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ABSTRACT 

Blood pressure is one of the most important fundamental signs of human cardiovascular 

health.  Accurate measurement of blood pressure is essential in diagnosis and treatment 

of hypertension and ascertaining blood pressure related risk. Although the auscultatory 

method using the mercury sphygmomanometer is still considered as the most accurate 

non-invasive blood pressure measurement method, it is complicated and only suitable 

for clinical assessment. Currently, automatic self-monitoring blood pressure 

measurement devices are very popular in the market and widely used at home. Most of 

those devices are developed on the oscillometric method, as it requires less professional 

training and is less susceptible to external noise. However most of these devices work 

well on young healthy subjects, but show less accuracy in some subgroups such as older 

people.   

A blood pressure measurement algorithm for an oscillometric method has been 

developed in this study. It can accurately determine blood pressure non-invasively for 

all age groups. A clinical data collection has been done on 86 subjects. Their blood 

pressure values determined through the auscultatory method were used as reference 

readings. The obtained cuff pressure oscillations were used for further analysis. The 

algorithm design process includes signal processing, heart beat detection, feature 

extraction and artificial neural network design. The algorithm with different features are 

compared and discussed. The results indicate successful development on measuring 

blood pressure values on all age groups. The algorithm using all of the selected features   

achieved A grade on British Hypertension Society protocol for both systolic and 



 

 iv 

diastolic pressure and also fulfilled the Association Advancement of Medical 

Instrumentation protocol. However, the developed algorithm takes a long calculation 

time. An alternative algorithm using 10 features was developed with lower hardware 

requirements and less calculation time at the cost of a bit less accuracy.  
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Chapter 1 Introduction  

1.1 Background  

In the human body, blood is pumped into the arteries and then travels through the 

circulatory system. Blood pressure (BP) is the pressure exerted by the blood on the 

walls of the arteries. The term BP as generally used in the medical area refers to arterial 

blood pressure (ABP) [1, 2]. During each heartbeat, BP varies between systolic pressure 

(SP) and diastolic pressure (DP). SP is defined as the highest value of pressure that 

occurs when the heart contracts and ejects the blood in to the arteries. DP is determined 

as the lowest pressure value occurring between the each systole [3].  Mean arterial 

pressure (MAP) is defined as the average arterial pressure during a single cardiac cycle. 

The pulse pressure (PP) is defined as the difference between SP and DP. One ABP 

pulse is determined from the end of one heart contraction to the start of the next one as 

shown in Figure 1-1.  

 
Figure 1-1:  A typical ABP pulse  

http://en.wikipedia.org/wiki/Cardiac_cycle�
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BP is not constant in the body, and it differs at various places. The pressure of the 

circulating blood decreases as blood passes through arteries, arterioles, capillaries, and 

veins. BP used in clinical practice without further specification normally refers to the 

arterial pressure measured at the patient’s upper arm. The BP value is not always 

constant and can change during 24 hr according to an individual’s activity such as stress, 

nutritional factors, drugs or diseases.  

The typical BP values normally include two numbers SP and DP and the unit is 

millimetres of mercury (mmHg). The American Heart Association has published the 

recommendations of the joint national committee on the diagnosis, evaluation, and 

treatment of hypertension for classifying and defining blood pressure levels for adults 

(age 18 years and older) [4]. As shown in Table 1-1, the normal BP range is 100 mmHg 

~ 139 mmHg for SP and 60 mmHg ~ 89 mmHg for DP. As BP is a powerful, consistent, 

and independent risk factor for cardiovascular and renal diseases. It is one of the 

principal vital parameters and the most commonly clinically measured. An accurate BP 

measurement is important not only for the general monitoring but also important for 

clinical applications.  

Table 1-1: Changes in Blood Pressure Classification 
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The BP measurement had been studied for a long time. There are many techniques on 

BP measurement right now. Techniques are generally divided into two groups, direct 

and indirect [5]. The direct techniques of the BP measurement are also called invasive 

measurement which uses a catheter inserted into the blood vessel to measure the BP 

continuously for example to detect when the massive blood loss happens, powerful 

cardiovascular medications are applied to the patient and in general anaesthesia during 

operations. The direct method is very accurate and is accepted as the gold standard of 

arterial pressure recording. However the equipment and the procedure of invasive BP 

measurement require a professional setup, calibration and operation [5, 6]. Since the 

invasive measurement method has a high associated risk, non-invasive blood pressure 

(NIBP) measurement methods are most commonly used in present clinical practice [7].  

1.2 Literature Review 

As stated above, NIBP methods are more commonly used in our daily life. A number of 

NIBP methods are introduced. Furthermore, the analysis methods used in current 

automatic devices are introduced with more details in this section. 

1.2.1 NIBP methods  

Most of popular current NIBP methods are introduced. Their advantages and 

disadvantages are presented with details and their suitability in automatic devices are 

reviewed in this section. 

1.2.1.1 Auscultatory Technique  

The auscultatory method using a mercury column or other sphygmomanometer, 

occluding cuff and a stethoscope to listen to the sounds made by the blood flow in the 
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arteries, which are called Korotkoff sounds [7, 8]. This method is also called the Riva-

Rocci/Korotkoff method [9]. The Korotkoff sounds are generated by the blood flow 

through the brachial artery. The observer determines the SP and DP values by 

identifying the five phases of the Korotkoff sound by using a stethoscope [10].  

The auscultatory BP measurement consists of the following processes: 

(a) selecting the proper cuff size for the patient, placing the cuff on the upper arm at 

roughly the same vertical height as the heart, and wrapping the cuff on the arm 

smoothly and snugly, 

(b) inflating cuff to about 30 mmHg above SP rapidly,  

(c) deflating  at a rate of 2–3 mmHg per second and recording the auscultatory 

sounds,  

(d) finishing the measurement when the sound finally disappears. 

The observer then determines the patient’s BP by the following five phases of 

auscultatory sounds in the measurement process [11].  

Phase I: The first appearance of faint, repetitive, clear tapping sounds which gradually 

increase in intensity for at least two consecutive beats is the systolic BP 

Phase II: A brief period may follow during which the sounds soften and acquire a 

swishing quality 

Phase III: The return of sharper sounds, which become crisper to regain, or even exceed, 

the intensity of phase I sounds. The clinical significance, if any, to phases II 

and III has not been established 

Phase IV: The distinct abrupt muffling of sounds, which become soft and blowing in 

quality 

Phase V: The point at which all sounds finally disappear completely is the diastolic 

pressure 



 

 5 

As described above, the auscultatory BP measurement technique is complicated and 

only suitable for clinic as assessment, which is normally conducted by professionally 

trained observers. Furthermore, it is also difficult to use this method in a noisy 

environment [12, 13].   

1.2.1.2 Oscillometric Techniques 

Currently most automatic devices are developed based on oscillometric techniques. The 

main difficultly of this method is to define SP, MAP and DP from the oscillation pulse. 

This method uses an occluding cuff placed on the brachial artery and inflated above SP.  

The sensor in the cuff will detect the pressure oscillations of the arterial wall during the 

cuff deflation [14]. The SP, MAP and DP would be defined from the oscillation 

amplitudes. Mostly the SP and DP values were estimated by using empirical algorithms 

however the manufactures of BP monitoring equipments always developed their own 

algorithms for SP and DP determination [15].  
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Figure 1-2: The oscillation signal presented with the thin line and the cuff signal 

presented with the dense decreasing line 

Figure 1-2 indicates the relative position between SP, MAP, DP and cuff pressure (CP) 

obtained in normal blood pressure measurement process. In oscillometric method, it is 

anticipated that the CP value at maximum amplitude is equal to the subject’s MAP [16, 

17].   

The SP and DP would be determined from the MAP using empirically fixed algorithms. 

The basis of estimating the MAP algorithm is the maximal-amplitude algorithm also 

called fixed ratio method. It calculates a ratio which is determined by dividing each HB 

amplitude over the maximum pulse amplitude. These ratios are used to compare with a 

fixed ratio to obtain the BP value.  In the fixed ratio method, the pre-determined ratio is 

0.69~0.86 for DP and 0.43~0.73 for SP respectively [18]. However different researches 

and manufacturers calculate their own ratios. Large numbers of measurements from a 

variety of people with a wide range of BP were required to minimize deviations 

between the estimated and the actual BP [5, 19].  
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The oscillometric method has two disadvantages: (1) artefact from the patient’s motion, 

as these motions may appear very similar to a real arterial pulse which may lead to the 

changing of the oscillation pulse amplitudes; (2) irregular oscillation amplitudes which 

are caused by a large number of the cardiovascular diseases [16, 17, 20].   

1.2.1.3 Electronic Palpation Method 

The electronic palpation method for BP measuring based on an arm cuff and a wrist 

watch type sensor was first introduced in 1998 [21]. This method uses an arm cuff to 

occlude the brachial artery and then detect the pulsation of the radial artery on the wrist 

[22]. The measurement can be made either during the deflating or inflating process, but 

the inflation model was found to be more stable. Furthermore, it is more accurate than 

deflation model on both SP and DP determination.  

Figure 1-3a shows the typical pressure oscillation signals and CP values in the inflation 

mode. The DP value is the point where pressure pulse amplitude starts decreasing while 

the SP value is point where the pulse amplitude drops to the nose level. Figure 1-3b 

shows the deflation mode which the SP value is determined at where the pressure pulse 

from the radial artery stars to present and the DP value appears at the point which the 

pressure pulse amplitude levels off and reach a plateau [22]. The results indicate the 

algorithm fulfils the AAMI standard when tested on healthy subjects however the 

accuracy for other groups is still questioned.  
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a 

 
b 

Figure 1-3: Typical pressure pulse signals and CP (a) the inflation mode; (b) the 

deflation mode [22] 
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1.2.1.4 Volume-Compensation and Volume-Oscillometric Method  

Yamakoshi et al [23] developed two new types of NIBP measurement methods based on 

the characteristics of the pressure-volume relationship in the artery: volume-

oscillometric method and volume-compensation method. Both of them are developed 

from the vascular unloading principle. These two methods use the photoelectric 

plethysmographic technique to determine the volume changes in the artery. The 

volume-oscillometric method can be used for long term ambulatory monitoring which 

can measure SP and MAP. In the volume-compensation method, BP can be measured 

beat-by -beat and the pressure waveform will be detected continuously and non-

invasively  [23].  

A new method developed by Tanaka et al [24] based on the volume-compensation 

principles. In this method, the radial artery is completely compressed by employing a 

disk-type cuff for local pressurisation. And it also uses a nozzle-flapper type electro-

pneumatic converter for the control of CP in order to give sufficiently great frequency 

response for the BP measurement. This method can be used in both rest and stressful 

conditions for SP and DP estimation. But the measurement accuracy is still below the 

AAMI standards.  

1.2.1.5 Arterial Tonometry Method  

This method is developed based on the principle of the tonometry devices which are 

used to measure the intra-ocular pressure. The arterial tonometry device consists of a 

pressure sensor and pneumatic actuator. It is placed on the wrist above the radial artery 

as shown in Figure 1-4. When the artery is applied with the hold-down pressure, the 

artery wall near the device is flattened. The configuration maximizes the energy that can 
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be transferred through the artery to the sensor, yielding pulses with the highest 

amplitude. The SP and DP value can be determined from the relative amplitude of the 

tonometry pulse. This method can be used for the continuous BP measurement 

application. However the difficulties of the placement sensitivity, calibration difficulties 

and motion sensitivity still need to be solved [5, 25].  

 

Figure 1-4: Illustrations of the principles of arterial tonometry 

1.2.1.6 Pulse Wave Velocity Method 

Pulse wave velocity method is based on the analyses of pulse wave which is produced 

when the heart pumping the blood. The changes of the BP are significantly related to 

the changes of the pulse wave which means the BP can be calculated from the pulse 

wave velocity.  This method can be used for the continuous monitoring applications 

which can detect the sudden changes in BP to trigger an oscillometric cycle [5, 26].   

1.2.1.7 Blood Pressure Measurement Using Dual - Cuffs 

Kim et al [27] developed a new algorithm to determine BP by using two cuffs. This 

method determines SP and DP value by applying one cuff to detect the oscillometric 

waveform and another cuff placed on the forearm to detect the sound wave during 

systolic and diastolic region. The peak dots of the waveforms were measured from the 
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distal cuff. The SP point is determined when the positive and negative linear regression 

lines cross as shown in Figure 1-5. When the sharpness of the peak changes 

significantly DP point can be defined. In this research the DP determination is finished 

by manual procedure as the DP position is unclear.  The results indicate this algorithm 

can be used for general application, however it is not suitable for all circumstance.   

 

Figure 1-5: SP and DP determination on the cuff signals using SP point and DP 

point [27] 

1.2.2 Analysis Method 

Since the oscillometric method is the most suitable method for automatic devices, the 

analysis methods developed based on the oscillometric method are introduced with 

more details. 
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1.2.2.1 Fuzzy Logic 

Wang et al [28, 29] designed a model-based fuzzy logic control system for BP 

measurement by detecting the arterial volume pulse. This method based on the 

principles of the oscillometric method as the arterial vessel has the maximum 

compliance when the vessel volume pulses achieves to the maximum amplitude. A 

tonometer is used to detect the BP waveform and the vessel volume pulse continuously. 

Linear prediction is used to tracking the changing tendency of MAP beat-to-beat. The 

Kalman filter is used to reject the physiological and measurement disturbance of the 

vessel volume oscillation amplitude. The results show that for the MAP with changing 

rate of ±10, ±20 or ±30 mmHg, the synthetic fuzzy logic controller would adjust the 

chamber pressure with a mean square error of 1.9, 2.2 or 2.8 mmHg, respectively.  

Lin et al [16] developed an algorithm to reduce the interference in the oscillation 

amplitudes in order to improve the accuracy of the arterial pressure determination. This 

algorithm is called recursive weighted regression algorithm. A fuzzy logic discriminator 

is used to reject the interference caused by the measurement motion disturbance or 

cardiovascular diseases and measure the oscillation pulses. The clinical results show 

this recursive weighted regression algorithm has the efficiency improvements on the 

accuracy of BP measurement compared to the traditional curve fitting algorithm. But 

the developed algorithm is only valid for young health people and does not meet the 

AAMI standards in all age groups. 

1.2.2.2 Prediction and Smoothing Algorithm  

Thomas J. Dorsett [30] developed an algorithm based on a Kalman filter to predict the 

next oscillometric pulse amplitude and CP. The Kalman equation has been used to 
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smooth the pulse amplitude data and predict the amplitude of the next pulse. Use of 

polynomial curve fitting generates the smooth curve for determining MAP, SP and DP. 

This algorithm is good at rejecting the patients’ motion and has the capability to be used 

in ambulatory BP measurement.   

1.2.2.3 Wave Character Method  

Luo et al [31] developed a new algorithm based on the features point method and 

amplitude characteristic ratios method to determine BP values. In this method the 

difference of the adjoining pulse wave and the comparative ratios are detected by the 

difference comparative method.  A different algorithm is developed to determine the 

turning points around the average pressure in order to improve the accuracy of the BP 

estimation. Its results indicate this method has improved the BP estimation accuracy.  In 

clinical application, the new developed algorithm can identify the difference between 

cardiovascular patients and healthy subjects.  However, the measurement results are still 

over-estimated in older people. 

1.2.2.4 Neural Network 

Artificial neural networks (ANN) were also used in previous studies to estimate BP. 

Before sending the data to the ANN, a low pass filter had been applied to reject the 

noise and smooth the waveform. Principle component analysis had been introduced as a 

processing step to decorrelate the oscillation amplitudes and extract the most effective 

components [32]. In this method, the feed-forward and cascade-forward neural network 

designs have been used for SP and DP determination. Gradient descent and an adaptive 

learning rate back propagation algorithm was used for the training. The result showed 

that the ANN was more accurate than the traditional fixed ratio method. However a 
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huge database is required for this method. Both under-training and over-training will 

affect the measurement accuracy. 

1.2.2.5 Blood Pressure Classification  

Colak et al [33, 34] developed a neuro-fuzzy approach to determine the BP value. The 

feature extraction section uses the Principal Component Analysis (PCA) and fuzzy sets 

to determine the pressure profiles from the oscillometric waveforms. The membership 

functions are estimated by employing neural networks. The appropriate features are 

selected based on the Gram-Schmidt orthogonal transform. The results indicate that the 

orthogonal features subset selection provided good classification on the data.  The 

neural network gives more accurate determination on BP than traditional oscillometric 

method by using large dataset [35].  

