
Graph Neural Network Based Spatial-Temporal

Traffic Flow Prediction Approaches

Zhi Chen

A thesis submitted to

Auckland University of Technology

in partial fulfilment of the requirements for the degree

of

Master of Computer and Information Sciences (MCIS)

2022

School of Engineering, Computer and Mathematical Sciences

i

Table of Contents
List of Figures ... iii

List of Tables ... v

Glossary ... vi

Attestation of Authorship .. viii

Acknowledgements .. ix

Abstract ... x

Chapter 1 Introduction .. 1

1.1 Background ... 2

1.2 Motivation ... 5

1.3 Contribution .. 6

1.4 Thesis Structure ... 9

Chapter 2 Background .. 11

2.1 Overview of Traffic Flow Prediction .. 11

2.1.1 Classical statistical theories and analytical models .. 12

2.1.2 Traditional machine learning methods ... 13

2.1.3 Deep learning methods ... 14

2.2 CNN based Traffic Flow Prediction Models ... 21

2.2.1 Structure of convolutional neural network ... 22

2.2.2 Features of convolutional neural network .. 26

2.2.3 CNN based traffic flow prediction models ... 27

2.3 RNN based Traffic Flow Prediction Models ... 29

2.3.1 LSTM neural network structure ... 30

2.3.2 GRU neural network architecture .. 32

2.3.3 Temporal convolutional network(TCN) architecture ... 34

2.3.4 RNN based traffic flow prediction models ... 36

2.4 GCN based Traffic Flow Prediction Models ... 37

2.4.1 Graph theory .. 37

2.4.2 Graph neural network analysis ... 40

2.4.3 Overview of GCN .. 42

2.4.4 Principle of GCN.. 45

2.4.5 GCN based traffic flow prediction models ... 46

2.5 Enhancement Mechanism of Models .. 48

2.5.1 Deep residual network .. 48

2.5.2 Attention mechanism .. 49

2.6 Discussion ... 54

2.7 Summary ... 56

Chapter 3 Traffic Flow Prediction Modeling .. 57

3.1 Problem Statement .. 58

3.2 Models Framework ... 60

3.3 Traffic Flow Data Feature Analysis and Periodic Spatiotemporal Data Fusion 63

3.3.1 Periodic quantitative analysis of traffic flow.. 63

3.3.2 Periodic component division of traffic flow data ... 65

ii

3.3.3 Multi-component fusion ... 68

3.4 MST-GCRN and MST-GCTN Models .. 71

3.4.1 Spatial convolution model for traffic flow prediction .. 72

3.4.2 GRU based temporal feature extraction module .. 79

3.4.3 TCN based temporal feature extraction module ... 81

3.4.4 Readout phase .. 87

3.4.5 Proposed MST-GCRN and MST-GCTN models ... 88

3.5 Attention Mechanism based MST-AGCRN and MST-AGCTN Models........................... 89

3.5.1 Spatial-temporal attention mechanism module .. 89

3.5.2 Spatial attention mechanism module .. 91

3.5.3 Temporal attention mechanism module.. 94

3.5.4 Spatial-temporal self-attention mechanism module ... 97

3.5.5 Spatial-temporal self-attention graph convolution models..................................... 98

3.6 Summary ... 100

Chapter 4 Simulation Studies .. 101

4.1 Simulation Environment ... 102

4.1.1 Hardware environment ... 102

4.1.2 Software environment .. 102

4.1.3 Simulation data set ... 103

4.2 Data Pre-processing .. 106

4.2.1 Data analysis .. 106

4.2.2 Data filling ... 108

4.2.3 Node screening ... 109

4.2.4 Data standardization ... 109

4.3 Data Set Division and Evaluation Criteria .. 110

4.3.1 Data set division ... 110

4.3.2 Evaluation criteria .. 111

4.3.3 Baseline method ... 112

4.4 Analysis of Simulation Results ... 113

4.4.1 The parameter settings of the prediction models .. 113

4.4.2 Case study 1: The impact of traffic flow volume on the accuracy of prediction

Models ... 114

4.4.3 Case study 2: The impact of self-attention mechanism on the accuracy of

prediction Models ... 120

4.4.4 Case study 3: The accuracy comparison study with some benchmarking models

... 127

4.4.5 Case study 4: Model training performance comparison 135

4.5 Summary ... 138

Chapter 5 Conclusion and Future Work .. 139

5.1 Conclusion .. 139

5.2 Future Work .. 141

Reference .. 143

Appendix A: Sample Codes for Proposed Models .. 150

iii

List of Figures

Figure 1.1 Thesis structure .. 9

Figure 2.1 Classification of traffic flow prediction models .. 12

Figure 2.2 Three kinds of events ... 19

Figure 2.3 Regular space ... 19

Figure 2.4 Irregular space ... 20

Figure 2.5 Convolutional neural network structure (image recognition) [54] 23

Figure 2.6 Convolution operation ... 24

Figure 2.7 Max pooling operation ... 26

Figure 2.8 Structure of RNN ... 30

Figure 2.9 Architecture of a typical vanilla LSTM block[76] ... 31

Figure 2.10 Architecture of GRU block .. 33

Figure 2.11 Example graph ... 40

Figure 2.12 The degree matrix, adjacency matrix and Laplacian matrix of Figure 2.11 40

Figure 2.13 Four types of graphs .. 41

Figure 2.14 The difference between standard convolution and graph convolution 43

Figure 2.15 Residual learning unit .. 49

Figure 2.16 Encoder-Decoder abstract framework diagram ... 50

Figure 2.17 Attention mechanism structure diagram .. 52

Figure 2.18 Category comparison of traffic flow prediction research .. 55

Figure 3.1 Inter-city connectivity in the composite infrastructure network 58

Figure 3.2 Illustration of traffic flow prediction problem ... 59

Figure 3.3 The framework of MST-AGCRN and MST-AGCRN ... 61

Figure 3.4 Periodic dependence degree heatmap .. 64

Figure 3.5 An example of periodic factor input .. 68

Figure 3.6 Schematic diagram of feature data dependency... 70

Figure 3.7 Feature data fusion ... 70

Figure 3.8 Message passing approach of GCN ... 73

Figure 3.9 GCN matrix representation .. 78

Figure 3.10 Spatially dependent feature aggregation at time 𝑡 ... 79

Figure 3.11 RNN structure and CNN structure ... 83

Figure 3.12 The difference between CNN (up) and TCN (down) ... 85

Figure 3.13 Temporal dependent feature aggregation ... 86

Figure 3.14 Spatial-temporal graph neural networks model ... 88

Figure 3.15 Calculation of spatial attention coefficient .. 91

Figure 3.16 Calculation of temporal attention coefficient .. 95

Figure 3.17 Spatial-temporal attention mechanism ... 97

Figure 3.18 Spatial-temporal attention graph neural networks model .. 99

Figure 4.1 PeMS system web interface ... 104

Figure 4.2 Example of traffic flow data .. 104

Figure 4.3 Google Map street view near the VDS1214209 detector .. 105

iv

Figure 4.4 Historical traffic data of the VDS 1214209 detector in July 2021 106

Figure 4.5 Traffic flow on the same day at different detection stations .. 107

Figure 4.6 Schematic diagram of missing data ... 108

Figure 4.7 Schematic diagram of filling data with KNN algorithm .. 108

Figure 4.8 The MST-GCRN prediction accuracy on PeMSD4-node180 115

Figure 4.9 The MST-GCRN prediction accuracy on PeMSD4-node108 115

Figure 4.10 (a/b) The MST-AGCRN prediction accuracy on PeMSD4-node180/108.................. 116

Figure 4.11 The MST-GCRN prediction accuracy on PeMSD4-node180-1hour.......................... 116

Figure 4.12 The MST-GCRN prediction accuracy on PeMSD4-node108-1hour 117

Figure 4.13 The MST-AGCRN prediction accuracy on PeMSD4-node180/108 117

Figure 4.14 The MST-GCRN prediction accuracy on PeMSD8-node50/80 118

Figure 4.15 The MST-GCRN prediction accuracy on PeMSD8-node50/80-1hour 118

Figure 4.16 The predictive accuracy of the TCN models on the PeMSD4 119

Figure 4.17 The predictive accuracy of the TCN models on the PeMSD4 119

Figure 4.18 The predictive accuracy of MST-GCRN and MST-AGCRN on node 108 120

Figure 4.19 The predictive accuracy of MST-GCTN and MST-AGCTN on node 57 121

Figure 4.20 The predictive accuracy of MST-GCTN and MST-AGCTN 122

Figure 4.21 The predictive accuracy of our models .. 122

Figure 4.22 The evaluation results of the models on the PeMSD4 ... 125

Figure 4.23 The evaluation results of the models on the PeMSD8 ... 126

Figure 4.24 The MAE results of the models ... 128

Figure 4.25 The RMSE results of the models ... 129

Figure 4.26 The MAPE results of the models ... 130

Figure 4.27 The MAE results of the models at different time steps .. 131

Figure 4.28 The RMSE results of the models at different time steps .. 132

Figure 4.29 The MAPE results of the models at different time steps ... 132

Figure 4.30 The MAE results of the models at each node .. 133

Figure 4.31 The RMSE results of the models at each node .. 134

Figure 4.32 The MAPE results of the models at each node .. 134

Figure 4.33 The loss metric of the MST-GCRN model on the data set... 136

Figure 4.34 The loss metric of the MST-AGCRN model on the data set 136

Figure 4.35 The loss metric of the MST-GCTN model on the data set ... 137

Figure 4.36 The loss metric of the MST-AGCTN model on the data set 137

v

List of Tables

Table 3-1 Correspondence table of Pearson coefficient and correlation degree 64

Table 4-1 Basic hardware description ... 102

Table 4-2 Software configuration .. 102

Table 4-3 Dataset description .. 111

Table 4-4 Time performance (mins) 100 epoch .. 135

vi

Glossary

ASTGCN: Attention Based Spatial-Temporal Graph Convolutional Networks

ARMA: Autoregressive Moving Average

ARIMA: Autoregressive Integrated Moving Average

BP: Back Propagation

CNN: Convolutional Neural Network

DCRNN: Diffusion Convolutional Recurrent Neural Network

EEMD: Ensemble Empirical Mode Decomposition

EMD Empirical Model Decomposition

GAT: Graph Attention Network

GCN: Graph Convolutional Network

GLU: Gated Linear Units

GNN: Graph Neural Network

GRU: Gate Recurrent Unit

GSVM: Gray Support Vector Machine

HA: History Average

IoT: Internet of Things

ITS: Intelligent Transportation System

KNN: K-Nearest Neighbours

LSTM: Long-Short Term Memory

MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error

ML: Machine Learning

MLP: Multilayer Perceptron

MRA-BGCN: Multi-Range Attention Two-component GCN

MSTGCN: Multi-Component Spatial-Temporal Graph Convolution Networks

MST-GCRN: Multiple Layers Spatial-temporal Aware Graph Convolutional

Recurrent Network Model

vii

MST-GCTN: Multiple Layers Spatial-temporal Aware Graph Convolutional and

Temporal Convolutional Network Model

MST-AGCRN: Attention Mechanism based MST-AGCRN

MST-AGCTN: Attention Mechanism based MST-AGCTN

OGCRNN: Optimized Graph Convolution Recurrent Neural Network

PeMS: Performance Measurement System

POI: Point Of Interest

ResNet: Residual Network

RMSE: Root Mean Squared Error

RNN: Recurrent Neural Network

STDM: Spatiotemporal Data Mining

STSGCN: Spatial-Temporal Synchronization Graph Convolutional Network

SVM: Support Vector Machine

TCN: Temporal Convolutional Network

TGC: Traffic Graph Convolution

VAR: Vector Autoregressive

VDS: Vehicle Detection Station

viii

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning.”

Signature of Candidate: …………………………………………………

ix

Acknowledgements

One year of research time passed in a flash, and the postgraduate career was about to

end in a blink of an eye. Looking back at the time spent at Auckland University of

Technology and the sudden COVID-19 epidemic, I realized the hard-won learning

opportunities and the joy of study. In general, this year is still very fulfilling, whether

studying or living, and all have left a profound impact on my life.

In the process of completing this graduation thesis, first of all, I would like to thank

my supervisor, Dr. William Liu. He gave me tremendous help and encouragement

throughout the whole thesis, from the initial research direction selected to the

construction of the simulation models and the final thesis writing. Every step of the

work of my thesis is inseparable from Dr. Liu's patient guidance and help. His serious

and rigorous attitude towards scientific research has set a good example for me. I also

want to thank my wife, Lili Chen, for her continuous support. Her encouragement and

company gave me much motivation and kept me improving. At the same time, I

would like to thank all my classmates and friends for their help in my study and life.

x

Abstract

The problem of traffic flow prediction is an important topic in the research of

Intelligent Transportation System (ITS). With the acceleration of urbanization, the

pressure of traffic load has increased. These situations urgently require scientific

management and scheduling. Therefore, the development of intelligent transportation

systems is imperative. The maturity of machine learning technology and the

continuous development of graph neural networks allow us to better understand the

temporal and spatial dynamics features of traffic flow data hidden in complex traffic

networks. However, this is very challenging because of the high degree of

nonlinearity, complexity, and randomness of traffic flow. These factors make the

traffic flow difficult to predict and lead to low prediction accuracy, which is difficult

to meet the needs of application scenarios. Traditional traffic flow prediction models

and methods lack the ability to extract periodic characteristics of traffic flow data,

which makes it impossible to learn more powerful traffic flow feature data reasonably.

Moreover, many existing machine learning models do not fully consider the

correlation between the traffic flow sequence in the spatial dimension and the

temporal dimension, which makes the general applicability of the models insufficient.

In addition, most combined deep neural network models ignore the characteristics of

the traffic network graph structure and cannot express the high-order correlation

between different nodes.

In response to the above problems, this thesis proposes four Graph Neural Network-

Based Spatial-Temporal Traffic Flow Prediction models to improve the accuracy of

traffic flow prediction further. First of all, this thesis adopts reasonable data analysis

and dimensionality reduction strategies to improve the reliability of input data and

reduce its complexity. These methods improve the model's ability to extract traffic

flow features in the data input stage. Secondly, based on the Graph Neural Network

(GNN), our models improve the interpretability and accuracy of the models in the

xi

temporal dimension through the advantages of Gate Recurrent Unit (GRU) and

Temporal Convolutional Network (TCN) in the temporal dimension feature

processing. Combined with the powerful extraction capability of the graph

convolutional neural network module for spatial dimensional features, the models'

general applicability and prediction accuracy are enhanced. On this basis, this thesis

uses the self-attention mechanism to enable the models to capture the dynamic

dependence of traffic flow data in temporal and spatial dimensions, thereby further

improving the prediction accuracy of the models.

In this thesis, the models are tested on two real traffic flow data sets. The simulation

results confirm that the models can be effectively used for traffic flow prediction, and

the prediction accuracy is better than other similar methods. Especially when the

prediction step is long, the models have more obvious advantages in prediction

accuracy. Due to the advantages of the GRU module in sequence data processing and

the ability of the attention mechanism to extract dynamic dependencies between

nodes, the MST-AGCRN model has higher prediction accuracy than other models we

proposed. At the same time, the MST-AGCTN model has higher complexity and

more parameters, and its performance is lower than expected. It needs further research

and exploration.

1

Chapter 1

Introduction

In recent years, with the continuous growth of car ownership, traffic problems have

become increasingly prominent. Driven by this background, ITS (Intelligent

Transport Systems) [1] has become a research hotspot in the field of transportation as

a technical means and management thinking that can effectively solve traffic

problems. Among them, traffic flow prediction is an important research topic in the

field of intelligent transportation. Traffic flow prediction can provide rich decision-

making information support for the construction of major ITS basic components and

play an important role. Since the 1960s, many scholars have carried out relevant

research work in the field of traffic flow prediction. Based on these studies and the

differences in the methods used, the existing traffic flow prediction models can be

divided into classical statistical theories and analytical models, traditional machine

learning methods, and deep learning methods.

With deep learning, breakthroughs have been continuously made in learning tasks

such as natural language processing and computer vision. In recent years, in terms of

traffic flow prediction, deep learning methods have achieved better results than the

other two methods[2]. For example, Lv et al. [3] proposed a new deep learning-based

traffic flow prediction method in 2014, which considers the temporal and spatial

correlation of traffic flow. Since then, based on the temporal and spatial correlation of

traffic flow, the use of deep learning methods to study traffic flow prediction

problems from the perspective of temporal and spatial feature mining has become an

effective and promising research direction for deep learning in traffic prediction [4, 5].

Research believes that by mining the temporal and spatial patterns of traffic flow data,

accurate prediction of the basic parameters of traffic flow can be achieved. To realize

the effective operation of the intelligent transportation system. However, from the

2

perspective of machine learning algorithms, the complexity of spatiotemporal data

poses a major challenge to existing machine learning algorithms. The complexity is

caused by the irregularity and non-Euclidean structure of spatial-temporal data. From

this perspective, the research direction further focuses on graph neural networks.

GNN [6] (compared to the convolutional and recurrent neural network) can better

process traffic flow data generated from non-Euclidean domains. Therefore, it has

become a popular and cutting-edge research direction to establish a time-space model

through graph neural networks to solve traffic flow prediction problems. Among the

latest research results in this field, the application of GNN reduces the complexity of

ML(machine learning) algorithms and improves the accuracy of predictions.

In summary, how to apply graph neural networks to the field of traffic flow prediction

to capture the spatial and temporal dependence of road networks. How to enhance the

learnability and universal applicability of predictive models. How to improve the

prediction accuracy of the prediction model. These three questions will be the key

research directions of this work.

1.1 Background

With the need for social development, people began to pursue more convenient and

smooth transportation. Moreover, the acceleration of urbanization has led to the rapid

growth of vehicles, which has led to increased traffic pressure. According to the New

Zealand Ministry of Transport statistics, New Zealand had 4.4 million vehicles in

2019. Since 2012, the number of vehicles has increased at a faster rate, with an

increase of 23% in 10 years [7]. As the number of motor vehicles grows, the problem

of traffic congestion has become more and more obvious. Take Auckland as an

example. Due to various demographic and economic factors, motor vehicles have

increased significantly, and traffic congestion has become increasingly serious.

In Auckland, highway commuters lost an average of 85 hours due to congestion in

2018, compared with 79 hours in 2017[8]. Moreover, traffic congestion has become

one of the most common problems in the transportation system all over the world. It is

3

closely related to the government's urban planning and construction, and people's life

and travel [9]. Traffic congestion has caused serious economic losses and has a great

negative impact on city management and personal health. In terms of the work and

life of urban residents, traffic congestion affects passengers' itineraries, prolongs

passengers' travel time, and causes many inconveniences. In terms of urban

environmental construction, traffic congestion leads to vehicle fuel waste and air

pollution and increases the risk of traffic accidents[10]. In terms of personal health, it

will increase mental stress and cause anxiety. Anxiety about traffic jams can cause

people to have bad psychological and physical reactions. Negative reactions such as

increased blood pressure, irritability, and decreased tolerance [11].

Therefore, improving traffic conditions and alleviating traffic congestion has become

an urgent problem in the development of major cities. ITS can solve these problems

well. It can grasp the traffic situation on the road in time and even predict traffic flow

information such as the traffic flow in the future time period. In that case, it can make

diversion measures in advance, conduct reasonable dredging of road vehicles, and

reduce or even avoid road traffic congestion.

Some cities have formulated a series of traffic management policies according to local

conditions to alleviate the traffic pressure in cities and reduce traffic congestion. For

example, Beijing, China, has implemented measures to restrict travel with license

plate numbers, effectively controlled the total number of vehicles on the road,

alleviated traffic congestion to a certain extent, and reduced vehicle exhaust pollution.

Some cities control traffic in certain areas and restrict certain vehicles during working

days, such as Hangzhou and Shanghai in China. This series of measures can

effectively reduce traffic congestion and reduce the negative impact of traffic

congestion. However, it also inconveniences residents' travel to a certain extent, so

there are certain limitations [12].

In recent years, computer software and hardware technology have developed rapidly.

Machine learning, deep learning and artificial intelligence theory and application

4

technology are gradually maturing. These factors provide strong support for

researchers to study ITS from the field of artificial intelligence and apply intelligent

information and communication technology to provide services for transportation and

management [13].

Intelligent transportation systems are committed to using intelligent methods to

improve traffic conditions. As the most basic reference for traffic control, traffic flow

has become the focus of research in ITS. In response to this problem, many global

companies and research institutions (such as Uber and Google and China's Didi

Chuxing, Ali and Huawei) have conducted in-depth research based on the

characteristics of their fields[14]. For example, Didi Chuxing collects the travel data

of Didi drivers to mine the temporal and spatial characteristics of urban traffic system

data to build a better route recommendation system and save users waiting time due to

traffic jams. Another example is Google, which provides map services around the

world. Its Map App can collect traffic conditions on traffic roads and promptly remind

drivers of the congestion conditions of various road sections to make better choices.

In summary, in ITS, traffic flow is a basic and important indicator. Normal traffic

flow is a key parameter of the smooth operation of the entire transportation system.

When the traffic flow is too large, it will cause traffic congestion and environmental

pollution. At the same time, this will also increase the risk of traffic accidents, and in

severe cases, it will affect the normal operation of the city and even cause traffic

paralysis. Therefore, if the traffic flow can be effectively and accurately predicted in

advance, the flow can be adjusted and traffic controlled before the traffic congestion

occurs. This is conducive to eliminating traffic safety hazards and providing accurate

information support for passengers' travel. This will also help guide passengers to

arrange travel reasonably and reduce travel costs. Therefore, accurate traffic flow

prediction can help the development of intelligent transportation systems. It can

fundamentally reduce various losses caused by traffic congestion and has great

practical significance.

5

1.2 Motivation

This thesis aims to study how to effectively and efficiently use huge and complex

traffic flow data to build a traffic flow prediction model and use the model to make a

more accurate prediction at a certain spatial and temporal dimensions in the future. As

mentioned above, accurate traffic flow prediction can provide information support for

ITS, which is significant for solving traffic congestion problems and boosting the

development of intelligent transportation. Moreover, traffic flow prediction can

provide rich decision-making information support for the construction of major basic

components of ITS, and play an important role in it [14].

Traffic flow is a nonlinear time series, and its changes are affected by many factors,

such as weather conditions, date, time, emergencies, traffic congestion. Therefore,

traffic flow prediction is very challenging research work. Due to the upgrading of

computer hardware technology, the widespread application of data acquisition

equipment, and the popularization of Internet of things (IoT) [15] applications, a large

amount of data is generated in the transportation system. Including vehicle GPS

position data, trajectory data, people travel record data, these data have laid a data

basis for the development and research of ITS. It also provides necessary information

input for traffic flow prediction and improves its feasibility and reliability.

Utilize the huge data set of actual traffic flow information and its outstanding spatial

and temporal characteristics. Establish a traffic flow prediction model through deep

learning-related technologies, and use this as a basis to predict the future traffic flow

in different regions. Such an accurate traffic flow prediction model also plays an

irreplaceable role in the urban ITS and can solve some of the existing traffic problems:

(1) Statistics and prediction of traffic flow data can provide an important basis for

road network planning. So as to better improve the city's intelligent transportation

system.

(2) Real-time prediction of traffic flow in different areas of the transportation network

6

can provide immediate data source support for the urban intelligent transportation

system. In this way, the reasonable traffic flow distribution can be realized, and the

prevailing traffic pressure can be alleviated.

(3) Through real-time prediction, it is possible to grasp the trend of changes in urban

traffic flow, make arrangements in advance for upcoming traffic problems, and

improve the ability to deal with emergencies that may exist in urban traffic.

1.3 Contribution

There are three main deficiencies in the existing traffic flow prediction research

models. First, many research models cannot effectively consider the temporal and

spatial correlation between the time series in the traffic flow data and the spatial nodes.

There is a lack of comprehensive extraction of data features in spatial-temporal

dimensions. Some models ignore the temporal characteristics of the data when

extracting spatial features effectively. Vice versa. The second is that many studies

have neglected the dynamic dependence of traffic network nodes and the periodic

characteristics of traffic flow. When some research models use feature data, they

ignore that the dependency relationship (influence weight) between nodes will

dynamically change with time. Third, the existing models have the shortcoming of

insufficient interpretability when extracting time series features. They ignore the

causality in time or lack the extraction and use of the ‘past moment’ features.

This thesis focuses on the establishment of a traffic flow prediction model through the

deep neural network method. To be precise, it is the design and establishment of a

depth graph neural network model based on time and space. Traffic flow prediction is

a typical spatial-temporal data prediction problem, and data has a strong correlation in

both temporal and spatial dimensions. Moreover, this correlation will change

dynamically with time, space and other factors. Therefore, this thesis proposes a

traffic flow prediction method based on graph convolution/recurrent neural network

and the Self-attention mechanism through the modeling idea of graph neural network

to solve the spatial and temporal dependence in the prediction process. The attention

7

mechanism is used to strengthen the model's ability to predict dynamic traffic flow.

The main research contributions of this work are summarized as follows:

(1) Divide the periodic dependence of traffic flow data and carry out quantitative

analysis of periodic dependence. This work divides the periodic dependence of predict

data into three types of time components: recent dependence, daily periodic

dependence and weekly periodic dependence. To quantitatively analyze the influence

of these three groups of temporal-dependent components on the predicted time period,

this thesis selects the data in a certain time period from the Simulation data set for

Pearson correlation analysis. This work thus quantitatively analyses the degree of

periodic relevance of traffic flow data, rather than merely dividing periodic

components based on experience. This has improved the credibility of the prediction.

On this basis, this research adopts a reasonable data dimensionality reduction strategy,

which reduces the complexity of input data and the complexity of model calculations.

(2) Through selecting the data set and the comparative study with the existing traffic

flow prediction models, the feasibility of the modeling ideas in this work and the

practicability and significance of the established models are clarified. Many

researchers tend to use more complex neural network architecture to study traffic flow

prediction problems in the existing research. However, these methods artificially

increase the complexity of the single-layer neural network and invisibly increase the

uncertainty of the prediction model and the difficulty of data processing. While they

increase the computational cost, they may not necessarily enhance the accuracy of the

prediction. This research uses the most basic and simple ideas of deep neural

networks to reduce the complexity of each layer of neural networks. On this basis, the

receptive field of the model is expanded by increasing the depth of the neural network

model. Using the depth of the graph neural network module to capture the deeper

hidden dependencies of the road network spatial-temporal data. Moreover, the use of

residual connection makes the deepening of the network without gradient dispersion

and network degradation problems. In this way, the richness and dimensionality of the

eigenvalues of the input to the fully connected layer are increased. It is possible for

8

the models to capture the hidden relationship of the eigenvalues.

(3) A graph neural network model based on time and space for traffic flow prediction

is established in this research. Based on the research of existing traffic flow prediction

methods and models, this thesis proposes some modeling methods for graph neural

network based spatial-temporal traffic flow prediction. This thesis guides the research

and design of the model through two themes. One is to build an efficient neural

network by weighing the calculation time cost of the prediction model and the

prediction accuracy. The second is to enhance the learnability and universal

applicability of the prediction model by introducing the self-attention mechanism.

This thesis uses the self-attention mechanism of temporal and spatial separation to

capture traffic flow data's temporal and spatial dynamics from a more detailed

dimension. Furthermore, using this method to reduce the interference of other non-

strongly correlated factors on the prediction results.

In summary, this study compares with other models by establishing a simpler but

deeper graph neural network model. Through quantitative analysis of data, this work

selects more important data features as the input of the model to reduce the input of

redundant features. By reducing the dimensionality of the input data, the

computational overhead is reduced. By selecting the same data set to compare with

other models in terms of prediction accuracy, it proves the correctness and

advancement of this thesis in feature extraction and modeling of traffic flow

prediction model.

9

1.4 Thesis Structure

Figure 1.1 Thesis structure

The structure of the thesis is shown in Figure 1.1. This thesis mainly includes the

introduction of relevant background knowledge, the design of graph neural network

model for traffic flow prediction, the verification of simulation research and the

comparison with the baseline method. The chapters of the thesis are arranged as

follows:

Chapter 2 introduces the related basic theories used in the research process of this

thesis. Mainly surveys related theories and models of traffic flow prediction research.

Then, the related knowledge of neural networks is studied and discussed. Finally,

three important theoretical knowledge points are further elaborated: graph

convolutional neural network, self-attention mechanism and residual network.

Chapter 3 proposes three modules to solve the traffic flow prediction problem. These

three modules are mainly used to solve the gaps in previous research and improve the

model's prediction accuracy and universal applicability. The models we proposed are

mainly composed of three modules. The first module is the feature analysis and

periodic data fusion module. The second module is two models based on spatial-

10

temporal graph convolution. In this module, this thesis uses MST-GCRN (Multiple

layers Spatial-temporal aware Graph Convolutional Recurrent Network model) and

MST-GCTN (Multiple layers Spatial-temporal aware Graph Convolutional and

Temporal Convolutional Network model) to extract high-dimensional spatiotemporal

features. The third module is two improved models that have added a self-attention

mechanism. MST-AGCRN and MST-AGCTN based on the self-attention

mechanisms are used to extract more powerful high-dimensional spatial-temporal

features of traffic flow data.

Chapter 4, we conducted extensive simulation research on the four proposed graph

neural network-based models. The performance of the models proposed in this thesis

is evaluated by comparing some baseline methods. By predicting and evaluating

criteria, the performance of these models on the same data set is compared objectively

with the models proposed by this thesis. At the same time, to verify the importance of

spatial-temporal dual-module modeling, this chapter specifically demonstrates the

influence of spatial correlation modeling and temporal correlation modeling on

prediction accuracy through the model's actual performance in this aspect. Finally, the

performance of the model in training is also mentioned. Through the different

performances of the TCN and the GRU modules in terms of time performance, we

discussed our basic modeling ideas, the rationality and feasibility of modeling, and the

models' deficiencies.

Chapter 5 gives conclusions and future work. We discussed the in-depth

understanding of this research field, some possible future research directions, and key

links that require further research.

11

Chapter 2

Background

This chapter introduces the relevant basic theories used in the research process of this

thesis. Firstly, it surveys the related theories and models of traffic flow prediction

research. Including the classification of research methods, the existing modeling

methods of traffic flow prediction, and the understanding of spatial-temporal data.

