

Early Warning Signs

in Software Projects

Mihir Kothari

A thesis submitted to Auckland University of Technology in partial
fulfilment of the requirements for the degree of Master of Computer

and Information Sciences (MCIS)

2010

School of Computing and Mathematical Sciences

Auckland University of Technology

Primary Supervisor: Andy Connor

Secondary Supervisor: Stephen MacDonell

2

Table of Contents

Attestation of Authorship 4

Acknowledgements 5

List of Abbreviations 6

Abstract 7

Chapter I: Introduction 8

1.1 Introduction 8

1.2 Research Objectives and Methodology 10

1.3 Thesis Structure 14

Chapter II: Literature Review 15

 2.1 Introduction 15

 2.2 Software Project Failure Problem 16

 2.3 Dealing with Uncertainty 20

 2.4 Theory of Weak Signals 41

 2.5 Early Warnings 48

 2.6 Gaps in the literature 58

 2.7 Summary 60

Chapter III: Research Objectives and Methodology 61

 3.1 Introduction 61

 3.2 Research Objectives 61

 3.3 Research Methodology 62

 3.4 Research Design 64

Chapter IV: Results and Analysis 69

 4.1 Introduction 69

 4.2 Early Warning Signs (EWS) 69

 4.3 SimSE 72

3

 4.4 Evaluation parameters 82

 4.5 Experimental Design 83

 4.6 Experimental Results 87

 4.7 Summary 154

Chapter V: Discussion and Conclusion 155

 5.1 Introduction 155

 5.2 Answers to the Research Questions 155

 5.3 Limitations and Recommendations 157

 5.4 Conclusion 160

References 164

Appendices 174

 Appendix A 175

 Appendix B 177

 Appendix C 180

4

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any

other degree or diploma of a university or other institution of higher learning.

Yours sincerely,

Mihir Kothari

5

Acknowledgements

This research is one of the biggest academic achievements in my life. I am very

grateful for the opportunity to conduct this research and finish it successfully.

First and foremost, I would like to thank my primary supervisor, Andy Connor

whose contributions to the research effort are simply too many to mention here.

I also wish to thank my secondary supervisor, Stephen MacDonell for his ideas,

suggestions, and encouragements.

The participants in this research deserve special thanks. Without their time and

efforts this research would not have been possible.

I would like to thank my parents and my younger brother, for their continuous

support, love, care and countless prayers during my studies.

Last but not least, I would like to thank GOD for His love, His patience, His

guidance, His providence, and ultimately who makes all of these things

possible. Amen.

6

List of Abbreviations

CMM: Capability Maturity Model

CMMi: Capability Maturity Model Integration

EF: Experience Factory

EWS: Early Warning Signs

FDD: Feature Driven Development

GQM: Goal Question Metric

IDEAL : Initiating, Diagnosing, Establishing, Acting and Learning

IPD-CMM: Integrated Product Development Capability Maturity Model

ISO 9000: International Organisation for Standardization 9000

ISO 9001: International Organisation for Standardization 9001

P-CMM: People Capability Maturity Model

PMBOK: Project Management Body Of Knowledge

PMI: Project Management Institute

PSP: Personal Software Process

QIP: Quality Improvement Paradigm

SA-CMM: Software Acquisition Capability Maturity Model

SDLC: Software Development Life Cycle

SDRM: System Development Research Methodology

SE-CMM: Systems Engineering Capability Maturity Model

SIM: Strategic Issue Management

SPI: Software Process Improvement

SPICE: Software Process Improvement and Capability dEtermination

SPIQ: Software Process Improvement for better Quality

SW-CMM: Software Capability Maturity Model

TQM: Total Quality Management

TSP: Team Software Process

WFMS: Workflow Management Systems

WSSIM: Weak Signals Strategic Issue Management

XP: eXtreme Programming

7

Abstract

The software industry has been plagued by the staggering failure rate of

projects, which have resulted in the loss of billions of dollars. The well known

Chaos Report by the Standish Group declared that software projects are in

chaos with only 16.2% of software projects actually being successful in the year

1994 and a more recent study by them suggest that 32% of the projects were

successful in the year 2009 (Eveleens and Verhoef, 2010; Dominguez, 2009;

Bishop, 2009).

The post-mortem examination of failed software development projects reveals

that failures do not happen overnight and that long before the failure, the

projects render significant symptoms or “early warning signs” of trouble

(Kappelman, McKeeman and Zhang, 2006). A warning sign is an indication or

an event that predicts or alerts impending problems. Early warning sign provide

an indication of manifesting risks. This research mainly focuses on a new and

innovative concept known as early warning signs which could be incorporated

into ongoing project risk management to ameliorate the project success rates by

addressing early warning signs encountered during the project. The project risk

management theories are not closely integrated with the early warning

phenomenon but this can apparently be utilised as a tool in project risk

management (Nikander, 2002).

The study utilises the System Development Research Methodology. The

models simulating a typical project environment were designed using a

simulation tool known as SimSE. For the evaluation of the models two

experimental techniques namely “Individual EWS Testing” and “Controlled

Experimental Study” were used. Findings of the research suggest that the

implementation of early warning phenomenon has positive effects on the project

outcomes. Also, there is a positive impact on the project outcomes if the

corrective actions are taken early. The concept of early warning signs looks

promising and this study is just one step in this direction and has introduced this

new concept to the research arena.

8

Chapter I

Introduction

1.1 Introduction

In the 21st century, software has become pervasive and is an instrumental

factor not only in almost every business but also in day to day living. Software

development as a discipline has been into existence for more than 5 decades

and during this time there have been numerous changes and improvements in

software development techniques (Linberg, 1999). The industry has witnessed

at least four generations of programming languages and three major

development paradigms (Reel, 1999). In spite of this tremendous improvement

and maturity of software development techniques, software development

projects still fail and at an astounding rate. The well known Chaos Report by the

Standish Group declared that software projects are in chaos with only 16.2% of

software projects actually being successful in the year 1994 (Eveleens and

Verhoef, 2010; Dominguez, 2009; Bishop, 2009). The term successful means

software projects were able to achieve important and basic software project

parameters like quality, schedule, cost and requirements objectives of the

project. However, since that time it appears that IT project‟s success rate is

improving, albeit slowly. According to a more recent study by the Standish

group, 32% of the projects were successful in the year 2009 (Eveleens and

Verhoef, 2010). Whilst the Chaos report has faced many critiques by several

9

authors regarding the credibility, validity of figures, relevance and integrity

(Eveleens and Verhoef, 2010; Robin and Goldsmith, 2007; Molokken, 2006,

Glass, 2006), it provides some degree of evidence that developing software is

still challenging today as it was at the time of writing of the Mythical Man Month

(Brooks, 1995), though the reasons and their relative impact may have changed

in the intervening period.

Software development projects are difficult to manage and extremely

challenging in nature. There are many reasons why software development

projects are more challenging than projects in other domains, in part because

software projects have inherent characteristics like human interaction,

abstraction, complexity and uncertainty. Out of all these, uncertainty is

considered as one of the most important reasons for causing software project

failures and is possibly caused by the intangible nature of the end product.

This research is addressing this challenge and identifying approaches to deal

with uncertainty so that the project success rates can be ameliorated. This

research mainly focuses on a new and innovative concept known as early

warning signs which could be incorporated into ongoing project risk

management to ameliorate the project success rates by addressing early

warning signs encountered during the project.

The post-mortem examination of failed software development projects reveals

that failures do not happen overnight and that long before the failure, the

projects render significant symptoms or “early warning signs” of trouble

(Kappelman, McKeeman and Zhang, 2006). A warning sign is an indication or

an event that predicts or alerts impending problem(s) (Kappelman et al., 2006).

Early warning sign provide an indication of manifesting risks. According to

Nikander (2002, p. 49), early warning is defined as:

An early warning is an observation, a signal, a message or some
other item that is or can be seen as an expression, an indication, a
proof, or a sign of the existence of some future or incipient positive or
negative issue. It is a signal, omen, or indication of future
developments.

10

Although there is no silver bullet to ameliorate the software project success

rates but if these early warning signs are caught and acted upon early then the

projects could be saved. Early warnings concept is a proactive management

style to deal with uncertainties. The project risk management theories are not

closely integrated with the early warning phenomenon but this can apparently

be utilised as a tool in project risk management (Nikander, 2002).

1.2 Research Objectives and Methodology

It is suggested that implementing early warnings phenomenon may have

positive effects on the project outcomes. But as yet there is no empirical

evidence that demonstrates this. The aim of this research work is to provide

some empirical evidence that there is a value in following and implementing

early warnings phenomenon as indicators used to control project activities. A

further aim of this research work is to provide some empirical evidence that

there is a value in terms of undertaking corrective actions early by

demonstrating that if we delay corrective actions then it has a negative impact

on the project outcomes. These research objectives lead to the following two

research questions which will be answered within this research:

 Does the implementation of early warning phenomenon have positive

effects on the project outcomes?

 Is there positive impact on the project outcomes if the corrective actions

are taken early?

In light of the research questions, let‟s explain the early warnings concept and

what the research questions mean by using simple state diagrams. Let‟s

consider a „project‟ as a series of tasks or activities that transform the project

from one state to another and assume that the project goes perfectly to the

plan. When each task is successfully completed it takes the project to the next

idealised state and the project ultimately reaches the desired end state as

shown in figure 1.

11

S1 S2 S3 S4 S5 S6 S7Task 1 Task 2 Task 4Task 3 Task 6Task 5

Early

Warning

Sign

Figure 1: Ideal Project

This is fine, but as we know, projects rarely go exactly to the plan. So, let‟s

assume that a task “fails” (i.e. it either takes longer time, or produces an

unexpected result). In this case as shown in figure 2, we are assuming that task

3 fails and becomes task 3z.

S1 S2 S3 S4 S5 S6 S7Task 1 Task 2 Task 4Task 3 Task 6Task 5

S4z S5z S6z S7zTask 4z

Tas
k
3z

Task 6zTask 5z

Figure 2: Task 3 fails

Depending on exactly how the task “fails”, it is likely to have an impact on the

downstream plan. So we might have thought that task 4 would take 3 days, but

in fact if we carry on following the plan it may turn out that task 4 (and 5, 6, etc)

takes a different duration and hence becomes task 4z.

The end state S7z, is not same as S7 and might represent an undesirable state

i.e. a failed project.

The concept of early warning signs (EWS) suggests that before the task 3 fails

(in this case) it shows some early warning signs - let‟s say in state 2. If we listen

to the early warning sign and are pro-active and act (take corrective actions)

then in an ideal situation the project goes back to the normal state where task 3

won‟t fail and the project still follows the ideal path.

12

S1 S2 S3 S4 S5 S6 S7Task 1 Task 2 Task 4Task 3 Task 6Task 5

Early

Warning

Sign

Figure 3: Ideal EWS situation

But no impact on timeline is very naïve to say and perhaps in non-ideal

situation, the states may look like as shown in figure 4:

S1 S2 S3 S4 S5 S6 S7Task 1 Task 2 Task 4Task 3 Task 6Task 5

S4a S5a S6a S7aTask 4a

Tas
k
3a

Task 6aTask 5a

Early Warning Sign

Figure 4: Non-ideal EWS situation

Through research question one this study is attempting to investigate whether

the end state S7a is much closer to ideal state S7 if compared to failed state

S7z. Or in other words is state S7z worse than state S7a if compared to ideal

state S7? (i.e. does the implementation of early warning phenomenon have

positive effects on the project outcomes?)

Further as shown in figure 5, depending on the time taken to apply corrective

actions once we have found an early warning sign, project may take different

branches and hence have different end states.

13

S1 S2 S3 S4 S5 S6 S7Task 1 Task 2 Task 4Task 3 Task 6Task 5

S4a S5a S6a S7aTask 4a

Tas
k
3a

Task 6aTask 5a

Early Warning Sign

T
ask 4b

S5b S6b S7bTask 6bTask 5b

Task 5c

S6c S7cTask 6c

Figure 5: Different end states depending on the timing of the application of corrective actions

For example, branch 1 is where corrective action is taken after state 3 and

hence we reach to end state S7a. Branch 2 is where the corrective action is

slightly delayed (compared to branch 1) and it is applied after state 4 and thus

we reach to end state S7b. Branch 3 further delays the application of corrective

action (compared to branch 2) and hence reaches to state S7c. If we don‟t

apply any corrective actions then we might reach to state 7z (which is an

undesirable state). Through research question two this study is attempting to

investigate whether state 7a is better than state 7b; state 7b is better than state

7c; etc, i.e. is there a positive impact on the project outcomes if the corrective

actions are applied early?

This research is both exploratory and constructivist in nature. Based on the

research objectives and the identified research questions, the System

Development Research Methodology (SDRM) as suggested by Nunamaker and

Chen (1990) has been utilised by the research. SDRM methodology has been

used extensively in software engineering and information systems development

research domain and it can accommodate dynamic evolution of the research in

order to create innovations, define new ideas, and develop new technical

capabilities (Limbu, 2008). SDRM has five stages which have been explicated

in chapter 3.

14

1.3 Thesis Structure

This thesis has been divided into five chapters followed by references and

appendices.

Chapter 1 - Introduction provides the overview of the software failure problem

and lays the foundation for this thesis. Software development projects are

difficult to manage and extremely challenging in nature. Human interaction,

abstraction, complexity and uncertainty are four main perceived reasons for

software projects failures. Furthermore, a new concept of early warning signs

was briefly introduced which can be embedded into project risk management to

improve project success rates.

Chapter 2 - Literature Review illustrates the essential background and the

context central to this thesis. It discusses different focal areas to deal with

uncertainties. Further, it also elaborates the theory of weak signals and early

warning phenomenon.

Chapter 3 - Research Objectives and Methodology outlines the research

objectives and the research questions addressed by this thesis. It also

describes the research methodology and the research design employed by the

research.

Chapter 4 - Results and Analysis presents the experiment design and the

experiment results, driven by the research objectives and the research

methodology. It describes the early warning signs used by the research. Also,

the simulation tool SimSE which has been used by the study has been

explicated.

Chapter 5 - Discussion and Conclusion presents the outcome of the

research and answers the research questions of the study. It also forwards the

limitations of the research. Further, it discusses several different directions in

which future work can be undertaken. Finally, it concludes the thesis and

highlights the contribution of this study to the research field.

15

Chapter II

Literature Review

2.1 Introduction

This chapter summarises the literature review of the domain under

consideration (software project failure) and then discusses existing research in

different areas that all have the goal of improving the success of software

projects. It provides a broader context and the motivation of the study. Section

2.2 provides the facts and figures related to software project failure along with a

review of the main perceived reasons for software project failure. In section 2.3,

different potential areas of focus are discussed which have the potential to deal

with uncertainties encountered by the project environment and thereby helping

to ameliorate the project success rate. These areas of focus have the potential

to inform an organisations ability to thrive in a dynamic work environment that is

fraught with uncertainty. Section 2.4 describes the concept of “Theory of Weak

Signals”. It was invented by researcher Dr. Ansoff, in an endeavour to improve

strategic planning methods. This concept if applied in to project environment is

known as “early warnings” phenomenon, which is explained in detail in section

2.5. Further, the interrelation of early warnings phenomenon and project risk

management is also explicated. This section also provides some insights of how

to integrate and apply early warnings in a typical problem environment, though

little research has been done in this area. Section 2.6 provides information

16

about the gaps in the literature and the motivation of the study. Section 2.7

provides the summary of the chapter in the form of the synthesis of the entire

literature review.

2.2 Software Project Failure Problem

The nature of the software development discipline has already been discussed

in Chapter 1. From a business perspective, one key to success lies on the use

of contemporary software for running the businesses and thus providing a

competitive edge. The software development discipline has witnessed at least

four generations of programming languages and three major development

paradigms (Reel, 1999). The first software development paradigm was invented

in 1970s, after the article “Managing the Development of Large Software

Systems” by Winston Royce was published (Larman and Basili, 2003). In that

article, Winston Royce shared his ideas and his model which is widely known as

the “waterfall model”. The waterfall model was the first attempt at formalising

software development paradigms and lifecycle. Following on from the success

of the waterfall model were the Incremental and Spiral models in the 1980s;

Rapid application development (RAD) in 1990s; and Agile software

development methodology in 2001 (Larman and Basili, 2003). In spite of this

tremendous improvement and maturity of software development techniques,

software development projects still fail. In fact, the failure rate of projects has

been astounding. The term failure means software projects fail to fulfil all the

important and basic software project parameters like quality, schedule, cost and

requirements objectives. The well known Chaos Report by the Standish Group

declared that software projects are in chaos with only 16.2% of software

projects actually being successful in the year 1994 (Eveleens and Verhoef,

2010; Dominguez, 2009; Bishop, 2009; Standish Group International, 1995).

Standish Group classified projects in to following three resolution types:

Successful:

The project is completed on time and on budget, with all features and functions
originally specified.

17

Challenged:

The project is completed and operational, but over-budget, over the time
estimate, and with fewer features and functions than initially specified.

Failed:

The project is cancelled before completion, or never implemented.

In the 1995 Chaos report, the Standish Group reported that United States spent

more than $250 billion each year for development of IT applications comprising

of approximately 175,000 projects. Their research also suggested that in the

year 1994, 31.1% of projects were cancelled before they ever got completed;

52.7% of projects had cost 189% of their initial estimates; and 16.2% projects

were successful. The cost of these project overruns, lost opportunities and

failures are really not measurable as it is very complicated task and have so

many different dimensions to consider. According to Tiwana and Keil (2004),

there were around $2.5 trillion spent on IT projects during 1997-2001 with

nearly $1 trillion invested on underperforming projects. Most of the

underperforming projects eventually failed costing companies more than $75

billion each year. According to research findings of Taylor (2000) which

addressed 1027 projects, only 130 projects were successful. The success rate

is just 12.7% which is not much different from the findings of Chaos Report.

Heeks (2003) also reports similar project success rates (15%) as does Shein

(1996), who stated that only 16% of software projects were successful (as cited

in Martin and Raffo, 2000). Efforts by Jones (2004) have similar results. His

research included 250 projects out of which only 25 projects were deemed as

successful which is merely 10% success rate. Authors like Weill and Broadbent

(1998); Barki, Rivard and Talbot (1993); Nidumolu (1995); Nidumolu (1996);

and Lyytinen (1998) have also suggested that software development projects

have been characterised by issues like over time, over budget and not fulfilling

all user requirements (as cited in Jiang and Klein, 2000). Gorden (1999) and

Johnson (1999) also have the same story and demonstrated that most software

projects fail to function as intended and many projects never even got delivered

(as cited in Wallace, Keil and Rai, 2004). Studies by other institutions like

Gartner, GAO report, Carnegie Mellon University, Project Management Institute

18

(PMI) all point out the same reality that “projects very often fail”. Such gloom

and doom is not at all uncommon in the literature. Because software projects

often spiral out of control, Glass (1998) describes these projects as “runaway

projects” whereas Yourdon (1997) describes them as “death-march projects”

(as cited in Linberg, 1999).

However, since Chaos report in 1994 it appears that IT project‟s success rate is

improving, albeit slowly. According to a more recent study by the Standish

group, 32% of the projects were successful in the year 2009 (Eveleens and

Verhoef, 2010). The following figure 6 compares the results of the studies done

by Standish Group in the years 1994, 1996, 1998, 2000, 2004, 2006 and 2009.

It clearly outlines the steady progress and improvements achieved by the

industry in terms of improving project success rates. However, it is important to

understand that the number of projects in to the consideration by the survey has

been different every year. Overall, it looks good with project success rate up,

failure rate down and over runs down as well.

Figure 6: Project success rates as per Standish Group (Eveleens and Verhoef, 2010)

However, the Chaos report has faced many critiques by several authors

regarding the credibility, validity of figures, relevance and integrity. Jorgensen

19

and Molokken (2006) have questioned the research findings of Standish

Group‟s Chaos report. Glass (2006) has also doubted the relevance and

integrity of Chaos report. Robin and Goldsmith (2007) also showed their

concern on Standish report. In fact, Eveleens and Verhoef (2010) have stated

that Standish‟s report results are meaningless for benchmarking.

Considering the use of software in the 21st century and the wealth of software

development insights, 32% success rate of software projects in the year 2009 is

considered low and a probable issue to address. And hence it provides some

degree of evidence that developing software is still challenging today as it was

at the time of writing of the Mythical Man Month (Brooks, 1995), though the

reasons and their relative impact may have changed in the intervening period.

This is supported not just by the Chaos report, but a much wider range of

empirical studies.

2.2.1 Why software development projects fail?

Software development projects are difficult to manage and extremely

challenging in nature. There are many reasons why software development

projects are inherently more challenging than projects in other domains, in part

because software projects have inherently complex characteristics like:

1. Human Interaction: Software development process is basically a human

endeavour. This human element causes issues that relate to the qualities

and nature of human beings especially the way they interact. Baines

(1998) suggested that in a typical software development project

environment 90 to 100% of the resources are people instead of material

resources and therefore they carry higher risks (as cited in Crosby,

2007).

2. Abstraction: Unlike hardware, software is intangible and an abstract

entity. Incomplete software is described in an abstract way and hence it

becomes difficult to manage as it contains no clear visible milestone and

physical manifestation to measure progress and quality (Jurison, 1999).

20

3. Complexity: The inevitable complex nature of contemporary software

makes it challenging for the people to comprehend it effectively.

Complexity not only causes technical problems but also causes

management problems (Garvey, 1997; Jurison, 1999).

4. Uncertainty: Software is volatile and can be easily changed. Change in

user requirements is not uncommon in a typical software development

environment. Software projects face a lot of uncertainties throughout its

life cycle causing an intense pressure to reach the project success

criteria. Some of the uncertainties are due to external risks and beyond

the control of project manager sometimes also perceived as “acts of

God” like earthquakes and hurricanes (Schmidt, Lyytinen, Keil and Cule,

2001).

All the above characteristics make the software development process extremely

challenging. However, uncertainty is considered as one of the most important

reasons for causing software project failures. Project uncertainties are varied in

their nature and can impact a project along all quality dimensions. The agile

software movement has suggested that one solution is to embrace uncertainty

(Anderson, 2004), though that concept is not restricted to agile projects alone.

The idea of embracing uncertainty can be adopted by fostering a more dynamic

management approach.

2.3 Dealing with Uncertainty

Project management has to plan and control the flow of project activities

(Mauerkirchner, 2000). Typically, when management plan projects they create

dependencies between tasks that define an order or sequence. Besides logical

dependencies between activities, they also have to take into consideration

aspects such as time and availability of specialised resources (Mauerkirchner,

2000). Further, each estimated plan depends upon several limiting constraints,

which are influenced by real time decisions based on the uncertainties or

21

disturbances faced by the project environment. Some of the examples of

disturbances faced by a project are:

1) time deviations of project activities

2) resource changes

3) quality objectives not met

Therefore project management strategies should be dynamic and non-

deterministic in nature, and needs the ability of adapting itself due to external

decisions or factors (Mauerkirchner, 2000). Non-deterministic planning of

projects is still not a common approach, though has some grounding in the

academic community (Connor, 2007). The more traditional approach to dealing

with uncertainty is to introduce fixed contingencies in terms of both budget and

schedule to provide a buffer should unforeseen complexity arise (Connor,

2007). Often, these contingencies are proposed at the project outset and not

revised throughout the project progression (Connor, 2007). Similarly, project

plans are not often revised dynamically through the project.

There are a range of areas that can be considered in order to incorporate

dynamic management and foster an attitude of continual refinement. If these

areas are dealt appropriately by the project then there are chances to mitigate

the risks caused due to uncertainty in software projects. These are dealt with in

the next sections.

2.3.1 Requirements Engineering (RE)

Requirements engineering (RE) refers to the process of determining

requirements by analysing customer needs and then representing it

systematically in the form of specifications. A specification is a concise

document consisting of the requirements which software must satisfy it. RE

process is considered to be a bridge between stakeholders and developers.RE

process consists of four distinct activities: elicitation, modelling, validation and

verification (Hofmann and Lehner, 2001). Elicitation is basically understanding

and perceiving the customer‟s requirements. There are different methods but

often used are interviewing users or conducting group sessions or workshops or

22

analyzing documents. Modelling includes converting expert‟s requirements

perceptions in to formal, semi-formal or informal notations (in application

domain‟s context). Different models (e.g. UML models like Use Case, State,

Activity, Sequence, Component diagrams) are used to represent the

information. Validation and verification stage allows receiving feedback from

customers and developers and thereby helping to maintain internal and external

consistency.

Requirements engineering is one of the initial and crucial phases of system

development life cycle, yet recent research has shown that few organisations in

New Zealand adopt any degree of formal requirements activities (Talbot, 2010).

The management of requirements engineering process is inevitably an essential

issue for successful project management (Nyugen and Swatman, 2003).

Ferreira, Collofello, Shunk, Mackulak and Wolfe (2003) demonstrated the

importance of requirements engineering process for a successful project

outcome. They expressed that inability of RE process to deal with volatility

directly effects project management key indicators like cost, schedule and

quality. A very classic example of it is cost of correction of a defect as shown in

figure 7. McConnell (1998) suggested that an error/defect created in early

phases of a project, for example during RE phase costs 50 to 200 times more if

corrected at a later stage compared to a point close to where it was originally

created. The reason is one requirement can easily turn into many design

diagrams which in turn gets converted into hundreds of lines of source code,

heaps of test cases, user manuals, help screens and others. Hence poor RE

can become the cause of project failure.

23

Figure 7: Correcting cost depending on the phase that a defect is corrected (McConnell, 1998)

In theory, the requirements engineering process is considered to be systematic,

incremental and smooth in nature but according to Nyugen and Swatman

(2003), the requirements engineering process should differ from the classical

traditional model in order to incorporate the complexities of current project

environment. They suggested that the RE process is not a smooth, systematic

and incremental evolution of the requirements model but requires periodic

restructuring and reorganising of it. By its very nature, adopting the dynamic

nature of the project requirements should encourage project managers to revisit

and revise their project estimates more frequently. Nyugen and Swatman

(2003) also advised on adding creativity factor in RE process for adding more

flexibility in the process. However they didn‟t provide much information about

what creativity means in RE domain, how it should be implemented and how it

helps to increase flexibility.

24

Hofmann and Lehner (2001) have similar ideas and suggested that RE process

should be able to combat with communication breakdowns, fluctuating

requirements and other uncertainties which emerge during a typical project life

cycle. Getting requirements right is an important and difficult part of software

project. They believed that RE process should be continuous and progressive

till the end of the project to specify a project successfully. They motivated the

idea of performing multiple RE cycles.

