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Abstract 

The problem of traffic flow prediction is an important topic in the research of 

Intelligent Transportation System (ITS). With the acceleration of urbanization, the 

pressure of traffic load has increased. These situations urgently require scientific 

management and scheduling. Therefore, the development of intelligent transportation 

systems is imperative. The maturity of machine learning technology and the 

continuous development of graph neural networks allow us to better understand the 

temporal and spatial dynamics features of traffic flow data hidden in complex traffic 

networks. However, this is very challenging because of the high degree of 

nonlinearity, complexity, and randomness of traffic flow. These factors make the 

traffic flow difficult to predict and lead to low prediction accuracy, which is difficult 

to meet the needs of application scenarios. Traditional traffic flow prediction models 

and methods lack the ability to extract periodic characteristics of traffic flow data, 

which makes it impossible to learn more powerful traffic flow feature data reasonably. 

Moreover, many existing machine learning models do not fully consider the 

correlation between the traffic flow sequence in the spatial dimension and the 

temporal dimension, which makes the general applicability of the models insufficient. 

In addition, most combined deep neural network models ignore the characteristics of 

the traffic network graph structure and cannot express the high-order correlation 

between different nodes.  

In response to the above problems, this thesis proposes four Graph Neural Network-

Based Spatial-Temporal Traffic Flow Prediction models to improve the accuracy of 

traffic flow prediction further. First of all, this thesis adopts reasonable data analysis 

and dimensionality reduction strategies to improve the reliability of input data and 

reduce its complexity. These methods improve the model's ability to extract traffic 

flow features in the data input stage. Secondly, based on the Graph Neural Network 

(GNN), our models improve the interpretability and accuracy of the models in the 
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temporal dimension through the advantages of Gate Recurrent Unit (GRU) and 

Temporal Convolutional Network (TCN) in the temporal dimension feature 

processing. Combined with the powerful extraction capability of the graph 

convolutional neural network module for spatial dimensional features, the models' 

general applicability and prediction accuracy are enhanced. On this basis, this thesis 

uses the self-attention mechanism to enable the models to capture the dynamic 

dependence of traffic flow data in temporal and spatial dimensions, thereby further 

improving the prediction accuracy of the models. 

In this thesis, the models are tested on two real traffic flow data sets. The simulation 

results confirm that the models can be effectively used for traffic flow prediction, and 

the prediction accuracy is better than other similar methods. Especially when the 

prediction step is long, the models have more obvious advantages in prediction 

accuracy. Due to the advantages of the GRU module in sequence data processing and 

the ability of the attention mechanism to extract dynamic dependencies between 

nodes, the MST-AGCRN model has higher prediction accuracy than other models we 

proposed. At the same time, the MST-AGCTN model has higher complexity and 

more parameters, and its performance is lower than expected. It needs further research 

and exploration. 
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Chapter 1     

Introduction 

In recent years, with the continuous growth of car ownership, traffic problems have 

become increasingly prominent. Driven by this background, ITS (Intelligent 

Transport Systems) [1] has become a research hotspot in the field of transportation as 

a technical means and management thinking that can effectively solve traffic 

problems. Among them, traffic flow prediction is an important research topic in the 

field of intelligent transportation. Traffic flow prediction can provide rich decision-

making information support for the construction of major ITS basic components and 

play an important role. Since the 1960s, many scholars have carried out relevant 

research work in the field of traffic flow prediction. Based on these studies and the 

differences in the methods used, the existing traffic flow prediction models can be 

divided into classical statistical theories and analytical models, traditional machine 

learning methods, and deep learning methods. 

With deep learning, breakthroughs have been continuously made in learning tasks 

such as natural language processing and computer vision. In recent years, in terms of 

traffic flow prediction, deep learning methods have achieved better results than the 

other two methods[2]. For example, Lv et al. [3] proposed a new deep learning-based 

traffic flow prediction method in 2014, which considers the temporal and spatial 

correlation of traffic flow. Since then, based on the temporal and spatial correlation of 

traffic flow, the use of deep learning methods to study traffic flow prediction 

problems from the perspective of temporal and spatial feature mining has become an 

effective and promising research direction for deep learning in traffic prediction [4, 5]. 

Research believes that by mining the temporal and spatial patterns of traffic flow data, 

accurate prediction of the basic parameters of traffic flow can be achieved. To realize 

the effective operation of the intelligent transportation system. However, from the 
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perspective of machine learning algorithms, the complexity of spatiotemporal data 

poses a major challenge to existing machine learning algorithms. The complexity is 

caused by the irregularity and non-Euclidean structure of spatial-temporal data. From 

this perspective, the research direction further focuses on graph neural networks. 

GNN [6] (compared to the convolutional and recurrent neural network) can better 

process traffic flow data generated from non-Euclidean domains. Therefore, it has 

become a popular and cutting-edge research direction to establish a time-space model 

through graph neural networks to solve traffic flow prediction problems. Among the 

latest research results in this field, the application of GNN reduces the complexity of 

ML(machine learning) algorithms and improves the accuracy of predictions. 

In summary, how to apply graph neural networks to the field of traffic flow prediction 

to capture the spatial and temporal dependence of road networks. How to enhance the 

learnability and universal applicability of predictive models. How to improve the 

prediction accuracy of the prediction model. These three questions will be the key 

research directions of this work. 

1.1 Background 

With the need for social development, people began to pursue more convenient and 

smooth transportation. Moreover, the acceleration of urbanization has led to the rapid 

growth of vehicles, which has led to increased traffic pressure. According to the New 

Zealand Ministry of Transport statistics, New Zealand had 4.4 million vehicles in 

2019. Since 2012, the number of vehicles has increased at a faster rate, with an 

increase of 23% in 10 years [7]. As the number of motor vehicles grows, the problem 

of traffic congestion has become more and more obvious. Take Auckland as an 

example. Due to various demographic and economic factors, motor vehicles have 

increased significantly, and traffic congestion has become increasingly serious. 

