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Abstract: By exchanging information directly between non-adjacent protocol layers, 

cross-layer (CL) interaction can significantly improve and optimize network performances 

such as energy efficiency and delay. This is particularly important for wireless sensor 

networks (WSNs) where sensor devices are energy-constrained and deployed for real-time 

monitoring applications. Existing CL schemes mainly exploit information exchange between 

physical, medium access control (MAC), and routing layers, with only a handful involving 

application layer. For the first time, we proposed a framework for CL optimization based 

on user context of ambient intelligence (AmI) application and an ontology-based context 

modeling and reasoning mechanism. We applied the proposed framework to jointly optimize 

MAC and network (NET) layer protocols for WSNs. Extensive evaluations show that the 

resulting optimization through context awareness and CL interaction for both MAC and NET 

layer protocols can yield substantial improvements in terms of throughput, packet delivery, 

delay, and energy performances. 

Keywords: wireless sensor networks; cross-layer optimization; context; ambient intelligence 

 

1. Introduction 

Wireless sensor networks (WSNs) are an enabling technology of smart environments for ambient 

intelligence (AmI). In AmI, WSNs perform human-centric sensing where low-level sensor data on users 
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and their surroundings are collated and processed to infer higher-level user context information for 

context-adaptive AmI applications. The term context refers to information that describes the current state or 

situation of an entity, which can be a person (e.g., user context), place, or object. The high-level user 

context information is a necessity in AmI applications to deliver personalized services to the users in 

an intuitive and intelligent way to support their everyday activities. Moreover, we envision such user 

context information could be harnessed for optimizing the performance of the underlying WSNs 

through cross-layer (CL) interactions.  

By allowing direct information exchange between non-adjacent protocol layers via CL interaction, 

network performances such as energy efficiency and delay can be optimized [1]. This is particularly 

important for WSNs where sensor devices are energy-constrained and deployed for real-time monitoring 

applications. In the current literature, most research on CL optimization for WSNs have focused on 

interactions between lower layers of the protocol stack, i.e., physical, medium access control (MAC), and 

network layers [2]. There was also research on CL optimization that considered application requirements, 

e.g., quality-of-service (QoS) requirements of multimedia applications [3]. 

Unlike these previous works that either were not concerned with the application layer or used the 

application to only define the requirements of CL optimization, this paper focuses on how application 

derived information, i.e., the user context information derived from AmI application, can optimize the 

underlying WSN performance through CL interactions. 

At the system level, an AmI system can adapt its intelligent services to user-related context information. 

However, its underlying WSN rarely considers AmI context information. If user context information 

can influence how an intelligent system responds, there is also a possibility for the underlying network 

to use the user context information. This allows the network protocols to become smart by adapting 

their functionality to user situations. 

For the first time, we proposed a generic and customizable CL framework that utilizes AmI context 

information from application layer for optimizing protocol performance in WSNs [4]. This framework 

can be applied to any layer of the protocol stack and is sufficiently generic to be customized to 

different AmI applications. In this paper, we present the framework’s architecture in more detail and 

apply the proposed framework to jointly optimize the backoff behavior of a contention-based MAC 

protocol, and the path selection of an ad hoc On-demand Distance Vector (AODV) based routing 

protocol for WSNs by adapting their protocol functions in real-time to the user context information 

inferred from an AmI application. 

The rest of the paper is organized as follows. Section 2 outlines related work. Section 3 presents the 

motivating scenario. Section 4 describes the proposed framework. Section 5 illustrates a use case of the 

proposed framework by implementing it to optimize two existing protocols at the MAC and NET 

layers. Section 6 presents and discusses the evaluation results. Finally, Section 7 concludes the paper. 

2. Related Work 

Many existing cross-layer protocols have been designed. However, they often ignore some important 

information such as context information, which can be relevant for network optimization. This section 

reviews a number of representative context-aware cross-layer designs in WSNs. 
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The CIVIC protocol [5] adapts the routing mechanism to the power level of the sensor nodes and 

context information of a network. CIVIC exploits the meta data context information from applications 

for the purposes of application data security and compression. By adapting its routing to the application 

level contexts, CIVIC can select paths based on different security and priority levels for efficient data 

transmissions. However, CIVIC does not specify how it structurally organizes the contexts, and this 

may limit its applicability. 

The energy-efficient Context Adaptive MAC (CA-MAC) protocol [6] for WSNs uses the node 

buffer states and the priority context of upper layer packets to amend the transmission schedule of a 

node by putting the node into the sleep mode whenever possible. CA-MAC only considers application 

level packet priority as a context, and may not behave well under a long burst of high priority packets. 

A hybrid TDMA/contention-based context-aware MAC protocol for wireless body area networks is 

proposed in [7]. The body sensor nodes dynamically adapt its mode of channel access, transmit 

duration, and sampling rate according to changing human body and environmental contexts. However, 

this MAC protocol is designed for a simple star topology network, which is not suitable for large-scale 

WSNs with complex topology and multi-hop communications. 

The context-aware cross-layer (CACL) broadcast scheduling scheme for ad hoc networks [8] uses 

context available locally in a node’s MAC layer such as local node density, current state (idle, 

transmit, receive) and previous transmit duration, to schedule the broadcast of packets from the 

network routing layer in order to minimize broadcast collisions under heavy load conditions. This 

scheme does not use contexts that may be available from other layers or from sources that are external 

to the node. 

In the Context-Aware Clustering Hierarchy (CACH) routing protocol [9,10], the WSN is clustered 

based on the detected environment contexts. A cluster is formed by a group of sensor nodes with their 

sensor readings in a similar range. However, as sensor readings can be non-uniform throughout the 

network, the cluster size may differ significantly between clusters, resulting in unbalanced traffic load 

and energy usage within the network. 

In [11], the Context-Aware Multi-path Selection algorithm (CAMS) selects the right number of 

paths from the available paths for multimedia communication in WSNs. The CAMS only consider the 

data value from sensors (representing brightness and noise levels) as context information. This can  

cause problems such as a difficulty in distinguishing between situations with identical data value in 

different scenarios. 

The Reactive Environmental Monitoring Aware Routing (EMA) [12] is an implementation of a 

generic framework for context aware routing in WSNs. The framework considers the node state, 

received signal strength, and hop count of a route as context criteria for making routing decisions. 

However, Reactive EMA only considers node and network level contexts, but not the context 

information encapsulated in the packets from the application. 

