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Abstract 

 

We examine the market quality of China’s steel rebar futures, along with three other important 

industrial metal futures. Steel rebar futures are the most active metal futures contracts in China. 

Our analyses show that while steel rebar and copper futures are comparable in terms of 

informational efficiency, they are more informationally efficient than iron ore and aluminum 

futures, with low bid-ask spread, volatility persistence, pricing error variance, and probability 

of informed trading. We find a bidirectional connection between iron ore and steel rebar 

futures. Furthermore, we show that these metal futures are weakly related to the Chinese stock 

market. 
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1. INTRODUCTION 

 

Although steel is the world’s second-most-traded commodity after crude oil, futures contracts 

for steel had not been popular until the past decade. This is because large steel producers could 

previously negotiate long-term pricing arrangements with their customers (Morrison, 2011). 

However, since the 2000s, prices for iron ore, the main raw materials for steel production, have 

been much more volatile as economic growth has greatly fluctuated.  

 The Shanghai Futures Exchange (SHFE) introduced steel rebar futures in April 2009. 

Since then, Shanghai steel rebar futures contracts (ticker symbol SRB) have been actively 

traded by domestic and international market participants, although strict regulations still 

dampen growth. The increasing exposure of international manufacturing companies to Chinese 

steel prices has increased their interest. Sanderson (2015) reports that daily trading volume of 

metal futures contracts on the SHFE exceeded that on the New York Mercantile Exchange 

(NYME) and the London Metal Exchange (LME) combined. According to an annual survey 

by the Futures Industry Association (FIA) conducted in 2017, the steel rebar futures contract 

traded on the SHFE is the most actively traded metal futures contract in the world. As with 

other commodity futures traded in China, most of the activities come from speculative trading 

by retail investors, which leads to greater market uncertainty compared to trading by 

institutional investors. 

In this paper, we examine the market quality of steel rebar (or, for simplicity, steel) 

futures along with other important industrial metal futures, iron ore, aluminum, and copper, 

during the period November 2013–March 2018. Using intraday transaction data, we compare 

the bid-ask spreads, pricing error, volatility sensitivity and persistence, and the probability of 

informed trading (PIN) of the above four metal futures. The bid-ask spread offers a simple 

measure of transaction costs. Hasbrouck’s (1993) pricing error measures the informational 
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efficiency of prices, i.e. the deviation of the observed price to the efficient price. A lower 

variance in pricing error implies greater pricing efficiency and higher market quality. The 

sensitivity and persistence of volatility calculated using a GARCH model measure the degree 

of information shocks into the market and how quickly information is incorporated into prices, 

respectively. In this case, a high sensitivity of variance suggests that information shocks tend 

to have a large immediate impact whereas a high persistence of variance suggests that 

information is incorporated into prices gradually over time. Finally, the Easley et al.’s (1996) 

PIN provides evidence on information-based trading for the above industrial metal futures.  

Our findings suggest that the four futures returns are significantly correlated, 

specifically iron and steel (0.75 based on daily returns) and copper and aluminum (0.44). We 

observe that steel futures make up a greater proportion of the large transactions (transaction 

larger than 500 contracts) than other futures, indicating the likely involvement of institutional 

investors. The bid-ask spread, pricing error variance, and volatility persistence of steel futures 

are lower than those for iron ore and aluminum futures, but higher than those for copper futures. 

Steel futures also have the lowest PIN. These results point toward the steel market being more 

informationally efficient than iron ore and aluminum futures.  

We further examine the relation between Chinese commodities and stock markets using 

Diebold and Yilmaz’s (2014) measure of connectedness. This approach estimates the share of 

forecast error variation in a market due to shocks initiated by itself (or idiosyncratic shocks) 

and other markets. We find strong pairwise connectedness between iron ore and steel futures, 

with iron ore being the largest contributor to variance. These results indicate that iron is the 

most useful and popular metal in various industrial activities. We also show that the Chinese 

stock market is fragmented from the commodities markets, with less than 10% of its variance 

of shocks derived from commodities and vice-versa. 
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The remainder of this paper proceeds as follows. Section 2 presents the data sources 

and summary statistics. Section 3 discusses the empirical findings based on different measures 

of market quality. Section 4 examines the connectedness between the commodities futures 

markets and the Chinese stock market. Section 5 concludes. 

 

2. DATA AND SUMMARY STATISTICS 

 

We focus on four major metals commodities futures: iron ore (ticker symbol DCIO), aluminum 

(SAF), copper (SCF), and steel rebar (SRB). Iron ore futures are traded on the Dalian Futures 

Exchange, and the other futures are traded on the SHFE. We list the specifications of these 

futures in Table 1. Because iron ore futures only started trading in late October 2013, we select 

the sample period for our study from November 1, 2013, to March 31, 2018. Trading in these 

futures occurs between 9:00 and 11:30 am and between 1:30 and 3:00 pm China Standard 

Time. The size of the iron ore futures contract is 100 metric tons, for aluminum and copper 

futures contracts is 5 tons, for steel contracts is 10 tons. These futures have twelve maturities 

per year. On each trading day, multiple maturities are traded with different levels of activity. 

We focus on nearby contracts, as they are the most liquid, and each contract is rolled over to 

the second-nearby contract when the volume of the second-nearby contract exceeds the volume 

of the front-end contract.  