In Auckland, highway commuters lost an average of 85 hours due to congestion in 

2018, compared with 79 hours in 2017[8]. Moreover, traffic congestion has become 

one of the most common problems in the transportation system all over the world. It is 
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closely related to the government's urban planning and construction, and people's life 

and travel [9]. Traffic congestion has caused serious economic losses and has a great 

negative impact on city management and personal health. In terms of the work and 

life of urban residents, traffic congestion affects passengers' itineraries, prolongs 

passengers' travel time, and causes many inconveniences. In terms of urban 

environmental construction, traffic congestion leads to vehicle fuel waste and air 

pollution and increases the risk of traffic accidents[10]. In terms of personal health, it 

will increase mental stress and cause anxiety. Anxiety about traffic jams can cause 

people to have bad psychological and physical reactions. Negative reactions such as 

increased blood pressure, irritability, and decreased tolerance [11]. 

Therefore, improving traffic conditions and alleviating traffic congestion has become 

an urgent problem in the development of major cities. ITS can solve these problems 

well. It can grasp the traffic situation on the road in time and even predict traffic flow 

information such as the traffic flow in the future time period. In that case, it can make 

diversion measures in advance, conduct reasonable dredging of road vehicles, and 

reduce or even avoid road traffic congestion.  

Some cities have formulated a series of traffic management policies according to local 

conditions to alleviate the traffic pressure in cities and reduce traffic congestion. For 

example, Beijing, China, has implemented measures to restrict travel with license 

plate numbers, effectively controlled the total number of vehicles on the road, 

alleviated traffic congestion to a certain extent, and reduced vehicle exhaust pollution. 

Some cities control traffic in certain areas and restrict certain vehicles during working 

days, such as Hangzhou and Shanghai in China. This series of measures can 

effectively reduce traffic congestion and reduce the negative impact of traffic 

congestion. However, it also inconveniences residents' travel to a certain extent, so 

there are certain limitations [12]. 

In recent years, computer software and hardware technology have developed rapidly. 

Machine learning, deep learning and artificial intelligence theory and application 
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technology are gradually maturing. These factors provide strong support for 

researchers to study ITS from the field of artificial intelligence and apply intelligent 

information and communication technology to provide services for transportation and 

management [13]. 

Intelligent transportation systems are committed to using intelligent methods to 

improve traffic conditions. As the most basic reference for traffic control, traffic flow 

has become the focus of research in ITS. In response to this problem, many global 

companies and research institutions (such as Uber and Google and China's Didi 

Chuxing, Ali and Huawei) have conducted in-depth research based on the 

characteristics of their fields[14]. For example, Didi Chuxing collects the travel data 

of Didi drivers to mine the temporal and spatial characteristics of urban traffic system 

data to build a better route recommendation system and save users waiting time due to 

traffic jams. Another example is Google, which provides map services around the 

world. Its Map App can collect traffic conditions on traffic roads and promptly remind 

drivers of the congestion conditions of various road sections to make better choices. 

In summary, in ITS, traffic flow is a basic and important indicator. Normal traffic 

flow is a key parameter of the smooth operation of the entire transportation system. 

When the traffic flow is too large, it will cause traffic congestion and environmental 

pollution. At the same time, this will also increase the risk of traffic accidents, and in 

severe cases, it will affect the normal operation of the city and even cause traffic 

paralysis. Therefore, if the traffic flow can be effectively and accurately predicted in 

advance, the flow can be adjusted and traffic controlled before the traffic congestion 

occurs. This is conducive to eliminating traffic safety hazards and providing accurate 

information support for passengers' travel. This will also help guide passengers to 

arrange travel reasonably and reduce travel costs. Therefore, accurate traffic flow 

prediction can help the development of intelligent transportation systems. It can 

fundamentally reduce various losses caused by traffic congestion and has great 

practical significance. 
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1.2 Motivation 

This thesis aims to study how to effectively and efficiently use huge and complex 

traffic flow data to build a traffic flow prediction model and use the model to make a 

more accurate prediction at a certain spatial and temporal dimensions in the future. As 

mentioned above, accurate traffic flow prediction can provide information support for 

ITS, which is significant for solving traffic congestion problems and boosting the 

development of intelligent transportation. Moreover, traffic flow prediction can 

provide rich decision-making information support for the construction of major basic 

components of ITS, and play an important role in it [14]. 

Traffic flow is a nonlinear time series, and its changes are affected by many factors, 

such as weather conditions, date, time, emergencies, traffic congestion. Therefore, 

traffic flow prediction is very challenging research work. Due to the upgrading of 

computer hardware technology, the widespread application of data acquisition 

equipment, and the popularization of Internet of things (IoT) [15] applications, a large 

amount of data is generated in the transportation system. Including vehicle GPS 

position data, trajectory data, people travel record data, these data have laid a data 

basis for the development and research of ITS. It also provides necessary information 

input for traffic flow prediction and improves its feasibility and reliability. 

Utilize the huge data set of actual traffic flow information and its outstanding spatial 

and temporal characteristics. Establish a traffic flow prediction model through deep 

learning-related technologies, and use this as a basis to predict the future traffic flow 

in different regions. Such an accurate traffic flow prediction model also plays an 

irreplaceable role in the urban ITS and can solve some of the existing traffic problems: 

(1) Statistics and prediction of traffic flow data can provide an important basis for 

road network planning. So as to better improve the city's intelligent transportation 

system. 

(2) Real-time prediction of traffic flow in different areas of the transportation network 
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can provide immediate data source support for the urban intelligent transportation 

system. In this way, the reasonable traffic flow distribution can be realized, and the 

prevailing traffic pressure can be alleviated. 

(3) Through real-time prediction, it is possible to grasp the trend of changes in urban 

traffic flow, make arrangements in advance for upcoming traffic problems, and 

improve the ability to deal with emergencies that may exist in urban traffic. 

1.3 Contribution 

There are three main deficiencies in the existing traffic flow prediction research 

models. First, many research models cannot effectively consider the temporal and 

spatial correlation between the time series in the traffic flow data and the spatial nodes. 

There is a lack of comprehensive extraction of data features in spatial-temporal 

dimensions. Some models ignore the temporal characteristics of the data when 

extracting spatial features effectively. Vice versa. The second is that many studies 

have neglected the dynamic dependence of traffic network nodes and the periodic 

characteristics of traffic flow. When some research models use feature data, they 

ignore that the dependency relationship (influence weight) between nodes will 

dynamically change with time. Third, the existing models have the shortcoming of 

insufficient interpretability when extracting time series features. They ignore the 

causality in time or lack the extraction and use of the ‘past moment’ features. 