In [13], context information is utilized for QoS management in WSNs, where differentiated QoS 

guarantees can be provisioned to the communication of sensor data according to their spatial and temporal 

correlations. However, only the location and transmission rate of sensor nodes are considered as context 

information, which may limit the options available for managing QoS requirements in WSNs. 

A cross-layer architecture proposed in [14] supports network level context awareness in 

communications. Context is categorized into either “local view” context that is inferred from within a 
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sensor node, or “global view” context that is obtained from external of the node. By unifying context 

representation and cross layer functions, this architecture allows local and global context information to 

be exchanged to achieve better cross layer optimization outcomes. 

It is noted that these previous works were either not concerned with the application layer or used the 

application to only define the requirements of CL optimization. While context-awareness is a feature 

found in most of these works, the types of context considered are limited to those at the protocol level, 

node level, or network level. None of the existing works have considered harnessing the AmI context, 

i.e., user-related context necessary for AmI applications to deliver personalized services to their users 

in an intuitive and intelligent way, to additionally optimize the performance of the underlying WSNs 

through cross-layer (CL) interactions, which is the focus of this paper. 

3. Motivating Scenario 

This section describes a common scenario in the AmI domain, and presents the functions of the 

AmI system and its underlying WSN in the scenario. In addition, it discusses the challenges of 

optimizing WSN with available context information from AmI system. This scenario depicts an 

intelligent event notification system for people in an outdoor AmI environment. Users can be notified 

about the occurrence of physical events in their surroundings that could be relevant to them based on 

their attributes, such as age and disability status, and the context of the events. This system can be 

applied to people in all age groups. 

Figure 1. Scenario overview. 

 

Figure 1 shows the scenario of an intelligent event notification system operating over a WSN deployed 

in an outdoor environment. A WSN is deployed in this environment where some sensor nodes are 

embedded into inanimate objects, such as buildings and roads, while others could be on mobile objects 

such as cars and humans (e.g., wearable sensors). The sensor nodes can continuously monitor and detect 

changes in the physical properties and attributes of their environment. Each person in this environment 
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is assumed to carry a form of smart device, e.g., smart phone, which has an intelligent software agent 

running on it. The intelligent agent can collect sensor data from the underlying WSN where the person 

is located, infer events with the collected sensor data, and notify the user about some inferred events 

that may affect him/her. For instance, a user can receive a notification alert from his smart device when 

it anticipates an incoming vehicle on the user’s movement path. 

Consider the case of Sam, a nine year-old boy playing basketball in his backyard. The ball rolls to 

the street next to the backyard and Sam runs to retrieve it. At the same time, John drives a car that is 

turning into the street where Sam is located. For this notification system, the sensor nodes in the 

environment are publishing their data continuously to the VBs, e.g., data from motion sensors along 

the street, proximity sensors on the backyard fence, and activity sensors worn by Sam. The intelligent 

agent on Sam’s smart device is also receiving the subscribed sensor data from the VBs about the 

surroundings of Sam based on his location, e.g., the sensor data of the street next to his backyard. With 

the collected sensor data, the agent can infer the occurrence of possible events that may affect Sam. At 

this time, the agent infers that a vehicle driven by John may crash into Sam. Hence, the agent declares 

a state of emergency and the smart device immediately alerts Sam not to cross the street until the 

vehicle has passed. Simultaneously, while John is driving, his intelligent agent constantly subscribes to 

receiving sensor data about the streets ahead of his vehicle. In this occurrence, John’s smart device 

notifies him that someone may cross the street ahead, and suggests him to slow down and watch out 

for the person to avoid any potential incident. 

Challenge of Using AmI Context for WSN Optimizations  

The purpose of the WSN in the above AmI scenario is to collect sensor data of the monitored 

environments and deliver them to the intelligent agents for the inference of possible events related to 

particular users. A WSN node can only generate raw sensor data, which may not present any meaningful 

information if the data is not processed further. Therefore, communicating the sensor data from the WSN 

to the intelligent agents is an important part of the AmI system in order to successfully deduce and 

notify the user-relevant events on time. 

In this scenario, the pub/sub based communication is used, in which data from the same sensor can be 

subscribed by different intelligent agents at different rates, i.e., frequency of receiving an update of the 

data, under different situations. For instance, when Sam is detected to be approaching the street, the 

intelligent agent of his smart device takes the sensor data about vehicles on the street very seriously, and 

changes its subscription to receive an update of this sensor data more frequently. On the other hand, the 

same sensor data would be less important to Sam’s agent if the ball had not rolled onto the street, and 

his agent would have just monitor this sensor data at a normal rate. 

Therefore, the importance of a piece of sensor data may not be determined by individual sensor 

nodes, but by an AmI system, such as Sam’s intelligent agent in the above scenario. In addition, 

different agents may perceive the importance of a piece of sensor data differently even at the same 

time. For instance, Sam’s agent will regard the sensor data from the street as highly important, while 

those of his playmates who remain in the backyard may not. Therefore, there is a need for a 

mechanism for the sensor nodes to optimize the communication of their data to the AmI systems in 

different situations. 
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4. Generic Context Aware Cross-Layer Framework 

The importance of the sensor data to particular users can be known by the sensor nodes via reversed 

pub/sub communications, where intelligent agents are context publishers that publish their inferred 

contexts to the VBs, and the sensor nodes are context subscribers that subscribe to particular context 

based on the sensor nodes’ attributes such as location or sensor data type. In other words, a sensor node 

can subscribe to the context of an event occurring in its area and which requires its sensor data in order to 

be inferred. In this way, sensor nodes can become AmI context aware, and accordingly optimize the 

communication of their data to the intelligent agents through cross-layer interaction. 

In this paper, a generic CL framework that can be adapted by any context-aware systems is proposed 

where protocol optimization can be achieved by allowing the inferred AmI contexts to become 

available to the sensor nodes through a context exchange mechanism, and allowing each node to 

control its transmission of any outbound data based on the data content and the inferred context of its 

surrounding. The framework can be implemented in firmware, and each node in the network maintains 

an instance of the implementation. 

This section presents the architecture of the framework, including the functionality and behavior of 

its constituent components. There are three parts to this framework: (i) communication mechanism for 

network-wide AmI context exchange; (ii) node architecture for node-level context handling and CL 

optimization; and (iii) ontology-based context modeling and reasoning mechanism for representing and 

inferring context within this framework. 