 

INSERT TABLE 1 HERE 

 

We obtain transaction-level data for prices, volume, bid-ask quotes, and bid-ask depths 

from Thomson Reuters Tick History, maintained by the Securities Industry Research Centre of 

the Asia-Pacific. These data contain all activities observed at the top of the limit order book, 
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which includes transactions and revisions in bid and ask prices and depths, time-stamped to the 

nearest millisecond. We treat multiple trades executed at the exact same time as one trade, as 

they typically reflect a trade initiated by one market participant but executed against the limit 

orders of multiple market participants. In such cases, we use the value-weighted average price 

and aggregate the traded volume. Trades are divided into buyer- and seller-initiated trades on 

the basis of the prevailing quotes prior to the trade. A trade is classified as buyer- (seller-) 

initiated if it is above (below) the midpoint of these quotes (midquote). Trades at the midquote 

are considered undetermined. 

Table 2 presents summary statistics for the futures contracts in our sample. It reports 

the daily number of trades, and the dollar trading volume. The average daily number of trades 

is highest for steel futures at 20,600 trades per day, followed by iron ore, copper, and aluminum 

with 12,300, 9,100, and 4,800 trades, respectively. In terms of the dollar trading volume, it is 

highest for steel (7,800 million RMB) and copper (7,300 million RMB), followed by aluminum 

(1,200 million RMB) and iron ore (500 million RMB).1 Hence, based on the dollar trading 

volume, steel and copper are the most liquid futures contracts. We further split trades into three 

groups of different trading sizes (number of contracts per trade). The first group consists of 

trades with 100 or fewer contracts. The majority of trades fall into this group, especially for 

aluminum and copper, for which close to 98% of trades are for 100 or fewer contracts. The 

second group is for trades with 100 to 500 contracts: 18% of the trades in steel futures fall into 

this group, followed by iron ore at 8%. The third group is for trades with more than 500 

contracts. They are relatively common for steel and iron ore, but extremely rare for aluminum 

and copper. 

 

                                                           
1Figure A.1 in the Appendix shows the average daily trading volume (in million RMB) by year. Over the sample 
period from 2013 to 2018, steel and copper have been the most actively traded metal futures in China. 
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INSERT TABLE 2 HERE 

 

Panel B in Table 2 reports the summary statistics of daily futures (log) returns. All 

futures returns are insignificantly negative. Iron ore is the most volatile, as indicated by the 

standard deviation, followed by steel, while aluminum and copper have much lower volatility 

than steel and iron ore. Because of the unstable price of iron ore, prices for all products across 

the steel industry have become volatile. Steel producers increasingly use iron ore and steel 

futures for hedging.  

 In the US and the UK, commodity futures trading is dominated by institutional 

investors, particularly hedge funds and large producers and consumers. In contrast, investors 

in China’s commodities market are mostly retail investors and financial speculators (Liu, Tse, 

and Zhang, 2018). Retail frenzies in commodity trading may have been caused by liquidity 

trapped in China by decades of booming growth, capital controls, and limited investment 

alternatives. Chinese funds have drawn attention on global commodities markets. 

Financialization and speculation in Chinese commodities will also increase correlations among 

different commodities in China. 

Our empirical analysis consists of two sections. First, we assess the market quality of 

commodity futures using various metrics, such as bid-ask spreads, pricing error, volatility 

sensitivity and persistence, and the probability of informed trading. Second, we assess the 

relations among the four commodities to determine which of them is the leader in price 

formation and whether these commodities are related to the local stock market. 

 

3. MEASURES FOR MARKET QUALITY 

3.1. Bid-Ask Spreads and Pricing Error 
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We first assess the cost of trading by computing the bid-ask spread daily over the sample period 

and compare the mean of these spreads across the four commodities. We report these results in 

Panel A in Table 3. Column 1 shows the quoted spread, measured as the difference between 

ask and bid prices, divided by the quote midpoint. As shown in the table, iron ore has the widest 

spread of around 12.9 basis points (bps). Aluminum and steel are next, with a quoted spread of 

around 4.0 bps and 3.8 bps, respectively. Copper has the narrowest spread, around 2.4 bps. 

These figures suggest that cost of trading is the lowest for copper futures and the highest for 

iron ore, consistent with the statistics in Table 1. Specifically, futures that are more frequently 

traded tend to have narrower spreads. 

 

INSERT TABLE 3 HERE 

 

Column 2 shows the effective spread, measured as twice the absolute value of the 

difference between the trade price and the midpoint, i.e., 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡 =  2|𝑝𝑝𝑡𝑡 −𝑚𝑚𝑡𝑡|/𝑚𝑚𝑡𝑡     (1) 

 

where 𝑝𝑝𝑡𝑡 and 𝑚𝑚𝑡𝑡 are the transaction prices and midquote at trade 𝑡𝑡, respectively. We estimate 

the spread each day using transaction data and average the results. The results based on the 

effective spread as shown in column 2 are consistent with the earlier finding. Specifically, we 

find that copper futures have the narrowest spread, followed by steel, aluminum, and iron ore. 

The test of equality in mean (last row) suggests that the spreads among these commodities are 

not equal. 