This thesis focuses on the establishment of a traffic flow prediction model through the 

deep neural network method. To be precise, it is the design and establishment of a 

depth graph neural network model based on time and space. Traffic flow prediction is 

a typical spatial-temporal data prediction problem, and data has a strong correlation in 

both temporal and spatial dimensions. Moreover, this correlation will change 

dynamically with time, space and other factors. Therefore, this thesis proposes a 

traffic flow prediction method based on graph convolution/recurrent neural network 

and the Self-attention mechanism through the modeling idea of graph neural network 

to solve the spatial and temporal dependence in the prediction process. The attention 
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mechanism is used to strengthen the model's ability to predict dynamic traffic flow. 

The main research contributions of this work are summarized as follows: 

(1) Divide the periodic dependence of traffic flow data and carry out quantitative

analysis of periodic dependence. This work divides the periodic dependence of predict 

data into three types of time components: recent dependence, daily periodic 

dependence and weekly periodic dependence. To quantitatively analyze the influence 

of these three groups of temporal-dependent components on the predicted time period, 

this thesis selects the data in a certain time period from the Simulation data set for 

Pearson correlation analysis. This work thus quantitatively analyses the degree of 

periodic relevance of traffic flow data, rather than merely dividing periodic 

components based on experience. This has improved the credibility of the prediction. 

On this basis, this research adopts a reasonable data dimensionality reduction strategy, 

which reduces the complexity of input data and the complexity of model calculations. 

(2) Through selecting the data set and the comparative study with the existing traffic

flow prediction models, the feasibility of the modeling ideas in this work and the 

practicability and significance of the established models are clarified. Many 

researchers tend to use more complex neural network architecture to study traffic flow 

prediction problems in the existing research. However, these methods artificially 

increase the complexity of the single-layer neural network and invisibly increase the 

uncertainty of the prediction model and the difficulty of data processing. While they 

increase the computational cost, they may not necessarily enhance the accuracy of the 

prediction. This research uses the most basic and simple ideas of deep neural 

networks to reduce the complexity of each layer of neural networks. On this basis, the 

receptive field of the model is expanded by increasing the depth of the neural network 

model. Using the depth of the graph neural network module to capture the deeper 

hidden dependencies of the road network spatial-temporal data. Moreover, the use of 

residual connection makes the deepening of the network without gradient dispersion 

and network degradation problems. In this way, the richness and dimensionality of the 

eigenvalues of the input to the fully connected layer are increased. It is possible for 
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the models to capture the hidden relationship of the eigenvalues. 

(3) A graph neural network model based on time and space for traffic flow prediction 

is established in this research. Based on the research of existing traffic flow prediction 

methods and models, this thesis proposes some modeling methods for graph neural 

network based spatial-temporal traffic flow prediction. This thesis guides the research 

and design of the model through two themes. One is to build an efficient neural 

network by weighing the calculation time cost of the prediction model and the 

prediction accuracy. The second is to enhance the learnability and universal 

applicability of the prediction model by introducing the self-attention mechanism. 

This thesis uses the self-attention mechanism of temporal and spatial separation to 

capture traffic flow data's temporal and spatial dynamics from a more detailed 

dimension. Furthermore, using this method to reduce the interference of other non-

strongly correlated factors on the prediction results. 

In summary, this study compares with other models by establishing a simpler but 

deeper graph neural network model. Through quantitative analysis of data, this work 

selects more important data features as the input of the model to reduce the input of 

redundant features. By reducing the dimensionality of the input data, the 

computational overhead is reduced. By selecting the same data set to compare with 

other models in terms of prediction accuracy, it proves the correctness and 

advancement of this thesis in feature extraction and modeling of traffic flow 

prediction model. 
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1.4 Thesis Structure 

Figure 1.1 Thesis structure 

The structure of the thesis is shown in Figure 1.1. This thesis mainly includes the 

introduction of relevant background knowledge, the design of graph neural network 

model for traffic flow prediction, the verification of simulation research and the 

comparison with the baseline method. The chapters of the thesis are arranged as 

follows: 

Chapter 2 introduces the related basic theories used in the research process of this 

thesis. Mainly surveys related theories and models of traffic flow prediction research. 

Then, the related knowledge of neural networks is studied and discussed. Finally, 

three important theoretical knowledge points are further elaborated: graph 

convolutional neural network, self-attention mechanism and residual network. 

Chapter 3 proposes three modules to solve the traffic flow prediction problem. These 

three modules are mainly used to solve the gaps in previous research and improve the 

model's prediction accuracy and universal applicability. The models we proposed are 

mainly composed of three modules. The first module is the feature analysis and 

periodic data fusion module. The second module is two models based on spatial-
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temporal graph convolution. In this module, this thesis uses MST-GCRN (Multiple 

layers Spatial-temporal aware Graph Convolutional Recurrent Network model) and 

MST-GCTN (Multiple layers Spatial-temporal aware Graph Convolutional and 

Temporal Convolutional Network model) to extract high-dimensional spatiotemporal 

features. The third module is two improved models that have added a self-attention 

mechanism. MST-AGCRN and MST-AGCTN based on the self-attention 

mechanisms are used to extract more powerful high-dimensional spatial-temporal 

features of traffic flow data. 

Chapter 4, we conducted extensive simulation research on the four proposed graph 

neural network-based models. The performance of the models proposed in this thesis 

is evaluated by comparing some baseline methods. By predicting and evaluating 

criteria, the performance of these models on the same data set is compared objectively 

with the models proposed by this thesis. At the same time, to verify the importance of 

spatial-temporal dual-module modeling, this chapter specifically demonstrates the 

influence of spatial correlation modeling and temporal correlation modeling on 

prediction accuracy through the model's actual performance in this aspect. Finally, the 

performance of the model in training is also mentioned. Through the different 

performances of the TCN and the GRU modules in terms of time performance, we 

discussed our basic modeling ideas, the rationality and feasibility of modeling, and the 

models' deficiencies. 

Chapter 5 gives conclusions and future work. We discussed the in-depth 

understanding of this research field, some possible future research directions, and key 

links that require further research.  
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Chapter 2                     

Background 

This chapter introduces the relevant basic theories used in the research process of this 

thesis. Firstly, it surveys the related theories and models of traffic flow prediction 

research. Including the classification of research methods, the existing modeling 

methods of traffic flow prediction, and the understanding of spatial-temporal data. 

