some function f .

This is a shorthand for “the function representing the number of primitive operations

to perform op is O(f(n))”.

We use the following definition of amortized time complexity, based on Cormen et

al [6]:

Definition 2. Let op be an operation. If there exists some function T (n) such that a

sequence of n calls to op has time complexity T (n), we say that a single call to op has

amortized time complexity T (n)
n

.

1.5.3 Data structures

For the purposes of describing the different implementations of partially-sorted lists, we

use several auxilliary data structures. We describe these here, along with any assump-

tions we make with regard to them.
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Binary tree

Intuitively, our definition of the binary tree data structure is a representation of a

directed, labelled arborescence [9]. Therefore, we will use the language developed in

Subsection 1.5.1 with the binary tree data structure. More specifically, the concepts of

roots, leaves, layers, tree balance, tree fullness and tree rotation carry forward to the

binary tree data structure. We will also use the T = (V,E) notation to describe a tree

data structure, with V referring to the set of nodes in the tree data structure.

Unless specified otherwise, any reference to a ‘tree data structure’ in this thesis

assumes a binary tree data structure.

A tree data structure is comprised of nodes, each of which stores references to other

nodes or its integer value. We assume that these references are accessible in O(1) time

if we have a reference to the node itself.

More formally, each node u in a binary tree is a 4-tuple

(p(u), left(u), right(u), val(u))

such that

• p(u) is a reference to the parent of u, or nil if u is the root

• left(u) and right(u) are references to to the left and right child of u respectively,

or nil if not present

• val(u) is a reference to the integer value of u

A binary tree is viewed as a reference to its root; thus, we will refer to a tree and its

root interchangeably. We use rotate left(u) and rotate right(u) to denote a left rotation

on u and a right rotation on u respectively.

Priority queue

A priority queue is a data structure to support priority-based retrieval of elements. We

describe its operations below; in all cases, Q is a reference to a priority queue instance,

x is an arbitrary element and i is an integer priority value.

• insert(Q, x, i): Adds x to Q with priority i, in time O(log(n)).

• delete min(Q): Removes and returns the element in Q with the lowest priority, in

time O(log(n)).

• empty(Q): Returns true if Q does not contain any elements, and false otherwise,

in time O(1).



CHAPTER 1. INTRODUCTION 14

This corresponds to a min-heap as defined in Sahni [20], which also gives several

possible implementations of such a structure. We present an example of a min-heap –

the binary heap. We define the binary heap data structure as follows:

Definition 3. A binary heap B is a binary tree with the following additional properties:

1. Each node u has a field data(u), storing arbitrary data.

2. Let u be an internal node in B. The value of any child of u must be less than the

value of u.

3. Every node in each layer, except the second-to-last, must have two children. The

layers must be filled from left to right.

See Figure 1.2 for an example of a binary heap. We observe that, by Definition 3,

the height of any binary heap B is O(log(n)), where n = |B|.

22

34 40

135 37 129 99

200

Figure 1.2: A binary heap. The nodes are labelled with their values.

A key operation for binary heaps is percolate(u), which is designed to correct any

violations of property 2 as described in Definition 3. percolate(u) compares val(u) to

val(p(u)). If p(u) 6= nil and val(p(u)) < val(u), it exchanges the positions of the nodes

and then calls itself recursively on u again; otherwise, it terminates. For an exact

description, see Algorithm 1.

Algorithm 1 percolate(u)

1: if u is not the root then
2: if val(p(u)) < val(u) then
3: Swap the positions of p(u) and u
4: percolate(u) . u will now be where p(u) used to be

We observe that by Definition 3, percolate(u) has time complexity O(log(n)), where

n is the size of the tree containing u.
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We now briefly describe the implementation of the priority queue operations using

the binary heap.To perform insert(B, x, i), we create a new node u such that val(u) = i

and data(u) = x. If B is empty, we set u to be its root; otherwise:

• If B contains a leftmost node v in its second-to-last layer which don’t have two

children, we insert u as a child of v;

• Otherwise, we insert u as the left child of the leftmost leaf of B.

We then call percolate(u) to correct any violations of the properties of the binary

heap. To perform delete min(B), we set the value of its root to be +∞, and then use

a variant of the percolate operation to move the root node to a leaf position. We then

simply remove the node and return it. To perform empty(B), it suffices to check if B

has any nodes.

For the time complexity of each of the priority queue operations implemented using

the binary heap, we give the following lemma. Its proof follows from Defintion 3 and

Algorithm 1.

Lemma 1. Let B be a binary heap whose size is n. insert(B, x, i) and delete min(B)

are O(log(n)), and empty(Q) is O(1).

Although Sahni [20] defines additional structures (such as the skew heap and the

Fibonacci heap) which are able to achieve better performance, for the purpose of this

thesis, the performance of the binary heap suffices to demonstrate the asymptotic time

complexity of our data structures; thus, we will not discuss these alternative priority

queue implementations.



Chapter 2

Dynamic Trees

In this chapter, we describe two naive solutions for the dynamic partial sorting problem,

using dynamic arrays and linked lists. We demonstrate that these solutions have unde-

sirable performance characteristics given the problem description given in Section 1.1.

We then describe dynamic trees, and explain why they have desirable characteristics for

the dynamic partial sorting problem. We describe two common examples of dynamic

trees, which serve as the basis for the structures we present in Chapters 3 and 4.

2.1 Naive solutions

We present two naive solutions to the dynamic partial sorting problem, designed to

illustrate the deficiencies of their performance relative the description of the problem.

We will consider a solution based on dynamic arrays, as well as a solution based on

linked lists. We will describe the operations, and analyze their performance.

2.1.1 Dynamic array

Our first naive solution is based on the dynamic array data structure, as described

in Cormen, Leiserson, Rivest and Stein [6]. Intuitively, the data structure is based

around an array whose size is increased in powers of two, which allows for amortized

O(1) insertion and deletion of elements from the back of the structure. Additionally, as

the dynamic array is based on an array, it allows O(1) element access and modification

given an index.

We observe that, by Cormen et al [6], dynamic arrays can only be copied in linear

time. We also observe that dynamic arrays can only be concatenated and split in

amortized linear time.

16
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Preliminaries

We will use A to refer to the dynamic array representation of the list L = (a1, a2, . . . , an),

and A′ to refer to the dynamic array representation of the list L′ = (a′1, a
′
2, . . . , a

′
m). We

assume that any element of L is pairwise distinct from any element of L′. We will use

A[i] to refer to the element at index i in A. We will use |A| to refer to the number of

elements in A. We assume that we have access to any element in A, as well as |A|, in
O(1) time.

2.1.2 Quickselect

Our dynamic array-based solution will employ the quickselect algorithm, also known as

Hoare’s selection algorithm [12]. This algorithm is based on quicksort [13], and allows

efficient location of the k-th smallest element in an unordered array. It also has the

desirable property of partially-sorting the array, allowing us to more efficiently locate

the elements larger than the kth smallest.

In order to describe quickselect, we first describe an important subroutine partition

(L, `, r, p ind), where L = [a1, a2, . . . , an] denotes an unsorted array. This subroutine

arranges all elements whose indices range from ` to r inclusive as follows: all elements

less than ap ind, then ap ind, then all elements greater than ap ind. It does this by first

pivoting ap ind to the index r, and then iterating over all elements between the indices `

and r, swapping smaller elements back toward the front while finding an insertion point

for apivotind. Lastly, ap ind is put into that insertion point, and its index is returned. For

an exact description of partition, see Algorithm 2.

Algorithm 2 partition(L, `, r, p ind)

1: pivot value← L[p ind]
2: Swap L[p ind] and L[r] . Move pivot element to the end of the working range
3: store index← `
4: for i ∈ ` . . . (r − 1) do
5: if L[store index] < pivot value then
6: Swap L[store index] and L[i]
7: store index← store index+ 1

8: Swap L[r] and L[store index]
9: return store index . Move pivot element to its final place

We now describe quickselect(L, `, r, k). We first check if ` = r; if so, then there is

only one element in the list, so we return it. Otherwise, we enter a loop and perform

the following at each iteration:

1. Select a random index p ind between ` and r inclusive.
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2. Call partition(L, `, r, p ind) and store the return value as m.

3. If k = m, return the element of L at m; otherwise:

(a) If k < m, set r to be p ind− 1.

(b) Else, set ` to be p ind+ 1.

For an exact description, see Algorithm 3.

Algorithm 3 quickselect(L, `, r, k)

1: if ` = r then
2: return L[`]

3: while do
4: p ind← a random index between ` and r inclusive
5: p ind← partition(L, `, r, p ind)
6: if k = p ind then
7: return L[k]
8: else if k < p ind then
9: r ← p ind− 1
10: else
11: `← p ind+ 1

We observe that by Algorithms 2 and 3, after finding the kth smallest element x

in L, all elements after x in L are larger than x. We make use of this observation to

perform the psort operation required by the dynamic partial sorting problem.

Considerations

Let n be the length of the input L to quickselect. The time complexity of quickselect

is dependent on the elements chosen for p ind, but is known to be O(n) in the average

case, based on similar arguments to the performance of quicksort [6].

Additionally, quickselect is an ‘in-place’ algorithm, as it changes L in the process

of execution. This is not desirable in the case of the dynamic partial sorting problem,

as it would cause the original order of the list to become destroyed in the process,

complicating link and cut operations. This can be avoided by copying the structure

before performing this operation, which is taken into account as part of the naive

solution we present.

psort

To perform psort(A, k), we first copy A to create c(A). We then call quickselect

(c(A), 1, |c(A)|, k) to retrieve the kth smallest element x. In order to retrieve the other
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k−1 elements, we sort all elements in c(A) to the right of x, then return them in order,

followed by x.

This version of psort is correct by Algorithms 3 and 2. The time complexity of

psort(A, k) is the time to copy A, plus the time to execute quickselect, followed by

the time required to sort k − 1 items. Assuming an asymptotically-optimal sorting

algorithm, this gives a time complexity of O(|A|+ k log(k)).

changeval

To perform changeval(A, i, n), we simply modify the element at the given index to n.

This requires O(1) time by the description of a dynamic array.

link

Performing link(A,A′) can only be done by removing elements from A′ and inserting

them into A, from the first to the last index of A′. This gives a time complexity of

amortized O(|A′|) to this operation.

cut

To perform cut(A, i), we first create a new dynamic array B, and then remove all

elements after the element at index i from A and insert them into B. This gives an

amortized O(|A|) time complexity.

Theorem

We summarize this analysis in the following theorem, whose proof follows from Hoare [12]

and Cormen et al [6].