To summarise, refining, restructuring, simplifying and reorganising the

requirements specification/model can be one of the effective management

strategies to deal and incorporate dynamic elements in the software

development life cycle.

2.3.2 Planning and Replanning

Strong upfront planning is the cornerstone of successful software development

projects (Jurison, 1999). Project planning consists of identifying the activities,

determining the resource needed and its management to ensure successful

project completion. Planning includes project definition (defining objectives and

requirements; choosing development methodology and defining the work -

WBS), estimation (cost and scheduling) and risk assessment (Jurison, 1999). It

involves selecting the appropriate processes and management related activities

and making important decisions of parameters associated with those activities

like tools, resources and others. Project planning culminates in a software

project plan which is like a roadmap for guiding team members (Jurison, 1999).

Planning is an important phase of software development life cycle and poor

planning has been root cause for many project failures (Jurison, 1999).

Because planning is one of the initial stages of software development life cycle,

it‟s not uncommon that during this phase the known information is incomplete.

Also, in typical project environment the uncertainty factor makes planning

process more vulnerable. Kirk and MacDonell (2009) proposed that as project

progresses, (re)planning should occur in order to eliminate the risks introduced

25

by uncertainty and inadequate information during planning phase. In their work

they expressed that there are two key reasons for (re)planning effort:

1) As all process and management related activities aim to achieve

project objectives/goals, replanning helps to keep a track of any

change which increases the likelihood of the project goals not being

met.

2) Replanning effort helps to keep a check on predictions of uncertainty.

For instance, a project manager might predict that a particular activity

will take a certain amount of time for a developer but this time is

purely approximate and its accuracy depends on many factors like

experience of the developer or project manager, domain expertise,

tools available, and others. Such an uncertainty factor is also present

if the prediction is based on company‟s historical data for similar

projects.

Kirk and MacDonell (2009) also designed a framework which supports

(re)planning for software projects. In addition, Rainer and Shepperd (1999)

suggested the following reasons for replanning effort:

1) Events and issues which were unplanned and unexpected. For

example, important resource leaving the organisation.

2) Events and issues which were expected but can‟t be planned

precisely. For example, working overtime: managers anticipate that

this will be essential but explicitly “when” is not sure.

3) Events and issues which were expected and planned but the original

plans were imprecise. For example, plans prepared on the basis of

incomplete information.

Emran, Pfahl and Ruhe (2008); Nyugen (2006); Srinivasan (2002) also

motivated the idea of replanning and expressed that planning phase should be

iterated in order to support uncertainties in the project. The contemporary and

widely adopted agile software development methodologies employ this idea as

well.

26

2.3.3 Decision Making System

Decision making is a significant aspect of software development life cycle but

there are very few studies uncovering the decision making process in

comparison to other activities like planning, estimating, designing, coding,

testing and others. This is possibly because decision making is embedded in all

other activities; it is not really an activity in its own. The two basic principles of

effective decision making are; a clear apprehension of the decision itself and

the accessibility of proper required information for supporting the decision

(Ncube and Dean, 2002). Both these facets are dealt with the help of proper

decision making system. The traditional static decision making systems were

based on a manager‟s experience (Ruiz, Riquelme, Rodriguez and Ramos,

2002). But now, decision making rules are derived by using dynamic models

which allows the identification of optimal solutions and helps in making good

decisions even with incomplete and scarce data (Ruiz et al., 2002). Nyugen

(2006) believed that “unmatched structures between software development

models and organisations driving them” and “little attention paid to the building

of practical, automated, relatively simple and effective decision models” are

important reasons for delayed decision making process. He proposed a new

decision making model which mainly included four concepts namely

interoperability, mappability, controllability and accountability. Similarly

Mauerkirchner (2000) also presented his model known as Decision Making

System (DMS) which is non-deterministic and dynamic in nature.

A sophisticated project management system should contain a proper decision

making model (Nyugen, 2006). Such systems should allow project managers to

continuously monitor the status of the project with the objective of detecting

deviation between the project plan and reality as soon as possible. In case of

noted difference, a decision should be made for the correction of the project

plan immediately. If the deviation is not addressed immediately and

appropriately it may cause unnecessary delays and thereby leading to project

failure. In situations where uncertainties arise, quick and effective decision

making system could make a difference to the project‟s end result.

27

2.3.4 Software Process Management

A software process is a framework/model for the activities/tasks needed to

achieve high standard software (Pressman, 2001). In order to develop a

software product or a system, one approach is to follow a series of prescribed

steps - a road map which aids to produce a timely and high standard end

product. That road map is known as software process (Pressman, 2001). A

software process determines the approach taken to engineer a given piece of

software. It is a procedural structure that is imposed to manage software

development activities. According to Lonchamp (1993) a software process is a

coherent set of related products, ordered steps, policies, procedures, resources

(human and technological), organisation structures, artefacts, constraints; all

combined together to develop and maintain the requested software product.

There are many similar terms associated to software process, like software

development process and software life cycle.

Many advocates of software engineering suggest that there is an explicit causal

relationship between the quality of the process and the quality of the product

(Halvorsen and Conradi, 2001) .i.e.

Quality (Process) Quality (Product)

And therefore we should focus on software process in order to improve

software‟s (end product) quality. However, there are counter examples that

show that quality in the process doesn‟t lead to quality in the product but

discussion of this side of the argument is out-of-scope of the thesis.

More and more people realise the importance of software process (Halvorsen

and Conradi, 2001) in the era where software success rate is as low as 20%. In

spite of wealth of research insights and domain knowledge the software process

stream is lagging to cope up with rapidly changing business requirements.

Anecdotal evidence and research manifest that there is high rate of

28

discontentment with these software processes (MacCormack and Verganti,

2003). Software processes are surrounded by some serious inadequacies

which cannot deal with uncertainties and dynamic environment in which a

software project lives. Lubelczynk and Parra (2000) stressed on the need to

focus on process and that these processes should be improved continuously in

order to support uncertainties (as cited in Nguyen, 2006). Henderson, Howard

and Walters (2001) voiced the idea that software process is a crucial element

and that it should be improved and reviewed periodically to achieve better

speed and quality of software development. A similar view was expressed by

MacCormack and Verganti (2003), depicting that it is not that processes are

poorly designed or implemented but the problem arises in the inflexibility of their

specification which therefore does not allow organisations to improve the

particulars of the process in order to reflect the unique context of a particular

project.

Further, MacCormack and Verganti (2003) present an innovative way to deal

this problem by recommending that we should adopt a “contingent” approach

towards design of product development software process. Contingent view

concept emerges from the fact that different kinds of project operated in

different environments are potentially to involve different software development

processes if they want to be successful (MacCormack and Verganti, 2003). Or

in other words contingent views entails that the performance of different

software development processes directly relate to the context in which those

processes are operated. Such an idea is also supported by Rai and Al-Hindi

(2000). MacCormack and Verganti (2003) believed that a superior performance

is achieved if there is a certain match in the context between projects and

software development process. In their work they have discussed about two

important concepts, first the need to incorporate flexibility in the process and

second about the sources/types of uncertainties. They believed that the

traditional stage-gate sequential model no longer works effectively in a dynamic

and uncertain environment. Rather they emphasised on more iterative process

which were capable of learning and adapting. They called this process a flexible

one, which refers to the ability to address new, unknown and uncertain

information. In order to realise a flexible process higher investments in

29

architectural/framework design is required as the design needs alterations i.e.

facilitation of process flexibility. A flexible architectural design should be able to

support early integration of the product design (helping to receive performance

feedback at the system level) and also should have the ability to accept

functional changes even at later phases of development in response to newly

encountered information (MacCormack and Verganti, 2003). Getting early

feedback on product performance at system level is an important activity in

order to develop flexible process as it allows acquiring critical insights about the

product‟s design both from technical and market perspective (MacCormack and

Verganti, 2003). Here it is possible to see the emergence of congruent ideas, as

client involvement is promoted by the majority of formal requirements

engineering approaches.

Normally loosely coupled or more modular architecture helps to achieve these

objectives. But such techniques very often cause conflict with the design‟s

primary goal of optimising system level performance of the product. Selection of

product architecture therefore becomes very complex and important task where

projects face higher level of uncertainties compared to projects facing fewer

uncertainties (MacCormack and Verganti, 2003). Their research focussed on

projects which mainly faced two types of uncertainties namely:

1) Platform Uncertainties

2) Market Uncertainties

Platform uncertainties imply the uncertainties involved due to new work that

must be carried out during the project (e.g. change in design). Whereas, market

uncertainties imply the uncertainties involved in facing, understanding,

analysing and identifying customer requirements for the product under

development (e.g. confused customer or customer having less idea/impact of its

product). They used the concept of uncertainties to define the context of the

project.

Their findings suggest that for projects with higher uncertainties, early technical

and early market feedback corresponds to higher performance. Early technical

30

feedback helps to bridge platform uncertainties whereas early market feedback

bridges market uncertainties. Managers should carefully select most

appropriate process with some meaningful investments to optimise them such

that they match the context leading to successful management strategy.

Coming back to software process management, there are two different

dimensions through which software processes can be looked at. The first

dimension is through software process modelling and second one is software

process improvement (SPI).

The first dimension, software process model is defined as a description of a

software process using appropriate modelling languages (Finkelstein, Kramer,

Nuseibeh, 1994). Software process modelling is used to describe software

process abstractly using techniques like state-charts, flowcharts, graphs,

matrixes, Petri-nets, Unified Modelling Language (UML) diagrams (e.g. class,

use case, activity, sequence and collaboration) and others. A study done by Rai

and Al-Hindi (2000) demonstrates that process modelling of software

development projects is positively related to process and product quality

whereas task uncertainty is negatively related to them. They also suggested

that projects facing high level of uncertainties should consider defining process

models forming project management framework by defining tasks, their

sequences, their relationships and logical dependencies.

Normally software process models are used for communication and execution

purposes. Because process models are mainly represented in diagrammatic

form they are perhaps inherently easy to understand and therefore facilitate

effective communication between project stakeholders. Models like class

diagrams are used for execution purposes as they can be easily converted in to

an executable form. Different software process models help to define different

perspectives or views of the software. For example one model may provide the

sequence of the activities while other can provide the information about the

actors involved in those activities. However, it is important to know that even

though process models try to describe/represent the reality of the software it is

31

very difficult to describe/represent all the aspects or views or perspectives of the

software.

From the literature review it appears that there is some confusion over what is

considered a software process model. In many cases, these process models

are actually used to model a software product and not a software process i.e.

process models are used to model software behaviour itself as opposed to

defining the processes used to develop it. This leads to an interesting question

of whether software projects don't concern themselves too much with the "how"

of producing something, and focus on the "what" of the product itself? The

“what” issue focuses on „product‟ and “how” issue focuses on „process‟. From

research it appears that this has been a central point of discussion for a while

now and there has been a pendulum effect to answer this question. In the early

days of contemporary Software Engineering (SE) there was a major focus on

the product. Then people realised that „the product is an outcome of the

process‟ and therefore there was a big push to turn the effort towards process

which hence led to the dominance of frameworks like ISO9000, CMM, and

others. But later people realised that it was possible to have a „good‟ process

(i.e. defined, documented, repeatable, managed, optimised, etc) in place and

still produce bad software and hence the pendulum swung back to the product

again. Attention to both, the 'product' and the 'process' is needed and is

important for the project success. The dominance of one over the other

depends on where the most important problems are. It is possible that the

failure of many software projects could be attributed to getting the wrong

balance between the “what” and the “how".

The second dimension is software process improvement (SPI). Soon after

realising that software processes should be continuously monitored, evaluated,

changed and improved to cope with the requirements of the market,

researchers and practitioners came up with the idea of quality models which

focussed on software process improvement (SPI). SPI focuses on systematic

and structured ways for improving software processes of an organisation. SPI

emerged as an effective solution for process related difficulties and is now

gaining momentum in many organisations to achieve their IT goals

32

(Balandisand Laurinskaite, 2005). There are many SPI models like CMM,

CMMi, SW-CMM, P-CMM, SA-CMM, SE-CMM, IPD-CMM, PSP, TSP, TQM,

ISO 9000, ISO 9001, SPIQ, QIP/EF/GQM, SPICE (ISO/IEC 15504), Six Sigma,

IDEAL and others. Henderson, Howard and Walters (2001) have proposed a

new tool called RolEnactand Schackmann, Jansen, Lischkowitz and Lichter

(2009) in their work have proposed a new tool called QMetric. These tools help

software process analysis and their evaluation and thereby helping to

understand any discrepancies in the process and leading to its improvement.

2.3.5 Workflow Management Systems

With an increasing demand to deal with dynamic work environment evolved the

concept of workflow management systems (WFMS) which provides a new

solution to deal with old problem of monitoring, controlling, optimising and

supporting business processes (Aalst, 1998). According to Workflow

Management Coalition (1996), workflow management system is defined as

follows:

A system that completely defines, manages, and executes workflows
through the execution of software whose order of execution is driven
by a computer representation of the workflow logic.

Other terms used to refer workflow management systems are workflow

manager, business operating system, logistic control system and case manager

(Aalst, 1998). The workload management system concentrates on the logistics

of business processes by assigning tasks to the users according to predefined

workflow plan (Aalst, 1998). But there is a trade-off between the desire to

control the processes and the desire to achieve flexible processes (Pesic,

Schonenberg, Sidorova and Aalst, 2007). It appears that this paradox has

limited the application of workflow management systems (Pesic et al., 2007).

The traditional workflow management systems support the concept of having

computer support for explicitly representing business process logic.

Contemporary workflow management systems provide a wide range of

functionalities. The tasks which the users are allowed to perform are offered to

them in the form of work items through specific work lists by workflow

33

management systems (Mans, Russell, Aalst, Moleman and Bakker, 2009).

WFMS provide flexible environments and the infrastructure to manage business

processes effectively. WFMS helps automating well defined repetitive business

processes and thereby reducing the execution time significantly. It provides

project managers better control over monitoring the process, allocating the

resources and getting feedback. WFMS provide a means for allowing

automated coordination of tasks that may be a part of many critical projects of

an organisation (Sadiq and Orlowska, 2000). The order in which tasks are

executed is very important in WFMS, as tasks are generally interrelated such

that initiation of one set of tasks depends on the successful completion of the

previous set (Sadiq and Orlowska, 2000).

Workflows are normally case based i.e. every set of activities is executed for a

specific scenario or a case (Aalst, 1998). Typical examples of specific cases are

a loan application, a tax declaration, an insurance claim, a request for

information, an order. The main goal of WFMS is to handle these cases in the

best possible manner by executing tasks in a specific order. The information

about the task order is specified by workflow process definition. There are pre-

conditions and post-conditions associated to each task (Aalst, 1998). Each task

is executed by a resource which can either be a machine (e.g. fax, scanner,

printer, etc) or a person (e.g. customer, employee, participant, etc).

Workflow management systems have the capability to work in dynamic

environment. There are many different WFMS models namely DYNAMITE,

DynaFlow, OpenPM, ADEPT, WIDE, WISE and others. Petri nets are widely

used to realise these models. A dynamic workflow management system is

capable of modifying its process model at run time in order to conform to its

dynamic business conditions and unexpected situations (Meing, Su, Lam, Helal,

Xian, Liu and Yang, 2006). One particularly interesting approach to dynamic

workflow management is the Signposting (Clarkson & Hamilton, 2000) method

that is in part based upon the Design Structure Matrix (Steward, 1981)

approach, which in itself has been adapted to dynamic process management

(Eppinger, Whitney, Smith, &Gebala, 1994). The basis of the Signposting

approach is that any given process can be broken down into a series of tasks,

34

and the relationship between tasks and the parameters related to the end

product or process is defined. Dependencies between those tasks define an

order or sequence. A dynamic process is created by recommending the next

task on the basis of “what is known” about the project. Essentially, what

happens is that as "what you know" changes, the approach recommends the

best next task to do. This approach has successfully been applied to a number

of engineering design processes (Clarkson & Hamilton, 2000; Clarkson, Melo, &

Connor, 2000) as well as process visualisation (Clarkson, Melo, & Eckert,

2000).

2.3.6 Cost and Schedule Estimation

Cost and schedule estimation for software projects has been an active area for

researchers over many years. An indication of the vibrancy of this topic can be

gauged from the proliferation of review articles that exist (Boehm, Abts, &

Chulani, 2000; Heemstra, 1990; Jørgensen, 2004; Jörgensen & Shepperd,

2007; MacDonell, 1994; Moløkken & Jörgensen, 2003; Niazi, Dai, Balabani, &

Seneviratne, 2006). Estimation of cost and schedule is one of the most

challenging tasks for a project manager. Generally, they are supposed to

estimate at very initial stages (as early as biding phase) of SDLC where the

information available is highly incomplete and inaccurate. A high bid could result

in losing the bid whereas a low bid could result in a major loss (Connor and

MacDonell, 2006). From this estimate, top level management decides whether

to proceed further with the bid of the project. There is a need to have accurate

estimates and a way to identify and compensate uncertainties. Cost and

schedule estimates are in themselves dynamic, and indeed contain a great deal

of uncertainty. It has been clearly identified that any cost and schedule

estimates needs to be periodically revised to accommodate change as the

degree of uncertainty is discovered or altered (Lederer & Prasad, 1993),

however it is not uncommon for software development projects to simply

estimate once at the beginning of a project and not make periodic revisions.

Poor project management practices such as this have been identified as a

failure factor in software development projects (Charette, 2005).

35

Some approaches have been developed that attempt to model and capture

uncertainty in software project estimations to provide richer schedule

information to project managers (Connor, 2007; Connor &MacDonell, 2006). In

their work, Connor and MacDonell (2007) have proposed a novel way of

tracking uncertainties present in cost and schedule estimates using Monte-

Carlo simulation. Further, they have also linked the estimates with the historical

database of organisation‟s real project data which thereby gives realistic or

practical touch to their approach. Long and Ohsato (2008) have done

considerable work to develop a fuzzy critical chain method for dealing with

project scheduling under uncertainties and resource constraints. Their idea is to

develop appropriate deterministic schedule under resource constraints and then

add a project buffer (PB) to the end of that deterministic schedule to address

uncertainty factor. Computations are done using fuzzy numbers to determine

the size of the project buffer. Once the project execution is started the

penetration level (usage level) of the project buffer is determined and then

dynamically schedule is updated to reflect more accurate schedule and actual

status/progress of the project. Chang, Jiang, Di, Zhu and Ge (2008) used

genetic algorithms to create more accurate schedules and task assignments.

However, still the challenge remains to merge together the rich information

available from such approaches, with progress information available to project

managers in a way that enables the project to be managed in a more dynamic

manner to ensure the project success.

2.3.7 Change Management

Because of the nature of current business world, organisations often have to

change their mode of operations in order to attain sustainable competitive

advantage (Bloodgood and Salisbury, 2001). Change management helps to

face these challenges and realise the ever changing needs of the customers

(and business). Change management is a structured and a systematic

approach of starting and managing the change process. During the change

process there is a transition from current state (of project(s), system(s),

process(es)) to a desired future state (defined by the required change)

36

(Creasey, 2007). It is crucial at both organisation and at strategic level. The

ultimate goal of change management is to efficiently improve the organisation‟s

practice of „how work is done‟ to incorporate the required change (Creasey,

2007). A change normally impacts any of the following four parts of an

organisation (Creasey, 2007):

1) Processes

2) Systems

3) Organisation structure

4) Job roles

Project management and change management share a close relationship and

often go hand in hand. Project management emphasizes on applying

techniques and skills to project activities to meet requirements whereas change

management emphasizes on techniques to manage the „resource (people) side‟

of the change to achieve business objectives (i.e. meet requirements in a typical

project environment) (Creasey, 2007). Both have separate and independent

approach but are integrated in practice. Resource and knowledge management

are other two disciplines related to change management. Figure 8 below

demonstrates how both project and change management collectively focuses

on successful transition from current state to the future state as defined by the

„change‟.

Figure 8: Project and Change Management Collaboration (Creasey, 2007)

37

Advocates of software engineering suggest that „change‟ contain two sides one

a „technical‟ side and second a „people‟ side. Project management focuses on

the technical side whereas change management focuses on the people side.

Change management helps personnel and individual transitions for the

realization and adoption of change. Typically in a project management

environment, change management acts as a project management process

aiming to introduce changes to a project formally (Creasey, 2007). Sometimes

project manager acts as a change manager.

Since the need for a change is often unknown and unpredictable, change

management is often ad hoc, discontinuous and reactive (By, 2005). Change

should be initiated and controlled using proper change management techniques

and framework. Effective change management is considered as an essential

element for the survival in today‟s highly evolving and competitive environment

(By, 2005). Lack of proper techniques and framework may result in

unsuccessful management of change. There are some widely known change

management frameworks like ADKAR model, Kubler Ross change model,

Prosci‟s methodology, Lewin Change model and others. However, selecting a

framework and optimizing it to fit with the organisation‟s practices, policies and

structure may be challenging.

2.3.8 Agile Methodologies

In light of conventional software development life cycles and software project

failures emerged agile methodologies. Agile methodologies are also known as

lightweight or lean methodologies. Its built on four values i.e. adapting to

changing requirements, higher customer satisfaction, iteratively delivering

working software model, and close collaboration of customers (business people,

clients and end users) and developers (Paetsch, Eberlein and Maurer, 2003).

Agile methodologies like Extreme Programming (XP), Feature driven

development (FDD), Scrum and others are being touted as the next generation

software development methods (Paulk, 2002; Bose, 2008). Anecdotal evidence

shows that agile methodologies are certainly effective for dealing with frequently

38

changing requirements where as ineffective for stable requirements and mission

or life critical projects, however there is an ongoing discussion regarding the

suitability of agile methods for large scale projects.

Paulk (2002) believes that agile methodologies are the best choice for the

current volatile and high speed world of software development. Highsmith

(2000) also believes that agile methodologies provide iteration over software

design and requirements by promoting more communication/interaction

between the team members. Beznosov and Kruchten (2004) claim that agile

methodologies help to reduce software project failures. This claim was also

supported by Kuppuswami, Vivekanandan, Ramaswamy & Rodrigues (2003)

and Abrahamsson, Warsta, Siponen & Ronkainen (2003) suggesting that by

mitigating project risks agile methodologies helps in reducing software project

failures. However the supporting researchers do not provide empirical evidence

to back their claim. Agile methodologies also have been widely criticized. A very

contrasting view was forwarded by Sharp, Robinson & Segal (2004) and Kirk &

Tempero (2006). They argued that agile methodologies may introduce new

complexities and thereby leading to the introduction of new risks.

Williams (2005) suggested that software projects characterised by complexities,

time constraints, uncertainties should opt for agile methodologies. Whereas

Boehm and Turner (2003) claimed that software projects characterised by

highly predictable, requiring few changes, stable and mission or life critical

projects should opt for conventional (plan driven) methodologies. The summary

is that agile methodologies employ many good software engineering practices.

However some of the practices are at an extreme end of the spectrum which

causes controversial arguments (Paulk, 2002). Probably, a hybrid model

combining both plan driven methods and agile methods could be more effective

and might be an effective approach that bridges both extremes of viewpoint

(Boehm, 2002).

39

2.3.9 Risk Management

Risk is defined as the likelihood or probability of failing to achieve objectives

and the consequence of not achieving those goals (Conrow and Shishido,

1997). Risks are the factors which if present can adversely affect a project

(Wallace and Keil, 2004). Anything which can endanger project‟s success can

be referred as a risk. Project Management Body of Knowledge (PMBOK)

defines risk as a condition or uncertain event if occurs, has positive or negative

effects on project objectives (PMI, 2000). Project failures are the outcome of

unattended or unaddressed or unmanaged risks (Alter & Ginzberg, 1978;

McFarlan, 1981; Charette, 1989; Ginzberg, 1981; Boehm, 1991; Barki, Rivard,

Talbot, 1993; as cited in Keil, Tiwana, Bush, 2002). Risks are present at every

levels of project. Table 1 below shows the glimpse of some of the key risk

issues at different levels.

Risk Grouping Software Risks
Project level Excessive, immature, unrealistic, or unstable

requirements

 Lack of user involvement

 Underestimation of project complexity or dynamic nature

Project attributes Performance shortfalls (includes errors and quality)

 Unrealistic cost or schedule (estimates and/or allocated
amounts)

Management Ineffective project management (multiple levels
possible)

Engineering Ineffective integration, assembly and test, quality
control, specialty engineering, or systems engineering
(multiple levels possible)

 Unanticipated difficulties associated with the user
interface

Work environment Immature or untried design, process, or technologies
selected

 Inadequate work plans or configuration control

 Inappropriate methods or tool selection or inaccurate
metrics

 Poor training

Other Inadequate or excessive documentation or review
process

 Legal or contractual issues (such as litigation,
malpractice, ownership)

 Obsolescence (includes excessive schedule length)

 Unanticipated difficulties with subcontracted items

 Unanticipated maintenance and/or support costs

Table 1: A Summary of Key Risk Issues (Conrow and Shishido, 1997)

40

Apparently, the importance of project risk management cannot be

overemphasized in this unhealthy software project environment. Project risk

management is an integral part of project management. PMBOK definition of

project risk management is (PMI, 2000):

Risk management is the systematic process of identifying, analysing
and responding to project risk. It includes maximising the probability
and consequences of positive events and minimising the probability
and consequences of adverse events to project objectives.

It contains following four main processes (PMI, 2000):

1) Risk Identification - determining probable risks affecting the project and

documenting it.

2) Risk Quantification - evaluating risks for assessing possible project

outcomes.

3) Risk Response Development - techniques to address risks.

4) Risk Response Control - responding and controlling risk effects

continuously throughout the project life cycle.

Advocates of software risk management claim that by identifying and treating

risks, we can reduce the chances of project failure (Schmidt, Lyytinen, Keil and

Cule, 2001). Implementing good risk management strategies on intensive

software projects is an effective solution to keep a check on the risk levels of

the project (Conrow and Shishido, 1997). However, the challenge still remains

in identifying the risks which jeopardize project‟s success (Wallace and Keil,

2004).

2.3.10 Summary of different focal areas

In the above sections, we have identified and briefly explained different focal

areas to deal with uncertainties. Dealing with all the areas would have been

ideal but due to the time constraints it‟s not possible. But based on the level of

impact and the interest of the author, the priority is Risk Management. Having

said earlier that identifying the risks in a project is a challenging task, in the

41

following sections we will learn about a new risk identification technique in

project risk management known as “Early Warnings”. Before getting into early

warning signs let‟s explore the origin of its concept from “Theory of Weak

Signals”.