Then, from the perspective of establishing the temporal and spatial model of traffic 

flow prediction, the related knowledge of neural networks is introduced, including 

convolutional neural network (CNN), recurrent neural network (RNN), graph neural 

network (GNN). Finally, based on the actual needs of this thesis, the three important 

theoretical knowledge points are further elaborated: graph convolutional neural 

network, attention mechanism and residual network. 

2.1 Overview of Traffic Flow Prediction 

Over the years, many scholars have carried out relevant research work in the field of 

traffic flow prediction. Their research includes a variety of traffic flow prediction 

scenarios, such as urban geographic area passenger flow forecast, urban subway 

station passenger volume forecast, and urban bus station passenger volume forecast 

[16, 17], high-speed rail station passenger volume forecast [13], expressway traffic 

flow predict, expressway traffic speed predict [18]. Among them, traffic flow 

prediction and traffic speed prediction are often unified as traffic flow prediction 

problems. 

These studies respectively proposed various effective and novel models and methods 

for the prediction scenarios and achieved a series of fruitful research results. With the 

rapid development of computer and information technology in recent years, more and 

more different types of traffic flow prediction methods and related technologies have 
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been proposed [5]. For example, some algorithms related to parameter optimization, 

particle swarm optimization, genetic algorithm. have also been used by researchers to 

predict traffic flow. Furthermore, many artificial intelligence algorithms have 

achieved good results. 

Based on these studies, according to the differences in the methods used in traffic 

flow prediction, the existing traffic flow prediction-related models can be divided into 

three categories: classical statistical theories and analytical models, traditional 

machine learning methods, and deep learning methods. Figure 2.1 shows the 

classification diagram of the traffic flow prediction models. 

Figure 2.1 Classification of traffic flow prediction models 

2.1.1 Classical statistical theories and analytical models 

Among the classical statistical theories and analytical models, the simplest and most 

direct method is the History Average (HA), which calculates the average value of 

traffic flow during a certain period of history as the future traffic flow’s predicted 

value. This method is simple, easy to understand, easy to implement, and has a certain 

reference value for future traffic predictions. However, it cannot consider the impact 
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of random and unexpected events on traffic flow, and its accuracy is low. Models 

based on statistical methods are earlier methods used for traffic flow prediction. 

Stephanedes et al. [19] first published the use of HA models for traffic control. 

Ahmed et al. [20] used time series related knowledge to establish a prediction model 

for this field. R.E.Kalman et al. [21] proposed a model based on the Kalman filtering 

algorithm. Okutani et al. [22] considered the impact between a road segment to be 

predicted and a road segment in a surrounding area. They then established a 

prediction model through the Kalman filter algorithm. At the same time, to improve 

the model parameters, they used a large number of prediction error corrections. Some 

scholars also use classic time series prediction models to predict traffic flow, such as 

vector autoregressive model (VAR) [23], autoregressive moving average model 

(ARMA) [24], autoregressive integrated moving average model (ARIMA) [25, 26] 

and its variant models, such as stationarity ARIMA and seasonal ARIMA [26]. These 

classical time series methods belong to Parametric Models, which assume that the 

value of the time series at time 𝑡 depends only linearly on its historical observations 

and random noise. When realizing, forecasting is made by mining the law of the 

traffic flow in the time dimension from the historical time series of the traffic flow. 

This type of method generally achieves good results when the time series has a certain 

periodicity or regularity. However, the traffic flow sequence in the real traffic scene is 

affected by many factors and has strong randomness and uncertainty, so the prediction 

accuracy of this type of method is not good. In addition, this type of method is 

difficult to integrate other environmental data for traffic prediction. 

2.1.2 Traditional machine learning methods 

The rapid development of artificial intelligence and big data has performed well in 

various fields in recent years. More and more research teams are also applying 

traditional machine learning methods to traffic flow prediction. These models can 

continuously adjust the parameters to the optimal through adaptive learning to obtain 

more accurate calculation results. The addition of machine learning technology makes 
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it possible to use relatively little data to predict traffic flow models. 

In traditional machine learning methods, some scholars use K-Nearest Neighbours 

(KNN) to predict traffic. For example, Zheng et al. [27] calculated geographic 

locations with similar traffic conditions through KNN. Then combine its flow to make 

short-term forecasts. The biggest disadvantage of this method is that it is difficult to 

determine the best value of the parameter K, that is, the number of nearest neighbors. 

Some scholars use integrated models to predict traffic flow. For example, Wei et al. 

[28] combined Empirical Model Decomposition (EMD) with BP (Back Propagation) 

neural network to predict subway pedestrian flow. In addition, Support Vector 

Machine (SVM) model is widely used in short-term traffic flow prediction. Its 

working principle is to establish a hyperplane in high-dimensional space to solve the 

non-linear classification problem, so as to achieve a more accurate classification 

effect. Jiang et al. [17] combined Ensemble Empirical Mode Decomposition (EEMD) 

and Gray Support Vector Machine (GSVM) to predict short-term high-speed rail 

traffic. Later, Sun et al. [29] put forward a wavelet support vector machine (Wavelet-

SVM) for short-term traffic prediction in subway stations. These integration methods 

mainly model nonlinearity from the perspective of the time dimension of the sequence. 

However, it does not consider the direct correlation between traffic flow sequences in 

spatial dimensions. The model capacity is limited, and it is not easy to expand. 

2.1.3 Deep learning methods 

1. Deep learning based prediction methods 

As deep learning has continuously made breakthroughs in learning tasks such as 

natural language processing and computer vision [29], scholars have begun to study 

how to apply deep learning technology to traffic flow prediction tasks. They 

combined classic time series prediction and traditional ML methods for traffic flow 

prediction to improve the accuracy of the forecast. Liu et al. [30] manually construct 

feature vectors of different factors and then input them into a deep feedforward neural 

network to predict traffic flow. This method assumes that the input elements are 
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independent of each other and requires a lot of feature engineering. To learn the 

relationship of traffic sequence in time, some scholars[31, 32]use RNN time series 

prediction models and its variant models (Long-Short Term Memory (LSTM)[33], 

GRU[34]) for traffic flow prediction. Some scholars who combine RNN models with 

traditional machine learning methods[35].  Although RNN models can capture the 

sequential connections of traffic flow in the time dimension and have good scalability, 