  Although the bid-ask spread is often used to compare market quality, the spread reflects 

the liquidity provider’s profit only when orders at each extreme of the spread are filled. Because 
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market imperfections cause the market price to deviate from the efficient price, a narrow spread 

does not necessarily mean that the market price is close to the efficient price. Therefore, another 

measure of market quality is needed to measure whether an asset can be traded easily at a price 

near the efficient price approximated by the midquote.  

We use the Hasbrouck (1993) model to measure market quality. Hasbrouck models the 

trading price as a random-walk component that represents the true price of an asset and a 

transient component or pricing error that represents market imperfections. The higher the 

variance in the pricing error, the lower the market quality and vice versa. Hasbrouck (1993) 

decomposes an asset’s price, 𝑝𝑝𝑡𝑡 , into a random-walk component, 𝑞𝑞𝑡𝑡, and a pricing error, 𝑠𝑠𝑡𝑡. 

 

𝑝𝑝𝑡𝑡  =  𝑞𝑞𝑡𝑡  + 𝑠𝑠𝑡𝑡      (2) 

𝑞𝑞𝑡𝑡  =  𝑞𝑞𝑡𝑡−1 +  𝑤𝑤𝑡𝑡       (3) 

 

where 𝑤𝑤𝑡𝑡 is the serially uncorrelated innovation that captures all public information. The 

pricing error represents the deviation from the efficient price. Better market quality is indicated 

by a lower variance in the pricing error. 

Hasbrouck (1993) estimates market quality from the following vector-autoregressive 

(VAR) model: 

 

∆𝑝𝑝𝑡𝑡 = 𝑎𝑎1∆𝑝𝑝𝑡𝑡−1 + 𝑎𝑎2∆𝑝𝑝𝑡𝑡−2 + ⋯+ 𝑏𝑏1∆𝑥𝑥𝑡𝑡−1 + 𝑏𝑏2∆𝑥𝑥𝑡𝑡−2 + ⋯+ 𝑒𝑒1𝑡𝑡 ) 

𝑥𝑥𝑡𝑡 = 𝑐𝑐1∆𝑝𝑝𝑡𝑡−1 + 𝑐𝑐2∆𝑝𝑝𝑡𝑡−2 + ⋯+ 𝑑𝑑1∆𝑥𝑥𝑡𝑡−1 + 𝑑𝑑2∆𝑥𝑥𝑡𝑡−2 + ⋯+ 𝑒𝑒2𝑡𝑡,    (4) 

   

where ∆𝑝𝑝𝑡𝑡 = log (𝑝𝑝𝑡𝑡/𝑝𝑝𝑡𝑡−1) is the consecutive price change between trade 𝑡𝑡 and 𝑡𝑡 − 1, 𝑥𝑥𝑡𝑡 is a 

trade indicator variable (𝑥𝑥𝑡𝑡 = 1 for buy orders; 𝑥𝑥𝑡𝑡 = -1 for sell orders), and 𝑒𝑒1𝑡𝑡 and 𝑒𝑒2𝑡𝑡 are 

random disturbances. Following Hasbrouck (1993), we use five lags to estimate this VAR. 
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Variance in pricing error also describes the market depth because trading prices fluctuate and 

deviate from the efficient price more often in a market with little depth.  

Panel B in Table 3 reports the results for the pricing error standard deviations. It reports 

the daily mean, median, and standard deviation of pricing error for the four commodities. We 

find that the average daily standard deviation in the pricing error (10−3) is the highest for iron 

ore futures (0.16), followed by aluminum (0.093), steel (0.073), and copper (0.064). The 

difference in mean is statistically significant (p < 0.001). Results are similar when we compare 

the medians. These results suggest that copper and steel futures are the most informationally 

efficient, given that trades are executed at prices closest to the efficient price. This finding also 

confirms the spread results in Panel A, which show that trading cost is the lowest for copper 

and steel futures. 

 

3.2. Volatility Sensitivity and Persistence 

Introduced by Engle (1982) and Bollerslev (1986), the autoregressive conditional 

heteroscedasticity (ARCH) and generalized ARCH (GARCH) models are often used to 

measure time-variation in volatility of financial returns. The extent to which the current 

variance is affected by lagged innovations to the return series and lagged variance in a GARCH 

model is described as the asset’s sensitivity and persistence level, respectively. Following 

Kavajecz and Odders-White (2001), we compare sensitivity and persistence levels in variance 

to draw conclusions regarding the flow of information and how quickly it is incorporated into 

prices. 

We adopt the commonly used GARCH(1,1) model, which has the desirable features of 

interpretability and good fit for high-frequency data. The following equations are jointly 

estimated using maximum likelihood: 
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𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + 𝛼𝛼1𝜀𝜀𝑡𝑡−12 + 𝛼𝛼2𝜎𝜎𝑡𝑡−12 ,       (5) 

𝜎𝜎𝑡𝑡2 = 𝛼𝛼0 + (𝛼𝛼1 + 𝛼𝛼2)𝜎𝜎𝑡𝑡−12 + 𝛼𝛼1(𝜀𝜀𝑡𝑡−12 − 𝜎𝜎𝑡𝑡−12 ).   (6) 

 

As explained in Campbell, Lo, and MacKinlay (1997) and Kavajecz and Odders-White (2001), 

𝛼𝛼1 measures the sensitivity of variance to the most recent shock, indicating the overall flow of 

information shocks into the market, and a high (low) sensitivity of variance suggests that 

information shocks tend to have a large (small) immediate impact. Correspondingly, (𝛼𝛼1 + 𝛼𝛼2) 

measures the persistence of information shocks in the variance, indicating how quickly 

information is incorporated into prices. A high (low) persistence of variance suggests that 

information is gradually (quickly) incorporated into prices (Tse and Zabotina, 2004). 