1.2.2.6 Other Algorithm 

Moraes et al [19] developed a new pressure measurement algorithm based on the 

controlled linear deflation principle. The correlation of several quantities was studied 

which including the reference BP measurement, actual CP, pulse amplitude, 

characteristic ratios, age, weight, height, arm size. The SP and DP values are obtained 

based on the determined cross-relation between characteristic ratios and several 

parameters. Fixed percentile rule and characteristic rotation in relation to pressure is 

used to help the SP and DP estimation. The results show that the BP determination is 

more dependent on the actual CP, mean pressure, pulse amplitude and the arm size. The 

results show great improvement after the analysis and further study was suggested[14]. 

Zong et al [36] developed an algorithm to detect one set of ABP pulses. This algorithm 

uses a windowed and weighted slope sum function to determine the ABP waveform 
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features. The ABP pulses are detected by comparing with the reference ECG 

annotations selected from a plethysmographic database. The pulse onset is detected by 

transferring a low-pas filtered ABP signal into a slope sum function signal. The results 

show that the ABP pulse detection algorithm is more accurate than the oscillometric 

method based on measured CP oscillation amplitude.  

Ball-llovera et al [18] developed an algorithm using mathematical methods applied to 

the pulse index waveform to determine the BP values. Height criteria are employed to 

determine the SP and DP values. This algorithm is used for the DOCTUS IV bed side 

monitoring and validated with at least 255 samples which measured by two observers 

using auscultatory method. The results indicate the algorithm fulfilled the AAMI 

standard which shows in Table 1-2. 

Table 1-2: Results for the seat position 

 

1.3 Thesis Overview 

• Chapter 1 introduces the clinical factors of BP, the most popular BP 

measurement methods, and an analysis of the oscillometric method. 

• Chapter 2 lists the theories used in the developed oscillometric BP measurement 

algorithm. 

• Chapter 3 presents the experimental setup for clinical data collection. 
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• Chapter 4 describes the details of research methodology of this project. 

• Chapter 5 documents the process of testing, improving and finalising the 

developed algorithm. 

• Chapter 6 gives conclusions and future suggested work for this study. 
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Chapter 2 Theoretical Background 

2.1 Introduction  

This chapter describes the basic theoretical method used to develop the main algorithm 

in this thesis.  The principles of digital signal processing and artificial neural network 

classification are described in detail. The two most commonly used international 

standard protocols for testing the accuracy and the validation of the developed algorithm 

are explained and listed with the requirements and procedures for testing the accuracy 

and the validation the developed algorithm.  

2.2 Signal Processing 

Signals are a set of variable data or information present in a system and may be 

classified as input, output, or internal. Since many signals are functions of time, mostly 

we use time as the independent variable in our analysis technique development [37, 38]. 

A signal can be categorized as either continuous-time or discrete-time. A continuous 

time signal has a value specified for all points in time and a discrete-time signal has a 

value specified at each discrete point in time and is unspecified between these points. 

Some continuous-time signals can be considered as discrete-time signals from 

inherently discrete processes. In this research, the signal measurements are recorded as 

discrete-time signals because the signals are recorded based on each heart beat (HB) 

which has finite bandwidth. 
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The main idea of signal processing is to extract useful information from the signal and 

extract the relationships between two or more signals, and produce a signal to be of a 

different, more useful, representation. There are three main steps for the signal 

processing as follows: (1) Discriminating desired and undesired signals to remove noise; 

(2) Extracting useful information, the signal maybe transferred to another useful form; 

(3) Obtain the feature values.  

A signal can be presented and processed in the following domains: time domain, spatial 

domain, frequency domain and autocorrelation domain. The domain would be chosen as 

that which best represents the essential characteristics of the signal. This project will be 

focused on the time and frequency domain. The signal can be converted from time 

domain to frequency domain through the Fourier Transform.  

2.2.1 Fourier Transform 

The Fourier Transform is the generalisation of the Fourier series where function is 

represented by the sines and cosines. This method gives the description of a signal 

constructed from a wave which can be used to transfer a signal from the time domain to 

frequency domain. The original signal x dependent on time t is measured and 

represented as x(t). The Fourier transform represents the signal in its frequency domain 

as shown in Equation 2.1.  With the Fourier transform, the phase, frequencies and 

amplitudes of each sinusoid from the original signal can be calculated.  

2( ) ( ) j ftX f x t e dtπ∞ −

−∞
= ∫     (2.1) 
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where x(t) is multiplied by a succession of complex sinusoids of frequency f with cycles 

per second. The angular frequency ω in radian per second is another way to present the 

equation where ω = 2πf  [39].  

Equation 2.2 indicates the X(f) is a series of weighting factors of all the sinusoidal 

components that together add up to the original signal x(t). The original signal x(t) can 

also be reconstructed by weighting each of the sinusoidal components by X(f) and 

adding up the result using the Inverse Fourier transform (IFT) [40]. 

𝑥(𝑡) = ∫ 𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓∞
−∞                                               (2.2)

 

2.2.2 Fast Fourier Transforms (FFT) 

A Discrete Fourier series consists of combinations of sampled sine and cosine functions. 

Discrete Fourier transform (DFT) is used to transform a sampled time domain signal 

into a frequency domain signal. The DFT is important in signal processing for spectral 

analysis, convolution and correlation. The FFT was developed in 1965 by J.W. Cooley 

and J.W. Tukey [40]. It is an efficient algorithm for evaluating a DFT which gives the 

same output as the DFT but with faster calculation [41].  

The DFT computes a finite number of samples. The definition for DFT (FFT) is shown 

in Equation (2.3).   

1
2

0
[ ] [ ] for 0,  1,  2,  ... 1

N
j nk N

n
X k x n e k Nπ

−
−

=

= ⋅ = −∑
              (2.3)

 

where k refers the frequency of each element, the number of time samples x[n] is the 

input to the DFT,   X [k] is the DFT in N periods [41]. The FFT method relies on 
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breaking an N-point calculation into N/2 point calculations, each of which is further 

broken down in to N/4 point calculations. 

The inverse DFT (IFFT) is shown in Equation 2.4. 

 
2 ( 1)( 1)

1

1[ ] [ ] for 1,  2,  3,  ... 
N

j n k N

k
x n X k e n N

N
π − −

=

= =∑
          (2.4)

 

The IFFT can be used to convert the signal from the frequency domain back to the time 

domain. The unwanted frequency components can be removed before applying the IFFT 

therefore the desired signal can be extracted by using FFT and IFFT.  

2.2.3 Power Spectral Density (PSD) 

The PSD is a method to indicate the power contribution of a signal in frequency spectra 

[41]. The PSD measures the average power of the signal during the specific frequency 

band. The unit of PSD is often expressed in watts per hertz (W/Hz). The power 

spectrum can be determined by applying a DFT to the signal and summing the squares 

of the real and imaginary and dividing by the number of points [40].  

2.2.4 Filters 

The reason for using filters is to remove unwanted noise from a raw signal. Many types 

of filters can be chosen based on the required bandwidth of the desired signals. 

Generally high pass, low pass, band-pass and band stop are the most used filters for 

noise removal [42]. The specification of key features of the filter such as the filter pass 

band determines the range of frequencies passed by the filter and is important during the 

filter design. It may affect the processed signal which will significantly relate to the 

accuracy of the result. 

http://en.wikipedia.org/wiki/Watt�
http://en.wikipedia.org/wiki/Hertz�
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2.2.5 Normalisation  

Before feature extraction, data pre-processing can be used to make signals having 

similar scales of useful information. The signals can be rescaled to a range which makes 

the extracted features easier to use in further analysis.  

Normalisation is the technique which spreads a range of values uniformly over a 

specified range of the input.  The most common method of normalisation is a simple 

linear mapping in which measured variable x can be mapped to a scaled variable y 

according to the Equation 2.5 [43]. 

( )min
max min min

max min

x xy y y y
x x

 −
= − + −      (2.5) 

where xmax is the measured variable’s maximum value, xmax is the measured variable’s 

minimum value, ymax is the scaled variable’s maximum value and ymin is the scaled 

variable’s minimum value. 

2.2.6 Windows 

The purpose of using a window is to force the signal outside of a specific range to be 

zero [38]. Windowing creates a usable filter impulse response from an unusable one, but 

has attendant side effects in the frequency domain. The Rectangular window is the 

simplest window. However due to the sharp vertical edge of the rectangular window, it 

is not suitable for removing signals outside the pass band. This problem can be fixed by 

selecting a window with smoother edges such as Hann, Hamming, Blackman, and 

Kaiser Windows as shown in Figure 2-1 [44]. 
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a 
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d 

Figure 2-1: Window functions (a) Rectangular Window (b) Triangular (Bartlett) (c) 

Raised Cosine Window (d) Hamming Window 

2.2.7 Feature Extraction 

Feature extraction is most important for the pattern recognition process. It has great 

influence on the success of an application. The features can be extracted directly after 

the data pre-processing operations. Many types of feature variables can be selected 

depending on characteristic of the signal such as the perimeter feature, area feature, 

radii feature, corner feature and shape factor [43]. For this research, features from time 

and frequency domains were extracted for analysis in the next step.  

2.3 Statistical Analysis and Classification  

Artificial neural network classification is one of the artificial intelligence techniques 

used for the statistical analysis and classification. The following section gives a brief 

description of the theory of ANN on which this research is based.  

2.3.1 Artificial Neural Network (ANN) Classification  

An ANN is a mathematical computing paradigm that models the operations of 

biological neural systems. It is composed of simple elements operating in parallel. 

These elements are inspired by biological nervous systems.  In a trained artificial neural 



 

 24 

network the intelligence of the network is stored in the values of the connections 

existing between the neurons. In artificial neural network terminology the values of the 

connections between the neurons are generally referred to as weights.  During the 

training process, weights are adjusted until the network output matches the target. The 

ANN can be used for specific applications, such as pattern recognition, data 

classification and signal processing applications [45]. The advantage of using the ANN 

is listed as following  

• Adaptive learning: The ANN can finish the task based on the provided 

information or initial experience. 

• Self-Organisation: An ability to create a representation of the information 

received from the leaning process. 

• Real Time Operation: For some special tasks, hardware devices can be 

developed and manufactured based on the capability of the designed ANN. 

Various types of ANN can be use for different applications which are mainly classified 

into three types based on the learning approach: a) Supervised learning such as pattern 

recognition and regression analysis. b) Reinforcement learning such as control problems, 

games and sequential decision making. c) Unsupervised learning such as the general 

estimation problem. In this research, a supervised learning algorithm was selected for 

the designed ANN.  In supervised learning algorithms, the ANN is adjusted and trained 

based on provided inputs and comparing the output and the target, until the output can 

match with the target. 

A neuron is a nonlinear, parameterized bounded function which is the basic element of 

an ANN [43].  The neuron receives and weights the sum of the input data and calculates 
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the output by using various transfer functions [46]. A general model for a single neuron 

is shown in Figure 2-2. 

Neuron
f

w1

w2

wR

n2

nR

n1

p1

p2

pR

a

n=∑wp
a = f(n)

Inputs Weights Output

 

Figure 2-2: Diagram of a single layer neuron model and its transfer function. 

Where variable P is the input of this model, R is the number of inputs, w is the weight of 

each input, n is the net weighted input to the neuron, and a is the output of the neuron. 

The inputs PR are weighted by the respective weights WR, summed and passed to the  f 

produce the outputs. There are four types of transfer functions that can be selected for 

different as shown in Figure 2-3. These functions are:  

• Hard-Limit Transfer function – Used to create the neurons to finish the decision- 

making classifications. 

• Linear Transfer function – Used in linear approximation. 

• Sigmoid Transfer function – Used to make the output value range from 0 to 1 

which is normally selected for back-propagation networks. 

• Tan-Sigmoid Transfer function – Similar to the Sigmoid Transfer function 

which produce the output in the range -1 to 1. 
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Figure 2-3: Transfer functions of a neuron. 

ANNs can consist of many neurons connected in various possible topological ways. 

One ANN may have two or more neurons combined in one layer to construct a one-

layer network. It also can have more neurons with several layers to construct a multi-

layer network [43].  

Figure 2-4 indicates an example two-layer network and the applied equations are shown 

under the ANN structure. Each layer has a weight matrix w, a bias vector b, and an 

output vector a. Two paradigms of ANNs can be used during the design process: they 

are feed-forward and feedback networks. Feed-forward networks allow the signal to 
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travel one direction from input to the output and are mostly used in pattern recognition 

[43, 47]. 

Input layer First hidden layer Second hidden layer Output layer

)ba(LWfa)ba(LWfa)bp(IWfa 323,233212,12211,111 +=+=+=

)b)b)bp(IWf(LWf(LWfa 3211,112,123,233 +++=  

Figure 2-4: Multilayer neuron model with two hidden layers 

After an ANN has been designed, it needs to be trained to computes result. A highly 

popular algorithm is the back-propagation algorithm. It consists of two phases through 

the network which are forward pass and backward pass. In forward pass, the input 

vector is inserted into the network and its effect propagates from the input layer to the 

hidden layer and calculates the output from the output layer with fixed weights. The 

output data is checked against the target data. Then the error-correction rule is used 

which helps to modify the weights in the backward process. The error signal is 

produced and propagated back to the network. The new output data can be calculated 

with the adjusted weight which should be closer to the desired target data [48]. 
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2.3.2 Principal Component Analysis (PCA) 

PCA is a standard technique used for data reduction which generally reduces the factors 

to a minimal but sufficient representation of underlying information [43]. It is also 

called the Karhunen-Loeve transformation which reduces the feature vector dimension 

while retaining most useful information by constructing a linear transformation matrix. 

This technique can be used to reduce the unnecessary input features in designed ANNs.  

2.3.3 Bland and Altman Plot 

Bland and Altman Plot is a graphic method used to assess the agreement between two 

results of approaches results based on the same subjects [49]. Figure 2-5 indicates an 

example of the Bland and Altman plot. It shows the difference between two 

measurement methods based on testing with the same sample. This graphic method can 

be used to compare the newly developed algorithm with a gold standard (reference 

value). The reference value was taken by two observers by using the Auscultatory 

method. The mean difference of two methods is indicated on the diagram as a horizontal 

solid line. The information within two Mean ±1.96 SD (standard deviation) solid lines 

shows the 95% distribution of the difference values.  

.  
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Figure 2-5: An example of a Bland and Altman Plot 

2.4 Standard Protocols 

An accurate measurement result is not only important for casual users but also has great 

influence for clinical applications. Any developed NIBP measurement device needs to 

show its accuracy with respect to specified criteria. AAMI and BHS international 

standard protocols are commonly used for validation of the device’s accuracy [7].  

AAMI published and revised a standard for electronic or automated 

sphygmomanometers which includes the protocol for testing the accuracy of NIBP 

measurement devices [7, 50]. It recommended at least 85 subjects should be studied for 

the device’s validation. At least 80% of the tested subjects should have an SP (DP) 

value within the range 100 mmHg to 160 mmHg (60 mmHg to 100 mmHg). At least10% 

of the subjects should be above and below that range. The AAMI standard requires the 

test of SP and DP separately. The mean difference between the testing results and the 
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reference values should be no more than ±5 mmHg with a standard deviation of 8 

mmHg or less. 

The BHS also published and revised a protocol for testing the accuracy of BP 

measurement for automatic and semiautomatic devices [51]. This standard can be used 

for both direct and indirect device validation. Its accuracy criteria uses a grading system 

based on the percentages of testing results differing from the reference readings by ≤ 5 

mmHg, ≤ 10 mmHg and ≤ 15 mmHg for both SP and DP [52]. The Grades are 

identified from the percentage of readings within different levels as shown in Table 2-1. 

To achieve a grade all three percentages must be equal to or greater than the tabulated 

values.  

Table 2-1 Grading criteria used by the British Society of Hypertension 

Grade 
Absolute difference between reference and test device (%) 

≤ 5 mmHg ≤ 10 mmHg ≤ 15 mmHg 

A 60 85 95 

B 50 75 90 

C 40 65 85 

D Worse than C 

Both standards are used for the validating the accuracy of the designed algorithm. The 

experimental procedures were followed by the AAMI standard which described in detail 

in next chapter.  
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2.5 Objective  

Many algorithms have been developed for automotive BP measurement based on the 

oscillometric method. However, most algorithms had been developed based on general 

applications. For older people and other special applications, the measurement accuracy 

may not be satisfactory. This project is going to develop a NIBP measurement 

algorithm which can work accurately for adult subjects including the elderly. It is based 

on a beat-by-beat pattern recognition approach using the oscillometric method. The 

designed algorithm will be validated on a wider range of people in line with 

international standards. 