2.4 Theory of Weak Signals

The central aspect of this research is related to the concept of „theory of weak

signals‟. The concept of „theory of weak signals‟ was invented by Dr. Igor

Ansoff, in an endeavour to improve strategic planning methods (as it didn‟t work

satisfactorily when unforeseen or sudden changes occurred in business

environment). He firmly believed that in this fast changing business environment

strategic surprise(s) provide advance information of themselves (as cited in

Nikander, 2002). However that information is initially ambiguous, inexact, fuzzy,

unclear, vague and difficult to analyse (Nikander, 2002). The information then

gradually becomes clearer, stronger, more evident and easier to interpret.

Ansoff calls such information or signals as weak signals. He claimed that there

are many weak signals stimulated due to change in environment. He defines

weak signals in conjunction with strong signals. His definition for strong signals

is as follows (Ansoff, 1984a):

Issues identified through environmental surveillance will differ in the
amount of information they contain. Some issues will be sufficiently
visible and concrete to permit the firm to compute their impact and to
devise specific plans for Response. We shall call these strong signal
issues.

And weak signals as (Ansoff, 1984a):

“Other issues will contain weak signals, imprecise early indications
about impending impactful events......all that is known (of them) is
that some Threats and Opportunities will undoubtedly arise, but their
shape and nature and source are not yet known.”

Weak signals mature over a certain period of time to become strong signals.

Many researchers have made an effort to define “weak signals” since then.

Michelle Codet describes it as (as cited in Uskali, 2005):

42

 “A weak signal is a factor for change hardly perceptible at present,
but which will constitute a strong trend in the future.”

Pierre Masse defines it as (as cited in Uskali, 2005):

“A sign which is slight in present dimensions but huge in terms of its
virtual consequences”

Ansoff believed that if we were ready to deal with first issue/threat appearing on

the horizon then the uncertainties in the environment wouldn‟t hurt us much.

However, the concept of „theory of weak signals‟ by Ansoff has always been a

central point of debate. Ansoff had provided no evidence to support and prove

his theory. He had only provided information about his discussions with various

people. Ansoff suggested that some actions should be taken when weak signals

are identified (Ansoff, 1975). However Heiskanen (1988) admonishes this

concept (as cited in Nikander, 2002) and Madridakis and Heau (1987) argued

that „theory of weak signals‟ has remained as just an academic idea. Webb

(1987) in his work reported that it‟s not possible to get or obtain information or

messages related to future events. Further, he stated that there is no grounding

for Ansoff‟s research. Webb (1987) critically questioned the presence of weak

signals and suggested that there needs more investigation to prove this

concept. On the same note, Ashley (1989a) claims that such warning

phenomenon doesn‟t exist at all. He believed that once the detection of an

issue/event is made then there is hindsight bias which often causes

interpretation of past events. Mintzberg (1994a) even questions the importance

or necessity of weak signals in strategic planning and management. In his work,

Betss (1982) acknowledges the bias of hindsight but also asserted the

existence of warnings phenomenon. A similar view was shared by Morris

(1997). Aberg (1993) suggested that weak signals are too vague and can be

easily missed completely (as cited in Nikander, 2002).

As said earlier, Ansoff‟s theory is controversial. The main reason behind the

argument is whether weak signals can be practically detected. There are

43

studies which support Ansoff‟s views. In his doctoral studies, Nikander (2002)

demonstrated the presence of weak signals (he termed it as “early warnings” in

typical project environment context). Similarly Weschke (1994) forwarded group

of early warning signs associated to economically risky enterprise. After

critically analysing Ansoff‟s work, Webb in his doctoral studies investigated and

identified the presence of weak signals (the lack of evidence of Ansoff‟s theory

was his prime motivation for his doctoral work) (Webb, 1987). The work of

Leidecker and Brono (1987) manifested the importance of observing early

warnings or weak signals when they identified the critical success factors in

company‟s activities. Similarly, project implementation profile by Pinto and

Slevin (1992) can be considered as a research in support of the existence of

weak signals. Ilmola and Kotsalo-Mustonen (2004) also believe in Ansoff‟s

theory (as their work of weak signal filters is based on Ansoff‟s theory).

Nikander and Eloranta (1997) based their work of preliminary signals and early

warnings on Ansoff‟s theory. Uskali (2005) has extended Ansoff‟s theory to

innovation journalism. Makela (1999) links weak signals to megatrends and

implicit anticipatory knowledge whereas Mannermaa (1999a) in his book links it

to wild cards (as cited in Nikander, 2002). In a quantitative approach

Metsamuronen (1999) uses mathematical methods (Markov chain theory) for

detecting weak signals (as cited in Nikander, 2002). Schoemaker and Day

(2009) discussed different techniques to identify and interpret weak signals

effectively.

“Weak signals” is becoming increasingly popular among researchers (Hiltunen,

2008). According to Miller and Ward (2003), Ansoff‟s weak signal theory is

witnessing a renaissance in context of strategic flexibility of an organisation.

Mannermaa (1999a) in his book expresses that; weak signals would be one of

the most fascinating research areas in future (as cited in Nikander, 2002). Not

only strategic management but also other disciplines like communications

research, journalism, international security, business economy (predicting

bankruptcies), international politics and even military science are interested in

weak signals (Nikander, 2002; Uskali, 2005).

44

2.4.1 Weak Signals Strategic Issue Management Systems

The real motivation behind inventing the theory of weak signals was to improve

Strategic Issue Management (SIM). Management method which uses weak

signals in SIM is called as Weak Signals Strategic Issue Management

(WSSIM). Detection of weak signals is a challenging task and requires close

attention to all the information. Advocates suggest that detection can be carried

out at two levels namely, on an individual level as well as a more isolated

environment scanning method (Nikander, 2002). Researchers like Ansoff (1975;

1984), Aberg (1993), Webb (1987), Juran (1995) and Taylor (1987) discuss at

individual level detection whereas King (1987), David (1991) and Aberg (1993)

suggest different models for environment scanning method (as cited in

Nikander, 2002). Individual level detection requires sensitivity from everyone in

the organisation and therefore shouldn‟t be left to a few key people of the

organisation. Juran (1995) suggests that human beings are the best sensors to

detect weak signals. These procedures are very similar to risk identification

procedures of risk management (Nikander, 2002).

Ansoff (1984) suggests that a piece of information (or weak signal) has to go

through different types of filters before it can be apprehended and influence the

strategy process. These filters could either facilitate or confine the important

information contained in those signals (Nikander, 2002). As shown in figure 9,

Ansoff classifies these filters into three different types:

1) Surveillance filter

2) Mentality filter

3) Power/ Political filter

45

Figure 9: Ansoff‟s filters (Nikander, 2002)

The surveillance filter needs the organisation to identify the type of information

required and the techniques which should be employed to do so. It defines the

field or domain where observation needs to be done. It‟s the first of the

obstructions the raw information encounters (Ilmola and Kotsalo-Mustonen,

2003). The information available after it passes through surveillance filter is

usually inoperable and little of use. The information needs immediate reduction

to make sense. This is done using mentality filter. The reduction criteria are

based on the expertise knowledge of the domain. The final, power filter is used

by the decision makers. The power filter determines the information which

would influence the decision making of the organisation (Nikander, 2002).

Figure 10 below depicts the decision making model of weak signals in SIM. If

the impact (effect) of the concerned issue is minor then it can be dropped from

the response analysis process. If the impact (effect) of the issue under

consideration is major then the estimation of the signal strength needs to be

done. If the signal is strong then three alternatives are available depending on

the urgency levels of the response (Nikander, 2002):

(1) Delay-able response and needs continuous monitoring of the situation

(2) Postponable response and needs to be actioned in next cycle

(3) Urgent response and start taking immediate actions to address the response

46

If the signal is weak, then the options are (Nikander, 2002):

(1) Delay-able response and needs continuous monitoring of the situation

(2) Postponable response and needs to be actioned in next cycle

(3) Urgent response and start taking gradual actions to address the response

Performance trends

Internal trends

Environmental trends

Impact?

Signal

Strength?

Urgency? Urgency?

Issues

major

urgent

urgent
delayable

postponable postponable

delayable

Continue to

monitor

Include in next

planning cycle

Start a gradual

commitment

project

Start a

priority

project

Drop from issue

list

minor

strong
weak

Figure 10: Decision making model of Weak Signal SIM (Ansoff, 1984)

47

Aberg (1989) also forwarded a model for incorporating weak signals (as shown

in figure 11). He suggested that scanning for weak signals is a continuous

process. And scanning should be continuously done internally as well as

externally.

Figure 11: Aberg‟s weak signals scanning model (Aberg, 1989)

As shown in figure 12, Ansoff‟s theory of weak signals can be placed in a

broader sense with theories of project management. Further, Ansoff‟s weak

signals phenomenon provides insights of a probable impending issue; which

coincides with the understanding of the concept of early warnings, which will be

discussed in the next section.

48

Figure 12: Theory of Weak Signals in broader sense (Nikander, 2002)

2.5 Early Warnings

Ansoff‟s theory of weak signals has strong emphasis on strategic management.

Some of the writers, even though they address Ansoff‟s theory by different

names, have applied similar idea to different streams of business but only one

(Nikander) has applied it in the field of project management. Table 2 below

compares the range of Ansoff‟s theory to projects.

Ansoff‟s theory Projects

Both look for additional information about future events

Both include the need to anticipate the future

The external operating environment of
a company

The internal and external environment
of projects

Strategic management Daily management and project control

Unexpected significant changes Unpredictable events, even small
changes

Continuous activity over several years The short implementation time of
projects

Continuity in activity One-time event, no repetition

Table 2: Comparison between operational ranges of Ansoff‟s theory to Projects (Nikander, 2002)

49

It‟s hard to apply Ansoff‟s theory to project work due to the difference in the

scale (Nikander, 2002). However, the rational of the theory could be applied to

project work environment. Dr. Nikander had made a successful attempt to

link/replicate the phenomenon of weak signals to a typical project environment.

He applied Ansoff‟s theory to project work. He called it as “early warnings”. He

believed the concept of “weak signals” and “early warnings” are parallel

concepts (Nikander, 2002). Early warnings concept is same as of weak signals

but is focussed on project environment (instead of strategic management).

Nikander (2002, p. 49) formally defines the concept of early warnings as

follows:

An early warning is an observation, a signal, a message or some
other item that is or can be seen as an expression, an indication, a
proof, or a sign of the existence of some future or incipient positive or
negative issue. It is a signal, omen, or indication of future
developments.

Early warnings typically give information. The negative information received

through the early warnings should not be ignored. The treatment of early

warnings is important else an ignored minor issue may lead to a cascading

effect of causes, problems, early warnings and responses chains in project

environment (Problems in this context refer to any issues which hinders the

completion of project. Causes are factors or elements which have led to a

problem. Responses are actions taken by personnel to mitigate/minimize the

effect of a problem). A typical such chain is illustrated in the figure 13below.

Consider problem A, which was detected at time instance “T-n” yesterday, has

its causes. This problem A can possibly raise another problem (say Problem B).

Hence, Problem A can become the cause of Problem B which means there

would be a causal relationship between Problem A and Problem B. If this

relation is immediately noticed, then the observation of problem A can be

considered as an early warning for impending problem B.

50

Figure 13: Chain of Causes, Problems, Early Warnings and Responses (Nikander, 2002)

If appropriate responses are not taken to minimize the effects of problem A then

problem B materializes at a time instance “T” say today and problem A

becomes the cause of Problem B. Similar cycle could start with Problem B and

probably raising another problem C at time instance “T+m” say tomorrow. Such

a chain can cause cascading effect and end up being extremely long. Figure 14

below shows the dependencies between early warnings, causes, problems and

responses.

51

Figure 14: Dependencies between early warnings, causes, problems and responses (Nikander and

Eloranta, 2001)

Hence, it implies that an early warning can easily become a cause of a problem

if not observed. It is also important to note the significance of time (i.e. the

application of the treatment of early warning before it becomes the cause of

another problem). The treatment/response should be actioned in the time

available range. Figure 15 below shows the detailed information about the sub-

periods of time available.

Figure 15: Sub-periods of time available (Nikander, 2002)

52

Time available is the total amount of time available before the problem signalled

by the early warning hits with its full impact to the project (Nikander, 2002). The

time available is dependent on many different factors like the time early warning

was detected, current project situation and project environment, the decision

making system of the organisation, the resources available to implement the

response, the assumptions and beliefs of the interpreter, the type of problem

and others. However, the author firmly believes that its very difficult to clearly

indentify and measure the different sub-periods of time available as it would

vary from organisation to organisation in fact even at the project and problem

level in the same organisation. Also, Nikander (2002) hasn‟t provided enough

information in his article about the method he used to derive these sub-periods.

2.5.1 Connection of Early Warnings and Project Risk Management

Now having described the basics of early warnings, it is important to illustrate

how early warnings can be incorporated into project risk management. Project

risk management has been a popular area of research in recent years. In this

fast developing domain, risk management is looking forward for proactive

solutions. Surprisingly, project risk management literature is very weak in this

area. There hasn‟t been enough literature which talks about proactive methods

in project risk management. Early warnings concept is certainly a potential way

to make project risk management more proactive. Early warnings can

potentially become the cause of a problem if not acted appropriately in the time

available range and hence can be seen as a risk. In fact, Nikander (2002)

asserts that the concepts “potential problem” and “risk” are somehow related

and there is clear similarity between the concepts. Early warnings inform the

interpreter the possibility of future problems in the project. Figure 16 below

shows the interconnectedness of the concepts of early warnings and risk.

53

Figure 16: The interconnectedness of the concepts (Nikander, 2002)

However, Nikander (2002) believes that early warnings by itself don‟t provide

any information about the probability of the problem (risk) to come true. They by

themselves are hardly sources of future problem‟s information. But early

warnings combined with other analytical information can make a difference.

They don‟t convey a clear picture either, of when the problem might materialise

(Nikander, 2002). In spite of that, Nikander (2002) strongly believes that the

concept of early warnings should be a part of risk quantification phase of project

risk management. The author believes that harnessing early warnings to identify

potential risks can be a new way of being proactive in project risk management.

We need to use each and every piece of available information to make the

projects successful. Early warnings would enable project risk management to

better manage and anticipate unforeseen project problems.

2.5.2 Character of the Early Warnings Phenomenon

Now having clear idea where early warnings sit with project management

theories, the following figure 17 gives the complete character of early warnings

phenomenon.

54

Figure 17: The Character of Early Warnings Phenomenon (Nikander, 2002)

The whole early warnings phenomenon is divided into two phases (Nikander,

2002):

1) Communication phase

2) Decision making phase

The communication phase consists of two integral functions. First is detecting

the early warnings and second is its interpretation. The most important element

in the communication phase is the observer who in the real sense observes and

interprets the messages. The model views a project in the form of series of

project events. These events are strictly time bounded. The observer obtains

information from the project events. The observer uses different observation

procedures to accumulate the information. He might use some of his pre-

determined information of early warnings as a checklist (it may be from previous

55

project or from his experience) to facilitate the recognition of early warnings.

Once the early warning is detected it is interpreted by the observer. He would

analyse the early warning and then attempt to find the impact of the warning

sign which helps him to move to the decision making phase. In the decision

making phase, the decision maker depending on the available information tries

to identify the implications of the early warning on the projects and identifies the

available responses. He then selects the appropriate responses and actions

them in order to eliminate/reduce the possibility of a future problem. In order to

do so, the decision maker uses decision support model which is explained in

the next section. Another crucial factor which should be noted is the time

available before the problem hits the project. The responses should be applied

before the problem hits the project.

2.5.3 Decision Support Model of Early Warnings

The decision support model provides a base to implement the early warnings

phenomenon. As illustrated in the figure 18 below, the model has six sequential

stages.

56

Figure 18: The Decision Support Model of Early Warnings (Nikander, 2002)

The first stage is observing and detecting early warnings. This task is always

performed by a person in a project consisting of series of project events. The

observer should be very sensitive while listening to the environment in order to

detect early warnings. In fact, Ansoff suggested that observer should listen to

the environment “with an ear on the ground” (as cited in Nikander, 2002).

Similarly, Juran (1995) has also emphasised the importance of people as

sensors in order to identify deviations or weak signals. The observer can take

help of additional information (like previously known/detected early warning;

how it looks like; when and where; and others) to detect early warnings. It is

important to understand that each observer has its own interpretation and looks

57

at the situation in his own perspective. He may also consider different

viewpoints of his fellow project members in order to ameliorate his view and

understanding. Hence the figure contains “Different view points” marked by

overlapping frames around the whole process in the extreme lower right hand

corner of the figure. The second stage starts with the interpretation process

where the observer decides if the detected signal is an early warning. In this

stage the significance or insignificance of the information is been evaluated.

The detected signal may be a random, arbitrary event and irrelevant. In the third

stage, the state of the early warning is been determined i.e. the implications of

the detected information to the current project. If the retrieved information is too

scarce or irrelevant even then it should be recorded and stored (more

information on the same topic may surface in the future). In the fourth stage, the

observer attempts to discover the probable problem (or risk) that emerged.

Attempts are also made to identify its possible causes (causes of risk, risk

factors) i.e. problem and cause identification tasks are been carried out. This

entire evaluation process is influenced by many other factors like internal trends

(e.g. current project situation), external trends (e.g. project environment,

organisation structure), assumption and perspective of the observer, and

others. The various risk analysis methods can also be utilized in this stage to

facilitate the identification process. In the fifth stage, the available time is

computed after recognising the effects of the risks. The question in to

consideration here is: how much time is still present for the responses in order

to address the problem (or risk)? It includes the discovering of the urgency of

the situation. This stage is also influenced by many other factors like internal

trends, external trends, assumption and perspective of the observer, and

others. Ansoff‟s classification (explained earlier) namely urgent, postponable

and delayable can be utilised as a scale. In sixth (final) stage, efforts are made

to identify appropriate responses for the impending problem. This decision

making process is assisted by following (Nikander, 2002):

1) the information available about the impending problem (risk)

2) the urgency of the responses (time available)

3) internal trends

4) external trends

58

5) decision maker‟s perspective

6) the effects of the concerned response to current and other projects

None of the acquired information should be disregarded and should be

analysed carefully before making any decision. There are different situations

encountered during the decision making process. The extreme point situations

in the decision making matrix are as follows (Nikander, 2002):

1) If ample amount of time is available but acquired information is an

inconclusive (or weak) then observation methods which would provide

more information should be selected.

2) If ample amount of time is available and the acquired information about

the problem is exact, then conventional project management approaches

can be adopted.

3) If the time available is less and preciseness level of the acquired

information lies between weak and exact, then different emergency

responses should be selected.

4) If the problem is outside the matrix i.e. there was no information of the

problem (risk) and hence comes as a surprise then when the risk

materialises, some type of panic situation will possibly arise.

The middle part of the matrix consists of proactive management approach

which was not explored by Nikander (2002) in his study. Further, Nikander

(2002) has also admitted that this model is not proven and needs further studies

to prove it. This study will extend this decision support model.

2.6 Gaps in the literature

Now having done thorough literature review it is possible to identify possible

gaps which the current research may address.

The project management literature is full of facts and figures and whinging

about the incapability of the software projects to be successful. These

development projects mainly fail due to their inherent characteristics like human

59

interaction, abstraction, complexity and uncertainty. The author believes that the

“uncertainty” factor of a project can be handled in a better way than the normal

traditional methods. Although the project management literature expressed the

importance of it, but there has been very little work in terms of exploring

different approaches to deal with uncertainty that are supported by empirical

evidence. This motivated the author to identify an approach to deal with

uncertainty arising from the inability to foresee or predict all events in the

software development process.

The nature of modern software development is such that uncertainty will never

be eliminated and therefore there is a definite need for new, innovative and

proactive management style to deal with uncertainties. This could indirectly

improve the chances of a project to be successful. A proactive method

employing early warnings phenomenon could be implemented in project

environment. Surprisingly, the project management literature is very weak in

this area. Although the project management literature understands the

importance of it, but there is very little research exploring this concept in the

project environment. As far as the author knows, only one comprehensive study

has been done in this field which was by Nikander (2002). The early warning

phenomenon has considerable promise to become part of project risk

management approach. However, the theories of project risk management are

apparently not familiar with the early warnings phenomenon and there is little

empirical evidence to support the perceived potential. The phenomenon is very

poorly represented in the project risk management literature (although the idea

of risk symptoms has been mentioned). The work done by Nikander (2002) is

certainly a good head start but his model (especially his decision support

model) needs more exploration and needs to be practically implemented and

supported by a greater body of empirical evidence. Nikander (2002) has

admitted the same in his work. Even though the concept of early warnings looks

promising, there is very little research and information on this domain,

especially if it comes to focus on empirical early warning signs (EWS). Hence

this motivated to extend Nikander‟s work and practically implement the concept

of early warning signs.

60

2.7 Summary

This section concludes the literature review of the software project failure

phenomenon, different approaches to dealing with uncertainties, theory of weak

signals and early warning signs. From the literature review it is apparent that

many software projects fail to achieve their main goals in terms of scope,

quality, cost and schedule. The failure rates have been astoundingly very high.

The literature review also outlines different focal areas to deal with

uncertainties. The author opts for Risk Management strategy and further

insights in that domain were also forwarded. The concept of “theory of weak

signals” was briefly explicated. A new and innovative concept namely early

warnings phenomenon was also described. However, it seems that there

appears to be very limited literature that focuses on early warnings

phenomenon. The early warnings phenomenon can apparently be a part of

project risk management. Finally, this chapter outlines the gaps in the literature.

Even though this domain sounds promising but the analysis reveals that it is

highly under researched area; which motivated the author to conduct this study.

The following chapter will describe the research objectives and the research

methodology opted by the study.

61

Chapter III

Research Objectives and

Methodology

3.1 Introduction

Based on the outcome of the literature review, this chapter states the research

objectives and the research questions of the study. It also describes the

research methodology and the research design employed by the research.

3.2 Research Objectives

In the previous chapter the concept of early warning signs has been described.

It appears that Nikander (2002) has done some work in this field and designed

a decision support model which could be utilised to implement early warnings

phenomenon. But, Nikander (2002) has also admitted that his model is not

proven. This work is the first stage of an incremental approach to extend this

model and provide empirical evidence to support the perceived benefits of the

model. This research will focus on the implementation of proactive management

style for decision making process.

62

It is suggested that implementing early warnings phenomenon may have

positive effects on the project outcomes. But as yet there is no empirical

evidence that demonstrates this. The aim of this research work is to provide

some empirical evidence that there is a value in following and implementing

early warnings phenomenon.

Once the early warning signs are detected and interpreted, attempts can be

made to identify the probable problem and its cause(s). Also, the available time

is computed. Once the probable problem is identified, different corrective

actions (responses) needs be taken to bring a (would be) troubled project back

on track.

A further aim of this research work is to provide some empirical evidence that

there is a value in terms of undertaking corrective actions early by

demonstrating that if we delay corrective actions then it has a negative impact

on the project outcomes.

3.2.1 Research Questions

The following research questions are answered within this research:

 Does the implementation of early warning phenomenon have positive

effects on the project outcomes?

 Is there positive impact on the project outcomes if the corrective actions

are taken early?

Based on the research objectives and the identified research questions the

research methodology has been described below.

3.3 Research Methodology

In order to address the research questions effectively, robustly and rigorously

an appropriate methodology needs to be selected. Selection of appropriate

63

research methodology is a crucial part of the research. Hence, before that it is

important to identify the key characteristics of the research/problem domain:

 Existing Problem: As highlighted earlier there is a problem (the

software project failure rates) in the current environment.

 Very few previous studies: For unknown reason there is very little

research done on this domain.

 Feasibility for Improvement: There is a high scope for improvement.

 Novelty and Innovative Solution: This previously unsolved problem

can be solved using new and innovative solutions.

These key characteristics of the research domain clearly align with both

exploratory and constructivist in nature. Lukka (2003) defines constructive

research approach as “A research procedure for producing innovative

constructions, intended to solve problems faced in the real world and, by that

means, to make a contribution to the theory of the discipline in which it is

applied”. It means that constructive research method intends of developing

novel solutions to existing problems. According to Kasanen, Lukka and Siitonen

(1993), constructive approach leads to the production of “constructions”.

Constructions here refer to the solutions (to a problem) which were never

concocted up to now. Constructive approach stresses on building and

evaluating the solutions. These solutions can be easily verified by their

implementation. There is a clear element of innovation in constructive

approaches (Kasanen et al., 1993).

This research utilises the System Development Research Methodology (SDRM)

as suggested by Nunamaker and Chen (1990). It provides a governing

framework for structuring the key activities. The research also follows the

design science research guidelines as outlined by Hevner, March, Park and

Ram (2004) to specify, design, develop and evaluate a corrective action model.

SDRM methodology has been used extensively in software engineering and

information systems development research domain and it can accommodate

dynamic evolution of the research in order to create innovations, define new

64

ideas, and develop new technical capabilities (Limbu, 2008). The next section

describes the research design utilising the System Development Research

Methodology (SDRM).

Figure 19: Research process of the SDRM (Nunamaker and Chen, 1990)

3.4 Research Design

Based on the research objectives and the selection of the SDRM research

methodology, the design of the research is as follows. Stage 1 comprises of

extensive literature review of the problem domain. Stages 2, 3 and 4 comprises

Construct
Conceptual
Framework

Develop a
System

Architecture

Analyze and
Design the

System

Build the
Prototype
System

Observe and
Evaluate the

System

65

of creation of simulation models to address the research objectives. Stage 5

comprises of observation and evaluation of the systems using individual early

warning signs (EWS) testing and controlled experimental study.

3.4.1 Construct a Conceptual Framework

This stage comprises of the definition of the problem. In order to accomplish

that, this research is based on an extensive literature review of the domain

under consideration. The software project failure problem has been investigated

and different focal areas have been identified to deal with the uncertainties of

the project. Further, early warning phenomenon has been explored. The

existing state of knowledge has been synthesised and then meaningful

research objectives have been derived based on the gaps and the limitations of

the current situation. The research objectives are new, innovative and important

in the field.