Then, from the perspective of establishing the temporal and spatial model of traffic

flow prediction, the related knowledge of neural networks is introduced, including

convolutional neural network (CNN), recurrent neural network (RNN), graph neural

network (GNN). Finally, based on the actual needs of this thesis, the three important

theoretical knowledge points are further elaborated: graph convolutional neural

network, attention mechanism and residual network.

2.1 Overview of Traffic Flow Prediction

Over the years, many scholars have carried out relevant research work in the field of

traffic flow prediction. Their research includes a variety of traffic flow prediction

scenarios, such as urban geographic area passenger flow forecast, urban subway

station passenger volume forecast, and urban bus station passenger volume forecast

[16, 17], high-speed rail station passenger volume forecast [13], expressway traffic

flow predict, expressway traffic speed predict [18]. Among them, traffic flow

prediction and traffic speed prediction are often unified as traffic flow prediction

problems.

These studies respectively proposed various effective and novel models and methods

for the prediction scenarios and achieved a series of fruitful research results. With the

rapid development of computer and information technology in recent years, more and

more different types of traffic flow prediction methods and related technologies have

12

been proposed [5]. For example, some algorithms related to parameter optimization,

particle swarm optimization, genetic algorithm. have also been used by researchers to

predict traffic flow. Furthermore, many artificial intelligence algorithms have

achieved good results.

Based on these studies, according to the differences in the methods used in traffic

flow prediction, the existing traffic flow prediction-related models can be divided into

three categories: classical statistical theories and analytical models, traditional

machine learning methods, and deep learning methods. Figure 2.1 shows the

classification diagram of the traffic flow prediction models.

Figure 2.1 Classification of traffic flow prediction models

2.1.1 Classical statistical theories and analytical models

Among the classical statistical theories and analytical models, the simplest and most

direct method is the History Average (HA), which calculates the average value of

traffic flow during a certain period of history as the future traffic flow’s predicted

value. This method is simple, easy to understand, easy to implement, and has a certain

reference value for future traffic predictions. However, it cannot consider the impact

13

of random and unexpected events on traffic flow, and its accuracy is low. Models

based on statistical methods are earlier methods used for traffic flow prediction.

Stephanedes et al. [19] first published the use of HA models for traffic control.

Ahmed et al. [20] used time series related knowledge to establish a prediction model

for this field. R.E.Kalman et al. [21] proposed a model based on the Kalman filtering

algorithm. Okutani et al. [22] considered the impact between a road segment to be

predicted and a road segment in a surrounding area. They then established a

prediction model through the Kalman filter algorithm. At the same time, to improve

the model parameters, they used a large number of prediction error corrections. Some

scholars also use classic time series prediction models to predict traffic flow, such as

vector autoregressive model (VAR) [23], autoregressive moving average model

(ARMA) [24], autoregressive integrated moving average model (ARIMA) [25, 26]

and its variant models, such as stationarity ARIMA and seasonal ARIMA [26]. These

classical time series methods belong to Parametric Models, which assume that the

value of the time series at time 𝑡 depends only linearly on its historical observations

and random noise. When realizing, forecasting is made by mining the law of the

traffic flow in the time dimension from the historical time series of the traffic flow.

This type of method generally achieves good results when the time series has a certain

periodicity or regularity. However, the traffic flow sequence in the real traffic scene is

affected by many factors and has strong randomness and uncertainty, so the prediction

accuracy of this type of method is not good. In addition, this type of method is

difficult to integrate other environmental data for traffic prediction.

2.1.2 Traditional machine learning methods

The rapid development of artificial intelligence and big data has performed well in

various fields in recent years. More and more research teams are also applying

traditional machine learning methods to traffic flow prediction. These models can

continuously adjust the parameters to the optimal through adaptive learning to obtain

more accurate calculation results. The addition of machine learning technology makes

14

it possible to use relatively little data to predict traffic flow models.

In traditional machine learning methods, some scholars use K-Nearest Neighbours

(KNN) to predict traffic. For example, Zheng et al. [27] calculated geographic

locations with similar traffic conditions through KNN. Then combine its flow to make

short-term forecasts. The biggest disadvantage of this method is that it is difficult to

determine the best value of the parameter K, that is, the number of nearest neighbors.

Some scholars use integrated models to predict traffic flow. For example, Wei et al.

[28] combined Empirical Model Decomposition (EMD) with BP (Back Propagation)

neural network to predict subway pedestrian flow. In addition, Support Vector

Machine (SVM) model is widely used in short-term traffic flow prediction. Its

working principle is to establish a hyperplane in high-dimensional space to solve the

non-linear classification problem, so as to achieve a more accurate classification

effect. Jiang et al. [17] combined Ensemble Empirical Mode Decomposition (EEMD)

and Gray Support Vector Machine (GSVM) to predict short-term high-speed rail

traffic. Later, Sun et al. [29] put forward a wavelet support vector machine (Wavelet-

SVM) for short-term traffic prediction in subway stations. These integration methods

mainly model nonlinearity from the perspective of the time dimension of the sequence.

However, it does not consider the direct correlation between traffic flow sequences in

spatial dimensions. The model capacity is limited, and it is not easy to expand.

2.1.3 Deep learning methods

1. Deep learning based prediction methods

As deep learning has continuously made breakthroughs in learning tasks such as

natural language processing and computer vision [29], scholars have begun to study

how to apply deep learning technology to traffic flow prediction tasks. They

combined classic time series prediction and traditional ML methods for traffic flow

prediction to improve the accuracy of the forecast. Liu et al. [30] manually construct

feature vectors of different factors and then input them into a deep feedforward neural

network to predict traffic flow. This method assumes that the input elements are

15

independent of each other and requires a lot of feature engineering. To learn the

relationship of traffic sequence in time, some scholars[31, 32]use RNN time series

prediction models and its variant models (Long-Short Term Memory (LSTM)[33],

GRU[34]) for traffic flow prediction. Some scholars who combine RNN models with

traditional machine learning methods[35]. Although RNN models can capture the

sequential connections of traffic flow in the time dimension and have good scalability,

they cannot process sequences based on specific spatial relationships between

sequences. To consider the temporal and spatial correlation of traffic flow at the same

time, some scholars try to study traffic flow prediction from the perspective of

temporal and spatial feature mining. For example, Zhang et al. [36] divided the urban

area into grids of equal size to calculate the regional inflow and outflow, and designed

a deep spatial-temporal residual network model ST-ResNet to predict the inflow and

outflow in each region, and achieved good prediction results. This research also

provides new ideas for other researchers. Inspired by the ST-ResNet model, Jin [37]

constructed the STRCNs model, combined CNN and LSTM to capture regional

traffic's temporal and spatial dependence, and achieved better prediction results than

the ST-ResNet model. In addition, Yao et al. [38] simulated spatial-temporal

dependent traffic prediction models by integrating CNN and RNN (LSTM) models

and subsequently proposed spatiotemporal dynamic networks based on the similarity

between dynamic learning locations [39]. Although these models can reasonably

consider the spatial-temporal correlation between the flow of urban areas and extract

rich spatial-temporal features, they can only process Euclidean structure data and are

not suitable for non-Euclidean structure data.

Therefore, some scholars later studied how to apply graph convolution technology to

spatial-temporal data mining. Seo et al. [40] proposed graph convolutional recurrent

networks based on graph convolution and recurrent networks, but it is difficult to find

the most suitable combination model to optimize the prediction task. Zhao et al. [41]

embedded graph convolution into the gated recurrent network as a feature extraction

unit to extract the traffic network's spatial features and apply it to the real traffic data

16

set to achieve good results. However, because it uses the early Graph Convolutional

Network (GCN) model, the model space feature extraction capability is limited, and

the model calculation speed is slow. Li et al. [42] fused graph convolution with GRU

to capture the temporal and spatial dependence of traffic flow, designed a DCRNN

(Diffusion Convolutional Recurrent Neural Network) model and performed long-term

prediction based on the Encoder-Decoder framework. Yu et al. [43] designed a

spatiotemporal graph convolution model STGCN based on GLU (Gated Linear Units)

[44]. Using graph convolution and gated convolution to capture the spatiotemporal

dependence of vehicle speed on each section of the highway. It works well, and the

training time of this model is much shorter than that of the DCRNN model. Later,

Diao et al. [45] improved their models based on Yu's work, designed a Laplacian

matrix estimator and proposed a dynamic graph convolutional neural network model-

DGCNN. Guo et al. [18] modeled the correlation between the targeted traffic to be

predicted and its recent traffic, daily periodic traffic, and weekly periodic traffic, and

introduced a spatiotemporal attention mechanism to capture the spatiotemporal

correlation between nodes. These methods consider the spatial correlation between

nodes from the perspective of the positional relationship between nodes. They are

based on a static road network structure and capture the correlation between node

traffic flows according to the low-order neighboring nodes of each node. And learn

the spatial feature representation of the node according to the correlation. Later, some

scholars used multiple graphs to solve spatial-temporal data mining tasks. For

example, Chai et al. [46] applied multi-graph convolution to bicycle rental traffic

prediction. Geng et al. [47] used urban areas as nodes. Based on POI information

(point of interest) and road connectivity, multiple graphs are constructed. In addition,

the combination of recurrent neural network and graph convolution is used to predict

the demand for taxi rides by passengers in various regions. However, these multi-

graph convolution models only use the graph structure to learn the embedding

representation of the site, ignoring the dynamics of the relationship between the nodes,

and do not consider the high-order correlation between the embedding representations

17

learned by the nodes on different graph structures.

2. The relationship between deep learning and spatial-temporal data mining

The main research direction of this thesis is the prediction of traffic flow. Traffic flow

prediction is a typical spatiotemporal data mining problem. Therefore, this section

will introduce the concepts and theoretical knowledge related to time and space

involved in Deep learning research.

(1). Understanding of spatial-temporal data

Temporal data, also known as time series, is a data series formed by the same

phenomenon at different times. Data in the real world is often related to time, and a

series of observations obtained in chronological order is called time series data.

Common ones are temperature changes, stock prices. There are many mature time

series mining algorithms [48] to obtain the rich information contained in time series

data.

Spatial data, data with spatial coordinates, is a special type of data that can

quantitatively describe things or phenomena with positioning significance. For

example, the geographic location and distribution characteristics of objects.

Spatial-temporal data is spatial data that has temporal elements and changes with time.

For example, online car-hailing order data has time attributes when the order is

created and contains spatial information [49]. It has obvious spatial distribution

characteristics and the characteristics of huge amounts of data, nonlinearity, and time-

varying.

With the advancement and development of data collection equipment and methods,

relevant spatial-temporal data can be effectively collected for research content in

various fields. It lays a data foundation for the development of spatiotemporal data

mining (STDM) algorithms and models. For example, traffic flow prediction is a

typical spatial-temporal data mining problem. To serve the final prediction task,

researchers need to analyse relevant data from time and space dimensions to mine the

18

spatial-temporal information in each measurement data.

(2). Spatial-temporal data mining

In modern human social life, complex behaviors bring about the accumulation of

temporal and spatial data. This kind of spatial-temporal data can be deeply excavated

to reveal human social life. For example, it is possible to mine the user's travel

trajectory and travel rules through mobile behavior and provide services such as

location prediction and location recommendation [50, 51]. Social behaviors can be

used to apply social spatiotemporal data for identity recognition and social

relationship inference. The urban calculation of population flow can be carried out

through migration behavior, and the interpretation and prediction of cluster behavior

can be carried out through the analysis of cluster behavior. There are many kinds of

spatial-temporal data in actual scenes, among which common spatial-temporal data

can be divided into three categories: Event Data, Trajectory Data, and Raster Data.

1). Event Data

Generally speaking, any event can be represented by a point in time and location,

where location and time respectively represent the location and time of the event. It is

simply denoted as (𝑙𝑖 , 𝑡𝑗). In addition to the information of time and space dimensions,

each event also contains other non-temporal information. For example, the event

involves information about the type of events, such as the crowd and the nature of the

event. There are three types of events A, B, and C, as shown in Figure 2.2. Since an

event is not always a point object, other geometric figures can be used to describe it.

Such as linear, polygonal. For example, a forest fire can be represented by a spatial

polygon, which represents the affected area. Similarly, events generally do not exist at

a certain instant in time but correspond to the start and end times. Therefore, the time

in the spatial-temporal point generally represents a certain period of time

corresponding to the event's occurrence.

19

Figure 2.2 Three kinds of events [42]

2). Trajectory Data

The trajectory is the path left by the target moving in space over time. For example,

the trajectory of the taxi from the place where passengers boarded to the place where

they got off the vehicle, the trajectory of animal migration. Generally, trajectory data

is collected by sensors installed on moving objects. These sensors regularly transmit

location information of moving targets. For example, a taxi can obtain its driving

trajectory through GPS positioning data. The trajectory data generally contain other

types of information about the moving target in addition to the position information

that changes over time. For example, the vehicle's speed information during the

driving process, the heartbeat rate of the person during the running process, and other

information. Trajectory data is often used in applications such as transportation and

ecological science.

3). Raster Data

Figure 2.3 Regular space

20

In raster data, every observation in the spatial-temporal domain is recorded in a fixed

unit in the spatial-temporal grid. Raster data generally corresponds to a set of fixed-

position objects, denoted as 𝑆 = {𝑠1, 𝑠2, … 𝑠𝑚} . These location objects can be

regularly distributed in space, and a constant distance between adjacent objects is

maintained. It is similar to the distribution of elements in the image, as shown in

Figure 2.3. It can also be distributed irregularly in space, such as an intersection

sensor network, as shown in Figure 2.4. For each location object, the raster data

records all its observations in a fixed set of time stamps 𝑇 = {𝑡1, 𝑡2, … 𝑡𝑛}. Adjacent

time marks can be either a fixed time interval or an unfixed time interval. The

Cartesian product of the location object collection, the timetable and the collection

forms the spatial-temporal grid 𝑆 × 𝑇 corresponding to the raster data. Each value

(𝑠𝑖, 𝑡𝑗) in the network corresponds to a measurement value.

Figure 2.4 Irregular space

In addition, another characteristic of spatial-temporal data is that data has many

characteristics. To solve problems of these kinds, a variety of information is needed.

For example, predicting road traffic conditions, the available data features include

many kinds, such as traffic flow, average lane occupancy rate, average road speed,

and external factors such as weather and natural disasters. Therefore, the application

of deep learning in spatiotemporal data mining is more difficult. It is very different

from image recognition only based on image data, and voice recognition only needs to

be based on voice data. The type and quality of data required by it vary, and it also

requires preprocessing. Therefore, it is necessary to use a neural network capable of

learning graph structure to mine complex data and perform deep learning tasks.

21

(3). Deep Learning based Spatial-temporal Data Mining

Through the overview, deep learning is currently the most advanced and effective

method and model in the field of traffic flow prediction research. According to the

previous analysis, the ability of deep learning in spatiotemporal data mining is

significantly stronger than the other two models and methods. Compared with

classical statistical models and traditional machine learning, deep learning can not

only learn the characteristics and correlation of spatiotemporal data but also does not

require the manual design of features. It can mine more complex features in spatial-

temporal data. In addition, deep learning is better at dealing with complex spatial-

temporal data problems. By deepening the network, extracting features from shallow

information for analysis and integration, generating deeper features has great

advantages for solving complex time-space mining problems in reality.

In the next sections of this chapter, this work focuses on the field of deep learning. It

mainly introduces related concepts based on deep neural networks and related

principles and technologies of traffic flow prediction based on graph neural networks.

First, an overview of traditional neural networks, such as CNN and RNN. Then

introduce the basic knowledge of GNN. Third, based on the focus of this thesis, we

introduce the graph convolutional network (GCN) used to capture the spatial

dependence of the traffic flow of the road network. Finally, a brief description of

multilayer perceptrons, RNN, and common RNN variants (LSTM, GRU) captures

temporal dependence in traffic flow prediction.

2.2 CNN based Traffic Flow Prediction Models

Convolutional Neural Network (CNN) is a highly efficient deep learning recognition

method. It has developed rapidly in recent years and has attracted widespread

attention. It is a deep feedforward neural network with the characteristics of local

connection and weight sharing[52]. The first scene where researchers used

convolutional neural networks was Yann Lecun's application in handwritten data

recognition [53]. Then in the following years, CNN began to be widely used in

22

various fields. It is mainly used in various image and video analysis tasks, such as

general image classification, face and object recognition. Its accuracy is generally far

beyond that of other neural network models. Research shows that convolutional

neural networks perform well in application scenarios such as image recognition,

natural language processing, and speech recognition. Its characteristic is that it can

automatically capture the characteristics of the image by using the convolutional layer.

The model reduces the cost of manually extracting features, and at the same time,

greatly improves the accuracy of image recognition. It reduces people's dependence

on image recognition related knowledge and improves the application value of the

model.

2.2.1 Structure of convolutional neural network

Generally speaking, CNN is a kind of feedforward neural network formed by the

cross stacking of convolutional layer, convergence layer and fully connected layer.

The structure of a CNN has three characteristics: local connection, weight sharing and

sub-sampling. These three characteristics make the CNN has certain translation,

scaling and rotation invariance capabilities. Compared with ordinary neural networks,

CNN has fewer parameters, and the training process is completed by backpropagation

algorithms.

Convolutional neural networks are very similar in structure to ordinary artificial

neural networks, and both are composed of neurons that can learn weights and biases.

First, each neuron will receive some input, and then it will do some dot product

operations. The output of the CNN is the score corresponding to each category. In this

process, some computational skills are the same as ordinary neural networks.

23

Figure 2.5 Convolutional neural network structure (image recognition) [54]

As shown in Figure 2.5. It is a convolutional neural network structure applied in the

field of image recognition [54]. The structure consists of an input layer, four

convolutional layers, three pooling layers, a fully connected layer and a SoftMax layer.

As can be seen from the figure, CNN is a deep learning model with clear hierarchies.

The input is raw data such as RGB images. The principle of CNN is to extract the

deep information hidden in the original data from the input layer after a series of

operations such as multiple convolutions, pooling, and activation function processing.

The final result is the local characteristics of the original data. Generally speaking,

when dealing with classification problems, to be able to judge the category of the

image by the probability accurately, it will finally use a SoftMax operation. This

operation can transform these local features into probability distributions. In

convolutional neural networks, different operations are represented by "layers". For

example, in a CNN, a convolutional layer is used to implement a convolution

operation, and a pooling layer is used to complete the pooling operation. The

convolutional layer and pooling layer are commonly used network layers in

convolutional neural networks, and their characteristics are as follows:

1. Convolutional layer

The convolution operation is one of the most basic operations in convolutional neural

networks. It is also a core point of difference between convolutional neural networks

and ordinary artificial neural networks. Furthermore, convolution is an important

24

operation commonly used in analytical mathematics. Usually, one-dimensional

convolution or two-dimensional convolution is used to process signals or images. In

particular, two-dimensional convolution is often used for image processing. Because

the structure of the image is two-dimensional, one-dimensional convolution needs to

be extended. The essence of two-dimensional convolution is to use a convolution

kernel matrix to slide on the image matrix. After each sliding, the product of the

pixels in the overlapping part of the image and the matrix is added to obtain an output

value. It finally got a new image[55]. Figure 2.6 shows an example of a convolution

operation. Assuming that the input image A represents a 3𝑋3 matrix, the

corresponding convolution kernel B represents a 2𝑋2 matrix. Assuming that every

time a convolution operation is passed, the convolution kernel will slide one pixel,

that is to say, the step size of the convolution is 1.

Figure 2.6 Convolution operation

As shown in Figure 2.6, the first convolution operation starts from the (0,0) position

of the input image. First, the original image parameters and the corresponding

convolution kernel parameters are multiplied bit by bit. Second, add the numbers

obtained in the first step to get the result 37. Then, according to this calculation

method, let the convolution kernel perform convolution operations on the original

input image from left to right and from top to bottom according to the corresponding

step size. The final output result is a 2𝑋2 output. And this output will be used as the

input of the next layer of operation. When there are multiple convolution kernels, the

output is a three-dimensional tensor. Among them, the depth of the three-dimensional

tensor is exactly equal to the number of convolution kernels.

25

Generally speaking, natural images have fixed features, so this feature learned in a

certain part of the image can be extended and applied to other parts of the image. The

convolution operation is to operate through a certain number and size of convolution

kernels in each position of the entire image to obtain the information of each part of

the original image in turn. It is a local operation so that the convolution operation can

be used for image processing well.

2. Pooling layer

After the original image undergoes a convolution operation, the characteristic image

obtained will have certain static information. The pooling operation is to perform

statistical operations on the feature images obtained by the convolution operation.

Pooling, on the one hand, needs to reduce the size of the network feature image. On

the other hand, it also needs to retain the important information in the feature image.

The feature image obtained after a convolution operation of the original image and the

size before the convolution operation does not change much. If the convolution

operation continues during the training process, it will cause a huge amount of

calculation.

Moreover, the difficulty of network training will increase as the depth of the network

increases. By using the pooling layer, CNN can reduce the amount of calculation of

the network without sacrificing the original image characteristic information. It can

speed up the network training and reduce the resolution of the image after the

convolution operation.

Pooling operations generally have two methods: max pooling and mean pooling [56].

Mean pooling refers to keeping the average of all pixels in each part divided by the

feature image in each pooling operation. Max pooling refers to keeping the maximum

value of each part's pixels divided by the feature image in each pooling operation. In

addition to these two common pooling operations, another method is random pooling.

Random pooling means randomly retaining the values of all pixels in each part of the

feature image. Figure 2.7 shows a max-pooling operation.

26

Figure 2.7 Max pooling operation

2.2.2 Features of convolutional neural network

The main difference between CNN and the traditional neural network is that CNN has

the characteristics of local connectivity and weight sharing [57].

1. Local connectivity

Generally speaking, for external things, people's cognition is often from the partial to

the whole. Regarding the spatial characteristics of an image, it is generally believed

that the closer the parts of the image are, the higher the correlation. However, the

correlation between parts that are far away will be relatively low. Based on this, it is

not necessary for a neuron to perceive the entire image simultaneously when it

perceives the image. It only needs to associate each part of the image separately. The

idea of local connectivity comes from the structure of the visual system in biology.

For neurons in the visual system, they will only respond to stimuli in certain specific

areas. As an important feature of convolutional neural networks, the local connection

makes the layers of convolutional neural networks not completely connected like

traditional neural networks. The size of the receptive field of the convolutional neural

network is set only to accept signals from a small area. This ensures that the neurons

in the current network layer will only be connected to the pixels in the corresponding

receptive area of the previous layer. Finally, by combining the local information of all

neurons, all the upper layer information is obtained. This feature of local connectivity

makes the convolutional neural network greatly reduce the number of parameters in

27

the network structure [58].

2. Weight sharing

Weight sharing means that although multiple convolution kernels can exist in each

convolution layer, the parameters of the same convolution kernel in each part of the

entire picture are shared. This feature does not change due to changes in the position

of the picture. For an image, the characteristics of any position on the image may

appear in another position of the image. Therefore, the same feature can be perceived

in different positions of the image through weight sharing. For example, for face

recognition, the parameters of the convolution kernel learned by the person's left eye

through recognition can also be used to recognize the person's right eye. The weight-

sharing feature of CNN can reduce the probability of overfitting, and it can also

reduce the network model's complexity and improve its computational efficiency [59].

2.2.3 CNN based traffic flow prediction models

As mentioned earlier, CNN can effectively extract image features through

convolution operations. Therefore, the feature extraction performance of CNN in

Euclidean space is considered to be excellent. Due to the temporal and spatial two-

dimensional properties of traffic flow. In previous research on traffic flow prediction,

CNN was mainly used to extract the spatial correlation of traffic flow data. This is

because the non-Euclidean characteristics of the transportation network make it

difficult to be directly matrixed and applied to CNN. Therefore, researchers often

convert traffic flows at different times into images of the traffic grid structure. Then,

this kind of image is matrixed (grid). Different grids can be used to represent different

traffic areas. In this way, CNN can extract and recognize the spatial data

characteristics of different traffic areas. Different application scenarios, model

improvements, and different understanding of the division of traffic networks or

traffic flow data sets are the three main differences in the application of CNN in the

field of traffic flow prediction.

28

The research of Davis et al. [60] focused on the forecast of taxi supply and demand in

ITS. The study uses fixed-area rectangular cells or variable-area polygonal cells to

grid the transportation network of the entire urban area. On this basis, CNN was used

to extract spatial features separately, and the two models' prediction accuracy was

compared. There are also similar studies on CNN in the field of taxi supply and

demand forecasting [61],[62]and so on. According to the actual needs of the task, the

research has different ideas in the selection and optimization of the input data set.

Guo et al.[63] proposed a new end-to-end ST-3DNet model to extract traffic raster

data. In their research, the researchers added time data to the matrixed two-

dimensional space data to form a new three-dimensional space-time data. Input such

three-dimensional data into CNN and use 3D convolution to capture traffic data's

temporal and spatial correlation. Research on the optimization and improvement of

the CNN model can also be seen in studies such as [64]. Jiang et al. [65]focused on

the prediction research of crowd flow. They built a system called Deep-Urban-Event,

which converts the ever-changing crowd dynamic data in urban areas into a series of

thermal images of traffic. CNN extracts the spatial characteristics of the heat map to

predict the crowd flow trend in each area. Similar research directions can also be seen

in the research of [64]. Lee et al. [66] applied CNN to the demand forecasting field of

online car-hailing. The research proposes an efficient model architecture with a fully

convolutional network and time-guided embedding to learn complex spatial-temporal

features. The research uses this model to predict the future demand for taxis. The

model is mainly optimized and improved on the basic CNN model, using average

pooling and 1-dimensional convolution to meet the actual needs of research.

It can be seen from the above research that CNN has advantages in processing

rasterized network data. Therefore, many researchers apply it in processing spatial

data of transportation networks. However, in terms of specific applications,

reasonably defining the input data in Euclidean space is a difficult point for research.

Therefore, the application of the CNN model in the field of traffic flow prediction has

limitations. Many models and methods perform well in specific scenarios. However,

29

most CNN-based models are not universal. A model that performs well in one task

has a huge drop in performance when applied to other tasks.

2.3 RNN based Traffic Flow Prediction Models

In the feedforward neural network, the transmission of information is one-way.

Although this method of information transmission makes the network easier to learn,

it also weakens the neural network's learning ability. In biological neural networks,

the connection between each neuron is more complicated. The feedforward neural

network can be regarded as a complex function. Each input in the network is

independent. That is to say, the network's output only depends on the current input of

the network. However, in many practical applications, the input of a neural network is

not only related to the input at the current moment but also has a certain relationship

with the output of the network in the past period of time. For example, for a finite

state automaton, its state at the next moment (corresponding to the output of the

network) is not only related to the input at the current moment but also related to the

current state (corresponding to the output of the previous moment in the network).

Therefore, for a static network such as a feedforward neural network, the dimensions

of its input and output are fixed. It cannot handle the situation where the network

output depends on the output at the previous moment. For example, data such as text,

voice, and video. Therefore, a neural network model with stronger learning ability is

needed when dealing with general sequence problems, namely recurrent neural

network (RNN). It can process sequence data of any length because its neurons have

the characteristics of self-feedback regulation. Currently, recurrent neural networks

have been widely used in speech recognition, language models, prediction based on

sequence data, and natural language generation[67-69].

30

Figure 2.8 Structure of RNN[70]

The overall structure of the recurrent neural network is shown in Figure 2.8 [70]. The

structure on the left is foldable and can be expanded on the time step as shown on the

right. Where 𝑋𝑡 represents the input vector at the 𝑡-th time step. 𝑌𝑡 represents the

output vector of the t-th time step. 𝑆𝑡 represents the hidden layer vector at the 𝑡-th

time step. 𝑈, 𝑉, and 𝑊 represent the mapping parameter matrix and are shared in each

time step. The hidden vector 𝑆𝑡 of each time step in the RNN contains the information

of the historical time step. The calculation process of the single hidden layer RNN

model is shown in formulas (2-1) and (2-2), where 𝑓 represents a non-linear activation

function, which can be functions such as tanh and ReLU.

𝑆𝑡 = 𝑓(𝑈𝑋𝑡 + 𝑊𝑆𝑡−1 + 𝑏𝑠) (2-1)

 𝑌𝑡 = 𝑉𝑆𝑡 + 𝑏𝑦 (2-2)

Although the hidden vector of RNN can retain part of the historical time step

information, the RNN model has shortcomings such as insufficient long-term memory,

easy gradient disappearance, or gradient explosion due to its simple structure.

Therefore, some scholars have proposed a variant model - LSTM to improve RNN.

2.3.1 LSTM neural network structure

To solve the inability of RNN to retain long-term memory, Schmidhuber et al. [71]

proposed the LSTM model. On this basis, many researchers have made certain

improvements to the model from the practical application level [72-74]. As shown in

Figure 2.8: LSTM adds three "gates" to control the input, output and hidden layer

31

state information in the RNN. They correspond to input gate, output gate and forget

gate, respectively. Moreover, for the problem of RNN's gradient disappearance,

LSTM also adds a memory neuron to alleviate this problem. The four parts cooperate

with each other to determine memory information or forget information [75].

Figure 2.9 Architecture of a typical vanilla LSTM block[76]

Specifically, suppose 𝑥𝑡 ∈ ℝ𝑛×𝑐 is the current 𝑛 input sequence data with feature

dimension 𝑐, and 𝐻𝑡−1 ∈ ℝ𝑛×ℎ is the hidden layer of the previous time step state.

Then the input gate 𝐼𝑡 ∈ ℝ𝑛×ℎ, the forget gate 𝐹𝑡 ∈ ℝ𝑛×ℎ and the output gate 𝑂𝑡 ∈

ℝ𝑛×ℎ are calculated as follows:

𝐼𝑡 = 𝜎(𝑊𝑖𝑛𝑥𝑡 + 𝑊𝑖ℎ𝐻𝑡−1 + 𝑏𝑖) (2-3)

𝐹𝑡 = 𝜎(𝑊𝑓𝑛𝑥𝑡 + 𝑊𝑓ℎ𝐻𝑡−1 + 𝑏𝑓) (2-4)

𝑂𝑡 = 𝜎(𝑊𝑜𝑛𝑥𝑡 + 𝑊𝑜ℎ𝐻𝑡−1 + 𝑏𝑜) (2-5)

Among them, 𝑊 and 𝑏 are learnable weight parameters and bias terms, respectively.