The procedure of this research included 

• To create a new database for collected data from all age groups. 

• To develop a NIBP algorithm based on a beat-by-beat pattern recognition 

approach.  

• Validate the designed algorithm on all age groups, in line with the accepted 

standards (AAMI and BHS). 
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Chapter 3 Experiment and Research Methodology 

3.1 Introduction  

This chapter describes the experimental setup for the clinical trials and the development 

of the ANN BP measurement algorithm. This algorithm was developed based on the 

features of changing signal patterns during the blood pressure measurement. The 

research methodology used in this project included data collection, signal processing 

and feature extractions and the development of an ANN BP estimation algorithm. 

MATLAB® R2008a (The MathWorks, U.S.) software was used for the algorithm 

development. In signal processing, noise and unused signals were eliminated from 

initial signal. HB and heart rate (HR) of the measured results were identified by the 

designed program. Waveform features of each HB were extracted and used as the input 

data for the ANN classifier to analyse the relationship between CP and SP or DP at each 

HB. A BP value was then calculated based on the output of the ANN classifier.  

3.2 Clinical trial 

The data used for this research were collected from AUT Wellesley campus for healthy 

people and North Bridge Retirement Village in Northcote, Auckland for people aged 

above 59 years old. The ethics approval was approved by the Auckland University of 

Technology Ethics Committee (AUTEC) and attached in Appendix II. The data 

collection process met the structure and the requirements of the AAMI standard 

protocol. Two observers were well trained before the data collection. The device used 

during the data collection was provided by Pulsecor Ltd.  
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3.2.1 Apparatus 

The data collection was conducted using an inflatable cuff, a device provided by 

Pulsecor, one laptop and one teaching stethoscope as shown in Figure 3-1. The cuff was 

a Trimline blood pressure cuff (Trimline Medical Products Corp, NJ, and USA) and 

used to collect data from the brachial artery. The device was provided by Pulsecor Ltd 

which used with Vasomon R software for the data recording. The bell mode side of a 

3MTM Littmann® dual-head teaching stethoscope was used to measure blood pressure by 

the two observers using the auscultatory method at the same time.  

 

Figure 3-1: Actual apparatus used in the data collection 

3.2.2 Data Collection Procedures 

CP oscillations during the BP measurement process were collected in this research.  

Before the data collection, the subjects were required to take a rest for 5 minutes. 

During the data collection, CP signals were measured by the pressure sensor in 
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Pulsecor’s device and saved in the database in the computer for further analysis. The 

obtained data were transferred to the computer through Vasomon R software as shown 

in Figure 3-2. 

 
Figure 3-2: Vasomon R program data collection, the gray curve: cuff pressure, 

green curve: raw signal from the connected pressure sensor 

As required in the AAMI standard [52], the reference BP readings were recorded by two 

well-trained observers using the Auscultatory method. The readings were accepted 

when the difference of the two observers’ reading was within ±5 mmHg. The SP and 

DP values were chosen as the average reading of the two observers. 40 readings were 

used as reference readings for ANN training and 258 for testing of the designed 

algorithm.  

The data used in this research was collected from AUT Wellesley campus and 

Northbridge Retirement Village, Auckland. Ethics approval was submitted and 

approved by the AUTEC with the reference number 08/232.  
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3.3 BP Detecting Process 

In this project, a unique signal processing method and brand new ANN classification 

algorithm were developed to improve the NIBP measurement accuracy. Similar to 

existing oscillometric BP measurement methods, the proposed BP measurement method 

used the recorded CP oscillations during the measurement to determine the subject’s BP. 

In a similar way, the oscillation waveform changes from beat to beat [53]. Features from 

each HB were used to analyse the waveform changes from a supra-systolic pressure 

region to the sub-diastolic pressure region (that is, the waveforms changed in shape as 

the cuff was deflated from supra-systolic to sub-diastolic pressure). The ANN classifier 

was designed to classify the relationship between CP and SP or DP at each HB from the 

supra-systolic region to the sub-diastolic region. The flowchart in Figure 3-3 shows the 

four steps included in the designed algorithm: 

1. Collect the data from the subjects. 

2. Process the original signal in order to obtained the desired features 

3. ANN classification to analyse the extracted features. 

4. Calculate the BP value based on the ANN output. 
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Figure 3-3: The procedures of BP determination in this study. 

3.4 Signal Processing 

 After signal was collected, the oscillating signal was then exported to the MATLAB 

program for signal processing to eliminate noise from the original signals. As shown in 

Figure 3-4, the raw signal contained the measured CP for the whole BP measurement 

process. The signal during the CP decreasing was extracted as the desired signal for this 

algorithm. It showed that lots of high frequency noise was contained in the desired 

signal. Since most of the BP pulse signals are contained between 0.5 and 25Hz [54], a 

band-pass filter (0.5 ~ 25Hz) was selected to filter out  noise.  
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Figure 3-4: Saved pressure signal during BP measurement in the database: the 

data between the red dashed lines are used for analysis in the next step.  

The oscillation waveforms obtained after the band pass filter are shown in Figure 3-5. 

By visualizing the oscillation waveform, it changes from beat to beat from supra-

systolic region to the sub-diastolic region.  

 

Figure 3-5: Desired signal after band-pass filtering 

0 5 10 15 20 25
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (sec)

O
sc

illa
tio

n 
A

m
pl

itu
de



 

 38 

3.4.1 Heart Beat Identification 

The designed BP identification method was developed based on a beat by beat pattern 

recognition approach. Therefore, the subjects’ HB needs to be determined for further 

analysis.  

In this study, the starting point of each HB was defined from foot to foot. Because 

human beings’ HR is normally less than 180 beat per minute [55], a second order 

Butterworth Low-Pass Filter at 3 Hz was applied to the original signals to remove the 

unwanted signal before HB extraction. As shown in Figure 3-6, all of the peaks (green 

dot in lower chart) in the wave were detected and identified. The starting points (blue 

circle in upper chart) were then defined as the minimum points between two maximum 

points (between the red dash lines).  

 
Figure 3-6: Desired signal after band-pass filtering: Blue line is the oscillating 

signal. Green circles indicate the minimum points of all HB. Blue 

circles defined as the starting point of each HB. 
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CP values were recorded at the same time during the HB detection. CP value at each 

starting point was used as the corresponding CP at each HB. 

During the measurement some external noises such as those caused by arm movements 

may also be present as a pulse in the waveform. If the program incorrectly identifies 

erroneous pulses as real HBs then the accuracy of the result may be affected.  

Error checking process was designed to detect the error pulses and delete them to reduce 

the unwanted signals. HR and mean HR (MHR) were calculated to help estimate the 

error pulses. The calculation of HR was one divided by the time difference between two 

minimum points, as shown in Equation 3.1. The MHR is the average value of all of the 

obtained HR, as shown in Equation 3.2.  

𝐻𝑅= 1
𝑇𝐼𝑀𝐸(2)−𝑇𝐼𝑀𝐸(1)

     (3.1) 

𝑀𝐻𝑅 = ∑𝐻𝑅
𝑁𝑜.𝑜𝑓 𝐻𝐵

     (3.2) 

After calculating the HR of each HB and the MHR, the error checking algorithm 

proceeded to detect the error pulses. The error pulse was removed if a pulse did not pass 

the error checking program. In the processed signals, any obtained individual HR over 

130% or less than 70% of the MHR was considered as erroneous as shown in Figure 3-7. 

The detected error pulse was eliminated and the new MHR was calculated again based 

on the remaining pulses. The algorithm was repeated to check the new MHR with the 

remaining pulses again and again until all the individual HR were within the desired 

range of ±30% of the MHR. If there were more than five error pulses detected in this 

process, the system would display an error message. After the error checking process, 

each HB was segmented and saved as an individual HB for further analysis.  
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Figure 3-7: Blue line is the oscillating signal. Green dashed lines indicate the start 

of each HB. 

3.4.2 Signal Normalisations  

Since this research was proposed to identify the subjects’ BP through the features of the 

waveforms, a signal normalization process was carried out after HR identification. The 

normalization processes are:  

(1)  The value of the starting point of each HB was shifted to zero.  

(2) The ending point was shifted to zero. Hann window was used to smooth both 

edges of each individual HB, which was designed based on the length of each 

HB.   

(3) The amplitude, which was the value between the starting point and the peak, was 

scaled to 1.  

Figure 3-8 is an example of how one HB had been shifted, normalised and windowed 

before feature extraction.  
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Figure 3-8: Blue line is one original HB from subject 5. Red line is the normalized 

signal. Green line is the windowed signal. 

3.4.3 Features Extraction  

As described in Chapter 2, features from each individual HB would be selected as the 

input data for the ANN in the next step. MATLAB was used to extract features and all 

extracted features were saved in an Excel spreadsheet for ANN training and testing 

purposes. Both time domain and frequency domain features were included. 

Based on previous research [56],   6 features extracted from the time domain were:  

• Total amplitude of all the turning points. 

• Area under the curve. 

• Positive and negative Rate of Change (ROC). 

• Positive and negative slope of each HB (Pdt). 

FFT was used to calculate the features relating to different frequency bands. Features 

from the frequency domain were extracted after FFT was applied to all HBs. As 

described before, most wanted signals were contained within 0.5~25Hz. Features from 

frequency domain were: Magnitudes and PSD values at frequency ranges between 
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0.5~5 Hz, 5~10Hz, 10~15Hz, 15~25Hz. All the features are detailed in the following 

section. The value of Magnitudes and PSD in different frequency ranges were 

calculated by funMag and funPSD, the flowcharts are shown in Figure 3-10.  

• Total turning points amplitude (funAmp) was developed to calculate the total 

amplitude of each HB. The turning points of each HB were defined and then all 

the amplitudes of those points were determined from point to point. The total 

turning point amplitude was calculated as the sum of all amplitudes. The result 

was returned to the main program and saved in the Excel datasheet. Flowchart of 

funAmp displayed in Figure 3-9a. 

• Area under the curve (funArea): The area under the curve was calculated 

using integration under a signal function. The trapezoidal numerical integration 

(trapz) function was applied to define the area under the curve. The result was 

returned to the main program and saved in the Excel datasheet. The flowchart of 

funArea is displayed in Figure 3-9b. 

• funROC was developed to calculate the maximum and minimum rate of change 

at each turning point of each HB. Firstly each turning point was detected and 

then the amplitudes of the change between all the points were defined. The 

function of Rate of change was calculated as the amplitude over the change of 

time, the equation is shown in Equation 3.3. 

Rate of Change = Change in amplitude
Change in time

                                  (3.3) 

• fundPdt was developed to find the maximum positive and minimum negative 

slope of each HB. It used the same equation as funROC, but this function was 

used based on each data point instead of each turning point. The flowchart of 

fundPdt is shown in Figure 3-9d. 
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a                                                        b 

 

c                                                        d 

Figure 3-9: Feature extraction from time domain. (a) Flowchart of funAmp. (b) 

Flowchart of funArea. (c) Flowchart of funROC. (d) Flowchart of 

fundPdt. 
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a                                                         b 

Figure 3-10:  Feature extraction from frequency domain. (a) Flowchart of funMag. 

(b) Flowchart of funPSD. 
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3.5 Artificial Neural network 

As the measured signal waveform changed from the supra-systolic pressure region to 

the sub-diastolic region, the SP and DP values were to be identified based on analysing 

the extracted features from each HB. An ANN classifier was developed to determine the 

relationship between CP, SP and DP. The structure of the ANN classifier had been 

designed initially and the ANN training parameters were also selected at this stage. 20 

training subjects were selected randomly from the database. After the ANN was trained 

based on these 20 subjects, new data would be inserted to test the algorithm. 

3.5.1 Design of the ANN  

An ANN was designed to analyse the features of each HB in order to get a more 

accurate BP reading. The main idea of designing an ANN was to use the simplest 

structures to give the best results without overfitting the data. The designed ANN 

included: one input layer, one hidden layer and one output layer structure as shown in 

Figure 3-13. The steps for designing the ANN are shown below: 

1. Collect the data – Extract enough useful features as the input of ANN. 

2. Create a network – design and initialise the ANN. 

3. Initialize the network – Initialize weights and biases. 

4. Train the network – adjust the weights and biases. 

5. Simulate the network – validate the network and apply new input data. 
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Figure 3-11: Neural network developed for ANN classification algorithms. 

As described in Chapter 2, each ANN inputs contained the input training matrix and the 

target matrix. Features extracted from 20 subjects based on each HB were selected as 

the input training matrix. In this research, SP and DP values were calculated separately. 

The same ANN structure was developed for determining SP and DP, the only difference 

between these two ANNs was the input target matrix. The input target was the ideal 

outputs of the ANN for SP (DP). One hidden layer was designed with 3 neurons and 

tan-sigmoid transfer function. For the training process, the ANN would train and adjust 

weights until the output matched the targets.  The output layer was designed to calculate 

the difference between the CP and SP or DP value. The linear transfer function was 

used to calculate the output. 

Once both networks had been created weights and biases were initialized by selecting a 

constant initial random seed (0), the network was ready to be trained. Both ANNs were 

trained in the same way to make for easier comparison in the next step. Levenberg-

Marquardt backpropagation training function was selected for faster training [57]. PAC 

was applied to reduce the dimension of the input data set. The mapstd function was 

used to calculate the zero mean data set for each data dimension. processpca function 
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was applied to process input data sets using PCA so that each row was uncorrelated. 

Training parameters were selected as shown:  

No. of epochs or iterations: 500 

Performance error goal (PEG): 0.01 (0.1% error) 

Maximum performance gradient: 1×10-10 

3.5.2 ANN Outputs 

In the ANN training process, the same 20 input training features with different output 

targets (SP and DP) were inserted. As mentioned before the ANN classifier was 

designed to analyse the relationship between CP, SP and DP. The SP and DP values 

were determined from the outputs of the ANN.  

 In the oscillometric method, the oscillation waveform is analysed to get the occurrence 

of the SP and DP during the decreasing CP. The BP value can be estimated by the 

corresponding pressure in the CP curve. This means at systolic pressure, CP value 

equals the SP value.  Similarly, CP equals DP at the diastolic pressure. The equations 

shown in Equation 3.4 and Equation 3.5 indicate the relationship between CP and SP 

(DP).  SA (DA) was the difference between CP and SP (DP). The ANN classifier was 

designed to calculate the value of SA and DA. From the equation, when SA (DA) 

equals zero the corresponding CP was identified as the SP (DP) value.  

𝑆𝑃 = 𝐶𝑃 − 𝑆𝐴     (3.4) 

𝐷𝑃 = 𝐶𝑃 − 𝐷𝐴     (3.5) 



 

 48 

The input features used for the ANN training process were selected after the signal 

processing. All the input training features and targets were assembled as the input 

matrix: each HB with 16 features was gathered in a column vector. The target of each 

output from the ANN was obtained by CP minus the SP or DP reference reading value 

as shown in Figure 3-12. An example of ANN targets and results is shown in Figure 

3-13.  The red dots and blue dots indicate the ANN outputs for SP and DP and two 

black lines are the trendline of ANN outputs. Two arrowheads indicate the occurrence 

point of SP (DP) which can identify the SP and DP value based on the correlated CP 

value. The ployfit function in Matlab® software was used to calculate the polynomial 

coefficient of the trendline based on the ANN outputs and CP value. ployval function in 

Matlab® software was used to calculate the CP value at which the ANN output (SP) was 

zero which defined as the SP value. DP was calculated in a similar way based on the DP 

ANN outputs. 

  

Figure 3-12: ANN output target chart. 
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Figure 3-13: ANN Classification outputs and the targets. The blue dots are the SP 

output of ANN classification. The red dots are the DP output of ANN 

classification. 

3.6 Summary  

Signal processing procedures were developed which included filtering the noise, 

identifying each HB, error detection, normalisation and windowing identified HBs. 

Feature extraction was developed to extract useful input features for BP classification. 