4.1. Communication Mechanism 

The communication mechanism of this framework is based on the data-centric pub/sub  

paradigm [15]. Under this mechanism, the AmI system is a publisher that may publish inferred 

contexts, while sensor nodes are subscribers that may subscribe to published contexts. A VB is a 

virtual brokerage entity formed by a cooperative group of sensor nodes that share the responsibility of 

providing context storage and retrieval services. Hence, any AmI context can be disseminated to 

subscribing sensor nodes for making informed optimization decisions based on situations of their 

monitored environment. 

Figure 2. Communication model. 
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Figure 2 presents the communication model of this framework. It illustrates the bidirectional 

information flow: sensor data flow in one direction, and AmI context flow in opposite direction 

between the sensor nodes and AmI intelligent agents. The data structures for the bi-directional pub/sub 

communication are shown in Figure 3. 

Figure 3. Data structures for bi-directional Pub/Sub. 

 

4.2. Node Architecture  

Figure 4 presents the node architecture of the framework. It illustrates the node-level context 

handling and protocol adaptation for CL optimization. This architecture has three hardware components, 

namely sensor element, transceiver, and storage device; and three software modules, namely Pub/Sub 

control, broker management, and context-aware CL optimization. 

Figure 4. Node architecture. 
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The Pub/Sub control module allows a sensor node to perform the roles of both publisher and 

subscriber, i.e., not only can the sensor node publish its sensed data to the VB (for AmI agents to 

subscribe and generate higher-level user contexts), it can also subscribe to receive the high-level user 

contexts from the VB (published by AmI agents and stored on the VB). The broker management 

module is only used when the sensor node becomes a VB member node. It enables the sensor node to 

perform brokerage functions such as storing received published data and subscriptions, and forwarding 

matched published data to subscribers. 

The context-aware CL optimization mechanism is the key constituent of this framework. Through 

context subscription, a sensor node can receive AmI context information, which is stored and later 

retrieved by the Context Manager for processing. The context information is modeled by an ontology. 

With some logic rules and a logical reasoning component, a sensor node can interpret the context and 

configure the protocol parameters for the desired performance. 

4.3. Ontology-Based AmI Context Model  

Representing context information requires a modeling method to standardize and formalize 

information, through which a common understanding of the exchanged (global) AmI context by all 

sensor nodes can be achieved. In this paper, the representation of common AmI contexts such as user 

location and activity is shown in Figure 5, which is based on an ontology model derived from our 

previous work [16]. 

Figure 5. Ontology model for representation of common AmI contexts. 

 

This ontology model supports context representation for common AmI scenarios. The ontology 

captures the basic attributes of a user-relevant event, including attributes of the event itself and those of 

the user (personal and activity attributes) during the event. The class UserEvent is the root entity. Each 

instance of UserEvent represents a detected event relating to/affecting a particular user, and is generated by 

an intelligent agent on behalf of the user. The class UserEvent has three descendant classes: Event, 

Personal, and Activity Attributes. The Event Attributes class presents the facts of the event, such as the 
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location and time of event, the event radius (or perimeter), and the status of the objects within the event 

radius. The Personal Attributes class captures the personal facts of the user, such as age, gender, health, 

and disability status. The Activity class encompasses the details associated with the physical activities 

of the user, such as the type, duration, and frequency of the user’s activity (e.g., walk, run, sleep, talk), 

and the input data (e.g., sensor readings) required for the inference of the activity. 

A representation of this Ontology can be described, for example using RDF/XML serialization: 

<owl:Class rdf:ID=“UserEvent”> 
 <owl:Class rdf:ID=“Event Attributes”> 
 <rdfs:subClassOf rdf:resource=“#UserEvent”/ > 
 </owl:Class> … 
 <owl:Class rdf:ID=“Personal Attributes”> 
 <rdfs:subClassOf rdf:resource=“#UserEvent”/ > 
 </owl:Class> 
 <owl:ObjectProperty rdf:ID=“age”> 
 <rdfs:domain rdf:resource=“#Personal Attributes”> 
 <rdf:range rdf:resource=“xsd:integer”> 
 </owl:ObjectProperty> 
 <owl:ObjectProperty rdf:ID=“disability”> 
 <rdfs:domain rdf:resource=“#Personal Attributes”> 
 <rdf:range rdf:resource=“xsd:disabilitystate”> 
 </owl:ObjectProperty> 
 <owl:Class rdf:ID=“Activity Attributes”> 
 <rdfs:subClassOf rdf:resource=“#UserEvent”/ > 
 </owl:Class> … 

 </owl:Class> 

The context information of a user-relevant event can be represented by one instance of this 

ontology. It is important not to make this context model too complex as the sensor nodes are  

resource-constrained and lack the capacity for complex processing.  

4.3.1. Generality of the Model 

While the context classes and attributes of the ontology model can be used in different AmI 

scenarios, each instance of this ontology will be populated by context data that is scenario-specific. 

Therefore, the ontology model can be scenario-dependent, but only for its context data. Apart from the 

ontology model, the two other components of the proposed framework: communication mechanism 

and node architecture described in Sections 4.1 and 4.2, respectively, are scenario-independent, i.e., the 

same communication mechanism and node architecture can be applied to different AmI scenarios.  

To illustrate the generality of the ontology model itself (not its context data), we followed a design 

evaluation method called scenarios [17], which constructs detailed scenarios around the artefact (in 

this case our ontology model) to demonstrate its utility. Table 1 shows how contexts from four 

different AmI scenarios in literature: smart home [18], smart office [19], outdoor smart lighting [20], 

and elderly care [21], can be expressed by the same ontology model. 
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Table 1. Context representation in different AmI scenarios. 

AmI System User-Event to Detect Context Expression Follow-Up Action 

An ontology- and 

logical rule-based 

smart home  

automation system [18] 

A vocal order from user to 

turn on a suitable light when 

he/she wakes up at night. 

eventLocation (Bedroom) ∧ eventTime 

(Night) ^ activityType (Sleeping) 

Turn on bedside (not ceiling) 

lamp after a vocal order is 

received to avoid hurting the 

user’s eyes at that moment. 

A user going to bed with 

main door unlocked. 

eventLocation (Bedroom) ∧ activityType 

(Sleeping) ∧ eventObject  

(MainDoor, Unlocked)  

Alert user to lock the main 

door. 