Table 4 shows the results for volatility sensitivity (Panel A) and volatility persistence 

(Panel B). Focusing first on Panel A, we observe that volatility sensitivity is the highest for 

copper (α1 = 0.095), followed by steel (α1 = 0.081), aluminum (α1 = 0.063), and iron ore (α1 = 

0.055). The difference in both the mean and the median is statistically significant. These results 

suggest that information shocks have a larger immediate impact on copper and steel futures, 

i.e., trades are more informative. Panel B reports the results for volatility persistence. The 

persistence level (α1 + α2) is the highest for iron ore futures (0.917), and the lowest for copper 

futures (0.732). These results indicate that information is incorporated into prices in the former 

more gradually than in the latter. Overall, Table 5 suggests that copper and steel futures offer 

better quality than aluminum and iron ore in terms of incorporating information shocks into 

prices while, at the same time, reducing the time it takes for volatility to dissipate. 

 

INSERT TABLE 4 HERE 

 

3.3. Probability of Informed Trading 
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Our next analysis is to determine the probability of information-based trading in commodities. 

Market microstructure theory shows that informed trading reduces liquidity. Liquidity 

providers have to deal with the adverse selection problem caused by informed traders who hide 

among uninformed traders. As such, higher PIN is often associated with higher transaction 

costs and lower liquidity. Following Barclay and Hendershott (2003) and others, we use the 

PIN trading model of Easley et al. (1996, 1997) to measure informed trading. The model uses 

available information on buy and sell transactions to estimate the probability of informed 

trades. 

If informed trades follow a Poisson process with arrival rate µ, and uninformed trades 

also follow a Poisson process but with arrival rate ε, we can estimate the probability of 

informed trading using the maximum-likelihood method as follows: 

 

L�(B, S)�α, δ, µ, ε� = (1 − α)e−εT
(εT)B

B!
e−εT

(εT)S

S!
+ αδe−εT

(εT)B

B!
e−(µ+ε)T �(µ + ε)T�

S

S!
 

           +α(1 − δ)e−εT (εT)S

S!
e−(µ+ε)T       (7) 

 

where B and S are the total number of buy and sell trades on a given day. 

The trade process depends on four parameters: (1) the probability of an information 

event, 𝛼𝛼; (2) the probability that new information is bad news, 𝛿𝛿; (3) the arrival of uninformed 

traders, 𝜀𝜀; and (4) the arrival rate of informed traders, µ. We estimate the parameters of the 

trade process for each commodity in our sample by maximizing the likelihood function 

conditional on the trade data. The probability parameters 𝛼𝛼 and 𝛿𝛿 are restricted to (0, 1) using 

logit transformation, whereas ε and µ are restricted to (0, ∞) by a logarithmic transformation. 

Standard errors for the parameter estimates are calculated using the delta method. Given these 

parameters, the PIN is then estimated as: 
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PIN =  αµ
2ε+αµ

 .      (8) 

 

Table 5 presents the means of the estimated parameters. We first consider the estimates 

of the information event parameter, α. The mean α is the highest for the most active commodity 

steel (α = 0.53) and iron ore (α = 0.47), and declines for less active commodities and aluminum 

(α = 0.38) and copper (α = 0.28). The second information parameter in our model is δ, which 

reflects the probability of bad news arrival. Our results suggest that, except for aluminum, the 

probability of bad news entering the market is more than 50%. We explore this further by 

comparing the number of days with positive returns to total trading days. Except for aluminum, 

with 50.4% of days with positive returns, the remaining futures have less days with positive 

returns: iron ore (48.3%), copper (48.2%), and steel (48.9%). Hence, our estimates provide 

confirmation of the sensibility of our model. 

The last row shows the probability of information-based trading, calculated based on 

interactions among various parameters characterizing the trade process. The results reveal that 

PIN is the lowest for steel (0.070), followed by copper (0.073), iron ore (0.15), and aluminum 

(0.21). Thus, steel and copper have, on average, lower probabilities of informed trading than 

iron ore and aluminum. Overall, the results for market quality are consistent: Copper and steel 

futures seem to be more price efficient and have better market quality than aluminum and iron 

ore futures. 

 

INSERT TABLE 5 HERE 

 

4. CONNECTEDNESS AMONG COMMODITIES AND THE LOCAL STOCK 

MARKET 
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We further assess the temporal relation among Chinese commodities futures and stock markets. 

To this end, we employ Diebold and Yilmaz’s (2014) measure of connectedness. This approach 

to connectedness is based on assessing shares of forecast error variation in a variable (assets, 

firms, etc.) due to shocks arising elsewhere. The underlying idea is related to the econometric 

notion of a variance decomposition, in which the forecast error variance of a variable 𝑖𝑖 is 

decomposed into parts attributed to the various variables in the system (see, e.g. Booth et al., 

1997). This connectedness measure was recently used in Andrada-Félix et al. (2018) to 

examine the interconnection between five implied volatility indices, and in Corbet et al. (2018) 

to explore the relations between cryptocurrencies and other financial assets. Of particular 

interest in this paper, we investigate the causal relations between the stock market and 

commodities in China.  