Theorem 1. The dynamic array data structure solves the dynamic partial sorting

problem, with the following asymptotic time complexity:

• psort(A, k): O(|A|+ k · log(k))

• changeval(A, i, n): O(1)

• link(A,A′): O(|A′|)

• cut(A, i): O(A)
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Limitations

The running time of the dynamic array-based implementation of psort is linear with

respect to the number of numbers in the structure psort is being called on. Additionally,

with the exception of changeval, the other update operations for the dynamic array are

also linear with respect to the number of numbers in the structures being operated on.

These make it unsuitable as a solution to the dynamic partial sorting problem, as it

would be very inefficient.

2.1.3 Linked list

We now describe our second naive solution, based on linked lists. We assume that

linked lists are doubly-linked, which means that we can access both the start and end

nodes of the list in O(1) time. Accessing an item in a linked list given an index requires

linear time. This corresponds to the definition given in Cormen, Leiserson, Rivest and

Stein [6].

Preliminaries

We will use M to refer to the linked-list representation of the list L = (a1, a2, . . . , an),

and M ′ to refer to the linked-list representation of the list L′ = (a′1, a
′
2, . . . , a

′
m). We

will use |M | to refer to the number of elements in M .

psort

The same approach cannot be taken for linked lists as taken for dynamic arrays, as

quickselect’s performance relies on the ability to swap two elements in O(1) time; thus,

under the restrictions of linked lists, it would cause the time complexity of quickselect

to become quadratic with respect to the size of the input structure. As this is worse

than simply sorting the collection each time a psort is requested, this approach will not

be considered.

Instead, we perform psort(M,k) using the heapsort approach [6]. This involves the

following steps:

1. Create a new priority queue Q.

2. Insert all elements of M into Q.

3. Remove and return k elements from Q.

Based on Lemma 1, this operation runs in O(|M | · log(|M |)).
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changeval

As by Section 1.1, for changeval(M, i, n) we assume that we have a reference to the

element at index i in M , we can simply change its value to n. Like in the dynamic

array solution, this is a O(1) operation.

link

To perform link(M,M ′), we only need to connect the last element of M with the first

element of M ′. As we have access to the last element of M in O(1), this is a O(1)

operation.

cut

Performing cut(M, i) simply requires us to separate the linked list M into two lists by

breaking the references that connect the element at index i to the subsequent element

in M . As by Section 1.1, we have a reference to the element at index i, this can be

performed in O(1) time.

Theorem

We summarize this analysis in the following theorem, whose proof follows from Cormen

et al [6].

Theorem 2. The linked list data structure solves the dynamic partial sorting problem,

with the following asymptotic time complexity:

• psort(M,k): O(|M | · log(|M |))

• changeval(M, i, n): O(1)

• link(A,A′): O(1)

• cut(A, i): O(1)

Limitations

Although the linked list solution to the dynamic partial sorting problem has good

performance for changeval, link and cut, its performance of psort is essentially the same

as sorting the entire list. This makes it very dependent on the number of numbers

stored, which makes it an unsuitable choice.
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2.2 Dynamic trees for dynamic partial sorting

As can be seen from Section 2.1, the naive solutions presented for the dynamic partial

sorting problem have poor performance. Thus, we consider an alternative method of

supporting the dynamic partial sorting operations. We propose the use of dynamic

trees for this purpose, as they have an inherent ability to store ordered data while

enabling dynamic modification of the data they represent. We define dynamic trees,

and also describe two common varieties – the red-black tree and the splay tree. Lastly,

we describe the influence of these data structures on our solutions to the dynamic partial

sorting problem.

2.2.1 Definition of dynamic tree

Intuitively, a dynamic tree data structure is a binary tree, which is designed to store or-

dered data. It also permits several update operations. Formally, we make the following

definition:

Definition 4. A dynamic tree is a data structure D representing the ordered list of

numbers n1, n2, . . . , nm. The structure also permits the following operations:

• changeval(D, i, x): Replaces the number at index i with x.

• link(D,D′, x): Links together D and another dynamic tree D′ by way of the

new element x. This must be done in such a way thatthe order of both trees is

maintained, with items in D′ ordered after the items in D in the resulting new

dynamic tree. The new item x must be ordered between the items in D and the

items in D′.

• cut(D, i): Separates D into the new dynamic trees D1, D2, D3, such that D1 stores

all numbers with indices below i, D2 stores the number with index i, and D3

stores all numbers with indices above i.

All of these operations must be O(log(m)). We assume that in changeval and cut,

we have a reference to the element representing the ith number in the list; thus, no

searching is necessary.

This definition mirrors the definition of self-balancing binary trees given in Tar-

jan [22]. Such structures are often used to solve the dictionary problem [2], which

requires search, delete and insert operations, with the additional constraint on the need

to maintain some kind of order over the data being stored.
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The earliest dynamic tree was the AVL tree [1]. This structure used tree rotations

to ensure order was maintained, relying on a ‘balance condition’ to ensure that the time

complexity of the operations remained logarithmically-bounded.

2.2.2 Red-black tree

The red-black tree was originally proposed by Rudolf Bayer [4], but was popularized

by Guibas and Sedgewick [10]. We give a definition of the red-black tree below.

Definition 5. A red-black tree T of the sorted list L = (a1, a2, . . . , an) is a full binary

tree. Each node u in T also has a field key(u), which is the index of val(u) in the list

L. Every leaf node v in T has val(v) = nil.

For every internal node u, the following holds:

1. If val(left(u)) 6= nil, then key(u) > key(left(u)).

2. If val(right(u)) 6= nil, then key(u) < key(right(u))

Additionally, T has the following properties:

1. Every node u in T is either red or black.

2. The root of T is black.

3. All leaves in T are black.

4. Every red node has only black children.

5. For any internal node u, every path from u to any descendant leaf must contain

the same number of black nodes.

The correctness of the following lemma follows from Definition 5.

Lemma 2. Let R be the red-black tree of L = (a1, a2, . . . , an). h(R) ≤ 2 · dlog2(n)e.

We now describe how the red-black tree can be used as an implementation of a

dynamic tree. Throughout, let R,R′ be red-black trees.

changeval

By the problem description in Section 4, when performing changeval(R, i, x), we have a

reference to the node u whose key is i. As we only change val(u), not key(u), we don’t

have to make any changes to the structure of R. Thus, we can just set val(u) to x,

which can be done in O(1) time.
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fix up for red-black trees

When performing link and cut operations on red-black trees, it is possible that the red-

black tree properties will be violated. To correct this, we define a repair operation

fix up(R, u), where u is a node in the red-black tree R. This operation is based on

Cormen et al [6], and is described fully in Algorithm 4.

Algorithm 4 fix up(u)

1: while p(u) is red do
2: if p(u) = left(p(p(u))) then
3: y ← right(p(p(u)))
4: if y is red then
5: Paint p(u) and y black
6: Paint p(p(u)) red
7: u← p(p(u))
8: else if u = right(p(u)) then
9: u← p(u)
10: rotate left(u)
11: else
12: Paint p(u) black
13: Paint p(p(u)) red
14: rotate right(p(p(z)))

15: else
16: Do the same as the previous clause, except with right and left exchanged

17: Paint the root of R black

This operation guarantees the red-black tree properties after a link or cut operation,

based on Cormen et al [6]. We observe that in Algorithm 4, the while-loop performs a

number of iterations that is bounded by h(R). By Lemma 2, this is O(log(n)), where

n is the number of numbers stored in R.

link

We can now describe the link(R,R′, x) operation. We give only the case where h(R) >

h(R′); the other case is symmetric. To perform link(R,R′, x), we first create a new node

u such that val(u) = x, which we paint red. We then follow right child pointers from the

root of R until we find a node v such that h(v) = h(R′). We then separate the subtree

of v from the rest of R. If v is not black, we paint it black as part of this process. We

then set left(u) = v, right(u) = R′, and reconnect u to R in the same position that v

used to be in. We then call fix up(R, u) to ensure that the tree retains the red-black

properties. For an exact description, see Algorithm 5.
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Algorithm 5 link(R,R′, x) (h(R) > h(R′) case)

1: Create a new red node u with val(u) = x
2: (r, r′)← the root of R,R′ respectively
3: while h(r) > h(r′) do
4: r ← right(r)

5: Separate r from the rest of R
6: Paint r black
7: (left(u), right(u), p(u))← r, r′, p(r) . Place u where r used to be
8: fix up(R, u)

The correctness of this operation follows from the correctness of fix up. The time

complexity of this operation is based on the difference in height between R and R′, due

to the traversal to locate v and the subsequent call to fix up. Thus, this operation is

O(|h(R)− h(R′)|), which by Lemma 2 is O(log(n)), where n = max{h(R), h(R′)}.

cut

We perform cut (R, i) using the approach taken by Tarjan [22]. By Definition 4, we

assume that we have a reference to a node u such that key(u) = i. We initialize the

current node x, the previous node y, the left tree R1 and the right tree R2 to be the

parent of u, u itself, the left subtree of u and the right subtree of u respectively. We

then repeat the following until x is nil:

1. If y is the left child of x, simultaneously replace x, y, R2 with p(x), x, link

(R2, x, right(x)).

2. Otherwise, simultaneously replace x, y, R1 with p(x), x, link(left(x), x, R1).

We must also paint right(x) or left(x) respectively black prior to performing this

operation. We then return R1, x, R2. For an exact description, see Algorithm 6. We

will use u to refer to the node with key i in this description.

Algorithm 6 cut(R, u)

1: (x, y, R1, R2)← p(u), u, left(u), right(u)
2: while x 6= nil do
3: if y = left(x) then
4: Paint right(x) black
5: (x, y, R2)← p(x), x, link(R2, x, right(x))
6: else
7: Paint left(x) black
8: (x, y, R1)← p(x), x, link(left(x), x, R1)

9: return R1, u, R2
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The correctness of this operation follows from the description of the red-black tree

and Algorithm 5. The time complexity of this operation is O(log(n)) (where n is the

number of values in R), as proved by Tarjan [22].

Theorem

We summarize this analysis in the following theorem. Its proof follows from Definition 5,

Guibas and Sedgewick [10], and Tarjan [22].

Theorem 3. The red-black tree implements the dynamic tree, with the following

asymptotic time complexity:

• changeval(R, i, x): O(1)

• link(R,R′, x): O(log(max{h(R), h(R′)}))

• cut(R, i): O(log(|R|))

2.2.3 Splay tree

The splay tree, first introduced by Sleator and Tarjan [21], was designed to solve the

dictionary problem, as well as perform modification operations, in amortized time. It

also makes previously-accessed elements easy to access again. It also introduced the

concept of representing a tree as a collection of paths [22].