they cannot process sequences based on specific spatial relationships between 

sequences. To consider the temporal and spatial correlation of traffic flow at the same 

time, some scholars try to study traffic flow prediction from the perspective of 

temporal and spatial feature mining. For example, Zhang et al. [36] divided the urban 

area into grids of equal size to calculate the regional inflow and outflow, and designed 

a deep spatial-temporal residual network model ST-ResNet to predict the inflow and 

outflow in each region, and achieved good prediction results. This research also 

provides new ideas for other researchers. Inspired by the ST-ResNet model, Jin [37] 

constructed the STRCNs model, combined CNN and LSTM to capture regional 

traffic's temporal and spatial dependence, and achieved better prediction results than 

the ST-ResNet model. In addition, Yao et al. [38] simulated spatial-temporal 

dependent traffic prediction models by integrating CNN and RNN (LSTM) models 

and subsequently proposed spatiotemporal dynamic networks based on the similarity 

between dynamic learning locations [39]. Although these models can reasonably 

consider the spatial-temporal correlation between the flow of urban areas and extract 

rich spatial-temporal features, they can only process Euclidean structure data and are 

not suitable for non-Euclidean structure data. 

Therefore, some scholars later studied how to apply graph convolution technology to 

spatial-temporal data mining. Seo et al. [40] proposed graph convolutional recurrent 

networks based on graph convolution and recurrent networks, but it is difficult to find 

the most suitable combination model to optimize the prediction task. Zhao et al. [41] 

embedded graph convolution into the gated recurrent network as a feature extraction 

unit to extract the traffic network's spatial features and apply it to the real traffic data 
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set to achieve good results. However, because it uses the early Graph Convolutional 

Network (GCN) model, the model space feature extraction capability is limited, and 

the model calculation speed is slow. Li et al. [42] fused graph convolution with GRU 

to capture the temporal and spatial dependence of traffic flow, designed a DCRNN 

(Diffusion Convolutional Recurrent Neural Network) model and performed long-term 

prediction based on the Encoder-Decoder framework. Yu et al. [43] designed a 

spatiotemporal graph convolution model STGCN based on GLU (Gated Linear Units) 

[44]. Using graph convolution and gated convolution to capture the spatiotemporal 

dependence of vehicle speed on each section of the highway. It works well, and the 

training time of this model is much shorter than that of the DCRNN model.  Later, 

Diao et al. [45] improved their models based on Yu's work, designed a Laplacian 

matrix estimator and proposed a dynamic graph convolutional neural network model-

DGCNN. Guo et al. [18] modeled the correlation between the targeted traffic to be 

predicted and its recent traffic, daily periodic traffic, and weekly periodic traffic, and 

introduced a spatiotemporal attention mechanism to capture the spatiotemporal 

correlation between nodes. These methods consider the spatial correlation between 

nodes from the perspective of the positional relationship between nodes. They are 

based on a static road network structure and capture the correlation between node 

traffic flows according to the low-order neighboring nodes of each node. And learn 

the spatial feature representation of the node according to the correlation. Later, some 

scholars used multiple graphs to solve spatial-temporal data mining tasks. For 

example, Chai et al. [46] applied multi-graph convolution to bicycle rental traffic 

prediction. Geng et al. [47] used urban areas as nodes. Based on POI information 

(point of interest) and road connectivity, multiple graphs are constructed. In addition, 

the combination of recurrent neural network and graph convolution is used to predict 

the demand for taxi rides by passengers in various regions. However, these multi-

graph convolution models only use the graph structure to learn the embedding 

representation of the site, ignoring the dynamics of the relationship between the nodes, 

and do not consider the high-order correlation between the embedding representations 
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learned by the nodes on different graph structures. 

2. The relationship between deep learning and spatial-temporal data mining

The main research direction of this thesis is the prediction of traffic flow. Traffic flow 

prediction is a typical spatiotemporal data mining problem. Therefore, this section 

will introduce the concepts and theoretical knowledge related to time and space 

involved in Deep learning research. 

(1). Understanding of spatial-temporal data 

Temporal data, also known as time series, is a data series formed by the same 

phenomenon at different times. Data in the real world is often related to time, and a 

series of observations obtained in chronological order is called time series data. 

Common ones are temperature changes, stock prices. There are many mature time 

series mining algorithms [48] to obtain the rich information contained in time series 

data. 

Spatial data, data with spatial coordinates, is a special type of data that can 

quantitatively describe things or phenomena with positioning significance. For 

example, the geographic location and distribution characteristics of objects. 

Spatial-temporal data is spatial data that has temporal elements and changes with time. 

For example, online car-hailing order data has time attributes when the order is 

created and contains spatial information [49]. It has obvious spatial distribution 

characteristics and the characteristics of huge amounts of data, nonlinearity, and time-

varying. 

With the advancement and development of data collection equipment and methods, 

relevant spatial-temporal data can be effectively collected for research content in 

various fields. It lays a data foundation for the development of spatiotemporal data 

mining (STDM) algorithms and models. For example, traffic flow prediction is a 

typical spatial-temporal data mining problem. To serve the final prediction task, 

researchers need to analyse relevant data from time and space dimensions to mine the 
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spatial-temporal information in each measurement data. 

(2). Spatial-temporal data mining 

In modern human social life, complex behaviors bring about the accumulation of 

temporal and spatial data. This kind of spatial-temporal data can be deeply excavated 

to reveal human social life. For example, it is possible to mine the user's travel 

trajectory and travel rules through mobile behavior and provide services such as 

location prediction and location recommendation [50, 51]. Social behaviors can be 

used to apply social spatiotemporal data for identity recognition and social 

relationship inference. The urban calculation of population flow can be carried out 

through migration behavior, and the interpretation and prediction of cluster behavior 

can be carried out through the analysis of cluster behavior. There are many kinds of 

spatial-temporal data in actual scenes, among which common spatial-temporal data 

can be divided into three categories: Event Data, Trajectory Data, and Raster Data. 

1). Event Data 

Generally speaking, any event can be represented by a point in time and location, 

where location and time respectively represent the location and time of the event. It is 

simply denoted as (𝑙𝑖 , 𝑡𝑗). In addition to the information of time and space dimensions, 

each event also contains other non-temporal information. For example, the event 

involves information about the type of events, such as the crowd and the nature of the 

event. There are three types of events A, B, and C, as shown in Figure 2.2. Since an 

event is not always a point object, other geometric figures can be used to describe it. 