Consider a covariance stationary N-variable VAR(p): 

𝑥𝑥𝑡𝑡 = Θ(𝐿𝐿)𝑢𝑢𝑡𝑡        (9) 

 

where 𝑥𝑥𝑡𝑡 is the vector of assets’ returns, Θ(𝐿𝐿) = Θ0 + Θ1𝐿𝐿 + Θ2𝐿𝐿2 + ⋯, and 𝐸𝐸(𝑢𝑢𝑡𝑡,𝑢𝑢𝑡𝑡′) = 𝐼𝐼. 

The moving-average coefficients Θ are key to understanding the dynamics in the system. 

Following Diebold and Yilmaz (2014), we rely on variance decompositions, which help 

explain the forecast error variances of an asset into parts attributable to shocks from the system. 

 Diebold and Yilmaz (2014) propose a connectedness table, such as Table 6, to 

understand the various connectedness measures and their relationships. Its main upper-left 𝑁𝑁 ×

𝑁𝑁 block, which contains the variance decompositions, is called the “variance decomposition 

matrix” and is denoted by 𝐷𝐷𝐻𝐻, where 𝐻𝐻 is the number of period-ahead forecasts.2 The off-

diagonal entries of 𝐷𝐷𝐻𝐻 are the parts of the 𝑁𝑁 forecast-error variance decompositions of 

                                                           
2Certain considerations in certain contexts may help guide selection of the connectedness horizon, 𝐻𝐻. For example, 
𝐻𝐻 = 10 is often used to be consistent with the 10-day value at risk (VaR) requirement under the Basel accord. 
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relevance from a connectedness perspective. In particular, the gross pairwise directional 

connectedness from j to 𝑖𝑖 is denoted by 𝑑𝑑𝑖𝑖𝑖𝑖𝐻𝐻 .  

 

INSERT TABLE 6 HERE 

 

The connectedness table also includes the rightmost column which contains the row 

sums, the bottom row which contains the column sums, and the bottom-right cell which 

contains the grand average, in all cases for 𝑖𝑖 ≠ 𝑗𝑗. Hence, the off-diagonal-entry-row sums in 

the connectedness table indicate the share of forecast-error variance of variable 𝑖𝑖 from shocks 

in other variables. In particular, total directional connectedness from others to 𝑖𝑖 is defined as 

 

𝐶𝐶𝑖𝑖←•
𝐻𝐻 = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝐻𝐻

𝑁𝑁
𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

,     (10) 

 

whereas the column sum indicates total directional connectedness from 𝑗𝑗 to others and is 

defined as 

𝐶𝐶•←j
𝐻𝐻 = ∑ 𝑑𝑑𝑗𝑗𝑗𝑗𝐻𝐻

𝑁𝑁
𝑖𝑖=1
𝑗𝑗≠𝑖𝑖

.     (11) 

 

We can also define net total directional connectedness as 

𝐶𝐶𝑖𝑖𝐻𝐻 = 𝐶𝐶•←𝑖𝑖
𝐻𝐻 − 𝐶𝐶𝑖𝑖←•

𝐻𝐻 .      (12) 

 

Finally, the grand total of the off-diagonal entries in 𝐷𝐷𝐻𝐻(equivalently, the average of the FROM 

column or TO row) measures total connectedness: 

 

𝐶𝐶𝐻𝐻 = 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝐻𝐻
𝑁𝑁
𝑖𝑖,𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

.     (13) 
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The generalized VAR framework of Koop, Pesaran, and Potter (1996) and Pesaran and Shin 

(1998) is used to produce the variance decomposition. We can then write the H-step generalized 

variance decomposition (GVD) matrix as 𝐷𝐷𝑔𝑔𝑔𝑔 = �𝑑𝑑𝑖𝑖𝑖𝑖
𝑔𝑔𝑔𝑔�, where 

 

𝑑𝑑𝑖𝑖𝑖𝑖
𝑔𝑔𝑔𝑔 =

𝜎𝜎𝑗𝑗𝑗𝑗
−1 ∑ �𝑒𝑒𝑖𝑖

′ΘℎΣ𝑒𝑒𝑗𝑗�
2𝐻𝐻−1

ℎ=0

∑ �𝑒𝑒𝑖𝑖
′ΘℎΣΘℎ

′ 𝑒𝑒𝑖𝑖�𝐻𝐻−1
ℎ=0

.      (14) 

 

In this case, 𝑒𝑒𝑖𝑖 is a vector with 𝑖𝑖th element unity and zeros elsewhere, Θℎ is the coefficient 

matrix in the infinite moving-average representation from VAR, Σ is the covariance matrix of 

the shock vector in the non-orthogonalized-VAR, 𝜎𝜎𝑗𝑗𝑗𝑗 being its 𝑗𝑗th diagonal element. In this 

GVD framework, the lack of orthogonality means that the rows of 𝑑𝑑𝑖𝑖𝑖𝑖
𝑔𝑔𝑔𝑔do not have sum unity. 