And the forget gate and input gate control the memory neuron 𝐶𝑡 ∈ ℝ𝑛×ℎ by formula

(2-6):

𝐶𝑡 = 𝐹𝑡 ⊙ 𝐶𝑡−1 + 𝐼𝑡 ⊙ 𝐶𝑡̃ (2-6)

Where ⊙ represents the Hamada multiplication in which the element corresponds to

the multiplication. 𝐶𝑡̃ represents a candidate memory neuron. Use tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

as the activation function:

𝐶𝑡̃ = tanh (𝑊𝑥 + 𝑊ℎ𝐻𝑡−1 + 𝑏) (2-7)

Among them, 𝑊 and 𝑏 are learnable weights and bias items.

32

The information in the memory neuron 𝐶𝑡 will be incorporated into the hidden layer

state 𝐻𝑡 by the output gate 𝑂𝑡:

𝐻𝑡 = 𝑂𝑡 ⊙ tanh (Ct) (2-8)

Among them, ⊙ represents the Hadamard multiplication of the element

corresponding to the multiplication.

In short, it can be obtained from formula (2-6) that the forgetting gate 𝐹𝑡 can control

whether the information of the memory neuron at the previous time step needs to be

integrated into the memory neuron at the current time step. The input gate 𝐼𝑡 controls

whether the input information of the current time step needs to be incorporated into

the memory neuron. For example, when 𝐹𝑡 = 1 and 𝐼𝑡 = 0, then 𝐶𝑡 = 𝐶𝑡−1 , which

means that the information of the historical time step is passed on consistently.

Therefore, LSTM can well capture the long-term dependencies in the sequence, and

the problem of gradient disappearance in RNN will not occur. However, the LSTM

network architecture is too complicated, and there are too many parameters, which

affects the computational efficiency of the model.

2.3.2 GRU neural network architecture

GRU (Gate Recurrent Unit) [77] is a recurrent neural network structure. The main

idea of GRU is the same as LSTM. However, to alleviate the overcomplication of the

LSTM structure, the GRU streamlined it. It simplifies the three “gates” in LSTM into

two “gates”: reset gate 𝑅𝑡 ∈ ℝ𝑛×ℎ and update gate 𝑈𝑡 ∈ ℝ𝑛×ℎ , the calculation

formula is as follows:

𝑅𝑡 = 𝜎(𝑊𝑟𝑛𝑥𝑡 + 𝑊𝑟ℎ𝐻𝑡−1 + 𝑏𝑟) (2-9)

𝑈𝑡 = 𝜎(𝑊𝑢𝑛𝑥𝑡 + 𝑊𝑢ℎ𝐻𝑡−1 + 𝑏𝑢) (2-10)

Among them, 𝑊 and 𝑏 are learnable weights and bias items.

GRU abandons the memory neuron, and directly uses the update gate 𝑈𝑡 to linearly

combine the hidden layer state 𝐻𝑡−1 of the previous time step and the current

candidate hidden layer state 𝐻̃𝑡:

33

𝐻𝑡 = 𝑈𝑡 ⊙ Ht−1 + (1 − 𝑈𝑡) ⊙ 𝐻̃𝑡 (2-11)

The candidate hidden layer state 𝐻̃𝑡 is controlled by resetting the gate:

𝐻̃𝑡 = tanh (𝑊ℎ𝑛𝑥𝑡 + 𝑅𝑡 ⊙ 𝑊ℎ𝑛𝐻𝑡−1 + 𝑏ℎ) (2-12)

Among them, 𝑊 and 𝑏 are learnable weight parameters and bias terms, and ⊙

represents the Hamada multiplication of the element corresponding to the

multiplication.

In short, only the hidden layer state of the previous time step contains historical

information. When the reset gate 𝑅𝑡 = 0, the hidden layer state at the last moment

will be discarded. Therefore, the reset gate can capture the short-term dependence of

the network. When the update gate 𝑈𝑡 = 1 , 𝐻𝑡 = 𝐻𝑡−1 means that all historical

information is retained so that the update gate can control the long-term dependence

of the network.

Figure 2.10 Architecture of GRU block[77]

The basic unit structure of GRU is shown in Figure 2.10. In the figure, 𝑅𝑡 represents

the reset gate, and 𝑈𝑡 represents the update gate. The reset gate can control the hidden

state at the previous moment and control how much information is input into the

current state.

However, whether it is RNN, LSTM or GRU, they are all recurrent structures.

Therefore, when calculating the current output, they must wait for the previous neuron

to complete the calculation and pass the hidden layer state before moving forward.

34

Therefore, the network model of the structure cannot be calculated in parallel on a

large scale like the CNN architecture model.

2.3.3 Temporal convolutional network(TCN) architecture

From the discussion of RNN in the previous section, it can be seen that LSTM, GRU

and other recurrent neural networks can indeed model sequences very well. However,

the recurrent neural network itself has the problems of gradient dispersion and

gradient explosion. Variants such as LSTM and GRU only alleviate the gradient

dispersion problem. At the same time, the recurrent neural network is difficult to

obtain high training efficiency due to its unique calculation method. Because the

output of the RNN at each moment is produced by performing the same operation on

the output at the previous moment. The calculation at the current moment depends on

the calculation result at the previous moment. This inherent characteristic makes RNN

can only calculate serially one by one, which is difficult to parallelize. It is even more

difficult to have a better acceleration effect on the GPU. Therefore, in terms of traffic

flow prediction, some of these shortcomings cause the performance of RNN in all

aspects of this field to fail to achieve the desired effect.

Compared with RNN, CNN allows parallel convolution calculations, making CNN

have a good acceleration effect on GPU. However, traditional CNN has big flaws in

dealing with time series problems. On the one hand, the size of the convolution kernel

is limited. On the other hand, it integrates the past and future time feature information

into the features of the node indiscriminately. To solve this problem, Bai et al.[78]

proposed a new architecture-TCN in 2018, hoping to defeat RNN in a variety of

mainstream RNN applications such as Polyphonic Music Modeling, Word-and

Character-Level Language Modeling. In simulations, comparing it with a variety of

RNN structures, it is found that TCN can reach or even exceed the RNN model on a

variety of tasks. Although RNNs can theoretically have infinite "memory", they are

difficult to train and parallel. Compared with RNN, TCN inherits the advantages of

CNN and has the characteristics of longer "memory" and easier parallelism. Therefore,

35

TCN can take advantage of the parallel computing features of GPU to greatly speed

up the model training process.

Theoretically, TCN[79] discards the value after 𝑡 time in each step of convolution, so

that the output at time 𝑡 depends only on the input before time 𝑡. Therefore, in TCN,

the function of the convolution kernel is to remove part of the information in the input,

leaving only valid information. When the convolution operation does not depend on

future information, it is TCN.

Moreover, it should be noted that TCN is not a single network structure but a type of

neural network that is improved based on convolutional neural networks and used to

solve sequence problems. It involves the idea of causal convolution, expansion

convolution and one-dimensional convolution. Among them, the causal convolution

can be understood as: the time series prediction requires that the prediction 𝑦𝑡 at time

𝑡 can only be judged by the input 𝑥1 to 𝑥𝑡−1 before time 𝑡. Similar to the idea of the

Markov chain. Compared with traditional convolutional neural networks, causal

convolution can only "see" the past data but cannot "see" the future data. Therefore,

the information leakage is solved well. One-dimensional causal convolution is

generally implemented by Padding, and the front end of the sequence is filled with

zeros of the corresponding number of bits. In addition, no padding is performed at the

end of the sequence.

The expansion convolution is to add weights with a value of zero to the convolution

kernel to broaden the receptive field under the premise of the same amount of

calculation. Compared with the traditional convolutional neural network, although the

actual size of the convolution kernel remains the same, the size of the receptive field

is enlarged. Therefore, the advantage of expanded convolution is that it enlarges the

field of perception without loss of information by pooling. It allows each convolution

output to contain a larger range of information.

Therefore, through TCN, it is possible for the network to capture the long-term

memory of the traffic flow, and it also ensures that only the data of the past moment is

36

used when predicting the future traffic flow. It avoids the information leakage

problem of traditional CNN in this respect.

2.3.4 RNN based traffic flow prediction models

In the scenario of traffic flow prediction, RNN and its variants (LSTM or GRU) can

well complete the processing task of sequence data, so they are often used to capture

the correlation of traffic flow data in the time dimension.

Chen et al. [80] proposed a new traffic prediction framework based on multiple

residual recurrent graph neural networks. In this framework, residual neural networks

and GNN are used to solve the problem of gradient explosion and disappearance, as

well as the extraction of spatial features. On this basis, the model uses GRU further to

extract the temporal dynamic features of high-dimensional feature data. Through the

combined application of multiple neural networks, the task of traffic flow prediction

is completed. In the study of Cui et al. [81], LSTM was used as a neural unit for

temporal feature extraction. The data features as input to LSTM are extracted by

Traffic Graph Convolution (TGC) in the original traffic flow data set. Guo et al. [82]

proposed an Optimized Graph Convolution Recurrent Neural Network (OGCRNN)

model, which captures traffic flow's temporal and spatial characteristics through the

combination of GCN and GRU modules. The difference from the previous study is

that this study optimizes the traffic flow data periodically during the input phase. The

Seq2Seq + Spatial Relation model proposed by Liao et al. [83] still uses the

combination of GCN+LSTM. Its characteristic is that according to the characteristics

of the actual road network nodes, the data in the data set is filtered and eliminated.

There are many pieces of research in this area, and most of them use LSTM or GRU

to extract the temporal dimension features of traffic flow. This work will not repeat

them one by one here. In summary, through the above examples, it can be seen that

RNN and its variants cannot be applied to prediction tasks alone in the field of traffic

flow prediction. Researches use the excellent performance of RNN for time series

feature extraction. The temporal features of traffic flow are extracted based on the

37

high-dimensional feature data captured by other models in advance. Through the form

of the combined model, the entire flow forecasting task is completed.

2.4 GCN based Traffic Flow Prediction Models

CNN has been successfully applied to image classification [84], semantic

segmentation [85], machine translation [86] and other fields. The underlying data

representations in these fields are all grid-like. However, the data involved in many

interesting tasks cannot be represented in a grid-like structure. They are located in an

irregular domain. This is the case with three-dimensional grids, social networks,

telecommunications networks, biological networks, or brain connections. These data

can usually be represented in the form of graphs.

Graph Neural Network (GNN) [6, 87], as a generalization of cyclic neural networks,

can directly process more general graphs, such as cyclic, directed, and undirected

graphs. The graph neural network is composed of an iterative process. First, the

iterative process propagates the state of the nodes to the equilibrium state. Then there

is a neural network, which generates the final output based on the state of each node.

In recent years, graph neural networks have been widely used in various fields such as

social networks, knowledge graphs, recommendation systems, and even life sciences.

The graph neural network has powerful functions that can model the dependency

relationship between graph nodes, so this makes a major breakthrough in the research

field related to graph analysis.

2.4.1 Graph theory

Graph theory is the basis of graph neural networks. Before studying the graph neural

network, it is of great significance for this work to clarify the related concepts of the

graph to be studied. Graphs are one of the most powerful frameworks in data

structures and algorithms. Almost all structures or systems such as transportation

networks, chess games, and interpersonal interaction networks can be represented by

graphs. Generally speaking, a graph can be regarded as an abstract network composed

38

of "vertices", and each vertex in the network is connected to each other through

"edges". That is, the existence of an edge between two points means that the two

vertices are related [88].

2.4.1.1 The concept of graph theory

In graph theory, a graph is often written as 𝐺 = (𝑉, 𝐸). That is, a graph is an ordered

two-tuple < 𝑉, 𝐸 >, marked as 𝐺.

(1) 𝑉 = {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛} is the vertex set of graph 𝐺 . It is a finite non-empty set

whose elements are called vertices or nodes.

(2) 𝐸 = {𝑒1, 𝑒2, 𝑒3 … 𝑒𝑚} is the edge set. It is a finite set, and each element in 𝐸 has a

pair of nodes in 𝑉 corresponding to it, called an edge.

According to whether the edges are directed or not, graphs can be divided into two

categories. The most basic graph is usually defined as an "undirected graph". The

edges in the graph are all undirected, and the undirected edge ｅ corresponds to the

unordered vertex pair < 𝑢, 𝑣 >. 𝑢 and 𝑣 are called the two end points of e. In an

undirected graph, the degree of a vertex is the number of edges (or arcs) adjacent to

the vertex. The corresponding undirected graph is called "directed graph". The edges

in the figure are all directed. The directed edge 𝑒 corresponds to the ordered pair of

vertices < 𝑢, 𝑣 >. At this time, 𝑢 is called the starting point of 𝑒, and 𝑣 is the ending

point of 𝑒 . In a directed graph, degrees are divided into "in-degrees" and "out-

degrees" according to the direction of the edges. The degree of the vertex is the sum

of the in-degree and the out-degree. The number of edges that end at a vertex is called

the in-degree of the vertex. The number of edges starting from a vertex is called the

vertex's out-degree.

2.4.1.2 Matrix representation of the graph

A graph can be described by definition, or it can be represented graphically. In

addition, it can also be represented by a matrix, like a binary relationship. Using a

39

matrix to represent a graph, it is possible to understand some properties and

construction algorithms of the graph through matrix operations. This is also easier for

computer processing.

The elements in the degree matrix are the vertex degrees. Except for the main

diagonal, all other values are 0. In an undirected graph, the value of the main diagonal

of the degree matrix is the degree of the vertex. In a directed graph, only one of the in-

degree or out-degree needs to be considered. The value of the main diagonal of the

matrix is the in-degree (or out-degree) of the vertex.

The adjacency matrix is a matrix that represents the adjacency relationship between

vertices. Similarly, use 𝐺 = (𝑉, 𝐸) to represent the graph. If < 𝑢, 𝑣 >∈ 𝐸, then 𝑢 and

𝑣 are called adjacent nodes. If the two points are not adjacent, the relationship

between the two points in the adjacency matrix is 0, and the relationship between the

two points is 1. Using the adjacency matrix to represent the graph, it is easy to

determine whether any two vertices in the graph are connected by edges[89].

Laplace matrix [90] is an important matrix often used in graph theory. It is defined as

𝐿 = 𝐷 − 𝐴, where 𝐷 is the degree matrix of the graph, and 𝐴 is the adjacency matrix

of the graph. Figure 2.11 shows a simple graph, and Figure 2.12 shows its degree

matrix, adjacency matrix and Laplacian matrix. The Laplacian matrix has the

following properties:

(1) The Laplace matrix is a positive semi-definite matrix.

(2) The minimum eigenvalue is 0 because the sum of each row of the Laplacian

matrix is 0.

(3) The smallest non-zero eigenvalue of the Laplacian matrix is the algebraic

connectivity of the graph.

(4) The number of feature values of 0 is the number of connected regions in the graph.

40

Figure 2.11 Example graph

Figure 2.12 The degree matrix, adjacency matrix and Laplacian matrix of Figure 2.11

2.4.2 Graph neural network analysis

Through the overview of graph theory in the above section, the concept of the graph is

clarified. According to the concept of graph theory, in computer science, a graph is a

data structure composed of two parts: vertices and edges. There are many types of

graphs, including undirected graphs, undirected graphs with weights, directed graphs,

directed graphs with weights, cyclic graphs. The graph 𝐺 can be described by the

vertex set 𝑉 and the edges 𝐸 it contains, that is, 𝐺 = (𝑉, 𝐸). Depending on whether

there is a direct dependency between the vertices, the edges can be directed or

undirected. In addition, it should be noted that vertices are also called nodes, and

these two terms can be interchanged in this work. Figure 2.13 lists several types of

graphs.

41

Figure 2.13 Four types of graphs[6]

Graph neural network (GNN) is a kind of neural network that runs directly on graph

structure. A typical application of GNN is node classification. GNN is the first

algorithm proposed by F. Scarselli et al. in the paper [6], so it is usually considered as

the foundation and the beginning of research for GNN. In the node classification

problem setting, the feature 𝑣𝑥 of each node 𝑣 is associated with a true label 𝑡𝑣. Given

a partially labeled graph 𝐺, the task goal is to use these labeled nodes to predict the

labels of unlabelled nodes. It learns each node represented by a 𝑑-dimensional vector

ℎ𝑣 containing neighbourhood information :

ℎ𝑣 = 𝑓(𝑥𝑣, 𝑥𝑐𝑜[𝑣], ℎ𝑛𝑒[𝑣], 𝑥𝑛𝑒[𝑣]) (2-13)

Where 𝑥𝑐𝑜[𝑣] represents the feature of the edge connected to 𝑣. ℎ𝑛𝑒[𝑣] represents the

embedding of adjacent nodes of 𝑣. 𝑥𝑛𝑒[𝑣] represents the characteristics of the adjacent

nodes of 𝑣. The function f is a transition function that maps these inputs to a 𝑑-

dimensional space. To find the unique solution of ℎ𝑣, the algorithm applies Banach

fixed point theorem to rewrite the above equation as an iterative update process.

𝐻𝑡+1 = 𝐹(𝐻𝑡, 𝑋) (2-14)

𝐻 and 𝑋 represent the concatenation of all ℎ and 𝑥 respectively. The output of the

GNN is calculated by passing the state ℎ𝑣 and the characteristic 𝑥𝑣 to the output

42

function 𝑔.

𝑂𝑣 = 𝑔(ℎ𝑣, 𝑋𝑣) (2-15)

Both 𝑓 and 𝑔 here can be interpreted as a feedforward fully connected neural network.

𝐿1 loss can be directly expressed as:

𝑙𝑜𝑠𝑠 = ∑ (𝑡𝑖 − 𝑜𝑖)𝑝
𝑖−1 (2-16)

It can be optimized by gradient descent.

However, the original GNN has three main limitations:

(1) If the assumption of "fixed point" is relaxed, then a more stable representation can

be learned by using a multilayer perceptron, and the iterative update process can be

eliminated. This is because, in the original paper, different iterations use the same

parameters of the transfer function 𝑓, and different parameters in different layers of

MLP allow hierarchical feature extraction.

(2) It cannot handle edge information. For example, different edges in the knowledge

graph may represent different relationships between nodes.

(3) Fixed points will hinder the diversity of node distribution and are not suitable for

learning to represent nodes.

To solve the above problems, researchers have proposed a graph convolutional neural

network (GCN), a variant of GNN. GCN is used to make up for the limitations of

GNN.

2.4.3 Overview of GCN

At present, convolutional neural networks have achieved good results in computer

vision, natural language processing and other fields. Data that can be gridded, such as

images and voices, can be called Euclidean style data. For example, traditional

network models (LSTM) or CNN convolutional neural networks can efficiently

process this grid-based data and extract features from the data. However, there are a

43

lot of non-Euclidean data in the real world, such as social network data, biological

gene protein data, traffic data. A graph structure can well represent this kind of data.

However, machine learning on graphs is a very difficult task because graphs are a

very complex but informative data structure.

Figure 2.14 The difference between standard convolution and graph convolution

The basic idea of the convolutional neural network is as described in the previous

section. It uses the receptive field of the grid data and the parameter matrix of the

convolution kernel to perform an inner product operation to obtain the convolution

output value of the position, as shown in Figure 2.5. However, when CNN processes

the graph structure data shown in Figure 2.14, the number of neighbor nodes of

different nodes is not equal. Most of the graphs are heterogeneous, so it is difficult to

determine the parameter dimension of the convolution kernel. Arranging the relative

position relationship between the weight matrix and the nodes in the neighborhood for

effective inner product calculation has become a big problem.

The graph convolutional neural network is designed to be applied to graph data and

use graph structure information directly. GCN [91] is a neural network structure that

44

can effectively mine the features of graph data. For example, social network [92],

protein molecular structure [93], communication network [94] and so on. GCN can

dig deep into their characteristic laws, and the scope of application is gradually

expanded to various fields.

Many scholars have explored the above problems and achieved some results. The

mainstream graph convolution methods include spatial methods and spectrogram

methods.

The idea of the spatial method is to directly apply the convolution kernel to the nodes

and their neighborhoods on the graph. The core of this method is how to properly

select the neighborhood of nodes for heterogeneous graph data. Niepert et al. [95]

proposed the PATCHY-SAN method, first selecting the candidate node sequence as

the central node. Then heuristically select the neighborhood for the central node

linearly, map it to a vector and then perform the traditional convolution operation. It

has achieved good results in social network tasks. Li et al. [96] introduced graph

convolution operations in human action recognition tasks. A variety of division

strategies are proposed to divide the neighborhood of nodes into different subsets. By

controlling the number of subsets, it is ensured that different nodes can share the

weight of the convolution kernel. Cui et al. [97] proposed a high-order graph

convolutional recurrent neural network model, which considered the high-order

neighbor information of the spatial dimension to learn and predict traffic volume.

The spectrogram method extends the convolution operation on the grid data to the

graph structure data through the graph Laplacian matrix. Bruna et al. [98] proposed a

general graph convolution framework in 2014 to transform the eigenvectors of the

Laplacian matrix into the spectral domain. Then it is approximated by the method of

spline interpolation. But this method does not solve the problem of convolution kernel

sharing. Subsequently, Defferrard et al. [99] optimized the method, replacing the

spline interpolation with the K-order truncated approximate solution of the Chebyshev

polynomial. This method realizes parameter sharing in the entire network and proves

45

that the scope of the convolution kernel is strictly limited to the K-order neighbors of

the central node, and at the same time, reduces the complexity of the model.

Many people have tried to use graph convolution methods to solve practical problems

in recent years and have achieved some research results. However, the theory is not

yet complete. The feature description and specific analysis of graph structure data in

specific problems are still being explored.

2.4.4 Principle of GCN

Same as the convolutional neural network. For the feature extraction of graphs, a

multilayer neural network structure can also be used. For each layer, the following

mapping function can be used to calculate:

𝐻(𝑙+1) = 𝑓(𝐻(𝑙), 𝐴) (2-17)

Among them, 𝐻(𝑙) ∈ ℝ𝑁×𝑑(𝑙)
 represents the node-level expression of the 𝑙-th layer

graph. It is an 𝑁 × 𝑑(𝑙)-dimensional matrix. 𝑁 represents the number of nodes, and

𝑑(𝑙) represents the dimension expressed by the nodes of the lth layer (the dimension

expressed by the nodes can be different in each layer, which is determined by 𝑓 and

can be flexibly set). 𝐻(0) = 𝑋 represents the initial node expression matrix of the 0-th

layer. Assuming that there are a total of 𝐿-layer networks, 𝐻(𝐿) = 𝑍 represents the

node expression matrix output by the last layer.

Similar to CNN, graph convolution also uses shared weights. However, unlike CNN,

the weight of each kernel is a regular matrix, which is assigned according to the

corresponding position. The weight in the graph convolution is usually a set. When

calculating the aggregate feature value for a node, all points participating in the

aggregation are allocated to multiple different subsets according to a certain rule. The

nodes in the same subset adopt the same weight to realize weight sharing.

In a nutshell, the graph convolution operation weighs each node's features and the

features of its neighbor nodes and then propagates to the next layer. This kind of

46

graph convolution operation is called graph convolution in the spatial domain, and it

has the following characteristics:

(1) As the number of layers deepens, the farther features each node can aggregate.

(2) The weight is shared and will not be specific to each node, which is the same as

traditional CNN. Intuitively, if the weight is different from node to node. Then once

the graph structure changes, the weight will immediately become invalid.

(3) The number of neighbor nodes of each vertex may be different, which leads to

more significant eigenvalues of vertices with more neighbor nodes.

(4) When calculating the adjacency matrix, the characteristics of the node itself cannot

be included in the aggregated eigenvalues.

In addition, to overcome the shortcomings of spatial graph convolution, scholars

proposed graph convolution in the spectral domain [91, 99]. The idea is to use the

Laplacian matrix and Fourier transform of the graph to perform convolution

operations. This method is also the method used in this research to extract spatial

features, and the details will be described in the next chapter.

2.4.5 GCN based traffic flow prediction models

There is a great correlation between traffic conditions and the road traffic network, so

recently, researchers formulated the traffic flow prediction model as a graphical

modeling problem. Because of the spatial characteristics of road networks, GCN is

more suitable for modeling non-Euclidean spatial structure data than CNN. It is also

more suitable for extracting spatial feature data from the structure of the traffic road

network. Through spatial graph convolution or spectral graph convolution, GCN can

aggregate the neighbor node information of each road network node. Combine this

information with its own node information and update it to high-dimensional node

feature information. The upgraded feature data contains richer node features, enabling

the neural network to capture deeper feature rules.

47

Diao et al. [45] used a dynamic Laplacian matrix estimator to decompose real-time

traffic data into global components that are stable and depend on long-term temporal

and spatial traffic relationships. This method is used to extract spatial features that

change over time. Thus, the characteristics of the time dimension are obtained through

GCN in the space dimension. Extracting traffic flow data features in temporal and

spatial dimensions respectively is also an important idea for applying deep learning

models in Wu et al. [100]. They proposed integrating WaveNet into GCN for spatial-

temporal modeling to form a Graph WaveNet model, which can handle long

sequences. Song et al. [101] proposed a spatial-temporal synchronization graph

convolutional network (STSGCN) model. This model mainly divides the data into

different time periods in the time dimension. The feature information extracted by

GCN in different time periods is spliced together in the time dimension, and then

further spatial-temporal correlation extraction is performed through the neural

network. Seo et al. [40] proposed Graph Convolutional Recurrent Neural Network

(GCRN), a model that combines recurrent network and graph convolution operations.

Subsequently, Li et al. [42] proposed a DCRNN (Diffusion Convolutional Recurrent

Neural Network) model that successfully used GRU and graph convolution for long-

term traffic prediction. Yu et al. [43] proposed a GCN with a gating mechanism and

applied it to the traffic volume prediction problem. Guo et al. [18] used the GCN

spectrogram method to extract spatial features from the original data. Then input it

into the CNN model to further extract temporal features. On this basis, through the

stacking of spatiotemporal modules, higher-dimensional spatiotemporal feature

information can be obtained.

In summary, the application of graph neural network in the field of traffic flow

prediction needs to fully consider the time dimension or time series. In other words,

the application of graph neural networks to traffic prediction problems must fully

consider the complex time-space correlation in a road traffic network. At the same

time, in the modeling process, the relationship between various model combinations

must be considered. Special attention is needed to avoid the problem of error

48

propagation between steps brought about by the step-by-step generation of prediction

results.

2.5 Enhancement Mechanism of Models

2.5.1 Deep residual network

The residual network was proposed in 2015, and the core is to solve the side effects

caused by increasing the depth of the network. Once it was born, it has achieved good

results in image classification, detection, and positioning based on ImageNet data

[102]. Through in-depth research on the residual network. Researchers found that it is

not that the deeper the network, the better the effect of the neural network.

Researchers found through simulations that as the number of network layers continues

to increase, the model's accuracy will continue to improve. But when the level of the

network increases to a certain number, the training accuracy and testing accuracy

begin to decline rapidly. This shows that when the network becomes very deep, it will

become more difficult to train it.

In theory, regardless of the depth of the network model, it is possible to approximate

the intrinsic relationship and essential characteristics of the data through functions.

But when solving complex problems in real situations, the number of computing units

required increases exponentially. Shallow networks often have the problem of

insufficient function expression capabilities, while deep networks may only require

fewer computing units. However, the network hierarchy is not as deep as possible.

With the increase of network levels, on the one hand, the excessive number of layers

will lead to the wasteful occupation of video memory and "eating" computing power.

On the other hand, problems such as overfitting, gradient dispersion, and network

degradation will also occur. However, the deep residual network can well solve the

degradation problem caused by increasing the network depth.

There are two main designs for the residual network: shortcut connection and identity

mapping. The shortcut connection makes the residual possible, and the identity

49

mapping makes the network deeper. The structure of the residual block is shown in

Figure 2.15.

Figure 2.15 Residual learning unit

One or more layers of networks can be skipped using this quick connection method.

The input result before the jumped layer is directly used as the output result of the

stacked layer. The shortcut connection method neither adds additional parameters nor

increases the computational complexity. Its existence can still use backpropagation

stochastic gradient descent to train the entire network end-to-end. Moreover, it is easy

to use public libraries to implement without modifying any content [103].

2.5.2 Attention mechanism

The attention mechanism is a deep learning technique that imitates humans paying

more attention to important areas when observing things [104]. The attention

mechanism was first applied to the image classification task by the Google DeepMind

team, which can accurately identify multiple objects in the image, reducing the error

rate of the MINIST classification task by 4% [105]. The effectiveness of the attention

mechanism in image classification tasks is demonstrated. Later, Bahdanau et al. [106]

applied the attention mechanism to machine translation tasks for the first time based

on previous work. The Google machine translation team proposed a sequence network

model Transformer [107] based on the attention mechanism, which attracted

widespread attention. The attention mechanism has become one of the commonly

50

used techniques in deep learning. In deep learning, different weights are assigned to

different parts of interest so that the model can effectively learn important information.

That is beneficial to the task and filter noise information.

2.5.2.1 Definition of attention mechanism

Figure 2.16 Encoder-Decoder abstract framework diagram[43]

In general, most attention mechanisms are implemented based on the Encoder-

Decoder framework structure. The abstract framework diagram of Encoder-Decoder

is shown in Figure 2.16. The model maps an input sequence of variable length 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛) to another output sequence of variable length 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑚).

Among them, the encoder compresses the information of the entire input sequence

into an intermediate semantic vector 𝐶 . The decoder generates 𝑦𝑖 through the

intermediate semantic vector 𝐶 and the generated output sequence 𝑦1, 𝑦2, … , 𝑦𝑖−1, that

is, 𝑦𝑖 = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑖−1, 𝐶) . 𝑓 represents the decoding function. In the entire

decoding process, the intermediate semantic code 𝐶 is a constant, which is shared in

the decoding process at each time step. This results in the output sequence 𝑦𝑖 having

no discrimination for each 𝑥𝑖 in the input sequence. To solve this problem, Bahdanau

introduced an attention mechanism in the Encoder-Decoder structure [106], the

structure diagram is shown in Figure 2.17. Among them, 𝑠𝑡−1 is the hidden vector at

step 𝑡 − 1 in the decoding process, 𝑠𝑡 = 𝑓(𝑠𝑡−1, 𝑦𝑡−1, 𝐶𝑡). 𝐶𝑡 represents the semantic

vector corresponding to step 𝑡 − 1, 𝐶𝑡 = 𝑎𝑡,1ℎ1 + 𝑎𝑡,2ℎ2 + ⋯ + 𝑎𝑡,𝑇ℎ𝑇 . Where 𝑇 is

the length of the input sequence, ℎ𝑗 represents the hidden vector of the 𝑗-th step in the

encoding process, and 𝑎𝑡,𝑗 represents the degree of 𝐶𝑡 's attention to the hidden vectors

of different time steps. The calculation method of 𝑎𝑡,𝑗 is shown in formulas (2-18) and

51

(2-19).