Such as linear, polygonal. For example, a forest fire can be represented by a spatial 

polygon, which represents the affected area. Similarly, events generally do not exist at 

a certain instant in time but correspond to the start and end times. Therefore, the time 

in the spatial-temporal point generally represents a certain period of time 

corresponding to the event's occurrence. 
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Figure 2.2 Three kinds of events [42] 

2). Trajectory Data  

The trajectory is the path left by the target moving in space over time. For example, 

the trajectory of the taxi from the place where passengers boarded to the place where 

they got off the vehicle, the trajectory of animal migration. Generally, trajectory data 

is collected by sensors installed on moving objects. These sensors regularly transmit 

location information of moving targets. For example, a taxi can obtain its driving 

trajectory through GPS positioning data. The trajectory data generally contain other 

types of information about the moving target in addition to the position information 

that changes over time. For example, the vehicle's speed information during the 

driving process, the heartbeat rate of the person during the running process, and other 

information. Trajectory data is often used in applications such as transportation and 

ecological science. 

3). Raster Data 

 

Figure 2.3 Regular space 
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In raster data, every observation in the spatial-temporal domain is recorded in a fixed 

unit in the spatial-temporal grid. Raster data generally corresponds to a set of fixed-

position objects, denoted as 𝑆 = {𝑠1, 𝑠2, … 𝑠𝑚} . These location objects can be

regularly distributed in space, and a constant distance between adjacent objects is 

maintained. It is similar to the distribution of elements in the image, as shown in 

Figure 2.3. It can also be distributed irregularly in space, such as an intersection 

sensor network, as shown in Figure 2.4. For each location object, the raster data 

records all its observations in a fixed set of time stamps 𝑇 = {𝑡1, 𝑡2, … 𝑡𝑛}. Adjacent

time marks can be either a fixed time interval or an unfixed time interval. The 

Cartesian product of the location object collection, the timetable and the collection 

forms the spatial-temporal grid 𝑆 × 𝑇 corresponding to the raster data. Each value 

(𝑠𝑖, 𝑡𝑗) in the network corresponds to a measurement value. 

Figure 2.4 Irregular space 

In addition, another characteristic of spatial-temporal data is that data has many 

characteristics. To solve problems of these kinds, a variety of information is needed. 

For example, predicting road traffic conditions, the available data features include 

many kinds, such as traffic flow, average lane occupancy rate, average road speed, 

and external factors such as weather and natural disasters. Therefore, the application 

of deep learning in spatiotemporal data mining is more difficult. It is very different 

from image recognition only based on image data, and voice recognition only needs to 

be based on voice data. The type and quality of data required by it vary, and it also 

requires preprocessing. Therefore, it is necessary to use a neural network capable of 

learning graph structure to mine complex data and perform deep learning tasks. 
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(3). Deep Learning based Spatial-temporal Data Mining 

Through the overview, deep learning is currently the most advanced and effective 

method and model in the field of traffic flow prediction research. According to the 

previous analysis, the ability of deep learning in spatiotemporal data mining is 

significantly stronger than the other two models and methods. Compared with 

classical statistical models and traditional machine learning, deep learning can not 

only learn the characteristics and correlation of spatiotemporal data but also does not 

require the manual design of features. It can mine more complex features in spatial-

temporal data. In addition, deep learning is better at dealing with complex spatial-

temporal data problems. By deepening the network, extracting features from shallow 

information for analysis and integration, generating deeper features has great 

advantages for solving complex time-space mining problems in reality. 

In the next sections of this chapter, this work focuses on the field of deep learning. It 

mainly introduces related concepts based on deep neural networks and related 

principles and technologies of traffic flow prediction based on graph neural networks. 

First, an overview of traditional neural networks, such as CNN and RNN. Then 

introduce the basic knowledge of GNN. Third, based on the focus of this thesis, we 

introduce the graph convolutional network (GCN) used to capture the spatial 

dependence of the traffic flow of the road network. Finally, a brief description of 

multilayer perceptrons, RNN, and common RNN variants (LSTM, GRU) captures 

temporal dependence in traffic flow prediction. 

2.2 CNN based Traffic Flow Prediction Models 

Convolutional Neural Network (CNN) is a highly efficient deep learning recognition 

method. It has developed rapidly in recent years and has attracted widespread 

attention. It is a deep feedforward neural network with the characteristics of local 

connection and weight sharing[52]. The first scene where researchers used 

convolutional neural networks was Yann Lecun's application in handwritten data 

recognition [53]. Then in the following years, CNN began to be widely used in 
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various fields. It is mainly used in various image and video analysis tasks, such as 

general image classification, face and object recognition. Its accuracy is generally far 

beyond that of other neural network models. Research shows that convolutional 

neural networks perform well in application scenarios such as image recognition, 

natural language processing, and speech recognition. Its characteristic is that it can 

automatically capture the characteristics of the image by using the convolutional layer. 

The model reduces the cost of manually extracting features, and at the same time, 

greatly improves the accuracy of image recognition. It reduces people's dependence 

on image recognition related knowledge and improves the application value of the 

model. 

2.2.1 Structure of convolutional neural network 

Generally speaking, CNN is a kind of feedforward neural network formed by the 

cross stacking of convolutional layer, convergence layer and fully connected layer. 

The structure of a CNN has three characteristics: local connection, weight sharing and 

sub-sampling. These three characteristics make the CNN has certain translation, 

scaling and rotation invariance capabilities. Compared with ordinary neural networks, 

CNN has fewer parameters, and the training process is completed by backpropagation 

algorithms. 

Convolutional neural networks are very similar in structure to ordinary artificial 

neural networks, and both are composed of neurons that can learn weights and biases. 

First, each neuron will receive some input, and then it will do some dot product 

operations. The output of the CNN is the score corresponding to each category. In this 

process, some computational skills are the same as ordinary neural networks. 
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Figure 2.5 Convolutional neural network structure (image recognition) [54] 

As shown in Figure 2.5. It is a convolutional neural network structure applied in the 

field of image recognition [54]. The structure consists of an input layer, four 

convolutional layers, three pooling layers, a fully connected layer and a SoftMax layer. 

As can be seen from the figure, CNN is a deep learning model with clear hierarchies. 