In order to obtain a generalized connectedness index such that 𝐷𝐷�𝑔𝑔 = �𝑑̃𝑑𝑖𝑖𝑖𝑖
𝑔𝑔 �, the following 

normalization is necessary: 𝑑̃𝑑𝑖𝑖𝑖𝑖
𝑔𝑔 =

𝑑𝑑𝑖𝑖𝑖𝑖
𝑔𝑔

∑ 𝑑𝑑𝑖𝑖𝑖𝑖
𝑔𝑔𝑁𝑁

𝑗𝑗=1
, in which, by construction, ∑ 𝑑̃𝑑𝑖𝑖𝑖𝑖

𝑔𝑔𝑁𝑁
𝑗𝑗=1 = 1 and 

∑ 𝑑̃𝑑𝑖𝑖𝑖𝑖
𝑔𝑔𝑁𝑁

𝑖𝑖,𝑗𝑗=1 = 𝑁𝑁. The matrix 𝐷𝐷�𝑔𝑔 = �𝑑̃𝑑𝑖𝑖𝑖𝑖
𝑔𝑔� permits us to define similar concepts as before for the 

orthogonal case, that is, total directional connectedness, net total directional connectedness, 

and total connectedness. 

Table 7 reports the correlation matrix among commodities and Chinese Stock Index 

(CSI300) futures. The correlations are high among commodities, particularly between iron ore 

and steel, which have a correlation coefficient of 0.75. Because iron ore is the main raw 

material in steel production, movements in steel prices should be closely related to iron prices. 

All the other pairs are also significantly correlated, e.g., a coefficient of 0.44 between copper 

and aluminum. Intuitively, these correlations could shed light on connections between these 

assets, which are assessed next.  
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INSERT TABLE 7 HERE 

 

 In Table 8, we report the full-sample connectedness table. All results are based on VAR 

of order 1 and 10-day-ahead GVD. As mentioned previously, the off-diagonal cells measure 

the connectedness between asset returns, i.e., the 𝑖𝑖𝑖𝑖th entry of the upper-left 5 × 5 market 

submatrix indicates the contribution to the forecast-error variance of market 𝑖𝑖’s return from 

market 𝑗𝑗. Hence, the off-diagonal column (labeled TO) and the row sums (labeled FROM) give 

the total directional connectedness to all others from 𝑖𝑖 and from all others to 𝑖𝑖, respectively. 

The bottom-right cell is the total connectedness, which is calculated as the sum of the non-

diagonal elements of the connectedness matrix, divided by number of assets. 

 

INSERT TABLE 8 HERE 

 

As can be seen, the diagonal cells are the largest individual values in the table, ranging 

from 39.1% (steel) to 91.2% (CSI300). The highest observed pairwise connectedness is 

between iron ore and steel: from iron ore to steel at 45.9% and from steel to iron ore at 30.7%. 

The Chinese stock market seems fragmented from the commodities futures market, as shown 

by CSI300’s low contribution (4.5%) and the low receivership of variance (8.8%).  

On a daily basis, total connectedness is 42.4%, indicating that 57.6% of the variation is 

due to idiosyncratic shocks. Regarding to the net contribution (TO minus FROM), iron ore is 

the largest contributor to variance at 40.1% while others, such as aluminum, copper, steel, and 

CSI300, are receivers of shocks (-15.3%, -20.1%, -0.3%, and -4.4%, respectively). These 

results indicate that iron is the most useful and popular industrial metal. Price movements of 

iron ore have a significant impact on those of other metals.  
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The results also show that the stock market is fragmented from the commodities 

markets: Each of the four commodities contributes less than 2% of the variance of the shocks 

from the stock market, and vice versa. These results are consistent with Liu et al. (2018). They 

show that the VaR risk derived from one market does not spill over to the other. The authors 

suggest that the Chinese stock and commodities futures markets are driven by different risk 

factors because of excessive speculation in commodities, different investment factors, and 

government regulations on commodity and equity trading. 

 

5. CONCLUSIONS 

 

Since the Shanghai Futures Exchange introduced steel rebar futures in April 2009, these 

contracts have been actively traded by domestic and international market players. Examining 

the market quality of this most active metal futures contract and the relations with other metals 

futures and the stock market in China is important for investors and policy makers worldwide.  

 We use transaction data to examine the market quality of steel futures traded on the 

SHFE, along with three other important industrial metal futures, iron ore, aluminum, and 

copper, in China during the sample period November 2013–March 2018. Steel futures make 

up a larger proportion of large transactions than other contracts. The overall results show that 

steel and copper futures are more informationally efficient than iron ore and aluminum futures, 

with a narrow bid-ask spread and low volatility persistence, pricing error variance, and PIN.  

Examining daily connectedness between commodities and stock markets, we find that 

iron ore is the largest contributor to price variance in other commodities, and a significant 

bidirectional connection exists between iron ore and steel futures. These results indicate that 

iron ore is not only the major raw material in steel but also the most widely used industrial 

metal. Price movements of other commodities are influenced by those of iron ore. We also 
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show that the Chinese stock market has a weak relation with the commodities futures. The 

connectedness measure between the stock market and each of the four commodities is less than 

2%, suggesting that the Chinese stock and commodities futures markets are driven by different 

economic and investment factors. 
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APPENDIX 
 

Figure A.1. Futures trading volume 
 
This figure plots the average daily trading volume (in millions Yuan) for iron ore, aluminum, copper, and steel 
rebar futures over the sample period from 2013 to 2018.  
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Table 1. Chinese commodity futures contracts 
 
This table lists the futures contracts used in our study. It includes the futures symbol, exchange venue, period of 
data availability, and contract size (in tons/contract). 
 