𝑎𝑡,𝑗 = 𝑎(𝑠𝑡−1, ℎ𝑖) (2-18)

𝑎𝑡,𝑗 = exp(𝑎𝑡,𝑗) / ∑ exp(𝑎𝑡,𝑗)𝑇
𝑗=1 (2-19)

Where 𝑎 represents the alignment model, which is used to calculate the degree of

alignment or influence of ℎ𝑗 on 𝑠𝑡−1 . Then 𝑎𝑡,𝑗 is normalized by SoftMax. Under

normal circumstances, parameterize 𝑎 and participate in training together in the neural

network. The four commonly used alignment methods [108] are shown below.

(1) Additive Attention

The alignment shown in formula (2-20) is often used in additive attention, where 𝑤

and 𝑤𝑎 are both parameter matrices.

𝑎(𝑠𝑡−1, ℎ𝑗) = 𝑤𝑇tanh (𝑊𝑎[𝑠𝑡−1: ℎ𝑗]) (2-20)

(2) Multiplicative Attention

Multiplicative attention often uses the alignment shown in formulas (2-21) and (2-22),

where 𝑤𝑎 is the alignment matrix.

𝑎(𝑠𝑡−1, ℎ𝑗) = 𝑠𝑡−1𝑊𝑎ℎ𝑗 (2-21)

𝑎(𝑠𝑡−1, ℎ𝑗) = 𝑠𝑡−1ℎ𝑗 (2-22)

(3) Multi-layer perceptron attention (MLP) Attention

The attention of MLP often adopts the alignment shown in formula (2-23).

𝑎(𝑠𝑡−1, ℎ𝑗) = 𝜎(𝑤𝑇 tanh(𝑊𝑎[𝑠𝑡−1: ℎ𝑗] + 𝑏1) + 𝑏2) (2-23)

52

Figure 2.17 Attention mechanism structure diagram

2.5.2.2 Types of attention mechanism

Nowadays, the idea of the attention mechanism has been widely used in various deep

learning tasks. Such as machine translation [49], image caption generation [109],

question answering system [110], speech recognition [111]. The idea of the attention

mechanism has multiple implementation methods in different application scenarios.

According to its implementation, its structure category can be roughly divided into

two categories. One is the basic attention mechanism structure, and the other is the

combined attention mechanism structure. In the basic attention mechanism structure,

there are mainly soft attention mechanism, hard attention mechanism, and self-

attention mechanism. Some scholars further proposed local attention mechanism and

global attention mechanism based on soft attention and hard attention [112]. In the

structure of the combined attention mechanism, there are mainly Co-Attention [110],

Attention-Over-Attention [97], Multi-Head Attention [107].

2.5.2.3 Overview of graph attention (GAT) mechanism

Graph Attention Network (GAT) [113] is a new type of neural network structure,

which is very important in GNN. The introduction of the attention mechanism based

on the graph convolutional network GCN is very practical. It operates on the graph

structure data and uses the attention layer to solve the previous shortcomings based on

53

graph convolution. By stacking layers, nodes can pay attention to their neighborhood

characteristics. Implicitly assign different weights to different nodes in a

neighborhood. Moreover, it does not require any expensive matrix operations, such as

inversion, and does not require prior knowledge of the graph's structure. In this way,

GAT simultaneously solves several key challenges of spectrum-based graph neural

networks and makes the model easy to apply to induction and conversion problems.

GAT introduces an attention-based architecture, which can handle node classification

tasks where the data structure is a graph. Its idea is to update the vector representation

of each node by paying attention to the neighbor node characteristics of each node.

The attention structure has the following outstanding characteristics: (1) The

operation is efficient because it can be parallelized across pairs of nodes. (2) By

assigning arbitrary weights to adjacent nodes, it can be applied to graph nodes of

different degrees. (3) The model is directly applicable to inductive learning problems.

The model can be extended to graph tasks where the structure is completely invisible.

2.5.2.4 Enhancement through the self-attention mechanism

In many sequence-based tasks, the attention mechanism has almost become the de

facto standard [106, 114]. One of the benefits of the attention mechanism is that it

allows the processing of variable size input. Focus on the most relevant part of the

input to make a decision. When an attention mechanism is used to calculate the

representation of a single sequence, it is usually called self-attention or internal

attention. With RNN or CNN, self-attention is useful in tasks such as machine reading

[72] and learning sentence representation [115]. Vaswani et al. [107] showed that not

only self-attention can improve methods based on RNN or CNN, but it is also

sufficient to build a powerful model to obtain the most advanced performance in

machine translation tasks.

In recent years, the attention mechanism has also been applied in the field of traffic

flow prediction. Chen et al. [116] designed a multi-range attention two-component

GCN (MRA-BGCN) model. This model introduces a multi-range attention

54

mechanism to aggregate information in different adjacent areas and automatically

learn the importance of different areas. On this basis, the weighted traffic information

of adjacent areas is used as the input of the graph convolutional neural module. Guo et

al. [18] also used graph attention mechanisms in the task of traffic flow prediction. In

their proposed Attention Based Spatial-Temporal Graph Convolutional Networks

(ASTGCN) model, the temporal attention mechanism and the spatial attention

mechanism are respectively applied before the temporal and the spatial module to

capture the dynamic dependence of time and space, respectively. In addition, in the

field of traffic flow prediction, Geng et al. [117] and Li et al. [118] respectively

introduced the Masked Multi-head self-attention mechanism in their research.

Furthermore, in the research of Li et al. [119] and Park et al. [120], the GAT

mechanism has also been fully discussed and applied.

In general, the attention mechanism can effectively mine the dynamic spatial-temporal

patterns of traffic flow data, which is very suitable for the application scenarios of

traffic flow prediction problems. In the studies mentioned above, the models with the

attention mechanism often show better performance than those without this

mechanism. Moreover, the computational complexity of the attention mechanism is

low and will not cause additional computational overhead to the model. Therefore, it

has received more and more attention from researchers.

2.6 Discussion

Through the analysis of different types of prediction methods, some research gaps can

be found. Due to the random, dynamic and non-linear characteristics of traffic flow

data and insufficient flexibility of the models, part of the existing models lack a

reasonable understanding and interpretation of the data, resulting in low prediction

accuracy. Due to the lack of consideration of the periodic characteristics of traffic

flow data, some deep learning models cannot reasonably learn the periodic

characteristics of traffic flow data. Most existing traffic flow prediction methods

modeled from the temporal dimension do not fully consider the direct correlation

55

between the traffic flow sequences in the spatial dimension. The model capacity is

limited, and it is not easy to expand. The combined deep learning models ignore the

high-order correlation between the feature representations of different nodes on the

graph structure. In addition, the spatial-temporal correlation feature extracted based

on the relationship between nodes lacks consideration of the dynamics between them.

Figure 2.18 Category comparison of traffic flow prediction research

According to the survey in this chapter, this work draws a category comparison of

traffic flow prediction research in Figure 2.18 to describe the latest research focus in

the field. These latest methods are indicated to be the most effective way to fill these

gaps. It can be seen from the figure that in recent years, research in the field of traffic

flow forecasting has mainly focused on three directions. Deep learning is considered a

better prediction method than Classical statistical models and traditional machine

learning methods. In the deep learning model, the spectral method of GCN is

demonstrated to have the best performance in terms of spatial dependence extraction.

RNN variants (GRU, LSTM) are reported to have the best performance in terms of

time-dependent extraction. CNN's TCN model is also proved to have certain

56

advantages in capturing time features. In addition, researchers are also concerned with

the attention mechanism and deep residual network because they have very good

effects on the optimization of the model and the improvement of calculation accuracy.

In summary, the research on the deep learning traffic flow prediction model is still in

the stage of theoretical research and preliminary testing. Especially based on the

research of graph neural networks. Moreover, most models focus on research in a

certain aspect, and there are relatively few comprehensive research models. By

comparison, Guo et al. [18]'s research is more advanced in many prediction models,

and its performance is also more prominent. Therefore, this work plan uses its

research as a comparison and reference. On this basis, this thesis plans to improve the

prediction accuracy by improving the spatial-temporal prediction model and data

processing method in the modeling chapter.

2.7 Summary

This chapter details the basic theories and research results related to the research

content of traffic flow forecasting. Explains the understanding of spatial-temporal

data, including basic concepts and the mining of temporal and spatial data. In addition,

it deeply explores the related theoretical knowledge of deep neural networks and the

research of these theories and models in the field of traffic flow forecasting. Including

the discussion on the application of convolutional neural networks, recurrent neural

networks, graph convolutional neural networks in this field. On this basis, this study

also explored the feasibility and performance of deep residual networks and attention

mechanisms as optimization methods for predictive models in this field. Finally, in the

discussion session, some advanced traffic flow prediction methods were compared.

Through analysis, this thesis found the research gap and the direction that can be

improved in this field. The traffic flow data processing and improved traffic flow

prediction model we proposed will be presented and discussed in detail in the next

chapter.

57

Chapter 3

Traffic Flow Prediction Modeling

In Chapter 2, through the analysis of different prediction methods, some research gaps

can be found. First, the existing models have insufficient flexibility and

interpretability of traffic flow data with random, dynamic, and nonlinear

characteristics, resulting in low prediction accuracy. Second, the models and methods

lack the extraction of periodic features of traffic flow data, which leads to the inability

to learn more powerful feature data of traffic flow data reasonably. The third is that

the existing traffic flow prediction methods that model from the time dimension do

not fully consider the correlation between the traffic flow sequences in the space

dimension, which makes the general applicability of the model insufficient. Fourth,

the combined deep neural network model ignores the characteristics of the graph

structure of the traffic road network and cannot express the high-order correlation

between different nodes. Finally, although the latest traffic flow prediction application

models have improved feature capture and scalability, they often have insufficient

capabilities in capturing the dynamic correlation between nodes.

In this chapter, we propose two types of traffic flow prediction models. These two

types of models are mainly used to solve the last research gaps and improve the

prediction accuracy of the models. These two types of models are mainly based on the

GCN+RNN models and the GCN+CNN models. In addition, the attention mechanism

and some effective machine learning optimization methods have also been applied to

improve the model's performance. In the next few subsections of this chapter, the

research problem is first explained. Second, we use a framework graph to explain our

proposed model's detailed structure, some traffic flow data processing methods, and

model optimization methods. Finally, according to the framework structure, the

details of our proposed models are elaborated.

58

3.1 Problem Statement

The purpose of traffic flow prediction is to predict the future traffic flow based on the

traffic flow observed by 𝑁 related sensors on the road network. The use of our deep

learning models for traffic flow prediction requires a large amount of road traffic data

support in the real world. The sensors on the road network can be represented as a

figure 3.1, or as shown in formula (3-1):

𝐺 = (𝑉, 𝐸) (3-1)

Figure 3.1 Inter-city connectivity in the composite infrastructure network[3]

Among them, 𝑉 is the node set |𝑉| = 𝑁 , and 𝐸 is the edge set. The relationship

between the sensors can be embodied by different graph neural network message

transmission methods according to actual needs. Express the traffic flow observed on

graph 𝐺 as a graphical signal 𝑋 ∈ ℝ𝑁×𝑃，where 𝑃 represents the number of features

of each node, and let 𝑋(𝑡) represent the graphical signal observed at time 𝑡. Then the

goal of the traffic flow prediction problem is to learn a function ℎ(·) to map the

graphical signal at the historical time 𝑇′to the graphical signal at the future time 𝑇.

Given the graph 𝐺, the traffic flow prediction problem can be represented by Figure

3.2.

59

Figure 3.2 Illustration of traffic flow prediction problem[12]

Furthermore, the input signal 𝑋 should include two important features. In the spatial

dimension, it is expressed as a collection of basic parameters of traffic flow at a

certain moment. In the temporal dimension, it is expressed as a collection of basic

parameter data of traffic flow in a time sequence. We use three important parameters

(traffic flow, traffic flow density, and average vehicle speed) to describe the traffic

operation status and traffic flow's temporal and spatial features. This means that 𝑃 in

𝑋 ∈ ℝ𝑁×𝑃 is 3. The definitions of these three parameters are as follows:

Definition 1: Traffic flow. The total number of vehicles passing through a certain

section in a unit time. Its expression is shown in formula (3-2).

𝑄 = 𝐾𝑉 (3-2)

Among them, 𝑄 represents the flow rate. 𝑉 represents speed. 𝐾 represents density.

Definition 2: Traffic flow density. Traffic flow density generally refers to the density

of motor vehicles in a lane. Its expression is shown in formula (3-3).

𝐾 =
𝑁

𝐿
 (3-3)

Among them, 𝑁 represents the number of vehicles in the road segment. 𝐿 represents

the length of the road section.

Definition 3: Average vehicle speed. The ratio of the length of a certain road segment

to the average travel time of all vehicles passing through the road segment. Its

expression is shown in formula (3-4).

𝑉̅𝑠 =
𝑆

1

𝑛
∑ 𝑡𝑖

𝑛
𝑖=1

=
1

1

𝑛
∑

1

𝑣𝑖

𝑛
𝑖=1

 (3-4)

60

Among them, 𝑉̅𝑠 represents the interval average speed. 𝑆 represents the length of the

road section. 𝑡𝑖 represents the travel time of the i-th vehicle. n represents the number

of vehicles observed. 𝑣𝑖 represents the travel speed of the 𝑖-th vehicle.

3.2 Models Framework

In sections 2.6 and 3.1, the existing research gaps and traffic flow prediction problem

statements are discussed separately. It can be seen from the analysis and discussion

that our proposed model needs to realize the task of traffic flow prediction and

improve the prediction accuracy. That is, the traffic flow value for a period of time 𝑇

after the time 𝑡:(𝑋(𝑡+1), … , 𝑋(𝑡+𝑇)) is predicted by inputting the traffic flow data for a

period of time 𝑇′before the time 𝑡:(𝑋(𝑡−𝑇′+1), … , 𝑋(𝑡)). From a model point of view,

it is to solve several shortcomings of the existing models. One is to improve the

interpretability of input data. The second is to extract the periodic characteristics of

traffic flow data effectively. The third is to improve the deep learning model's ability

to capture high-order correlations between space and time. The fourth is to effectively

extract the dynamic associations between nodes in the traffic road network structure.

To solve the above problems, the model framework we proposed is shown in Figure

3.3.

61

Figure 3.3 The framework of Models proposed

62

The models we proposed are mainly composed of three modules. The first module is

the feature analysis and periodic data fusion module. Through the first and second

parts of this module, the composition of the characteristic data input by the model is

determined based on Pearson correlation analysis and periodic analysis of the data.

The multi-dimensional time series data is mapped on a time axis through the third part

of the data fusion method. The second module is two models based on spatial-

temporal graph convolution. In this module, this thesis uses MST-GCRN (Multiple

layers Spatial-temporal aware Graph Convolutional Recurrent Network model) and

MST-GCTN (Multiple layers Spatial-temporal aware Graph Convolutional and

Temporal Convolutional Network model) to extract high-dimensional spatiotemporal

features of the data processed by the previous module. This is also the embedding

process of feature data. The third module is two improved models that have added a

self-attention mechanism. MST-AGCRN and MST-AGCTN based on the self-

attention mechanism are used to extract more powerful high-dimensional spatial-

temporal features of traffic flow data. The main principle is to capture the dynamic

spatial-temporal correlation between nodes by adding a spatiotemporal self-attention

module between the input data and the machine learning module. Finally, all four

models we proposed can input the extracted feature data into the Readout module for

traditional machine learning training and prediction tasks.

Through these three main modules, the problems raised in section 3.1 can be

effectively solved. The differences between the models proposed in this study and

previous research models are: 1. Data qualitative analysis and fusion technology

improve the quality and reliability of input data. This enables the model to fuse

feature data of different dimensions into a time dimension during the input stage. This

simplifies the calculation process, enhances the connection between components, and

makes it more scalable. 2. The models use GRU and TCN to capture data features in

the temporal dimension. Through the advantages of GRU and TCN in sequence data

processing, the interpretability and accuracy of the model in the time dimension are

improved. 3. By adding a two-dimensional self-attention block of time and space to

63

the model, the weight of the node can be more reasonably distributed. Thereby, the

dynamic spatial-temporal correlation on the transportation network can be captured

more accurately. The following sections of this chapter will explain each module in

detail.

3.3 Traffic Flow Data Feature Analysis and Periodic

Spatiotemporal Data Fusion

3.3.1 Periodic quantitative analysis of traffic flow

This section uses Pearson correlation analysis to prove the periodicity of traffic flow

data quantitatively. Pearson correlation analysis can intuitively demonstrate which

traffic flow data in the past (𝑋(𝑡−𝑇′+1), … , 𝑋(𝑡)) plays a key role in predicting future

data (𝑋(𝑡+1), … , 𝑋(𝑡+𝑇)).

In this work, according to the periodic division method commonly used in traffic flow

prediction, the traffic flow input data is divided into three components according to

the periodicity. The three periodic components are the recent time segment, the daily

periodic time segment, and the weekly periodic time segment in sequence. Recency

periodicity describes the similarity of traffic flow at a specific time during the day.

Daily periodicity describes the similarity of traffic flows at specific times of the day.

Weekly periodicity describes the similarities in traffic flow at specific times of the

week. To further confirm that the traffic flow data set we used meets the three periodic

characteristics. This work conducts a Pearson correlation analysis based on real data.

The value obtained by Pearson correlation analysis can be represented by a heat map.

Therefore, it is possible to intuitively prove the periodic characteristics of the traffic

flow data and the closeness of each other.

Pearson correlation analysis refers to the analysis of two or more correlated variables

to measure the closeness of the correlation between the variables. Many indicators

characterize the degree of correlation between variables, and the Pearson correlation

64

coefficient is currently more commonly used.

In terms of traffic flow prediction, the Pearson correlation coefficient 𝑟 between

historical data 𝑋 and forecast data 𝑃 can be calculated as shown in formula (3-5):

𝑟 =
∑ (𝑋𝑖−𝑋̅)(𝑃𝑖−𝑃̅)𝑇

𝑖=1

√∑ (𝑋𝑖−𝑋̅)2(𝑃𝑖−𝑃̅)2𝑇
𝑖=1

 （3-5）

Among them, 𝑇 indicates the prediction duration, 𝑃 indicates the time series data of

the traffic flow to be predicted, and 𝑋 indicates the time series data of the historical

traffic flow. Moreover, 𝑋̅ represents the mean value of the random variable 𝑋, and 𝑃̅

represents the mean value of the random variable 𝑃. Then the value of the Pearson

correlation coefficient 𝑟 indicates the degree of correlation between the sequence 𝑋

and the sequence 𝑃, and the value range is between −1 and 1. The closer the absolute

value of the correlation coefficient is to 1, the stronger the correlation between the

variables; conversely, the closer the correlation coefficient is to 0, the weaker the

correlation. The specific correlation degree division is shown in Table 3-1.

Table 3-1 Correspondence table of Pearson coefficient and correlation degree

PEARSON CORRELATION COEFFICIENT CORRELATION DEGREE

|R|≥0.8 Highly correlated

0.5≤|R|<0.8 Moderately related

0.3≤|R|<0.5 Low correlation

|R|<0.3 Basically irrelevant

Figure 3.4 Periodic dependence degree heatmap

Figure 3.4 is a heat map of the Pearson correlation coefficient between the predicted

65

target in a certain period and all other periods in the representative real data set that

we obtained through calculation. The deeper the red, the greater the correlation value.

Each square in the figure represents 60 minutes. It can be seen that, for the selected

control forecast data, the two closest periods (data 120 minutes before the forecast

node) are the most relevant to it. The characteristics are very obvious, and the closer

to the forecast period, the greater the value of the Pearson correlation coefficient. If

the time period is more detailed, its gradual characteristics will be more obvious. The

contrast is also very obvious for daily periodicity and weekly periodicity (horizontal

black frame part). The characteristic of daily periodicity is that its Pearson correlation

coefficient value is the largest in the same time period of the previous day. This value

gradually changes gradually according to the distance according to the distance in the

selected period of the previous day. For a week, since city residents work from

Monday to Friday and rest on weekends, people's travel patterns during the week will

be similar during the working days from Monday to Friday. The travel patterns of

non-working days, such as Saturdays and Sundays, are more similar. Therefore, the

Pearson correlation coefficient values of the same period of working days and non-

working days are significantly different from the selected time period. The

corresponding value will gradually change in the horizontal direction on different

dates according to the distance from the selected date. It should be noted that the

selected period is a working day period. Therefore, according to the difference

between working days and rest days, the difference can be clearly shown in the heat

map.

The results obtained through Pearson correlation analysis are used as the objective

basis for this research to confirm our division of periodic components. At the same

time, it also verifies the correctness and universal applicability of the data set we have

selected.

3.3.2 Periodic component division of traffic flow data

This thesis divides the input traffic flow data along the horizontal time axis based on

66

Pearson correlation analysis. The periodic characteristics of the input data are shown

in Figure 3.4. Assuming that the collection frequency of the data collection equipment

deployed on the transportation network is 𝑞 times/day, that is, each node collects 𝑞

data values every day. At this node, set the current time to 𝑡0 time, and then specify

the length of the future time segment that needs to be predicted as 𝑇. That is to say,

the prediction duration 𝑇 is used as the time window unit. Then this study can divide

the input flow data 𝑥 along the horizontal time axis according to the recent periodicity,

daily periodicity and weekly periodicity. The method is to intercept three time

segments with a length of an integer multiple of 𝑇 respectively along the horizontal

time axis as the input of the three periodic components. The three input time segments

can be represented as 𝑇ℎ , 𝑇𝑑 , and 𝑇𝑤 , respectively. Then the input data can be

expressed as 𝑥ℎ , 𝑥𝑑 and 𝑥𝑤 . Among them, the subscript ℎ represents the recent

periodic hour. The subscript 𝑑 represents the daily periodicity-day. The subscript 𝑤

represents the weekly periodicity-week.

The specific representations of the three time series segments are as follows:

(1) The recent components

As shown in the Pearson correlation analysis section. At a certain node, the traffic

flow in the predicted time segment 𝑇0 will inevitably be affected by the traffic flow at

the previous moment of the day or the previous stage of the day. The most obvious

example is the influence of different periods of the working day on the traffic flow in

the next period. Such as traffic accidents, weather changes. And it can be clearly seen

that such an impact will gradually weaken or increase with the distance from the

prediction period. Its expression is shown in formula (3-6).

𝑋ℎ = (𝑋𝑡0−𝑇ℎ+1, 𝑋𝑡0−𝑇ℎ+2, … , 𝑋𝑡0
) (3-6)

(2) The daily periodic components

The daily periodicity component can be expressed as the correlation between the data

in the predicted time period and the traffic flow data in the same time period in the

67

previous few days. Because there is a strong similarity between the traffic flow data

of the previous few days and the data of the forecast period. Therefore, the data in this

time segment in the previous few days can be used as the basis for predicting the data

in the 𝑇0 time period. For example, during the working day, subject to the cyclical

changes of morning and evening peak traffic flow, the changing trend of its traffic

flow data will show a trend of convergence. The daily periodic component models the

traffic flow data in units of days. Its expression is shown in formula (3-7).

𝑋𝑑 = (𝑋𝑡0−(𝑇𝑑/𝑇)∗𝑞+1, … , 𝑋𝑡0−(𝑇𝑑/𝑇)∗𝑞+𝑇 , 𝑋𝑡0−(𝑇𝑑/𝑇−1)∗𝑞+1, …,

 𝑋𝑡0−(𝑇𝑑/𝑇−1)∗𝑞+𝑇 , … , 𝑋𝑡0−1∗𝑞+1, … , 𝑋𝑡0−1∗𝑞+𝑇) (3-7)

(3) The weekly periodic components

The weekly periodicity component can be expressed as the correlation between the

data in the predicted time period and the traffic flow data in the same time period in

the previous few weeks. Because there is a strong similarity between the traffic flow

data of the previous few weeks and the data of the forecast period. Therefore, the data

in this time segment in the previous few weeks can be used as the basis for predicting

the data in the 𝑇0 time period. For example, during the working day of this week, the

cyclical change of the morning and evening peak traffic flow is similar to the morning

and evening peak traffic flow data of the previous week or earlier. The weekly

periodic component models the traffic flow data on a weekly basis. Its expression is

shown in formula (3-8).

𝑋𝑤 = (𝑋𝑡0−7∗(𝑇𝑤/𝑇)∗𝑞+1, … , 𝑋𝑡0−7∗(𝑇𝑤/𝑇)∗𝑞+𝑇 , 𝑋𝑡0−7∗(𝑇𝑤/𝑇−1)∗𝑞+1, …,

 𝑋𝑡0−7∗(𝑇𝑤/𝑇−1)∗𝑞+𝑇 , … , 𝑋𝑡0−7∗1∗𝑞+1, … , 𝑋𝑡0−7∗1∗𝑞+𝑇) (3-8)

68

Figure 3.5 An example of periodic factor input

Take the real data set used in this thesis as an example. It can be seen from Figure 3.5

that the green traffic flow data corresponds to the recent component 𝑇ℎ. The orange

traffic flow data corresponds to the daily periodic component 𝑇𝑑. The blue traffic flow

data corresponds to the weekly periodic component 𝑇𝑤. The prediction of traffic flow

data from 10:00 to 11:00 on June 18, 2020, requires the input of data corresponding to

09:00 to 10:00 on June 18, 2020, in the recent component. In addition, the daily

periodic component is required to input data corresponding to 10:00 to 11:00 on June

16, 2020, and 10:00 to 11:00 on June 17, 2020. The weekly periodic component is

also required to input data corresponding to 10:00~11:00 on June 4, 2020, and

10:00~11:00 on June 11, 2020.

3.3.3 Multi-component fusion

In this part, this work integrates periodic data through a multi-component fusion

method. In summary, to simplify the model's calculation process, enhance the

connection between components, and make the model more scalable. Using the idea

of data dimensionality reduction or data compression, this thesis redesigned a feature

data fusion method. Specifically, it is to compress three groups of periodic data and

reduce the dimensionality to one dimension. That is, three groups of periodic

components are projected onto the same time coordinate axis. Then, a set of inputs

can be comprehensively trained through a model. This can reduce the computational

complexity and improve the integration of the model in terms of periodicity.

In the periodic analysis section, this work demonstrates the influence of the three

different dimensions of the space-time components contained in the model on the

69

prediction results through periodic quantitative analysis. And in the periodic

dependency component division, the recent dependency, daily periodic dependency

and weekly periodic dependency of traffic flow data are specifically divided.

According to existing research, most of the research in this field has adopted multi-

component fusion technology [4, 18, 41, 43]. The idea of multi-component fusion is

first to train each component separately and then fuse the output results obtained from

the training to obtain the final prediction result Y, as shown in formula (3-9):

𝑌 = 𝑊𝐻 ⊙ 𝑌𝐻 + 𝑊𝐷 ⊙ 𝑌𝐷 + 𝑊𝑊 ⊙ 𝑌𝑊 (3-9)

In the formula: ⊙ means Hadamard product. 𝑌𝐻，𝑌𝐷，𝑌𝑊 correspond to the output of

adjacent components, daily periodic components and weekly periodic components,

respectively. 𝑊𝐻 represents the weight matrix of adjacent components, 𝑊𝐷 represents

the weight matrix of daily periodic components, and 𝑊𝑊 represents the weight matrix

of weekly components.

It can be seen from the above formula (3-9) that the traffic flow prediction model

based on multi-component fusion learns the degree of influence of different

components on different nodes by learning from historical data. It can maximize the

role of multiple components at different nodes. However, it can also be seen that the

model needs to implement three relatively independent prediction models of short-

term, daily-period, and weekly-period components. This invisibly increases the

volume of the model, which means an increase in the number of overall parameters of

the model and an increase in computational complexity. As a result, it will also cause

a decrease in the degree of parallelization of the model during the training process and

a decrease in the overall computing speed. In addition, the three periodic component

models only fuse feature data together in the last layer. Such an approach actually

weakens the mutual influence of the three components during the training process.

70

Figure 3.6 Schematic diagram of feature data dependency

As shown in Figure 3.6. According to the quantitative analysis of the Pearson

correlation coefficient, it can be seen intuitively that the influence of the three

components on the value to be predicted can be divided into two parts: the vertical

axis and the horizontal axis. Therefore, all periodic dependent components can be

projected on a new coordinate axis in terms of data mapping, as shown in Figure 3.7.

Figure 3.7 Feature data fusion

As a result, the model can merge the three components into one time dimension in the

early stage of feature data input. So as to avoid the shortcomings of fusion in the later

stage mentioned above. On this basis, the specific formula of the fusion method we

proposed is as follows:

71

𝑋 = 𝐶𝑂𝑁𝐶𝐴𝑇(
𝑋ℎ

𝑐𝑜𝑠𝜃
,

𝑋𝑤

𝑠𝑖𝑛𝜃
,

𝑋𝑑

𝑠𝑖𝑛𝜃
) (3-10)

Among them, 𝐶𝑂𝑁𝐶𝐴𝑇(∙) means to concatenate all three sets of feature data in the

same dimension. 𝑋 ∈ ℝ𝑁×𝐶×𝐿. When 𝑁 and 𝐶 remain unchanged, the length 𝐿 of the

feature data input increases, and its length is the sum of the three time component

dimensions. Therefore, the model simplifies the calculation process through this

method, strengthens the connection between components, and makes it more scalable.

3.4 MST-GCRN and MST-GCTN Models

The second module of the model framework comprises two parts: MST-GCRN

(Multiple layers Spatial-temporal aware Graph Convolutional Recurrent Network

model) and MST-GCTN (Multiple layers Spatial-temporal aware Graph

Convolutional and Temporal Convolutional Network model). Both neural network

modules have the ability to extract the temporal and spatial characteristics of traffic

flow data. Moreover, these two neural network models work independently.

According to the current research status of traffic flow prediction in the literature

review part and the discussion in the relevant sections of graph neural network, this

research divides the modeling into three parts.