The initial ANN classifier has been designed and trained with selected structure, input 

features and parameters to determine BP. After training the network, a new data set can 

be presented to the network for BP determination and validation of the network with R-

squared value of 0.6887 for SP determination and 0.8506 for DP determination. The 

polyval function was used to calculate SP and DP values from the SA, DA and CP.  

  

R² = 0.6887 

R² = 0.8506 
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Chapter 4 Algorithm Testing, Improvement and Finalisation 

4.1 Introduction 

After the ANN was developed, new data was presented to test the algorithm. The testing 

results indicated some measurement errors especially in older people. Improvements 

were done to finalise the ANN with the best results on all age groups. New features 

were introduced to the ANN to give more useful information in order to improve the 

accuracy of BP estimation. Different numbers of training inputs were tested to find out 

the best setting of input training data. The most important features were selected for an 

efficient ANN which would recognise the limitations of time efficiency and hardware 

requirements. The ANN was also tested with different numbers of neurons, different 

parameters values and different training function in order to find the best ANN structure 

for the final algorithm. The accuracy of the final algorithm was compared with previous 

ANN and fixed ratio method as described in Chapter 1 [23]. A total of 92 subjects were 

measured in data collection and stored in the database and used for improving the ANN. 

For the final validation, 258 measurements collected from 86 subjects were used for the 

design and testing process.  

4.2 Initial ANN 

After the initial ANN was developed, new testing data could be used to test the accuracy 

of the algorithm. This project was aimed at developing an accurate BP measurement 

algorithm for all age groups. Two groups of measured data were selected to test the 

algorithm. In Group 1, 30 measurements were selected from young healthy subjects and 

Group 2 included 30 measurements randomly selected from all age groups (above 16 
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years old). The testing results of two groups were compared to the Auscultatory method 

as shown in Figure 4-1 and compared to AAMI and BHS standards as shown in Table 

4-1.  

As shown in Table 4-1, the algorithm tested in healthy subjects had better estimation 

results in SP calculation than DP. It passed the AAMI standard in SP but failed DP 

estimation. The ANN with young healthy data achieved a B Grade according to the 

BHS standard for SP estimation. It was also less accurate in DP estimation: it only 

achieved C grade according to the BHS standard. Figure 4-1 indicated that all the results 

were within ±15 mmHg difference to SP. Half of the results were within ±5 mmHg 

different range. DP estimation had less accurate results compared to SP estimation. It 

had 4 testing data with an absolute difference of more than 15 mmHg compared to the 

reference reading. Only 46.1% of results had less than 5 mmHg absolute difference 

compared with the targets.  

Table 4-1: Results from on 35 healthy and 35 randomly selected subjects compared 

with standard protocols by using developed algorithm.  

Method Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  
Measurement 

Error 
Absolute difference 

(%) 
Measurement 

Error Absolute difference (%) AAMI BHS 

  Mean SD ≤ ±5 ≤ ±10 
≤ 

±15 Mean SD ≤ ±5 ≤ ±10 ≤ ±15 
Pass/ 
Fail Grades 

Healthy  -0.73 7.4 53.3 86.6 100 -3.2 10 46.1 70 86.7 P/F B/C 

Random -0.8 9.9 36.7 76.7 86.7 -0.2 13.8 46.7 60 76.7 F/F D/D 
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a 

 

                                              b 

Figure 4-1: Bland and Altman plot of initial ANN and Auscultatory result 

compared from 35 healthy measurements. (a) Systolic Pressure. (b) 

Diastolic Pressure. 
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30 measurements randomly selected from the data base were tested. The developed 

algorithm failed both standards as shown in Table 4-1. The results with randomly 

selected data had worse accuracy compared to the healthy data. The results within ±5 

mmHg difference had a huge drop from 53.3% to 36.6% in SP estimation when 

presented with randomly selected data instead of healthy data. Figure 4-2 showed there 

were 4 results out of ±15 mmHg difference range in SP estimation. For DP estimation, 

the results of the difference within ±5 mmHg were the same when using the randomly 

selected testing data. However, the accuracy of the absolute difference within 10 mmHg 

and 15 mmHg were also decreased when presented with randomly selected data. Some 

results had more than 30 mmHg absolute differences compared with the target in DP 

estimation. 

The results of the initial designed algorithm were not accurate enough for subjects with 

a wider age range. Although the ANN tested with healthy data achieved a B grade in SP 

estimation, it failed DP measurement against the AAMI standard and only had a C 

grade for DP. The algorithm gave worse results when presented with testing data 

randomly selected from the database. Therefore more improvements were needed to 

improve the accuracy of the ANN.  
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a 
 

 

b 

Figure 4-2: Bland and Altman plot of initial ANN and Auscultatory result 

compared from 35 randomly selected measurements. (a) Systolic 

Pressure. (b) Diastolic Pressure. 
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4.3 ANN Improvements 

The results of the initial designed algorithm showed that more improvements were 

required to improve the accuracy of the algorithm. The improvement process only 

focused on development of the ANN classifier, and there was no change to the signal 

processing. Three improvement processes are discussed in this chapter. The first step 

was to introduce new features to the algorithm. The second step was to test different 

numbers of training data. The third step was to test different numbers of ANN 

parameters and different training functions to give the most suitable ANN structure for 

this project. The final ANN structure was decided based on the testing results. 

4.3.1 Feature Selection 

With 16 features selected, the algorithm still indicated low accuracy on BP estimation. 

This means the 16 features may not provide enough information to the ANN for BP 

calculation. Therefore, two new input features were introduced to the ANN to try to 

improve the measurement accuracy.  

HBcp was defined as the CP at each HB. As described before the outputs of the ANN 

were the differences between CP and SP (DP). This feature was selected to help the 

ANN to analyse the relationship between CP, SP and DP. 

 Rmax was defined by determining the maximum and minimum points of each HB. 

Then the amplitude of each HB was calculated as the difference between maximum and 

minimum points. The ratio (Rmax) of the HB amplitude over the maximum amplitude 

was calculated.  

16 features with two newly added features (totalling 18 features) were trained and tested 

with 35 randomly selected measurements. The ANN with 16 input features was trained 
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and tested by adding one new feature at a time. The testing results are shown in Table 

4-2.  

Table 4-2: Result of 35 randomly selected data compared to the standard protocols 

by using 16, 17 and 18 input training features. 

Methods Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  
Measurement 

Error 
Absolute difference 

(%) 
Measurement 

Error 
Absolute difference 

(%) AAMI BHS 

  Mean SD ≤ ±5 ≤ 
±10 

≤ 
±15 Mean SD ≤ ±5 ≤ 

±10 
≤ 

±15 
Pass/ 
Fail 

Grade 

Random -6.3 9.9 36.7 76.7 86.7 -5.9 13.8 46.7 60 76.7 F/F D/D 

Add HBcp -1.9 7.6 53.3 86.7 94.2 -2.5 8.1 48.6 74.2 87.1 P/F C/C 

Add Rmax 4.6 11.1 48.6 78.7 82.9 -4.1 9.8 46.7 62.9 86.7 F/F C/D 

Add HBcp 
&Rmax 

0.86 6.8 60 86.7 100 -1 7.9 53.3 86.7 93.3 P/P A/B 

 

The ANN with 17 input features (HBcp added) passed the AAMI standard on SP 

estimation but failed on DP calculation.  Results of BP estimation achieved a C grade 

according to the BHS standard for SP and DP. The proportion of absolute differences 

within 5 mmHg compared to the target output had significantly increased from 36.7% to 

53.3% when HBcp was included in the ANN for SP estimation. The proportion of 

absolute differences within 5 mmHg for DP result also showed a 2% improvement 

when using HBcp. The added feature HBcp improved the accuracy for the algorithm 

and was selected for the further development. 

The ANN with 17 input features (Rmax added) failed the AAMI standard and only 

achieved C grade in SP estimation and D in DP estimation. In both SP and DP 

estimations, the accuracy of the results was still improved compared to the ANN results 

with 16 input features. 
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The ANN with 18 inputs (ratio and CP added) was tested. The testing result on 35 

randomly selected subjects passed the AAMI standard for both SP and DP estimations. 

The algorithm achieved an A grade in SP estimation and B grade in DP estimation. The 

results of the proportion of differences within ±5 mmHg were the highest results over 

all which improved up to 60% in SP estimation. All the SP results had less than ±15 

mmHg difference compared to the target. For DP estimation, the accuracy of the results 

was lower than SP. Only half of the output had less ±5 mmHg difference compared with 

the target. However the accuracy of the ANN with 18 input features was improved 

compared to 16 input features. 18 input features were selected for further ANN 

developments.  

4.3.1.1 Training Data 

This project would test the proposed BP measurement method not only on healthy 

people but also on wider range of people. The developed ANN algorithm showed less 

accuracy when the presented data had higher SP. In the initial design of ANN, the input 

training data were selected randomly from the database. These testing data selected 

were studied, and it was evident that inaccurate results occurred more frequently with 

high SP values. The Training data were re-selected based on the SP value of the 

subjects. The purpose of re-selecting the training dataset was to make sure the training 

data covered all the range of SP. Since age may affect the accuracy of the BP estimation, 

training data from different age groups was reselected to give more representative BP 

readings.  

The SP range of collected data was from 90 mmHg to 159 mmHg. As shown in Table 

4-3 the collected data could be divided into three categories: desirable, pre-hypertension 

and Stage 1 hypertension. The training data used for ANN was selected from these three 
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ranges. The data used for the training data contained at least 30% of the training data 

selected from each SP range. 

Table 4-3: BP range categories. 

 Category systolic,  mmHg diastolic, mmHg 

Hypotension < 90 < 60 

Desirable 90–119 60–79 

Pre-hypertension 120–139 or 80–89 

Stage 1 Hypertension 140–159 or 90–99 

Stage 2 Hypertension 160–179 or 100–119 

Hypertensive Crisis ≥ 180 or ≥ 120 

20, 30, 40 and 50 input training data set were selected based on the selection 

requirement to test the algorithm. The result was shown in Table 4-4. All ANNs with 

different numbers of input training data passed AAMI and BHS standards. The ANN 

accuracy was improved when using more training data. In SP estimation, all ANN SP 

results achieved an A grade. The accuracy of DP estimation improved to A grade when 

increased the training data. SP and DP results both had A grades with 30, 40 and 50 

training data. The accuracy of the ANN decreased when using 50 training data which 

suggests the ANN was over trained. Both ANNs with 30 and 40 training data had quite 

similar results. In SP estimation, only the accuracy of the ±10 mmHg difference 

category increased nearly 3% when using 40 training data. However, the DP results of 

40 training data also increased nearly 3% in both 5 mmHg and 10 mmHg absolute 

difference categories. Therefore the ANN with 40 training data had been selected for the 

next step of testing.  

  

http://en.wikipedia.org/wiki/Systole_(medicine)�
http://en.wikipedia.org/wiki/MmHg�
http://en.wikipedia.org/wiki/Diastolic�
http://en.wikipedia.org/wiki/Hypotension�
http://en.wikipedia.org/wiki/Prehypertension�
http://en.wikipedia.org/wiki/Hypertension�
http://en.wikipedia.org/wiki/Hypertensive_emergency�
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Table 4-4:  Results with 50 measurements compared with standard protocols with 

different numbers of inputs. 

Methods Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  
Measurement 

Error 
Absolute difference 

(%) 
Measurement 

Error 
Absolute difference 

(%) AAMI BHS 

  Mean SD ≤ ±5 ≤ 
±10 

≤ 
±15 Mean SD ≤ ±5 ≤ 

±10 
≤ 

±15 
Pass/ 
Fail 

Grade 

20 Data -0.86 6.4 60 86.6 100 -2.7 7.5 53.3 86.7 93.3 P/P A/B 

30 Data -1.4 5.7 63.5 91.4 100 -0.22 6.2 60 88.5 100 P/P A/A 

40 Data 0.8 5.5 63.5 94.3 100 -1.8 5.6 62.8 91.4 100 P/P A/A 

50 Data -2.6 5.8 60 91.4 98.7 -1.8 6.2 60 88.5 100 P/P A/A 

 

Features  

After introducing two new features to ANN, the accuracy of the BP measurement 

algorithm had been improved. The algorithm had already passed both standards and had 

A grade according to the BHS standard protocol.  However it used more than 2 minutes 

for the training time with 18 features (Intel E8400 Dual Core 3.0GHz, 4GB ram). In 

practice, limitations should be considered during the device design for example time 

efficiency and hardware cost. Higher hardware requirements are an important influence 

in device design. This section describes an efficient method for feature selection. The 

numbers of features was reduced to increase the calculation efficiency and also reduce 

the hardware requirements. 

As described before, each HB waveform contained useful information as the measured 

signal changed from supra-systolic to systolic region and diastolic to sub-diastolic 

region.  Features containing the most useful information were kept and others discarded 

to improve efficiency. Firstly, two new added features were kept for the efficient 

method because they had great contribution to improving the accuracy of the ANN 

when using 18 features. The initial selected 16 features was compared and analysed 
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from one HB to another. The 8 more important input features were selected from the 

initial 16 features. 4 features were selected from time domain: Area under the curve, 

Total Amplitude of each turning point, Positive Pdt and Positive Roc. 4 features 

from the frequency domain were Magnitudes and PSD from both 0.5 ~5Hz, 5~10Hz. 

PCA was also applied to reduce the dimension of the input data set in order to give 

better results during the analysis process.  

4.3.1.2 Time Domain  

In the normalisation process, HBs were selected and compared to find out the most 

important features. Before each HB waveform was rescaled, the HB amplitude 

increased from the supra-systolic region, the maximum amplitude occurred between 

systolic pressure and diastolic pressure and then the amplitude decreased after the 

maximum amplitude. The total absolute difference between turning points was selected 

as the amplitude of each HB and changed in different pressure region shown Figure 4-3. 

     

a       b 

Figure 4-3: Consecutive HBs.  The blue pulse is the HB from a supra-systolic (sub-

diastolic) region. The red pulse is the HB at systolic (diastolic) region. 

(a) HB pulse from supra-systolic to SP. b) HBs from DP to sub-

diastolic 
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After the normalisation and windowing, Figure 4-4 indicated the selected HB 

waveforms from different pressure regions. The shape of each HB pulse changed 

significantly from supra-systolic to sub diastolic region. Area under the curve was 

selected for the efficiency algorithm. After comparing 26 subjects’ PosPdt ,PosRoc, 

NegPdt and NegRoc feature value. Both PosPdt and PosRoc value indicate big 

increases after diastolic pressure region. These two features were kept as the input 

features for the further analysis.  

 
a                                                                   b 

 
                     c                                      d  

Figure 4-4: These four diagrams indicate the shape of HB pulse changed from 

supra-systolic region to sub-diastolic region. (a) One HB from Supra-

systolic region. (b) HB at systolic region. (c) HB at diastolic region. (d)  

One HB from Sub-diastolic region                   
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4.3.1.3 Frequency Domain  

Before normalization, the FFT was applied to the band - pass filtered signal. It indicated 

that most useful information was contained between 0.5Hz to 10Hz. The features within 

in 0.5~10Hz were selected: Mag 0.5~5Hz, Mag 5~10 Hz, PSD 0.5~5Hz and PSD 

0.5~5Hz were kept for as the input features. 

Feature testing  

After the number of features were reduced, the ANN with 8 input features was tested 

and compared with the initial ANN (16 input features). These 8 input features included 

the Area under the curve, Total Amplitude of each turning point, Positive Pdt, 

Positive Roc and the  magnitudes and PSD from both 0.5 ~5Hz, 5~10Hz. Both ANN 

were trained with 20, 30 and 40 randomly selected training data and compared to the 

standards. 35 measurements from different BP range bands were selected and tested for 

each training set. This step was performed to make sure the selected 8 features 

contained a similar amount of information compared to the 16 input features.  The 

results shown in Figure 4-5 and Table 4-6 indicate that both ANNs did not pass the 

AAMI and BHS standards in SP and DP estimation. However results showed very 

similar percentage values for the differences within ±5 mmHg, ±10 mmHg and ±15 

mmHg between 16 and 8 input features. With different numbers of training data the 

results were not very different between these two ANNs which means most important 

features were contained within the selected 8 features.  
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Table 4-5: SP results on 35 measurements compared with standard protocols by 

using different numbers of training inputs. 