Intuitively, a splay tree can be thought of as a collection of vertex-disjoint paths.

To define the paths, the edges of the tree are partitioned into two kinds – a ‘solid’ edge,

and a ‘dashed’ edge. At most one solid edge can enter any vertex; this partitions the

tree into vertex-disjoint solid paths. See Figure 2.1 for an example of such a tree.

a

b c

d e

h

f

g

Figure 2.1: An example of a splay tree, separated into the paths (h), (e), (d, b, a) and
(g, f, c).

Formally, we define splay trees as follows:
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Definition 6. A splay tree S of a list L = (a1, a2, . . . , an) is a binary tree. Additionally,

each u in S also has a field key(u), which is the index of val(u) in the list L.

For every internal node v, the following holds:

1. If left(v) 6= nil, then key(v) > key(left(v))

2. If right(v) 6= nil, then key(v) < key(right(v))

3. At most one edge connecting v to one of its children is a solid edge; all other

edges connecting v to its children are dashed edges.

splay

In order to permit the performance bounds required by the definition of dynamic trees,

it is necessary to define the splaying operation splay(u) for splay trees. This performs

a sequence of rotations to make u the root of its tree. There are three cases:

1. If p(u) is the root, then we perform one rotation (either left or right, depending

on whether u is a left or right child) to make u the root.

2. If p(u) is not the root, and u and p(u) are either both left children or both

right children, we first rotate p(u), then rotate u. We demonstrate this with left

rotations in Figure 2.2.

3. Otherwise, we first rotate u upwards, and then rotate u upwards again. We

demonstrate this in Figure 2.3.

g

p d

u c

a b

p

u

a

gb

c d

Figure 2.2: Case 2 of splay. The triangular nodes indicate arbitrary subtrees.
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g

p d

a u

b c

g

c d

p

a b

u

Figure 2.3: Case 3 of splay. The triangular nodes indicate arbitrary subtrees.

We repeat these steps until u becomes the root of its tree. Along the way, we also

make any edge connecting u and p(u) solid (changing any other child edges to dashed

as needed). For an exact description, see Algorithm 7. In the description, when we say

to rotate a node u ‘upwards’, it means to perform rotate left(u) if u is a right child, and

rotate right(u) if u is a left child.

Algorithm 7 splay(u)

1: if u is not the root then
2: (p, g)← p(u), p(p(u))
3: Make the edge between u and p solid
4: if g 6= nil then
5: if u, p are both left children or both right children then
6: Rotate p upwards
7: Rotate u upwards
8: else
9: Rotate u upwards
10: Rotate p upwards

11: splay(u)
12: else
13: Rotate u upwards

We give the following lemma based on Sleator and Tarjan [21] and Tarjan [22]

without a proof.

Lemma 3. Let S be a splay tree with n nodes. Let m denote the number of splay opera-

tions performed on S. As m approaches infinity, the height of S approaches O(log(n)).

We observe that Lemma 3 gives the splay operation an amortized time complexity

of O(log(n)). Splaying also preserves the splay tree properties defined previously.
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changeval

The changeval(S, i, n) operation for splay trees is similar to the equivalently-named red-

black tree operation. As by Definition 4, we have a reference to the element whose key

is equal to i, we can simply change its value to n, requiring O(1) time.

link and cut

To perform link(S, S ′, x), we first perform splay(u), where u is the node such that key(u)

is the largest in S. We then create a new node u with val(u) = x. We set u as the right

child of the root of S, and then set S ′ as the right child of u. This operation preserves

the ordering property of the splay tree. By Lemma 3, this operation has amortized

log(|S|) time complexity.

When we perform cut(S, i), by Definition 4, we have a reference to the node u whose

key is i. We first use splay(u) to make u the root of S. We then separate the left and

right subtrees of u, and return u’s left subtree, u itself, and u’s right subtree. Similarly

to link, this operation has amortized O(log(|S|)) time complexity.

The correctness of both of these operations is guaranteed by the definition of the

splay operation and the key-based ordering property of the nodes of a splay tree given

by Definition 4.

Theorem

We summarize this analysis in the following theorem. Its proof follows from Lemma 3,

Sleator and Tarjan [21] and Tarjan [22].

Theorem 4. The splay tree implements the dynamic tree, with the following asymp-

totic time complexity:

• changeval(S, i, x): O(1)

• link(S, S ′, x): Amortized O(log(|S|))

• cut(S, i): Amortized O(log(|S|))

Representing trees as collections of paths

We can use the definition of the splay tree above to represent paths connected by solid

edges as trees in their own right, as described in Tarjan [22]. This approach stores any

splay tree S as a set of node-disjoint trees, each representing a path connected by solid

edges in S. Thus, performing a splay operation would involve link and cut operations

as solid and dashed edges changed.
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Such an approach to representing trees has several advantages – it allows for faster

searching, and allows parallel operations on the structure, as well as working better

with external storage. These advantages are discussed in more detail by Tarjan [22].

2.2.4 Suitability for the dynamic partial sorting problem

The dynamic tree has several desirable properties that allow us to improve on the time

complexity of the naive solutions to the dynamic partial sorting problem. In particular,

the dynamic tree allows for modification of stored data, as well as linking and cutting of

data structures, while maintaining some kind of order over the elements in all collections.

The red-black tree implementation of the dynamic tree serves as a direct inspiration

for the tournament tree data structure described in Chapter 3. In particular, the

maintenance of the height of a red-black tree while preserving order over elements by

use of rotation is used directly by the tournament tree data structure.

The splay tree’s capability to represent a tree as a set of modifiable paths serves

as the basis for the layered tournament tree data structure described in Chapter 4.

However, unlike the splay tree, the layered tournament tree continues the decomposition

process recursively, decomposing each path-representing tree into a collection of paths

as well, thus forming the ‘layers’ of the resulting structure.

In both cases, however, some modifications are needed to the ideas provided by these

structures to allow efficient solutions to the query operation of the dynamic partial

sorting problem. The approach taken is designed to allow maintaining the original

(unsorted) order of a list while allowing querying of order statistics – see Chapters 3

and 4 for more details.
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Tournament Trees for Partial

Sorting

In this chapter, we describe the tournament tree (or TT) data structure, and describe

and analyze it as a method of solving the dynamic partial sorting problem. We also

discuss its limitations in leadup to Chapter 4.

3.1 The tournament tree

The tournament tree data structure is inspired by the tournament sort algorithm, which

uses the idea of a single-elimination tournament[16]. Formally, we define it as follows:

Definition 7. Let L = (a1, a2, . . . , an) be a list. A tournament tree T = (V,E) of L is

a balanced, full tree data structure that satisfies the following properties:

• T has exactly n leaves, whose values are a1, a2, . . . , an respectively.

• For every internal node v ∈ V , if val(left(v)) = ai and val(right(v)) = aj, then

i < j and val(v) = min{ai, aj}.

We can use a TT to represent a list by storing the elements of the list as leaf nodes,

in the same order as in the list. See Figure 3.1 for an example.

31
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22

22 34

22 99 34 40

37 22 99 135 129 40

Figure 3.1: A TT of the list L = (37, 22, 99, 135, 34, 129, 40).

We also define the following concepts.

Definition 8. Let T = (V,E) be a TT. For any u, v ∈ V , we write u ∼ v if val(u) =

val(v).

As we use TTs as representations of lists of pairwise-distinct numbers, the equiva-

lence relation ∼ partitions the nodes in a TT into disjoint paths.

Definition 9. The principal path Path(u) of a node u is the equivalence class {v | u ∼
v}. The value of Path(u) is val(u).

Intuitively, we view Path(u) as a path that originates from a leaf in a TT, and

extends upwards. We can view every node in Path(u) as ‘gaining’ its value from this

leaf. Hence, we single out this leaf, and define the following.

Definition 10. Let P be a principal path. The origin of P is the leaf in P .

When we refer to ‘a principal path’ in a TT T , we mean Path(u) for some u in T .

In addition, we define the following concept:

Definition 11. The subordinate sub(u) of u is a child of u that does not belong to the

same principal path as u.

See Figure 3.1 for a visual representation of each of the preceding definitions.
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22

22

22   

34

22

22   

99 34

34   

40

37 22

22 

99

99   

135 129 40

40      

Figure 3.2: A TT of the list L = (37, 22, 99, 135, 34, 129, 40). Principal path edges are
bolded and labelled with the value of their principal path. The origins of principal
paths are diamond-shaped.

Lastly, we observe that, as a TT is balanced, its height is logarithmic with respect

to the number of its leaves. More specifically, we prove the following lemma:

Lemma 4. If T is a TT with n > 0 leaves, then the height of T is not more than

logϕ(n), where ϕ =
√
5+1
2

is the golden ratio.

Proof. It suffices to show that the least number of leaves f(h) in any TT with height

h ≥ 0 is ϕh. We make the following observation. Note that here, we use the fact that

any TT is balanced and full.

f(h) ≥


1 if h = 0,

2 if h = 1,

f(h− 1) + f(h− 2) otherwise

3.2 Dynamic partial sorting using TTs

We now describe an algorithm for solving the dynamic partial sorting problem using

TTs. Throughout, we use L = (a1, a2, . . . , an) to represent a list, and T = (V,E) as

the TT representing that list as per 3.1.

3.2.1 psort

For any L = (a1, a2, . . . , an), we list its elements in monotonically increasing order as

x1, x2, . . . , xn. By definition, the root of T has the smallest value; therefore, to find x1,

we only need to return the root. For finding the subsequence xis, we make the following

observation.
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Observation 1. For any 1 ≤ i < n, let Pi denote the principal path in T with the

value xi. The number xi+1 is val(u), where u is a subordinate of some node in

P1 ∪ P2 ∪ · · · ∪ Pi

Hence, to compute the (i+1)th smallest number in L, we must examine all principal

paths whose origins are x1, x2, . . . , xi, as well as the values of the subordinates of nodes

on those paths.

Based on the above observation, we perform psort(T, k) as follows:

1. Output the root of T as well as its value.

2. Whenever we output a node u, we examine the subordinates of all nodes in

Path(u).

3. Continue this process until we return min{k, n} items.

During this process, we use a priority queue to store the nodes examined so far. We

describe the operation formally in Algorithm 8.