The first part of the two neural network models is GCN modules. The GCN module

designed in our simulation can be called a spatial graph convolution module. This

module is used to extract the spatial characteristics of the traffic flow. Using the idea

of graph convolutional neural network, the spatial characteristics of the road network

traffic flow at each node are used for message passing. So as to realize the feature

aggregation and update in the spatial structure. This thesis demonstrates that GCN is

superior in its ability to aggregate structural feature information, which can be seen

from the general use of GCN to aggregate spatial structure features in many types of

research on deep learning-based traffic flow prediction problems.

In the second part, there are recurrent neural network (GRU) module and temporal

convolution neural network (TCN) module, respectively. In this part, we designed

72

these two modules to extract the temporal features of traffic flow data. These two

methods respectively perform convolution/recurrent neural network operations on the

features of each node of the road network traffic flow in the temporal dimension.

Therefore, the features of the entire model in the temporal dimension are updated.

The third part is the prediction part of traffic flow. Through T iterations of the model

in the temporal and spatial dimension, the characteristics of the flow data are fully

learned. Therefore, the models can obtain sufficient and reliable high-dimensional

features information on the temporal and spatial structure of road network traffic.

Then, input this high-dimensional information into a standard neural network with a

fully connected layer. Next, the machine learning training and model parameter

adjustment is carried out through the neural network's forward and backward

transmission process. Finally, through multi-epoch training, the models can obtain a

prediction of traffic flow at a certain node and a certain time segment.

3.4.1 Spatial convolution model for traffic flow prediction

This work takes the extraction of the spatial structure of the road network within a

certain period of time as the first step. In general, this thesis comprehensively weighs

the pros and cons of multiple methods. GCN was chosen as the spatial convolution

model for traffic flow prediction. Through the superposition of multiple space-time

modules, the depth of the GCN layer is deepened. This can provide richer and more

powerful features data for the prediction models. The accuracy and reliability of the

prediction models are further improved.

As mentioned in the previous chapter, convolutional neural networks have been

successfully applied to extract meaningful patterns and features from large-scale,

high-dimensional data sets. The traffic flow data containing hidden local features are

well suited for retrieving the correlation between its location and neighbors through

CNN. However, due to the inability to process data with a non-European structure,

standard CNN cannot solve complex road network problems. Therefore, GCN based

on graph structure has become a more feasible alternative method, effectively

73

extracting spatial features from such data structure (topological graph) for machine

learning. Specifically, graph convolution can effectively extract spatial information on

sparse graphs, and only a few trainable parameters are needed. Moreover, the

operation of graph convolution can be seen as applying a strictly localized filter to

traverse the graph. Therefore, the information between adjacent nodes can be grouped

and distributed through graph convolution.

3.4.1.1 Spatial GCN modeling for traffic flow prediction

In this part, this thesis will prove why GCN can well capture the spatial features of

traffic flow data. In other words, this work aggregates the spatial features of adjacent

nodes (𝑘 = 1) and higher-order neighbor nodes (𝑘 = 2, . . . , 𝑛) for the target node

through the message passing of multi-layer spatial modules. Figure 3.8 shows a

simplified diagram of the adjacency relationship between nodes in the road network

structure.

Figure 3.8 Message passing approach of GCN

As shown in Figure 3.8, in the process of a single message passing, GCN only

transfers and aggregates the characteristic values of the surrounding red nodes and

their own characteristic values. Therefore, it is considered to have the problem of

insufficient scalability. However, through the multiple message transmission process

of the multi-layer spatial GCN module, the star node can aggregate the influence of

surrounding nodes and higher-order neighbor nodes. At the same time, it also includes

74

the adjacency relationships that may exist between neighboring nodes. It should be

noted that GCN uses a full-graph training method, which means that the nodes of the

full-graph must be updated in each iteration. Therefore, the complexity of GCN is

𝑂(𝑛3). When the scale of the graph is large, this training method is undoubtedly time-

consuming or even impossible to update. However, according to the data set and node

scale in the field of traffic flow prediction, the size of 𝑛 is moderate and acceptable.

Taking the PeMSD data set as an example, there are about 100-300 data nodes after

processing. Therefore, the complexity of using GCN in this research field is quite low

compared to the tasks of social networks or knowledge networks. Therefore, such

characteristic data is sufficient and feasible for us to predict future traffic flow.

3.4.1.2 Mathematical modeling of spatial GCN module

We use the graph convolution operation based on the spectrogram theory to process

the traffic flow data directly and use the data correlation on the traffic network to

extract the high-order features of the nodes in the spatial dimension.

First, only consider the spatial graph 𝐺 on a certain time slice, and use this as an entry

point to understanding the process of modeling spatial features. In the model proposed

in this thesis, the spectrogram method is used to extend the convolution operation to

graph structure data. Treat the data as signals on the graph, and then process the graph

signals directly on the graph to capture meaningful data patterns and features in the

space.

In spectrogram convolution, the feature of each node is regarded as a signal on the

graph, expressed as 𝑥 ∈ ℝ𝑁. 𝐴 represents the adjacency matrix of the graph, and the

corresponding Laplacian matrix of the graph is 𝐿 = 𝐷 − 𝐴. 𝐷 ∈ ℝ𝑁×𝑁 is the diagonal

matrix of the graph, 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 . The standardized format of 𝐿 is 𝐿 = 𝐼𝑁 − 𝐷−
1

2𝐴𝐷
1

2.

𝐿 ∈ ℝ𝑁×𝑁 , 𝐼𝑁 is the identity matrix. The eigenvalue decomposition of 𝐿 has 𝐿 =

𝑈Ʌ𝑈𝑇, where Ʌ ∈ ℝ𝑁×𝑁 is a diagonal matrix composed of the eigenvalues of 𝐿. 𝑈 is

the Fourier basis, the eigenvector matrix of 𝐿 . Use ∗𝒢 to denote the convolution

75

operation on the graph, and then use the convolution kernel 𝛩 to convolve the signal

on the graph, which can be expressed as shown in formula (3-11). Its meaning is to

first map the image signal 𝑥 to the spectral domain through the Fourier transform of

the image. Then use the convolution kernel 𝛩(Ʌ) to convolve the image signal 𝑥 in

the spectral domain and then perform the inverse Fourier transform. Finally, the result

of graph convolution is obtained. Since formula (3-11) exists in the Fourier basis

product operation of the graph, the computational complexity of formula (3-11) is

𝛰(𝑛2) [99]. 𝑛 is the number of nodes. To reduce the computational cost of the graph

convolution operation, the Chebyshev polynomial or the first-order approximation can

be used to approximate the equation (3-11).

𝛩 ∗𝒢 𝑥 = 𝛩(𝐿)𝑥 = 𝛩(𝑈Ʌ𝑈𝑇)𝑥 = 𝑈𝛩(Ʌ)𝑈𝑇𝑥 (3-11)

(1) Chebyshev graph convolution

To allow each filtering operation to be performed in the local space of the graph node

and to reduce the filter parameters as much as possible, a polynomial filter can be

used, and the convolution operation is shown in formula (3-12):

𝛩(Ʌ) = ∑ 𝜃𝑘Ʌ𝑘𝐾−1
𝑘=0 (3-12)

Where 𝜃 ∈ ℝ𝑘 is a vector of polynomial coefficients. 𝐾 is the size of the graph

convolution kernel, which represents the maximum radius of the center node of the

convolution operation. It can be approximated by Chebyshev polynomial to 𝛩(Ʌ), as

shown in formulas (3-13) and (3-14):

𝛩(Ʌ) ≈ ∑ 𝜃𝑘𝑇𝑘(Ʌ̃)𝐾−1
𝑘=0 (3-13)

Ʌ̃ =
2Ʌ

𝜆𝑚𝑎𝑥
− 𝐼𝑛 (3-14)

Where 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of the Laplacian matrix 𝐿. Therefore, the

graph convolution in formula (3-11) can be expressed by formulas (3-15) and (3-16):

𝛩 ∗𝒢 𝑥 = 𝛩(𝐿)𝑥 ≈ ∑ 𝜃𝑘𝑇𝑘(𝐿̃)𝑥𝐾−1
𝑘=0 (3-15)

76

𝐿̃ =
2𝐿

𝜆𝑚𝑎𝑥
− 𝐼𝑛 (3-16)

The recursive definition of Chebyshev polynomial is 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥),

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥. An approximate solution based on Chebyshev polynomial can

reduce the computational complexity of equation (3-11) to 𝛰(𝐾𝜀), where 𝜀 represents

the number of edges in the graph.

The above-defined Chebyshev graph convolution operation defined in the single-

dimensional graph signal data 𝑥 ∈ ℝ𝑁 can be extended to multi-dimensional data. For

two-dimensional data 𝑥 ∈ ℝ𝑁×𝐶𝑖, 𝐶𝑖 represents the feature dimension of the node. Let

𝑦 ∈ ℝ𝑁×𝐶𝑜 denote the output of 𝑋 after graph convolution. 𝐶𝑜 represents the feature

dimension of each node after graph convolution. Then the Chebyshev graph

convolution operation on 𝑋 is shown in formula (3-17), where 𝛩 ∈ ℝ𝐾×𝐶𝑖×𝐶𝑜 is the

convolution kernel parameter to be learned.

𝑌 = 𝛩 ∗𝒢 𝑋 = 𝛩(𝐿)𝑋 = ∑ 𝑇𝑘(𝐿̃)𝑋𝑘𝛩𝑘
𝐾−1
𝑘=0 (3-17)

(2) First-order approximate graph convolution

The neural network model based on graph convolution can be realized by stacking

multiple graph convolution layers as shown in equation (3-15), and a nonlinear layer

needs to be connected after each layer of graph convolution. The 𝐾 in formula (3-15)

is set to 2, which can indicate the convolution of the graph with the first-order

neighbors in the convolution range. A larger local area graph convolutional neural

network can be realized by stacking multiple layers of first-order neighbor graph

convolution plus a nonlinear layer [91]. When 𝐾 takes 2, formula (3-15) is as shown

in formula (2-18). Since the Chebyshev graph convolution network uses a normalized

Laplacian matrix, it can be assumed that the normalized Laplacian matrix has 𝜆𝑚𝑎𝑥 ≈

2, then the formula (3-18) can be written as the formula (3-19).

𝛩 ∗𝒢 𝑥 ≈ 𝜃0𝑥 + 𝜃1(
2𝐿

𝜆𝑚𝑎𝑥
− 𝐼𝑛)𝑥 (3-18)

𝛩 ∗𝒢 𝑥 = 𝜃0𝑥 − 𝜃1(𝐷−
1

2𝐴𝐷
1

2)𝑥 (3-19)

77

Among them, 𝜃0 and 𝜃1 are filter parameters, which are shared across the entire graph.

In order to limit the number of parameters of the model and avoid overfitting. It can

be assumed that 𝜃 = 𝜃0 = −𝜃1, so the first-order approximate graph convolution can

be expressed by the formula (3-20):

𝛩 ∗𝒢 𝑥 = 𝜃 (𝐼𝑛 + 𝐷−
1

2𝐴𝐷
1

2) 𝑥 = 𝜃(𝐷̃−
1

2𝐴̃𝐷̃
1

2)𝑥 (3-20)

Where 𝐴̃ = 𝐴 + 𝐼𝑛,𝐷̃𝑖𝑖 = ∑ 𝐴̃𝑖𝑗𝑗 .

The first-order approximate graph convolution operation defined above on the one-

dimensional graph signal data 𝑥 ∈ ℝ𝑁 can be extended to the multi-dimensional graph

signal data. For the two-dimensional graph signal data 𝑥 ∈ ℝ𝑁×𝐶𝑖, 𝐶𝑖 represents the

characteristic dimension of the node. Let 𝑍 ∈ ℝ𝑁×𝐶𝑜 represent the output of 𝑋 after

the graph convolution operation, and the first-order approximate graph convolution

operation of 𝑋 is shown in formula (3-21). Where 𝛩 ∈ ℝ𝐶𝑖×𝐶𝑜 represents the

parameter matrix of the convolution kernel.

𝑍 = 𝐷̃−
1

2𝐴̃𝐷̃
1

2𝑋𝛩 (3-21)

Figure 3.9 can be used to briefly show the feature extraction process of the 0-1 order

neighbor information of the spatial node in the graph convolution process. Figure

3.9(a) is a simple topology diagram of the spatial road network structure. Figure 3.9(b)

is the adjacency matrix and degree matrix calculated from the road network in Figure

3.9(a). The matrix representation of 𝐷̃−
1

2𝐴̃𝐷̃
1

2 and input data 𝑋 is shown in Figure

3.9(c). For a more intuitive representation, assume that the current input data 𝑋 has

only one-dimensional features and the length of the time dimension is 1. From this,

the result of a graph convolution operation performed by the convolution kernel on

the data 𝑋 is calculated, as shown in Figure 3.9(d). Among them, the value of space

node 1 at time 𝑡 is updated by itself and the information of the three nodes 2, 4, and 5.

It changed from the original 𝑥𝑡
1 to 𝛩1(0.25𝑥𝑡

1 + 0.29𝑥𝑡
2 + 0.25𝑥𝑡

4 + 0.29𝑥𝑡
5). That is,

the input data is updated by the information of its 0-1 order neighbors. In the same

78

way, a graph convolution operation is performed on the entire input data 𝑋 to obtain

𝛩 ∗𝒢 𝑋, and the value of each node is updated by the information of the node's 0- 𝐾 −

1 order neighbors. When expanding to multi-dimensional data, the operation remains

the same.

3.9(a)

3.9(b)

3.9(c)

3.9(d)

Figure 3.9 GCN matrix representation

79

Figure 3.10 Spatially dependent feature aggregation at time 𝑡

As shown in Figure 3.10, ℎ𝑙 represents the feature input of the 𝑙-th neural network

module at time 𝑡. ℎ𝑙1 represents the feature input of node 1 at time 𝑡. Through the

message sending process, each node on the graph structure obtains the feature value

set of the neighbor node (for example, the neighbor node of node 1 is ℎ𝑙2, ℎ𝑙𝑛) and the

current state of its own node (ℎ𝑙1). Through the aggregation operation, the node is

updated to the high-dimensional node feature (ℎ𝑙1
′) in the spatial dimension and used

as the input for the next round of spatiotemporal feature extraction. Through the

above method, the value of a certain sensor node 𝐴 in the road network space at time 𝑡

is updated by the information of itself and its 𝑛-th order neighbors. Extending to the

whole world, this method also performs graph convolution operations on all nodes of

the input traffic flow data in batches. Thus, the feature data information update based

on the entire graph structure is obtained.

3.4.2 GRU based temporal feature extraction module

Through the GCN module, spatial feature dependence is effectively extracted. On this

basis, our spatial-temporal convolution module uses GRU or TCN to extract the

temporal feature dependence of traffic flow data. In this part, this work uses a simple

and powerful variant of the recurrent neural network gated recursive unit GRU to

capture the temporal dependence of the road network traffic flow. As mentioned

earlier, the RNN model can effectively capture the temporal dependence of the road

network traffic flow in the traffic flow prediction. The special structure inside the

80

RNN can store and memorize the context information of the sequence and use the

stored information in future operations. This shows that RNN has a strong time series

learning ability.

In the machine learning research of time series data, the Recurrent Neural Network is

most commonly used to model the time dependence relationship, so as to extract the

temporal dependence relationship from the series data. Some articles [121-123]

believe that for the time series of sequence data, its distinguishing feature is that the

context of the sequence is highly relevant. The special structure inside the RNN can

store and memorize the contextual information of the sequence and use the stored

information in future operations. For RNN, the output of its hidden layer not only

enters the output end but also enters the next hidden layer. Thereby it can have an

impact on the weight on the next time step. The internal memory unit of RNN can be

used to process any sequence of input data，so that RNN has the ability of time

sequence learning. Moreover, to solve the problem of gradient explosion and

disappearance when the input sequence is relatively long, these problems can be

solved by using an improved recurrent neural network LSTM or GRU.

3.4.2.1 Mathematical modeling of GRU module

This thesis uses GRU for temporal dependence modeling. Use 𝑥𝑡 to represent the

input signal of the current node. Use ℎ𝑡−1 to represent the hidden state passed down

from the previous node. Then the GRU uses 𝑥𝑡 and ℎ𝑡−1 to obtain two gate control

states, and the formulas for the reset gate and update gate are as follows:

𝑟 = 𝜎(𝑊𝑟) ∙ [ℎ𝑡−1, 𝑥𝑡] (3-22)

𝑧 = 𝜎(𝑊𝑧) ∙ [ℎ𝑡−1, 𝑥𝑡] (3-23)

Among them, 𝑊 is the weight matrix that needs to be trained in the model. After

getting the gating signal, first, use the reset gate to get the reset data ℎ(𝑡−1)′
= 𝑟𝑡 ⊙

 ℎ𝑡−1 , and then ℎ(𝑡−1)′
 and 𝑥𝑡 are spliced together. Then use a 𝑡𝑎𝑛ℎ activation

function to shrink the data to the range of (−1,1), and get ℎ′:

81

ℎ′ = tanh (𝑊ℎ′
[ℎ𝑡−1 ⊙ 𝑟, 𝑥𝑡]) (3-24)

⊙ stands for multiplication of matrix elements. ℎ′ mainly contains the currently input

𝑥𝑡 data. A targeted pair ℎ′ is added to the current hidden state, which is equivalent to

"memorizing the state at the current moment". The final update memory stage uses

both forgetting and memory steps, using the previously obtained update gate 𝑧, and

the update expression is as follows:

ℎ𝑡 = 𝑧 ⊙ ℎ𝑡−1 + (1 − 𝑧) ⊙ ℎ′ (3-25)

𝑟 and 𝑧 denote the reset gate and update gate of the GRU, respectively. ℎ′ represents

the output of the network at time 𝑡. The input of each layer of GRU considers the

output of the previous layer of GRU, thereby capturing the timing relationship of the

road network traffic flow.

3.4.3 TCN based temporal feature extraction module

In this work, in the temporal-dimensional modeling process, not only from the

perspective of RNN but also from the perspective of CNN to perform temporal-

dependent modeling. From the comparison between RNN and CNN, we can more

clearly confirm their respective advantages and disadvantages, and which model is

more suitable for traffic flow prediction tasks. By discussing the advantages and

disadvantages of the GCN+CNN model and the GCN+RNN model in the field of

traffic flow prediction, a more accurate method of predicting traffic flow can be

reflected. To model the temporal dimension from the perspective of CNN, we mainly

have the following considerations.

First of all, this can strengthen the degree of integration of the spatial-temporal neural

network layer in the spatial-temporal module. Secondly, for a relatively complex

network with many graph nodes, the relatively complex single-layer neural network

module used by RNN will cause problems such as large time overhead and slow

response to dynamic changes of data. Compared with GRU, CNN has the advantage

of fewer non-linear operations. It can effectively reduce the phenomenon of gradient

82

dispersion, making model convergence and training easier. In addition, in GRU, the

model's output at the next moment depends on the state of the hidden layer at the

previous moment. Therefore, the model cannot be parallelized. However, CNN does

not need this kind of dependence and can be easily parallelized, thereby achieving an

increase in computing speed.

3.4.3.1 Temporal CNN modeling for traffic flow prediction

According to the discussion of RNN and GNN in the previous chapter, and compared

with the prediction model based on the recurrent structure, CNN has better feature

value extraction capabilities and can achieve better prediction results. Therefore, in

recent years, many scholars have used the CNN architecture in time series processing

tasks, and the same is true in the field of traffic flow prediction. Such as ST-ResNet

[37], MSTGCN [18] and so on. The CNN architecture shows strong learning ability in

the field of image processing and has a better prediction accuracy than the recurrent

structure on timing tasks in some scenarios. However, it is not supported by a

complete basic theory like the recurrent structure. Therefore, the traditional CNN

architecture does not have good interpretability in time series data processing.

Figure 3.11 shows the difference between the recurrent structure and the convolution

structure in processing time series data. The recurrent structure adds connection

operations in chronological order through neurons in the hidden layer. It transfers

historical feature information to the next neuron in the form of a hidden layer state so

that the network maintains the ability of historical memory. The convolutional

structure does not join the connection operation in the hidden layer, so it can only

extract features in a local range and treat any neuron indiscriminately. Therefore,

traditional convolution will converge the characteristic information of the "future"

time step to the current time step, so it is not interpretable.

83

Figure 3.11 RNN structure and CNN structure

3.4.3.2 TCN based temporal dependence modeling

The traffic flow has a certain trend and correlation in the adjacent time interval.

Therefore, after the space-dimensional convolution module, this work uses the

temporal convolutional network (TCN) to perform convolution operations on the

features of different time intervals of the station along the direction of the temporal

dimension. This method can capture the temporal feature of the site. It can be seen

from section 2.3.3 that TCN not only has the learning ability of CNN architecture but

also has better interpretability than traditional convolution. From the perspective of

the time dimension, causal convolution can solve the problem of information leakage

very well.

For sequence tasks such as traffic flow prediction, it is necessary to model the traffic

flow in the previous period of time instead of relying solely on the traffic flow at the

previous moment. According to section 2.2 Convolutional Neural Networks,

convolutional neural networks can form "memory" through convolution calculations.

However, the biggest problem of using traditional convolutional neural networks in

sequence prediction tasks is how to obtain the long-term memory of the sequence and

how to deal with the problem of information leakage. Information leakage refers to

sequence processing problems such as traffic flow forecasting. It needs to ensure that

the model cannot reverse the sequence order. When the model predicts time 𝑡, future

time data such as 𝑡 + 1 , 𝑡 + 2 cannot be used. Therefore, this thesis uses the

temporal convolutional network (TCN) model [124] to solve these problems. It is a

84

CNN architecture that uses causal convolution and dilated convolution instead of

traditional convolution. The calculation formula of causal convolution is as follows:

𝐹(𝑠) = (𝑥 ∗ 𝑓)(𝑠) = ∑ 𝑓(𝑖)𝑥𝑠−𝑖
𝐾−1
𝑖=0 （3-26）

Among them, 𝐾 is the size of the causal convolution kernel. 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑖} is the

convolution kernel. 𝑥 is the feature vector of 𝑠(𝑡, 𝑛) (𝑛 node at time 𝑡). 𝐹(𝑠)

represents the causal convolution at 𝑠 . However, in practical applications, the

convolution kernel of the causal convolution is generally set to a fixed value. It causes

the limited range of the receptive field of causal convolution, and the limited memory

capacity makes it unable to preserve long-term historical memory. Therefore, TCN

uses dilated convolutions to expand the range of receptive fields. Dilated convolution

extends the memory capacity of the network by expanding the convolution window.

The calculation formula is as follows:

𝐹(𝑠) = (𝑥 ∗𝑑 𝑓)(𝑠) = ∑ 𝑓(𝑖)𝑥𝑠−𝑑×𝑖
𝐾−1
𝑖=0 (3-27)

Among them, 𝑑 is the dilation factor, that is, the size of the evaluation convolution

window. When 𝑑 is 1, the dilated convolution degenerates into ordinary convolution.

By controlling the size of 𝑑, the receptive field is widened, and the memory capacity

of the model is prolonged under the premise of the same amount of calculation.

85

Figure 3.12 The difference between CNN (up) and TCN (down)

Figure 3.12 shows the structure and difference between traditional convolution and

TCN. It can be seen that, compared to traditional convolution, TCN will not merge the

feature information of the "future" time step into the current time step. That is, for the

value at time t of the previous layer, it only depends on the value at time t and before

the next layer. The difference from traditional CNN is that TCN cannot "see" future

data. It has a one-way structure, not a two-way structure. That is to say, only the first

cause can have the latter result, which is a strict time constraint model. Therefore, the

TCN model has better interpretability and long-term memory ability than the CNN

model.

The advantages of TCN are:

1. Parallelism. TCN can process feature data in parallel, without the need for

sequential processing like RNN.

2. Flexible receptive field. The receptive field of TCN is determined by multiple

factors (such as convolution kernel and dilation factor), and it can be flexibly

customized according to different requirements and characteristics.

3. Stable gradient. RNN often has the problem of gradient disappearance and gradient

explosion, which is mainly caused by the sharing of parameters in different time

periods. Like traditional CNN, TCN has almost no gradient disappearance and

86

explosion problems.

4. Lower memory requirements. The convolution kernel of TCN is shared in one layer,

and the memory usage is lower, which is quite different from RNN.

Figure 3.13 Temporal dependent feature aggregation

As shown in Figure 3.13, the GCN+TCN model obtains higher-dimensional feature

values through the message passing process of neighbor nodes. The model updates the

node in the time dimension to higher-dimensional node features through the

aggregation operation and uses it as the input for the next spatial and temporal feature

extraction round.

In summary, the input of the temporal-dimensional GRU/TCN module is the output of

the spatial feature learning unit. Through the superposition of the spatial-temporal

modules, the traffic flow features of the nodes already contain rich spatial feature

information. Therefore, using the GRU/TCN module to superimpose the spatial

module can effectively capture the temporal and spatial features of the traffic flow of

87

the stations.

3.4.4 Readout phase

For this thesis, the task of the Readout phase is to input the high-level traffic flow

spatiotemporal feature information obtained through the learning of multiple

spatiotemporal graph neural networks into the standard supervised machine learning

neural network training task. Find the hidden relationship between the predicted value

and the label to achieve the purpose of learning and prediction by adjusting various

parameters in the neural network. This process is also the process of building a

standard neural network to solve linear regression problems. In this process, two main

tasks need to be solved. One is to determine the depth of the neural network, and the

other is how to solve the problem of neural network overfitting.

For the first question, we increase the depth and feature richness of neural networks

by stacking spatial-temporal modules. Therefore, the model has obtained sufficiently

high-order and powerful features before the Readout phase. The model does not need

too many hidden layers to learn from the data in the Readout phase. Therefore, only a

neural network containing two hidden layers is required to complete the machine

learning task at this stage. This setting can be verified in the next simulation stage. In

the field of machine learning, the formula part of the multivariate linear regression

model has been very mature, and we will not elaborate too much here.

For the second problem, over-fitting is a very critical problem that affects neural

network learning. The way to solve the over-fitting problem is to adopt a

regularization method and add a dropout layer in the process of machine learning. The

learning effect of the combined use of these two methods is ideal. Therefore, in this

work, first, use the 𝐿1 or 𝐿2 regularization method to assist in solving the problem of

overfitting. For the neural network structure, by inserting a two-layer dropout layer in

the neural network to prevent over-fitting.

88

3.4.5 Proposed MST-GCRN and MST-GCTN models

 A fully functional traffic flow prediction model was built through the feature analysis

and periodic data fusion module, spatial-temporal convolution module, and readout

module. The overall model is shown in Figure 3.14.

Figure 3.14 Spatial-temporal graph neural networks model

In the feature analysis and periodic data fusion module, the periodic spatial-temporal

data is concatenated to the same temporal dimension according to the quantitative

analysis method of the data. The processed traffic flow data first passes through the

GCN-based spatial convolution module to extract spatial dependent features. After the

spatial module, high-order features are input to the temporal dependence module.

Then, the temporal dependence is extracted separately through the GRU/TCN module.

89

By adding a simple but effective residual network between spatial-temporal modules,

the problem of network degradation caused by the increase of network depth is solved.

Finally, the updated traffic flow feature is used as the input of the next spatial-

temporal module. Feature extraction and update through several times of spatial-

temporal modules, high-level feature data is input into a neural network with a fully

connected layer to read out the prediction results and carry out neural network

training tasks.

3.5 Attention Mechanism based MST-AGCRN and

MST-AGCTN Models

In this section, we propose the MST-GCRN (MST-AGCRN) and MST-GCTN (MST-

AGCTN) models based on the self-attention mechanism to improve the scalability,

flexibility and accuracy of the prediction. Specifically, based on the self-attention

mechanism, this thesis designs the attention model as a two-dimensional attention

mechanism module about time and space (spatial attention and temporal attention).

This module can learn the mutual influence weights between nodes for different

spatiotemporal scenarios and adjust the input data. It can be seen from the formula

that when the GCN-based model captures the spatial-temporal relationship between

nodes, the weight of the model's edges is unchanged. Through the self-attention

mechanism, our improved new model can dynamically adjust the weights imposed by

neighbor nodes on the target node. Through this mechanism, different neighbor nodes

have different influences on the target node. It makes the node's attention distribution

more reasonable and can effectively capture the dynamic spatial-temporal correlation

on the transportation network. Furthermore, dynamically capture the high-

dimensional feature data of each node in different time and space dimensions, which

can better reflect the actual characteristics of the traffic road network.

3.5.1 Spatial-temporal attention mechanism module

The spatial-temporal-based attention mechanism proposed in this work is to introduce

90

the attention mechanism based on the spatial-temporal graph neural network. The

module contains temporal attention modules and spatial attention modules. The two

modules analyze the spatial attention and temporal attention of the traffic flow,

respectively, and set the weight of the edge as a learnable function between nodes to

capture the dynamic temporal and spatial characteristics. By paying attention to its

neighbors and following a self-attention strategy, the spatial and temporal features of

the road network can be better extracted. So as to achieve a better effect than the

spatiotemporal graph neural network. On this basis, the module based on the

spatiotemporal attention mechanism is combined with the spatiotemporal

convolutional network proposed in the previous chapter. A graph spatiotemporal

convolutional network based on the attention mechanism is formed.

From the description in the previous section, it can be seen that although the GCN

model based on spatial features and the GRU/TCN model based on time features can

effectively extract the temporal and spatial dependence of traffic flow. However, the

model does not take into account the dynamic correlation characteristics of space-time

dimensions.

In the model in the previous section, the weight of the edge between nodes is only

related to the degree of the node. Although the model can reflect the road network

structure, because the degree matrix of the fixed network structure is fixed, the weight

of the edge is fixed and unlearnable. However, in the actual situation, the weight of

the "edge" should not be fixed and unlearnable. In the spatial dimension, the traffic

conditions of different locations will influence each other, and this influence is highly

dynamic. In the temporal dimension, there is a correlation between the traffic

conditions in the same place at different time periods. This correlation also changes

with the change of space and time. Therefore, considering the temporal and spatial

dynamic correlation of traffic flow in the model is beneficial to improve the model's

prediction accuracy.