16 Training Inputs 8 Training Inputs 

Methods Systolic Pressure  Systolic  Pressure 
Standard 
(SP/DP) 

  
Measurement 

Error 
Absolute difference 

(%) 
Measurement 

Error 
Absolute difference 

(%) AAMI BHS 

  Mean SD ≤ ±5 
≤ 

±10 
≤ 

±15 Mean SD ≤ ±5 
≤ 

±10 
≤ 

±15 
Pass/ 
Fail 

Grade
s 

20 Subjects -0.7 9.3 36.7 76.7 86.7 -1.1 12.3 44.3 62.9 77.1 F/F D/D 

30 Subjects -0.67 9.4 38.5 75.7 87.9 -1.7 13.2 42.9 67.1 77.1 F/F D/D 

40 Subjects 0.5 8.4 54.3 68.6 82.9 -1.1 13 42.9 62.9 71.4 F/F D/D 

Table 4-6: DP results on 35 measurements compared with standard protocols by 

using different numbers of training inputs. 

16 Training Inputs 8 Training Inputs  

Methods Diastolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  
Measurement 

Error 
Absolute 

difference(%) 
Measurement 

Error 
Absolute 

difference(%) AAMI BHS 

  Mean SD ≤ ±5 
≤ 

±10 
≤ 

±15 Mean SD ≤ ±5 
≤ 

±10 
≤ 

±15 
Pass/ 
Fail 

Grade
s 

20 Subjects 1.1 13.3 34.2 60 71.4 -5 10.5 42.8 57 85 F/F D/D 

30 Subjects 2.2 13.2 35.7 57 69 -5 9.2 34.5 66.7 77.1 F/F D/D 

40 Subjects -5.2 14.1 37.4 51.9 77.6 -5.7 9.6 38.5 68.6 80.1 F/F D/D 

Two new introduced features were then added to the existing 8 features.  35 

measurements were used for testing the ANN with 10 input features and the results 

were compared to the ANN with 18 features. 30 and 40 training data were used to check 

the accuracy of this 10 inputs ANN.  The results in Table 4-7 show the ANN with 10 

input features passed the AAMI standard in both SP and DP estimation. The results also 

confirmed 40 training data had higher accuracy results than 30 training data. The 

accuracy of the results improved from B grade to A grade when the ANN was presented 

with 40 training data.  



 

 64 

Table 4-7: Results of 35 measurements compared with standard by using 10 and 18 

features with different numbers of training data. 

Method Systolic Pressure  Diastolic  Pressure Standard 
(SP/DP) 

  
Measurement 

Error 
Absolute difference 

(%) 
Measurement 

Error 
Absolute difference 

(%) AAMI BHS 

  Mea
n 

SD ≤ ±5 ≤ 
±10 

≤ 
±15 

Mea
n 

SD ≤ ±5 ≤ 
±10 

≤ 
±15 

Pass/ 
Fail 

Grades 

10Inputs 
with 30D -0.86 7.0 57.8 88.6 98.7 -1.7 7.5 51.4 82.9 91.2 P/P B/B 

10Inputs 
with 40D -1.4 6.3 60 91.2 100 

-
0.22 6.7 60 88.5 98.7 P/P A/A 

18Inputs 
with 30D 

-1.4 5.7 63.5 91.4 100 -
0.22 

6.2 60 88.5 100 P/P A/A 

18Inputs 
with 40D 

0.1 5.5 63.5 94.3 100 -1.8 5.6 62.8 91.4 100 P/P A/A 

Overall the ANN with 10 input features passed both AAMI and BHS standards. The 

calculation time was reduced to around 1 minute from 2 minutes as mentioned in 

Section 5.3.1.1. However the accuracy of this ANN was lower than the ANN with 18 

input features. With the limitations on time efficiency and hardware requirements an 

ANN with 10 features still could be used to give accurate BP measurement.  The aim of 

this project was to design an accurate BP measurement algorithm. ANN with 18 input 

features was selected for the final algorithm as it gave more accurate results compared 

to 10 input features.  

ANN structure 

After the input features and number of training inputs were selected, different numbers 

of neurons and parameter settings used for the ANN were tested and compared, as 

described in this section. A network with the simplest efficiency structure was selected 

to complete the task without over fitting the data and to calculate the output with less 

error. Different training functions were tested and the final algorithm was selected from 

the best testing results. Another 31 measurements were selected for the testing process. 
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1, 3, 5, 10 and 15 different numbers of hidden layer neurons were tested as 5 different 

structures of ANN. The number of hidden layer neurons chosen affects the training time 

of the network.  The aim of this process was to find out the smallest number of neurons 

with the best results for this algorithm. The ANN was tested on 30 measurements. 5 

different ANNs were tested and compared to the reference Auscultatory readings; the 

results are shown in Table 4-8.  

Table 4-8: Result of 31 measurements compared with standard with ANN using 

different numbers of neurons 

Methods Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  
Absolute difference 

(%) 
Absolute difference 

(%) 
BHS 

 Neuron 
number 

≤ 
±5 

≤ ±10 ≤ ±15 
≤ 

±5 
≤ ±10 ≤ ±15 Grades 

1  67.7 90.3 100 61.3 87.1 96.1 A/A 

3 61.3 87.1 96.7 61.3 87.1 90.3 A/B 

5 48.5 80.7 90.3 45.1 77.4 87.1 C/C 

10 45.1 77.4 83.8 38.7 72.7 80.7 D/D 

15 38.7 71 83.8 38.7 67.7 71 D/D 

The BP calculation results with different numbers of neurons indicated the ANN with 1 

neuron had the best result in both SP and DP estimation. For 3 neurons the SP result 

achieved an A grade but was less accurate than 1 neuron. In the DP calculation with 3 

neurons, both absolute differences within 5 mmHg and 10 mmHg were the same as for 

1 neuron. The accuracy of the absolute differences less than 15 mmHg dropped to 

90.3%. The accuracy of ANNs with 5, 10 and 15 neurons decreased when the neuron 

number increased.  

As shown above, the ANNs with 1 and 3 neurons had more accurate results. ANNs with 

1, 2 and 3 neurons were tested again with the same data. Two different methods were 
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used to test the accuracy of these three ANNs.  The first method was comparing the SP 

and DP results with the standard as used before. The second method was to check the 

ANN output of each HB thoroughly as described below. A total of 1092 HBs from 30 

subjects were used for testing purposes. For BP measurement, the differences within ±5 

mmHg and ±10 mmHg indicate the most important accuracy information in a BP 

measurement algorithm. The second method was to check the testing error of each ANN 

output without these two ranges. When the output from one HB was more than ±5 

mmHg (±10 mmHg) compared to the target output one error was counted. Both results 

of the two testing methods are shown in Table 4-9. 

Table 4-9: Results of 30 measurements by using different numbers of neuron for 

ANN training 

Methods Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  Absolute difference (%) Absolute difference (%) BHS 

 Neuron number ≤ ±5 ≤ ±10 ≤ ±15 ≤ ±5 ≤ ±10 ≤ ±15 Grades 

1  67.7 90.3 100 61.3 87.1 96.7 A/A 

2 71 90.3 100 61.3 90.3 96.7 A/A 

3 61.3 87.1 96.7 61.3 87.1 90.3 A/B 

a) Results of 31 measurements compared with the standard by using 1, 2 and 3 
neurons for ANN. 

 

No. of 
Neurons 

Total 
No. of 

Outputs 

Systolic pressure Diastolic pressure 

No. of output 
with Error >5 

mmHg 

No. of output 
with Error >10 

mmHg 

No. of output 
with Error >5 

mmHg 

No. of output 
with Error >10 

mmHg 

1 1092 387 118 453 142 

2 1092 345 110 442 128 

3 1092 449 138 461 138 

b) Testing error counted for differences of more than ±5 mmHg and 10mmHg. 
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The results indicated that both methods showed more accurate results with 2 hidden 

layer neurons in the ANN. The ANN with 2 neurons had the highest accuracy within the 

three ANNs.  The absolute difference within 5 mmHg increased up to 71% in SP 

estimation. For DP calculation, the difference within ±5 mmHg was the same for 1, 3 

and 5 neurons. As shown in Table 4-9 (a), results of the ANNs with 1 and 2 neurons 

were little different.  Testing errors were checked through each HB to find out the most 

suitable neuron number for the final ANN. The ANN with 2 neurons had the smallest 

testing error compared with 1 and 3 neurons in both SP and DP estimation. Table 4-9 (b) 

shows that the ANN with 2 neurons had 345 HBs with an output error more than 5 

mmHg compared to the target in SP calculation. In DP estimation, the ANN with 2 

neurons had 442 HB outputs with more than ±5 mmHg testing error compared with the 

target and 128 outputs were more than ±10 mmHg different compared to the target 

output.  

The Levenberg-Marquardt back-propagation (Trainlm) training function was used in 

the initial design of training the network for reasons of speed. More training functions 

were tried to train the network. BFGS Quasi-Newton backpapagation (Trainbfg) and 

the Variable Learning Rate (Trainbr) were selected and tested. Trainbfg function is an 

efficient training function; it requires more storage and more computation but less 

iteration during the training and it is suitable for small networks. Trainbr training 

function automatically determines the optimal regularization parameters during the 

training. Different training functions were used to test the algorithm with 1 and 2 

neurons, the results of different training functions as shown in Table 4-10. 
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Table 4-10: Results of 30 measurements compared with standard by using 

different training functions and different numbers of neurons ANN. 

Methods Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  Absolute difference (%) Absolute difference (%) BHS 

Tranfer functions ≤ ±5 ≤ ±10 ≤ ±15 ≤ ±5 ≤ ±10 ≤ ±15 Grades 

Trainlm- 1 neuron 67.7 90.3 100 64.5 87.1 100 A/A 

Trainbfg- 1 neuron 67.7 90.3 100 61.3 87.1 96.7 A/A 

Trainbr- 1 neuron 61.3 87.1 96.7 61.3 87.1 96.7 A/A 

Trainlm- 2 neuron 71 90.3 100 67.7 90.3 100 A/A 

Trainbfg- 2 neuron 71 90.3 100 61.3 90.3 96.7 A/A 

Trainbr- 2neuron 64.5 87.1 100 61.3 87.1 96.7 A/B 

The results of Trainlm and Trainbfg training functions were quite similar. For both 

ANNs trained with 1 and 2 neurons, the algorithm with Trainbr had less accurate 

results compared to others. Testing errors were counted to check the accuracy of the 

ANN with Trainlm and Trainbfg training functions to find the best training function for 

the final algorithm.  

A total of 1092 HBs from 30 subjects were used for testing the ANNs. 30 measurements 

containing a total of 857 HBs were selected to train the ANN. The weights and biases 

were initialised by using 0~100 random seeds. The ANN with 1 and 2 neurons were 

selected for the further comparisons. Different numbers of training epochs and PEGs 

were chosen to test the network based on 1 and 2 neurons with the results as shown in 

Table 4-11: Testing error counted chart by using ANNs with different ANN parameters, 

different training functions and different numbers neurons. 300 and 500 training epochs 

were selected and the PEGs were set as 0.1 and 0.01. All new input data were tested 

with one neuron and two neurons separately. Trainlm and Trainbfg training function 

were used to train the network using different algorithms. The ANN outputs were 
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checked and compared with the target based on different ANN structures. All the results 

from each HB were compared to the targets and results summarised in Table 4-11.   

Table 4-11: Testing error counted chart by using ANNs with different ANN 
parameters, different training functions and different numbers neurons 

Trainlm  
Total No. of 

Outputs 
1Neuron 1 Neuron 

Systolic Pressure Diastolic Pressure 

PEG Epoch  
Error ≤ 5 
mmHg 

Error ≤ 10 
mmHg 

Error ≤  5 
mmHg 

Error ≤ 10 
mmHg 

0.1 300 1092 421 142 454 169 

0.01 300 1092 497 238 517 270 

0.1 500 1092 372 107 406 149 

0.01 500 1092 385 119 445 177 

a) Testing errors of ANN when used Trainlm training function, 1 neuron, with 
different ANN parameters: 0.1(0.01) PEG and 300(500) Epoch. 

Trainlm  
Total No. of 

Outputs 
2 Neurons 2 Neurons 

Systolic Pressure Diastolic Pressure 

PEG Epoch  Error ≤ 5 
mmHg 

Error ≤10 
mmHg 

Error ≤5 
mmHg 

Error ≤ 10 
mmHg 

0.1 300 1092 313 173 436 151 

0.01 300 1092 325 182 517 170 

0.1 500 1092 309 108 358 102 

0.01 500 1092 345 126 383 133 

b) Testing error of ANN when used Trainlm training function, 2 neurons, with 
different parameters: 0.1(0.01) PEG and 300(500) Epoch. 

Trainbfg  Total No. of 
Outputs 

1 Neuron 1 Neuron 

Systolic Pressure Diastolic Pressure 

PEG Epoch  
Error ≤5 
mmHg 

Error ≤10 
mmHg 

Error ≤5 
mmHg 

Error ≤10 
mmHg 

0.1 300 1092 503 293 483 290 

0.01 300 1092 573 245 520 284 

0.1 500 1092 384 112 432 148 

0.01 500 1092 398 127 457 227 

c) Testing errors of ANN when used Trainbfg training function, 1 neuron, with 
different parameters: 0.1( 0.01) PEG and 300(500) Epoch. 
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Trainbfg  
Total 
No. of 

Outputs 
2 Neurons 2 Neurons 

   Systolic Pressure Diastolic Pressure 

PEG Epoch  
Error ≤ 5 
mmHg 

Error ≤ 10 
mmHg 

Error ≤ 5 
mmHg 

Error ≤ 10 
mmHg 

0.1 300 1092 398 193 528 274 

0.01 300 1092 401 245 547 303 

0.1 500 1092 326 126 422 148 

0.01 500 1092 378 129 435 156 

d) Testing errors of ANN when used Trainbfg training function, 2 neurons, with 
different parameters: 0.1( 0.01) PEG and 300(500) Epoch. 

The results showed in Table 4-11 (a) and (b) indicate the ANNs with 500 epochs and 

0.1 PEG with the Trainlm training function had the best results compared to others. The 

count of errors in these ANNs was the smallest compared to other structures. The results 

in Table 4-11 (a) and (b) also indicate the ANN with 2 neurons had better results which 

had 63(48) less output errors on ≥ 5  mmHg for SP(DP) compared to the ANN with 1 

neuron. A total of 309 outputs had a difference of more than 5 mmHg absolute 

difference compared to the target and 108 outputs had an absolute difference of more 

than 10 mmHg in SP estimation. For DP, 358 outputs had testing errors more than 5 

mmHg and 149 outputs had more than a 10 mmHg absolute difference compared with 

the target outputs. 

The results in Table 4-11 (b) and (c) indicate that the result of Trainbfg training 

function had less accuracy compared to the ANN trained with Trainlm. It also showed 

that the ANN with 2 neurons, 500 epochs and 0.1 PEG had better results compared 

other settings. In SP calculation, 326 ANN outputs had a testing error of more than ±5 

mmHg compared to the output target. 129 outputs had an absolute difference of more 

than 10 mmHg. For DP estimation, 435 ANN outputs had more than a 5 mmHg 
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absolute testing error. 156 outputs were more than 10 mmHg in absolute difference 

compared with the target output. 

Overall the ANN with 18 input features, 40 training data, 2 neurons, 500 epoch and 0.1 

PEG trained with Trainlm training function had best results compared to other ANNs. 

This ANN was selected for the final BP measurement algorithm and more data would 

be selected for validating this algorithm. 

4.4 Algorithm results 

After the BP measurement algorithm was finalised, the algorithm was compared with 

other NIBP measurement methods to show the advantages of this algorithm. Two 

methods were selected to compare with the developed algorithm: a previous ANN and 

the traditional fixed ratio method. After the comparison, the developed algorithm was 

tested with 258 measurements as a final validation. The results were compared with the 

Auscultatory Method and shown in Bland and Altman plots. The mean, SD and the 

measurements errors are describe in the tables. 