Algorithm 8 psort(T, k)

1: u← the root of T
2: Make a new priority queue Q
3: for k iterations do
4: Output val(u)
5: while u is not a leaf do
6: insert(Q, sub(u), val(sub(u)))
7: u← the child of u with the same value as u
8: if empty(Q) then
9: break
10: else
11: u← delete min(Q)

Lemma 5. Let T be a TT, n = size(T ), and k > 0. Then, psort(T, k) is O(k · log(n)).

Proof. By Lemma 4, every path of T is bounded by logϕ(n). This means that after

the psort(T, k) operation outputs an element, it inserts at most dlogϕ(n)e nodes into

the priority queue. Hence, the size of the priority queue is bounded by k · logϕ(n).
Therefore, the time complexity of this operation is O(k · log(n)).
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3.2.2 Update operations and fix up

Any update operation performed on a TT can potentially cause it to become unbalanced

or have incorrect values for its internal nodes. Thus, we define a ‘repair’ operation

which is used to correct an unbalanced TT and any internal node values which may

require changing.

The operation walks the path from its initial node to the root of the tree. At each

node u on this path, we must perform two tasks:

1. Check whether T (u) is unbalanced; if it is, we perform a rotation to correct it,

then resume the operation.

2. Correct val(u) to be the minimum of the values of its children.

For an exact description, see Algorithm 9.

Algorithm 9 fix up(u)

1: (v, v′)← left(u), right(u)
2: if |h(T (v))− h(T (v′))| > 1 then
3: if h(T (v)) > h(T (v′)) then
4: rotate right(v) . This will cause u to become the right child of v
5: else
6: rotate left(v′) . This will cause u to become the left child of v′

7: fix up(u)

8: val(u)← min{val(v), val(v′)}
9: if u is not the root then
10: fix up(p(u))

3.2.3 changeval

To perform changeval(T, i, n), we first change the value of the ith leaf u to n. This can

make the values of every ancestor of u incorrect; thus, we call fix up(p(u)) to fix T . For

an exact description, see Algorithm 10. Based on Section 1.1, the description will use

u as a parameter to represent the reference we have to the ith leaf of T .

Algorithm 10 changeval(T, u, n)

1: val(u)← n
2: if u is not the root then
3: fix up(p(u))

Lemma 6. Let T be a TT, and let n = size(T ). Then, changeval(T, u) is O(log(n)).
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Proof. By Lemma 4, fix up must modify at most dlogϕ(n)e + 1 nodes. Each such

modification consists of an assignment, a two-way comparison, and possibly a stopping

check, each of which requires constant time. Additionally, as no nodes are added

or removed, no rotations need to be performed by fix up. Thus, we have at most

3 · (dlogϕ(n)e + 1) constant-time operations, which makes changeval(T, u) a O(log(n))

operation.

3.2.4 link

Let L′ = (a′1, a
′
2, . . . a

′
m) denote a list of numbers such that every number in L′ is different

to any number in L, and let T ′ be the TT of L′. Without loss of generality, we assume

that h(T ) > h(T ′); the other case is symmetric.

To perform link(T, T ′), we following right child pointers from the root of T until we

reach a node u such that h(T (u)) ≤ h(T ′). We then cut the subtree T (u) away from

T , and replace it with a new node v. We set left(v) to be u, right(v) to be the root of

T ′, and val(v) as the minimum of the values of its children. This change can cause the

new tree to become unbalanced, and may also require us to modify the values of the

nodes on the path from v to the root. To solve these problems, we call fix up(p(v)). See

Algorithm 11 for an exact description.

Algorithm 11 link(T, T ′) (h(T ) > h(T ′) case)

1: (u, u′)← the root of T , the root of T ′

2: while h(T (u)) > h(T ′) do
3: u← right(u)

4: Create a new node v
5: (right(p(u)), left(v), right(v))← v, u, u′

6: val(v)← min{val(u), val(u′)}
7: fix up(p(v))

Lemma 7. Let T, T ′ be TTs, and let m = |h(T )− h(T ′)|. Then, link(T, T ′) is O(m).

Proof. By the description of link, exactly one subtree of the resulting tree could be

unbalanced, by at most an additional height difference of 1. Thus, we observe that

that link(T, T ′) performs at most one rotation and up to m-many changes to the values

of nodes while walking the path to the root. Therefore, the link(T, T ′) operation is

O(m).

3.2.5 cut

To perform cut(T, i), we need to split the TT T at the ith leaf u to form two TTs: one

containing all leaves to the left of u (and u itself), the other containing the rest. For
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this operation, we first walk the path from u to the root of T , deleting every edge on

the path and incident to it. We also remove any internal nodes which have no children

as part of this process. This breaks T into a collection of subtrees, the root of each of

which was a child of a node on the path from u to the root of T . We then link (using

the link procedure described in 3.2.4) the subtrees containing leaves to the left of u (and

u itself) in T to form a TT T1, and the rest of the subtrees into another TT T2. For an

exact description, see Algorithm 12; as in Subsection 3.2.3, we will use u to denote the

reference to the ith leaf of T .

Algorithm 12 cut(T, u)

1: (x, y)← p(u), u
2: Create two empty TTs T1, T2

3: T1 ← T (y)
4: while x 6= nil do
5: if y = left(x) then
6: T2 ← link(T2, T (right(x)))
7: else
8: T1 ← link(T (left(x)), T1)

9: (y, x)← x, p(x)

Lemma 8. Let T be a TT, u be a leaf in T , and n = size(T ). Then cut(T, u) is

O(log(n)).

Proof. Let P = {u0, u1, . . . , uk} be the path in T from u0 = u to the root of T , where

ui+1 = p(ui) for all 0 ≤ i < k. By Algorithm 12, the cut(T, u) operation separates T

into a collection of TTs

T̂1, T̂2, . . . , T̂k

where each T̂i is either the left or the right subtree of ui. As T is balanced, one

could easily prove by induction on i that

h(T̂i) ≤ 2i− 1

The cut(T, u) operation then iteratively joins the trees T̂1, . . . , T̂k to form two trees

T1, T2, such that T1 contains all leaves to the left of (and including) u, and T2 contains

the other leaves. By Lemma 7 that time time required for any link operation is linear

on the height difference between the two trees being linked. The total running time of
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the sequence of link operations performed is therefore at most

2 ·
k−1∑
i≥1

(
h
(
T̂i+1

)
− h

(
T̂i

))
= 2

(
h
(
T̂k

)
− h

(
T̂1

))
≤ 2(2k − 1)

The value of k is at most h(T ), which is bounded by logϕ(n) according to Lemma 4.

Thus, the total time required for cut(T, u) is O(log(n)).

3.3 Limitations of the TT

Although the TT is a large improvement on the naive solutions presented in Chapter 2,

it still has a major limitation in that its psort operation depends on both the query size

and the number of elements stored. In practical applications, where n could be much

larger than k, it is desirable to make the running time of psort independent of n.

Thus, in Chapter 4, we develop an additional data structure designed to solve the

dynamic partial sorting problem while minimizing the influence of the size of the struc-

ture on the psort operation.



Chapter 4

Layered Tournament Trees

In this chapter, we present an extension of the tournament tree, designed to solve the

dynamic partial sorting problem. This data structure is designed such that the running

time of psort operations on it is (almost) independent of the number of numbers it

stores. We call this structure the layered tournament tree (or LTT).

4.1 The LTT

We describe the layered tournament tree data structure. Throughout, let L =

(a1, a2, . . . , an) be a list of pairwise-distinct numbers.

Intuitively, an LTT of L maintains a number of layers that extend downwards. Each

layer consists of a number of TTs. The tree in the top layer is the TT of L; a tree in

any lower layer stores a principal path in a tree in the layer above.

Formally, we make the following definitions:

Definition 12. Let T be the TT of L. Let P = {u0, u1, . . . , uk} be a principal path in

T , where u0 is the origin of P , and ui+1 = p(ui) for 0 ≤ i < k.

We define the team of P as the list of numbers

t = (val(sub(uk)), val(sub(uk−1)), . . . , val(sub(u1)))

A team in T is a team of some principal path in T .

Note that only a principal path with more than one element has a team. We

generally denote teams with a lower-case t.

Definition 13. We define a layered TT (LTT ) of L as the set ΓL of TTs that satisfies

the following:

39



CHAPTER 4. LAYERED TOURNAMENT TREES 40

• If L = (x), then ΓL = {S}, where S consists of a single node u such that val(u) =

x.

• Otherwise, ΓL contains a TT T of L, as well as an LTT Γt for each team t in T .

More precisely,

ΓL = {T} ∪
⋃
{Γt | t is a team in T}

When the list L is clear from the context, we drop the subscript, weiting ΓL simply

as Γ.

Next, we give a precise definition of layers in an LTT ΓL:

Definition 14. Let T be a TT in ΓL. We say that

• T is in layer 0 of ΓL if T is the TT of L; and

• T is in layer i of ΓL, where i > 0, if T is a TT of a team t in a layer-(i− 1) tree

in ΓL.

If a team is in layer i of Γ, we call it a layer-i team in Γ; we call the tree of such a

team a layer-i tree in Γ. The layer number of Γ is the maximum i ≥ 9 such that a tree

is in layer i of Γ.

Let P be a principal path in a layer-i tree of Γ, where i ≥ 0 and the length of P

is at least 1. By Definitions 12 and 14, Γ contains a TT T of the team of P in layer

(i+1). We call T the team tree of P . The team tree Team(u) of any node u is the team

tree of the principal path containing u.

Recall that the origin of a principal path P s the leaf in P . We introduce the

following notions:

• Suppose u is an internal node in a layer-i tree T in Γ. We define down(u) as the

origin v of the principal path in Team(u) such that val(v) = val(sub(u)).

• Suppose u is a leaf in a layer-i tree T in Γ, where i > 0. We define up(u) as the

internal node v in a layer-(i− 1) tree such that down(v) = u.

This finishes the description of the LTT data structure; see Figure 4.1 for an example

of an LTT.
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22

22 34

22 99 34 40

37 22 99 135 129 40

34

34 37

99 37

135 40 129

37 99

Layer 0

Layer 1

Layer 2

Figure 4.1: An LTT of the data in Figure 3.1. The up and down references are indicated
by a dashed grey line. The layer number is 3.

4.2 Using an LTT for dynamic partial sorting

We now describe and analyze the psort, changeval, link and cut operations for the LTT.

First, we describe the concept of iterated logarithm, which is necessary for the analysis

of the time complexity of the LTT operations.