The input is raw data such as RGB images. The principle of CNN is to extract the 

deep information hidden in the original data from the input layer after a series of 

operations such as multiple convolutions, pooling, and activation function processing. 

The final result is the local characteristics of the original data. Generally speaking, 

when dealing with classification problems, to be able to judge the category of the 

image by the probability accurately, it will finally use a SoftMax operation. This 

operation can transform these local features into probability distributions. In 

convolutional neural networks, different operations are represented by "layers". For 

example, in a CNN, a convolutional layer is used to implement a convolution 

operation, and a pooling layer is used to complete the pooling operation. The 

convolutional layer and pooling layer are commonly used network layers in 

convolutional neural networks, and their characteristics are as follows: 

1. Convolutional layer

The convolution operation is one of the most basic operations in convolutional neural 

networks. It is also a core point of difference between convolutional neural networks 

and ordinary artificial neural networks. Furthermore, convolution is an important 
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operation commonly used in analytical mathematics. Usually, one-dimensional 

convolution or two-dimensional convolution is used to process signals or images. In 

particular, two-dimensional convolution is often used for image processing. Because 

the structure of the image is two-dimensional, one-dimensional convolution needs to 

be extended. The essence of two-dimensional convolution is to use a convolution 

kernel matrix to slide on the image matrix. After each sliding, the product of the 

pixels in the overlapping part of the image and the matrix is added to obtain an output 

value. It finally got a new image[55]. Figure 2.6 shows an example of a convolution 

operation. Assuming that the input image A represents a 3𝑋3  matrix, the 

corresponding convolution kernel B represents a 2𝑋2 matrix. Assuming that every 

time a convolution operation is passed, the convolution kernel will slide one pixel, 

that is to say, the step size of the convolution is 1. 

Figure 2.6 Convolution operation 

As shown in Figure 2.6, the first convolution operation starts from the (0,0) position 

of the input image. First, the original image parameters and the corresponding 

convolution kernel parameters are multiplied bit by bit. Second, add the numbers 

obtained in the first step to get the result 37. Then, according to this calculation 

method, let the convolution kernel perform convolution operations on the original 

input image from left to right and from top to bottom according to the corresponding 

step size. The final output result is a 2𝑋2 output. And this output will be used as the 

input of the next layer of operation. When there are multiple convolution kernels, the 

output is a three-dimensional tensor. Among them, the depth of the three-dimensional 

tensor is exactly equal to the number of convolution kernels. 
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Generally speaking, natural images have fixed features, so this feature learned in a 

certain part of the image can be extended and applied to other parts of the image. The 

convolution operation is to operate through a certain number and size of convolution 

kernels in each position of the entire image to obtain the information of each part of 

the original image in turn. It is a local operation so that the convolution operation can 

be used for image processing well. 

2. Pooling layer

After the original image undergoes a convolution operation, the characteristic image 

obtained will have certain static information. The pooling operation is to perform 

statistical operations on the feature images obtained by the convolution operation. 

Pooling, on the one hand, needs to reduce the size of the network feature image. On 

the other hand, it also needs to retain the important information in the feature image. 

The feature image obtained after a convolution operation of the original image and the 

size before the convolution operation does not change much. If the convolution 

operation continues during the training process, it will cause a huge amount of 

calculation. 

Moreover, the difficulty of network training will increase as the depth of the network 

increases. By using the pooling layer, CNN can reduce the amount of calculation of 

the network without sacrificing the original image characteristic information. It can 

speed up the network training and reduce the resolution of the image after the 

convolution operation. 

Pooling operations generally have two methods: max pooling and mean pooling [56]. 

Mean pooling refers to keeping the average of all pixels in each part divided by the 

feature image in each pooling operation. Max pooling refers to keeping the maximum 

value of each part's pixels divided by the feature image in each pooling operation. In 

addition to these two common pooling operations, another method is random pooling. 

Random pooling means randomly retaining the values of all pixels in each part of the 

feature image. Figure 2.7 shows a max-pooling operation. 
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Figure 2.7 Max pooling operation 

2.2.2 Features of convolutional neural network 

The main difference between CNN and the traditional neural network is that CNN has 

the characteristics of local connectivity and weight sharing [57]. 

1. Local connectivity 

Generally speaking, for external things, people's cognition is often from the partial to 

the whole. Regarding the spatial characteristics of an image, it is generally believed 

that the closer the parts of the image are, the higher the correlation. However, the 

correlation between parts that are far away will be relatively low. Based on this, it is 

not necessary for a neuron to perceive the entire image simultaneously when it 

perceives the image. It only needs to associate each part of the image separately. The 

idea of local connectivity comes from the structure of the visual system in biology. 

For neurons in the visual system, they will only respond to stimuli in certain specific 

areas. As an important feature of convolutional neural networks, the local connection 

makes the layers of convolutional neural networks not completely connected like 

traditional neural networks. The size of the receptive field of the convolutional neural 

network is set only to accept signals from a small area. This ensures that the neurons 

in the current network layer will only be connected to the pixels in the corresponding 

receptive area of the previous layer. Finally, by combining the local information of all 

neurons, all the upper layer information is obtained. This feature of local connectivity 

makes the convolutional neural network greatly reduce the number of parameters in 



27 

the network structure [58]. 

2. Weight sharing

Weight sharing means that although multiple convolution kernels can exist in each 

convolution layer, the parameters of the same convolution kernel in each part of the 

entire picture are shared. This feature does not change due to changes in the position 

of the picture. For an image, the characteristics of any position on the image may 

appear in another position of the image. Therefore, the same feature can be perceived 

in different positions of the image through weight sharing. For example, for face 

recognition, the parameters of the convolution kernel learned by the person's left eye 

through recognition can also be used to recognize the person's right eye. The weight-

sharing feature of CNN can reduce the probability of overfitting, and it can also 

reduce the network model's complexity and improve its computational efficiency [59]. 