3.4.2 Design and Implementation

Within the context of the research, this phase represents the “Develop a System

Architecture”, “Analyse and Design the System” and “Build the Prototype

System” stages of the SDRM. SDRM lends support to the design and

implementation of a solution that address the research objectives. In order to

design a solution that has the potential to generate empirical evidence, a

simulation tool known as SimSE was used to create models which addressed

the research objectives. The software development industry has witnessed a

boost in the use of simulation modelling especially in the field of software

process improvement (Kellner, Madachy and Raffo, 1999). It has also been

used for predicting the project costing; planning and re-planning activities;

learning; tracking purposes; training; strategic management; tactical

management; technology adoption; risk analysis; control and operational

management; and others (Christie, 1999).

66

Simulation already has a long and successful history in aerospace and power

industries (Christie, 1999). Simulation is a powerful tool to acquire a thorough

understanding of complex behaviour and for conducting experiments and

studies that cannot be easily carried out in actual environment. It provides

useful insights if the data driving the model reflects the real world (Christie,

1999). These insights can provide organisations competitive advantages.

Simulation tools have the capability of simulating the behaviour of real

processes; however the input data driving the model should be accurate. The

challenging part is the analysis of the data as it directly relates to the evaluation

of the experiment. Simulations are most useful when conducting an experiment

in the real world is too expensive or too difficult. Simulations provide a means to

generate new and innovative solutions which would have been very expensive

and difficult in the real world scenario. The use of simulation is therefore very

appropriate for this research, as it allows the use of many more simulated

software projects than real projects would be achieved in the same timescale.

This research is essentially a pilot study that is investigating whether early

reaction to perceived problems has the potential to direct a project back to a

successful conclusion. Therefore a study that is more broad through the use of

simulation can provide this evidence, which if positive will then support the

implementation of a deeper study focused on real world projects.

In this research, simulation is therefore used to simulate the behaviour of a

software development project including the allocation of activities to the staff of

different experience levels by the user (the player) to achieve the project

objectives. The user hence acts as a project manager and is responsible for the

project outcomes. Models with appropriate structure and data (as demanded by

the situation) are designed using the simulation tool. Several prototypes are

constructed and repetitively iterated based on the feedback provided by the

supervisors until the final models are ultimately available for the experiments.

Significant time was spent on constructing the simulation models.

One of the research questions is to investigate if the implementation of early

warnings phenomenon has positive effects on the project outcomes. This

demands implementation of multiple early warnings signs in one integrated

67

EWS model. The model was built using SimSE tool and tested using controlled

experimental study.

The second research question is to determine if there is a value in terms of

undertaking corrective actions early. This was accomplished by designing a

separate model for each early warning sign and then taking corrective actions at

different time period. The evaluation was done in individual EWS testing

experimental phase. More information about the models and its evaluation can

be found in next chapter.

3.4.3 Observe and Evaluate the System

Once the model has been built, SDRM requires the observation and evaluation

of the constructed model in order to answer the research questions. SDRM

strongly emphasises on the evolution of the product and suggests that

depending on the observed new phenomena it may lead to the discovery of new

theory (Nunamaker and Chen, 1990). Evaluation thus becomes a very crucial

component of the research design. The evaluation of the artifact should be

rigorous as it determines the quality, utility and the efficacy of the designed

component (Hevner et al., 2004). Hence the following two experimental

techniques were utilised by this research:

a) Individual EWS Testing

b) Controlled experimental study

Adoption of mixed methods adds the required rigor element in the evaluation

process and also was demanded by the situation. The evaluation process was

focussed on answering the research questions effectively.

3.4.3.1 Individual EWS Testing

The individual EWS testing phase was carried out by the researcher. The

objective of this phase was to ensure that each of the multiple early warning

signs implemented by the model had positive effects on the project outcomes if

68

the early warning signs were acted upon by the user early (sooner the better). A

separate model was designed for each early warning sign. In order to

demonstrate the objective, pseudo-experiments were conducted on each model

(representing one early warning sign) and then evaluated against the evaluation

parameters. The detailed description can be found in the experiment design

section (next chapter) of the thesis.

3.4.3.2 Controlled Experimental Study

Controlled experiments personify one of the best scientific designs for

establishing a causal relationship between changes and their influence on user-

observable behaviour (Kohavi, Henne and Sommerfield, 2007). Controlled

experiments typically generate large amounts of data, which can be analyzed to

acquire deeper understanding of the factors influencing the outcome of interest,

leading to new hypotheses and creating a virtuous cycle of improvements

(Kohavi et al., 2007). This experimental design methodology tests for causal

relationships and is very commonly used in explorative researches. In a

controlled experiment, an independent variable is the only factor that is allowed

to be adjusted, with the dependent variable as the factor that the independent

variable will affect.

Multiple early warning signs were implemented and integrated in one integrated

EWS model. This simulates a realistic and dynamic project environment where

multiple early warning signs can trigger simultaneously. The main goal of the

controlled experimental study was to demonstrate that implementing early

warning phenomenon has positive effects on the project outcomes. 10 users

participated in the controlled experimental study for the evaluation of the model.

The detailed description can be found in the experiment design section (next

chapter) of the thesis.

Experiments were conducted which contributed data to this aspect. These data

was analysed and evaluated. The results were then discussed and the answers

for the research questions were acquired. More detailed information of the

evaluations and results will be provided in subsequent chapters.

69

Chapter IV

Results and Analysis

4.1 Introduction

This chapter describes in detail the early warning signs used in this research,

the experiment design and the experiment results, driven by the research

objectives and the selected research methodology which have been explained

in previous chapter. It also provides information about the simulation tool SimSE

used for this research.

4.2 Early Warning Signs (EWS)

In Chapter 2, the concept of early warning signs was explained. Through

literature review, a total of 53 early warning signs were identified (see table A.1

in Appendix A). Out of those, following six important early warning signs (EWS)

were selected and implemented using SimSE tool.

 1 - Lack of top management support or commitment to the project:

It is very common that employees concentrate more on activities that

their management considers important. And hence, it is not a surprise

that this is the top rated EWS. Projects which get started from the bottom

70

up face highest problems in terms of getting the required resource and

support from the management (Kappelman, McKeeman and Zhang,

2006). IT projects gets stuck in enterprise politics if there is a

fundamental disagreement between overall organisation priorities

(Kappelman et al., 2006). In cases where the commitment between the

top management and project is weak, middle managers do not deem it

as an important project and hence do not allocate the required resources

to the project which leads to project failure (Kappelman et al., 2006).

Absence of top management in initial important meeting(s) of the project

is a typical sign of weak commitment towards the project.

 3 - Project manager(s) cannot effectively lead the team and

communicate with clients: Project managers who cannot effectively

lead the team pose a serious threat to the project success (Kappelman et

al., 2006). It is sometimes observed that successful developers or

analysts are promoted to project managers; however the jobs are

fundamentally different (like sales management and sales). Instead of

performing the effort, the project manager has to plan and coordinate the

effort (Kappelman et al., 2006). Communication between the

stakeholders and with the staff is the key for the success of project

management. Leadership is another essential project manager skill.

Managers lacking these skills may lead to project failure (Kappelman et

al., 2006). Project team members not allocated enough or appropriate

tasks are indicators of a weak manager.

 5 - Project stakeholders have not been interviewed for project

requirements: Every significant project has a number of stakeholders.

These stakeholders contribute to the project requirements. If the

stakeholders are not appropriately engaged in the requirements

engineering process and not interviewed for the project requirements

then it is guaranteed that the project requirements will not be up to the

mark (Kappelman et al., 2006). These weak requirements may lead to

development of a solution which the stakeholders were not expecting.

71

This may therefore lead to change in requirements later during the

project. This late change will disturb the scope, budget and timelines of

the project and may lead to its failure.

 9 - Communication breakdown among project stakeholders: Project

success is a result of ongoing effort among project stakeholders. In this

competitive world, change during the life of the project is unavoidable

due to various reasons like competitor‟s strategic moves, resource

availability, laws and regulations, and others (Kappelman et al., 2006).

These change needs to be communicated and approved among the

project stakeholders. There is little chance of completing the project

successfully if there is communication breakdown among them.

 10 - Key project stakeholders do not participate in major review

meetings: If the key project stakeholders do not participate in major

review meetings then it is a sign of either communication breakdown or

stakeholders are not engaged enough in the project. This also indicates

that the project may not be of a high priority to the stakeholders and this

may lead to resource issues as important resources would be assigned

to other higher priority projects (Kappelman et al., 2006).

 11 - Project team members do not have required knowledge/skills: If

the project team members do not have required skills to achieve the

target estimated by the management then surely the project is getting

into wrong direction. This risk is mostly encountered when the project is

using novel technology or the complexity is high (Kappelman et al.,

2006). The management needs to make sure that the project team

members acquire the required skills (if they don‟t have already) before

they start the project.

The reason for selecting the above early warning signs (EWS) out of 53 was

mainly due to the implementation feasibility using SimSE tool that will enable

the facilitation of the generation of empirical data. Some EWS were simply not

72

possible to implement using SimSE tool and some were ignored due to time

constraints. But the idea is that if we can demonstrate and prove the objectives

using 6 EWS then it should be scalable and also work with more EWS.

Implementation of more EWS is something which should be considered as

future work for this research. The next section provides information about

SimSE simulation tool which was used to implement these six EWS.

4.3 SimSE

The simulation tool used in this research is SimSE. SimSE was designed as an

educational, interactive and graphical computer based environment which

allows the creation and simulation of software engineering processes (Navarro

and Hoek, 2004), however it has a much greater potential than just education. It

allows the simulation of realistic software engineering environments comprised

of real world components like people, budget, large complex projects, planning,

deadlines, unexpected events and others (Navarro and Hoek, 2007). It is

designed to provide a platform to experience different aspects of software

engineering in a practical manner. SimSE is a single player based game where

the player acts like a project manager and is in charge of taking all the decisions

and actions which would lead to a successful piece of software product. In order

to successfully complete an assigned task the player has to manage a team of

developers (Navarro and Hoek, 2007). The typical activities that can be carried

in the game are assigning tasks to appropriate developer, hiring and firing the

employees, purchasing the tools, scheduling the meetings with customers, and

others. At any point of the game the progress can be monitored by checking the

values of the artefacts (attributes) like percent completeness of the design

document, implementation completeness of the code, integration completeness

of the code, correctness and erroneous of the code, completeness of the

acceptance tests and others. Figure 20 below illustrates the architecture of

SimSE.

73

Figure 20: SimSE Architecture (Navarro and Hoek, 2004)

The model builder is used to create models that specify the details of projects,

artefacts, employees, customers and tools in the simulation. It also allows

defining the activities these entities can participate in and the governing rules

which determine the behaviour of the game (Navarro and Hoek, 2004). The

resulting model is a set of mathematical and logical relationships in the form of

rules which represents real world software engineering environment. It is

acknowledged that these rules may not precisely represent exact real world

phenomena in a quantifiable way. However, the rules are grounded in research

that defines qualitatively the typical characteristics that are visible in software

projects (Navarro, 2006). Given the huge differences that can exist in software

projects in terms of scale, scope, technology and people; it is assumed that the

qualitative grounding (represented by the SimSE models) provides sufficient

robustness and rigour for this current research.

The model builder completely hides the underlying modelling language (which is

Java). The generator interprets the model and automatically generates the

executable java code. The SimSE model builder consists of following five parts

which together constitutes to a SimSE model (Navarro and Hoek, 2004):

74

 Object Builder: It is the first step for building a SimSE model. It is used

to define the object types which would be used in the SimSE model. Any

participating entity of the model will be an instantiation of an object type.

A defined object type must be a descent of one of the following five

meta-types: Artifact, Tool, Customer, Employee and Project. A set of

attributes can be defined for object types as shown in figure 21. For

example, a Software Developer would be an instance of meta-type

Employee and may have set of associated attributes like Name (String),

Software development experience (Integer), Pay rate (Double),

Productivity (Double) and others.

Figure 21: SimSE Model Builder - Object Builder

75

 Start State Builder: Once the object builder defines the object types,

the start state builder can be used to define the start state of the

simulation. The start state refers to all the objects which are present

when the simulation starts. Each object is an instantiation of one of the

object types as defined in the object builder as shown in figure 22. It also

allows specifying the start values of all the attributes of the objects. For

example, a „Software Developer A‟ may have start values like A (Name),

7 (Experience), 45 (Pay rate), 1 (Productivity) whereas „Software

Developer B‟ may have values like B, 4.5, 30.50, 0.75.

Figure 22: SimSE Model Builder - Start State Builder

76

 Action Builder: Action builder allows defining set of activities or actions

in which objects can participate in (as shown in figure 23). For each

action, it allows to define specific information like name, participant

objects, condition that would trigger this action (action trigger) and

condition that would stop this action (action destroyer). For example, a

„Test‟ artefact with one or more „Tester‟ employees and one or more

„Test tools‟ could participate in a „Testing‟ action, in which testers test a

piece of software using appropriate test tools. The action trigger could be

once the coding is 100% completed and the action destroyer could be

once the testing is 100% complete.

Figure 23: SimSE Model Builder - Action Builder

77

 Rule Builder: The next task in building SimSE model is defining the

rules for each and every action. Rule builder facilitates this. A rule is

basically an effect of an active action on the simulation. A SimSE model

classifies three different types of rules: create objects rules; destroy

objects rules; and effect rules (as shown in figure 24) (Navarro and Hoek,

2004). Create objects rules causes creation of new objects whereas

destroy objects rules causes deletion/removal of existing objects in the

game. Effect rules allow specifying complex effects of an action on the

attributes of the participants. For example, a „Hiring‟ action may include

create object rule for adding new employee; a „Firing‟ action may include

destroy rule for removing an existing employee; a „Testing‟ action may

include an effect rule for increasing the percent completeness of the

testing performed depending on the testers currently working.

Figure 24: SimSE Model Builder - Rule Builder

78

 Graphics Builder: The graphics builder is the final activity in the SimSE

model building process and allows assigning the graphical images to

each and every objects of the model (as shown in figure 25). Further, it

also allows to define the office layout by specifying the location of

objects, chairs, doors, walls, desks and others (as shown in figure 26).

Figure 25: SimSE Model Builder - Graphics Builder

79

Figure 26: SimSE Model Builder - Graphics Builder

4.3.1 Simulation Environment

Once the model is built using the model builder and the code is generated using

the generator the user is able to witness the simulation environment. One of the

fundamental features of SimSE is its graphical user interface (as shown in

figure 27).

80

Figure 27: SimSE Graphical User Interface

SimSE is able to enhance the user simulation experience by its visual and

interactive GUI. The player can interact with the employees through right click

menus on them which shows the list of available actions (e.g. create

requirements document, review requirements document, create design

document, start coding and others) (Navarro and Hoek, 2004). Information is

communicated through the pop up bubbles that appear over the head of the

employees. Detailed information about the employees can be obtained by

clicking on their image (Navarro and Hoek, 2004). Detailed information of the

81

projects, customers, tools and artefacts can also be obtained by clicking on the

relevant tabs. There is a clock at the lower right corner of the GUI which drives

the simulation. The clock ticks at regular time interval and at every clock tick the

simulation engine checks which actions needs to be triggered or destroyed and

which underlying rules needs to be executed. The user can either step the clock

forward until the next event (i.e. till someone in the game wants to say

something through pop up bubbles), or step the clock forward for a specified

number of clock ticks (Navarro and Hoek, 2004).

4.3.2 Why SimSE?

Whilst SimSE was originally intended for educational purposes only, it is a

powerful simulation environment. It allows simulating realistic software

engineering environment comprised of real world components like people,

budget, large complex projects, planning, deadlines, unexpected events and

others (Navarro and Hoek, 2007). It is designed to provide a platform to

experience different aspects of software engineering in a practical manner.

While there are some other simulation tools like SimPack, Vensim, SESAM,

CSIM and Sims available; SimSE‟s visual and interactive GUI has an edge over

others. It is graphical, customizable, interactive and game based software

engineering simulation environment. SimSE is very user friendly and easy to

use. Most importantly it fits the situation in a study like this.

As a typical game duration is around an hour, the environment provides the

ability to generate a breadth of empirical evidence related to software projects.

Given that a typical software development project could take weeks, months or

even years to complete, the use of SimSE is a useful approach for gaining

some initial evidence to support the case for future work utilising real software

projects.

82

4.4 Evaluation parameters

Before describing the experimental evaluation, it is important to decide upon the

evaluation parameters used for this research. One of the most important things

in the experimental method is its evaluation parameters. The three main

evaluation parameters for this research are:

1) Time for Releases: The SimSE XP game requires the user to implement

80 user stories in 1800 clock ticks. The game has total 4 releases (one

per iteration) with each release delivering 20 user stories. The time taken

for each release is one of the evaluation parameters.

2) Final Artefacts List: Once the game is finished, it is important to record

the final state of different artefacts in the game. It represents the overall

completeness and correctness of the whole code (or product). The code

or product is considered to be fully complete if all the 4 iterations are fully

completed. Please refer to appendix A to get detail information of each

artifact.

3) Number of Customer Complains: In the SimSE XP game, the

customer complains (through pop up bubble) if he is expecting a release

and hasn‟t received one yet. The third evaluation parameter of this

research is the total number of times the customer complains throughout

the game.

These three parameters together give a thorough (if not complete) picture of the

final state of the project. More importantly, these three parameters together can

help to evaluate all the six EWS in focus by this research. “Time for releases”

parameter helps to understand the time taken to deliver the releases and

therefore allows comparing and analysing games with different time releases.

“Final Artefacts List” parameter helps to understand the state of the final

product. It provides minute and important information like percent erroneous,

percent integrated, design percentage, unit test completeness and others of the

code. “Number of Customer Complains” parameter helps to understand the

83

number of times the customer was unhappy during the project. This also

provides other signals like communication breakdown between manager and

customer, weak project manager and others.

4.5 Experimental Design

As explained in the previous chapter the data has been collected from two

experimental phases, namely the testing of individual EWS scenarios and

controlled experimental study. To expedite the generation of data in a timely

manner, the experiment utilised an existing SimSE model that defines a project

being managed using the XP methodology. This game was then customised in

temperately to meet the requirements for the research by creating variation

games that were based on an individual EWS and then a combined game that

incorporated all EWS for the controlled experimental study.

4.5.1 Individual EWS Testing Setup and Procedure

As stated earlier, individual EWS testing was performed by the researcher. For

each early warning sign a model was created (and hence in total we have six

models) and pseudo-experiments were run. Individual EWS testing implies

testing of each model (i.e. indirectly each EWS) independently to generate

insights. Figure 28 shows the general overview of the procedure for the testing

of the Individual EWS models.

84

Start

Select the model

Run Pseudo-

experiments for

each data points

Record the

evaluation

parameters for all

the data points

Compare and

Analyse data

Is this last

model?

End

Yes

No

Figure 28: Overview of “Individual EWS testing” procedure

The testing is started with the first of the six models. Once the model has been

selected pseudo-experiments were run. Depending on how delayed the

corrective action was taken the project result varies. Each result state

represents one data point. More the data points mean more different final

project results can be achieved. Further, more the data points better it is for the

analysis. The number of data points is different for each model. For each data

point, the evaluation parameters were recorded. Finally, once all the pseudo-

experiments for each data points for the selected model were executed; the

evaluation parameters for all the data points were compared and analysed and

then moved to next model. For each model the loop (as shown in the flowchart)

was iterated. The experimental results are presented later in this chapter.

85

4.5.2 Controlled Experimental Setup and Procedure

For the controlled experiment, all the six EWS were implemented in one

integrated EWS model. This integrated EWS model simulates a realistic and

dynamic project environment where multiple early warning signs can trigger

simultaneously, forcing a player to make a choice related to their own perceived

priorities. 10 volunteers took part in the experiment. The volunteers were mostly

software practitioners working in IT organisations. The volunteers were asked to

rate their Project Manager (PM) and Agile/XP experience from Low, Medium

and High. The volunteers were having varied range of Project Manager (PM)

and Agile/XP experience.

Figure 29 shows the general overview of the controlled experimental procedure.

86

Start

Play Waterfall

game (free to ask

any questions)

Does participant

belong to Control

group?

Play Normal XP

game

Record evaluation

parameters

Play Integrated

EWS XP game
Play Normal XP

game

Record evaluation

parameters

Record evaluation

parameters

Analyse Data

End

NoYes

Figure 29: Overview of Controlled Experimental procedure

The volunteers were divided equally in to two groups:

1) Control Group

2) EWS Group

Both the groups play the waterfall SimSE game once, in order to become

familiar with the SimSE environment. The waterfall game is entirely different in

87

terms of how it is played than the XP game chosen for the experiments. The

game is only used to allow participants to become familiar with the mechanics

of the environment without biasing the main experiments. Therefore, they were

allowed to ask any questions while playing the waterfall game but not during the

experiment. This removes any potential bias from the observer in terms of the

game play. The control group play the normal XP SimSE game once, and their

evaluation parameters were recorded. The normal XP game is the conventional

XP game which won‟t show any warning message(s) if the user misses any

important actions. They were then given the opportunity to play the normal XP

game again to improve their score. There is the potential that simply playing the

game multiple times will provide a player with insight on how to improve their

outcomes, therefore this is accommodated by the second game play when

comparing the relative improvement of each group. The EWS group play the

normal XP game once and then they play the integrated EWS XP game. The

integrated EWS XP game will show warning message(s) and suggest the

corrective action(s) if the user misses any important actions. So missing

important actions here suggests something has gone wrong and acts as an

early warning sign. This appears in the form of a warning message in the game.

This overall simulates early warning phenomenon. For each user, the

experiment followed the steps provided in the flowchart. Once all the ten

volunteers were done with the experiments, results (evaluation parameters) of

the control and EWS group were compared and analysed. The controlled

experimental results are presented later in this chapter.

4.6 Experimental Results

Now having described the experimental design, this section provides the

experimental results of individual EWS testing and controlled experiment

phases. These were evaluated on the basis of three evaluation parameters

explained earlier.

88

4.6.1 Individual EWS Testing Results

As said earlier, for each early warning sign a model was created and pseudo-

experiments were run. For each model, depending on how delayed the

corrective action(s) were taken different scenarios (or data points) were

generated. These scenarios were then compared, analysed and interpreted.

4.6.1.1 EWS1 - Lack of top management support or commitment to

the project

Using SimSE simulation tool an XP model was created which would provide

early warning to the user (player) if there is a lack of top management support.

This was identified if the management official(s) were not present in the release

planning meeting of the project. Many important decisions are taken in the

release planning meeting and presence of top management official(s) is a key

for project success. The release planning meeting occurs once at the start of

every project and the absence of management officials in the meeting is clearly

a concern which may later on cause disastrous effects on the project. In the

model, before the start of the release planning meeting the user (player) is

asked whether the management official should be included in the meeting

(Manager „Chang‟ in this case) as shown in figure 30 below.

89

Figure 30: Selection of Manager in Release planning meeting of the project

If the user selects the manager then its fine and is assumed that there is top

management support to the project. As shown in figure 31, if the user hasn‟t

selected the manager and the meeting has already been started then an early

warning message pops up immediately to intimate the user advising him to

select „Involve Management‟ action else project may have to face heavy losses.

Once this warning message has been displayed „Involve Management‟ action

appears in the context menu of the project manager as shown in figure 32.

Selecting „Involve Management‟ implies getting management official to attend

the meeting and thereby assuming the support of top management. On

selecting the „Involve Management‟ action a well done message appears

immediately in the model as shown in figure 33.

90

Figure 31: Warning message displayed for the absence of management in release planning

meeting

91

Figure 32: „Involve Management‟ action selected

92

Figure 33: Well done message appeared after selecting „Involve Management‟ action

Even after the warning message has been displayed the user may choose not

to select „Involve Management‟ action and as a consequences project may face

heavy losses. This XP model simulates a project which has a total of 4

iterations and implementation of 80 user stories in 1800 clock ticks. The clock

tick is shown under „Time Elapsed‟ section of the SimSE model (right hand

bottom corner). Depending on how delayed the „Involve Management‟ action

has been selected the project result varies. 8 different scenarios (or data points

with different results depending on the delayed selection of „Involve

Management‟ action) were identified for this early warning sign. The detailed

description and results of these scenarios can be found in Appendix C1.

93

4.6.1.1.1 Analysis and Result

This section will compare and analyse the results of different scenarios and

summarise the findings. Table 3 provides the summary of time for releases and

customer complains in different scenarios.

 Release 1 Release 2 Release 3 Release 4 Number of

times

Customer

Complains

Best Case 543 956 1369 1782 0

EWS Case 543 956 1369 1782 0

First Iteration 605 1018 1431 - 1

Between 1st and

2nd Iteration

667 1080 1483 - 2

Second Iteration 791 1266 1679 - 6

Between 2nd and

3rd Iteration

791 1389 - - 9

Third Iteration 791 1514 - - 11

Worst Case 791 1514 - - 11

Table 3: Summary of time for releases and customer complains in different scenarios

94

Figure 34: Graphical representation of summary of time taken by different scenarios

From „time for releases‟ perspective it is quite evident that the simulation has

performed better in cases/scenarios where corrective action was taken early.

For example the performance (in terms of time for releases) of EWS case was

better than first iteration case. Best case and EWS case implemented all the 80

user stories in defined time lines. First iteration, between 1st and 2nd iteration

and second iteration cases all finished their first three iterations and were on

their fourth iteration when the time was up. Between 2nd and 3rd iteration, third

iteration and worst cases just finished their first two iterations and were on their

third iteration when the time was up. The time for releases for „third iteration‟

case and worst case were same but their final state of the artefacts was

different (it is here where third iteration case performed better than worst case).

An interesting point regarding the times for each iteration in the above figure is

the cascade effect of a delay in one iteration causing the next iteration to be

longer. It appears the longer an EWS is ignored, the greater its impact on

downstream activities.

The second point of comparison is the completeness and correctness of the

whole code (or product). The final state of the artefacts for each scenario

0

450

900

1350

1800

Best
Case

EWS
Case

First
Iteration

Between
1st and

2nd
Iteration

Second
Iteration

Between
2nd and

3rd
Iteration

Third
Iteration

Worst
Case

Release 4

Release 3

Release 2

Release 1

95

represents the completeness and correctness of the product. The code or

product is considered to be fully complete if all the 4 iterations are fully

completed. A typical illustration of it is a best case scenario where the code is

fully completed and the product is delivered to the customer (that too before the

deadline). If NumUserStoriesIntegrated attribute is taken in to consideration

then for best and EWS case the number of user stories integrated are 80; for

first iteration case its 73; for „between 1st & 2nd iteration‟, second iteration and

„between 2nd and 3rd iteration‟ case its 60; for third iteration and worst case its

40. It is apparent that the earlier corrective action is applied the more user

stories are integrated. If PercentErroneous attribute under UserStories artifact is

taken in to consideration with NumUserStoriesIntegrated attribute then it

provides information about the number of correctly integrated user stories.