4.2.1 Iterated logarithm

The factors that determine the time complexity of the dynamic partial sorting opera-

tions are

1. The height of a layer-i tree in an LTT Γ for i ≥ 0; and

2. The layer number of Γ.
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To analyze the height of a layer-i tree in an LTT Γ for any i ≥ 0, we recall the

following function:

Definition 15. Let b > 1 be a real number. The iterated logarithm with base b log∗b(n)

of a number n > b is the smallest i ≥ 0 such that

logb · · · logb︸ ︷︷ ︸
i

(n) ≤ 1

It is known that the iterated logarithm function is defined for all b ≤ e
1
e . The

function lognb is known to be extremely slow-growing; for example, when b is the golden

ratio ϕ, log∗b(10
6) = 6 and log∗b(10

10000) = 7.

More precisely, log∗b(n) is the inverse of the power tower function with base b, defined

as

b ↑↑ n = bb
. .

.
b︸︷︷︸

n

Hence, we have the following lemma, which we state without a proof.

Lemma 9. For any b ≥ e
1
e , for all i ≥ 0, we have

∃n′ > 0∀n > n′ log∗b(n) ≤ logb · · · logb︸ ︷︷ ︸
i

(n)

Lemma 10. For any i ≥ 1, the size of any layer-i team is at most logϕ · · · logϕ︸ ︷︷ ︸
i

(n),

where n = |L|. Furthermore, the layer number of the LTT of L is at most log∗ϕ(n).

Proof. By Lemma 4, the height of any TT is at most logϕ(m), where m is the number

of leaves in the tree. The first statement of the lemma follows directly from the fact

that the number of leaves in a layer-i tree is at most the height of a layer-(i − 1) tree

in the LTT Γ. The second statement follows directly from the first statement.

As an example, suppose that |L| = 1, 000, 000; then, the layer number of ΓL is at

most log∗ϕ(10
6) ≤ 6.

4.2.2 psort

We describe the psort operation on the LTT data structure. As in Subsection 3.2.1, we

use x1, x2, . . . , xn to denote the numbers stored in the list L in monotonically increasing

order.

The algorithm searches for, and outputs, each xi iteratively by exploring the layer-0

TT T . The smallest number x1 is the value of the root of T . If k = 1 or L contains only
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one element, then the algorithm terminates. Otherwise, to find the second-smallest

number x2, let P be the principal path of the root of T . The number x2 is the smallest

number in the team of P .

Unlike in Algorithm 8, where we check through the subordinates of all nodes in P ,

in this algorithm we recursively apply the partial sort operation on the layer-1 team

tree of P . In this way, the search continues in a lower layer.

To formally describe the psort operation on LTTs, we make the following definition:

Definition 16. Let L be a list of numbers with size n. An iterator of L is a data

structure It(L) that supports an operation next(L) with the following property: In the

ith call to next(L), the operation outputs xi if i ≤ n; otherwise, it outputs nil.

An iterator It(L) maintains a priority queue Q, which will contain nodes in T .

The psort operation amounts to creating an iterator It(L) and calling next(L) a fixed

number of times to obtain the partially-sorted numbers. To create an iterator for T ,

the algorithm simply creates an empty priority queue Q.

We will use ui to denote the leaf with value xi in the layer-0 tree of L for 1 ≤ i ≤ n.

For convenience, we consider the output of next(L) to be the leaf ui rather than its

value xi.

We describe the next(L) operation by induction on the number of elements in L.

When the operation next(L) is called the first time, we return the origin of Path(r),

where r is the root of T . In subsequent calls to next(L), if L contains only one element,

then the algorithm returns nil. Suppose L contains more than one element, and assume

that we have defined iterators for lists with fewer elements than L.

Suppose i ≥ 1 and we have made i calls to next(L), which outputs the nodes

u1, u2, . . . ui

Algorithm 13 implements the next(L) operation for the (i+ 1)th call.
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Algorithm 13 next(L) (The (i+ 1)th call)

1: if Team(ui) is not empty then
2: Create an iterator It(Team(ui))
3: a← next(Team(ui))
4: insert(Q, up(a), val(sub(a)))

5: if empty(Q) then
6: Output nil
7: else
8: x← delete min(Q)
9: ui+1 ← the origin of Team(sub(x))
10: b← next(Team(x))
11: if up(b) 6= nil then
12: insert(Q, up(b), val(sub(b)))

13: Output ui+1

Correctness of next

To show the correctness of Algorithm 13, we make the following definition:

Definition 17. Let v be a node in the TT T . The superordinate of v is a node sup(v)

in T whose subordinate belongs to Path(v).

The superordinate set of a set U of nodes is

sup(U) = {sup(v) | v ∈ U}

For the next definition, we consider a set U of nodes in T .

Definition 18. A node v is an U-candidate if there is some u ∈ U such that v ∈ Path(u)

and for any w ∈ Path(u), val(sub(w)) < val(sub(v)) if and only if w ∈ sup(U). We

denote the set of U -candidates as Can(U).

Lemma 11. For every 1 ≤ i < n, sup(ui+1) ∈ Can({u1, . . . , ui}).

Proof. We prove this lemma by induction on i. By the definition of the TT T , u2 is

the subordinate of a node v ∈ Path(u1). Furthermore, val(u2) is the smallest number

in the team of val(u1). Hence, sup(u2) ∈ Can({u1}).
Suppose the statement holds for i ≥ 1. Let x = sup(ui+1). Our goal is to show

that x ∈ Can({u1, . . . , ui}). For any node v ∈ Path(x), we have val(v) < val(ui+1), as

otherwise, v would not be on the same principal path as x. Hence, the head of Path(x)

is uj for some 1 ≤ j ≤ i.
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Let w be a node in Path(x). Suppose val(sub(w)) < val(sub(x)). Since val(sub(x)) =

val(ui+1), Team(Path(sub(w))) would contain a number that has a smaller value than

ui+1. Therefore, w must be sup(uj) for some 1 ≤ j ≤ i. This means that w ∈
sup({u1, . . . , ui}). Conversely, suppose w ∈ sup({u1, . . . , ui}). Then, by choice of ui+1

we have val(sub(w)) < val(ui+1) = val(sub(x)). Thus, x ∈ Can({u1, . . . , ui}).

The next lemma implies the correctness of Algorithm 13.

Lemma 12. For any i ≥ 1, the ith call to next(L) returns the node ui if i ≤ n, and nil

otherwise.

Proof. We prove the lemma by induction on the number of calls to next(L). It is clear

that in the first call to next(L), the algorithm returns the node u1, which is the origin

of the principal path that contains the root of the tree of L.

Consider the second call to next(L). If L contains only one number, then Team(u1)

does not exist and the priority queue Q is empty at line 5. If L contains more than one

element, then Team(u1) is defined. At line 5, Q will store the element x = up(a), where

a = next(Team(u1)) is the node with the smallest value in Team(u1). By definition,

Can({u1}) = {x}.

For the inductive step, suppose we are calling next(L) for the (i+ 1)th time, where

i ≥ 1. We make the following inductive assumption: When the algorithm reaches line

5,

(I1) if L contains no more than i elements, then the priority queue Q is empty;

(I2) if L contains at least i + 1 elements, then the priority queue Q contains exactly

those nodes in Can({u1, . . . , ui}).

If L contains no more than i elements, then by (I1) the algorithm returns nil and

Q remains empty. Suppose instead that L contains at least i + 1 elements. By (I2),

when the algorithm reaches line 5, the priority queue Q contains exxactly those nodes

in Can({u1, . . . , ui}). Let x be the least element in Q. By Lemma 11, x is sup(ui+1).

Thus, the algorithm would locate and return the node ui+1.

We then need to verify that the next(L) operation preserves the inductive invariants

(I1) and (I2). It is clear that (I1) holds at line of the (i+ 2)th call to next(L).

To verify (I2), let S, S ′ denote the sets of nodes stored in the priority queue Q at

line 5 in the (i + 1)th and the (i + 2)th call to next(L) respectively. Let b be the leaf

that has the next smallest value in Team(x) after x. After we finish the (i + 1)th call

to next(L), Q would store the set S \ {x} ∪ {up(b)}. In the (i + 2)th call to next(L),
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before reaching line 5, the algorithm would add the node up(a) to Q, where a has the

least value in Team(ui+1). Therefore, we have

S ′ = S \ {x} ∪ {up(a), up(b)} = Can({u1, . . . , ui, ui+1})

Hence, (I2) is preserved.

As described above, the psort operation on the LTT of L amounts to creating an

iterator of L and calling next(L) the required number of times. By Lemma 12, the

operation outputs the desired numbers in monotonically increasing order.

Time complexity of psort

We now analyze the time complexity of the psort(T, k) operation. Throughout, let T

be the LTT of the list L = (a1, a2, . . . , an).

Suppose t is a layer-i team in ΓL. Any call to the next(t) operation may in turn

trigger a sequence of calls to next on teams in lower layers. The algorithm maintains a

priority queue for every team in which an iterator is created.

Each call to next(t) performs a fixed number of priority queue operations (such as

insert and delete min), at most two calls to the next(t′) operation on some layer-(i+ 1)

team t′, and a fixed number of other elementary operations. Among these operations,

the first call to next(t′) occurs immediately after the (i+1)-iterator of t′ is created. This

call to next(t′) simply involves a pointer lookup, requiring constant time. Furthermore,

by Lemma 4, the number of leaves of the team tree of t′ is at most logϕ(m), where m

is the number of elements in t.

Suppose we perform k calls to next(t) where k ≥ 1. Note that for any team t′ in

layer j > i, the algorithm would make at most k − 1 calls to next(t′). With every call

to next(t′), the number of elements stored in the priority queue increases by at most 2.

Thus the number of elements stored in any priority queue is at most than 2k. Therefore,

the time for inserting an element to or deleting the minimum element from the priority

queue is O(log(k)).

Summing up the above costs over all k calls, the operations perform O(k) number

of priority queue operations, k − 1 calls to next on trees in a layer down, and other

operations that take a total of O(k) time. We use µ(k,m) to denote the time taken by

k calls to next(t) where the team tree of t has m leaves. Thus, there is a constant d > 0

such that:

µ(k,m) ≤

dk log k + µ(k − 1, logϕ(m)) if m > 1;

d otherwise.
(4.1)
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Lemma 13. The psort(T, k) operation is O(log∗ϕ(n) · k · log(k)).

Proof. The psort(T, k) operation makes k calls to the next(L) operation. Thus, the

running time of psort(T, k) is µ(k, n). By Equation 4.1 we get

µ(k, n) ≤ d ·k · log(k)+d ·(k−1) · log(k)+d ·(k−2) · log(k)+ · · ·+d ·(k−s+1) · log(k)+d

where s is the layer number of ΓL. By Lemma 10, s ≤ log∗ϕ(n). Thus, psort(T, k) is

O(log∗ϕ(n) · k · log(k)).