4.4.1 Different method results comparison  

30 measurements randomly selected from the database were tested with the traditional 

fixed ratio method [18], previous ANN method and the final algorithm [56]. In the fixed 

ratio method, the ratios used for determining BP were 53% and 73% for SP and DP and 

were calculated based on 40 measured readings of the Auscultatory method. The results 

of three algorithms were compared with the Auscultatory Method. AAMI and BHS 

standard protocols were used to compare the three methods, as shown in Table 4-12. 
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Table 4-12: Results of three methods comparing with standard protocols 

Method Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  
Measurement 

Error 
Absolute difference 

(%) 
Measurement 

Error 
Absolute difference 

(%) AAMI BHS 

  Mean SD ≤ ±5 ≤ ±10 
≤ 

±15 Mean SD ≤ ±5 ≤ ±10 
≤ 

±15 
Pass/ 
Fail Grade 

Final 
ANN 0.53 5.2 69.8 97.5 100 -0.56 6.2 63.5 94.3 97.5 P/P A/A 

Previous 
ANN -1.4 7.8 60 83.3 90 -1.5 8.7 60 76.7 90 P/F B/B 

Fixed 
Ratio 3.4 7.9 56.7 83.3 90 -2.9 10 50 73.3 86.7 P/F B/C 

The results showed in Table 4-12 indicate that the developed ANN had the best BHS 

grade of the three methods. It was the only method fulfilling both AAMI and BHS 

standard protocols and both SP and DP estimation had A Grade according to the BHS 

standard.  

In SP calculation, all three methods passed the AAMI standard. The previous ANN and 

fixed ratio method had less accurate results than the developed method, having, 

respectively, 60% and 56.7% of absolute differences within 5 mmHg compared to the 

reference readings. The developed ANN had more accurate results compared to the 

other two methods. When using the developed method, the SP calculation results of less 

than 5 mmHg increased to 69.8% with the same testing data. The absolute difference 

within 10 mmHg was 97.5% for the developed ANN, but less accurate with other two 

methods at 88.3%.  

In DP calculation, only the developed method passed both standards. The previous 

ANN method and fixed ratio method had B and C in BHS grades. The developed ANN 

had the best results with 63.5% of the results having less than 5 mmHg absolute 

difference from the target. The accuracy of the fixed ratio method had less than 13.5% 

with the same testing data. For the absolute difference within 10 mmHg, the developed 
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ANN still had the highest accuracy results at 88.9%. The previous ANN had higher 

results compared to the fixed ratio method. 

The developed ANN had the best results of the three methods based on the same testing 

data. The previous ANN was less accurate when used for a wider range of people. It 

failed the AAMI standard in DP estimation and had a B grade in both SP and DP 

estimation. The results of the fixed ratio method indicated the lowest accuracy of the 

three methods. Overall the developed ANN was the most suitable NIBP measurement 

algorithm for estimating accurate BP values for all age groups.  

4.4.2 Final Algorithm Validation  

The final algorithm was validated on 258 measurements collected from 86 subjects. 40 

random selected subjects in all age groups involving 1157 HBs total were used for ANN 

training. 10 and 18 input features were tested separately. 79 measurements were used 

for testing the algorithm with 10 input features. A total of 258 measurements were used 

to test the final ANN which contained all 18 input features. 

Both ANNs classification were trained with 2 neurons and the Trainlm training 

function. The algorithms were set to have the PEG and epoch values as 0.1, and 500. 

The random seeds was selected from 0~100 for the final algorithm. Results of the final 

algorithm were compared with Auscultatory Method and shown in a Bland Altman plot. 

AAMI and BHS standard protocols were used to evaluate the results.   

Table 4-13 shows that the results of the efficient algorithm (use 10 input features) met 

both AAMI and BHS standard protocol requirements. Both SP and DP results tested on 

79 measurements pass the AAMI standard. The BP estimation result satisfied the BHS 

standards in Grade A in both SP and DP estimation. The SP and DP results of 10 input 
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features had quite similar results. The proportion of absolute differences within 5 

mmHg is 66.5% on SP estimation which was only 1.4% more than DP results. There 

was no SP or DP result with more than 15 mmHg absolute difference compared with the 

target. For SP calculation results 6 outputs had more than a 10 mmHg absolute 

difference compared to the target. In DP results only 5 of 79 results were more than the 

10 mmHg absolute difference. It also indicated the accuracy of the ANN was improved 

with the changed parameters and training functions. The efficient ANN could be used if 

there were limitations on the device capabilities.  

Table 4-13: Results of efficient algorithm compared with standard protocols 

Method Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

 

Measurement 
Error 

Absolute difference 
(%) 

Measurement 
Error 

Absolute difference 
(%) AAMI BHS 

 

Mean SD ≤ ±5 ≤ ±10 
≤ 

±15 Mean SD ≤ ±5 ≤ ±10 
≤ 

±15 
Pass/ 
Fail Grade 

Final 
ANN 0.9 5.6 66.7 92.3 100 -0.53 5.5 65.8 93.6 100 P/P A/A 

Efficient 
ANN -1.4 6.3 60 91.2 100 -1.22 6.7 60 88.5 98.7 P/P A/A 

The final ANN was tested with a total of 258 measurements from the 86 subjects. 18 
input features, 40 training data were selected for the final ANN. The testing results of 
the final algorithm are shown in Figure 4-5 and  

Table 4-14. The final algorithm passed both AAMI and BHS standards and achieved an 

A grade in both SP and DP estimation. 75% of the results had less than a ±5 mmHg 

difference compared with the targets in SP calculation. For SP results, there was no SP 

value wotj more than a 15 mmHg absolute difference compared with the target results. 

Only 7 SP results out of 258 results had more than a 10 mmHg absolute differences 

compared with the target. The accuracy of DP estimation on less than a 5 mmHg 

difference was 7.4% lower than SP. 15 DP results had more than 10 mmHg absolute 

difference with the target which was similar to the SP estimation.  
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In the developed algorithm, SP estimation was more accurate than DP. As indicated in 

Figure 4-5 although most DP results were within the range of ≤5  mmHg difference, 

only 13 DP results had no difference with the target DP value. More SP results had the 

same value as the target outputs. It also indicated that the ANN classifier gave most SP 

value greater than the target output. DP values estimated by the ANN were mostly less 

than the target.  Overall the final algorithm had been successfully designed to fulfil both 

AAMI and BHS standards with testing on data collected from all age groups. 
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b 

Figure 4-5: The Bland and Altman plot comparing ANN with 18 inputs, 40 

training data, and 258 testing data. (a) Systolic Pressure. (b) 

Diastolic Pressure. 

 
Table 4-14: Results of final algorithm compared with standard protocols. 
 

Method Systolic Pressure  Diastolic  Pressure 
Standard 
(SP/DP) 

  
Measurement 

Error 
Absolute difference 

(%) 
Measurement 

Error 
Absolute 

difference (%) 
AAMI BHS 

  Mean SD ≤ ±5 ≤ ±10 ≤ 
±15 

Mean SD ≤ ±5 ≤ ±10 ≤ 
±15 

Pass/ 
Fail 

Grade 

Final 
ANN 0.698 4.87 75 95.96 100 -1.01 5.37 67.6 93.6 100 P/P A/A 

4.5 Summary  

The initial ANN classifier was improved and finalised, tested and results compared. 

New training input features were selected to improve the accuracy for all age band 

subjects. Different numbers of input training data were tested with the same testing data. 

The input training data were reselected based on different BP ranges. Trainlm, 

Trainbfg and Trainbr training functions were tested with different neurons, numbers of 
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training epochs and PEG values. Another two different NIBP measurement methods 

were compared with the final ANN. 86 subjects with 258 measurements were used to 

validate the final algorithm. 
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Chapter 5 Conclusion and Future work 

5.1 Introduction  

This chapter describes the conclusions of this research and describes future work. A 

summary of the work including the signal processing process and the ANN 

classification is given. The testing results of this research are described. Some possible 

further developments based on this algorithm are listed in the future work section. 

5.2 Conclusion  

Whereas traditionally, the method had been used to calculate the BP value by using 

fixed ratio. In this research a different approach was used to determine the SP and DP 

values. This research involved removing noise from a raw signal, tracking each 

individual HB, extracting useful features and designing the initial ANN classifier to 

analysis the features and calculate the SP and DP values. Improvements and 

modifications were developed to increase the accuracy of the algorithm. An efficient 

feature selection algorithm was developed to cater to more limited hardware.  

5.2.1 Signal processing and Feature extraction  

A band-pass filter (0.5 ~25 Hz) was designed to filter out most unwanted noise to get 

the oscillometric waveform. A method was developed to determine and segment each 

individual HB. An error rejection algorithm was designed for removing external 

tremors. Each individual HB was normalised and a Hann window applied before the 
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feature extraction. A feature extraction algorithm was developed based on both time and 

frequency domain features, which were:  

• 6 features selected from time domain: Area under the curve, Total Amplitude 

from all turning points, positive and negative ROC, maximum positive and 

minimum negative slope of each HB.  

• 10 features selected from the frequency domain: Magnitudes and PSD values at 

frequency range between 0.5~5 Hz, 5~10Hz, 10~15Hz, 15~25Hz. 

• 2 new features selected to improve the accuracy of the designed algorithm: Cuff 

pressure at each HB ( HBcp ) and the ratio (Rmax) of the HB amplitude over 

the maximum amplitude. 

5.2.2 ANN Classification  

The ANN classifier was initially developed which consisted of 3 neurons, single–hidden 

layer, 16 inputs and 1 output were designed for SP (DP). Training was performed with 

the Trainbfg training function. After testing the initial algorithm with people having a 

full range of BPs, improvements were developed for increasing the accuracy of the 

designed algorithm. Two new features were added and the trained ANN exhibited great 

improvement in the accuracy of the developed algorithm. A method was developed to 

compare the accuracy of ANN with different ANN structures and parameters. The ANN 

constructed by 2 neurons and 18 inputs trained with the Trainlm training function was 

chosen for the final algorithm. The final algorithm was tested with the data collected 

from all age groups which fulfilled both AAMI and BHS standard protocols. The mean 

difference (SD) between the observers and the developed algorithm were 0.698(4.87) 

mmHg for SP and -1.01(5.37) mmHg for DP.  
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An efficient method had been developed for the limitation of the hardware requirement 

which can reduce the calculation time by 50% including: 

• Reduced the input training features from 18 to 10. 

• Less accuracy than the final algorithm; a mean difference (SD) between the 

observers and efficient algorithm were -1.4(6.3) mmHg for SP and -1.22(6.7) 

mmHg for DP. 

• Fulfilled both AAMI and BHS standards.  

5.3 Future work 

This research successfully developed an NIBP measurement algorithm with good 

results. However the work needs to be done on the developed algorithm for 

implementation on a device. 

The reference values are very important in this algorithm. During the algorithm 

development, the reference values were used as a gold standard for comparison with the 

algorithm. For further development of this algorithm the data collection process should 

use observers with professional training to minimize the reading error for the reference 

values. 

This algorithm used the ANN classifier to analyse the features from each HB and 

determine a BP value. Feature selection was one of the factors directly affecting the 

accuracy of results. Different features could be selected with different methods to 

improve the accuracy of BP estimation. For developing new algorithms for some 

subgroups such as pregnant women, new features also need to be selected.  

Although the efficient method was less accurate compared to the final algorithm a  new 

algorithm may be designed based on the efficient method to produce an accurate, low 
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cost device. This algorithm was successfully tested on young healthy and older people. 

But the accuracy of other subgroups such as pregnant women, arrhythmia, diabetics and 

other patients with diseases is still untested. New algorithms for these subjects can be 

developed. 
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APPENDIX I Matlab code 

Signal Processing and Feature Extraction 
 
% plot waveform 
%remove noise 
%get max&min point 
%detect HB 
%HB checking 
  
clear all, clc; 
load('G:\thesis\data\exp24.mat') 
  
B=ADCC1; 
A = (B * 5/ 4096 - 0.2) * 68.4; 
fs=2000; 
MinInd1=find(A(:,1))+15000; %shift  
A=A(MinInd1:end,:); 
MaxInd=find(A(:,1)==max(A(:,1))); %find the max cuff pressure 
A=A(MaxInd:end,:); %ignore  signals before max cuff presure   
x=A(:,1);   
MinInd3=find(x(:,1))+5; %shift  
x=x(MinInd3:end-2000,:); 
 [b,a]=butter(1,0.5/1000,'high'); %filter 
xfilt=filtfilt(b,a,x);  
 [b1,a1]=butter(2,25/1000); %filter 
xfilt2=filtfilt(b1,a1,xfilt);            
MaxInd2=find(xfilt2(:,1))+1000; %shift  
xfilt2=xfilt2(MaxInd2:end,:); 
t=(0:length(xfilt2)-1)/fs;        % times of sampling instants 
 [b2,a2]=butter(2,2/1000); %filter 
xfilt1=filtfilt(b2,a2,xfilt2); 
% get Max & Min points 
MinPeakInd=funFindMin(xfilt1)+1; 
MaxPeakInd=funFindMax(xfilt1)+1; 
      
ind1=[]; 
ind2=[]; 
Beat=[]; 
for i=1:length(MinPeakInd)-2 
       [Max 
indices]=max(xfilt2(MinPeakInd(i):MinPeakInd(i+1),1));  %find max 
point  
 [Min MinInd]=min(xfilt2(MaxPeakInd(i):MaxPeakInd(i+1),1)); %find min 
point 
 indices=indices+MinPeakInd(i)-1; 
 MinInd=MinInd+MaxPeakInd(i)-1; 
   ind1(i)=indices; 
   ind2(i)=MinInd; 
    
    if i>1 
       Beat(i-1)=fs/(ind2(i)-ind2(i-1));   %beat rate in beats per 
second 
      disp(['Heart Rate: ' num2str(round(Beat*60))]); 
    end 
end 
%check HB meanBeat=mean(Beat(1:end)); 
disp(['Mean Beat: ' num2str((meanBeat*60))]); 
ind1=ind1(1:end-1); 
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ind3=ind2(2:end); 
ind2=ind2(1:end-1); 
  i=1; 
   while i<length(Beat)  
       if (Beat(i)< (meanBeat/1.42)) 
           if i==1 
               if Beat(1)> Beat(2) 
                   Beat=Beat(3:end); 
                   ind1=ind1(3:end); 
                   ind2=ind2(3:end); 
                   ind3=ind3(3:end);                           
               else 
                   Beat=Beat(2:end); 
                   ind1=ind1(2:end); 
                   ind2=ind2(2:end); 
                   ind3=ind3(2:end);                           
               end 
           else 
               if Beat(i) > Beat(i+1) 
                   Beat=[Beat(1:i-1) Beat(i+2:end)]; 
                   ind1=[ind1(1:i-1) ind1(i+2:end)]; 
                   ind2=[ind2(1:i-1) ind2(i+2:end)]; 
                   ind3=[ind3(1:i-1) ind3(i+2:end)]; 
               else 
                  Beat=[Beat(1:i-1) Beat(i+1:end)]; 
                  ind1=[ind1(1:i-1) ind1(i+1:end)]; 
                  ind2=[ind2(1:i-1) ind2(i+1:end)]; 
                  ind3=[ind3(1:i-1) ind3(i+1:end)]; 
               end 
           end 
       else  
           if Beat(i)>(meanBeat*1.3) 
               if i==1 
                   if Beat(1)< Beat(2)  
                        Beat=Beat(3:end); 
                        ind1=ind1(3:end); 
                        ind2=ind2(3:end); 
                        ind3=ind3(3:end); 
                   else 
                        Beat=Beat(2:end); 
                        ind1=ind1(2:end); 
                        ind2=ind2(2:end); 
                        ind3=ind3(2:end); 
                   end 
               else 
                   if  Beat(i)< Beat(i+1) 
                       Beat=[Beat(1:i-1) Beat(i+2:end)]; 
                       ind1=[ind1(1:i-1) ind1(i+2:end)]; 
                                ind2=[ind2(1:i-1) ind2(i+2:end)]; 
                                ind3=[ind3(1:i-1) ind3(i+2:end)]; 
                            else 
                                Beat=[Beat(1:i-1) Beat(i+1:end)]; 
                                ind1=[ind1(1:i-1) ind1(i+1:end)]; 
                                ind2=[ind2(1:i-1) ind2(i+1:end)]; 
                                ind3=[ind3(1:i-1) ind3(i+1:end)]; 
                            end 
                     end 
                    end 
                end 
                i=i+1; 
            end 
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  for i=1:length(Beat)-1 
BP(i)=round(x(ind3(i))); 
 SP=110; 
 SPdif(i)=BP(i)-SP; 
 DP=78; 
 DPdif(i)=BP(i)-DP; 
end    
       newmeanBeat=mean(Beat(1:end));      
%Normalise 
 i=1; 
 while i<(length(ind3)) 
 ind2(i)=ind2(i)-round(0.25*newmeanBeat*fs);   
 ind3(i)=ind3(i)-round(0.25*newmeanBeat*fs);  
 temp1=ind2(i); temp2=ind3(i);  
 xx=xfilt2(temp1:temp2); 
 tt=t(temp1:temp2); 
 xx(1:round(0.25*newmeanBeat*fs))=xx(round(0.25*newmeanBeat*fs)); 
 shifttt=t(ind2(i)); 
 ttshift=tt-shifttt; 
 Norx=ttshift'*(xx(end)-xx(round(0.25*newmeanBeat*fs)))/(tt(end)-

tt(round(0.25*newmeanBeat*fs))); 
 xxshift=xx-Norx;  
 xxshift=xxshift-xxshift(end); 
 xxshift(1:round(0.25*newmeanBeat*fs))=0; 
  
 xxshiftMin=min(xxshift); 
 xxshiftMax=max(xxshift);  
 xxNor=xxshift/(xxshiftMax-xxshiftMin);  
 