Commodity Symbol Exchange Venue First full month of data 
availability 

 Contract 
Size 

Iron Ore DCIO Dalian Commodity Exchange  Nov-13 
 100 metric 

tons 
Aluminum SAF Shanghai Futures Exchange (SHFE) Jan-04  5 tons 
Copper SCF Shanghai Futures Exchange (SHFE) Jan-04  5 tons 
Steel Rebar SRB Shanghai Futures Exchange (SHFE) Apr-09  10 tons 
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Table 2. Summary Daily Statistics 
 
Panel A reports the trading activity for the various futures contracts. It shows the daily number of trades, dollar trading volume (in Yuan), and the proportion of trades by size 
(number of contracts). Panel B reports daily returns statistics for various commodity futures. It reports the mean, standard deviation, skewness, kurtosis and the maximum and 
minimum returns over the sample period. 
 
        Panel A: Daily Trading Volume 
 

Commodity Number of Trades 
(thousands) 

Trading Volume 
(millions RMB) 

 

Transaction by Size (number of contracts) 
≤ 100 100 < 𝑥𝑥 ≤ 500 > 500 

Iron Ore 12.30 492 88.03% 8.37% 3.41% 
Aluminum 4.76 1,240 97.63% 2.34% 0.03% 
Copper 9.13 7,309 97.50% 2.47% 0.03% 
Steel Rebar 20.64 7,826 74.83% 18.06% 6.93% 

 
 
        Panel B: Daily Return Statistics 
 

Daily Return Iron Ore Aluminum Copper Steel Rebar 
Mean -0.07% 0.00% 0.00% -0.01% 
SD 2.47% 1.02% 1.17% 1.81% 
Skew -0.38 0.48 0.11 -0.16 
Kurtosis 4.84 5.03 5.27 4.02 
Maximum 12.49% 5.52% 7.79% 7.83% 
Minimum -16.21% -6.21% -6.18% -10.27% 
Observations 1076 1076 1076 1076 
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Table 3. Bid-ask spreads and Pricing error standard deviation 
 
This table provides bid-ask spreads (Panel A) and pricing error standard deviation (Panel B) for four Chinese 
commodities in the sample. The percentage quoted spread, %QSpread, is measured as the difference between ask and 
bid prices, divided by the quote midpoint, while the percentage effective spread, %ESpread, is measured as two times 
the absolute difference between transaction price and the midpoint, divided by the quote midpoint. For the pricing 
error, we report the mean, median, and standard deviation (10−3). The bottom row presents the p-values for the test 
of equality in mean and median. 
 

  Panel A: Bid-ask spread Panel B: Pricing error 
Commodity %QSpread %ESpread Mean Median St. dev. 

Iron Ore 0.129% 0.129% 0.160 0.154 0.035 
Aluminum 0.040% 0.039% 0.093 0.091 0.019 
Copper 0.024% 0.023% 0.064 0.060 0.016 
Steel Rebar 0.038% 0.038% 0.073 0.068 0.026 
Test of equality p-value <0.001 <0.001 <0.001 <0.001   

  



25 
 

Table 4. Volatility sensitivity and persistence 
 
This table reports the degree of volatility sensitivity (Panel A) and volatility persistence (Panel B) for the four Chinese 
commodity futures in the sample. The figures reported are the mean, median and standard deviation of the volatility 
measures. The bottom row presents the p-values for the test of equality in mean and median. 
 

  Mean Median St. dev. 
Panel A: Volatility Sensitivity (α1)  
Iron Ore 0.055 0.056 0.017 
Aluminum 0.063 0.062 0.017 
Copper 0.095 0.090 0.032 
Steel Rebar 0.081 0.077 0.025 
p-value <0.001 <0.001   

    
Panel B: Volatility Persistence (α1+ α2)  
Iron Ore 0.917 0.922 0.043 
Aluminum 0.897 0.901 0.039 
Copper 0.732 0.757 0.132 
Steel Rebar 0.797 0.801 0.086 
p-value <0.001 <0.001   
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Table 5. Probability of informed trading 
 
This table reports the parameter estimates for the model of probability of informed trading over the sample period 
from November 2013 to March 2018. The parameter 𝛼𝛼 is the probability of an information event, 𝛿𝛿 is the probability 
that new information is bad news, 𝜀𝜀 is the arrival rate of uninformed traders, and 𝜇𝜇 is the arrival rate of informed 
traders. 𝑃𝑃𝑃𝑃𝑃𝑃 is measured as 𝛼𝛼𝛼𝛼/ (𝛼𝛼𝛼𝛼 + 2𝜀𝜀) and reflects the probability of information-based trade. Figures in 
parentheses are the t-statistics. *** denotes statistical significance at the 1% level. 
 