Further, if you refer to the individual scenarios explained earlier and then

compare and analyse their final state of the artefacts it is apparent that the

earlier corrective action is applied the better it is for the project.

The third point of comparison is the number of times the customer complains

Again the pattern is apparent that the earlier the user responds and applies

recommended action the better project outcomes are attained.

Figure 35: Graphical representation of Customer Complains in different scenarios

0

2

4

6

8

10

12

Customer Complains

Customer Complains

96

From all the three points of comparison it is very clear and discernible that the

earlier the user responds to the warning sign (message) the better it is for the

project to meet its deadline. The best case is the ideal scenario and worst case

is the scenario where the user doesn‟t react to the warning message at all. The

worst case scenario has the highest impact to the project and the project fails to

meet the expectations. It is clear that the project performance deteriorated from

the best case to worst case.

4.6.1.2 EWS2 - Project stakeholders have not been interviewed for

project requirements

Using SimSE simulation tool an XP model was created which would provide

early warning to the user if the project stakeholders were not interviewed for the

project requirements. This was identified if the customer representative(s) were

not present in the release planning meeting of the project. In XP methodology

important decisions are taken during the release planning meeting. The user

stories (requirements) are discussed, elucidated and prioritised in the release

planning meeting and the presence of customer representative(s) is of prime

essence. The release planning meeting occurs once at the start of every

project. As shown in figure 36, in the model before the start of the release

planning meeting the user (player) is asked whether customer representative

should be included in the meeting (customer „Wayne‟ in this case).

97

Figure 36: Selection of customer representative in the release planning meeting of the project

If the user (player) selects the customer then its fine and is assumed that the

project requirements (user stories in XP terminology) are discussed with the

project stakeholder(s). As shown in figure 37, if the user (player) hasn‟t selected

the customer and the meeting has already been started then an early warning

message pops up immediately to intimate the user (player) advising him to

select „Involve Customer‟ action else project may have to face heavy losses.

Once this warning message has been displayed „Involve Customer‟ action

appears in the context menu of the project manager as shown in figure 38.

Selecting „Involve Customer‟ implies getting customer representative to attend

the meeting and thereby assuming that the project requirements have been

discussed with the project stakeholders. On selecting the „Involve Customer‟

action a well done message appears immediately in the model as shown in

figure 39.

98

Figure 37: Warning message displayed for the absence of customer representative in the release

planning meeting

99

Figure 38: „Involve Customer‟ action selected

100

Figure 39: Well done message appeared after selecting „Involve Customer‟ action

Even after the warning message has been displayed the user may choose not

to select the „Involve Customer‟ action and as a consequences project may

have to face losses. Depending on how delayed the „Involve Customer‟ action

has been selected the project result varies and 6 different scenarios were

identified. The detailed description and results of these scenarios can be found

in Appendix C2.

101

4.6.1.2.1 Analysis and Results

This section will compare and analyse the results of different scenarios (or data

points) and summarise the findings. Table 4 below provides the summary of

time for releases and customer complains in different scenarios.

 Release 1 Release 2 Release 3 Release 4 Number of

times

Customer

Complains

Best Case 543 956 1369 1782 0

EWS Case 543 956 1369 1782 0

Second Iteration 573 986 1399 - 1

Third Iteration 573 1016 1429 - 2

Fourth Iteration 573 1016 1459 - 3

Worst Case 573 1016 1459 - 3

Table 4: Summary of time for releases and customer complains in different scenarios

In terms of time for releases, best and EWS case performed better than second

iteration case; and second iteration case performed better than third iteration

case. Further, third iteration case performed better than fourth iteration and

worst case.

102

Figure 40: Graphical representation of summary of time taken by different scenarios

The second point of comparison is the completeness and correctness of the

whole code (or product). The final state of the artefacts for each scenario

represents the completeness and correctness of the product. The code or

product is considered to be fully complete if all the 4 iterations are fully

completed. A typical illustration of it is a best case scenario where the code is

fully completed and the product is delivered to the customer (that too before the

deadline). If NumUserStoriesIntegrated attribute is taken in to consideration

then for best, EWS and second iteration case the number of user stories

integrated are 80; for third iteration case its 75; for fourth iteration and worst

case its 60. It is apparent that the earlier corrective action is applied the more

user stories are integrated. If PercentErroneous attribute under UserStories

artifact is taken in to consideration with NumUserStoriesIntegrated attribute then

it provides information about the number of correctly integrated user stories.

Further, if you refer to the individual scenarios explained earlier and then

compare and analyse their final state of the artefacts it is apparent that the

earlier corrective action is applied the better it is for the project.

The third point of comparison is the number of times the customer complains.

Again the pattern is apparent that the earlier the user responds and applies

recommended action the better project outcomes are attained.

0

450

900

1350

1800

Best
Case

EWS
Case

Second
Iteration

Third
Iteration

Fourth
Iteration

Worst
Case

Release 4

Release 3

Release 2

Release 1

103

Figure 41: Graphical representation of Customer Complains in different scenarios

From all the three points of comparison it is very clear and discernible that the

earlier the user responds to the warning sign (message) the better it is for the

project to meet its deadline. The best case is the ideal scenario and worst case

is the scenario where the user doesn‟t react to the warning message at all. The

worst case scenario has the highest impact to the project and the project fails to

meet the expectations. It is clear that the project performance deteriorated from

the best case to worst case.

4.6.1.3 EWS3 - Project team members do not have required

knowledge/skills

In order to exercise this condition a SimSE XP model was created which would

provide early warning to the user if the project team members do not have

required knowledge/skills. An early warning would trigger if the developers

(project team members) were unaware of the coding standard (required

knowledge/skills). This was identified if the “KnowsCodingStandard” attribute of

the developers was false. At the start of the game (i.e. the start of running

0

0.5

1

1.5

2

2.5

3

3.5

Customer Complains

Customer Complains

104

through the SimSE XP model) the developers are unaware of the coding

standard. It is expected that the developers would up-skill themselves with the

coding standard before they start off with their hands on coding for the project.

As shown in figure 42, a warning message appears repetitiously in the game

(model) so that the user is made aware that the developers need to be up-

skilled.

Figure 42: Warning message appears when developers are unaware of coding standard

105

The warning message advises the user to select „Learn coding standard‟ action.

If the user selects „Learn coding standard‟ action from the context menu (as

shown in figure 43) then its fine and is assumed that the developers have up-

skilled themselves and have acquired the required knowledge/skills to perform

the coding task. On the completion of „Learn coding standard‟ action, the

„KnowsCodingStandard‟ attribute of the developers changes to true (as shown

in figure 44).

Figure 43: „Learn coding standard‟ action in the context menu

106

Figure 44: Software developer‟s artefacts once the developers are aware of coding standard

Even after the warning message has been displayed the user may choose not

to select „Learn coding standard‟ action and start coding for the project and as a

consequences project may have to face losses. Depending on how delayed the

„Learn coding standard‟ action has been selected the project result varies and 5

different scenarios were identified. The detailed description and results of these

scenarios can be found in Appendix C3.

4.6.1.3.1 Analysis and Results

Table 5 below provides the summary of time for releases and customer

complains in different scenarios.

 Release 1 Release 2 Release 3 Release 4 Number of

times

Customer

Complains

Best Case 543 956 1369 1782 0

EWS Case 543 956 1369 1782 0

Second Iteration 655 1088 1501 - 3

Third Iteration 655 1200 1633 - 6

Worst Case 655 1200 1745 - 9

Table 5: Summary of time for releases and customer complains in different scenarios

107

In terms of time for releases, best and EWS case performed better than second

iteration case; and second iteration case performed better than third iteration

case. Further, third iteration case performed better than worst case.

Figure 45: Graphical representation of summary of time taken by different scenarios

The second point of comparison is the completeness and correctness of the

whole code (or product). If you refer to the individual scenarios explained earlier

and then compare and analyse their final state of the artefacts it is apparent that

the earlier corrective action is applied the better it is for the project.

The third point of comparison is the number of times the customer complains.

Again the pattern is apparent that the earlier the user responds and applies

recommended action the better project outcomes are attained.

0

450

900

1350

1800

Best Case EWS Case Second
Iteration

Third
Iteration

Worst Case

Release 4

Release 3

Release 2

Release 1

108

Figure 46: Graphical representation of Customer Complains in different scenarios

From all the three points of comparison it is very clear and discernible that the

earlier the user responds to the warning sign (message) the better it is for the

project to meet its deadline. The best case is the ideal scenario and the worst

case has the highest impact to the project and the project fails to meet the

expectations. It is clear that the project performance deteriorated from the best

case to worst case.

4.6.1.4 EWS4 - Key project stakeholders do not participate in major

review meetings

In order to exercise this condition a SimSE XP model was created which would

provide early warning to the user if key project stakeholders do not participate in

major review meetings. In XP methodology, it is important that the customer is

involved in the creation of the acceptance tests as they are responsible for

verifying the correctness of the acceptance tests. In this case, if the customer

(key project stakeholder) is not involved in the acceptance tests meeting (major

review meeting) then a warning message would trigger. This was identified if

the customer representative was not involved in the acceptance tests meeting.

In the model, before the creation of the acceptance tests the user is asked

0

1

2

3

4

5

6

7

8

9

10

Best Case EWS
Case

Second
Iteration

Third
Iteration

Worst
Case

Customer Complains

Customer Complains

109

whether the customer representative should be involved in the meeting

(Customer „Wayne‟ in this case) (as shown in figure 47).

Figure 47: Selection of customer representative in the creation of acceptance tests

If the user selects the customer then its fine and is assumed that key project

stakeholder (customer representative) is involved in major review meeting

(creation of acceptance tests). If the user hasn‟t selected the customer and the

meeting has already been started then an early warning message pops up

immediately to intimate the user advising him to select „Involve Customer‟ action

else project might have to face heavy losses (as shown in figure 48).

110

Figure 48: Warning message triggered for not involving customer in the creation of acceptance

tests

Once this warning message has been displayed „Involve Customer‟ action

appears in the context menu of the project manager (as shown in figure 49).

111

Figure 49: „Involve Customer „action appears in the context menu

Selecting „Involve Customer‟ implies getting customer representative to attend

the meeting (i.e. involving him in the creation of the acceptance tests) and

thereby assuming that the key project stakeholder(s) is participating in major

review meeting. As shown in figure 50, on selecting the „Involve Customer‟

action a well done message appears immediately in the model. Even after the

warning message has been displayed the user may choose not to select

„Involve Customer‟ action and under that situation if the user runs (executes) the

acceptance tests then half of the tests fail because customer was not involved

in the meeting (as shown in figure 51).

112

Figure 50: Well done message appeared after selecting „Involve Customer‟ action

113

Figure 51: Message appeared on executing acceptance tests if the customer was not involved in its

creation

Depending on how delayed the „Involve Customer‟ action has been selected the

project result varies and 4 different scenarios were identified. The detailed

description and results of these scenarios can be found in Appendix C4.

114

4.6.1.4.1 Analysis and Results

Table 6 below provides the summary of time for releases and customer

complains in different scenarios.

 Release 1 Release 2 Release 3 Release 4 Number of

times

Customer

Complains

Best Case 543 956 1369 1782 0

EWS Case 552 974 1396 - 5

Second Iteration 800 1222 1644 - 5

Worst Case 800 1470 - - 10

Table 6: Summary of time for releases and customer complains in different scenarios

In terms of time for releases, best case performed better than EWS case; EWS

case performed better than second iteration case. Further, second iteration

case performed better than worst case.

Figure 52: Graphical representation of summary of time taken by different scenarios

0

450

900

1350

1800

Best Case EWS Case Second
Iteration

Worst Case

Release 4

Release 3

Release 2

Release 1

115

The second point of comparison is the completeness and correctness of the

whole code (or product). If NumUserStoriesIntegrated attribute is taken in to

consideration then for best and EWS case the number of user stories integrated

are 80; for second iteration case its 60; and for worst case its 40. It is apparent

that the earlier corrective action is applied the more user stories are integrated.

Further, if you refer to the individual scenarios explained earlier and then

compare and analyse their final state of the artefacts it is apparent that the

earlier corrective action is applied the better it is for the project.

The third point of comparison is the number of times the customer complains.

Figure 53: Graphical representation of Customer complains in different scenarios

From all the three points of comparison it is very clear and discernible that the

earlier the user responds to the warning sign (message) the better it is for the

project to meet its deadline. It is clear that the project performance deteriorated

from the best case to worst case.

4.6.1.5 EWS5 - Project manager(s) cannot effectively lead the team

In order to demonstrate this condition a SimSE XP model was created which

would provide early warning to the user if the project manager cannot effectively

0

2

4

6

8

10

12

Best Case EWS Case Second
Iteration

Worst Case

Customer Complains

Customer Complains

116

lead a team. In this case, if the team is idle and not assigned any work then we

are assuming that project manager cannot effectively lead the team. Not

assigning work to team member is definitely a sign of weak/inexperienced

project manager. This was identified if the employee in the game was idle (i.e.

not assigned any work) and hence its “idle” attribute is set (as shown in figure

54 below).

Figure 54: Employees artefacts

As shown in figure 55, if the employees are idle then an early warning message

would pop up saying “We are not assigned any work!!! Project Manager should

assign some work to the team.”

117

Figure 55: Warning message pops up if the employees are idle

Once the warning message appears it is up to the user now (who is the project

manager here) to assign some work to the team. If the user still misses it, the

warning message would appear again after few clock ticks. This is hence

continuous and insistent in nature. Depending on how delayed the user reacts

to the warning message the project result varies. We have recorded 12 different

scenarios (or data points) but only showing 6 data points in detail under

Appendix C5. However, in the „Analysis and Results‟ section we will discuss all

the 12 data points.

4.6.1.5.1 Analysis and Results

Table 7 below provides the summary of time for releases and customer

complains in different scenarios.

118

 Release 1 Release 2 Release 3 Release 4 Number of

times

Customer

Complains

Best Case 543 956 1369 1782 0

EWS Case 549 964 1379 1799 0

Take 2 565 1000 1435 - 0

Take 3 586 1042 1498 - 3

Take 4 607 1084 1561 - 3

Take 5 628 1126 1624 - 6

Take 8 691 1252 - - 9

Take 12 775 1420 - - 10

Take 16 859 1588 - - 12

Take 20 943 1777 - - 16

Take 24 1028 - - - 16

Take 28 1112 - - - 16

Table 7: Summary of time for releases and customer complains in different scenarios

In terms of time for releases, best case has performed the best and „take 28‟

case has performed the worst. The time for releases has gradually increased

from best case to „take 28‟ case.

119

Figure 56: Graphical representation of summary of time taken by different scenarios

The second point of comparison is the completeness and correctness of the

whole code (or product). The final state of the artefacts for each scenario

represents the completeness and correctness of the product. Again, if

NumUserStoriesIntegrated attribute is taken in to consideration then for best

and EWS case the number of user stories integrated are 80; for „take 4‟ case its

60; for „take 12‟ and „take 20‟ case its 40; and for „take 28‟ case its 20. It is

apparent that the earlier corrective action is applied the more user stories are

integrated. Furthermore, if you refer to the individual scenarios explained earlier

and then compare and analyse their final state of the artefacts it is apparent that

the earlier corrective action is applied the better it is for the project.

The third point of comparison is the number of times the customer complains.

0

450

900

1350

1800

Best
Case

EWS
Case

Take
2

Take
3

Take
4

Take
5

Take
8

Take
12

Take
16

Take
20

Take
24

Take
28

Release 4

Release 3

Release 2

Release 1

120

Figure 57: Graphical representation of Customer complains in different scenarios

From all the three points of comparison it is very clear and discernible that the

earlier the user responds to the warning sign (message) the better it is for the

project to meet its deadline. The best case is the ideal scenario and „Take 28‟ is

the worst scenario out of all the scenarios. The „Take 28‟ scenario has the

highest impact to the project and the project fails to meet the expectations. It is

clear that the project performance deteriorated from the best case to „take 28‟

case.

4.6.1.6 EWS6 - Communication breakdown among project

stakeholders

Most of the early warning signs implemented in this research have an

associated action once the warning message appears. For example, for EWS

“lack of top management support or commitment to the project” we need to

select action “Involve Management” once the warning message pops up. In real

life this isn‟t always true, there may be instances where we always do not apply

actions for some warning signs instead wait for some other sign or select a

different action for other warning sign (here we keep the original warning sign

0

2

4

6

8

10

12

14

16

18

Customer Complains

Customer Complains

121

(which wasn‟t having any action) in mind and combine with current warning sign

to decide an appropriate action). In short, every early warning sign does not

necessarily need to have an “immediate” action associated to it. In a project, the

schedule has certain inertia and it may be that the action is in fact a delayed

action, i.e. a modification of an already planned downstream activity.

In the implemented SimSE XP model, for this EWS, we don‟t have an

immediate action associated to it. If a customer complains then it implies that

there is communication breakdown among project stakeholders. As stated

earlier, this SimSE XP model simulates a project which has a total of 4

releases. The customer is expecting these releases after certain clock ticks. If

there is a change in this then it needs to be explicitly communicated to the

project stakeholders (customer in this case). But if there is a communication

breakdown then customer would still expect a release at certain times and

would also complain if he doesn‟t get one. The following figure 58 shows a

customer is complaining when he doesn‟t receive an expected new release. A

customer complains if “TimeSinceLastRelease” attribute is greater than certain

predefined value.

122

Figure 58: Customer Complaining

As shown in figure 59, after few clock ticks, once the customer complains a

warning message pops up saying, “There seems to be a communication

breakdown among project stakeholders. Customer is moaning!!! He is expecting

a new release.”

123

Figure 59: Warning message for customer complaining

As suggested earlier, this EWS does not suggest any action(s) for warning

message instead is designed to create awareness (rather than prescribing

certain action(s)). This warning message may cause a modification of an

already downstream planned activity in the schedule. The main reason for

covering this type of EWS where we do not have any associated immediate

action is to cover a range of real life scenarios.

124

4.6.2 Controlled Experimental Study Results

As said earlier, for controlled experiment all the six EWS were implemented in

one integrated EWS model. This integrated EWS model simulates a realistic

and dynamic project environment where multiple early warning signs can trigger

simultaneously. The 10 volunteers were equally divided into two groups:

1) Control Group

2) EWS Group

The control group played the normal XP game twice whereas the EWS group

played the normal XP game once followed by the integrated EWS XP game.

The purpose of the control group is therefore to provide a baseline of

comparison from which any implicit bias that can be attributed to playing the

game (and “learning the rules”) is removed so that any benefit of the EWS

approach can be appropriately quantified.

4.6.2.1 Control Group Results

Out of ten volunteers, 5 belonged to the control group. The results of all the 5

volunteers are as follows:

4.6.2.1.1 Player 1

Player 1 rated their PM experience as high and their Agile/XP experience as

medium. For Game1, release 1 was completed at clock tick 685; release 2 at

1098 and release 3 at 1639. Customer complained 6 times throughout the

game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

685 1098 1639 -

Table 8: Clock ticks representing the completion of releases for game1

125

Figure 60: Final state of the artefacts for game1

For Game2, release 1 was completed at clock tick 552; release 2 at 994 and

release 3 at 1416. Customer complained 5 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game2 - Normal

XP game

552 994 1416 -

Table 9: Clock ticks representing the completion of releases for game2

126

Figure 61: Final state of the artefacts for game2

For player 1, there was slight improvement in the performance from game 1 to

game 2. In game 1, the acceptance tests completeness in the 4th iteration was

only 29%; and unit tests creation completeness and code completeness were 0.

Whereas in game 2, the acceptance tests completeness, unit tests creation

completeness and code completeness in the 4th iteration got up to 100%. The

percent refactored and percent integration were also 100%. The implementation

completeness and the total number of user stories integrated also increased

from 75 and 60 to 100 and 80 respectively in game 2. But the percent

erroneous (under Codes artifact) in the 4th iteration increased to 32% and hence

overall the percent erroneous (under UserStories artifact) of the code was

effectively increased to a total of 8%.

127

4.6.2.1.2 Player 2

Player 2 rated their PM experience as low and their Agile/XP experience as

medium. For Game1, release 1 was completed at clock tick 1270. Customer

complained 16 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

1270 - - -

Table 10: Clock ticks representing the completion of releases for game1

Figure 62: Final state of the artefacts for game1

For Game2, release 1 was completed at clock tick 1020 and release 2 at 1478.

Customer complained 11 times throughout the game.

128

 Release 1 Release 2 Release 3 Release 4

Game2 - Normal

XP game

1020 1478 - -

Table 11: Clock ticks representing the completion of releases for game2

Figure 63: Final state of the artefacts for game2

For player 2, there was slight improvement in the performance from game 1 to

game 2. In game 1, the user was just about to end iteration 2 (as only running of

acceptance tests was remaining). In game 2, the user managed to finish

iteration 2 and got into iteration 3. In iteration 3, the code completeness was

82% and code erroneous was 6%. In game 1 the implementation completeness

was 50 whereas in game 2 it was 70.

129

4.6.2.1.3 Player 3

Player 3 rated their PM experience as medium and their Agile/XP experience as

low. For Game1, release 1 was completed at clock tick 738; release 2 at 1267

and release 3 at 1742. Customer complained 7 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

738 1267 1742 -

Table 12: Clock ticks representing the completion of releases for game1

Figure 64: Final state of the artefacts for game1

For Game2, release 1 was completed at clock tick 725 and release 2 at 1328.

Customer complained 9 times throughout the game.

130

 Release 1 Release 2 Release 3 Release 4

Game2 - Normal

XP game

725 1328 - -

Table 13: Clock ticks representing the completion of releases for game2

Figure 65: Final state of the artefacts for game2

For player 3, the performance deteriorated from game 1 to game 2. In game 1,

the user completed three iterations and was on 4th iteration whereas in game 2,

the user completed only two iterations and was on 3rd iteration when the game

ended. Also, the customer complained 7 times in game 1 whereas 9 times in

game 2.

131

4.6.2.1.4 Player 4

Player 4 rated their PM experience as low and their Agile/XP experience as low

(these experience levels represent a situation where PM is junior and working

on a project employing new methodology for him). For Game1, release 1 was

completed at clock tick 1329. Customer complained 17 times throughout the

game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

1329 - - -

Table 14: Clock ticks representing the completion of releases for game1

Figure 66: Final state of the artefacts for game1

For Game2, release 1 was completed at clock tick 1159. Customer complained

18 times throughout the game.

132

 Release 1 Release 2 Release 3 Release 4

Game2 - Normal

XP game

1159 - - -

Table 15: Clock ticks representing the completion of releases for game2

Figure 67: Final state of the artefacts for game2

For player 4, both the games managed to finish only first iteration. Even though

the time for first release was quicker in game 2 (compared to game 1) but there

was no apparent improvement from game 1 to game 2. As in game 2, the unit

tests creation completeness was only 49% and coding in the 2nd iteration was

not even started where as in game 1, the code completeness and unit tests

creation completeness were 100% but the percent erroneous was alarming

97%. Unlike other players, it is difficult to compare the final state of artefacts of

game 1 and game 2 for player 4. Further, the customer complained 17 times in

game 1 whereas 18 times in game 2.

133

4.6.2.1.5 Player 5

Player 5 rated their PM experience as low and their Agile/XP experience as low.

For Game1, release 1 was completed at clock tick 1138. Customer complained

16 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

1138 - - -

Table 16: Clock ticks representing the completion of releases for game1

Figure 68: Final state of the artefacts for game1

For Game2, release 1 was completed at clock tick 1113. Customer complained

16 times throughout the game.

134

 Release 1 Release 2 Release 3 Release 4

Game2 - Normal

XP game

1113 - - -

Table 17: Clock ticks representing the completion of releases for game2

Figure 69: Final state of the artefacts for game2

For player 5, the final state of the artefacts for game 1 and game 2 were similar.

Both the games finished their first iteration and were on second iteration when

the game ended. In game 2 the percent erroneous of code in the 2nd iteration

was 6% compared to 3% in game 1. Whereas, the acceptance tests

completeness in game 2 increased to 100 from 0 in game 1. The number of

customer complains were same in both the games (i.e. 16 times).

135

4.6.2.2 EWS Group Results

Out of ten volunteers, 5 belonged to the EWS group. The EWS group played

the normal XP game once followed by the integrated EWS XP game. The

results of all the 5 volunteers are as follows:

4.6.2.2.1 Player 6

Player 6 rated their PM experience as medium and their Agile/XP experience as

low. For Game1, release 1 was completed at clock tick 830 and release 2 at

1708. Customer complained 15 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

830 1708 - -

Table 18: Clock ticks representing the completion of releases for game1

Figure 70: Final state of the artefacts for game1

136

For Game2, release 1 was completed at clock tick 739; release 2 at 1231 and

release 3 at 1672. Customer complained 7 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game2 – Integrated

EWS XP game

739 1231 1672 -

Table 19: Clock ticks representing the completion of releases for game2

Figure 71: Final state of the artefacts for game2

For player 6, there was an apparent improvement from game 1 to game 2. In

game 1, the user was able to finish two iterations and was in iteration 3 when

the game ended whereas in game 2, the user was able to finish three iterations

and was in iteration 4 when the game ended. In game 1, the implementation

completeness was 50 and the total number of user stories integrated was 40. In

game 2, the implementation completeness was 78 and the total number of user

137

stories integrated was 60. In game 1, the total number of times the customer

complained was 15 whereas in game 2, it was just 7.

4.6.2.2.2 Player 7

Player 7 rated their PM experience as high and their Agile/XP experience as

high. For Game1, release 1 was completed at clock tick 706 and release 2 at

1276. Customer complained 8 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

706 1276 - -

Table 20: Clock ticks representing the completion of releases for game1

Figure 72: Final state of the artefacts for game1

138

For Game2, release 1 was completed at clock tick 540; release 2 at 958;

release 3 at 1376 and release 4 at 1790. Customer never complained

throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game2 - Integrated

EWS XP game

540 958 1376 1790

Table 21: Clock ticks representing the completion of releases for game2

Figure 73: Final state of the artefacts for game2

For player 7, there was an apparent improvement from game 1 to game 2. In

game 1, the user was able to finish two iterations and was in iteration 3 when

the game ended whereas in game 2, the user finished all the four iterations. The

139

fourth release was finished at clock tick 1790 which was before the deadline of

1800 clock ticks. In game 1, the implementation completeness was 75 and the

total number of user stories integrated was 60. In game 2, the implementation

completeness was 100 and the total number of user stories integrated was 80.