An energy saving 

mechanism for  

smart office 

environments [19] 

A user working with PC. 

eventLocation (Office) ∧ activityType 

(Sitting) ^ eventObject (Chair, SeatedOn) 

^ eventObject (Keyboard, Manipulated) 

If user-event NOT detected, 

switch PC and LED screen to 

sleep mode. 

A user at social corner under 

poor natural light condition 

(e.g. due to weather) 

eventLocation (SocialCorner) ∧ 

eventObject (NaturalLightSensor, 

LowLightIntensity) 

Turn on ceiling lamp and adjust 

its level to provide just enough 

light. 

A context-aware and 

agent-based system  

for outdoor smart 

lighting [20] 

A user walking or standing 

around a sharp corner of a 

street with car approaching 

(user is pedestrian) 

eventLocation (Street) ^ eventRadius 

(SharpCorner) ^ activityType 

(Walking ∨ Standing ) ^ eventObject 

(TrafficSensor, OncomingCar) 

Turn on all street lamps at 

sharp corner to their full 

intensity 

Only user is at sharp corner 

(user is pedestrian) 

eventLocation (Street) ^ eventRadius 

(SharpCorner) ^ activityType 

(Walking ∨ Standing) ^ eventObject 

(TrafficSensor, NoCar) 

Turn on all street lamps at 

sharp corner but dim to 50% of 

the full intensity (enough for 

pedestrian’s comfort) 

A user driving towards a 

sharp corner of a street 

with no pedestrians nearby 

(user is car driver) 

eventLocation (Street) ^ eventRadius 

(SharpCorner) ^ activityType 

(Driving) ^ eventObject 

(PedestrainSensor, NoOne) 

Turn on every alternate street 

lamps along the sharp corner to 

their full intensity 

Street is empty (a non-user 

event in this case, thus no 

personal or user activity 

attributes are involved) 

eventLocation (Street) ^ eventRadius 

(SharpCorner) ^ eventObject 

(TrafficSensor, NoCar) ^ eventObject 

(PedestrainSensor, NoOne) 

Switch off all street lamps to 

save energy. 

An abnormal situation 

monitoring and alert 

system for elderly  

care [21] 

Abnormal medical situation: 

user is not exercising but 

his/her heart rate or 

respiration rate is very high 

activityType (NotExercising) ^ 

personalHealth (HeartRate ∨ 

RespirationRate, VeryHigh) Alert medical consultant or 

caregiver about the user’s 

abnormal situations 
Abnormal home situation: 

user is eating, cooking, 

bathing, or exercising at 

night while lights are off 

activityType (Eating ∨ Cooking ∨ 

Bathing ∨ Exercising) ̂  eventTime (Night) ̂  

eventObject (Lights, Off) 

4.3.2. Scenario-Based Customization 

In this section, we illustrate how the proposed ontology-based context model can be customized for 

the motivating AmI scenario outlined in Section 3. The following assumptions have been made:  

• All location information is represented in the form of relative node location defined according to the 

Anchor-Free Localization (AFL) algorithm [22], i.e., in terms of hop counts to 4 corner reference 
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nodes. A user’s smart device is also capable of determining the AFL-based location of the 

events or users. 

• To simplify the context design, personal attributes of a user are represented in terms of a high or low 

vulnerability state. For instance, both children and elderly are commonly considered as vulnerable 

individuals in AmI scenarios and therefore are represented with a high vulnerability state in the 

age-associated attribute. On the other hand, individuals of other ages are represented with a low 

vulnerability state in this attribute. Disability is another common personal attribute in AmI. People 

with certain disability types can be more vulnerable than those with other disabilities in a particular 

AmI scenario. For instance, people with vision or walking impairments are at greater risk in the 

outdoor scenario presented in Section 3. Therefore, they can be represented with a high vulnerability 

state in the disability-associated attribute, while those with other disabilities or otherwise healthy can 

be represented with a low vulnerability state in this attribute. 

• Each sensor node has a simple ontology-based context module for performing simple context 

reasoning tasks. The objective of this reasoning is to determine the importance of the sensor data 

to the context inference process of the intelligent agents. 

A sensor node can use the following first-order logic expression to deduce its data priority context 

after receiving the event context information generated by the intelligent agents: 

(eventLocation (close to the sensor) ∨ eventRadius (sensor within the event radius)) ∧ (personalAge 
(high vulnerability state) ∨ personalDisability (high vulnerability state)) ∧ activityInput (sensor’s 

generated data) ├ SensorData (Priority, High) 

This expression is used by each individual node to determine the priority context of its sensor data 

according to the attributes of the event (either the sensor node is located close to the occurrence of the 

event or the node is within the event radius), personal attributes of the user (age- and disability-associated 

vulnerability), and activity attributes of the user (input data required for inferring the activity). 

For the scenario presented in Section 3, a piece of sensor data is assigned to high priority when the 

following three characteristics are met: 

• The sensor generating the data is close to or within the radius of an event; 

• The age or disability attribute of the user related to/affected by the event is in high  

vulnerability state; 

• The sensor data is required for inferring the activity of the user related to/affected by the event. 

5. Context Aware CL Optimization on MAC and NET Layers 

AmI systems require sensor data for context inference. The importance of a piece of sensor data, 

i.e., its usefulness to the current context inference process, can only be known by AmI. However, if 

sensor nodes can similarly know the importance of any sensor data at any given time through context 

exchange, the WSN can be optimized based on such knowledge. More specifically, situations such as 

the published sensor data on the VBs not matching with any data subscriptions from AmI while the 

required sensor data is delayed or lost due to network congestion can be avoided. The key idea behind 

this context-aware CL approach is to prioritize communications according to AmI context information. 
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Therefore, a sensor node that anticipates its data type will become important for AmI’s current context 

inference process can assign its next data to be published with high priority, and reconfigure its 

protocol parameters accordingly. 

As a use-case of the proposed framework, two existing algorithms, Dynamic Reconfiguration MAC 

(DR-MAC) [23] protocol on the MAC layer, and Delay Aware AODV-Multipath (DAAM) [24] 

routing protocol on the NET layer, have been modified to incorporate the context-aware CL optimization 

framework proposed in Section 4. The modified protocols are referred to as context-aware DR-MAC, and 

context-aware DAAM, respectively. 