91

3.5.2 Spatial attention mechanism module

In the spatial dimension, the traffic conditions of different nodes will influence each

other, and this influence is highly dynamic. This work enables the spatial attention

module to adaptively capture the correlation between sensors in the road network

through the self-attention mechanism. The key idea is to dynamically assign different

weights to different nodes at different time steps. Through SoftMax, all attention

coefficients of the node at a certain time are weighted and summed to make the sum

equal to 1. As shown in Figure 3.15, when calculating the spatial attention coefficient

of the 𝑙-th spatiotemporal attention module of node 𝐶 at 𝑡𝑗, the attention coefficients

of node 𝐶 and all nodes in the road network must be calculated separately, and the

road network structure must also be considered. To this end, the hidden state and the

spatial-temporal embedded module are connected together. In this way, the dynamic

correlation between nodes in the spatial dimension can be adaptively captured so that

the nodes in the road network can exert a reasonable influence.

Figure 3.15 Calculation of spatial attention coefficient

At this stage, the application of graph attention mechanism in the research of the

traffic flow prediction model based on the spatial-temporal dimension is still in the

research and exploration stage. Among them, Guo et al.'s [18] research in this area is

more representative. Their model also provided great inspiration for this research. In

its ASTGCN model, the spatial attention coefficient of node 𝑣𝑗 to node 𝑣𝑖 can be

92

expressed as 𝛼𝑖,𝑗. According to the attention mechanism of this model, the calculation

method of the spatial attention matrix is shown in formula (3-28) and formula (3-29):

𝑆 = 𝑉𝑠 ∙ 𝜎((𝑥(𝑟−1)𝑊1)𝑊2(𝑊3𝑥(𝑟−1))
𝑇

+ 𝑏𝑠) (3-28)

𝑆′ = 𝛼𝑖,𝑗 =
exp(𝑆𝑖,𝑗)

∑ exp(𝑆𝑖,𝑗) 𝑁
𝑗=1

 (3-29)

Among them, 𝑥ℎ
(𝑟−1)

∈ ℝ𝑁×𝐶×𝑇, is the input of the 𝑟-th layer of the spatial-temporal

module. 𝑉𝑠 ∈ ℝ𝑁×𝑁 , 𝑏𝑠 ∈ ℝ𝑁×𝑁 , where 𝑁 is the number of nodes. 𝑊1 ∈ ℝ𝑇 , 𝑊2 ∈

ℝ𝐶×𝑇, 𝑊3 ∈ ℝ𝐶, 𝑇 is the length of the time dimension of the input data of the 𝑟-th

layer, and 𝐶 is the number of channels. In addition, 𝑉𝑠 , 𝑏𝑠 , 𝑊1 , 𝑊2 , 𝑊3 are all

parameters that can be learned, and 𝜎 is the activation function. 𝑆 is the attention

matrix, and 𝑆′ is the attention matrix standardized by the SoftMax function. Through

the above matrix calculation, the normalized spatial attention matrix of the 𝑟-th layer

finally output can be obtained as 𝑆′ ∈ ℝ𝑁×𝑁 . However, it can be seen from the

formula (3-28) that when matrix calculation is performed, the information of all time

dimensions on all nodes has been accumulated. From the perspective of the spatial

dimension, the calculated attention coefficient is the sum of the attention coefficients

between nodes in the time length 𝑇. In other words, the ideal spatial attention matrix

of 𝑆𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ∈ ℝ𝑁×𝑁×𝑇 is compressed into 𝑆𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ∈ ℝ𝑁×𝑁 . Therefore, the

temporal attention coefficients of all nodes at time 𝑡𝑗 to time 𝑡𝑖 are the same. Such a

method cannot fully consider the degree of influence on all nodes in different time

dimensions 𝑡. It will make it difficult for the spatiotemporal attention mechanism to

meet the requirements of this research (as shown in Figure 3.15) for using the

attention mechanism to capture more detailed spatiotemporal dynamics in traffic flow

prediction.

Therefore, this thesis proves that a more fine-grained method is to calculate the

attention coefficient matrix between different nodes at different time steps 𝑡 . By

calculating the degree of mutual influence between different nodes simultaneously,

the dynamic weight of the mutual influence of feature data in the spatial dimension is

93

captured. Therefore, adaptive learning using the self-attention mechanism has become

the choice of this work. The self-attention mechanism is a variant of the attention

mechanism, which reduces the dependence on external information and is better at

capturing the internal correlation of data or features.

First, the query matrix 𝑄, the key matrix 𝐾 and the value matrix 𝑉 of the spatial data

input matrix of the traffic flow at time t are sequentially calculated. It can be seen

intuitively from Figure 3.17 that in the process of matrix operation, if a one-

dimensional convolutional network with a convolution kernel set to 1 × 1 is used

instead of matrix multiplication as the coding function. In this way, the complexity of

the calculation can be simplified, and the consistency of the input feature and the

output feature in the dimension can be maintained. The matrix calculation formula is

defined as follows:

𝐾 = 𝑘(𝑥) = 𝑊𝑘𝑥 ∈ ℝ𝐶×𝑁 (3-30)

𝑄 = 𝑞(𝑥) = 𝑊𝑞𝑥 ∈ ℝ𝐶×𝑁 (3-31)

𝑉 = 𝑣(𝑥) = 𝑊𝑣𝑥 ∈ ℝ𝐶×𝑁 (3-32)

Among them, 𝑥 ∈ ℝ𝐶×𝑁 is the spatial feature vector, 𝑁 is the number of spatial nodes,

and 𝐶 is the dimension of the data.

Secondly, normalize the weight scores obtained in the above steps, that is, use

SoftMax to calculate. Let the sum of all weight factors be 1. The calculation formula

is:

𝑆𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐾, 𝑄) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝐾𝑇) ∈ ℝ𝑁×𝑁 (3-33)

Thus, the probability representation of the degree of influence of all nodes at time t is

obtained. 𝑆 ∈ ℝ𝑁×𝑁 . Let 𝑆𝑖,𝑗 represent the attention matrix. In the 𝑗 column, 𝑆𝑖,𝑗

represents the weight of the 𝑖-th node to the 𝑗-node. The sum of the probabilities of

accumulating the weights ∑ 𝑆𝑖,𝑗
𝑁
𝑖=1 is 1. By multiplying each node with the probability

weight, the characteristic information of the 𝑗 node can capture the dynamic

94

correlation between other nodes and the 𝑗-th node in the transportation network. And,

it can be extended to the time length 𝑇, 𝑆 ∈ ℝ𝑁×𝑁×𝑇. So as to meet the calculation

requirements for the spatial attention coefficient.

At the same time, the value of 𝑉 is dot multiplied, and the value is weighted and

summed according to the normalized weight coefficient. The calculation formula is:

𝑥̂𝑠 = 𝑉𝑆𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐾, 𝑄) ∈ ℝ𝐶×𝑁 (3-34)

Therefore, based on the input 𝑥 at time 𝑡, the output 𝑥̂𝑠 with dynamic weight after

being weighted by the spatial self-attention mechanism is obtained. Taking 𝑥̂𝑠 as the

spatial feature input of the subsequent spatial-temporal module can enable the model

to better extract the spatial features of the road network. So as to achieve better results

than simply using graph convolutional networks. Extending to the entire spatial-

temporal input dimension, the features matrix obtained by the spatial self-attention

mechanism is 𝑋̂𝑠 ∈ ℝ𝑁×𝐶×𝑇.

3.5.3 Temporal attention mechanism module

The attention mechanism of the temporal dimension is similar to that of the spatial

dimension. Traffic conditions at different times affect each other, and this effect is

also highly dynamic. In other words, the traffic condition of a location is related to its

previous traffic condition, and the correlation changes nonlinearly with the time step.

Therefore, this work uses a concept similar to the spatial attention mechanism module

to construct the temporal attention mechanism module.

95

Figure 3.16 Calculation of temporal attention coefficient

As shown in Figure 3.16, at the time step 𝑡𝑗, the traffic condition of node 𝐶 will be

affected by the unexpected situation that occurred before the last or several time steps.

Therefore, the non-linear correlation between traffic flow features and different time

steps should be considered when calculating the attention coefficient. At the same

time, the impact of the road network structure on the traffic flow must also be

considered. On this basis, the temporal self-attention mechanism is used to adaptively

model the nonlinear correlation between different time steps. By calculating the

degree of mutual influence of the same node at different times, the dynamic weight of

the mutual influence of the features data in the temporal dimension is captured.

Same as the previous section. First, the query matrix 𝑄, the key matrix 𝐾 and the

value matrix 𝑉 of the time data input matrix of the traffic flow at the 𝑛 node are

sequentially calculated. The same as the spatial self-attention mechanism, the

convolution kernel is set to a 1 × 1 one-dimensional convolution network during the

matrix operation. Use it instead of matrix multiplication as the encoding function. It is

used to simplify calculation complexity and maintain the consistency of input features

and output features in dimensionality. The matrix calculation formula is defined as

follows:

𝐾 = 𝑘(𝑥) = 𝑊𝑘𝑥 ∈ ℝ𝐶×𝑇 (3-35)

96

𝑄 = 𝑞(𝑥) = 𝑊𝑞𝑥 ∈ ℝ𝐶×𝑇 (3-36)

𝑉 = 𝑣(𝑥) = 𝑊𝑣𝑥 ∈ ℝ𝐶×𝑇 (3-37)

Among them, 𝑥 ∈ ℝ𝐶×𝑇 is the time feature vector, 𝑇 is the length of the time period,

and 𝐶 is the data dimension.

Secondly, normalize the weight scores obtained in the above steps. That is, use

SoftMax to calculate so that the sum of all weight factors is 1. The calculation

formula is:

𝐸𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐾, 𝑄) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝐾𝑇) ∈ ℝ𝑇×𝑇 (3-38)

The probability expression of the degree of influence on a certain node at different

times is obtained from this. 𝑆 ∈ ℝ𝑁×𝑁. Let 𝐸𝑖,𝑗 represent the attention matrix. In the 𝑗-

th column, 𝐸𝑖,𝑗 represents the weight of time 𝑖 to time 𝑗. The sum of the probabilities

of accumulating the weights ∑ 𝐸𝑖,𝑗
𝑁
𝑖=1 is 1. By multiplying each time with the

probability weight, the feature information at time 𝑗 can capture the dynamic

correlation between other times and the 𝑗-th time. And, it can be extended to 𝑛 nodes,

𝐸 ∈ ℝ𝑇×𝑇×𝑁 . In this way, the calculation requirements for the time attention

coefficient can be met.

At the same time, by dot multiplying the value of 𝑉 , the value is weighted and

summed according to the normalized weight coefficient. The calculation formula is:

𝑥̂𝑡 = 𝐸𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐾, 𝑄)𝑉 ∈ ℝ𝑇×𝐶 (3-39)

Thus, based on the input 𝑥 of 𝑛 nodes, the output 𝑥̂𝑡 with dynamic weight after the

weighting of the temporal self-attention mechanism is obtained. Taking 𝑥̂𝑡 as the

temporal feature input of the subsequent spatiotemporal module can make the model

better extract the temporal feature of the road network. So as to achieve better results

than simply using graph convolutional networks. Extending to the entire spatial-

temporal input dimension, the characteristic matrix obtained by the temporal self-

attention mechanism is 𝑋̂𝑇 ∈ ℝ𝑁×𝐶×𝑇.

97

3.5.4 Spatial-temporal self-attention mechanism module

Temporal self-attention and spatial self-attention are designed according to the above

two sections. This thesis uses the self-attention mechanism to separate spatial-

temporal attention effectively. This design can effectively calculate the weights of the

dynamic influence of attention on different locations and moments so that the model

can learn more effectively from the input data.

Figure 3.17 Spatial-temporal attention mechanism

As shown in Figure 3.17, the self-attention mechanism can effectively separate

spatial-temporal feature vectors. Then calculate the temporal attention matrix and the

spatial attention matrix using their relatively independent matrix calculation methods.

Thirdly, the feature information is weighted and converged to all spatial-temporal

positions by dot multiplying the 𝑉 value, that is, the dot multiplying value matrix.

This can adaptively capture the temporal and spatial dynamic correlation of traffic

flow data. Finally, the separated two sets of eigenvectors are merged into eigenvectors

containing spatiotemporal attention through Hadamard matrix multiplication: 𝑋̂ =

98

𝑋̂𝑆 ⊙ 𝑋̂𝑇 ∈ ℝ𝑁×𝐶×𝑇.

3.5.5 Spatial-temporal self-attention graph convolution models

The modeling idea of the spatiotemporal graph neural network model based on the

attention mechanism is similar to the previous chapter. The feature extraction model

in the spatial dimension still uses the GCN model. In the temporal dimension, GRU or

TCN models are also used to extract the trend of traffic flow data. The difference

between the models is that the spatiotemporal graph neural network model based on

the self-attention mechanism adds a spatiotemporal separation attention extraction

module before the spatiotemporal feature extraction module. According to the spatial

attention matrix, the feature information of other nodes is gathered into the features of

all nodes to capture the dynamic correlation effects of different nodes. Then,

according to the temporal attention matrix, the feature information of other moments

is aggregated into the features of all moments to capture the dynamic correlation

effects of different time steps. Finally, the feature vector 𝑥̂𝑡 containing the temporal

dimension of attention and the feature vector of the spatial dimension 𝑥̂𝑠 are merged

to obtain the spatiotemporal attention feature vector 𝑥̂. Before feature extraction, each

layer of spatiotemporal module passes through a layer of spatiotemporal attention

module. It combines the spatiotemporal attention mechanism module and

spatiotemporal module into a spatiotemporal self-attention graph convolution module.

At the same time, this work uses a very popular residual network in the field of

convolutional neural network models to solve the problem of network degradation

caused by gradient dispersion or gradient explosion during model training. Finally, by

integrating the spatial-temporal modules one by one, a traffic flow-oriented spatial-

temporal self-attention graph convolution prediction model is constructed.

99

Figure 3.18 Spatial-temporal attention graph neural networks model

In short, three periodic components are merged into one component through

dimensionality reduction or mapping of input data. This simplifies the model and

reduces the computational complexity. The temporal and spatial features of traffic

data can be captured well through the Spatial-temporal convolution module. By

combining spatiotemporal self-attention mechanism and spatiotemporal module, the

models we designed can effectively obtain the dynamic spatiotemporal features of

data. Then, by stacking multiple spatiotemporal modules, more abundant

spatiotemporal dynamic dependent features can be extracted.

Moreover, the use of residual connections makes the training process more stable.

Finally, a fully connected layer is passed to ensure that the component's output has the

same dimension as the predicted target. Through this process, the models can get the

final prediction result.

100

3.6 Summary

In this chapter, this thesis starts from the reality of traffic flow prediction and

discusses the pros and cons of specific methods needed for prediction. Based on

existing research and prediction methods, this work proposes four models for traffic

flow prediction. Two are traffic flow prediction models based on spatial-temporal

graph convolutional neural networks. The other two are improved on this basis,

adding a spatial-temporal graph convolutional neural network model with a self-

attention mechanism. And, in this chapter, the reasons for choosing these four models

are also discussed. Moreover, the rationality and implementation ability of this choice

are analyzed. This thesis will use the actual traffic data set to simulate and compare

the models in the next chapter.

101

Chapter 4

Simulation Studies

This chapter conducted extensive simulation research on the four proposed graph

neural network-based models under the Pytorch framework. The MST-GCRN, MST-

GCTN, MST-AGCRN, and MST-AGCTN models have been experimentally verified

on two actual traffic data sets. First, introduce the model-building platform, traffic

data set, and related processing of the data set used in this work. Then the relevant

parameter settings in the simulations are introduced, and the commonly used

indicators in traffic flow forecasting are given. Then, by comparing some baseline

methods to evaluate the performance of the model proposed in this thesis. We have

selected several representative models in classical statistical theories and analytical

models, traditional machine learning methods, and deep learning methods. By

predicting and evaluation criteria, the performance of these models on the same data

set is compared objectively with the models proposed by this thesis. At the same time,

to verify the importance of spatial-temporal dual-module modeling, this chapter

specifically validates the proposed method in this aspect. The model's actual

performance is used to demonstrate the influence of spatial correlation modeling and

temporal correlation modeling on prediction accuracy. Then, based on the different

performance of different models on the same data set, node and forecast period. This

work also tested the four models' prediction capabilities proposed in the road network

structure for different traffic flows and time steps. By comparing the predicted value

and the real value, the actual prediction ability of the models and some of their

advantages and disadvantages are clearly displayed and discussed. Finally, the

performance of the model in training is also mentioned. Through the different

performances of the TCN module and the GRU module in terms of time performance,

we discussed our basic modeling ideas, the rationality and feasibility of modeling, the

models' deficiencies, and the direction that needs further research. This chapter will

102

show the simulation results through some graphs, so that readers have a clearer

understanding.

4.1 Simulation Environment

4.1.1 Hardware environment

This thesis is based on the Pytorch framework for modeling and verification. In the

actual simulation, this work uses a Windows system laptop as the Simulation platform.

The main hardware configuration information of it is shown in Table 4-1.

Table 4-1 Basic hardware description

CPU Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 1.99GHz

RAM 20 GB (Crucial DDR4 2666MHz)

Storage Samsung MZVLB256HBHQ-000L2 (256GB/SSD)

Graphics Nvidia GeForce MX250 (4GB)

4.1.2 Software environment

This thesis uses PyTorch as the modeling framework for the four traffic flow

prediction models designed in this work. The specific configuration of the software

environment is shown in Table 4-2. Among them, it calls third-party libraries such as

Torch, Math, Numpy.

Table 4-2 Software configuration

Item Version

OS Windows 10 Home edition & Ubuntu 18.04 LTS

Anaconda3 V4.3.1

Python V3.7.0

PyTorch V0.4.1

CUDA V10.0

The reason for choosing PyTorch as the modeling framework is its strong technical

accumulation, stable performance, and outstanding performance in machine learning.

PyTorch is a Python open-source machine learning library based on Torch. PyTorch is

essentially a replacement for Numpy, and it supports GPU and has advanced features

103

that can be used to build and train deep neural networks [125]. Compared with

TensorFlow, PyTorch is more concise and easy to use, which is very suitable for

small-scale model building and testing. Moreover, PyTorch is very suitable for high-

performance numerical calculations.

4.1.3 Simulation data set

This thesis selects the public traffic flow data set provided by the PeMS (Performance

Measurement System) of the California Department of Transportation, the public

traffic data platform, as the input data set.

PeMS (http://pems.dot.ca.gov/) data set is the most commonly used data set in the

field of transportation research. PeMS is an intelligent traffic monitoring system

developed by the California Department of Transportation. It is mainly composed of

vehicle sensors, which cover most of the highway network in California. The PeMS

system collects real-time data from more than 45,000 detectors. It processes the raw

data collected by the sensors, then aggregates them according to time periods such as

5 minutes, 10 minutes, and 30 minutes, and uploads them to the platform for public

disclosure. At the same time, PeMS provides Archived Data User Service (ADUS). It

provides users with more than ten years of historical data. The data of this platform

covers a wide range of space. The data indicators are relatively comprehensive, and

the data missing rate is low. Therefore, it has become the preferred traffic flow data

platform for many management, design and research personnel. Figure 4.1 shows the

Web interface of the PeMS system. The red dots in the figure are the different

detectors.

104

Figure 4.1 PeMS system web interface

At present, a large number of researchers have conducted related research in the field

of transportation on PeMS. Huang et al. [126] used multiple detector traffic flow data

on PeMS to study a short-term traffic flow prediction method based on deep learning.

Oh et al. [127] selected 16 detectors on the SR-78E highway on the PeMS system to

study the traffic state prediction. Lopez et al. [128] used the I5 highway to study

traffic congestion. Moylan et al. [129] used multiple detectors in the San Francisco

Bay Area to study the impact of congestion status, traffic demand, road conditions,

and weather conditions on Travel Time. Wu et al. [36] data source is the I-405N

highway on the PeMS system and proposed the DNN-BTF model, which obtained the

best prediction effect at the time. Therefore, in order to better conduct comparative

research, the data selection of this thesis will be consistent with many previous studies

in data selection and data division. The PeMS detector collects traffic flow data every

30s and gathers them in different lengths of time to provide services for users. The

original data format is shown in Figure 4.2.

Figure 4.2 Example of traffic flow data

105

The first column is a time stamp with 5-minute intervals. Columns 2 to 5 are the

respective traffic flows on the four lanes. The sixth column is the total road traffic

flow. The last column is the percentage of data quality given by PeMS. The table

shows the section where the VDS1214209 detector is located on highway I-405S, a

four-lane section. Figure 4.3 shows the street scene near the VDS1214209 detector on

Google Maps. The leftmost is two High Occupancy Vehicle (HOV) lanes, the

rightmost is the ramp, and the middle four are the main lanes. From left to right

correspond to Lane1-Lane4 in Figure 4.2. Lane1 is close to the central separation

zone and is usually a passing lane or an expressway. Lane4 is close to the shoulder of

the road, and vehicles will continue to flow in. To reflect the road traffic more truly,

this work uses the total road traffic flow.

Figure 4.3 Google Map street view near the VDS1214209 detector

This thesis uses PeMSD8 and PeMSD4 as the benchmark data set to verify the

method and models proposed in this thesis. The acquisition frequency is the 30s/time.

PeMS also provides time series data of 30s, 5min, 1h and other time slices for

research needs. Studies have shown that predicting traffic flow in congested traffic

conditions with a time interval of 5 minutes can provide drivers with the most

effective help [36]. Therefore, this work uses a 5min time slice data set for research

and prediction. This thesis will select the traffic flow, traffic flow density, and average

vehicle speed as the characteristic dimensions of the data set. The specific data

information is as follows:

1. PeMSD4 data set: The data comes from the traffic data of San Francisco Bay Area

106

highways. The transportation network in this area includes 29 highways and a total of

3848 data collection devices. The collection time range is the traffic data of 59 days

from January to February 2018. In this work, the first fifty days of data will be used as

the training set, and the last nine days of data will be used as the test set.

2. PeMSD8 data set: The data comes from the traffic data of the highway in San

Bernardino, including eight roads and a total of 1979 collection devices. The time

range is from July to August 2016, a total of 62 days of data records were collected.

The first fifty days are used as the training set, and the last twelve days are used as the

test set.

4.2 Data Pre-processing

4.2.1 Data analysis

1. Temporal correlation analysis

As shown in Figure 4.4, using the overall traffic flow data in the test set, it can be

seen that the traffic flow trend has a significant periodicity and fluctuation law.

Figure 4.4 Historical traffic data of the VDS 1214209 detector in July 2021

Analyze the traffic data of a certain working day, as shown in Figure 4.4. It can be

seen that the traffic flow of this working day is obviously more vehicles during the

day and fewer vehicles at night, which is consistent with the law of human activities.

107

There are two peaks in the vehicle number curve in a day, and the number near the

peak fluctuates sharply. Comparing the traffic flow data of different dates, it also has a

certain degree of randomness, but the overall movement pattern is obvious and

periodic. It can also be seen from the time points and data on the graph that the

change curve waveform of traffic flow is similar to the fact that people commute and

participate in other social activities.

2. Spatial correlation analysis

The flow of traffic circulates in space. Therefore, the traffic flow of a place is not only

related to its own time change characteristics, but also closely related to its spatial

distribution characteristics. This work arbitrarily selects the traffic flow data of 4

adjacent detection stations on the same day for spatial correlation analysis. As shown

in Figure 4.5, although the traffic flow of different detection stations on the same day

is slightly different, the overall distribution trend is roughly the same. Moreover, the

higher the correlation of the distance between the two stations, the closer the traffic

flow connection between the two points.

Figure 4.5 Traffic flow on the same day at different detection stations

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fl
o

w
 (

V
eh

/H
o

u
r)

1214214

1214209

1214238

1214210

108

4.2.2 Data filling

Figure 4.6 Schematic diagram of missing data

In the data processing, it is found that some traffic flow data of the detection station is

missing, as shown in Figure 4.6. The lack of traffic data will have a greater impact on

the prediction of subsequent data analysis so that this work will repair the missing part

of the data. To make the filling data more accurate and able to combine the

characteristics of both historical data and the data of the day, this thesis uses the KNN

algorithm to fill the missing data. The main calculation idea of KNN is: calculating

the distance between the target value and the data record in the data set. Then select

the k values with the smallest distance from the target data as the nearest neighbors of

the target value. The weighted average or mode of the k nearest neighbor values is the

estimated value of missing target data.

Figure 4.7 Schematic diagram of filling data with KNN algorithm

Divide the time into two-dimensional data according to 5 minutes as a unit. The

horizontal axis is 288 units of time in a day, and the vertical axis is days, as shown in

109

Figure 4.7. Then the nearest neighbor algorithm is to determine the points in the circle

in the figure. In this way, the data in the entire two-dimensional coordinates are taken

into account. That is, both historical data and current data are taken into consideration.

For the choice of distance, this work uses Manhattan distance:

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| (4-1)

After parameter adjustment, K=3 is finally selected as the final result.

4.2.3 Node screening

To better conduct comparative simulations. In this work, the node screening method is

consistent with the node screening method adopted by Guo et al. [18] in the study of

MCSTGCN and ASTGCN models. The detectors in the PeMSD4 data set and the

PeMSD8 data set are screened separately, and some detectors that are too close are

removed to ensure that the distance between the detector nodes is greater than 3.5

miles. Due to the characteristics of the highway dataset, the data similarity of the

nodes with closer distances is high. While increasing the complexity of the data, it

cannot help the spatiotemporal model to extract feature data very well.

After processing, the PeMSD4 data set retains a total of 307 data collection stations

related to traffic flow data information. The PeMSD8 data set retains a total of 170

data collection stations related to traffic flow data information.

4.2.4 Data standardization

This work uses the Z-score method to standardize the data. Every deep learning model

must perform data normalization, which is one of the most basic tasks of deep

learning. When forecasting traffic flow, data using different evaluation indicators

often have different magnitudes and units. This situation will affect the temporal and

spatial feature extraction of traffic flow data. Therefore, the data in the traffic flow

data set must be normalized to the same magnitude for subsequent feature extraction.

The standard deviation and mean value of the data are uniformly processed by the

110

standardized method so that the data in the data set conforms to the standard normal

distribution. After processing, the mean value of the data is equal to 0, and the

standard deviation is equal to 1. Normalized data are all values with a size between

[0, 1] , which facilitates data processing and simplifies complex data [130]. The

formula is as follows:

𝑥̂ =
𝑥−𝜇

𝛿
 (4-2)

In the above formula, 𝑥 is the traffic flow data obtained by the traffic sensor, 𝜇 is the

mean of the overall traffic flow data, and 𝛿 is the standard deviation of the overall

traffic flow data.

4.3 Data Set Division and Evaluation Criteria

4.3.1 Data set division

As mentioned in node screening, the PeMSD8 data set retains 170 data nodes, and the

PeMSD4 data set retains 307 data nodes. According to the division and fusion method

of periodic components discussed in section 3.3.2. This thesis keeps the size settings

of the recent periodic dependency, daily periodic dependency, and weekly periodic

dependency consistent with the settings in the MSTGCN and ASTGCN models [18].

Then, perform data fusion on the input feature data according to the data fusion

method in section 3.3.3. Since the data sample collection interval is selected to be 5

minutes, the duration of the model's prediction target is 60 minutes. Therefore, the

dimension of the input data is (
60

5
× 3 +

60

5
× 1 +

60

5
× 1) × 𝐶 = 60 × 𝐶. 𝐶 is the channel

dimension (the number of different types of feature information).

According to the results of data processing and the basic rules of data set division in

the field of machine learning, this work divides the data set into a proportion of 60%

for the training set, 20% for the validation set, and 20% for the test set. The feature

input matrix dimension of the PeMSD4 data set is spatial dimension (307 nodes) ×

channel dimension (3 traffic flow features information) × temporal dimension (60

111

periodic time data points at 5-minute intervals). The feature input matrix dimension of

the PeMSD8 data set is spatial dimension (170) × channel dimension (3) × temporal

dimension (60). The output dimension of PeMSD4 is 307 × 12 (12 time steps of 307

nodes with a time window of 60 minutes) of predicted information (traffic flow). The

output dimension of PeMSD8 is 170 × 12. The description of the data set is shown in

Table 4-3.

Table 4-3 Dataset description

Datasets Number of sensors Time range Number of samples

PeMSD4 307 1/1/2018-2/28/2018 16992

PeMSD8 170 7/1/2016-8/31/2016 17856

4.3.2 Evaluation criteria

To evaluate the pros and cons of traffic flow prediction models, evaluation criteria are

usually used. Commonly used evaluation indicators are: Mean Squared Error (MSE),

Root Mean Squared Error (RMSE), Mean Relative Error (MRE), Mean Absolute

Error (MAE), Mean Absolute Percentage Error (MAPE). The specific calculation

formula is as follows:

𝑀𝑆𝐸 =
1

𝑛
∑ |𝑦̂ − 𝑦𝑖|

2𝑛
𝑖=1 (4-3)

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ |𝑦̂ − 𝑦𝑖|2𝑛

𝑖=1 (4-4)

 𝑀𝑅𝐸 =
1

𝑛
∑

|𝑦̂−𝑦𝑖|

𝑦𝑖

𝑛
𝑖=1 (4-5)

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂ − 𝑦𝑖|

𝑛
𝑖=1 (4-6)

𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦̂−𝑦𝑖|

𝑦𝑖

𝑛
𝑖=1 (4-7)

In the formula, 𝑦𝑖 represents the true value, 𝑦 ̂ represents the predicted value, and 𝑛

represents the total number of samples.

RMSE measures the error between the predicted and true values and squares the error

value, making RMSE more sensitive to outliers. MAPE not only considers the error

112

between the predicted value and the true value but also considers the difference

between the error and the true value. Proportion. Some researchers believe that it is

more practical to use MAPE as a performance indicator because the peaks and valleys

of the traffic flow may be quite different. At the same time, the use of MAPE can

evaluate the effects of different models on different data sets to a certain extent [26].

However, when the real traffic flow is zero (𝑦𝑖 = 0), MAPE cannot be calculated. This

work will use RMSE and MAE as the main evaluation indicators, and at the same

time, it will be supplemented by the observation of changes in MAPE. When

calculating MAPE, zero-value samples will be eliminated.

4.3.3 Baseline method

This thesis will compare and analyze with the following methods: HA (History

Average), Auto-regressive integrated moving average (ARIMA), Long and short-term

memory neural network model (LSTM). In addition, a Multi-Component Spatial-

Temporal Graph Convolution Networks (MSTGCN) and an attention based spatial-

temporal graph convolutional network (ASTGCN). For the settings of HA, ARIMA,

LSTM and GRU, refer to the prediction results of Guo et al. [18]. MSTGCN,

ASTGCN refer to the default settings of the original author's paper [18].