 % Aplly Hann window 
 N=round((fs/newmeanBeat)*0.6);  %calculate number of Hann  
 Window = hann(N); 
 Window1=Window(1:N/2);     
 Window2=Window(N/2:end); 
 %Window=tukeywin(N,0.5); 
 xxWin1=xxNor(1:N/2).*Window1; 
 xxWin2=xxNor((end-N/2):end).*Window2; 
 xxWin=[xxWin1 ; xxNor((N/2):(end-N/2-2)) ; xxWin2]; 
 subplot(6,6,i) 
 plot(tt,xxshift) 
       
 TotAmp(i)=funAmp(xxWin);   
 Area(i)=funArea(xxWin);  
 dpdt(i,:)=fundPdt(xxWin,tt);  
 roc(i,:)=funROC(xxWin,tt);  
 Mag(i,:)=funMag(xxWin,tt,N,fs); 
 PSD(i,:)=funPSD(xxWin,tt,N,fs); 
  
 Feature=[[TotAmp]' [Area]' abs(dpdt)  abs(roc) abs(Mag) PSD ];  
 Feature=[Feature]'; 
  
 
  cd('H:\thesis\ANN1') 
  
  Text = {'Amplitude';'Area';'Pos dPdt';'Neg dPdt';'Pos ROC';'Neg ROC'; 

'Mag 5';'Mag 10';'Mag 15';'Mag 20';'Mag 25';'PSD 5';'PSD 
10';'PSD 15';'PSD 20';'PSD 25';'BP';'SP';'DP'};     

      xlswrite('features2',Text,'exp24'); 
      xlswrite('features2',Feature,'exp24','B1'); 
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      xlswrite('features2',BP,'exp24','B20'); 
      xlswrite('features2',SPdif,'exp24','B21'); 
      xlswrite('features2',DPdif,'exp24','B22'); 
  i=i+1 
  end      
  
ANN classification SP and DP 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%% SP Determination   
clear all 
cd('G:\thesis\ANN modification') 
  
pTrain1 = xlsread('features18IR', 'exp1', 'B1:Q18'); 
tTrain1 = xlsread('features18IR', 'exp1', 'B19:Q19'); 
bp1 = xlsread('features18IR', 'exp1', 'B18:Q18'); 
  
pTrain2 = xlsread('features18IR', 'exp2', 'B1:V18'); 
tTrain2 = xlsread('features18IR', 'exp2', 'B19:V19'); 
bp2 = xlsread('features18IR', 'exp2', 'B18:V18'); 
  
pTrain3 = xlsread('features18IR', 'exp3', 'B1:U18'); 
tTrain3 = xlsread('features18IR', 'exp3', 'B19:U19'); 
bp3 = xlsread('features18IR', 'exp3', 'B18:U18'); 
  
pTrain4 = xlsread('features18IR', 'exp4', 'B1:X18'); 
tTrain4 = xlsread('features18IR', 'exp4', 'B19:X19'); 
bp4 = xlsread('features18IR', 'exp4', 'B18:X18'); 
  
pTrain5 = xlsread('features18IR', 'exp5', 'B1:U18'); 
tTrain5 = xlsread('features18IR', 'exp5', 'B19:U19'); 
bp5 = xlsread('features18IR', 'exp5', 'B18:U18'); 
  
  
  
pTrain7 = xlsread('features18IR', 'exp7', 'B1:U18'); 
tTrain7 = xlsread('features18IR', 'exp7', 'B19:U19'); 
bp7 = xlsread('features18IR', 'exp7', 'B18:U18'); 
  
pTrain8 = xlsread('features18IR', 'exp8', 'B1:S18'); 
tTrain8 = xlsread('features18IR', 'exp8', 'B19:S19'); 
bp8 = xlsread('features18IR', 'exp8', 'B18:S18'); 
  
pTrain9 = xlsread('features18IR', 'exp9', 'B1:U18'); 
tTrain9 = xlsread('features18IR', 'exp9', 'B19:U19'); 
bp9 = xlsread('features18IR', 'exp9', 'B18:U18'); 
  
  
  
pTrain11 = xlsread('features18IR', 'exp11', 'B1:X18'); 
tTrain11 = xlsread('features18IR', 'exp11', 'B19:X19'); 
bp11 = xlsread('features18IR', 'exp11', 'B18:X18'); 
  
pTrain12 = xlsread('features18IR', 'exp12', 'B1:AB18'); 
tTrain12 = xlsread('features18IR', 'exp12', 'B19:AB19'); 
bp12 = xlsread('features18IR', 'exp12', 'B18:AB18'); 



 

 92 

  
pTrain13 = xlsread('features18IR', 'exp13', 'B1:AA18'); 
tTrain13 = xlsread('features18IR', 'exp13', 'B19:AA19'); 
bp13 = xlsread('features18IR', 'exp13', 'B18:AA18'); 
  
pTrain14 = xlsread('features18IR', 'exp14', 'B1:V18'); 
tTrain14 = xlsread('features18IR', 'exp14', 'B19:V19'); 
bp14 = xlsread('features18IR', 'exp14', 'B18:V18'); 
  
pTrain15 = xlsread('features18IR', 'exp15', 'B1:W18'); 
tTrain15 = xlsread('features18IR', 'exp15', 'B19:W19'); 
bp15 = xlsread('features18IR', 'exp15', 'B18:W18'); 
  
pTrain16 = xlsread('features18IR', 'exp16', 'B1:R18'); 
tTrain16 = xlsread('features18IR', 'exp16', 'B19:R19'); 
bp16 = xlsread('features18IR', 'exp16', 'B18:R18'); 
  
pTrain17 = xlsread('features18IR', 'exp17', 'B1:X18'); 
tTrain17 = xlsread('features18IR', 'exp17', 'B19:X19'); 
bp17 = xlsread('features18IR', 'exp17', 'B18:X18'); 
  
pTrain18 = xlsread('features18IR', 'exp18', 'B1:U18'); 
tTrain18 = xlsread('features18IR', 'exp18', 'B19:U19'); 
bp18 = xlsread('features18IR', 'exp18', 'B18:U18'); 
  
  
pTrain19 = xlsread('features18IR', 'exp19', 'B1:K18'); 
tTrain19 = xlsread('features18IR', 'exp19', 'B19:K19'); 
bp19 = xlsread('features18IR', 'exp19', 'B18:K18'); 
  
pTrain20 = xlsread('features18IR', 'exp20', 'B1:AA18'); 
tTrain20 = xlsread('features18IR', 'exp20', 'B19:AA19'); 
bp20 = xlsread('features18IR', 'exp20', 'B18:AA18'); 
  
pTrain22 = xlsread('features18IR', 'exp22', 'B1:V18'); 
tTrain22 = xlsread('features18IR', 'exp22', 'B19:V19'); 
bp22 = xlsread('features18IR', 'exp22', 'B18:V18'); 
  
pTrain23 = xlsread('features18IR', 'exp23', 'B1:V18'); 
tTrain23 = xlsread('features18IR', 'exp23', 'B19:V19'); 
bp23 = xlsread('features18IR', 'exp23', 'B18:V18'); 
  
pTrain24 = xlsread('features18IR', 'exp24', 'B1:Y18'); 
tTrain24 = xlsread('features18IR', 'exp24', 'B19:Y19'); 
bp24 = xlsread('features18IR', 'exp24', 'B18:Y18'); 
  
pTrain25 = xlsread('features18IR', 'exp25', 'B1:T18'); 
tTrain25 = xlsread('features18IR', 'exp25', 'B19:T19'); 
bp25 = xlsread('features18IR', 'exp25', 'B18:T18'); 
  
pTrain26 = xlsread('features18IR', 'exp26', 'B1:P18'); 
tTrain26 = xlsread('features18IR', 'exp26', 'B19:P19'); 
bp26 = xlsread('features18IR', 'exp26', 'B18:P18'); 
 
pTrain33 = xlsread('features18IR', 'exp33', 'B1:U18'); 
tTrain33 = xlsread('features18IR', 'exp33', 'B19:U19'); 
bp33 = xlsread('features18IR', 'exp33', 'B18:U18'); 



 

 93 

  
 
 
pTrain41 = xlsread('features18IR', 'exp41', 'B1:AB18'); 
tTrain41 = xlsread('features18IR', 'exp41', 'B19:AB19'); 
bp41 = xlsread('features18IR', 'exp41', 'B18:AB18'); 
 
pTrain43 = xlsread('features18IR', 'exp43', 'B1:AB18'); 
tTrain43 = xlsread('features18IR', 'exp43', 'B19:AB19'); 
bp43 = xlsread('features18IR', 'exp43', 'B18:AB18'); 
  
pTrain44 = xlsread('features18IR', 'exp44', 'B1:AA18'); 
tTrain44 = xlsread('features18IR', 'exp44', 'B19:AA19'); 
bp44 = xlsread('features18IR', 'exp44', 'B18:AA18'); 
  
pTrain45 = xlsread('features18IR', 'exp45', 'B1:T18'); 
tTrain45 = xlsread('features18IR', 'exp45', 'B19:T19'); 
bp45 = xlsread('features18IR', 'exp45', 'B18:T18'); 
 
 
pTrain71a = xlsread('features18IR', 'exp71', 'B1:AI18'); 
tTrain71a = xlsread('features18IR', 'exp71', 'B19:AI19'); 
bp71a = xlsread('features18IR', 'exp71', 'B18:AI18'); 
  
 
 
pTrain73a = xlsread('features18IR', 'exp73a', 'B1:AB18'); 
tTrain73a = xlsread('features18IR', 'exp73a', 'B19:AB19'); 
bp73a = xlsread('features18IR', 'exp73a', 'B18:AB18'); 
  
pTrain73b = xlsread('features18IR', 'exp73b', 'B1:Y18'); 
tTrain73b = xlsread('features18IR', 'exp73b', 'B19:Y19'); 
bp73b = xlsread('features18IR', 'exp73b', 'B18:Y18'); 
  
 
pTrain72 = xlsread('features18IR', 'exp72', 'B1:AH18'); 
tTrain72 = xlsread('features18IR', 'exp72', 'B19:AH19'); 
bp72 = xlsread('features18IR', 'exp72', 'B18:AH18'); 
 
pTrain88 = xlsread('features18IR', 'exp88', 'B1:Y18'); 
tTrain88 = xlsread('features18IR', 'exp88', 'B19:Y19'); 
bp88 = xlsread('features18IR', 'exp88', 'B18:Y18'); 
  
 
pTrain = [pTrain1 pTrain2 pTrain3 pTrain4 pTrain5 pTrain7 pTrain8 
pTrain9 pTrain11 pTrain12 pTrain13 pTrain14 pTrain15 pTrain18 pTrain19 
pTrain20 pTrain22 pTrain23 pTrain26 pTrain88 pTrain73a pTrain73b 
pTrain72 pTrain45 pTrain24 pTrain33 pTrain71a pTrain41 pTrain43 
pTrain44]; 
tTrain = [tTrain1 tTrain2 tTrain3 tTrain4 tTrain5 tTrain7 tTrain8 
tTrain9 tTrain11 tTrain12 tTrain13 tTrain14 tTrain15 tTrain18 tTrain19 
tTrain20 tTrain22 tTrain23 tTrain26 tTrain88 tTrain73a tTrain73b 
tTrain72 tTrain45 tTrain24 tTrain33 tTrain71a tTrain41 tTrain43 
tTrain44]; 
  
state=0; 
[pn,ps1] = mapstd(pTrain); 
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[ptrans,ps2] = processpca(pn, 0.02); 
net=newff(ptrans,tTrain,2,{'tansig' 'purelin'},'Trainlm'); 
 rands(0,100); 
 net.initFcn = 'initlay'; 
 net.layers{1}.initFcn = 'initwb'; 
 net.inputweights{1,1}.initFcn='rands'; 
 net.layerWeights{1,1}.initFcn = 'rands'; 
 net.biases{1}.initFcn='rands'; 
  net.performFcn = 'msereg'; 
  net.performParam.ratio = 0.5; 
  net.trainParam.show=50; 
  net.trainParam.epochs=500; 
  net.trainParam.goal=0.01;  
  net1=train(net,ptrans,tTrain);    
  pnewn78b = mapstd('apply',pTrain1,ps1); 
  pnewtrans78b = processpca('apply',pnewn1,ps2);  
  a78b = sim(net78b,pnewtrans78b); 
  linearcofe1=polyfit(a78b,bp78b,1); 
  sysp1=polyval(linearcofe1,0);  
  disp(['sp78b:' num2str(sysp1)]); 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%% DP Determination                    
clear all 
cd('G:\thesis\ANN modification\New Folder') 
pTrain1 = xlsread('features1', 'exp1', 'B1:Q10'); 
tTrain1 = xlsread('features1', 'exp1', 'B12:Q12'); 
bp1 = xlsread('features1', 'exp1', 'B10:Q10'); 
pTrain2 = xlsread('features1', 'exp2', 'B1:V10'); 
tTrain2 = xlsread('features1', 'exp2', 'B12:V12'); 
bp2 = xlsread('features1', 'exp2', 'B10:V10'); 
pTrain3 = xlsread('features1', 'exp3', 'B1:U10'); 
tTrain3 = xlsread('features1', 'exp3', 'B12:U12'); 
bp3 = xlsread('features1', 'exp3', 'B10:U10'); 
pTrain4 = xlsread('features1', 'exp4', 'B1:X10'); 
tTrain4 = xlsread('features1', 'exp4', 'B12:X12'); 
bp4 = xlsread('features1', 'exp4', 'B10:X10'); 
pTrain5 = xlsread('features1', 'exp5', 'B1:U10'); 
tTrain5 = xlsread('features1', 'exp5', 'B12:U12'); 
bp5 = xlsread('features1', 'exp5', 'B10:U10'); 
pTrain6 = xlsread('features1', 'exp6', 'B1:S10'); 
tTrain6 = xlsread('features1', 'exp6', 'B12:S12'); 
bp6 = xlsread('features1', 'exp6', 'B10:S10'); 
pTrain7 = xlsread('features1', 'exp7', 'B1:X10'); 
tTrain7 = xlsread('features1', 'exp7', 'B12:X12'); 
bp7 = xlsread('features1', 'exp7', 'B10:X10'); 
pTrain8 = xlsread('features1', 'exp8', 'B1:S10'); 
tTrain8 = xlsread('features1', 'exp8', 'B12:S12'); 
bp8 = xlsread('features1', 'exp8', 'B10:S10'); 
pTrain9 = xlsread('features1', 'exp9', 'B1:U10'); 
tTrain9 = xlsread('features1', 'exp9', 'B12:U12'); 
bp9 = xlsread('features1', 'exp9', 'B10:U10'); 
pTrain10 = xlsread('features1', 'exp10', 'B1:AC10'); 
tTrain10 = xlsread('features1', 'exp10', 'B12:AC12'); 
bp10 = xlsread('features1', 'exp10', 'B10:AC10'); 
pTrain11 = xlsread('features1', 'exp11', 'B1:X10'); 
tTrain11 = xlsread('features1', 'exp11', 'B12:X12'); 
bp11 = xlsread('features1', 'exp11', 'B10:X10'); 
pTrain12 = xlsread('features1', 'exp12', 'B1:AB10'); 
tTrain12 = xlsread('features1', 'exp12', 'B12:AB12'); 
bp12 = xlsread('features1', 'exp12', 'B10:AB10'); 
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pTrain13 = xlsread('features1', 'exp13', 'B1:AA10'); 
tTrain13 = xlsread('features1', 'exp13', 'B12:AA12'); 
bp13 = xlsread('features1', 'exp13', 'B10:AA10'); 
  