5.1. Context-Aware DR-MAC 

The DR-MAC is a contention-based MAC protocol based on unslotted CSMA/CA algorithm. The 

original DR-MAC allows three state settings to control the number of backoffs and backoff exponential 

(BE) according to frame loss rate and latency, as shown in Figure 6. To incorporate AmI context 

information, DR-MAC is modified as shown in Figure 7. 

Figure 6. The original DR-MAC. 

 

Figure 7. Context-aware DR-MAC. 

 

The settings (MinBE, MaxBE, Backoffs) for transmitting high priority sensor data are chosen due to 

its having the lowest packet lost according to the results of original DR-MAC. It is important to ensure 

that important sensor data can arrive at its destination; otherwise it is impossible for the intelligent 

agents that subscribe to the sensor data to correctly perform any context inference processes. This 

packet loss improvement can also improve end-to-end frame latency as shown later in the evaluation 

section. The settings chosen for transmitting low priority sensor data is the default settings for the  

IEEE 802.15.4 standard. 
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5.2. Context Aware DAAM 

The original DAAM is a multi-path reactive routing protocol based on the AODV routing protocol. 

In DAAM, multiple node-disjoint paths can be discovered by a single route discovery procedure. In 

addition, DAAM modifies the original AODV routing algorithm by adding the delay information for 

each available path. The original AODV allows the nodes, after receiving a route reply (RREP) packet, 

to update their routing table entities according to the following rule: 

 if ((seq_numd
a < seq_numd

b) or ((seq_numd
a == seq_numd

b) and (hop_countd
a > hop_countd

 b)) 
 then 
  seq_numd

a := seq_numd
 b 

  hop_countd
a := hop_countd

 b + 1 
  next_hop d

a := b 
 endif 

In AODV, when a node a receives a RREP packet from a one-hop neighbor node b, the node a  

only updates its path to the destination node d according to the destination sequence number 

(seq_numd
a & seq_numd

 b) and hop counts (hop_countd
a & hop_countd

 b) between node a and b. 

DAAM modifies AODV by keeping multiple node-disjoint paths for a pair of nodes. When routing the 

data packet for a particular application type, DAAM uses the following rule to allow the source node 

to select the best path for the packet transmission: 

if (((seq_numd
a == seq_numd

 b) and (route_delayd
a > route_delayd

b)) or ((seq_numd
a < 

seq_numd
 b) and (route_delayd

a < request_delay))) 
 then 
  seq_numd

a := seq_numd
 b 

  hop_countd
a := hop_countd

 b + 1 
  next_hop d

a := b 
  route_delayd

a := route_delayd
 b 

 endif 

where route delay (route_delayd) represents the delay to destination node d, and request_delay 

represents the delay requirement of an application data packet. In this paper, DAAM has been 

modified to function according to the packet priority based on the user context information: 

 if (outbound sensor data == high priority) 
 then 
  send the packet through a low delay path 
 else 
  send the packet through a normal delay path 
 endif 

In this setup, a low delay path is one whose path delay is less than a threshold. Otherwise, the path 

is classified as a “normal” path. This delay threshold should be application-specific and defined before 

the nodes are deployed. 
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6. Evaluation and Analysis 

6.1. Simulation Parameters 

This section evaluates the context-aware CL design proposed in Section 5. Unless otherwise stated, 

the following default simulation settings are used. A WSN with 100 nodes distributed in a 10 × 10 grid 

topology over an area of 200 m × 200 m is simulated in OPNET. Each node has a transmission range 

of 20 m. A VB is formed in the centre of the network with four nodes, and 25 non-VB member nodes  

(Nami = 25) are randomly selected to be AmI context publishers. The remaining nodes publish their 

sensor data to, and subscribe to receive AmI context from, the VB periodically. The VB forwards any 

matched sensor data to the AmI context publishers based on their subscription messages. 

The AmI context consists of event, personal, and activity contexts (Figure 5) whose content is 

randomly generated during the simulation. Six sensor data types are defined, along with five activities 

each requiring up to three sensor data types to be inferred. For each activity, the required number of 

sensor data types (e.g., 1, 2 or 3 types) and the type of sensor data (represented as Types 1−6) are 

randomly generated. For example, Activity one may require three sensor data types (Types 2, 3,  

and 6), while Activity two may require only two sensor data types (Types 1 and 5) in order to be 

inferred. This context structure may describe a context such as “a blind (personalDisability) elderly 

(personalAge) person is walking (activityType) across the Queen Street (eventLocation) traffic 

junction area (eventRadius)”. 

Each AmI context publisher subscribes to sensor data types needed to generate its context, which is 

then published at the rate of 1 frame every five seconds with a frame size of 512 bits. The sensor data 

publishing settings: sensor data publishing interval (Dfreq) and sensor data size (Dsize) will be varied in 

this evaluation. Data rate is set to 250 kbps at 2.4 GHz. The current drawn for radio transmission, and 

radio reception, is set to 17.4 mA at 0 dBm, and 19.7 mA, respectively, based on MICAz’s 

specification [25]. The AmI context publishers are mobile users who move according to a random 

waypoint model with a speed of 1.2 m/s and pause time of 3.6 s [26,27]. 

The IEEE 802.15.4 unslotted CSMA/CA and AODV are the default MAC protocol, and network 

routing protocol, used respectively, during the simulations. Delay threshold for context-aware DAAM 

is set to 1 s, which is the best setting obtained from our preliminary study. All results are the average 

of 10 runs over 180 s. 

6.2. Performance Metrics 

- Delay: the average time for a frame/packet containing sensor data published by a sensor node 

to arrive at the VB. 

- Throughput: network capacity in bits per second based on published sensor data that successfully 

arrived at the VB. 

- Energy cost per delivered frame/packet: ratio of total energy consumed by all nodes to the 

number of successfully delivered published sensor data frames to the VB. 

- Packet delivery ratio (PDR): ratio of the number of packets received by the VB to the total data 

packets sent by all sensor nodes. 
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- Communication overhead: number of control frames/packets sent during the sensor data 

publishing from the sensor nodes to the VB member nodes.  

6.3. Simulation Results 

6.3.1. MAC Layer Results 

This section evaluates the performance of three MAC protocols, DR-MAC, context-aware DR-MAC 

and IEEE 802.15.4 unslotted CSMA/CA, with AODV as the common network routing protocol. The 

results are shown for two traffic settings (normal and high traffic) as summarized in Table 2. 