4.2.3 changeval, link and cut

We now describe the changeval, link and cut operations on LTTs. Throughout, let

T be the LTT representation of the list L = (a1, a2, . . . , an), and let T ′ be the LTT

representation of the list L′ = (a′1, a
′
2, . . . , a

′
m). We assume that the elements of L are

pairwise disjoint from elements in L′. Based on Section 1.1, we will use u as a parameter

to represent a reference to the node which is the ith leaf in T in the changeval and cut

operations.

We define each of the changeval(T, u, n), link(T, T ′) and cut(T, u) operations by

induction on the maximum layer number of T, T ′. If an LTT consists of only one layer,

it contains only one node. Therefore, the cut and changeval operations performed on

such an LTT are trivial. To perform link(T, T ′) where both T, T ′ consist only of one

layer, we create a new node v and set left(v), right(v) to be the roots of T, T ′ respectively

in the layer-0 tree, and then create a layer-1 tree with a single node whose value is the

larger of the values of the children of v.

In subsequent sections, we describe and analyze the changeval(T, u, n), link(T, T ′)

and cut(T, u) operations where T, T ′ have more than one layer. The inductive hypothesis

assumes that correct implementations of link and cut on LTTs with fewer layers than

T, T ′ exist.

The fix up operation for LTTs

The changeval, link and cut operations can cause the LTT data structure to become

broken, as the changes to one layer must be reflected correctly on all lower layers.

Thus, we must apply other procedures to restore the LTT structure after such changes.

We refer to this operation as fix up(u), where u is a node in an LTT tree in some layer.

Throughout this chapter, when we refer to fix up, we mean the operation defined here,

as opposed to the same operation defined in Chapter 3.

Intuitively, the fix up(u) operation maintains the LTT structure on the path from u

to the root of the tree once a change has occured on a child. It walks the path from u
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to the root, and performs the following procedures in each step:

1. Separate u from its principal path from below, so that both left(u) and right(u)

are detached from Path(u).

2. Link the smaller of left(u), right(u) with Path(u).

3. Set val(u) as the minimum of the values of its children.

4. If u is not the root, repeat this process with p(u) instead of u.

To separate and link the principal path mentioned above, we use the cut and

link operations on the team trees of the corresponding principal paths. Note that

the above operaton may change the subordinate of u. This requires us to change

the value of down(u) in the team tree Team(u), which can be performed by call-

ing changeval(Team(u), down(u),max{left(u), right(u)}) recursively. Note that the team
trees used as arguments to the link and cut operations, as well as the recursive call to

changeval, have strictly fewer layers than the tree containing u. Thus, by the inductive

hypothesis, these operations have been defined.

For an exact description, see Algorithm 14.

Algorithm 14 fix up(u)

1: if u 6= nil then
2: if val(left(u)) < val(right(u)) then
3: (z, z′)← left(u), right(u)
4: else
5: (z, z′)← right(u), left(u)

6: val(u)← val(z)
7: (T1, T2)← cut(Team(u), down(u))
8: changeval(T1, down(u), val(z

′)) . Change the value of down(u) in the layer below
9: x← link(T1,Team(z))
10: fix up(p(u))

We now analyze the correctness of the fix up(u) operation. More specifically, let v

be an internal node in an LTT. We use the following invariants:

(J1) val(v) = min{val(left(v)), val(right(v))}

(J2) val(down(v)) = val(sub(v))

(J3) If v has a child v′ that is an internal node, and val(v) = val(v′), then down(v), down(v′)

belong to the same team tree Team(v), and down(v) is to the left of down(v′) in

Team(v).
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Intuitively, these three invariants state that the LTT structure is maintained. In-

deed, (J1) states that the value of v is assigned according to the TT property, (J2)

states that down(v) has the correct value, and (J3) states that the team tree of down(v)

is correctly maintained.

To demonstrate the correctness of fix up, we make the following definition:

Definition 19. Let v be a node in the LTT of L. The parent-down closure of v is the

minimal set pd(v) of nodes in the LTT that contains v, and for any node w ∈ pd(v),

1. p(w) ∈ pd(v) if w is not the root of a tree; and

2. down(w) ∈ pd(v) if w is not a leaf in a tree.

We observe that fix up(u) can only update the values, as well as link and separate

team trees, for nodes in the set pd(u). Hence, inuitively, pd(u) denotes the ‘region of

operation’ in the LTT containing u of fix up(u).

For the next lemma, recall that we assume by the inductive hypothesis that a correct

implementation of link and cut can be called on LTTs with fewer layers than the LTT

of u.

Lemma 14. After running fix up(u), (J1) – (J3) hold for every node v ∈ pd(u).

Proof. The proof proceeds by induction on the number of layers in the LTT T of L.

The statement is clear for T with a single layer (which consists of only one node). Now

suppose that T contains m > 1 layers. Take a node v ∈ pd(u) that is in layer 0 of T .

Then, v will be the argument of some call to some recursive call of fix up. During that

call, (J1) holds after running Line 6, (J2) holds after running Line 8, and (J3) holds

after running Line 9 for v.

Suppose that (J1) – (J3) hold for all nodes in pd(u) on some layer i, and v ∈ pd(u)

is an internal node in a layer-(i+1) tree of the LTT. Then, by definition of pd(u), there

is some leaf w in the subtree rooted at v such that w = down(w′) for some w′ ∈ pd(u).

Let w be the rightmost leaf with this propery. The algorithm must have made a call

to changeval(T1, w, val(z
′)) during its execution. In this call to changeval, the recursive

calls visit v, and make (J1) – (J3) hold for v using Lines 6, 8 and 9 respectively.

Tree rotations in an LTT

Before we can describe the link and cut operations for LTTs, we describe the tree rota-

tion operation for LTTs, which is an important subroutine. Throughout this chapter,

any reference to rotate left and rotate right refer to the augmented variants of these op-

erations described here.
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We describe the left rotation rotate left(u); the right rotation operation is symmetric.

To perform rotate left(u), we first separate both u and p(u) from the rest of their

principal paths from above and below. We then perform the left rotation of u as if

for a normal binary tree. Lastly, the restore the principal path of p(u) by caling the

fix up(p(u)) operation. This will fix the principal paths we separated in this operation

and preserve the structure of the LTT. For an exact description, see Algorithm 15.

Algorithm 15 rotate left(u)

1: y ← p(u)
2: if y is not the root then
3: cut(Team(p(y)), down(p(y))) . Separate y from above.

4: cut(Team(y), down(y)) . Separate y from below.
5: cut(Team(u), down(u)) . Separate u from below.
6: Perform a normal left tree rotation on u.
7: fix up(y)

To demonstrate the correctness of the augmented tree rotation operation, we give

the following lemma. It is a consequence of Lemma 14, and the proof is straightforward.

Lemma 15. Let y be the parent of u. After running rotate left(u), (J1) – (J3) hold for

every node v ∈ pd(y).

The operations

We now describe the changeval, link and cut operations on LTTs in detail. Throughout

this section, we use T to refer to an LTT of the list L = (a1, a2, . . . , an) and T ′ to

refer to an LTT of the list L′ = (a′1, a
′
2, . . . , a

′
n). Additionally, based on Section 1.1, the

description will use u as a parameter to represent the reference we have to the ith leaf

of T .

To perform changeval(T, u, n), we simply change val(u) to n, then call fix up(p(u))

to restore the LTT data structure. The correctness of this operation follows from

Lemma 14.

We now describe the link(T, T ′) operation. For simplicity, we only describe the case

when the height of the layer-0 tree of T is greater than the layer-0 tree of T ′; the other

case is symmetric. We first find a node u on the rightmost path in the layer-0 tree of T ,

such that T (u) has the same high as the layer-0 tree of T ′. We then create a new node

v, making it a child of p(u), and set T (u) as v’s left subtree and the layer-0 tree of T ′ as

v’s right subtree. We then fix the principal paths by calling fix up(v). This operation

may leave the resulting layer-0 tree unbalanced; hence, we walk the path from v to the

root, and if we find a node y on this path such that its subtrees are unbalanced, we call

rotate left to correct this.
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This finishes the description of link for LTTs. Note that in this operation, all

recursive calls to link and cut are made on LTTs with fewer layers than T , and are

thus defined by the inductive hypothesis. For an exact description, see Algorithm 16.

Algorithm 16 link(T, T ′)

1: (r1, r2)← the roots of the layer-0 trees of T, T ′ respectively
2: Follow right references from r1 to find u such that T (u) and r2 have the same height
3: Create a new node v and the corresponding node down(v) in the layer below
4: p(v)← p(u)
5: (left(v), right(v))← u, r2
6: fix up(v)
7: Follow p references from v; if we find an unbalanced node, call a rotation operation

to correct it.

We perform the cut(`, u) operation in a similar way to Algorithm 12. The operation

first calls changeval on u to assign it a value smaller than all numbers in T (we call

it −∞ for convenience). In this way, all nodes on the path from u to the root form

a principal path. The operation then walks the path from u to the root, joining all

subtrees to its left into a new tree and all subtrees to its right into another new tree.

Finally it restores the value of u and joins u to the first new tree. We perform all the

joining of trees using the link operation; see Algorithm 17 for an exact description.

Algorithm 17 cut(T, u)

1: a← val(u)
2: changeval(`, u,−∞)
3: (x, y)← p(u), u
4: Create two empty TTs T1, T2

5: while x 6= nil do
6: if y = left(x) then
7: T2 ← link(T2, T (right(x)))
8: else
9: T1 ← link(T (left(x)), T1)

10: y ← x; x← p(x)

11: val(u)← a; link(T1, u) . Link T1 with the restored u

We now examine the correctness of the changeval, link and cut operations. We make

the following lemma:

Lemma 16. Let T be the LTT of L = (a1, a2, . . . , an), T
′ be the LTT of L′ =

(a′1, a
′
2, . . . , a

′
m), and u be a leaf node in the layer-0 tree of T . (J1) – (J3) hold after

performing any of changeval(T, u, x), link(T, T ′) or cut(T, u).
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Proof. For the changeval(T, u, x) operation, as u is a leaf in the layer-0 tree of T , by

Lemma 14, (J1) – (J3) still hold for every node in the LTT after the operation completes.

For link(T, T ′), by Line 6 in Algorithm 16, (J1) – (J3) are preserved for every node. If

the operation must perform a rotation, by Lemma 15, (J1) – (J3) still hold for every

node, thus making link correct. For cut(T, u), (J1) – (J3) hold by the correctness of

changeval and link.