(1) HA (History Average): The average value of historical traffic is used as the

predicted value of the traffic to be predicted.

(2) ARIMA (Autoregressive Integrated Moving Average) [131]: This model regards

the data sequence formed by the forecast object over time as a random sequence,

based on the autocorrelation analysis of the time series, and predicts future values

through the historical data of the time series.

(3) LSTM [71]. LSTM alleviates the problem of gradient disappearance to a certain

extent through the "gate" mechanism. As a common method of time series prediction,

it takes the flow of the previous moment as input to predict the flow of the next

moment.

113

(4) MSTGCN [18]: A spatial-temporal prediction model that contains a convolution

module of spatial-temporal graphs similar to a sandwich structure. The road network

structure models the relationship between the stations as the basis of graph

convolution. A good prediction accuracy has been achieved on the traffic flow

prediction issue.

(5) ASTGCN [18]: A spatiotemporal graph convolution model based on

spatiotemporal attention mechanism. It uses the road network structure to model the

relationship between stations as the basis for graph convolution. A good prediction

accuracy has been achieved on the problem of road flow prediction.

4.4 Analysis of Simulation Results

4.4.1 The parameter settings of the prediction models

The main parameters involved in the simulation of the traffic flow prediction models

(MST-GCRN, MST-GCTN, MST-AGCRN, and MST-AGCTN) proposed in this

thesis are:

(1) As mentioned in the GCN-based spatial module modeling section, Chebyshev

graph convolution is used in the graph convolution module, where the convolution

kernel size K is 2, and the number of convolution kernels is 64.

(2) The number of layers of Recurrent neural network. In temporal dependency

modeling, the sequence-to-sequence model is used to predict the temporal dimension.

The encoder and decoder in the model are both recurrent neural networks with GRU.

The selection of the number of layers of the recurrent neural network should not be

too large. In the simulation of this work, both the encoder and the decoder are

equipped with two layers of recurrent neural networks, which achieves the best results.

(3) The number of GRU in the recurrent neural network. The recurrent neural network

of each layer of the encoder and decoder has many GRU. The selection of the number

of GRU is generally an exponent of 2, and it is generally appropriate to set it between

114

16 and 128. If it is too large, it will increase the complexity of the calculation and

make the training time-consuming. If it is too small, it will also affect the

effectiveness of the model. In the simulation of this work, the best performance is

reached when it is set to 24.

(4) The size of the convolution kernel of the temporal convolution model is 𝑘 = 4,

and the number of convolution kernels is 32. The dilation factor 𝑑 = 2𝑛−1 is the

expansion factor of the 𝑛-th spatial-temporal convolution module.

(5) Common parameters of deep learning. The number of layers of the spatial-

temporal module is set to 5. Too many layers will cause overfitting, and too few layers

will cause insufficient feature learning. Epoch is set to 100, and early stopping

technology is used to avoid overfitting. The initial learning rate is set to 0.003.

Starting from the 5th epoch, the epoch learning rate decay interval is 5, 20, 40, 70.

Each time the learning rate decays to 0.3 times the initial learning rate. In this thesis,

Mini-Batch is used in training, the Batch-Size is set to 64, and ReLU is used as the

activation function of the neural network. The loss function uses Mean Absolute Error

(MAE), and the optimizer chooses Adam.

4.4.2 Case study 1: The impact of traffic flow volume on the accuracy

of prediction Models

This section demonstrates and discusses the impact of traffic flow volume at different

spatial-temporal locations on the model's prediction accuracy to enable readers to

understand the performance of the four models designed by this work on the PeMSD4

and PeMSD8 data sets. Our models all have the ability to predict traffic flow, but their

prediction accuracy differs significantly when dealing with different volumes of

traffic flow at different spatial-temporal locations. As mentioned in the data

processing section, the minimum interval for data collection of the data set is 5

minutes. So in the following discussion, we will use the time step as the unit of time,

and each time step represents 5 minutes. Therefore, the one-day predict curve will be

115

divided into 288-time steps, and the one-hour predict curve will be divided into 12-

time steps. Based on this, the actual effect of the models in extracting traffic flow is

discussed by comparing the predicted value with the real value.

Figure 4.8 The MST-GCRN prediction accuracy on PeMSD4-node180

Figure 4.9 The MST-GCRN prediction accuracy on PeMSD4-node108

The figure above shows the prediction accuracy of the MST-GCRN model on the

PeMSD4 data set. Figures 4.8and 4.9 show the comparison between the predicted data

and actual data of nodes 180 and 108 on February 20, 2018. The red is the value of

the actual traffic flow, and the green is the predicted result. The X-axis coordinates

represent time steps, and each time step is 5 minutes. So a day is 288 time steps. We

found that the prediction performance of the MST-GCRN model will be affected by

the volume of traffic flow. At nodes where the volume of traffic flow is small, the

model performs better.

On the contrary, The performance of the model has decreased. As shown in Figure 4.9,

116

especially in the period when the traffic flow value is large, the model's prediction

accuracy decreases significantly. As shown in Figure 4.10 (a) and (b), this

phenomenon is also reflected in our MST-AGCRN model.

Figure 4.10 (a/b) The MST-AGCRN prediction accuracy on PeMSD4-node180/108

Judging from the prediction performance of the MST-AGCRN model, during rush

hours, the model's prediction accuracy is worse than usual. To analyze this

phenomenon more fine-grained. We selected the models' prediction performance

during the peak hours of these two nodes on this day. Figures 4.11 and 4.12 show the

comparison between the predicted data and actual data of nodes 180 and 108 within

one hour from 11:00 to 12:00 on February 20, 2018, on the MST-GCRN model.

Figure 4.11 The MST-GCRN prediction accuracy on PeMSD4-node180-1hour

117

Figure 4.12 The MST-GCRN prediction accuracy on PeMSD4-node108-1hour

The performance of the MST-GCRN model during peak hours reflects this

phenomenon more directly. From the degree of fit between the predicted value and the

true value and the fluctuation of the predicted value, it can be seen that when the flow

volume is small, the model's predictive ability is stronger. On the contrary, the gap

between the predicted and true values is obvious, and the predicted value does not

fluctuate over time. This conclusion can also be clearly reflected in Figure 4.13 (left)

and (right). It shows the comparison between the predicted data and actual data of

nodes 180 and 108 from 11:00 to 12:00 on February 20, 2018, on MST-AGCRN.

Figure 4.13 The MST-AGCRN prediction accuracy on PeMSD4-node180/108

It can be seen from the above two sets of figures that the traffic flow extraction

performance of the models is better on nodes with small traffic flow volumes than on

nodes with large volumes. To further confirm this conclusion, we did the same

simulation on PeMSD8. The result is shown in the figure below.

118

Figure 4.14 The MST-GCRN prediction accuracy on PeMSD8-node50/80

Because the PeMSD8 data set is smaller than the PeMSD4 data set. Its performance is

not as obvious as the data set, but we can still clearly see this phenomenon during

peak hours. As shown in the figure below, this performance is clearer within one hour.

Figure 4.15 The MST-GCRN prediction accuracy on PeMSD8-node50/80-1hour

In addition, this work uses PeMSD4 data set to do the same simulation on the MST-

GCTN model and MST-AGCTN model, respectively. Firstly, the simulation selects

the same node and time period as the MST-GCRN model and MST-AGCTN model.

The result is shown in the figure below. Among them, the blue line is the prediction

accuracy of the MST-GCTN model. Green is the prediction accuracy of the MST-

AGCTN model. The red is the actual value.

119

Figure 4.16 The predictive accuracy of the TCN models on the PeMSD4

Secondly, we selected two other nodes (node 20 and node 57). As shown in the figure

below, the left figure shows the prediction accuracy of node 20 with a small traffic

flow. The following figure shows the prediction accuracy of node 57 with a larger

volume of traffic flow.

Figure 4.17 The predictive accuracy of the TCN models on the PeMSD4

From the above series of analyses, we can draw such a conclusion from case study 1.

The prediction performance of our proposed models at different nodes will vary

according to the volume of traffic flow of the node. At nodes with small traffic flow,

the models have excellent predictive capabilities. But at nodes with large traffic flow,

the predictive ability of the models has decreased. In addition, in horizontal

comparison, the prediction accuracy of the model with the self-attention mechanism

added is better than that of the model without the self-attention mechanism.

Longitudinal comparison, the accuracy of the model based on GCN+RNN is better

than the accuracy of the model based on GCN+TCN. This feature is caused by the

120

GCN model. The disadvantage of GCN in the embedding phase is that it cannot

assign different weights to different neighbor nodes. However, in actual situations, the

impact of different traffic flow nodes on other nodes is very different in temporal and

spatial dimensions, and there are dynamic effects between nodes. Therefore, at nodes

with high frequency or large traffic flow volume, such shortcomings will be

prominent. For this reason, we have added a self-attention mechanism to capture the

dynamic dependence of traffic flow to make up for the deficiencies brought by GCN.

As the results show, although this characteristic still exists, the prediction results have

been effectively improved. These aspects will be demonstrated in detail in the next

case study.

4.4.3 Case study 2: The impact of self-attention mechanism on the

accuracy of prediction Models

In this section, we will simulate the performance of the self-attention mechanism on

our proposed models. From case study 1, we can see that the models perform better

on nodes with smaller traffic flow. To highlight the difference in prediction accuracy

between the models with the self-attention mechanism and the models without the

self-attention mechanism, we chose the nodes with a larger traffic flow volume as a

comparison in this case study. First, on the PeMSD4 data set, we show the prediction

performance of MST-GCRN and MST-AGCRN on node 108.

Figure 4.18 The predictive accuracy of MST-GCRN and MST-AGCRN on node 108

121

In Figure 4.18, the time period in the left figure is one day. The picture on the right

shows the time range from 11 o'clock to 12 o'clock. The blue line is the performance

of the MST-GCRN model without the self-attention mechanism, the green is the

MST-AGCRN model with the self-attention mechanism, and the red is the actual

traffic flow. It can be clearly seen from the figure that the traffic flow prediction

accuracy of the model with the self-attention mechanism is significantly better than

that of the model without the self-attention mechanism. The difference in predictive

ability between the two models is most obvious during peak hours. In addition, we

chose node 57 with a larger traffic flow as further proof.

Figure 4.19 The predictive accuracy of MST-GCTN and MST-AGCTN on node 57

As shown in Figure 4.19, the predictive ability of MST-AGCTN is better than MST-

GCTN. In the prediction performance during peak hours, the addition of the self-

attention mechanism enhances the model's ability to extract dynamic traffic flow data

and makes the prediction curve fluctuate. Next, this work performed similar

simulations on the other models (MST-GCTN and MST-AGCTN) on PeMSD4 and

PeMSD8 data sets.

122

Figure 4.20 The predictive accuracy of MST-GCTN and MST-AGCTN

In Figure 4.20, the figure on the left is the performance of the MST-GCTN and MST-

AGCTN models on node 108 of PeMSD4. On the right is their performance on node

80 of PeMSD8. As mentioned earlier, these two nodes are the nodes with larger traffic

flow volumes in their respective data sets. It can be seen that on the two data sets, the

addition of the self-attention mechanism has an obvious effect on the improvement of

the model's prediction accuracy. By increasing the dynamic dependence of features,

the predictive model can better capture the temporal and spatial dependence of the

traffic flow between nodes. We can prove that the model with self-attention is better

in terms of overall prediction accuracy through comparison and analysis. The addition

of the self-attention mechanism can well enhance the model's ability to extract traffic

flow, which is rich in dynamic features. In addition, in the course of this simulation,

we also found differences in the predictive capabilities of the four models we

proposed.

Figure 4.21 The predictive accuracy of our models

123

Figure 4.21 shows the prediction accuracy of our four models at node 108 of PeMSD4

and node 80 of PeMSD8. Green and magenta represent MST-GCRN and MST-

AGCRN, respectively. Blue and green represent MST-GCTN and MST-AGCTN,

respectively. As shown in the figure, the prediction accuracy of the MST-GCTN

model and MST-AGCTN model is significantly lower than that of the MST-GCRN

model and MST-AGCRN model. Moreover, the difference is even more obvious at

node 108 and node 80, with larger traffic flow. The simulation results are quite

different from the assumptions in the model design chapter. Originally, this simulation

wanted to use the causal and dilated convolution of TCN to increase the

interpretability and reliability of the model to achieve more accurate prediction results.

However, the actual simulation results show significant differences. According to the

analysis, this thesis believes that as the dilation factor in the TCN model gradually

increases, the model accuracy will decrease. The reason is that the increase in the

dilation factor leads to a larger receptive field. The benefit of the increased receptive

field is that it can obtain a longer temporal dependency of the traffic flow. However,

as the dilation factor increases, the number of network layers gradually deepens, and

the amount of calculation and computational complexity increases. At the same time,

this also increases the unpredictability of the data. When convolutional layers with the

same dilation factor are stacked multiple times, part of the data may not participate in

the calculation, so that the model ignores this part of useful information. As a result,

the model is more difficult to train, and the model's accuracy decreases.

Secondly, the reason for the unsatisfactory performance of the MST-GCTN model and

MST-AGCTN model may also be related to the preprocessing of the data set. From

the perspective of data processing, there is a big difference between holiday data and

weekday data due to the periodic characteristics of traffic flow data. This work

believes that this is also a reason that restricts TCN from exerting its advantages.

Generally speaking, there will be two peaks in traffic flow from Monday to Friday:

morning peak and evening peak. The traffic volume on weekdays is significantly

higher than that on weekends. There is only one peak in traffic flow for two days on

124

weekends, which usually occurs around noon. Suppose the model cannot explain the

difference between working days and non-working days well. In that case, it will

extract too much irrelevant feature information, thereby reducing the performance of

the model. In addition, as far as the causality of data is concerned, we believe that the

data at the subsequent time point still has a certain impact and reference value on the

data at the previous time point. The idea of only focusing on the data before the time

point may be under consideration.

Taken together, all of the above factors will have a subtle impact on the predictive

performance of the TCN model. The TCN model may be more suitable for long-term

sequence forecasting. In the follow-up work, the data can be pre-processed more

finely, and the model and parameter settings can be further improved and explored.

Perhaps by removing some holiday data and improving the TCN model, it can achieve

more ideal prediction results.

125

Figure 4.22 The evaluation results of the models on the PeMSD4

Figure 4.22 is the evaluation results of deep learning models on PeMSD4. From the

results, we can see the problem raised in the previous paragraph. The two models of

GCTN are 1.89 and 1.35 higher in MAE than the two models of GCRN we proposed.

In addition, it is 4.2 and 2.7 higher in RMSE and 0.49% and 0.56% higher in MAPE.

Moreover, it can also be seen from the figure that the prediction performance of the

GCTN model is worse than the performance of MSTGCN and ASTGCN that we have

chosen as the comparison baseline. This pattern can also be seen from the evaluation

results of the models on PeMSD8 in Figure 4.23.

126

Figure 4.23 The evaluation results of the models on the PeMSD8

On the whole, from the evaluation results of the models. As shown in Figures 4.22

and 4.23. The performance of the MST-GCTN model and MST-AGCTN model is

worse than the MST-GCRN model and MST-AGCRN model. Moreover, it is not as

effective as previous models based on GCN and CNN (such as MSTGCN, ASTGCN).

Therefore, this work will not discuss the MST-GCTN model and the MST-AGCTN

model in the following sections.

In summary, As can be seen from case study 1 and case study 2. In our proposed

models, the performance of the MST-AGCRN model on the data set is the best,

followed by the MST-GCRN model. The addition of the self-attention mechanism is

the reason why the MST-AGCRN model is more effective than the MST-GCRN

model. The difference in the performance of predicting traffic flow data of different

volumes also proves the model's ability to perceive the temporal and spatial features

of traffic flow. The different performances of the models can be clearly seen from the

comprehensive evaluation results in Figure 4.22 and Figure 4.23. Therefore, this

127

thesis selects the MST-GCRN model and MST-AGCRN model as the final model of

this thesis in the following sections. Through them, the overall prediction accuracy of

the models is compared and analyzed with the baseline models. Due to time and

capacity constraints, the TCN-based models can be left in future research for more in-

depth investigation and research.

4.4.4 Case study 3: The accuracy comparison study with some

benchmarking models

Through the model analysis and comparison in section 4.4.3, this section mainly uses

the MST-GCRN model and the MST-AGCRN model as the final model of this thesis.

It compares it with several typical traffic flow prediction models on the PeMSD4 data

set and PeMSD8 data set. Based on the three evaluation criteria results, we analyze

the performance of different models on two data sets and focus on demonstrating the

good performance of the models proposed in this thesis on the two data sets.

1. Overall performance analysis of prediction models

Figure 4.24, Figure 4.25 and Figure 4.26 show the comprehensive prediction results

of several different traffic flow prediction models. First, calculate the MAE, RMSE,

and MAPE results of each traffic flow prediction model on two different data sets.

Then carry out a comparative analysis.

128

Figure 4.24 The MAE results of the models

It is not difficult to see from the above figures that the MST-GCRN model and MST-

AGCRN model proposed by this thesis show good performance in comprehensive

prediction performance. On the PeMSD4 data set, the MAE results of our two models

are 1.53 and 2.05 respectively, lower than the previous best-performing ASTGCN

model. On the PeMSD8 data set, the MAE results of our two models are 1.05 and

1.67 respectively, lower than the previous best-performing ASTGCN model. From the

most concise MAE results, we can see that our MST-GCRN model and MST-AGCRN

model are more excellent than classical statistical theories and analytical models (HA,

ARIMA). They use the powerful feature extraction capabilities of neural networks to

learn the nonlinear data structure. Compared with traditional machine learning

methods (LSTM), they can extract data features from two dimensions of time and

space through multi-layer modules. Through the graph convolutional neural network,

the features representation of the node in the spatial and temporal dimensions are

obtained, so more powerful features of traffic flow data are extracted. This also brings

about an improvement in forecast accuracy.

129

Figure 4.25 The RMSE results of the models

Compared with the ASTGCN model, the RMSE results on PeMSD4 are reduced by

0.95 and 1.85 respectively. Compared with the ASTGCN model, the RMSE results on

PeMSD8 are reduced by 0.91 and 2.04, respectively. From the RMSE results, our

MST-GCRN model and MST-AGCRN model have also improved their prediction

accuracy. Compared with the ASTGCN model with the smallest root mean square

error among other models, our model uses a GRU module and a self-attention

mechanism instead of a CNN module and a graph attention mechanism. Therefore,

the accuracy has been improved to a certain extent under similar circumstances.

130

Figure 4.26 The MAPE results of the models

Compared with the ASTGCN model, the MAPE results of the models are respectively

reduced by 1.31% and 1.81% on PeMSD4. Compared with the ASTGCN model, the

MAPE results on PeMSD8 are reduced by 0.63% and 0.67%, respectively. In general,

the prediction model proposed in this work has achieved advanced prediction

accuracy on both real data sets.

According to the type of model, among all models, the traffic flow prediction models

based on deep learning (LSTM, MSTGCN, ASTGCN, MST-GCRN, MST-AGCRN)

outperform classical statistical theories and analytical models (HA, ARIMA). The

indexes of the deep learning model in MAE, RMSE, and MAPE are all lower, which

shows that the deep learning method is more accurate and deeper in the feature

extraction of traffic flow data. They are more powerful in analyzing non-linear data

structures. In the deep learning prediction model, the performance of LSTM is weaker

than that of the prediction network model based on graph neural networks. This is

131

because the LSTM model does not take the spatial information of the road network

structure into consideration. This also fully shows that it is important to consider the

structure of the graph of the road network in the prediction model.

2. Performance changes at different prediction time steps

In addition, this thesis also compares the performance changes of four deep learning

models based on graph neural networks (MSTGCN, ASTGCN, MST-GCRN, MST-

AGCRN) on two data sets at different prediction time steps. With 5 minutes as the

interval, the predicted time step increases from 5 minutes to 1 hour. The simulation

results are shown in Figure 4.27, Figure 4.28 and Figure 4.29.

Figure 4.27 The MAE results of the models at different time steps

It can be seen from Figure 4.27 that our models have an outstanding ability to predict

longer time steps. They are the most obvious difference in the prediction accuracy of

60-minute predictions than the two deep learning baseline models. As shown in

Figures 4.28 and 4.29, this trend is similar in the other two evaluation results.

132

Figure 4.28 The RMSE results of the models at different time steps

Figure 4.29 The MAPE results of the models at different time steps

As can be seen from the figures, as a whole, with the gradual increase of prediction

time, the difficulty of prediction becomes more and more difficult. Their errors

generally show an upward trend. The four models showed the same growth trend on

the PeMSD4 data set and PeMSD8 data set. Compared with the MSTGCN model, the

prediction errors of the three prediction models, ASTGCN, MST-GCRN, and MST-

AGCRN, increase relatively slowly. Moreover, the prediction accuracy of the two

models used in this study are better than the MSTGCN model and the ASTGCN

model at 12 time steps (except for the first 5 minutes). This shows that the MST-

GCRN model and MST-AGCRN model can fully mine the spatial-temporal patterns

of data, and show more obvious advantages in mid-and long-term predictions. This

advantage is due to the use of GRU modules instead of CNN modules. It is because

the recurrent neural network has a stronger ability to extract time series information

and has a better ability to process historical information.

3. Performance changes at different nodes (stations)

To analyze the prediction accuracy of the MST-GCRN model and MST-AGCRN

model more three-dimensionally. Figure 4.30, Figure 4.31 and Figure 4.32 show the

RMSE, MAE and MAPE results of the four deep learning models' traffic predictions

at each node.

133

Figure 4.30 The MAE results of the models at each node

It can be seen from Figure 4.30 that the MST-GCRN model and MST-AGCRN model

proposed in this thesis can achieve the best prediction accuracy for most stations. For

nodes that are more difficult to predict and have greater prediction errors in public

data sets, the prediction advantages of the two models of this thesis are more obvious.

In addition, the model of this work also shows more prominent and outstanding

results on the PeMSD4 data set, which is more complex than the PeMSD8 data set.

The trend of such evaluation results is also evident in Figures 4.31 and 4.32.

134

Figure 4.31 The RMSE results of the models at each node

Figure 4.32 The MAPE results of the models at each node

In summary, the MST-GCRN model and MST-AGCRN model proposed by this thesis

can effectively capture the relationship between stations and learn rich feature

representations, which is beneficial to traffic flow prediction. Therefore, the models

can be effectively applied to traffic flow prediction tasks on two real data sets

(PeMSD4 and PeMSD8) to achieve ideal prediction results.

135

4.4.5 Case study 4: Model training performance comparison

In this section, we will discuss the comprehensive capabilities of the MST-(A)GCRN

models and the MST-(A)GCTN models through the model's performance in training.

The actual training effect of each deep learning model and the algorithm efficiency of

the models are discussed through the time performance of the model in the training

process. And, through the evolution of the loss function of the models, we will discuss

the actual effects of using the residual network, the self-attention mechanism and

adding the dropout layer in the Readout phase.

1. Time performance.

Based on the hyperparameter settings, the time performance of the four models in

PeMSD4 and PeMSD8 is shown in the following table.

Table 4-4 Time performance (mins) 100 epoch

 PeMSD4 PeMSD8

MST-GCRN 62 34

MST-AGCRN 49 40

MST-GCTN 178 46

MST-AGCTN 179 46

It can be seen from the time performance of model training. Due to the relatively

small sample size of the data set, the four models have little difference in the time

performance of the PeMSD8 data set. Moreover, due to the low computational

complexity of the self-attention mechanism module, there is no obvious difference in

the time performance of training between the model with the self-attention

mechanism and the model without the self-attention mechanism. On the PeMSD4 data

set, the training time of the TCN-based model is longer than that of the GRU-based

model. It can be seen that the TCN model is affected by the number of model layers,

hyperparameters, and the size of the data set is larger than other models. Therefore, as

the amount of data increases, the temporal convolutional network model will increase

the training time more significantly than the training time of other models.

136

2. The loss function of the models

The figure below shows the evolution of the loss (MAE) metric of each model.

Figure 4.33 The loss metric of the MST-GCRN model on the data set

Figure 4.34 The loss metric of the MST-AGCRN model on the data set

As shown from Figure 4.33, the evolution of the loss function of the MST-GCRN

model on the PeMSD4 and PeMSD8 data sets. Around the 80th epoch, the loss

function of the model tends to stabilize at around 0.019/0.018. Figure 4.34 shows the

loss function of the MST-AGCRN model, as for the model that adds the self-attention

mechanism. The model's loss function converges faster than the model without the

attention mechanism. It can be seen from the figure that the loss function of the MST-

AGCRN model on the PeMSD4 and PeMSD8 data sets began to stabilize at about

0.0198/0.0178 at the 60th epoch. After adding the self-attention mechanism, this fully

shows that the model has successfully learned the dynamic related features of

spatiotemporal data. With the enrichment of feature data, the flexibility of the model

and the accuracy of prediction are improved.

137

Figure 4.35 The loss metric of the MST-GCTN model on the data set

Figure 4.36 The loss metric of the MST-AGCTN model on the data set

As shown from Figure 4.35, the evolution process of the loss function of the MST-

GCTN model on the PeMSD4 and PeMSD8 data sets. Around the 100th epoch, the

loss function of the model tends to stabilize at about 0.0229/0.0208. As shown from

Figure 4.36, the evolution process of the loss function of the MST-AGCTN model on

the PeMSD4 and PeMSD8 data sets. For models that add a self-attention mechanism.

The model's loss function converges faster than the model without the attention

mechanism. The loss function of the MST-AGCTN model on the PeMSD4 and

PeMSD8 data sets began to stabilize at about 0.0237/0.0227 at the 80th epoch.

In general, from the evolution curve of the model loss function. The models we

proposed can effectively converge in the final stage. This also proves that the machine

learning method we used solves the two problems raised in the Readout phase of the

previous chapter. In addition, from the overall performance and efficiency, the MST-

AGCRN model with the self-attention mechanism is the best. It can converge most

effectively during training. Moreover, as can be seen from the previous sections, its

prediction accuracy is also the best.

138

4.5 Summary

This chapter conducts simulations on real traffic flow data sets based on the proposed

four models and the selected baseline models. Simulations show that the overall

prediction effect of the MST-AGCRN model is the best of them. Simulations have

verified from three case studies that the model has advantages in extracting

spatiotemporal features and spatial correlation. Moreover, the model based on graph

neural networks also has good interpretability. In case study 1, the models' predicted

values at different nodes were compared with the true values. The Simulation results

show the advantages of the MST-AGCRN model in the extraction of spatial-temporal

features, especially in the nodes with large traffic flow. However, the two models

based on temporal convolutional networks are not as ideal as those in the modeling

chapter due to the range of receptive fields, model parameter settings and

computational complexity. In case study 2, the comparison with the baseline also fully

demonstrated the outstanding capabilities of MST-AGCRN. Furthermore, It also

shows the shortcomings of models based on temporal convolutional networks. In case

study 3, the comprehensive training performance of the models is discussed. Overall,

MST-AGCRN is still the best performer among them.

139

Chapter 5

Conclusion and Future Work

The purpose of this thesis was to provide an in-depth understanding of the

fundamentals of traffic flow prediction problems through graph neural networks based

approach in the field of ITS. Using the characteristics of graph neural networks to

capture the spatial and temporal dependence of road structure, enhance the

learnability and universal applicability of the prediction models, so as to improve the

prediction accuracy of the prediction models are the focus of this thesis. By using a

neural network model based on graph neural network and self-attention mechanism,

we have contributed new knowledge and solutions to the traffic flow prediction

problem in ITS.

5.1 Conclusion

Through the analysis of different types of prediction methods, some research gaps

such as low predictive credibility, insufficient general applicability and insufficient

feature capture ability have been identified. In this thesis, we propose two types of

traffic flow prediction models based on graph neural networks. These two types of

models are mainly used to solve the gaps in previous research and improve the

model's prediction accuracy. The simulation studies have validated that the prediction

accuracy of the models proposed in this thesis is better than other existing baseline

methods.

First, we improved the credibility of the prediction. Some previous models and

methods lacked the extraction of periodic characteristics of traffic flow data, which

led to the inability to learn more powerful traffic flow features reasonably. Based on

this problem, we divided the period dependence of the traffic flow data into three

types of time components. Furthermore, we carried out a Pearson correlation analysis

140

on the real traffic flow data. Through this work, the periodic correlation degree of

traffic flow data is quantitatively analyzed instead of dividing the periodic

components based on experience. On this basis, this work also adopted reasonable

data dimensionality reduction strategies to reduce the complexity of input data and the

complexity of model calculations. After the above methods, the model's ability to

extract traffic flow feature data is improved in the data input stage.

Second, based on the graph neural networks, our models use GRU and TCN

respectively, to capture data features in the temporal dimension. The existing traffic

flow prediction methods modeled from the temporal dimension do not fully consider

the correlation between traffic flow sequences in the spatial dimension, which makes

the general applicability of the model insufficient. In addition, some combined deep

neural network models ignore the characteristics of the traffic road network graph

structure and cannot express the high-order correlation between different nodes.

Based on the research of existing traffic flow prediction methods and models in the

field of traffic flow prediction, this work proposes spatiotemporal traffic flow

prediction modeling methods based on graph neural networks. Through the

advantages of the GRU module in MST-GCRN and the TCN module in MST-GCTN

in sequence data processing, the interpretability and accuracy of the traffic flow

prediction models in temporal dimension are improved. Based on using the GCN

module to model the spatial dimension, MST-GCRN and MST-GCTN also fully

consider the correlation of traffic flow data in the temporal dimension. Therefore, the

universal applicability and prediction accuracy of the models are enhanced at the

same time.

Third, this thesis uses the self-attention mechanism of temporal and spatial separation

to capture the temporal and spatial dynamics of traffic flow data at a more detailed

level. Although the latest traffic flow prediction application models have improved

feature capture and scalability, they are often insufficient in capturing the dynamic

correlation between nodes. By adding a two-dimensional spatial-temporal self-

attention module to the models, our proposed MST-AGCRN and MST-AGCTN

141

models can allocate node weights more reasonably and effectively in the machine

learning process. This enables the models to more accurately capture the dynamic

spatial-temporal correlations on the traffic network.

5.2 Future Work

Considering the limitations of the research time of this thesis and the rapid

development trend in the field of machine learning, this research has also realized

some areas that need improvement and further research.