Table 2. Traffic parameter settings. 

Scenario/Parameter Description/Value 

Scenario 1 Normal traffic 
 Dfreq 2 frames per second 
 Dsize 512 bits 
 Scenario 2 High traffic 
 Dfreq 10 frames per second 
 Dsize 1024 bits 

Figure 8 shows the throughput results of the three MAC protocols. It is observed that the  

context-aware DR-MAC can achieve 22% improvements to the original DR-MAC and 36% 

improvements to CSMA/CA under the normal traffic. For high traffic scenario, the improvements are 

22%, and 64%, respectively. The multiple backoff settings of the DR-MAC based protocols improve 

the frames’ delivery success rate, which in turn improves their overall throughput over that of 

CSMA/CA. This is evidenced from the fewer number of retransmissions per frame delivered by  

DR-MAC-based protocols than CSMA/CA as shown in Table 3. In addition, by utilizing the AmI 

context information, the sensor nodes can control the frame transmissions based on their priority, and 

thus can further improve the overall throughput. 

Figure 9 compares the frame delay among the three protocols. The context-aware DR-MAC 

exhibits the lowest frame delay in both normal and high traffic scenarios. The frame delay is reduced 

by 38%, and 30%, over CSMA/CA, and original DR-MAC, respectively, under normal traffic 

scenario, while it is reduced by 45%, and 28%, respectively, under high traffic scenario. The DR-MAC 

based protocols may increase frame delay at the MAC layer for a pair of neighbor nodes. However, it 

could reduce the overall end-to-end frame delay. By improving the ratio of the frames being delivered 

between a pair of neighbor nodes, fewer route error packets containing the link breakage messages are 

issued by the routing protocol of the relay nodes. Therefore, it can reduce the need of a source node to 

rediscover a path and retransmit the data packet to the destination node. In turn, this can reduce the 

overall frame delay. 
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Figure 8. Frame throughput of MAC protocols. 

 

Table 3. Average number of retransmissions for a successful frame delivery. 

 CSMA/CA DR-MAC DR-MAC (Context-Aware) 

Normal traffic 1.924 1.522 1.302 
High traffic 2.727 2.465 2.273 

Figure 9. Frame delay of MAC protocols. 

 

Figure 10 shows the average energy cost to successfully deliver a frame to the VB. Under  

normal traffic scenario, the context-aware DR-MAC can achieve 25%, and 10%, improvement over 

CSMA/CA, and the original DR-MAC, respectively. In high traffic scenario, the improvement is 35%, 

and 18%, respectively. By using context information to further enhance the delivery success of the data 

frames, the context-aware DR-MAC incurred less energy for transmissions associated with path rediscovery 

and packet retransmission. Therefore, it is more energy-efficient as compared to the original DR-MAC.  
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Figure 10. Energy cost for a successful frame delivery by MAC protocols. 

 

6.3.2. NET Layer Results 

This section evaluates the performance of three network routing protocols: DAAM, context-aware 

DAAM and AODV, with IEEE 802.15.4 unslotted CSMA/CA as the common MAC protocol. Similarly, 

the results are shown for normal and high traffic settings as summarized in Table 2. 

Figure 11 shows the PDR of the three network routing protocols. It is observed that the context-aware 

DAAM can achieve 26%, and 13%, improvement to AODV and original DAAM, respectively, under 

normal traffic. The improvement in PDR under high traffic scenario is 44%, and 18%, respectively. In 

DAAM, multiple node-disjoint paths can increase the success of the packets being delivered to the VB 

since any of the VB member nodes can accept the incoming sensor data packets. This avoids losses due to 

congestion when only a single node, e.g., a cluster head, is the destination for all sensor data packets. 

In addition, the context-aware DAAM makes the sensor data packets traversed through paths 

according to their data priority; this can further improve the packets delivery to the VB. 

Figure 11. PDR of NET protocols. 
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Figure 12 compares the end-to-end delay among the three protocols. Under context-aware DAAM, the 

delay is reduced by 38%, and 32%, over AODV, and original DAAM, respectively, under normal 

traffic scenario, while it is reduced by 45%, and 35%, respectively, under high traffic scenario. The 

path diversity of DAAM significantly improves the delay performance of AODV. By further 

combining with AmI context information, the delay can be further reduced as low latency paths are 

used to transmit the high priority sensor data. 

Figure 12. End-to-end delay of NET protocols.  

 

Figure 13 shows the corresponding energy cost. It illustrates significant energy savings under high 

traffic scenario where the context-aware DAAM reduces the energy cost by 24%, and 15%, over 

AODV, and original DAAM, respectively. Compared to AODV, which only uses a single path to 

transmit all the data between a pair of nodes, more available paths from the DAAM based protocols 

allow the data to be delivered to any member nodes of a VB. This increases the PDR, as shown in 

Figure 11, which in turn improves the energy efficiency. 

Figure 13. Energy cost for a successful packet delivery of NET protocols. 
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6.3.3. Results of Different Protocol Sets 

This section evaluates different protocol sets based on different combinations of the MAC and NET 

layer protocols. A total of 9 protocol sets are defined as shown in Table 4. All sets are evaluated under 

normal traffic scenario with parameters as outlined in Table 2. 

Table 4. Protocol sets. 

Set NET Layer Protocol MAC Layer Protocol 

1 AODV CSMA/CA 
2 AODV DR-MAC 
3 AODV DR-MAC (context-aware) 
4 DAAM CSMA/CA 
5 DAAM DR-MAC 
6 DAAM DR-MAC (context-aware) 
7 DAAM (context-aware) CSMA/CA 
8 DAAM (context-aware) DR-MAC 
9 DAAM (context-aware) DR-MAC (context-aware) 

Figure 14 shows the throughput of all the protocol sets. The largest performance differential among 

the protocol sets is a 64% increase in throughput by Set 9 over Set 1. Generally, it is observed that the 

throughput can be improved by replacing CSMA/CA with a DR-MAC based protocol. For instance, the 

throughput of Set 3 is improved by 36% over Set 1, 27% for Set 6 over Set 4, and 11% for Set 9 over 

Set 7. The less significant improvement for Set 9 over Set 7 could be due to that the context-aware 

DAAM has enhanced the delivery success of the sensor data packets, which leaves less room for 

further improvement by the context-aware DR-MAC.  

Figure 14. Throughput of the protocol sets. 