Time complexity

We now analyze the time complexity of the update operations. For any list L with n

elements, we define si(n) as the maximum number of elements of a layer-i team in the

LTT of L. It is clear that s0(n) = n. By Lemma 10, for all n > 0 we have

slog∗ϕ(n)(n) = 1, and

∀i ≥ 0 : si+1(n) ≤ logϕ(si(n)) (4.2)

For convenience, we set si(n) = 1 for all i > log∗ϕ(n).

We will express the complexity of the update operations using the variables si(n).

Lemma 17. For any i ≥ 0, there is a constant n0 > 0 such that for all n > n0 we have∏
j≥i+1

sj(n) ≤ si(n)

Proof. As sj(n) = 1 for all n > 0 and j ≥ log∗ϕ(n), the statement is clear for i ≥
log∗ϕ(n) − 1. The proof proceeds by induction on i. Fix 0 < i < log∗ϕ(n) and suppose

there is n0 such that the statement holds for all n > n0. Then for all n ≥ n0 we have∏
j≥i

sj(n) = si(n) ·
∏
j≥i

sj(n)

≤ s2i (n) (by the ind. hyp.)

≤ log2ϕ(si−1(n)) (by (4.2))

Take n′ such that

log2ϕ(si−1(n
′)) ≤ si−1(n

′).

Then for all n ≥ max{n′, n0}∏
j≥i

sj(n) ≤ log2ϕ(si−1(n)) ≤ si(n).
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Recall that the fix up(u) operation calls itself recursively several times. We analyze

the running time of each call separately. Without loss of generality, we assume in the

next lemma that the list L contains no fewer elements than L′.

Lemma 18. Let n be the number of elements in the list L, and let u be a node in the

LTT T of L. Let T ′ be the LTT of L′. The following hold for the update operations:

(a) Each call to fix up(u) runs in time O (s22(n)).

(b) The fix up(u) and changeval(T, u, x) operations run in time O (s1(n) · s22(n)).

(c) The link(T, T ′) operation runs in time O (d(`, `′) · s22(n)) where d(T, T ′) is the

height difference between the layer-0 trees of T and T ′.

(d) The cut(T, u) operation runs in time O (s1(n) · s22(n)).

Proof. We prove the lemma by induction on the layer number of T . The statements

are clear if T consists of a single layer. For the case when T has more than one layer,

we prove each statement as follows:

(a) We use Time(n, 0) to denote the maximal running time of each call to fix up(u).

It is clear that the number of calls is bounded by the length of the path from u

to the root, which is at most s1(n). Hence the total running time of fix up(u) is

s1(n)Time(n, 0).

Note also that each recursive call of fix up(u) may make a recursive call to fix up

on a team in the layer below, and this recursive call may trigger further recursive

calls to fix up on lower layers of the LTT. Thus for 0 ≤ i ≤ log∗ϕ(n) and any

layer-i team t, we define Time(n, i) as the maximal running time of a recursive

call in a recursive call fix up(v) that is made within fix up(u) on a layer below the

layer containing u. Since the recursive call fix up(v) consists of at most si+1(n)

recursive calls, the total running time of fix up(v) is at most si+1(n)Time(n, i).

To prove (a), we prove by induction on i that Time(n, i) is O(s2i+2(n)) for all

0 ≤ i ≤ log∗ϕ(n).

It is clear that Time
(
n, log∗ϕ(n)

)
= 1. Now suppose t is a layer-i team where

i < log∗ϕ(n). Each recursive call made as part of fix up(v) makes one call to

cut and one call to link. Both of these subroutine calls are made on teams in the

next layer down, which by the inductive hypothesis takes O(si+2(n)s
2
i+3(n)). The

iteration also recursively calls fix up on a team in the next layer down. By the

above argument this takes si+2(n)Time(n, i+1). Lastly, each call also performs a
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fixed number of other elementary operations. Therefore we obtain the following

expression for 0 ≤ i < log∗ϕ(n):

Time(n, i) ≤ c1si+2(n)s
2
i+3(n) + si+2(n)Time(n, i+ 1) + c2

where c1, c2 > 0 are constants. For convenience we drop the parameter n in the

above expression to get

Time(i) ≤ c1si+2s
2
i+3 + si+2Time(i+ 1) + c2 (4.3)

Applying telescoping on (4.3), we obtain

Time(0) ≤ c1s2s
2
3 + c1s2s3s

2
4 + · · ·+ c1s2 · · · slog∗ϕ(n)slog∗ϕ(n)+1s

2
log∗ϕ(n)+2

+ c2 + c2s2 + · · ·+ c2s2 . . . slog∗ϕ(n)

≤ c1

log∗ϕ(n)∑
i=1

(
si+2

i+2∏
j=2

sj

)
+ c2

log∗ϕ(n)∑
i=2

i∏
j=2

sj

≤ c1

log∗ϕ(n)∑
i=1

s2s
2
3si+2 + c2 log

∗
ϕ(n)s2s

2
3 (by Lemma 17)

≤ c1 log
∗
ϕ(n)s2s

3
3 + c2 log

∗
ϕ(n)s2s

3
3

Hence the running time of a single call to fix up(u) is O(log∗ϕ(n)s2(n)s
3
3(n)). By

Lemma 9, log∗ϕ(n) is O(s3(n)) and thus Time(n, 0) is O(s2(n)s
4
3(n)), which by

(4.2), is O(s22(n)).

(b) This statement follows directly from (a) and the fact that the maximum number

of iterations performed by the fix up(u) operation is s1(n).

(c) For the link(T, T ′) operation we use the following inductive hypothesis: Any calls

to cut and fix up on teams at layer-1 of the LTT T takes time c · s2(n) · s23(n) for
some constant c > 0.

Let T1 and T2 be the top layer trees of T and T ′ respectively and d(T1, T2) be the

height difference between T1 and T2. Recall that the link(T, T ′) operation finds a

node u on the rightmost path of T1 such that T (u) and T2 have the same height and

links T (u) and T2 to a new node below this node. Hence the fix up(v) operation

in link(T, T ′) consists of d(T1, T2) iterations. By (a), this call to fix up(v) takes

time c1 · d(`, `′) · s22(n), where c1 is a constant.

The link(T, T ′) operation also potentially makes a call to rotate left(y) which con-

sists of three calls to cut and one call to fix up on teams at a lower layer. By the
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inductive hypothesis, these subroutine calls to takes time c2 ·s2(n) ·s23(n) for some

constant c2 > c. The link(T, T ′) operation also performs O(d(T1, T2)) many other

elementary operations. Therefore the running time of link(T, T ′) is at most

c1 · d(T1, T2) · s22(n) + c2 · s2(n) · s23(n) + c3 · d(T1, T2).

Note that we may pick c to be bigger than c1+ c3 and therefore the above expres-

sion is at most

(c1 + c3) · d(T1, T2) · s22(n) + c2 · s2(n) · s23(n)

which is at most c · d(T1, T2) · s22(n) when n is sufficiently large. Therefore the

running time for link(T, T ′) is O(d(T1, T2) · s22(n)).

(d) Let T0 be the top-layer tree of T . The cut operation first makes a call to

changeval(T0, u,−∞), which by (b) takes time O (s1(n) · s22(n)). It then walks

the path from u to the root. Let P = {u0, u1, . . . , um} be the path in T0 from

u0 = u to the root of T0 where ui+1 = p(ui) for all 0 ≤ i < m. It is clear that

m ≤ s1(n) and thus the traversal itself takes time O(s1(n)).

By Alg. 17, the cut(T, u) operation separates T0 into a collection of trees

T̂1, T̂2, . . . , T̂k

where each T̂i is either the left or the right subtree of ui. As T0 is balanced, one

could easily prove by induction on i that

h
(
T̂i

)
≤ 2i− 1.

The cut(T, u) operation then iteratively joins the trees T̂1, T̂2, . . . , T̂k to form two

trees T1 and T2. Let ni be the number of leaves in the tree T̂i. By (c) the total

running time of the sequence of link operations performed is at most

2
m−1∑
i≥1

(
h
(
T̂i+1

)
− h

(
T̂i

))
· s22 (ni+1)

≤ 2
m−1∑
i≥1

(
h
(
T̂i+1

)
− h

(
T̂i

))
· s22(n)

≤ 2
(
h
(
T̂m

)
− h

(
T̂1

))
· s22(n)

≤ 2s1(n)s
2
2(n).
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Therefore the overall running time of the cut(`, u) operation is O (s1(n) · s22(n)).

We make the following lemma, whose correctness follows from Lemmas 18 and 10.

Lemma 19. Let T be the LTT of a list L such that |L| = n, and let T ′ be the LTT

of a list L′ such that |L′| = m. Also, let a be the absolute value of the difference in

height between T and T ′’s layer-0 trees. Then, changeval(T, u, x) and cut(T, u) are both

O(log2(n)), and link(T, T ′) is O(log2(a)).

4.3 Conclusion

In this chapter, we described an improved data structure for solving the dynamic partial

sorting problem. We have demonstrated that is has better performance with respect

to the psort operation, having an asymptotic time complexity that is almost indepen-

dent of the number of numbers stored in the data structure. The LTT also permits

the changeval, link and cut operations in O(log2(n)) time complexity (where n is the

number of numbers stored), which is still asymptotically sublinear. In Chapter 5, we

will attempt to demonstrate the improved psort performance experimentally, as well as

compare the performance of the TT and the LTT with respect to modification opera-

tions.



Chapter 5

Experimental Results

In this chapter, we aim to test the performance ascribed to the TT and the LTT in

Chapters 3 and 4. We describe the experimental setup and the data used for testing,

and then present and discuss the results, both individually and by comparison. Lastly,

we determine which data structure solves the dynamic partial sorting problem best in

practice.

5.1 Experimental Setup

Each data structure was implemented in Lua. The experiments were conducted us-

ing LuaJIT 2.0.4, patched for Lua 5.2 support. The hardware used to perform the

experiments was a computer running Parabola GNU/Linux-libre 4.0.4-gnu-1 with 64-

bit support. The testing machine has an Intel Core i3-4160 CPU, clocked at 3.6 GHz,

with 8GB of RAM and 16GB of swap space. The data for each test was generated as

follows: for a test of size n, a list of values of the form (1, 2, . . . , n) was created, and

then shuffled randomly. To ensure sensible values and to avoid bias from LuaJIT, each

experiment was repeated 10 times, and their results averaged.