Also, the percent erroneous code dropped to 0% in game 2 from 21% in game

1. In game 1, the total number of times the customer complained was 8

whereas in game 2, the customer never complained. Game 2 was similar to the

best case as defined in earlier sections.

4.6.2.2.3 Player 8

Player 8 rated their PM and Agile/XP experience as low. For Game1, release 1

was completed at clock tick 1349. Customer complained 17 times throughout

the game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

1349 - - -

Table 22: Clock ticks representing the completion of releases for game1

140

Figure 74: Final state of the artefacts for game1

For Game2, release 1 was completed at clock tick 666; release 2 at 1154 and

release 3 at 1642. Customer complained 7 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game2 - Integrated

EWS XP game

666 1154 1642 -

Table 23: Clock ticks representing the completion of releases for game2

141

Figure 75: Final state of the artefacts for game2

For player 8, there was an apparent improvement from game 1 to game 2. In

game 1, the user was able to finish first iteration and was in iteration 2 when the

game ended whereas in game 2, the user was able to finish three iterations and

was in iteration 4 when the game ended. In game 1, the implementation

completeness was 50 and the total number of user stories integrated was 21. In

game 2, the implementation completeness was 75 and the total number of user

stories integrated was 60. Further, in game 2 the percent erroneous of code

dropped to 0% (from 4% in game 1). In game 1, the total number of times the

customer complained was 17 whereas in game 2, it was just 7.

142

4.6.2.2.4 Player 9

Player 9 rated their PM and Agile/XP experience as low. For Game1, release 1

was completed at clock tick 1557. Customer complained 20 times throughout

the game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

1557 - - -

Table 24: Clock ticks representing the completion of releases for game1

Figure 76: Final state of the artefacts for game1

143

For Game2, release 1 was completed at clock tick 835 and release 2 at 1322.

Customer complained 9 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game2 – Integrated

EWS XP game

835 1322 - -

Table 25: Clock ticks representing the completion of releases for game2

Figure 77: Final state of the artefacts for game2

For player 9, there was an apparent improvement from game 1 to game 2. In

game 1, the user was able to finish first iteration and was in iteration 2 when the

game ended whereas in game 2, the user was able to finish two iterations and

was in iteration 3 when the game ended. In game 1, the implementation

144

completeness was 29% and the total number of user stories integrated was 20.

In game 2, the implementation completeness was 75% and the total number of

user stories integrated was 60. In game 1, the total number of times the

customer complained was 20 whereas in game 2, it was just 9.

4.6.2.2.5 Player 10

Player 10 rated their PM experience as low and their Agile/XP experience as

medium. For Game1, release 1 was completed at clock tick 1180 and release 2

at 1667. Customer complained 14 times throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game1 - Normal

XP game

1180 1667 - -

Table 26: Clock ticks representing the completion of releases for game1

Figure 78: Final state of the artefacts for game1

145

For Game2, release 1 was completed at clock tick 533; release 2 at 946;

release 3 at 1359 and release 4 at 1772. Customer never complained

throughout the game.

 Release 1 Release 2 Release 3 Release 4

Game2 – Integrated

EWS XP game

533 946 1359 1772

Table 27: Clock ticks representing the completion of releases for game2

Figure 79: Final state of the artefacts for game2

For player 10, there was an apparent improvement from game 1 to game 2. In

game 1, the user was able to finish two iterations and was in iteration 3 when

the game ended whereas in game 2, the user finished all the four iterations. The

fourth release was finished at clock tick 1772 which was before the deadline of

146

1800 clock ticks. In game 1, the implementation completeness was 50% and

the total number of user stories integrated was 40. In game 2, the

implementation completeness was 100% and the total number of user stories

integrated was 80. In game 1, the total number of times the customer

complained was 14 whereas in game 2, the customer never complained. Game

2 was similar to the best case as defined in earlier sections.

4.6.2.3 Analysis and Result

Now having discussed the individual player‟s results, this section will compare

and analyse the results between control group and EWS group and summarise

the findings. The tables below provide the summary of the time taken by

different control and EWS group players for their releases.

 Release 1 Release 2 Release 3 Release 4

Player 1 - Game 1 685 1098 1639 -

Player 1 - Game 2 552 994 1416 -

Player 2 - Game 1 1270 - - -

Player 2 - Game 2 1020 1478 - -

Player 3 - Game 1 738 1267 1742 -

Player 3 - Game 2 725 1328 - -

Player 4 - Game 1 1329 - - -

Player 4 - Game 2 1159 - - -

Player 5 - Game 1 1138 - - -

Player 5 - Game 2 1113 - - -

Table 28: Summary of time for releases by control group players

 Release 1 Release 2 Release 3 Release 4

Player 6 - Game 1 830 1708 - -

Player 6 - Game 2 739 1231 1672 -

Player 7 - Game 1 706 1276 - -

Player 7 - Game 2 540 958 1376 1790

Player 8 - Game 1 1349 - - -

Player 8 - Game 2 666 1154 1642 -

147

Player 9 - Game 1 1557 - - -

Player 9 - Game 2 835 1322 - -

Player 10 - Game 1 1180 1667 - -

Player 10 - Game 2 533 946 1359 1772

Table 29: Summary of time for releases by EWS group players

The average improvement in the number of iterations/releases completed

between the two games by the control group players is as shown in Table 30:

 Number of

iterations/releases

completed in Game 1

Number of

iterations/releases

completed in Game 2

Improvement

from Game 1 to

Game 2

Player 1 3 3 0

Player 2 1 2 +1

Player 3 3 2 -1

Player 4 1 1 0

Player 5 1 1 0

Table 30: Improvement in the number of iterations/releases completed between the two games by
the Control Group Players

Average improvement = (0 + 1 – 1 + 0 + 0) / 5 = 0

That means for control group players on an average there is no improvement in

the number of iterations/releases completed between the two games.

The average improvement in the number of iterations/releases completed

between the two games by the EWS group players is as shown in Table 31:

 Number of

iterations/releases

completed in Game 1

Number of

iterations/releases

completed in Game 2

Improvement

from Game 1 to

Game 2

Player 6 2 3 +1

Player 7 2 4 +2

Player 8 1 3 +2

Player 9 1 2 +1

Player 10 2 4 +2

Table 31: Improvement in the number of iterations/releases completed between the two games by
the EWS Group Players

148

Average improvement = (1 + 2 + 2 + 1 + 2) / 5 = 1.6

That means for EWS group players on an average there is an improvement of

1.6 iterations/releases completed between the two games.

This is showing that on average, the players in the EWS group successfully

finished 1.6 more iterations/releases than players in the control group.

The second point of comparison is the completeness and correctness of the

whole code (or product). The final state of the artefacts for each game

represents the completeness and correctness of the product. The code or

product is considered to be fully complete if all the 4 iterations are fully

completed. A typical illustration of it is the game 2 of player 10 where the entire

code is correctly completed and the product is delivered to the customer (that

too before the deadline).

In terms of statistics there are many useful attributes from the list of artefacts

which can be used to compare the improvement of control group and EWS

group. One such useful absolute attribute which can be used as a measure is

“Number of User Stories Integrated”. The “Percent Erroneous” attribute in the

UserStories artifact has also been taken into account in conjunction with

“Number of User Stories Integrated” attribute to address both “completeness”

and “correctness” of the code. The following formula has been used:

Score = ((100 – PercentErroneous) * NumUserStoriesIntegrated)/100

For the control group players, the change in number of correctly integrated user

stories taking into account the percentage error between the two games is as

shown in the following tables:

 User Stories

Integrated in

Game 1

Percent

Erroneous in

Game 1

User Stories

Integrated in

Game 2

Percent

Erroneous in

Game 2

Player 1 60 0 80 8

Player 2 40 10 40 0

149

Player 3 60 0 60 1

Player 4 40 49 20 0

Player 5 20 0 20 0

Table 32: Comparison of User Stories Integrated and Percent Erroneous for the Control Group
Players

 Score

(Game 1)

Score (Game

2)

Improvement in the number

of User Stories Integrated

correctly

% Improvement in the

number of User Stories

Integrated correctly

Player 1 60 73.6 +13.6 22.7%

Player 2 36 40 +4 11.1%

Player 3 60 59.4 -0.6 -1.0%

Player 4 20.4 20 -0.4 -2.0%

Player 5 20 20 0 0.0%

Table 33: Improvement in the number of User Stories Integrated correctly between the two games
for the Control Group Players

Average improvement = (13.6 + 4 – 0.6 – 0.4 + 0) / 5 = 3.3

That means for control group players on an average there is increase of 3.3

correctly integrated user stories from game 1 to game 2.

For EWS group players, the change in number of correctly integrated user

stories taking into account the percentage error between the two games is as

shown in the following tables:

 User Stories

Integrated in

Game 1

Percent

Erroneous in

Game 1

User Stories

Integrated in

Game 2

Percent

Erroneous in

Game 2

Player 6 40 0 60 0

Player 7 60 21 80 0

Player 8 21 4 60 0

Player 9 20 0 60 0

Player 10 40 0 80 0

Table 34: Comparison of User Stories Integrated and Percent Erroneous for the EWS Group
Players

150

 Score

(Game 1)

Score

(Game 2)

Improvement in the

number of User Stories

Integrated correctly

% Improvement in the

number of User Stories

Integrated correctly

Player 6 40 60 +20 50%

Player 7 47.40 80 +32.6 68.8%

Player 8 20.16 60 +39.84 197.6%

Player 9 20 60 +40 200.0%

Player 10 40 80 +40 100.0%

Table 35: Improvement in the number of User Stories Integrated correctly between the two games
for the EWS Group Players

Average improvement = (20 + 32.6 + 39.84 + 40 + 40) / 5 = 34.5

That means for EWS group players on an average there is increase of 34.5

correctly integrated user stories from game 1 to game 2.

This is showing that on average, the players in the EWS group successfully

correctly integrated 31.2 more user stories than players in the control group.

A similar statistical analysis can also be done using other attributes. However, it

should be taken in to account that unlike NumUserStoriesIntegrated, some of

these attributes are relative and is based on current iteration. That means, for

example there can‟t be a direct comparison between the

UnitTest.Completeness for iteration 2 and UnitTest.Completeness for iteration 3

- there is a gap of an entire iteration between them; unless the change in the

iteration has been somehow included in the statistical analysis. If the primary

measure of user stories integrated is inconclusive then these attributes can help

to assess the progress in the incomplete iteration. However, the primary

measure in this case (user stories integrated in conjunction with percent

erroneous) is very conclusive and hence the detailed analysis of these

attributes has not been shown.

The third point of comparison is the number of times the customer complains.

151

 Customer Complains

Player 1 - Game 1 6

Player 1 - Game 2 5

Player 2 - Game 1 16

Player 2 - Game 2 11

Player 3 - Game 1 7

Player 3 - Game 2 9

Player 4 - Game 1 17

Player 4 - Game 2 18

Player 5 - Game 1 16

Player 5 - Game 2 16

Table 36: Summary of number of the customer complains for control group players

 Customer Complains

Player 6 - Game 1 15

Player 6 - Game 2 7

Player 7 - Game 1 8

Player 7 - Game 2 -

Player 8 - Game 1 17

Player 8 - Game 2 7

Player 9 - Game 1 20

Player 9 - Game 2 9

Player 10 - Game 1 14

Player 10 - Game 2 -

Table 37: Summary of number of the customer complains for EWS group players

The average improvement in the number of customer complains between the

two games by the control group players are as follows:

 Customer complains

in Game 1

Customer complains

in Game 1

Improvement from

Game 1 to Game 2

Player 1 6 5 +1

Player 2 16 11 +5

Player 3 7 9 -2

152

Player 4 17 18 -1

Player 5 16 16 0

Table 38: Customer complains in the two games for the Control Group Players

Average improvement = (1 + 5- 2 - 1 + 0) / 5 = 0.6

That means for control group players on an average there is an improvement of

0.6 number of customer complains between the two games.

The average improvement in the number of customer complains between the

two games by the EWS group players are as follows:

 Customer complains

in Game 1

Customer complains

in Game 1

Improvement from

Game 1 to Game 2

Player 6 15 7 +8

Player 7 8 0 +8

Player 8 17 7 +10

Player 9 20 9 +11

Player 10 14 0 +14

Table 39: Customer complains in the two games for the EWS Group Players

Average improvement = (8 + 8 + 10 + 11 + 14) / 5 = 10.2

That means for EWS group players on an average there is an improvement of

10.2 number of customer complains between the two games.

This is showing that on average, the players in the EWS group got 9.6 fewer

customer complains than players in the control group.

To summarise the findings:

 For the control group players there wasn‟t always a clear progression

from game 1 to game 2. For players 1, 2 and 5 the performance

improved slightly in their second game whereas the performance of

players 3 and 4 slightly deteriorated in their second game. I would tend to

153

say that for all the control group players their performance in second

game either marginally improved or marginally deteriorated if compared

to game 1. Player 2 was just about to finish iteration 2 in game 1. He got

a slight push and hence managed to finish iteration 2 and got into

iteration 3 in game 2. Evidence of progression or improvement is not

conclusive for the control group players.

 For all the EWS group players there was a very clear progression from

game 1 to game 2. Their performance improvement was evident. In fact

player 7 and player 10 were able to complete all the four iterations before

the deadline of 1800 clock ticks. This improvement pattern can also be

noticed in the total number of customer complains. It appears that EWS

system has really added value and has positive impact on the project

outcomes.

Further, on the basis of the statistical analysis it has been shown that the EWS

group showed a greater improvement than the control group. Just to re-iterate,

the control group played the normal XP game twice whereas the EWS group

played the normal XP game once followed by the integrated EWS XP game.

The purpose of the control group is therefore to provide a baseline of

comparison from which any implicit bias that can be attributed to playing the

game (and “learning the rules”) is removed so that any benefit of the EWS

approach can be appropriately quantified. In the first evaluation parameter, for

the control group players on an average there was no improvement in the

number of iterations/releases completed between the two games whereas for

the EWS group players the average was 1.6. This is showing that on average,

the players in the EWS group successfully finished 1.6 more iterations/releases

than players in the control group. In the second evaluation parameter, for the

control group players the average change in the number of correctly integrated

user stories taking into account the percentage error between the two games

was 3.3 whereas for the EWS group players it was 34.5 (which is 31.2 more

correctly integrated user stories than players in the control group). Similarly, in

the third evaluation parameter, for the control group players the average

154

improvement in the number of customer complains between the two games was

0.6 compared 10.2 for the EWS group players. On an average the players in the

EWS group got 9.6 fewer customer complains than players in the control group.

Having said that, author acknowledges the limitations of the use of simple

statistics. One of the original research goals of this study is to simply look for

the evidence to support further study. Given the goal, this simple approach is

appropriate and hence the author hasn‟t looked too much into the statistical

significance. To add more, the author also acknowledges the limitations of the

sample size. The sample size is really not large enough to make any

generalisations. Also, as said earlier all the early warning signs were not

addressed by the game (only 6 of them were addressed). So the obvious

"further work" comments are to do with developing some form of recommender

system outside of the SimSE environment and testing it alongside a real project.

But these results could definitely act as a conceptual proof.

4.7 Summary

This section concludes the results and analysis chapter which has presented

the early warning signs implemented in this research. Information about SimSE

simulation tool was also provided. SimSE is an interactive and graphical

computer based environment which allows the creation and simulation of

software engineering processes (Navarro and Hoek, 2004). It allows simulating

realistic software engineering environment comprised of real world components

like people, budget, large complex projects, planning, deadlines, unexpected

events and others (Navarro and Hoek, 2007). It is designed specifically for

providing a platform to experience different aspects of software engineering in a

practical manner. CT and controlled experimental setup was explicated in detail

followed by their results. Finally, the results were analysed, interpreted and

evaluated. The following chapter will conclude the thesis and discuss the

research findings and answers the research questions. It will also talk about the

limitations of the study.

155

Chapter V

Discussion and

Conclusion

5.1 Introduction

This thesis has demonstrated the application of a new and innovative concept

known as early warning signs in the context of software project management.

Employing this concept in project management field could improve the project

success rate. This chapter will conclude the thesis and discuss the research

findings and answers the research questions. Further, it also outlines the

limitations of the study and recommendations for future research.

5.2 Answers to the Research Questions

As stated in chapter 1, following are the research questions for this thesis:

 Does the implementation of early warning phenomenon have positive

effects on the project outcomes?

 Is there positive impact on the project outcomes if the corrective actions

are taken early?

156

To answer these questions SDRM methodology was employed. SimSE

simulation tool was used to design the models which were tested using two

experimental techniques: Individual EWS testing and Controlled Experimental

Study. Experiments were conducted which contributed data to this aspect.

These data was analysed and evaluated. The results were then discussed and

the answers for the research questions were acquired.

For research question one:

Does the implementation of early warning phenomenon have positive

effects on the project outcomes?

From the results of controlled experimental study we have seen that for all the

EWS group players, performance has improved in their second game. In fact

their performance improvement was marked. For all the control group players

this wasn‟t true. In some of the cases their performance deteriorated in their

second game. It appears that EWS system has really added value and has

positive effects on the project outcomes. Hence the answer to the research

question is: Yes, the implementation of early warning phenomenon has positive

effects on the project outcomes.

For research question two:

Is there positive impact on the project outcomes if the corrective actions

are taken early?

From the results of individual EWS testing it is evident that sooner we apply

corrective actions the better it is for the projects. This was true for all the models

(apart from last model (EWS 6) where this test was not applicable and we had

no data generated). Hence the answer to the research question is: Yes, there is

a positive impact on the project outcomes if the corrective actions are applied

early. However, it is important to recognise the limitations of the approach used

to generate the notification. In a real world problem it is unlikely that there will

be a clear indication that something has gone wrong. Rather than a binary

change in a project element, the early warning sign is likely to grow more

157

apparent over time. Therefore it is important to not overstate the contribution of

this research.

5.3 Limitations and Recommendations

This research is a stepping stone to head towards a proactive project

management style. It is preliminary and exploratory in nature. Even though the

findings of the research are encouraging there were some limitations. But these

results could definitely act as a conceptual proof and renders as an important

piece of research upon which further hypotheses can be based.

Not all the important early warning signs were addressed by the research

mainly due to the limitations of the SimSE tool and time constraints. But the

idea was that if we can demonstrate and prove the objective using 6 EWS then

it should be scalable and also work with more EWS (though it might add some

complexity). Implementation of more EWS is something which should be

considered as future work for this research.

Further, the models evaluated in this research were preliminary models. A

major limitation of the study is that it is based on the arbitrary rules in the SimSE

game. There were few assumptions and known functionality limitations of

SimSE (like for instance sometimes you can‟t stop a task once it is allocated).

One of the assumptions was that the SimSE XP model would ignore the budget

and only focus on the schedule of the project. Hence the SimSE models used in

the research may not completely represent the real-world project situation.

There were many technical challenges during the implementation of the SimSE

models. Also, the model was simulating XP software development methodology

and few users had low experience in XP methodology. Therefore, the results of

this research were constrained by these parameters.

As stated earlier, the author acknowledges the limitations of the sample size.

The controlled experimental study was performed only using 10 volunteers. The

sample size is really not large enough to make any generalisations. It would

also be interesting to observe how helpful the early warning sign concept is to

158

volunteers of different PM experience. Maybe volunteers with low PM

experience would find this recommender system more useful than volunteers

with high PM experience. However, that means the sample size should be large

and diverse enough to make any generalisations (or smaller but targeted to a

particular group of project managers).

 Also, another obvious further work comments are to do with developing some

form of recommender system outside of the SimSE environment and testing it

alongside a real project.

Again as stated earlier, it is important to recognise the limitations of the

approach used to generate the notification. In a real world problem it is unlikely

that there will be a clear indication that something has gone wrong. Rather than

a binary change in a project element, the early warning sign is likely to grow

more apparent over time. Therefore it is important to not overstate the

contribution of this research.

The author also acknowledges the use of simple statistical analysis like average

while evaluating and comparing the improvement of the control group and the

EWS group in this research.

This research is first of its kind as no-one has ever empirically demonstrated the

concept of early warning signs in a typical IT project environment. Having said

that, Nikander has done considerable work in this field but his work (or models)

was not empirically demonstrated. This is a wide open research area and has

many future work options. To name a few the decision support model of early

warnings by Nikander (2002) needs to be empirically demonstrated. The current

research has extended his decision support model but hasn‟t demonstrated all

the concepts presented by the model. A further, detailed empirical study is

needed to demonstrate his decision support model.

Another future work option is to construct a framework so that early warning

signs phenomenon can be embedded in to project risk management. We

already have an unproven reference model by Nikander (2002) as shown in

159

figure 80. Empirically proving this model would definitely be next stepping stone

in this field as that would increase organisation‟s confidence on early warning

signs phenomenon and would practically provide a way for organisations to

implement this phenomenon with their risk management strategies.

Figure 80: Embedding of Early Warning Sign phenomenon with Project Risk Management

(Nikander, 2002)

Another future recommendation work would be, to provide definite mapping

between early warning signs and their corrective actions. This could act as a

recommender system. All the EWS implemented in this research had only one

corrective action but in real project scenario this is unlikely. For example, for

EWS “Functional, performance, and reliability requirements and scope are not

documented”, we could have following corrective actions (prescriptions)

(Havelka and Rajkumar, 2006):

160

 Define the scope of the project and specify boundaries

 Review project specifications and requirements with sponsor and users,

obtain signoffs

 Review and update project management artefacts e.g. the WBS

 Determine specific problem, if necessary

 Review project specifications and requirements with analysis, design,

coding and testing personnel

Determining the priority of these corrective actions depending on their

effectiveness and recommending to the user would be useful for a

recommender system. This could then lead to a learning system which self-

adapts for an individual company so that the appropriate prescriptions are

tailored to their own work environment.

5.4 Conclusion

The software industry has been plagued by the staggering failure rate of

projects, which have resulted in the loss of billions of dollars. The well known

Chaos Report by the Standish Group declared that software projects are in

chaos with only 16.2% of software projects actually being successful in the year

1994 (Eveleens and Verhoef, 2010). However, since that time it appears that IT

project‟s success rate is improving, albeit slowly. According to the recent study

by Standish group, 32% of the projects were successful in the year 2009

(Eveleens and Verhoef, 2010). Whilst the Chaos report has faced many

critiques by several authors regarding the credibility, validity of figures,

relevance and integrity (Eveleens and Verhoef, 2010; Robin and Goldsmith,

2007; Molokken, 2006, Glass, 2006), it provides some degree of evidence that

developing software is still challenging today as it was at the time of writing of

the Mythical Man Month (Brooks, 1995), though the reasons and their relative

impact may have changed in the intervening period.

Managing software development projects is certainly challenging and difficult.

They have inherent characteristics like human interaction, abstraction,

161

complexity and uncertainty. There is no out-of-the-box or off-the-shelf solutions

for real-life software development projects but one way to save projects is to

deal with uncertainties.

In this research, we have identified different approaches to deal with

uncertainties starting from requirements engineering, software process

management to project risk management. Project management strategies are

critical to the enterprise success. This study has proposed new and innovative

concept of early warning signs which can be embedded in to project risk

management. The project risk management theories are not closely integrated

with the early warning phenomenon but this can apparently be utilised as a tool

in project risk management (Nikander, 2002).

The early warning signs concept is grounded on the thought that failures do not

happen overnight and that well run software projects root out problems early. A

warning sign is an indication or an event that predicts or alerts impending

problem(s) (Kappelman et al., 2006). Early warning sign provide an indication of

manifesting risks.

But the flipside is that the whole concept of early warnings phenomenon is

complex and its scope is very broad. It has multifarious dimensions. These early

warnings could emerge in numerous forms and can be detected in several

different situations and can be interpreted in various ways (Nikander, 2002).

Further, it is influenced by many internal and external factors. Also, it is fully

dependent on the observer/receiver who is interpreting the information and

hence the results/decision making depends completely on him.

In spite of these challenges the idea looks promising. As of yet there was no

empirical evidence that proves that implementing early warnings phenomenon

may have positive effects on the project outcomes. The aim of this research

work was to provide some empirical evidence that there is a value in following

and implementing early warnings phenomenon. A further aim of this research

work was to provide some empirical evidence that there is a value in terms of

undertaking corrective actions early by demonstrating that if we delay corrective

162

actions then it has a negative impact on the project outcomes. These research

objectives led to the following two research questions which were answered

within this research:

 Does the implementation of early warning phenomenon have positive

effects on the project outcomes?

 Is there positive impact on the project outcomes if the corrective actions

are taken early?

To answer these questions SDRM methodology was employed. SimSE

simulation tool was used to design the models which were tested using two

experimental techniques: Individual EWS testing and Controlled Experimental

Study. Experiments were conducted which contributed data to this aspect.

These data was analysed and evaluated. The results were then discussed and

positive answers for the research questions were acquired.

The study found that the implementation of early warning phenomenon has

positive effects on the project outcomes. Also, there is a positive impact on the

project outcomes if the corrective actions are taken early.

This study is just one step in this direction and has introduced a new concept of

early warning signs to the research arena. This is a wide domain and needs to

be built on in several directions. This research has contributed in software

engineering field by introducing early warning phenomenon to a typical IT

project environment. In spite of many challenges, the author has empirically

proved that the implementation of early warning phenomenon has positive

effects on the project outcomes. It is believed that this head start in introducing

early warning concept to project environment will provide the basis for next

generation proactive project risk management strategies.

Finally, the author would like to conclude with the statement that “Paying

attention to early warning signs can improve the chances of project's success.

Just as we notice the warning lights and gauges on the dashboards of our

163

automobiles, paying attention to early warning signs during our project journey

can help us to avoid problems and successfully reach our destinations”

(Kappelman et al., 2006).

164

References

Aalst, V. D. (1998). The Application of Petri Nets to Workflow Management.

Journal of Circuits Systems and Computers.

Aberg, L. (1989). The Facet Theory of Communication, University of Helsinki,

Department of Communications, Helsinki, Finland.

Abrahamsson, P., Warsta, J., Siponen, M. T., &Ronkainen, J. (2003). New

directions on agile methods: a comparative analysis. Paper presented at
the Proceedings of the 25th International Conference on Software
Engineering, Portland, Oregon.

Aguilar-Ruiz, J. S., Riquelme, J. C., Rodríguez, D., & Ramos, I. (2002).