 

Figure 15 shows the PDR of all the protocol sets. It can be seen that the protocol sets with  

context-aware DAAM can achieve better PDR than the original DAAM under any MAC protocols, 

e.g., an improvement of 18% for Set 7 over Set 4, 14% for Set 8 over Set 5, and 11% for Set 9 over  
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Set 6. There is a 61%, and 25%, improvement for Set 9 over Set 1, and Set 5, respectively. This result 

shows PDR can be improved by using AmI context information. 

Figure 15. PDR of the protocol sets. 

 

Figure 16 compares the end-to-end delay. The result shows that the delay of Set 9 is reduced by 70%, 

and 46%, over Set 1, and Set 5, respectively. By replacing the non-context aware MAC with a  

context-aware version while keeping the same routing protocol, the delay can be reduced by 30% for 

Set 3 over Set 2, 29% for Set 6 over Set 5, and 22% for Set 9 over Set 8. By replacing the non-context 

aware routing with a context-aware version while keeping the same MAC protocol, the delay can be 

reduced by 26% for Set 7 over Set 4, 24% for Set 8 over Set 5, and 20% for Set 9 over Set 6. These 

results indicate that the delay can be reduced when exploiting the context information on the MAC and 

network layers. 

Figure 16. End-to-end delay of the protocol sets. 
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Figure 17 presents the average energy cost to successfully deliver a sensor data packet. In general, 

the protocol sets with DAAM-based routing cost more energy than those with AODV. This is due to 

the higher amount of energy used for transmitting control frames/packets. However, this higher energy 

use is partially offset by a larger number of sensor data packets delivered, resulting in only a moderate 

rise in the energy cost per packet delivered as compared to the protocol sets with AODV. The protocol 

sets with context-awareness are seen to achieve better energy efficiency. For instance, comparing Sets 

(3 and 2; 6 and 5; and 9 and 8) and Sets (7 and 4; 8 and 5; and 9 and 6) show that the energy  

cost per packet is reduced with context-awareness incorporated into the MAC, and network routing 

protocol, respectively. 

Figure 17. Energy cost of the protocol sets. 

 

Figure 18. Communication overhead of the protocol sets. 

 

Figure 18 shows the communication overhead in terms of the number of control frames (MAC layer 

ACK frames) and control packets (routing-related control packets). The result shows that the protocol 
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sets with DAAM-based routing protocol have higher overhead than those with AODV. This is because 

unlike AODV, a route request (RREQ) packet cannot be discarded by any relay nodes during the path 

discovery phase in DAAM. Therefore, there are more RREQ packets being forwarded. In addition, the 

destination nodes have to reply to every RREQ packet received, which results in more route reply (RREP) 

packets as well. The DAAM-based protocol sets generate a similar amount of control packets. This is 

because with multiple available paths, the source node can always select another path, which can satisfy the 

priority requirement of the packet, to the destination node when the previous transmission fails. The route 

discovery procedure is performed and the associated routing overhead incurred only when none of the 

existing paths can be utilized for the transmission. In the simulations, the ACK frames are required for 

every frame transmission between a pair of nodes, where either a data or control packet from the NET layer 

is encapsulated into a frame. Therefore, the number of ACK frames is significantly higher than the total 

routing control packets. 

Table 5 presents the overall rankings for all the protocol sets based on the performance metrics. The 

protocol set with context-aware DR-MAC and context-aware DAAM (Set 9) shows the best overall 

result by ranking first in throughput, PDR, and delay; second in control overhead (only two ranks in 

this metric); and third in energy efficiency. 

Table 5. Performance ranking. 

Performance Metric 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

Throughput Set 9 Set 8 Set 6 Set 7 Set 3 Set 5 Set 4 Set 2  Set 1
PDR Set 9 Set 8 Set 6 Set 7 Set 5 Set 3 Set 4 Set 2  Set 1

End-to-end delay Set 9 Set 6 Set 8 Set 7 Set 3 Set 5 Set 4 Set 2 Set 1
Control frames/packets Set 3; Set 2; Set 1 Set 9; Set 6; Set 8; Set 7; Set 5; Set 4 

Energy efficiency Set 3 Set 2 Set 9 Set 8 Set 6 Set 5 Set 7 Set 1 Set 4

6.3.4. Parameter Effects on Context-Aware Protocol Set 

This section evaluates the context-aware DR-MAC and context-aware DAAM protocol set (Set 9) 

under different traffic, node density, and node mobility settings.  

(A) Effects of Traffic Parameters 

In this section, the number of AmI user nodes (Nami), sensor data publishing frequency (Dfreq), and 

sensor data packet size (Dsize) are varied, as shown in Table 6. 

Table 6. Traffic parameter settings of protocol set 9. 

Parameter Value 

Nami 25, 50 nodes 
Dfreq 0.5, 1, 2, 5, 10 packets per second 
Dsize 512, 1024 bits 

Figure 19a presents the throughput results. It shows that when Dfreq increases, the throughput 

expectedly increases, as more bits are being published by sensors and delivered to VB within a given 

time. For some, it is interesting to note that the highest throughput with Dfreq = 10 is even higher than 

the maximum data rate of 250 kbps specified in Section 6.1. This is because the throughput result is 
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based on the total number of data bits from all data packets received by the VB divided by the 

simulation duration. However, our VB is not a single node, but a cooperative group of four co-located 

sensor nodes that share the responsibility of providing context storage and retrieval services. two or 

more VB nodes may receive concurrently data packets published by other non-VB sensor nodes, 

resulting in an overall throughput higher than that for a single node. 

Figure 19. (a) Throughput; (b) PDR; (c) End-to-end delay; and (d) Energy cost performances 

under traffic parameter effects. 

(a) (b) 

(c) (d) 

Similarly, when the packet size (Dsize) doubles, the throughput increases, but only by approximately 

50%. This could be due to some congestion-related packet losses in the network, but the loss is not 

significant enough to reduce the throughput. However, when Nami increases from 25 to 50 nodes while 

keeping the packet size constant, throughput decreases despite an increase in the amount of sensor data 

forwarded to the AmI nodes, i.e., intelligent agents. This indicates that a serious congestion has 

occurred, and the network is more sensitive to an increase in the number of AmI nodes than an 

increase in the packet size. 