First of all, the complexity of the data set can be further improved. The data sets used

in this simulation are two highway traffic data sets (PeMSD4 and PeMSD8). These

data sets have two characteristics. One is the lower difficulty of collection. Compared

with complex road conditions, the loop detector used in traffic flow data collection is

very easy to plan and deploy on highways. The second is the low data complexity.

The collected data is relatively tidy and easy to use because highways generally do

not have interference factors such as intersections, traffic lights, and pedestrians.

Although these two features improve data quality, reduce the difficulty of data

processing, and improve the accuracy of model prediction, from another perspective,

they also reduce the general applicability of the model. Lower data complexity means

lower data features, which makes the model unable to be applied to the traffic flow

prediction of urban roads and crossroads.

Furthermore, from a modeling perspective, the universal applicability of the model

can be further strengthened. It can be seen from the simulation that the performance

of the models in periods and nodes with a large amount of data is worse than under

normal circumstances, which is a common shortcoming of traffic flow prediction

models at this stage. With the advancement of neural network models, this problem

needs to be noticed and resolved in future work. It can be foreseen that with the

emergence of more excellent neural network models and data collection methods in

the future, increasing the complexity of the data set and designing better model

algorithms may be able to bring better universality and wider application scope to the

142

model. In addition, the application range of the model can be further expanded. The

traffic flow prediction model can also be applied to people flow prediction and other

similar flow prediction fields.

More specifically, the performance and application of the temporal convolution model

are worthy of further exploration. In our Simulations, the performance of the temporal

convolution model is far from as good as expected. The reason is more complicated,

and the operation mechanism for this has not been completely clarified in this work.

Therefore, clarifying the mechanism of TCN and improving the ability of the TCN

model is worthy of further research in the future.

The prediction accuracy of the model can be further improved by increasing the

dimensionality of the data. With the improvement of machine learning capabilities,

some recent studies have proposed to improve the dimensionality of input data further.

For example, when predicting traffic flow, real-time weather, temperature, human

factors and other more multi-dimensional environmental factors are taken into

account in the input of the model. Although most of these studies stay at the

theoretical stage, it is expected that these methods should improve the model's

prediction accuracy, thus theses directions are worthy of further research.

143

Reference

[1] Zhang, S., et al., Fine-grained vehicle emission management using intelligent transportation

system data. Environmental Pollution, 2018. 241: p. 1027-1037.

[2] Yang, H.-F., T.S. Dillon, and Y.-P.P. Chen, Optimized structure of the traffic flow forecasting

model with a deep learning approach. IEEE transactions on neural networks and learning

systems, 2016. 28(10): p. 2371-2381.

[3] Lv, Y., et al., Traffic flow prediction with big data: a deep learning approach. IEEE

Transactions on Intelligent Transportation Systems, 2014. 16(2): p. 865-873.

[4] Zhang, J., Y. Zheng, and D. Qi. Deep spatio-temporal residual networks for citywide crowd

flows prediction. in Thirty-first AAAI conference on artificial intelligence. 2017.

[5] Yin, X., et al., A comprehensive survey on traffic prediction. arXiv preprint arXiv:2004.08555,

2020.

[6] Scarselli, F., et al., The graph neural network model. IEEE transactions on neural networks,

2008. 20(1): p. 61-80.

[7] Transport, M.o., (2019). Annual fleet statistics, M.o. transport, Editor. 2020, Ministry of

transport: transport.govt.nz.

[8] Association, N.Z.a. (2019, July). Auckland Congestion Report 2018. 2019. New Zealand

automobile association. https://www.aa.co.nz/assets/Congestion-Monitoring-Collateral/AA-

Auckland-Congestion-Report-2018-FINAL.pdf

[9] Umare, P.R., et al. Smart Solution for Traffic Control. in 2019 IEEE 4th International

Conference on Computer and Communication Systems (ICCCS). 2019. IEEE.

[10] Anderson, D. and H. Mohring, Congestion Costs and Congestion Pricing for the Twin Cities.

1996.

[11] Falcocchio, J.C. and H.S. Levinson, The costs and other consequences of traffic congestion, in

Road Traffic Congestion: A Concise Guide. 2015, Springer. p. 159-182.

[12] Guo, Y., Z. Tang, and J. Guo, Could a smart city ameliorate urban traffic congestion? A quasi-

natural experiment based on a smart city pilot program in China. Sustainability, 2020. 12(6):

p. 2291.

[13] Haydari, A. and Y. Yilmaz, Deep reinforcement learning for intelligent transportation systems:

A survey. IEEE Transactions on Intelligent Transportation Systems, 2020.

[14] Zhang, J., et al., Data-driven intelligent transportation systems: A survey. IEEE Transactions

on Intelligent Transportation Systems, 2011. 12(4): p. 1624-1639.

[15] Zanella, A., et al., Internet of things for smart cities. IEEE Internet of Things journal, 2014.

1(1): p. 22-32.

[16] Habtemichael, F.G. and M. Cetin, Short-term traffic flow rate forecasting based on identifying

similar traffic patterns. Transportation research Part C: emerging technologies, 2016. 66: p.

61-78.

[17] Jiang, X., L. Zhang, and X.M. Chen, Short-term forecasting of high-speed rail demand: A

hybrid approach combining ensemble empirical mode decomposition and gray support vector

machine with real-world applications in China. Transportation Research Part C: Emerging

Technologies, 2014. 44: p. 110-127.

[18] Guo, S., et al. Attention based spatial-temporal graph convolutional networks for traffic flow

144

forecasting. in Proceedings of the AAAI Conference on Artificial Intelligence. 2019.

[19] Liu, J. and W. Guan, A summary of traffic flow forecasting methods [J]. Journal of highway

and transportation research and development, 2004. 3: p. 82-85.

[20] García-Jurado, I., et al., Predicting using box—jenkins, nonparametric, and bootstrap

techniques. Technometrics, 1995. 37(3): p. 303-310.

[21] Antoniou, C., H.N. Koutsopoulos, and G. Yannis. An efficient non-linear Kalman filtering

algorithm using simultaneous perturbation and applications in traffic estimation and

prediction. in 2007 IEEE Intelligent Transportation Systems Conference. 2007. IEEE.

[22] Okutani, I. and Y.J. Stephanedes, Dynamic prediction of traffic volume through Kalman

filtering theory. Transportation Research Part B: Methodological, 1984. 18(1): p. 1-11.

[23] Holden, K., Vector auto regression modeling and forecasting. Journal of Forecasting, 1995.

14(3): p. 159-166.

[24] Hamilton, J.D., Time series analysis. 2020: Princeton university press.

[25] Chen, C., et al. Short-time traffic flow prediction with ARIMA-GARCH model. in 2011 IEEE

Intelligent Vehicles Symposium (IV). 2011. IEEE.

[26] Williams, B.M. and L.A. Hoel, Modeling and forecasting vehicular traffic flow as a seasonal

ARIMA process: Theoretical basis and empirical results. Journal of transportation engineering,

2003. 129(6): p. 664-672.

[27] Zheng, Z. and D. Su, Short-term traffic volume forecasting: A k-nearest neighbor approach

enhanced by constrained linearly sewing principle component algorithm. Transportation

Research Part C: Emerging Technologies, 2014. 43: p. 143-157.

[28] Wei, Y. and M.-C. Chen, Forecasting the short-term metro passenger flow with empirical

mode decomposition and neural networks. Transportation Research Part C: Emerging

Technologies, 2012. 21(1): p. 148-162.

[29] Sun, Y., B. Leng, and W. Guan, A novel wavelet-SVM short-time passenger flow prediction in

Beijing subway system. Neurocomputing, 2015. 166: p. 109-121.

[30] Liu, Y., Z. Liu, and R. Jia, DeepPF: A deep learning based architecture for metro passenger

flow prediction. Transportation Research Part C: Emerging Technologies, 2019. 101: p. 18-34.

[31] Yang, Z., et al., Research on short-term traffic flow prediction method based on similarity

search of time series. Mathematical Problems in Engineering, 2014. 2014.

[32] Han, C., S. Song, and C.-h. Wang, Real-time adaptive prediction of short-term traffic flow

based on ARIMA model [J]. Journal of System Simulation, 2004. 16(7): p. 1530-1532.

[33] Liu, Y., et al. Short-term traffic flow prediction with Conv-LSTM. in 2017 9th International

Conference on Wireless Communications and Signal Processing (WCSP). 2017. IEEE.

[34] Koesdwiady, A., R. Soua, and F. Karray, Improving traffic flow prediction with weather

information in connected cars: A deep learning approach. IEEE Transactions on Vehicular

Technology, 2016. 65(12): p. 9508-9517.

[35] Li, J. and J. Wang, Short term traffic flow prediction based on deep learning, in CICTP 2019.

2017. p. 2457-2469.

[36] Wu, Y., et al., A hybrid deep learning based traffic flow prediction method and its

understanding. Transportation Research Part C: Emerging Technologies, 2018. 90: p. 166-180.

[37] Jin, W., et al. Spatio-temporal recurrent convolutional networks for citywide short-term crowd

flows prediction. in Proceedings of the 2nd International Conference on Compute and Data

Analysis. 2018.

145

[38] Yao, H., et al. Deep multi-view spatial-temporal network for taxi demand prediction. in

Proceedings of the AAAI Conference on Artificial Intelligence. 2018.

[39] Yao, H., et al., Modeling spatial-temporal dynamics for traffic prediction. arXiv preprint

arXiv:1803.01254, 2018.

[40] Seo, Y., et al. Structured sequence modeling with graph convolutional recurrent networks. in

International Conference on Neural Information Processing. 2018. Springer.

[41] Zhao, L., et al., T-gcn: A temporal graph convolutional network for traffic prediction. IEEE

Transactions on Intelligent Transportation Systems, 2019. 21(9): p. 3848-3858.

[42] Li, Y., et al., Diffusion convolutional recurrent neural network: Data-driven traffic forecasting.

arXiv preprint arXiv:1707.01926, 2017.

[43] Yu, B., H. Yin, and Z. Zhu, Spatio-temporal graph convolutional networks: A deep learning

framework for traffic forecasting. arXiv preprint arXiv:1709.04875, 2017.

[44] Dauphin, Y.N., et al. Language modeling with gated convolutional networks. in International

conference on machine learning. 2017. PMLR.

[45] Diao, Z., et al. Dynamic spatial-temporal graph convolutional neural networks for traffic

forecasting. in Proceedings of the AAAI conference on artificial intelligence. 2019.

[46] Chai, D., L. Wang, and Q. Yang. Bike flow prediction with multi-graph convolutional networks.

in Proceedings of the 26th ACM SIGSPATIAL international conference on advances in

geographic information systems. 2018.

[47] Geng, X., et al. Spatiotemporal multi-graph convolution network for ride-hailing demand

forecasting. in Proceedings of the AAAI conference on artificial intelligence. 2019.

[48] Keogh, E. and S. Kasetty, On the need for time series data mining benchmarks: a survey and

empirical demonstration. Data Mining and knowledge discovery, 2003. 7(4): p. 349-371.

[49] Jia, X., Characteristic analysis and demand forecast of residents' travel demand based on data

of online car arrangement. Transport Eng, 2018. 18(05): p. 39-45.

[50] Zheng, Y. and X. Xie, Learning travel recommendations from user-generated GPS traces.

ACM Transactions on Intelligent Systems and Technology (TIST), 2011. 2(1): p. 1-29.

[51] Lu, Y.-S., et al., On successive point-of-interest recommendation. World Wide Web, 2019.

22(3): p. 1151-1173.

[52] Feiyan, Z., J. Linpeng, and D. Jun, Summary of Convolutional Neural Network Research [J].

Chinese Journal of Computers, 2017. 6.

[53] LeCun, Y. and Y. Bengio, Convolutional networks for images, speech, and time series. The

handbook of brain theory and neural networks, 1995. 3361(10): p. 1995.

[54] Sun, Y., X. Wang, and X. Tang. Deep learning face representation from predicting 10,000

classes. in Proceedings of the IEEE conference on computer vision and pattern recognition.

2014.

[55] Albawi, S., T.A. Mohammed, and S. Al-Zawi. Understanding of a convolutional neural

network. in 2017 International Conference on Engineering and Technology (ICET). 2017. Ieee.

[56] Akhtar, N. and U. Ragavendran, Interpretation of intelligence in CNN-pooling processes: a

methodological survey. Neural computing and applications, 2020. 32(3): p. 879-898.

[57] Aghdam, H.H. and E.J. Heravi, Guide to convolutional neural networks. New York, NY:

Springer, 2017. 10(978-973): p. 51.

[58] Wu, X.Y., A hand gesture recognition algorithm based on DC-CNN. Multimedia Tools and

Applications, 2020. 79(13): p. 9193-9205.

146

[59] Garland, J. and D. Gregg, Low complexity multiply accumulate unit for weight-sharing

convolutional neural networks. IEEE Computer Architecture Letters, 2017. 16(2): p. 132-135.

[60] Davis, N., G. Raina, and K. Jagannathan, Grids versus graphs: Partitioning space for

improved taxi demand-supply forecasts. IEEE Transactions on Intelligent Transportation

Systems, 2020.

[61] Liu, L., et al., Contextualized spatial–temporal network for taxi origin-destination demand

prediction. IEEE Transactions on Intelligent Transportation Systems, 2019. 20(10): p. 3875-

3887.

[62] Wang, D., et al. When will you arrive? estimating travel time based on deep neural networks.

in Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[63] Guo, S., et al., Deep spatial–temporal 3D convolutional neural networks for traffic data

forecasting. IEEE Transactions on Intelligent Transportation Systems, 2019. 20(10): p. 3913-

3926.

[64] Lin, Z., et al. Deepstn+: Context-aware spatial-temporal neural network for crowd flow

prediction in metropolis. in Proceedings of the AAAI conference on artificial intelligence.

2019.

[65] Jiang, R., et al. Deepurbanevent: A system for predicting citywide crowd dynamics at big

events. in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 2019.

[66] Lee, D., et al., Forecasting taxi demands with fully convolutional networks and temporal

guided embedding. 2018.

[67] Mikolov, T., et al. Recurrent neural network based language model. in Eleventh annual

conference of the international speech communication association. 2010.

[68] Hughes, T. and K. Mierle. Recurrent neural networks for voice activity detection. in 2013

IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. IEEE.

[69] Liu, P., X. Qiu, and X. Huang, Recurrent neural network for text classification with multi-task

learning. arXiv preprint arXiv:1605.05101, 2016.

[70] Mandic, D. and J. Chambers, Recurrent neural networks for prediction: learning algorithms,

architectures and stability. 2001: Wiley.

[71] Hochreiter, S. and J. Schmidhuber, Long short-term memory. Neural computation, 1997. 9(8):

p. 1735-1780.

[72] Cheng, J., L. Dong, and M. Lapata, Long short-term memory-networks for machine reading.

arXiv preprint arXiv:1601.06733, 2016.

[73] Malhotra, P., et al. Long short term memory networks for anomaly detection in time series. in

Proceedings. 2015.

[74] Xu, Y., et al. Classifying relations via long short term memory networks along shortest

dependency paths. in Proceedings of the 2015 conference on empirical methods in natural

language processing. 2015.

[75] Vlachas, P.R., et al., Data-driven forecasting of high-dimensional chaotic systems with long

short-term memory networks. Proceedings of the Royal Society A: Mathematical, Physical and

Engineering Sciences, 2018. 474(2213): p. 20170844.

[76] Van Houdt, G., C. Mosquera, and G. Nápoles, A review on the long short-term memory model.

Artif. Intell. Rev., 2020. 53(8): p. 5929-5955.

[77] Chung, J., et al., Empirical evaluation of gated recurrent neural networks on sequence

147

modeling. arXiv preprint arXiv:1412.3555, 2014.

[78] Bai, S., J.Z. Kolter, and V. Koltun, An empirical evaluation of generic convolutional and

recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

[79] LeCun, Y., et al., Backpropagation applied to handwritten zip code recognition. Neural

computation, 1989. 1(4): p. 541-551.

[80] Chen, C., et al. Gated residual recurrent graph neural networks for traffic prediction. in

Proceedings of the AAAI conference on artificial intelligence. 2019.

[81] Cui, Z., et al., Traffic graph convolutional recurrent neural network: A deep learning

framework for network-scale traffic learning and forecasting. IEEE Transactions on

Intelligent Transportation Systems, 2019. 21(11): p. 4883-4894.

[82] Guo, K., et al., Optimized graph convolution recurrent neural network for traffic prediction.

IEEE Transactions on Intelligent Transportation Systems, 2020. 22(2): p. 1138-1149.

[83] Liao, B., et al. Deep sequence learning with auxiliary information for traffic prediction. in

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining. 2018.

[84] Song, J., et al., A survey of remote sensing image classification based on CNNs. Big earth data,

2019. 3(3): p. 232-254.

[85] Gidaris, S. and N. Komodakis. Object detection via a multi-region and semantic

segmentation-aware cnn model. in Proceedings of the IEEE international conference on

computer vision. 2015.

[86] Zhang, J. and C. Zong, Deep Neural Networks in Machine Translation: An Overview. IEEE

Intell. Syst., 2015. 30(5): p. 16-25.

[87] Gori, M., G. Monfardini, and F. Scarselli. A new model for learning in graph domains. in

Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 2005.

IEEE.

[88] Bollobás, B., Modern graph theory. Vol. 184. 2013: Springer Science & Business Media.

[89] Kerzner, E., et al. Graffinity: Visualizing connectivity in large graphs. in Computer Graphics

Forum. 2017. Wiley Online Library.

[90] Merris, R., Laplacian matrices of graphs: a survey. Linear algebra and its applications, 1994.

197: p. 143-176.

[91] Kipf, T.N. and M. Welling, Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907, 2016.

[92] Lai, Y., et al., Fine-grained emotion classification of Chinese microblogs based on graph

convolution networks. World Wide Web, 2020. 23(5): p. 2771-2787.

[93] Li, P.-N., et al. Sequence-guided protein structure determination using graph convolutional

and recurrent networks. in 2020 IEEE 20th international conference on bioinformatics and

bioengineering (BIBE). 2020. IEEE.

[94] XIANG, M., et al., Software-defined power communication network routing control strategy

based on graph convolution network. Journal of Electronics and Information, 2021. 43(2): p.

388-395.

[95] Niepert, M., M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs.

in International conference on machine learning. 2016. PMLR.

[96] Li, C., et al., Action-attending graphic neural network. IEEE Transactions on Image

Processing, 2018. 27(7): p. 3657-3670.

148

[97] Cui, Y., et al., Attention-over-attention neural networks for reading comprehension. arXiv

preprint arXiv:1607.04423, 2016.

[98] Bruna, J., et al., Spectral networks and locally connected networks on graphs. arXiv preprint

arXiv:1312.6203, 2013.

[99] Defferrard, M., X. Bresson, and P. Vandergheynst, Convolutional neural networks on graphs

with fast localized spectral filtering. Advances in neural information processing systems, 2016.

29: p. 3844-3852.

[100] Wu, Z., et al., Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint

arXiv:1906.00121, 2019.

[101] Song, C., et al. Spatial-temporal synchronous graph convolutional networks: A new

framework for spatial-temporal network data forecasting. in Proceedings of the AAAI

Conference on Artificial Intelligence. 2020.

[102] He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE

conference on computer vision and pattern recognition. 2016.

[103] Jia, Y., et al. Caffe: Convolutional architecture for fast feature embedding. in Proceedings of

the 22nd ACM international conference on Multimedia. 2014.

[104] Mnih, V., N. Heess, and A. Graves. Recurrent models of visual attention. in Advances in

neural information processing systems. 2014.

[105] Ba, J., V. Mnih, and K. Kavukcuoglu, Multiple object recognition with visual attention. arXiv

preprint arXiv:1412.7755, 2014.

[106] Bahdanau, D., K. Cho, and Y. Bengio, Neural machine translation by jointly learning to align

and translate. arXiv preprint arXiv:1409.0473, 2014.

[107] Vaswani, A., et al. Attention is all you need. in Advances in neural information processing

systems. 2017.

[108] Hu, D. An introductory survey on attention mechanisms in NLP problems. in Proceedings of

SAI Intelligent Systems Conference. 2019. Springer.

[109] Xu, K., et al. Show, attend and tell: Neural image caption generation with visual attention. in

International conference on machine learning. 2015. PMLR.

[110] Lu, J., et al., Hierarchical question-image co-attention for visual question answering.

Advances in neural information processing systems, 2016. 29: p. 289-297.

[111] Chan, W., et al. Listen, attend and spell: A neural network for large vocabulary conversational

speech recognition. in 2016 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP). 2016. IEEE.

[112] Luong, M.-T., H. Pham, and C.D. Manning, Effective approaches to attention-based neural

machine translation. arXiv preprint arXiv:1508.04025, 2015.

[113] Veličković, P., et al., Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[114] Gehring, J., et al., A convolutional encoder model for neural machine translation. arXiv

preprint arXiv:1611.02344, 2016.

[115] Lin, Z., et al., A structured self-attentive sentence embedding. arXiv preprint

arXiv:1703.03130, 2017.

[116] Chen, W., et al. Multi-range attentive bicomponent graph convolutional network for traffic

forecasting. in Proceedings of the AAAI Conference on Artificial Intelligence. 2020.

[117] Geng, X., et al., CGT: Clustered Graph Transformer for Urban Spatio-temporal Prediction.

2019.

149

[118] Li, Y. and J.M. Moura, Forecaster: A graph transformer for forecasting spatial and time-

dependent data. arXiv preprint arXiv:1909.04019, 2019.

[119] Li, Y., et al. Learning heterogeneous spatial-temporal representation for bike-sharing demand

prediction. in Proceedings of the AAAI Conference on Artificial Intelligence. 2019.

[120] Park, C., et al. ST-GRAT: A novel spatio-temporal graph attention networks for accurately

forecasting dynamically changing road speed. in Proceedings of the 29th ACM International

Conference on Information & Knowledge Management. 2020.

[121] Tian, Y. and L. Pan. Predicting short-term traffic flow by long short-term memory recurrent

neural network. in 2015 IEEE international conference on smart city/SocialCom/SustainCom

(SmartCity). 2015. IEEE.

[122] Fu, R., Z. Zhang, and L. Li. Using LSTM and GRU neural network methods for traffic flow

prediction. in 2016 31st Youth Academic Annual Conference of Chinese Association of

Automation (YAC). 2016. IEEE.

[123] Xiangxue, W., X. Lunhui, and C. Kaixun, Data-driven short-term forecasting for urban road

network traffic based on data processing and LSTM-RNN. Arabian Journal for Science and

Engineering, 2019. 44(4): p. 3043-3060.

[124] Cho, K., et al., Learning phrase representations using RNN encoder-decoder for statistical

machine translation. arXiv preprint arXiv:1406.1078, 2014.

[125] Paszke, A., et al., Automatic differentiation in pytorch. 2017.

[126] Huang, W., et al., Deep architecture for traffic flow prediction: deep belief networks with

multitask learning. IEEE Transactions on Intelligent Transportation Systems, 2014. 15(5): p.

2191-2201.

[127] Oh, S., Y.-J. Byon, and H. Yeo, Improvement of search strategy with k-nearest neighbors

approach for traffic state prediction. IEEE Transactions on Intelligent Transportation Systems,

2015. 17(4): p. 1146-1156.

[128] Lopez-Garcia, P., et al., A hybrid method for short-term traffic congestion forecasting using

genetic algorithms and cross entropy. IEEE Transactions on Intelligent Transportation

Systems, 2015. 17(2): p. 557-569.

[129] Moylan, E.K. and T.H. Rashidi, Latent-segmentation, hazard-based models of travel time.

IEEE Transactions on Intelligent Transportation Systems, 2017. 18(8): p. 2174-2180.

[130] Abdullah, N.F., et al. Vehicles classification using Z-score and modelling neural network for

forward scattering radar. in 2014 15th International Radar Symposium (IRS). 2014. IEEE.

[131] Contreras, J., et al., ARIMA models to predict next-day electricity prices. IEEE transactions on

power systems, 2003. 18(3): p. 1014-1020.

150

Appendix A: Sample Codes for

Proposed Models

AGCRN module

Below is part of the sample code of the AGCRN module.

class GCRN(nn.Module):

 def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim,

num_layers=1, num_node=170, use_att=True):

 super(GCRN, self).__init__()

 assert num_layers >= 1, 'At least one GCRN layer in the

Encoder.'

 self.node_num = node_num

 self.input_dim = dim_in

 self.num_layers = num_layers

 self.gcrnn_cells = nn.ModuleList()

 self.gcrnn_cells.append(AGCRNCell(node_num, dim_in, dim_out,

cheb_k, embed_dim, num_node, use_att))

 for _ in range(1, num_layers):

 self.gcrnn_cells.append(AGCRNCell(node_num, dim_out, dim_out,

cheb_k, embed_dim, num_node, use_att))

 def forward(self, x, init_state, node_embeddings):

 #shape of x: (B, T, N, D)

 #shape of init_state: (num_layers, B, N, hidden_dim)

 assert x.shape[2] == self.node_num and x.shape[3] ==

self.input_dim

 seq_length = x.shape[1]

 current_inputs = x

 output_hidden = []

 for i in range(self.num_layers):

 state = init_state[i]

 inner_states = []

 for t in range(seq_length):

 state = self.gcrnn_cells[i](current_inputs[:, t, :, :],

state, node_embeddings)

 inner_states.append(state)

151

 output_hidden.append(state)

 current_inputs = torch.stack(inner_states, dim=1)

 #current_inputs: the outputs of last layer: (B, T, N, hidden_dim)

 #output_hidden: the last state for each layer: (num_layers, B,

N, hidden_dim)

 #last_state: (B, N, hidden_dim)

 return current_inputs, output_hidden

 def init_hidden(self, batch_size):

 init_states = []

 for i in range(self.num_layers):

 init_states.append(self.gcrnn_cells[i].init_hidden_state(ba

tch_size))

 return torch.stack(init_states, dim=0) #(num_layers, B, N,

hidden_dim)

class AGCRN(nn.Module):

 def __init__(self, args):

 super(AGCRN, self).__init__()

 self.num_node = args.num_nodes

 self.input_dim = args.input_dim

 self.hidden_dim = args.rnn_units

 self.output_dim = args.output_dim

 self.horizon = args.horizon

 self.num_layers = args.num_layers

 self.use_att = args.use_att

 self.default_graph = args.default_graph

 self.node_embeddings = nn.Parameter(torch.randn(self.num_node,

args.embed_dim), requires_grad=True)

 self.encoder = GCRN(args.num_nodes, args.input_dim, args.rnn_units,

args.cheb_k, args.embed_dim, args.num_layers, self.num_node, self.use_att)

 #predictor

 self.end_conv = nn.Conv2d(1, args.horizon * self.output_dim,

kernel_size=(1, self.hidden_dim), bias=True)

 def forward(self, source, targets, teacher_forcing_ratio=0.5):

 #source: B, T_1, N, D

 #target: B, T_2, N, D

 #supports = F.softmax(F.relu(torch.mm(self.nodevec1,

self.nodevec1.transpose(0,1))), dim=1)

152

 init_state = self.encoder.init_hidden(source.shape[0])

 output, _ = self.encoder(source, init_state,

self.node_embeddings) #B, T, N, hidden

 output = output[:, -1:, :, :] #B, 1, N, hidden

 #CNN based predictor

 output = self.end_conv((output)) #B, T*C, N, 1

 output = output.squeeze(-1).reshape(-1, self.horizon,

self.output_dim, self.num_node)

 output = output.permute(0, 1, 3, 2) #B, T, N, C

 return output

AGCTN module

Below is part of the sample code of the AGCTN module.

class AGCTN(nn.Module):

 def __init__(self, args):

 super(AGCTN, self).__init__()

 self.num_node = args.num_nodes

 self.input_dim = args.input_dim

 self.output_dim = args.output_dim

 self.horizon = args.horizon

 self.use_att = args.use_att

 self.hidden_dim = 12

 self.default_graph = args.default_graph

 self.node_embeddings = nn.Parameter(torch.randn(self.num_node,

args.embed_dim), requires_grad=True)

 self.encoder = GCTN(args.num_nodes, args.input_dim, args.cheb_k,

args.embed_dim, self.num_node, self.use_att)

 #predictor

 self.end_conv = nn.Conv2d(1, args.horizon * self.output_dim,

kernel_size=(1, self.hidden_dim), bias=True)

 def forward(self, source, targets, teacher_forcing_ratio=0.5):

 init_state = self.encoder.init_hidden(source.shape[0])

 output, _ = self.encoder(source, init_state,

self.node_embeddings) #B, T, N, hidden

153

 output = output[:, -1:, :, :] #B, 1, N, hidden

#CNN based predictor

 output = self.end_conv((output)) #B, T*C, N, 1

 output = output.squeeze(-1).reshape(-1, self.horizon,

self.output_dim, self.num_node)

 output = output.permute(0, 1, 3, 2) #B, T, N, C

 return output

Self-attention module

Below is part of the sample code of the Self-attention module.

class SelfAttention(nn.Module):

 def __init__(self, in_dim, activation=F.relu):

 super(SelfAttention, self).__init__()

 self.chanel_in = in_dim

 self.activation = activation

 self.f = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8,

kernel_size=1)

 self.g = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8,

kernel_size=1)

 self.h = nn.Conv2d(in_channels=in_dim, out_channels=in_dim,

kernel_size=1)

 self.gamma = torch.zeros(1).cuda()

 #self.gamma = torch.zeros(1)

 self.softmax = nn.Softmax(dim=-1)

 init_conv(self.f)

 init_conv(self.g)

 init_conv(self.h)

 def forward(self, x):

 """

 inputs :

 x : input feature maps(B X C X DIM)

 returns :

 out : self attention feature maps

 """

 m_batchsize, C, dim = x.size()

154

 x_1 = x.view(m_batchsize, C, dim, 1) # B * C * dim * 1

 f = self.f(x_1).view(m_batchsize, -1, dim) # B * C * dim

 g = self.g(x_1).view(m_batchsize, -1, dim) # B * C * dim

 h = self.h(x_1).view(m_batchsize, -1, dim) # B * C * dim

 attention = torch.bmm(f.permute(0, 2, 1), g) # B * dim * dim

 attention = self.softmax(attention)

 self_attention = torch.bmm(h, attention) # B * C * dim

 self_attention = self_attention.view(m_batchsize, C, dim)

 out = self.gamma * self_attention + x

 return out