Generation of Management Rules through System Dynamics and
Evolutionary Computation. Paper presented at the Proceedings of the
4th International Conference on Product Focused Software Process
Improvement, Rovaniemi, Finland.

Al-Emran, A., Pfahl, D., &Ruhe, G. (2008). A method for re-planning of software

releases using discrete-event simulation. Software Process:
Improvement and Practice, 13(1), 19 - 33.

Anderson, D. J. (2004). The Four Roles of Agile Management. Cutter IT

Journal.

Ansoff, I. H. (1975). Managing Strategic Surprise by Response to Weak

Signals. California Management Review, 17(2).

Ansoff, I. H. (1984). Implanting Strategic Management. New York, USA:

Prentice/Hall International Inc.

Ashley, D. B. (1989). Project Risk Identification Using Inference Subjective

Expert Assessment and Historical Data. Paper presented at the
Proceedings of the International Project Management Association.

Balandis, O., &Laurinskaite, L. (2005). Software Process Improvement in

Lithuania - UAB Sintagma Case Study. Information Technology and
Control, 34(2A), 195 - 201.

Betts, R. K. (1982). Surprise Attack, Lessons for Defense Planning. Washington

D.C., USA: The Brookings Institution.

Beznosov, K., &Kruchten, P. (2004). Towards agile security assurance. Paper

presented at the Proceedings of the New Security Paradigms Workshop,
Nova Scotia, Canada.

165

Bishop, M. (2009). 2009 Standish Group CHAOS Report: Worst Project Failure

Rate in a Decade. Retrieved March 3, 2010, from
http://www.irise.com/blog/index.php/tag/chaos-report/

Bloodgood, J. M., & Salisbury, W. D. (2001). Understanding the influence of

organizational change strategies on information technology and
knowledge management strategies. Decision Support Systems, 31(1), 55
- 69.

Boehm, B. (2002). Get Ready for Agile Methods, with Care. Computer, 35(1),

64 - 69.

Boehm, B., Abts, C., &Chulani, S. (2000). Software development cost

estimation approaches - A survey. Annals of Software Engineering, 10,
177-205.

Boehm, B., & Turner, R. (2003). Using risk to balance agile and plan-driven

methods. IEEE Journal, 36(6), 57 - 66.

Bose, I. (2008). Lessons Learned from Distributed Agile Software Projects: A

Case-Based Analysis. Communications of the Association for Information
Systems, 23(1), 619 - 632.

Brooks, F.P. (1995). The Mythical Man-Month: Essays on Software

Engineering. Boston, MA, USA: Addison Wesley Longman.

By, R. T. (2005). Organisational change management: A critical review. Journal

of Change Management, 5(4), 369 - 380.

Chang, C.K., Jiang, H., Di, Y., Zhu, D., &Ge, Y. (2008). Time-line based model

for software project scheduling with genetic algorithms. Information and
Software Technology, 50, 1142-1154.

Charette, R. N. (2005). Why software fails. IEEE Spectrum, 42(9), 42-49.

Christie, A. M. (1999). Simulation in support of CMM-based process

improvement. The Journal of Systems and Software, 46, 107 - 112.

Clarkson, P. J., & Hamilton, J. R. (2000). „Signposting‟, A Parameter-driven

Task-based Model of the Design Process. Research in Engineering
Design, 12(1), 18-38.

Clarkson, P. J., Melo, A., & Connor, A. M. (2000). Signposting for Design

Process Improvement: A Dynamic Approach to Design Process
Planning. Paper presented at the Aritificial Intelligence in Design. 333 -
353.

166

Clarkson, P. J., Melo, A., & Eckert, C. (2000). Visualization of Routes in Design
Process Planning. Paper presented at the Fourth International
Conference on Information Visualisation.

Connor, A. M. (2007). Probabilistic estimation of software project duration. New

Zealand Journal of Applied Computing & Information Technology, 11(1),
11-22.

Connor, A., &MacDonell, S. (2006). Using historical data in stochastic

estimation of software project duration. Paper presented at the 19th
Annual Conference of the National Advisory Committee on Computing
Qualifications.

Conrow, E.H., &Shishido, P.S. (1997). Implementing Risk Management on

Software Intensive Projects. IEEE Software, 83-89.

Creasey, T. (2007). Defining change management: Prosci and the Change

Management Learning Center.

Crosby, D. A. K. (2007). Project Risk Management in Smaller Software Teams.

Unpublished Master's thesis, Auckland University of Technology,
Auckland, New Zealand.

Dominguez, J. (2009). The Curious Case of the CHAOS Report 2009. Retrieved

from http://www.projectsmart.co.uk/the-curious-case-of-the-chaos-report-
2009.html

Eppinger, S. D., Whitney, D. E., Smith, R. P., &Gebala, D. A. (1994). A model-

based method for organizing tasks in product development. Research in
Engineering Design, 6(1), 1-13.

Eveleens, J. L., &Verhoef, C. (2010). The Rise and Fall of the Chaos Report

Figures. IEEE Software, 27(1), 30 - 36.

Ferreira, S., Collofello, J., Shunk, D., &Mackulak, G. (2009). Utilization of

Process Modeling and Simulation in Understanding the Effects of
Requirements Volatility in Software Development. Journal of Systems
and Software, 82(10), 1568 -1577.

Finkelstein, A., Kramer, J., &Nuseibeh, B. (1994). Software Process Modelling

and Technology. New York, USA: John Wiley & Sons, Inc.

Garvey, P. R., Phair, D. J., & Wilson, J. A. (1997). An Information Architecture

for Risk Assessment and Management. IEEE Software, 14(3), 25 - 37.

Glass, R. L. (2006). The Standish Report: Does It Really Describe a Software

Crisis? COMMUNICATIONS OF THE ACM, 49(8), 15 - 16.

167

Halvorsen, C. P., &Conradi, R. (2001). A Taxonomy to Compare SPI
Frameworks. Paper presented at the Proceedings of the 8th European
Workshop on Software Process Technology, Witten, Germany.

Havelka, D., &Rajkumar, T. M. (2006). Using the Troubled Project Recovery

Framework: Problem Recognition and Decision to Recover. e-Service
Journal.

Heeks, R. (2003). Most e-Government-for-Development Projects Fail How Can

Risks be Reduced? Manchester, UK: Institute for Development Policy
and Management.

Heemstra, F. J. (1990). Software cost estimation models. Paper presented at

the Jerusalem Conference on Information Technology, Jerusalem, Israel.

Henderson, P., Howard, Y.M., &Walters,R.J. (2001). A tool for evaluation of the

software development process. The Journal of Systems and Software,
59, 355-362.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in

InformationSystems Research. MIS Quarterly, 28(1), 75-105.

Highsmith, J. (2000). Adaptive Software Development: A Collaborative

Approach to Managing Complex Systems. New York: Dorset House
Publishing

Hiltunen, E. (2008). The future sign and its three dimensions. Futures, 40(3),

247- 260.

Hofmann, H. F., &Lehner, F. (2001). Requirements Engineering as a Success

Factor in Software Projects. IEEE Software, 18(4), 58 - 66.

Ilamola, L., &Katsola-Mustonen, A. (2003). Filters in the Strategy Formulation

Process. Journal of Universal Computer Science, 9(6), 481 - 490.

Ilmola, L., &Kotsalo-Mustonen, A. (2004). Filters of weak signals hinder

foresight: Monitoring weak signals efficiently in corporate decision-
making. Futures.

Jiang, J., & Klein, G. (2000). Software development risks to project

effectiveness. Journal of Systems and Software, 52(1), 3 - 10.

Jones, C. (2004). Software Project Management Practices: Failure Versus

Success. Project Management.

Jørgensen, M. (2004). A review of studies on expert estimation of software

development effort. Journal of Systems and Software, 70(1-2), 37-60.

168

Jørgensen, M., &Moløkken, K. (2006). How Large Are Software Cost Overruns?
A Review of the 1994 CHAOS Report. Information and Software
Technology, 48(4).

Jörgensen, M., &Shepperd, M. (2007). A Systematic Review of Software

Development Cost Estimation Studies. IEEE Transactions on Software
Engineering, 33(1), 33-53.

Juran, J.M. (1995). Managerial Breakthrough. The Classic Book on Improving

Management Performance (Rev. ed.). USA: McGraw-Hill, Inc.

Jurison, J. (1999). Software Project Management: The Manager‟s view.

Communications of the Association for Information Systems, 2(17), 1-57.

Kappelam, L.A., McKeeman, R and Zhang L. (2006), EARLY WARNING SIGNS

OF IT PROJECT FAILURE: THE DOMINANT DOZEN, Information
Systems Management, 31-36.

Kasanen, E., Lukka, K., &Siitonen, A. (1993). The constructive approach in

management accounting research. Journal of Management Accounting
Research, 5, 243.

Keil, M., Tiwana, A., & Bush, A. (2002). Reconciling user and project manager

perceptions of IT project risk: a Delphi study. Information Systems
Journal, 12, 103 -119.

Kellner, M. I., Madachy, R. J., &Raffo, D. M. (1999). Software Process

Simulation Modeling: Why? What? How? Journal of Systems and
Software, 46(2/3).

Kirk, D., &MacDonell, S. (2009). A Simulation Framework to Support Software

Project (Re)Planning. Paper presented at the Proceedings of the 2009
35th Euromicro Conference on Software Engineering and Advanced
Applications, Patras, Greece.

Kirk, D., &Tempero, E. (2006). Identifying Risks in XP Projects through Process

Modeling. Paper presented at the Australian Software Engineering
Conference, Sydney, Australia.

Kohavi, R., Henne, R. M., &Sommerfield, D. (2007). Practical Guide to

Controlled Experiments on the Web: Listen to Your Customers not to the
HiPPO. Paper presented at the Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, New
York, USA.

Kuppuswami, S., Vivekanandan, K., Ramaswamy, P., & Rodrigues, P. (2003).

The effects of individual XP practices on software development effort.
ACM SIGSOFT Software Engineering, 28(6), 1 - 6.

169

Larman, C., &Basili, V. R. (2003). Iterative and Incremental Development: A
Brief History. IEEE Computer Society, 47 - 56.

Lederer, A. L., & Prasad, J. (1993). SYSTEMS DEVELOPMENT AND COST

ESTIMATING. Information Systems Management, 10(4), 37 - 41.

Leidecker, J. K., & Bruno, A. V. (1987). Critical Success Factor Analysis and the

Strategy Development Process. Strategic Planning and Management
Handbook, 333 - 351.

Limbu, D. K. (2008). Contextual Information Retrieval from the WWW.

Unpublished Doctoral dissertation, Auckland University of Technology,
Auckland, New Zealand.

Linberg, K. R. (1999). Software developer perceptions about software project

failure: a case study. The Journal of Systems and Software, 49(2), 177 -
192.

Lonchamp, J. (1993). A Structured Conceptual and Terminological Framework

for Software Process Engineering. Paper presented at the Second Int'l
Conference on the Software Process, Berlin.

Long, L.D., &Ohsato, A. (2008). Fuzzy critical chain method for project

scheduling under resource constraints and uncertainty. International
Journal of Project Management, 26, 688- 698.

Lukka, K. (2003). The Constructive Research Approach. In: L. Ojala& O.P.

Himola (Eds.). Case Study Research in Logistics (pp. 83-101).
Publications of the Turku School of Economics and Business
Administration.

MacCormack, A., &Verganti, R. (2003). Managing the Sources of Uncertainty:

Matching Process and Context in Software Development. The Journal of
Product Innovation Management, 20, 217 - 232.

MacDonell, S. G. (1994). Comparative review of functional complexity

assessment methods for effort estimation. Software Engineering Journal,
9, 107-116.

Makridakis, S., &Heáu, D. (1987). The Evolution of Strategic Planning and

Management. Strategic Planning and Management Handbook, 3 - 20.

Mans, R. S., Russell, N. C., Aalst, V. D., Moleman, A. J., & Bakker, P. J. (2009).

Schedule-Aware Workflow Management Systems. Paper presented at
the Proceedings of the International Workshop on Petri Nets and
Software Engineering (PNSE09), Paris, France.

Martin, R. H., &Raffo, D. (2000). A Model of the Software Development Process

Using Both Continuous and Discrete Models. Software Process
Improvement and Practice, 5, 147 - 157.

170

Mauerkirchner, M. (2000). Decision Based Adaptive Model for Managing
Software Development Projects. Project Management System, 475-485.

McConnell, S. (1998). Software Project Survival Guide. Redmond, WA, USA:

Microsoft Press.

Meng, J., Su, S. Y. W., Lam, H., Helal, A., Xian, J., Liu, X., et al. (2006).

DynaFlow: a dynamic inter-organisational workflow management system.
International Journal of Business Process Integration and Management,
1(2), 101 - 115.

Miller, K. D., & Waller, H. G. (2003). Scenarios, Real Options and Integrated

Risk Management. Long Range Planning, 36(1), 93 - 107.

Mintzberg, H. (1994). The Fall and Rise of Strategic Planning. Harvard

Business Review, 107 - 114.

Moløkken, K., &Jörgensen, M. (2003). A Review of Software Surveys on

Software Effort Estimation. Paper presented at the International
Symposium on Empirical Software Engineering, Rome, Italy.

Morris, R. C. (1997). Early warning indicators of corporate failure: A critical

review of previous research and further empirical evidence. UK: Ashgate.

Navarro, E. (2006). SimSE: A Software Engineering Simulation Environment for

Software Process Education. Unpublished Doctoral Dissertation,
University of California, Irvine.

Navarro, E.O.andHoek, A. (2004). SimSE: An interactive simulation game for

software engineering education. Paper presented at the Proceedings of
the 7th IASTED International Conference on Computers and Advanced
Technology in Education, Kauai, Hawaii, USA.

Navarro, E.O.andHoek, A. (2007). Comprehensive Evaluation of an Educational

Software Engineering Simulation Environment. Paper presented at the
Proceedings of the 20th Conference on Software Engineering Education
& Training, Dublin, Ireland.

Ncube, C., & Dean, J. C. (2002). The Limitations of Current Decision-Making

Techniques in the Procurement of COTS Software Components. Paper
presented at the Proceedings of the 1st International Conference on
COTS-Based Software System, Orlando, FL.

Niazi, A., Dai, J. S., Balabani, S., &Seneviratne, L. (2006). Product Cost

Estimation: Technique Classification and Methodology Review. Journal
of Manufacturing Science and Engineering, 128(2), 563-575.

Nikander, I. O. (2002). Early Warnings - A Phenomenon in Project

Management. Unpublished Doctoral dissertation, Helsinki University of
Technology, Espoo, Finland.

171

Nikander, I. O., &Eloranta, E. (1997). Preliminary signals and early warnings in

industrial investment projects. International Journal of Project
Management, 15(6), 371 - 376.

Nikander, I. O., &Eloranta, E. (2001). Project management by early warnings.

International Journal of Project Management, 19, 385 - 399.

Nunamaker, J. F., & Chen, M. (1990). Systems development in information

systemsresearch. Paper presented at the Twenty-Third Annual Hawaii
InternationalConference on System Sciences, Kailua-Kona, HI, USA.

Nyugen, T.N. (2006). A decision model for managing software development

projects. Information & Management, 43, 63-75.

Nyugen, L., &Swatman, P.A. (2003). Managing the requirements engineering

process. Requirements Eng, 8, 55-68.

Paetsch, F., Eberlein, A., & Maurer, F. (2003). Requirements Engineering and

Agile Software Development. Paper presented at the Proceedings of the
Twelfth International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises, Washington, DC.

Paulk, M. C. (2002). Agile Methodologies and Process Discipline. Pittsburgh,

PA: Institute for Software Research - Carnegie Mellon University.

Pesic, M., Schonenberg, M., Sidorova, N., & Aalst, V. D. (2007). Constraint-

Based Workflow Models: Change Made Easy. In R. Meersman& Z. Tari
(Eds.), On the Move to Meaningful Internet Systems 2007: CoopIS, DOA,
ODBASE, GADA, and IS (Vol. 4803, pp. 77-94): Springer Berlin /
Heidelberg.

Pinto, J. K., &Slevin, D. P. (1992). Project Implementation Profile. Tuxedo, NY:

Xicom, Inc.

Project ManangementInstitute. (2000). A Guide to the Project Management

Body of Knowledge (PMBOK Guide). USA: Project Management Institute
Inc.

Pressman, R. S. (1997). Software Engineering - A practitioner's approach (4th

ed.). New York: McGraw-Hill.

Rai, A., & Al-Hindi, H. (2000). The effects of development process modeling and

task uncertainty on development quality performance. Information &
Management, 37, 335-346.

Rainer, A., &Shepperd, M. (1999). Re-Planning for a Successful Project

Schedule. Paper presented at the Proceedings of the 6th International
Symposium on Software Metrics, Boca Raton, FL, USA.

172

Reel, J. S. (1999). Critical Success Factors In Software Projects. IEEE
Software, 16(3), 18 - 23.

Robin, F., Goldsmith, JD. (2007). REAL CHAOS, Two Wrongs May Make a

Right. Retrieved October 5, 2008, from
http://www.gopromanagement.com/REAL%20CHAOS,%20Two%20Wro
ngs%20May%20Make%20a%20Right.pdf

Sadiq, W., &Orlowska, M. (2000). Analyzing Process Models using Graph

Reduction Techniques. Information Systems, 25(2), 117- 134.

Schackmann, H., Jansen, M., Lischkowitz, C., &Lichter, H. (2009). QMetric - A

Metric Tool Suite for the Evaluation of Software Process Data. Paper
presented at the 31st International Conference on Software Engineering,
ICSE 2009.

Schmidt, R., Lyytinen, K., Keil, M., &Cule, P. (2001). Identifying Software

Projects Risks: An International Delphi Study. Journal of Management
Information Systems, 17(4), 5 - 36.

Schoemaker, P. J. H., & Day, G. S. (2009). How to Make Sense of Weak

Signals. MIT Slogan Management Review, 50(3), 81 - 89.

Sharp, H., Robinson, H., & Segal, J. (2004). Customer collaboration: successes

and challenges in practice systems. (Technical Report No. TR2004/10):
Computing Department, The Open University.

Siringoringo, W. S. (2006). Minimum Cost Polygon Overlay with Rectangular

Shape Stock Panels. Unpublished Master's thesis, Auckland University
of Technology, Auckland, New Zealand.

Srinivasan, R. (2002). Planning is the Key in Software Development. IT People

evolve Retrieved January 20, 2009, from
http://www.expressitpeople.com/20020218/management4.shtml

Standish Group International. (1995). The Chaos Report. Retrieved October 1,

2008, from
http://www.standishgroup.com/sample_research/PDFpages/chaos1994.p
df

Steward, D. V. (1981). The Design structure system: A method for managing

the design of complex systems. IEEE Transactions on Engineering
Management, 28, 71-74.

Talbot, A. (2010). A survey of requirements engineering practice in New

Zealand. Unpublished Master‟s thesis, Auckland University of
Technology, Auckland, New Zealand.

Taylor, A. (2000). IT projects: sink or swim. The Computer Bulletin, 42(1), 24 -

26.

http://www.gopromanagement.com/REAL%20CHAOS,%20Two%20Wrongs%20May%20Make%20a%20Right.pdf
http://www.gopromanagement.com/REAL%20CHAOS,%20Two%20Wrongs%20May%20Make%20a%20Right.pdf
http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf
http://www.standishgroup.com/sample_research/PDFpages/chaos1994.pdf

173

Tiwana, A., &Keil, M. (2004). The one-minute risk assessment tool.
COMMUNICATIONS OF THE ACM, 47(11), 73 - 77.

Uskali, T. (2005). Paying Attention to Weak Signals. Innovation Journalism,

2(11).

Wallace, L., &Keil, M. (2004). SOFTWARE PROJECT RISKS AND THEIR

EFFECT ON OUTCOMES. COMMUNICATIONS OF THE ACM, 47(4),
68 - 73.

Wallace, L., Keil, M., &Rai, A. (2004). How Software Project Risk Affects Project

Performance: An Investigation of the Dimensions of Risk and an
Exploratory Model. Design Sciences, 35(2), 289 - 321.

Webb, J. R. (1987). An Evaluation of Igor Ansoff´s Theory of Weak Signal

Management by Means of an Investigation and Forecast of Future
Development in the Ophthalmic Laser Environment. Unpublished
Doctoral thesis, University of Strathclyde, United Kingdom.

Weschke, H. R. (1994). Early Warning Signs of Risk Companies. Economic

Development Review, 66 - 67.

Williams, T. (2005). Assessing and moving on from the dominant project

management discourse in the light of project overruns. Engineering
Management: IEEE Journal, 52(4), 497 - 508.

Workflow Management Coalition. (1996). Workflow Management Coalition

Announces Initial Publication of Workflow Interoperability Specification.
Retrieved June 17, 2009, from http://www.highbeam.com/doc/1G1-
18854980.html

Yeo, K. T. (2002). Critical failure factors in information system projects.

International Journal of Project Management, 20, 241 - 246.

http://www.highbeam.com/doc/1G1-18854980.html
http://www.highbeam.com/doc/1G1-18854980.html

174

Appendices

Appendix A: Supplementary Figures and Tables

Appendix B: Experimental Results

Appendix C: Individual EWS Testing Results

175

Appendix A: Supplementary Figures and Tables

Table A.1: Top 53 early warning signs (Kappelman, McKeeman and Zhang, 2006)

176

Figure A.1: Artefacts at a glance

Artifact: User Stories

Attributes: Name, NumUserStoriesSpecified, Prioritized,

NumUserStoriesImplemented,SpecificationCompleteness,

ImplementationCompleteness, NumUserStoriesIntegrated and

PercentErroneous

Artifact: Release Plans:

Attributes: Name and Completeness

Artifact: Current Iteration Plans:

Attributes: Name and Completeness

177

Artifact: Acceptance Tests

Attributes: Description, Completeness, TestsRun and TestsFailed

Artifact: Designs

Attributes: Description and NumCRCCardsCompleted

Artifact: Unit Tests

Attributes: Description and Completeness

Artifact: Codes

Attributes: Description, PercentErroneous, Completeness, PercentRefactored

and PercentIntegrated

Appendix B: Experiment Results

B.1: Best Case

Best case represents an ideal project i.e. all the right actions are taken by the

user and everything goes smoothly and the project is completed successfully

before the deadline. As everything goes fine no warning message appears in

the game. For the best case, release 1 (i.e. end of iteration 1 and

implementation of first 20 out of 80 user stories) was completed at clock tick

543; release 2 at 956; release 3 at 1369 and release 4 at 1782 (each iteration

implements 20 user stories). The implementation of the 80 user stories was

completed before the deadline of 1800 clock ticks and customer never

complained.

 Release 1 Release 2 Release 3 Release 4

Best Case 543 956 1369 1782

Table B.1: Clock ticks representing the completion of releases for best case

178

Figure B.1: Final state of the artefacts for best case

Figure B.2: Final project artefacts for best case

The CurrentIteration=4 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the last iteration (as all these values are resetted once

the iteration is completed, for the next iteration to start).

179

B.2: EWS Case Results

EWS case is the scenario where the user immediately applies corrective action

on encountering warning message. The only difference between the best and

the EWS case is that in the best case warning message never pops up whereas

in EWS case the warning message appears once. The user reacts

spontaneously to the warning message. For the EWS case, release 1 was

completed at clock tick 543; release 2 at 956; release 3 at 1369 and release 4

at 1782. The implementation of the 80 user stories was completed before the

deadline of 1800 clock ticks and customer never complained.

 Release 1 Release 2 Release 3 Release 4

EWS Case 543 956 1369 1782

Table B.2: Clock ticks representing the completion of releases for EWS case

Figure B.3: Final state of the artefacts for EWS case

180

Figure B.4: Final project artefacts for EWS case

The CurrentIteration=4 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the last iteration.

Appendix C: Individual EWS Testing Results

C1: EWS1 - Lack of top management support or commitment to the project

C1.1: Best Case

Best case is the scenario where the user selects the top management official

(Manager Chang) in the release planning meeting at first go. Here no warning

message appears as the user selects the management official in the meeting.

Best case represents an ideal project i.e. all the right actions are taken by the

user and everything goes smoothly and the project is completed successfully

before the deadline. However, it is important to know that in all the simulation

experiments conducted by this research budget is not considered (ignored) as a

measure. The main reason for ignoring the budget is, the original XP SimSE

model which was used as the initial prototype to develop this modified and

intelligent early warning system ignored the budget and hence the resulting

modified model also ignored the budget. The results are evaluated on the basis

of the time (clock ticks) spent on each iteration (i.e. for each release) and the

completeness and the quality of the delivered product. For the best case,

release 1 (i.e. end of iteration 1 and implementation of first 20 out of 80 user

stories) was completed at clock tick 543; release 2 at 956; release 3 at 1369

and release 4 at 1782 (each iteration implements 20 user stories). The

181

implementation of the 80 user stories was completed before the deadline of

1800 clock ticks and customer never complained.

 Release 1 Release 2 Release 3 Release 4

Best Case 543 956 1369 1782

Table C.1: Clock ticks representing the completion of releases for best case

Figure C.1: Final state of the artefacts for best case

Under ReleasePlans, the ManagementInvolved=1 indicate that the

management official attended the release planning meeting. RedFlag=0

indicate that the warning message never appeared during the XP game play.

182

Figure C.2: Final project artefacts for best case

The CurrentIteration=4 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the last iteration (as all these values are resetted once

the iteration is completed, for the next iteration to start). It is important to

understand that the attribute „Score‟ shouldn‟t confuse and it‟s not considered

as a measure for evaluation by this research. The reason for ignoring the score

attribute is because it is not considering the completeness and quality of the

code for calculating the score. As this attribute was already existing in the initial

XP prototype used by this modified XP system it was untouched but not of any

importance in terms of evaluation in this research.

C1.2: Early Warning Sign (EWS) Case

EWS case is the scenario where the user does not select the management in

the release planning meeting and the meeting starts but this immediately

triggers the warning message. On encountering the early warning message the

user reacts to it and selects the „Involve Management‟ action immediately.