pTrain14 = xlsread('features1', 'exp14', 'B1:V10'); 
tTrain14 = xlsread('features1', 'exp14', 'B12:V12'); 
bp14 = xlsread('features1', 'exp14', 'B10:V10'); 
  
pTrain15 = xlsread('features1', 'exp15', 'B1:W10'); 
tTrain15 = xlsread('features1', 'exp15', 'B12:W12'); 
bp15 = xlsread('features1', 'exp15', 'B10:W10'); 
  
pTrain16 = xlsread('features1', 'exp16', 'B1:S10'); 
tTrain16 = xlsread('features1', 'exp16', 'B12:S12'); 
bp16 = xlsread('features1', 'exp16', 'B10:S10'); 
  
pTrain17 = xlsread('features1', 'exp17', 'B1:X10'); 
tTrain17 = xlsread('features1', 'exp17', 'B12:X12'); 
bp17 = xlsread('features1', 'exp17', 'B10:X10'); 
  
pTrain18 = xlsread('features1', 'exp18', 'B1:U10'); 
tTrain18 = xlsread('features1', 'exp18', 'B12:U12'); 
bp18 = xlsread('features1', 'exp18', 'B10:U10'); 
  
  
pTrain19 = xlsread('features1', 'exp19', 'B1:L10'); 
tTrain19 = xlsread('features1', 'exp19', 'B12:L12'); 
bp19 = xlsread('features1', 'exp19', 'B10:L10'); 
  
pTrain20 = xlsread('features1', 'exp20', 'B1:AC10'); 
tTrain20 = xlsread('features1', 'exp20', 'B12:AC12'); 
bp20 = xlsread('features1', 'exp20', 'B10:AC10'); 
 
pTrain22 = xlsread('features1', 'exp22', 'B1:V10'); 
tTrain22 = xlsread('features1', 'exp22', 'B12:V12'); 
bp22 = xlsread('features1', 'exp22', 'B10:V10'); 
  
pTrain23 = xlsread('features1', 'exp23', 'B1:X10'); 
tTrain23 = xlsread('features1', 'exp23', 'B12:X12'); 
bp23 = xlsread('features1', 'exp23', 'B10:X10'); 
  
pTrain24 = xlsread('features1', 'exp24', 'B1:Z10'); 
tTrain24 = xlsread('features1', 'exp24', 'B12:Z12'); 
bp24 = xlsread('features1', 'exp24', 'B10:Z10'); 
  
pTrain25 = xlsread('features1', 'exp25', 'B1:T10'); 
tTrain25 = xlsread('features1', 'exp25', 'B12:T12'); 
bp25 = xlsread('features1', 'exp25', 'B10:T10'); 
  
pTrain26 = xlsread('features1', 'exp26', 'B1:Q10'); 
tTrain26 = xlsread('features1', 'exp26', 'B12:Q12'); 
bp26 = xlsread('features1', 'exp26', 'B10:Q10'); 
  
pTrain33 = xlsread('features1', 'exp33', 'B1:R10'); 
tTrain33 = xlsread('features1', 'exp33', 'B12:R12'); 
bp33 = xlsread('features1', 'exp33', 'B10:R10'); 
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pTrain41 = xlsread('features1', 'exp41', 'B1:AB10'); 
tTrain41 = xlsread('features1', 'exp41', 'B12:AB12'); 
bp41 = xlsread('features1', 'exp41', 'B10:AB10'); 
  
pTrain42 = xlsread('features1', 'exp42', 'B1:AB10'); 
tTrain42 = xlsread('features1', 'exp42', 'B12:AB12'); 
bp42 = xlsread('features1', 'exp42', 'B10:AB10'); 
  
pTrain43 = xlsread('features1', 'exp43', 'B1:AB10'); 
tTrain43 = xlsread('features1', 'exp43', 'B12:AB12'); 
bp43 = xlsread('features1', 'exp43', 'B10:AB10'); 
  
pTrain44 = xlsread('features1', 'exp44', 'B1:Y10'); 
tTrain44 = xlsread('features1', 'exp44', 'B12:Y12'); 
bp44 = xlsread('features1', 'exp44', 'B10:Y10'); 
  
pTrain45 = xlsread('features1', 'exp45', 'B1:R10'); 
tTrain45 = xlsread('features1', 'exp45', 'B12:R12'); 
bp45 = xlsread('features1', 'exp45', 'B10:R10'); 
 
pTrain71a = xlsread('features1', 'exp71', 'B1:AI10'); 
tTrain71a = xlsread('features1', 'exp71', 'B12:AI12'); 
bp71a = xlsread('features1', 'exp71', 'B10:AI10'); 
 
pTrain73a = xlsread('features1', 'exp73a', 'B1:AA10'); 
tTrain73a = xlsread('features1', 'exp73a', 'B12:AA12'); 
bp73a = xlsread('features1', 'exp73a', 'B10:AA10'); 
  
pTrain73b = xlsread('features1', 'exp73b', 'B1:Y10'); 
tTrain73b = xlsread('features1', 'exp73b', 'B12:Y12'); 
bp73b = xlsread('features1', 'exp73b', 'B10:Y10'); 
  
pTrain72 = xlsread('features1', 'exp72', 'B1:AG10'); 
tTrain72 = xlsread('features1', 'exp72', 'B12:AG12'); 
bp72 = xlsread('features1', 'exp72', 'B10:AG10'); 
  
pTrain88 = xlsread('features1', 'exp88', 'B1:Y10'); 
tTrain88 = xlsread('features1', 'exp88', 'B12:Y12'); 
bp88 = xlsread('features1', 'exp88', 'B10:Y10'); 
 
pTrain78b = xlsread('features1', 'exp78b', 'B1:AI10'); 
tTrain78b = xlsread('features1', 'exp78b', 'B12:AI12'); 
bp78b = xlsread('features1', 'exp78b', 'B10:AI10'); 
  
pTrain = [pTrain1 pTrain2 pTrain3 pTrain4 pTrain5 pTrain7 pTrain8 
pTrain9 pTrain11 pTrain12 pTrain13 pTrain14 pTrain15 pTrain18 pTrain19 
pTrain20 pTrain22 pTrain23 pTrain26 pTrain60 pTrain73a pTrain73b 
pTrain72 pTrain45 pTrain24 pTrain33 pTrain71a pTrain41 pTrain43 
pTrain44]; 
tTrain = [tTrain1 tTrain2 tTrain3 tTrain4 tTrain5 tTrain7 tTrain8 
tTrain9 tTrain11 tTrain12 tTrain13 tTrain14 tTrain15 tTrain18 tTrain19 
tTrain20 tTrain22 tTrain23 tTrain26 tTrain60 tTrain73a tTrain73b 
tTrain72 tTrain45 tTrain24 tTrain33 tTrain71a tTrain41 tTrain43 
tTrain44]; 
  
state=0; 
[pn,ps1] = mapstd(pTrain); 
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[ptrans,ps2] = processpca(pn, 0.02); 
net=newff(ptrans,tTrain,2,{'tansig' 'purelin'},'Trainlm'); 
 rands(0,100); 
 net.initFcn = 'initlay'; 
 net.layers{1}.initFcn = 'initwb'; 
 net.inputweights{1,1}.initFcn='rands'; 
 net.layerWeights{1,1}.initFcn = 'rands'; 
 net.biases{1}.initFcn='rands'; 
 net.performFcn = 'msereg'; 
 net.performParam.ratio = 0.5; 
 net.trainParam.show=50; 
 net.trainParam.epochs=500; 
 net.trainParam.goal=0.01; 
 net1=train(net,ptrans,tTrain);    
 pnewn78b = mapstd('apply',pTrain78b,ps1); 
 pnewtrans78b = processpca('apply',pnewn78b,ps2); 
 a78b = sim(net1,pnewtrans78b);  
 linearcofe78b=polyfit(a78b,bp78b,1); 
 sysp78b=polyval(linearcofe78b,0); 
 disp(['sp78b:' num2str(sysp78b)]); 
 
          
Functions code       
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%function to find area under the curve 
%return a value 
function Area=funArea(xxWin) 
     
xx=abs(xxWin);     
%Calculate area under the curve 
Area=trapz(xx); 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
%function to find total amplitude of each peak 
%return a value 
function Amp=funAmp(x) 
  
%find turning pt  
TPInd=funTurnPt(x)+1; 
  
FirstInd=max(find(x(1:TPInd(1))==0)); 
LastInd=min(find(x(TPInd(end):end)==0))+TPInd(end)-1; 
TPInd=[FirstInd TPInd LastInd]; 
  
Amp=0; 
for j=1:length(TPInd)-1  
    Amp=Amp+abs(x(TPInd(j+1))-x(TPInd(j))); 
end 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%function to find dPdt for each point 
%return two values; max/min dPdt  
function dPdt=fundPdt(x,t) 
     
dpdt=[]; 
dpdt(1:length(x))=0; 
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for j=2:length(x)-1 
    %calculate dP/dt at each point 
    dpdt(j)=(x(j+1)-x(j-1))/(t(j+1)-t(j-1)); 
end 
  
dPdt(1)=max(dpdt);  %max dPdt 
dPdt(2)=min(dpdt);  %min dPdt 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%function to find minimum turning point 
%return indices 
function ind=funFindMin(x) 
  
xDiff=diff(x); 
j=1; 
ind=[]; 
for i=1:length(xDiff)-1 
    if xDiff(i)<0 && xDiff(i+1)>0 
        ind(j)=i; 
        j=j+1; 
    end 
end 
if isempty(ind) 
    ind=1; 
end 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%function to find maximum turning point 
%return indices 
function ind=funFindMax(x) 
  
xDiff=diff(x); 
j=1; 
ind=[]; 
for i=1:length(xDiff)-1 
    if xDiff(i)>0 && xDiff(i+1)<0 
        ind(j)=i; 
        j=j+1; 
    end 
end 
if isempty(ind) 
    ind=1; 
end 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
              
% Beat Detection 
  
function 
[Beat,IndMax,IndMin1,IndMin2)]=funHB(meanBeat,Beat,IndMax,IndMin1,IndM
in2) 
  i=1; 
   
 while i<=length(Beat)   
          
         if (Beat(i)< (meanBeat/1.42)) 
             if i==1 
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                 if Beat(1)> Beat(2) 
                    
                    Beat=Beat(3:end); 
                    IndMax=IndMax(3:end); 
                    IndMin1=IndMin1(3:end); 
                    IndMin2=IndMin2(3:end);                           
                  else 
                     Beat=Beat(2:end); 
                     IndMax=IndMax(2:end); 
                     IndMin1=IndMin1(2:end); 
                     IndMin2=IndMin2(2:end);                           
                  end 
                 else 
                   if Beat(i) > Beat(i+1) 
                           
                      Beat=[Beat(1:i-1) Beat(i+2:end)]; 
                      IndMax=[IndMax(1:i-1) IndMax(i+2:end)]; 
                      IndMin1=[IndMin1(1:i-1) IndMin1(i+2:end)]; 
                      IndMin2=[IndMin2(1:i-1) IndMin2(i+2:end)]; 
                             
                    else 
                      Beat=[Beat(1:i-1) Beat(i+1:end)]; 
                      IndMax=[IndMax(1:i-1) IndMax(i+1:end)]; 
                      IndMin1=[IndMin1(1:i-1) IndMin1(i+1:end)]; 
                      IndMin2=[IndMin2(1:i-1) IndMin2(i+1:end)]; 
                            
                     end 
                    end 
                else  
                    if Beat(i)>(meanBeat*1.3) 
                        if i==1 
                            if Beat(1)< Beat(2)  
                             
                                 Beat=Beat(3:end); 
                                 IndMax=IndMax(3:end); 
                                 IndMin1=IndMin1(3:end); 
                                 IndMin2=IndMin2(3:end); 
                               
                            else 
                                 Beat=Beat(2:end); 
             IndMax=IndMax(2:end); 
             IndMin1=IndMin1(2:end); 
             IndMin2=IndMin2(2:end); 
     
        end 
    else 
        if  Beat(i)< Beat(i+1) 
     
            Beat=[Beat(1:i-1) Beat(i+2:end)]; 
            IndMax=[IndMax(1:i-1) IndMax(i+2:end)]; 
            IndMin1=[IndMin1(1:i-1) IndMin1(i+2:end)]; 
            IndMin2=[IndMin2(1:i-1) IndMin2(i+2:end)]; 
       
        else 
         
      Beat=[Beat(1:i-1) Beat(i+1:end)]; 
      IndMax=[IndMax(1:i-1) IndMax(i+1:end)]; 
      IndMin1=[IndMin1(1:i-1) IndMin1(i+1:end)]; 
      IndMin2=[IndMin2(1:i-1) IndMin2(i+1:end)]; 
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        end 
                     
 end 
                 
                 
                    end 
                end 
                i=i+1; 
            en 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 

 
%function to find mean magnitude for different frequency range 
  
 
function Mag=funMag(xxWin,tt,N,fs) 
  
   xxWinfft=fft(xxWin); 
   NoX=ceil(length(xxWinfft)/2); 
   HalfX=xxWinfft(1:NoX); 
   F=fs*(0:NoX-1)/length(xxWinfft); 
  
   Y=HalfX;  
    
    
        ind5=min(find(F>0.5)); 
        ind10=min(find(F>5)); 
        ind15=min(find(F>10)); 
        ind20=min(find(F>15)); 
        ind25=min(find(F>20)); 
        ind35=max(find(F<25)); 
  
        %calculate mean magnitude 
        Mag(1)=mean(Y(ind(0.5):ind5));   %freq between 5~35Hz 
        Mag(2)=mean(Y(ind5:ind10)); 
        Mag(3)=mean(Y(ind10:ind15)); 
        Mag(4)=mean(Y(ind15:ind20)); 
        Mag(5)=mean(Y(ind20:ind25)); 

  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%function to find mean PSD for different frequency range 
%return a vector 
function PSD=funPSD(xxWin,tt,N,fs) 
   
  
%fft calculation 
xxfft=fft(xxWin); 
NoX=ceil(length(xxfft)/2); 
F=fs*(0:NoX-1)/length(xxfft); 
  
%PSD 
Pxx=xxfft.*conj(xxfft)/length(xxfft); 
HalfPxx=Pxx(1:NoX); 
  



 

 101 

P=HalfPxx; 
  
ind5=min(find(F>0.5)); 
ind10=min(find(F>5)); 
ind15=min(find(F>10)); 
ind20=min(find(F>15)); 
ind25=min(find(F>20)); 
ind35=max(find(F<25)); 
  
%calculate mean PSD 
PSD(1)=mean(P(ind(0.5):ind5,:)); 
PSD(2)=mean(P(ind5:ind10,:)); 
PSD(3)=mean(P(ind10:ind15,:)); 
PSD(4)=mean(P(ind15:ind20,:)); 
PSD(5)=mean(P(ind20:ind25,:)); 
  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%function to find the max. positive/negative rate of change  
%return two values 
function ROC=funROC(xx,tt) 
  
TPInd=funTurnPt(xx)+1; 
FirstInd=max(find(xx(1:TPInd(1))==0)); 
LastInd=min(find(xx(TPInd(end):end)==0))+TPInd(end)-1; 
TPInd=[FirstInd TPInd LastInd]; 
  
roc=[]; 
for j=1:length(TPInd)-1 
    %calculate rate of change 
    roc(j)=(xx(TPInd(j+1))-xx(TPInd(j)))/(tt(TPInd(j+1))-tt(TPInd(j))); 
end 
  
ROC(1)=max(roc); 
ROC(2)=min(roc); 
  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%funtion to find the rise time  
%return a value 
  
function RT= funRT(t,ind2,ind1) 
  
RT=[]; 
for i=1:length(ind1)-1 
    RT=t(ind1(i))-t(ind2(i)); 
end 
  

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
%function to find each turning point 
%return indices 
function ind=funTurnPt(x) 
  
xDiff=diff(x); 
j=1; 



 

 102 

ind=[]; 
for i=1:length(xDiff)-1 
    if (xDiff(i)>0 && xDiff(i+1)<0) || (xDiff(i)<0 && xDiff(i+1)>0) 
        ind(j)=i; 
        j=j+1; 
    end 
end 
if isempty(ind) 
    ind=1; 
end 
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
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