 

  Panel A: Iron Ore Panel B: Aluminum Panel C: Copper Panel D: Steel Rebar 
  coefficient t-stat coefficient t-stat coefficient t-stat coefficient t-stat 

𝛼𝛼 0.47*** (38.48) 0.38*** (29.61) 0.28*** (19.02) 0.53*** (39.87) 
𝛿𝛿 0.63*** (28.95) 0.44*** (17.37) 0.62*** (21.53) 0.56*** (26.02) 
𝜀𝜀 519.3*** (64.28) 188.5*** (38.80) 420.5*** (102.59) 959.1*** (183.98) 
𝜇𝜇 392.2*** (67.07) 255.8*** (36.60) 234.4*** (28.17) 273.2*** (90.23) 
𝑃𝑃𝑃𝑃𝑃𝑃 0.15  0.21  0.073  0.070   
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Table 6. Connectedness table schematic 
 

This table presents the schematic for the connectedness results among assets. The rightmost column contains the row 
sums (total directional connectedness FROM others), the bottom row contains the column sums (total directional 
connectedness TO others), and the bottom-right cell contains the grand average (the overall connectedness). 
 
 

 𝑥𝑥1 𝑥𝑥2 𝑥𝑥𝑁𝑁 Connectedness FROM others 
𝑥𝑥1 𝑑𝑑11𝐻𝐻  𝑑𝑑12𝐻𝐻  𝑑𝑑13𝐻𝐻  Σ𝑗𝑗=1𝑁𝑁 𝑑𝑑1𝑗𝑗𝐻𝐻 , 𝑗𝑗 ≠ 1 
𝑥𝑥2 𝑑𝑑21𝐻𝐻  𝑑𝑑22𝐻𝐻  𝑑𝑑23𝐻𝐻  Σ𝑗𝑗=1𝑁𝑁 𝑑𝑑2𝑗𝑗𝐻𝐻 , 𝑗𝑗 ≠ 2 
𝑥𝑥𝑁𝑁 𝑑𝑑𝑁𝑁1𝐻𝐻  𝑑𝑑𝑁𝑁2𝐻𝐻  𝑑𝑑𝑁𝑁3𝐻𝐻  Σ𝑗𝑗=1𝑁𝑁 𝑑𝑑𝑁𝑁𝑁𝑁𝐻𝐻 , 𝑗𝑗 ≠ 𝑁𝑁 

Connectedness 
TO others 

Σ𝑖𝑖=1𝑁𝑁 𝑑𝑑𝑖𝑖1𝐻𝐻 , 
𝑖𝑖 ≠ 1 

Σ𝑖𝑖=1𝑁𝑁 𝑑𝑑𝑖𝑖2𝐻𝐻 , 
𝑖𝑖 ≠ 2 

Σ𝑖𝑖=1𝑁𝑁 𝑑𝑑𝑖𝑖𝑖𝑖𝐻𝐻 , 
𝑖𝑖 ≠ 𝑁𝑁 

Total Connectedness = 
1
𝑁𝑁
Σ𝑖𝑖,𝑗𝑗=1𝑁𝑁 𝑑𝑑𝑖𝑖𝑖𝑖𝐻𝐻 , 𝑖𝑖 ≠ 𝑁𝑁 
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Table 7. Correlation among commodities and local stock market returns 
 
This table presents the correlation matrix of the returns among commodities futures and the CSI300 stock index futures 
(ticker symbol CIF). Daily returns data are from November 2013 to March 2018. *** indicates significance at the 1% 
level. 
 

  Iron Ore Aluminum Copper Steel Bar CSI300 
Iron Ore 1     
Aluminum 0.27*** 1    
Copper 0.42*** 0.44*** 1   
Steel Rebar 0.75*** 0.27*** 0.42*** 1  
CSI300 0.12*** 0.13*** 0.18*** 0.12*** 1 
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Table 8. Connectedness among commodities and local stock market 
 

This table reports the connectedness results among the commodities and domestic equity index. Variance 
decomposition is derived from a VAR model estimated over the sample period November 1, 2013 to March 31, 2018, 
using daily returns data. Number of lag is one based on the SIC, and the predictive horizon is 10 days. Column 1 
represents variable 𝑖𝑖, and the top row represents variable 𝑗𝑗. Hence, the 𝑖𝑖𝑖𝑖-th entry of the upper-left 5 × 5 submatrix 
gives the 𝑖𝑖𝑖𝑖-th pairwise directional connectedness; i.e., the percentage of 10-day-ahead forecast error variance of 
variable 𝑖𝑖 due to shocks from variable 𝑗𝑗. The right-most (FROM) column gives total directional connectedness from 
all others to variable 𝑖𝑖. The second to last (TO) row gives total directional connectedness to all others from 𝑗𝑗. The last 
(NET) row gives the difference in total directional connectedness between TO and FROM. The bottom-right cell (in 
boldface) is total connectedness (mean “FROM” connectedness, or equivalently, mean “TO” connectedness). 
 

  

Iron 
Ore Aluminum Copper Steel  

Rebar 
CSI 
300 

Directional 
FROM 
others 

Iron Ore 54.7% 4.0% 9.8% 30.7% 0.7% 45.3% 
Aluminum 12.3% 61.6% 15.2% 9.6% 1.3% 38.4% 
Copper 25.3% 13.1% 41.3% 18.6% 1.7% 58.7% 
Steel Rebar 45.9% 4.2% 10.1% 39.1% 0.8% 60.9% 
CSI300 1.8% 1.8% 3.5% 1.7% 91.2% 8.8% 
Directional TO others 85.4% 23.1% 38.6% 60.6% 4.5% 42.4% 
NET contribution (TO – FROM) 40.1% -15.3% -20.1% -0.3% -4.4%   

 
 