Figure 19b shows the PDR results. It is observed that reasonable PDR, i.e., >50% can be achieved 

when the sensor data publishing frequency is ≤2 packets per second. However, at higher publishing 

frequency, PDR decreases to below 50% for Nami = 50. Similarly, doubling packet size from 512 to 
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1024 bits decreases the PDR. However, the PDR is not decreased proportionally by half, but up to 

13%, and 20%, for Nami = 25, and Nami = 50, respectively. This may explain why the throughput still 

increases in Figure 19a when the packet size increases for a given number of AmI nodes. 

Figure 19c shows the end-to-end delay results, which increase with the publishing frequency.  

As Dfreq increases from 0.5 to 10 packets per second, the delay can increase by up to 5.6 times  

for Nami = 25, Dsize = 512, 6.1 times for Nami = 25, Dsize = 1024, 5.1 times for Nami = 50, Dsize = 512, and 

3.7 times for Nami = 50, Dsize = 1024. Expectedly, the delay performances of the four settings are 

ordered according to the amount of sensor data bits transmitted in each setting, with the lowest delay, 

and highest delay, incurred by the setting Nami = 25, Dsize = 512, and Nami = 50, Dsize = 1024, 

respectively. 

Figure 19d shows the energy cost per packet delivered increases as Dfreq increases. This is because 

more energy is expended to transmit an increasing amount of sensor data, while less of these data can 

be delivered due to increasing network congestion. The result also shows that doubling the packet size 

from 512 to 1024 bits has a greater detrimental impact on the energy efficiency, i.e., higher energy cost 

per packet, than doubling the number of AmI users from 25 to 50 nodes. This may be due to more 

packet reception errors and subsequently more retransmissions when long packets are used. 

(B) Effects of Node Density and Mobility Parameters 

In this section, the node density and node mobility are varied as shown in Table 7. Only one 

parameter is varied at a time (node density or node mobility, but not both). Results are obtained for  

Nami = 25, Dfreq = [0.5, 2, 10] packets per second, and Dsize = [512, 1024] bits, as shown in  

Figure 20. 

Figure 20. (a) Throughput; (b) PDR; (c) End-to-end delay; and (d) Energy cost performances 

under node density and mobility parameter effects. 

(a) (b) 
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Figure 20. Cont. 

(c) (d) 

Table 7. Node density and mobility parameter settings of protocol set 9. 

Parameter Description/Value 

Normal High 

Node density 100 nodes/ 200 × 200 m2 100 nodes/ 100 × 100 m2 
Node mobility (AmI users) 1.2 m/s (walk) 4.4 m/s (run) [28] 

With high node mobility, the throughput and PDR expectedly decrease as more routing paths 

between sensor nodes/AmI users and the VB nodes become unstable. The resulting path re-discoveries 

inevitably increase the end-to-end delay and energy consumption. With high node density, the 

throughput and PDR improve due to more routing paths available. The reduction in end-to-end delay is 

also noticeable as routing paths are generally shorter with less number of hops, which in turn reduces 

the energy cost by as much as 50% compared to the case of normal node density. 

6.3.5. Comparison between Context-Aware and Non-Context Aware DR-MAC/DAAM Protocol Sets 

This section evaluates the performance of the context-aware DR-MAC/DAAM protocol set (Set 9), 

and the original DR-MAC/DAAM protocol set without context awareness (Set 5). Similar to previous 

evaluations, results are shown for both normal and high traffic scenarios. In order to achieve further 

insights, additional results are shown in this section for a light traffic scenario. The traffic parameters 

for all three scenarios are summarized in Table 8. 

Figure 21a,d present the results of the two protocol sets in terms of throughput, PDR, end-to-end 

delay, and energy cost per packet delivered. Clearly, context awareness can enhance the protocol 

performances particularly under high traffic. Protocol set 9 can achieve up to 74%, 68%, 46%, and 

14% improvement over protocol set 5 in terms of throughput, PDR, end-to-end delay, and energy  

cost, respectively. 
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Table 8. Parameter settings for context-aware and non-context aware DR-MAC/DAAM 

protocol sets. 

Scenario/Parameter Description/Value

Scenario 1 Light traffic 

Dfreq 1 frame every 2 s 

Dsize 512 bits 

Scenario 3 High traffic 

Dfreq 2 frames per second 

Dsize 512 bits 

Scenario 3 High traffic 

Dfreq 10 frames per second 

Dsize 1024 bits 

Figure 21. (a) Throughput; (b) PDR; (c) End-to-end delay; and (d) Energy cost comparison 

between context-aware and non-context aware DR-MAC/DAAM protocol sets. 

 

(a) (b) 

(c) (d) 

The improvement can be attributed to the AmI context information which is utilized: (1) for 

adapting the backoff behavior of the MAC protocol to enhance the success of frame delivery between 
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neighboring node pairs; and (2) for prioritizing packets and selecting data paths with delays 

corresponding to the packet priority by the network routing protocol. This is evidenced from the higher 

proportion of high-priority data packets delivered by protocol Set 9 when AmI context information is 

applied, as shown in Figure 21b. This results in improved throughput, PDR, and end-to-end delay. With 

more sensor data packets delivered, the energy efficiency is also improved, i.e., lower energy cost per 

packet delivered. 

7. Conclusions 

In this paper, a generic CL protocol optimization framework based on AmI context information 

from the application layer, in conjunction with an ontology-based context modeling and reasoning 

mechanism, has been proposed. This context-aware CL design provides WSN nodes with the ability to 

gather the AmI context for the purpose of cross-layer optimization that may involve any layer of the 

protocol stack. As a use case, the framework is implemented by two protocols on the MAC and NET 

layers for joint protocol optimizations. The backoff behavior of the MAC protocol and path selection 

of the network routing protocol were modified in response to AmI context information. It is shown that 

the resulting optimization through context awareness and cross-layer interaction can yield substantial 

improvements in terms of throughput, PDR, delay, and energy efficiency.  

A possible direction for future work is to extend the design of our framework to the forthcoming 

paradigm of the Internet of Things (IoT) where a massive number of networked devices will 

communicate over the Internet. Unlike WSNs, which mainly consists wireless sensor devices, IoT can 

encompass any devices, e.g., smart phones, smart appliances, etc., interconnected through wired  

and/or wireless networks. As IoT is increasingly applied to realize the vision of AmI, our framework 

can be extended to adapt the context-aware cross-layer approach for optimizing IoT communications  

in AmI environments. 
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