To test psort, two experiments were conducted: the first generated a single tree of

size 50,000, and then performed psort on it with k ranging from 1 to 50,000; the second

experiment generated trees ranging in size from 200 to 50,000, and then performed psort

on each tree, with k fixed at 200. This was designed to show how psort scales if either

the size of the tree, or k, were kept constant.

To test changeval, trees whose size n ranged from 1 to 50,000 were generated. For

each tree, a value 1 ≤ x ≤ n + 1 was reserved (meaning it was not put into the tree).

Then, a random leaf was selected and its value changed to x.

To test link, trees were generated whose size difference ranged from 0 (meaning the

trees had identical heights) to 49,999 (meaning that one tree was a leaf). Then, the

57
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two trees were linked.

To test cut, trees whose size n ranged from 1 to 50,000 were generated. For each

tree, a random leaf was chosen, and the tree was then cut on that leaf.

5.2 TT

5.2.1 psort

The results of the experiments can be seen in Figures 5.1 and 5.2.

Figure 5.1: Performance of psort for the TT with a variable-sized query and a fixed-size
tree.
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Figure 5.2: Performance of psort for the TT with a fixed-size query and a variable-size
tree.

These results clearly demonstrate that the performance of psort in practice is in-line

with the asymptotic time complexity as analyzed in Chapter 3.

5.2.2 changeval

The results of the experiment can be seen in Figure 5.3.

Figure 5.3: Performance of changeval for the TT.

These results demonstrate that the performance of changeval is indeed logarithmic

with respect to the size of the tree being operated on if the position of the leaf being
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modified initially is randomly-selected.

5.2.3 link

The results of the experiment can be seen in Figure 5.4.

Figure 5.4: Performance of link for the TT.

Although the time consumed seems to vary somewhat, especially as the difference

in tree sizes became larger, these results clearly indicate that the performance of link is

indeed logarithmic with respect to the difference in size of the two trees being linked.

This is consistent with our analysis in Subsection 3.2.4.

5.2.4 cut

The results of the experiment can be seen in Figure 5.5.
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Figure 5.5: Performance of cut for the TT.

These results are consistent with our analysis in Subsection 3.2.5, indicating that the

performance of cut is logarithmically-bounded by the size of the tree being separated.

5.3 LTT

5.3.1 psort

The results of the experiments can be seen in Figures 5.6 and 5.7.

Figure 5.6: Performance of psort for the LTT with a variable-sized query and a fixed-
size tree.
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Figure 5.7: Performance of psort for the LTT with a fixed-size query and a variable-size
tree.

These results are very different from what was expected after the analysis in Chap-

ter 4. In both cases, the LTT appears to exhibit linear-time behaviour, which is quite

surprising. We discuss the possible reasons for this in Section 5.9.

5.3.2 changeval

The results of the experiments can be seen in Figure 5.8.

Figure 5.8: Performance of changeval for the LTT.

These results are consistent with the time complexity analysis for this operation
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given by Lemma 18. The higher degree of variance than exhibited by the equivalent

TT operation can be attributed to the larger variance in the amount of work required

to repair lower layers, especially due to the invocation of link and cut operations, which

even on TTs exhibited significant performance variance.

5.3.3 link

The results of the experiments can be seen in Figure 5.9.

Figure 5.9: Performance of link for the LTT.

As with changeval, these results are within expected norms, despite exhibiting a

higher degree of variance than the TT link.

5.3.4 cut

The results of the experiments can be seen in Figure 5.10.
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Figure 5.10: Performance of cut for the LTT.

This is consistent with the results for the LTT changeval and link operations, and is

thus what was expected.

5.4 Comparison

We now indicate the performance difference between the TT and the LTT by graphing

each of the experiments for both of the data structures on the same set of axes.

5.5 psort

The comparison of the two experiments on variable-sized queries and fixed-size trees is

depicted on Figure 5.11; the comparison of the two experiments on fixed-size queries

and variable-size trees is depicted on Figure 5.12.
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Figure 5.11: Comparison of the performance of psort for the LTT and TT with a
variable-sized query and a fixed-size tree.

Figure 5.12: Comparison of the performance of psort for the LTT and TT with a fixed-
size query and a variable-size tree.

This shows that, despite the theoretical analysis, the performance of the LTT is

significantly worse than that of the TT, both in terms of actual values and in terms of

growth. We consider the possible reasons for this in Section 5.9.
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5.6 changeval

The performance of the LTT and TT versions of changeval is depicted on Figure 5.13.

Figure 5.13: Comparison of the performance of changeval for the LTT and TT.

The differences in performance between the LTT and TT versions of changeval is

within expected parameters based on the analysis given in Chapters 3 and 4.

5.7 link

The performance of the LTT and TT versions of link is depicted on Figure 5.14.
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Figure 5.14: Comparison of the performance of link for the LTT and TT.

The differences in performance between the LTT and TT versions of link is within

expected parameters based on the analysis given in Chapters 3 and 4.

5.8 cut

The performance of the LTT and TT versions of cut is depicted on Figure 5.15.

Figure 5.15: Comparison of the performance of cut for the LTT and TT.

The differences in performance between the LTT and TT versions of cut is within

expected parameters based on the analysis given in Chapters 3 and 4.
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5.9 Analysis and conclusion

Overall, the performance of the TT was exactly as expected. The LTT, however,

performed unusually with respect to its query operation, supposedly its main benefit

over the TT. In both cases, its behaviour appears to be roughly linear, which is most

surprising in the second test, as the expected performance of psort for an LTT when

k is kept constant should be roughly constant. Additionally, overall, the LTT psort

performed worse than its TT counterpart by a significant margin.

Overall, the poor performance of the LTT psort operation overall can be explained

by several means. Firstly, the theoretical analysis of the LTT psort operation’s running

time ignores considerable constant factors, which together likely contribute to a much

larger running time than the analysis itself would suggest. Secondly, significant amounts

of state must be kept in order to maintain the iterators used in the LTT psort operation,

which is a likely contributor to the linear-seeming running time of both operations.

Lastly, the relative performance of O(log∗ϕ(n) · k · log(k)) versus O(k · log(n)) only

becomes apparent when n is extremely large, while k is extremely small relative n.

Given that the test data set n to at most 50,000, it is possible that no real performance

gains can be seen at that scale. However, tests at the scale required to confirm this

need very large amounts of memory, which make such testing impractical.

The linear performance of the LTT’s psort when k is kept constant is more difficult

to explain. Although the additional constant factors being ignored by the analysis would

impact the time required, it should not cause a constant-time operation to become

linear. Additionally, the state required by the iterators on a fixed-size query should

only expand as rapidly as the layers do (and indeed, is the reason for the log∗ϕ(n) factor

in the analysis), which also fails to explain this performance. The sudden drop-off in

time required towards the end suggests that once again, the performance may improve

with larger test data, but the test sizes required to validate this claim are too large to

be practical.

Overall, the experiments demonstrate that, for the given size of data, the TT has

better practical performance characteristics than the LTT. In particular, the psort op-

eration on TTs appears to perform much better in practice for TTs than LTTs in the

range of data being tested. Otherwise, the performance characteristics appear consis-

tent with the theoretical analysis provided by Chapters 3 and 4.
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Conclusion and Further Work

6.1 Thesis conclusion

This thesis aimed to solve the dynamic partial sorting problem by presenting a solution

that would permit all of the operations described in Section 1.1. To this end, we initially

discussed some naive solutions and explained why their performance characteristics were

not desirable. To help provide an alternative, we discussed dynamic trees and why

they are more suitable as a basis for a solution to this problem. We then presented two

solutions to the dynamic partial sorting problem: the TT and the LTT.We described

both structures and how they would support the operations required by the dynamic

partial sorting problem, and analyzed the correctness and time complexity of these

operations. Lastly, we experimentally tested both structures, and investigated the

outcomes, both individually and in comparison to each other.

We can conclude that the performance characteristics of the TT as a solution to the

dynamic partial sorting problem are superior to those of the LTT in practical terms.

While we speculate that larger data sets may allow for better performance for the

LTT, the experimental data could not be used to confirm this. While the theoretical

analysis appears to indicate that we can implement a structure that disregards (or

nearly disregards) the size of the data set when performing its queries, it appears that

this does not necessarily hold up in practice. Thus, we believe that the TT is a better

practical solution to the dynamic partial sorting problem on the data sets we measured.

6.2 Further work

We propose three possible directions for future work with the dynamic partial sorting

problem. The first is the concept of optimizing data structures for dynamic partial

sorting with a fixed size (or range of sizes) of queries; the second is the application of

69
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parallelism to the algorithms used to implement the dynamic partial sorting operations;

and the third is the optimization of the resulting structure for external memory use

and persistence[11].

6.2.1 Optimized queries

This idea is similar in principle to optimized binary search trees, as presented in Cormen

et al[6]. These data structures are designed to optimize query operations based on a

history of queries, rearranging the structure to permit the most frequent queries to be

performed the fastest. In the case of the dynamic partial sorting problem, we would

seek to perform optimizations by determining an optimal query size, and then creating

a data structure that could perform this query efficiently.

We can perform these optimizations either statically or dynamically. In the case

of optimizing for query size, in the static case, we have a table of queries and the

probability that a query will have that length (similarly to the optimal BST). We then

determine an expected query length, and make a structure to perform queries of that

length optimally. In the dynamic case, the structure keeps track of query probabilities,

and dynamically rebuilds itself when the expected query length changes.

These are both suitable directions of research, as there is likely to be a fixed query

size that is often needed (such as a database which is used to dynamically emit a ‘Top

10’ list, for example). The dynamic case is more complex, and more suited to this

problem, due to the dynamic nature of the data.

6.2.2 Parallelism

Due to the size of the data that would be typical in an application of the dynamic partial

sorting problem (such as databases performing an SQL query with LIMIT and ORDER

restrictions), parallel implementations of the psort operation, as well as the update

operations, are an interesting possible dimension for future work. Given that research on

parallel implementations of dynamic tree operations has yielded interesting results[19],

it may be possible to achieve significant speed-up in psort queries by using parallel

techniques. Parallel construction and modification of data structures intended to solve

the dynamic partial sorting problem are also worth considering, as the structures are

supposed to support mutation as well as searching.

6.2.3 External memory use and persistence

As the dynamic partial sorting problem is meant to solved for large data structures

(such as databases), another important class of optimizations to consider is the ability
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for the data to be used with external memory. These would likely require a different

implementation, as they are aimed at minimizing the amount of data present in working

memory at any one time. If this is to be employed for databases, these optimizations are

essential, as in-memory data storage quickly reaches a limit that can only be surpassed

efficiently by good use of external storage.
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