Because the user acted so promptly the outcomes of this scenario are very

similar to the best case. The only difference between the best and the EWS

case is that in the best case warning message never pops up whereas in EWS

case the warning message appears once (at the start of the release planning

meeting). If compared to reality this scenario can be thought of as a concerned

person identified just few minutes before (or at the start of) the meeting that the

top management officials are missing and hence gives a quick call and requests

them to attend the meeting. The author understands that this is sometimes

practically difficult as the management officials are always lined up with work

and may not be available in such a short notice. Also, it may be difficult for the

183

management officials to be in the meeting on time, for instance if the meeting is

scheduled onsite and the management is residing offsite. However, there are

situations where management and meeting are at the same place (especially in

big organisations). The author has personal experience where top level

management were requested to attend a project meeting and they attended

even though that wasn‟t planned by them. For the EWS case, release 1 was

completed at clock tick 543; release 2 at 956; release 3 at 1369 and release 4

at 1782. The implementation of the 80 user stories was completed before the

deadline of 1800 clock ticks and customer never complained.

 Release 1 Release 2 Release 3 Release 4

EWS Case 543 956 1369 1782

Table C.2: Clock ticks representing the completion of releases for EWS case

The final artefacts state is shown in the figure below. Under ReleasePlans, the

ManagementInvolved=1 indicate that the management official attended the

release planning meeting. RedFlag=1 indicate that the warning message

appeared during the XP game play.

184

Figure C.3: Final state of the artefacts for EWS case

Figure C.4: Final project artefacts for EWS case

The CurrentIteration=4 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the last iteration (as all these values are resetted once

the iteration is completed, for the next iteration to start).

C1.3: First Iteration

This is the scenario where the user does not select the management in the

release planning meeting and keeps on ignoring the warning sign and does not

select the „Involve Management‟ action until the start of first iteration. The XP

185

model is developed in such a way that the warning message appears

repetitively so that the user is warned constantly. At the start of first iteration, on

encountering the warning message the user selects the „Involve Management‟

action. However, due to delaying the select action slight damage has been done

and some project time has been lost already. Hence for this case, release 1

was completed at 605 clock ticks, release 2 at 1018 and release 3 at 1431. Due

to the deadline of 1800 clock ticks release 4 was never fully completed.

Throughout the project, customer also complained once.

 Release 1 Release 2 Release 3 Release 4

First Iteration 605 1018 1431 -

Table C.3: Clock ticks representing the completion of releases for „First Iteration‟ case

The final artefacts state is shown in the figure below. Under ReleasePlans, the

ManagementInvolved=1 indicate that the management official attended the

release planning meeting. RedFlag=1 indicate that the warning message

appeared during the XP game play.

186

Figure C.5: Final state of the artefacts for „First Iteration‟ case

As compared to the previous case, in addition to the final release not being

completed the code is 2% erroneous. Only 65% of the code has been

integrated in 4th iteration (hence overall only 73 user stories were integrated out

of 80), which provides a measure of how close to completion the project was.

Figure C.6: Final project artefacts for „First Iteration‟ case

The CurrentIteration=4 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the last iteration (as all these values are resetted once

the iteration is completed, for the next iteration to start).

187

C1.4: Between 1st and 2nd Iteration

This is the scenario where the user does not select the management in the

release planning meeting and keeps on ignoring the warning sign and does not

select the „Involve Management‟ action until the game reaches in the middle of

the first iteration. The XP model is developed in such a way that the warning

message appears repetitively so that the user is warned constantly. At the

middle of first iteration, on encountering the warning message the user selects

the „Involve Management‟ action. However, due to delaying the select action

slight damage has been done and some project time has been lost already.

Hence for this case, release 1 was completed at 667 clock ticks, release 2 at

1080 and release 3 at 1493. Due to the deadline of 1800 clock ticks release 4

was never fully completed. Throughout the project, customer complained twice.

 Release 1 Release 2 Release 3 Release 4

Between 1st and

2nd Iteration

667 1080 1493 -

Table C.4: Clock ticks representing the completion of releases for „Between 1st and 2nd Iteration‟

case

188

Figure C.7: Final state of the artefacts for „Between 1st and 2nd Iteration‟ case

As compared to the previous case, only 60 user stories were integrated. The 4th

iteration‟s code was not refactored and integrated at all and it was 4%

erroneous. This represents a worse end situation than was achieved in the

previous case.

Figure C.8: Final project artefacts for „Between 1st and 2nd Iteration‟ case

The CurrentIteration=4 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the last iteration.

189

C1.5: Second Iteration

This is the scenario where the user does not select the management in the

release planning meeting and keeps on ignoring the warning sign and does not

select the „Involve Management‟ action until the start of second iteration. At the

start of the second iteration, on encountering the warning message the user

selects the „Involve Management‟ action. However, some time has been lost

already. Hence for this case, release 1 was completed at 791 clock ticks,

release 2 at 1266 and release 3 at 1679. Due to the deadline of 1800 clock ticks

release 4 was never fully completed. Throughout the project, customer

complained six times.

 Release 1 Release 2 Release 3 Release 4

Second Iteration 791 1266 1679 -

Table C.5: Clock ticks representing the completion of releases for „Second Iteration‟ case

Figure C.9: Final state of the artefacts for „Second Iteration‟ case

190

As compared to the previous case, the design is only 97% complete for 4th

iteration. The implementation completeness is only 75% (compared to 100% in

previous case). The unit tests creation and coding were not even started. It is

important to analyse the end results completely, here the code is not erroneous

because it has not been started. This is a worse ending situation than the

previous example.

Figure C.10: Final project artefacts for „Second Iteration‟ case

The CurrentIteration=4 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the last iteration.

C1.6: Between 2nd and 3rd Iteration

This is the scenario where the user does not select the management in the

release planning meeting and keeps on ignoring the warning sign and does not

select the „Involve Management‟ action until the game reaches in the middle of

the second iteration. At the middle of the second iteration, on encountering the

warning message the user selects the „Involve Management‟ action. However,

due to delay in the selection of „Involve Management‟ action some project time

has been lost already. Hence for this case, release 1 was completed at 791

clock ticks and release 2 at 1389. Release 3 was not completed (and that

means release 4 was not even started). Throughout the project, customer

complained nine times.

 Release 1 Release 2 Release 3 Release 4

Between 2nd and

3rd Iteration

791 1389 - -

Table C.6: Clock ticks representing the completion of releases for „Between 2nd and 3rd Iteration‟

case

191

Figure C.11: Final state of the artefacts for „Between 2nd and 3rd Iteration‟ case

As compared to the previous case, this case was still in its 3rd iteration. The

project was in its last phase in 3rd iteration with 90% acceptance tests

completed. Again, it is important to reiterate that to make a direct comparison

with previous cases that all artefact values need to be considered. In this

scenario, the project has not completed the third iteration and therefore is a

worse ending situation than the previous case.

Figure C.12: Final Project artefacts for „Between 2nd and 3rd Iteration‟ case

192

The CurrentIteration=3 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the iteration 3.

C1.7: Third Iteration

This is the scenario where the user does not select the management in the

release planning meeting and keeps on ignoring the warning sign and does not

select the „Involve Management‟ action until the start of third iteration. At the

start of the third iteration, on encountering the warning message the user

selects the „Involve Management‟ action. However, some time has been lost

already. Hence for this case, release 1 was completed at 791 clock ticks and

release 2 at 1514. Release 3 was not completed (and that means release 4 was

not even started). Throughout the project, customer complained 11 times.

 Release 1 Release 2 Release 3 Release 4

Third Iteration 791 1514 - -

Table C.7: Clock ticks representing the completion of releases for „Third Iteration‟ case

193

Figure C.13: Final state of the artefacts for „Third Iteration‟ case

As compared to the previous case, only 45% of the code was complete in 3rd

iteration with 6% erroneous. Further, implementation completeness was only

61%; number of user stories implemented was 49 and the number of user

stories integrated was only 40 (compared to 75%, 60 and 60 in previous case).

This is a worse ending situation than the previous example.

Figure C.14: Final project artefacts for „Third Iteration‟ case

194

The CurrentIteration=3 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the iteration 3.

C1.8: Worst Case

This is the scenario where the user does not select the management in the

release planning meeting and keeps on ignoring all the warning sign and does

not select the „Involve Management‟ action throughout the game. Hence for this

case, release 1 was completed at 791 clock ticks and release 2 at 1514.

Release 3 was not completed (and that means release 4 was not even started).

Throughout the project, customer complained 11 times. It is important to note

that the time taken for releases 1 and 2 by the „third iteration‟ case and worst

case is the same but there is a difference between the completeness of the

code.

 Release 1 Release 2 Release 3 Release 4

Worst Case 791 1514 - -

Table C.8: Clock ticks representing the completion of releases for „Worst case‟

195

Figure C.15: Final state of the artefacts for „Worst case‟

Under ReleasePlans, the ManagementInvolved=0 indicate that the

management official never attended the release planning meeting of the project

and their support was never acquired. RedFlag=1 indicate that the warning

message appeared during the XP game play.

As compared to the previous case, the implementation completeness was only

50% and number of user stories implemented was only 40 (compared to 61%

and 49 in previous case). Only 97% of the unit tests were created and coding

was not even stated in 3rd iteration. This is a worse ending situation than the

previous example.

196

Figure C.16: Final project artefacts for „Worst case‟

The CurrentIteration=3 means the above artefacts (i.e. code completeness,

design completeness, unit test completeness, code erroneous and others)

represent the values for the iteration 3.

C2: EWS2 - Project stakeholders have not been interviewed for project

requirements

C2.1: Best Case

Best case is the scenario where the user selects the customer representative

(customer Wayne) in the release planning meeting at first go. Here no warning

message appears as the user selects the customer in the meeting. Best case

represents an ideal project i.e. all the right actions are taken by the user and

everything goes smoothly and the project is completed successfully before the

deadline. The detail of the best case is exactly same as explained earlier. In

order to remove the repetition the author is not including the same details here.

Please refer to appendix C1.1 for inspection of detailed results.

C2.2 EWS Case

EWS case is the scenario where the user does not select the customer in the

release planning meeting and the meeting starts but this immediately triggers

the warning message. On encountering the early warning message the user

reacts to it and selects the „Involve Customer‟ action immediately. Because the

user acted so spontaneously the outcomes of this scenario is exactly similar to

the best case. The only difference between the best and the EWS case is that

197

in the best case warning message never pops up whereas in EWS case the

warning message appears once (at the start of the release planning meeting).

The detail of the EWS case is exactly same as explained earlier. In order to

remove the repetition the author is not including the same details here. Please

refer to appendix C1.2 for inspection of detailed results.

C2.3: Second Iteration

This is the scenario where the user does not select the customer in the release

planning meeting and keeps on ignoring the warning sign and does not select

the „Involve Customer‟ action until the start of second iteration. At the start of

the second iteration, on encountering the warning message the user selects the

„Involve Customer‟ action. But there were many problems encountered during

iteration 1 (due to the absence of customer in the release planning meeting)

and the activities were taking longer time than expected. The iteration planning

meeting for iteration 1 also took longer and displayed following message as

shown in figure C.17.

198

Figure C.17: Message displayed at the end of iteration planning meeting of iteration 1

This has had an impact on the project schedule. Hence for this case, release 1

was completed at 573 clock ticks, release 2 at 986 and release 3 at 1399. Due

to the deadline of 1800 clock ticks release 4 was never fully completed.

Customer complained once throughout the project.

 Release 1 Release 2 Release 3 Release 4

Second Iteration 573 986 1399 -

Table C.9: Clock ticks representing the completion of releases for „Second Iteration‟ case

199

Figure C.18: Final state of the artefacts for „Second Iteration‟ case

In the 4th iteration, acceptance tests run have dropped to 39% from the previous

100%. This is a worse ending situation than the previous example. Under

ReleasePlans, the CustomerInvolved=1 indicate that the customer

representative attended the release planning meeting. RedFlag=1 indicate that

the warning message appeared during the XP game play.

C2.4: Third Iteration

This is the scenario where the user does not select the customer in the release

planning meeting and keeps on ignoring the warning sign and does not select

the „Involve Customer‟ action until the start of third iteration. At the start of the

third iteration, on encountering the warning message the user selects the

200

„Involve Customer‟ action. But some time has been lost already. Hence for this

case, release 1 was completed at 573 clock ticks, release 2 at 1016 and release

3 at 1429. Due to the deadline of 1800 clock ticks release 4 was never fully

completed. Customer complained twice throughout the project.

 Release 1 Release 2 Release 3 Release 4

Third Iteration 573 1016 1429 -

Table C.10: Clock ticks representing the completion of releases for „Third Iteration‟ case

Figure C.19: Final state of the artefacts for „Third Iteration‟ case

Compared to the previous case, the percent erroneous has gone up to 3% and

the percent integrated has dropped to 77% from 100% in 4th iteration. The total

number of user stories integrated has fallen to 75 from 80. This is a worse

ending situation than the previous example. Under ReleasePlans, the

201

CustomerInvolved=1 indicate that the customer representative attended the

release planning meeting. RedFlag=1 indicate that the warning message

appeared during the XP game play.

C2.5: Fourth Iteration

This is the scenario where the user does not select the customer in the release

planning meeting and keeps on ignoring the warning sign and does not select

the „Involve Customer‟ action until the start of the fourth iteration. At the start of

the fourth iteration, on encountering the warning message the user selects the

„Involve Customer‟ action. But some time has already been lost. Hence for this

case, release 1 was completed at 573 clock ticks, release 2 at 1016 and release

3 at 1459. Due to the deadline of 1800 clock ticks release 4 was never fully

completed. Customer complained thrice throughout the project.

 Release 1 Release 2 Release 3 Release 4

Fourth Iteration 573 1016 1459 -

Table C.11: Clock ticks representing the completion of releases for „Fourth Iteration‟ case

202

Figure C.20: Final state of the artefacts for „Fourth Iteration‟ case

Again in comparison with the previous case, in iteration four the percent

refactored dropped to 89% from 100% and percent integrated dropped to 0.

Also, the total number of user stories integrated has gone down to 60 from 75.

This is a worse ending situation than the previous example. Under

ReleasePlans, the CustomerInvolved=1 indicate that the customer

representative attended the release planning meeting. RedFlag=1 indicate that

the warning message appeared during the XP game play.

C2.6: Worst Case

This is the scenario where the user does not select the customer in the release

planning meeting and keeps on ignoring the warning sign and does not select

the „Involve Customer‟ action throughout the game. Hence for this case, release

1 was completed at 573 clock ticks, release 2 at 1016 and release 3 at 1459.

203

Due to the deadline of 1800 clock ticks release 4 was never fully completed. It is

important to note that the time taken for releases 1, 2 and 3 by the „fourth

iteration‟ case and worst case is the same but there is a difference between the

completeness and correctness of the code (or product). Customer complained

thrice throughout the project.

 Release 1 Release 2 Release 3 Release 4

Worst Case 573 1016 1459 -

Table C.12: Clock ticks representing the completion of releases for „Worst case‟

Figure C.21: Final state of the artefacts for „Worst case‟

Here the percent refactored in fourth iteration has dropped to 0 compared to 89

in the previous case. This is a worse ending situation than the previous

example. Under ReleasePlans, the CustomerInvolved=0 indicate that the

customer representative was never involved in the release planning meeting.

204

RedFlag=1 indicate that the warning message appeared during the XP game

play.

C3: EWS3 - Project team members do not have required knowledge/skills

C3.1: Best Case

Best case is the scenario where the developers are made aware of the coding

standard immediately (before the actual coding starts). This is done by selecting

the „Learn coding standard‟ action for all the developers. Here no warning

message appears as the users selects „Learn coding standard‟ action

immediately (being a proactive user). Best case represents an ideal project

where everything goes smoothly and the project is completed successfully

before the deadline. The detail of the best case is exactly same as explained

earlier. In order to remove the repetition the author is not including the same

details here. Please refer to appendix C1.1 for inspection of detailed results.

C3.2: EWS Case

EWS case is the scenario where on encountering the warning message the

user selects „Learn coding standard‟ action. Because the user acted so

spontaneously the outcomes of this scenario is exactly similar to the best case.

The only difference between the best and the EWS case is that in the best case

warning message never pops up whereas in EWS case the warning message

appears once. The detail of the EWS case is exactly same as explained earlier.

In order to remove the repetition the author is not including the same details

here. Please refer to appendix C1.2 for inspection of detailed results.

C3.3: Second Iteration

This is the scenario where the user keeps on ignoring the warning message and

selects the „Learn coding standard‟ option only at the start of the second

iteration. But some time has already been lost by the project. Hence for this

case, release 1 was completed at 655 clock ticks, release 2 at 1088 and release

205

3 at 1501. Due to the deadline of 1800 clock ticks release 4 was never fully

completed. Customer complained thrice throughout the project.

 Release 1 Release 2 Release 3 Release 4

Second Iteration 655 1088 1501 -

Table C.13: Clock ticks representing the completion of releases for „Second Iteration‟ case

Figure C.22: Final state of the artefacts for „Second Iteration‟ case

You can observe that percent erroneous in the 4th iteration has crept to 6% from

0%. Also, the percent refactored and percent integrated was 0% compared to

100% in the previous case. Further, the total number of user stories integrated

was only 60 (compared to 80 in the previous case). Also, acceptance testing

206

was not even started (TestsRun is 0). This is a worse ending situation than the

previous example.

C3.4: Third Iteration

This is the scenario where the user keeps on ignoring the warning message and

selects the „Learn coding standard‟ option only at the start of the third iteration.

But some time has already been lost by the project. Hence for this case, release

1 was finished at 655 clock ticks, release 2 at 1200 and release 3 at 1633. Due

to the deadline of 1800 clock ticks release 4 was never fully completed.

Customer complained six times throughout the project.

 Release 1 Release 2 Release 3 Release 4

Third Iteration 655 1200 1633 -

Table C.14: Clock ticks representing the completion of releases for „Third Iteration‟ case

207

Figure C.23: Final state of the artefacts for „Third Iteration‟ case

Here the code completeness is only 2% (compared to 100% in the previous

case). Also, as the coding was not completed the implementation completeness

is only 75% compared to 100%. This is a worse ending situation than the

previous example.

C3.5: Worst Case

This is the scenario where the user keeps on ignoring the warning message and

never selects the „Learn coding standard‟ option. This means that the

developers have done the coding for the project without knowing the coding

standard. Hence for this case, release 1 was finished at 655 clock ticks, release

2 at 1200 and release 3 at 1745. Due to the deadline of 1800 clock ticks release

4 was never fully completed. Customer complained nine times throughout the

project.

208

 Release 1 Release 2 Release 3 Release 4

Worst Case 655 1200 1745 -

Table C.15: Clock ticks representing the completion of releases for „Worst case‟

Figure C.24: Final state of the artefacts for „Worst case‟

If we compare with the previous case, we can observe that acceptance tests

creation completeness is only 81% and designing and unit tests creation were

not even started. This is a worse ending situation than the previous example.

C4: EWS4 - Key project stakeholders do not participate in major review

meetings

C4.1: Best Case

As already discussed in the previous cases, best case is the scenario where the

user involves the customer representative (customer Wayne) in the creation of

209

acceptance tests at first go. Here no warning message appears. Best case

represents an ideal project. The detail of the best case is exactly same as

explained earlier. In order to remove the repetition the author is not including

the same details here. Please refer to appendix C1.1 for inspection of detailed

results.

C4.2: EWS Case

EWS case is the scenario where the user does not involve customer in the

creation of the acceptance tests but on encountering the warning message,

immediately selects „Involve Customer‟ action. The user responds to the first

warning message. For the EWS case, release 1 was finished at clock tick 552;

release 2 at 974 and release 3 at 1396. Release 4 was not fully completed.

Customer complained 5 times throughout the project.

 Release 1 Release 2 Release 3 Release 4

EWS Case 552 974 1396 -

Table C.16: Clock ticks representing the completion of releases for EWS case

210

Figure C.25: Final state of the artefacts for EWS case

It appears that percent refactored and percent integrated are 100% and

acceptance tests run is 6. The 4th iteration was almost about to end was just

waiting to finish all the acceptance tests. Under AcceptanceTests, the

CustomerInvolvedInCreation=1 indicates that the customer representative was

involved in the creation of acceptance tests. RedFlag=1 indicate that the

warning message appeared during the XP game play.

C4.3: Second Iteration

This is the scenario where the user does not involve customer in the creation of

the acceptance tests until the second iteration. For this case, release 1 was

finished at clock tick 800; release 2 at 1222 and release 3 at 1644. Release 4

was not fully completed. Customer complained 5 times throughout the project.

211

 Release 1 Release 2 Release 3 Release 4

Second Iteration 800 1222 1644 -

Table C.17: Clock ticks representing the completion of releases for „Second Iteration‟ case

Figure C.26: Final state of the artefacts for „Second Iteration‟ case

Compared to the previous case, the unit tests creation completeness in the 4th

iteration dropped to 59% from 100%. The coding wasn‟t even started and hence

the implementation completeness and number of user stories integrated

dropped from 100 and 80 to 75 and 60 respectively. This is a worse ending

situation than the previous example. Under AcceptanceTests, the

CustomerInvolvedInCreation=1 indicates that the customer representative was

involved in the creation of acceptance tests. RedFlag=1 indicate that the

warning message appeared during the XP game play.

212

C4.4: Worst Case

This is the scenario where the user does not involve customer in the creation of

the acceptance tests at all. The user repetitively ignores the warning message.

For this case, release 1 was finished at clock tick 800 and release 2 at 1470.

Release 3 was not fully completed. Customer complained 10 times throughout

the project.

 Release 1 Release 2 Release 3 Release 4

Worst Case 800 1470 - -

Table C.18: Clock ticks representing the completion of releases for „Worst case‟

Figure C.27: Final state of the artefacts for „Worst case‟

213

In the previous case, the user managed to finish three iterations and was on the

4th iteration when the game ended but here the user only managed to finish first

two iterations and was on the 3rd iteration when the game ended. Hence the

above attribute values represent for iteration 3. The total number of user stories

integrated was 40 (compared to 60 in the previous case). (Please note - the unit

tests creation in this case is 100% complete compared to 59% in the previous

case but that was for 4th iteration and this one is for 3rd iteration. These values

are interpreted in light of the total number of iterations completed). This is a

worse ending situation than the previous example. Under AcceptanceTests, the

CustomerInvolvedInCreation=0 indicates that the customer representative was

never involved in the creation of acceptance tests. RedFlag=1 indicate that the

warning message appeared during the XP game play.

C5:EWS5 - Project manager(s) cannot effectively lead the team

C5.1: Best Case

As already discussed in the previous cases, best case is the scenario where the

employees are always assigned with work and hence they are never idle. Here

no warning message appears. Best case represents an ideal project. The detail

of the best case is exactly same as explained earlier. In order to remove the

repetition the author is not including the same details here. Please refer to

appendix C1.1 for inspection of detailed results.

C5.2: EWS Case

EWS case is the scenario where the user misses to assign work to the

employees and hence early warning message pops up. But on encountering the

warning message, the user immediately assigns work to the team. The user

responds to the first warning message. For the EWS case, release 1 was done

at clock tick 549; release 2 at 964 and release 3 at 1379 and release 4 at 1799.

214

 Release 1 Release 2 Release 3 Release 4

EWS Case 549 964 1379 1799

Table C.19: Clock ticks representing the completion of releases for EWS case

Figure C.28: Final state of the artefacts for EWS case

The only difference between the previous case and this case is the difference in

the time for releases.

C5.3: Take 4

This is the scenario where the user misses to assign work to the employees and

he reacts only when the warning message pops up for the fourth time. The user

responds to the fourth warning message. For this case, release 1 was finished

at clock tick 607; release 2 at 1084 and release 3 at 1561. Release 4 was not

fully completed. Customer complained 3 times throughout the project.

215

 Release 1 Release 2 Release 3 Release 4

Take 4 607 1084 1561 -

Table C.20: Clock ticks representing the completion of releases for „Take 4‟ case

Figure C.29: Final state of the artefacts for „Take 4‟ case

Compared to the previous case, the percent erroneous in the 4th iteration has

increased to 6% from 0%. The code completeness is only 8%. The

implementation completeness and total number of user stories integrated has

dropped to 77 and 60 from 100 and 80 respectively. This is a worse ending

situation than the previous example.

C5.4: Take 12

This is the scenario where the user misses to assign work to the employees and

he reacts only when the warning message pops up for the 12th time. The user

216

responds to the 12th warning message. For this case, release 1 was finished at

clock tick 775; and release 2 at 1420. Release 3 was not fully completed.

Customer complained 10 times throughout the project.

 Release 1 Release 2 Release 3 Release 4

Take 12 775 1420 - -

Table C.21: Clock ticks representing the completion of releases for „Take 12‟ case

Figure C.30: Final state of the artefacts for „Take 12‟ case

In the previous case, the user managed to finish three iterations and was on the

4th iteration when the game ended but here the user only managed to finish first

two iterations and was on the 3rd iteration when the game ended. Hence the

above attribute values represent for iteration 3. The implementation

completeness and total number of user stories integrated has dropped from 77

and 60 to 50 and 40 respectively. This is a worse ending situation than the

previous example.

217

C5.5: Take 20

This is the scenario where the user misses to assign work to the employees and

he reacts only when the warning message pops up for the 20th time. The user

responds to the 20th warning message. For this case, release 1 was finished at

clock tick 943; and release 2 at 1777. Release 3 was not fully completed.

Customer complained 16 times throughout the project.

 Release 1 Release 2 Release 3 Release 4

Take 20 943 1777 - -

Table C.22: Clock ticks representing the completion of releases for „Take 20‟ case

Figure C.31: Final state of the artefacts for „Take 20‟ case

In the previous case, in the 3rd iteration the current iteration plan completeness,

acceptance tests completeness and design completeness were 100; and unit

218

tests creation completeness was 62%. Whereas in this case, in the 3rd iteration

the current iteration plan completeness, acceptance tests completeness, design

completeness and unit tests creation completeness were 0. This is a worse

ending situation than the previous example.

C5.6: Take 28

This is the scenario where the user misses to assign work to the employees and

he reacts only when the warning message pops up for the 28th time. The user

responds to the 28th warning message. For this case, release 1 was finished at

clock tick 1112. Release 2 was not fully completed. Customer complained 16

times throughout the project.

 Release 1 Release 2 Release 3 Release 4

Take 28 1112 - - -

Table C.23: Clock ticks representing the completion of releases for „Take 28‟ case

Figure C.32: Final state of the artefacts for „Take 28‟ case

219

In the previous case, the user managed to finish two iterations and was on the

3rd iteration when the game ended but here the user only managed to finish first

iteration and was on the 2nd iteration when the game ended. Hence the above

attribute values represent for iteration 2. The implementation completeness and

total number of user stories integrated has dropped from 50 and 40 to 25 and

20 respectively. This is a worse ending situation than the previous example.