2.2.3 CNN based traffic flow prediction models 

As mentioned earlier, CNN can effectively extract image features through 

convolution operations. Therefore, the feature extraction performance of CNN in 

Euclidean space is considered to be excellent. Due to the temporal and spatial two-

dimensional properties of traffic flow. In previous research on traffic flow prediction, 

CNN was mainly used to extract the spatial correlation of traffic flow data. This is 

because the non-Euclidean characteristics of the transportation network make it 

difficult to be directly matrixed and applied to CNN. Therefore, researchers often 

convert traffic flows at different times into images of the traffic grid structure. Then, 

this kind of image is matrixed (grid). Different grids can be used to represent different 

traffic areas. In this way, CNN can extract and recognize the spatial data 

characteristics of different traffic areas. Different application scenarios, model 

improvements, and different understanding of the division of traffic networks or 

traffic flow data sets are the three main differences in the application of CNN in the 

field of traffic flow prediction. 
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The research of Davis et al. [60] focused on the forecast of taxi supply and demand in 

ITS. The study uses fixed-area rectangular cells or variable-area polygonal cells to 

grid the transportation network of the entire urban area. On this basis, CNN was used 

to extract spatial features separately, and the two models' prediction accuracy was 

compared. There are also similar studies on CNN in the field of taxi supply and 

demand forecasting [61],[62]and so on. According to the actual needs of the task, the 

research has different ideas in the selection and optimization of the input data set. 

Guo et al.[63] proposed a new end-to-end ST-3DNet model to extract traffic raster 

data. In their research, the researchers added time data to the matrixed two-

dimensional space data to form a new three-dimensional space-time data. Input such 

three-dimensional data into CNN and use 3D convolution to capture traffic data's 

temporal and spatial correlation. Research on the optimization and improvement of 

the CNN model can also be seen in studies such as [64]. Jiang et al. [65]focused on 

the prediction research of crowd flow. They built a system called Deep-Urban-Event, 

which converts the ever-changing crowd dynamic data in urban areas into a series of 

thermal images of traffic. CNN extracts the spatial characteristics of the heat map to 

predict the crowd flow trend in each area. Similar research directions can also be seen 

in the research of [64]. Lee et al. [66] applied CNN to the demand forecasting field of 

online car-hailing. The research proposes an efficient model architecture with a fully 

convolutional network and time-guided embedding to learn complex spatial-temporal 

features. The research uses this model to predict the future demand for taxis. The 

model is mainly optimized and improved on the basic CNN model, using average 

pooling and 1-dimensional convolution to meet the actual needs of research. 

It can be seen from the above research that CNN has advantages in processing 

rasterized network data. Therefore, many researchers apply it in processing spatial 

data of transportation networks. However, in terms of specific applications, 

reasonably defining the input data in Euclidean space is a difficult point for research. 

Therefore, the application of the CNN model in the field of traffic flow prediction has 

limitations. Many models and methods perform well in specific scenarios. However, 
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most CNN-based models are not universal. A model that performs well in one task 

has a huge drop in performance when applied to other tasks. 

2.3 RNN based Traffic Flow Prediction Models 

In the feedforward neural network, the transmission of information is one-way. 

Although this method of information transmission makes the network easier to learn, 

it also weakens the neural network's learning ability. In biological neural networks, 

the connection between each neuron is more complicated. The feedforward neural 

network can be regarded as a complex function. Each input in the network is 

independent. That is to say, the network's output only depends on the current input of 

the network. However, in many practical applications, the input of a neural network is 

not only related to the input at the current moment but also has a certain relationship 

with the output of the network in the past period of time. For example, for a finite 

state automaton, its state at the next moment (corresponding to the output of the 

network) is not only related to the input at the current moment but also related to the 

current state (corresponding to the output of the previous moment in the network). 

Therefore, for a static network such as a feedforward neural network, the dimensions 

of its input and output are fixed. It cannot handle the situation where the network 

output depends on the output at the previous moment. For example, data such as text, 

voice, and video. Therefore, a neural network model with stronger learning ability is 

needed when dealing with general sequence problems, namely recurrent neural 

network (RNN). It can process sequence data of any length because its neurons have 

the characteristics of self-feedback regulation. Currently, recurrent neural networks 

have been widely used in speech recognition, language models, prediction based on 

sequence data, and natural language generation[67-69]. 
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Figure 2.8 Structure of RNN[70] 

The overall structure of the recurrent neural network is shown in Figure 2.8 [70]. The 

structure on the left is foldable and can be expanded on the time step as shown on the 

right. Where 𝑋𝑡  represents the input vector at the 𝑡-th time step. 𝑌𝑡  represents the 

output vector of the t-th time step. 𝑆𝑡 represents the hidden layer vector at the 𝑡-th 

time step. 𝑈, 𝑉, and 𝑊 represent the mapping parameter matrix and are shared in each 

time step. The hidden vector 𝑆𝑡 of each time step in the RNN contains the information 

of the historical time step. The calculation process of the single hidden layer RNN 

model is shown in formulas (2-1) and (2-2), where 𝑓 represents a non-linear activation 

function, which can be functions such as tanh and ReLU. 

𝑆𝑡 = 𝑓(𝑈𝑋𝑡 + 𝑊𝑆𝑡−1 + 𝑏𝑠)     (2-1) 

  𝑌𝑡 = 𝑉𝑆𝑡 + 𝑏𝑦              (2-2) 

Although the hidden vector of RNN can retain part of the historical time step 

information, the RNN model has shortcomings such as insufficient long-term memory, 

easy gradient disappearance, or gradient explosion due to its simple structure. 

Therefore, some scholars have proposed a variant model - LSTM to improve RNN. 

2.3.1 LSTM neural network structure 

To solve the inability of RNN to retain long-term memory, Schmidhuber et al. [71] 

proposed the LSTM model. On this basis, many researchers have made certain 

improvements to the model from the practical application level [72-74]. As shown in 

Figure 2.8: LSTM adds three "gates" to control the input, output and hidden layer 
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state information in the RNN. They correspond to input gate, output gate and forget 

gate, respectively. Moreover, for the problem of RNN's gradient disappearance, 

LSTM also adds a memory neuron to alleviate this problem. The four parts cooperate 

with each other to determine memory information or forget information [75]. 

 

Figure 2.9 Architecture of a typical vanilla LSTM block[76] 

Specifically, suppose 𝑥𝑡 ∈ ℝ𝑛×𝑐  is the current 𝑛 input sequence data with feature 

dimension 𝑐, and 𝐻𝑡−1 ∈ ℝ𝑛×ℎ  is the hidden layer of the previous time step state. 

Then the input gate 𝐼𝑡 ∈ ℝ𝑛×ℎ, the forget gate 𝐹𝑡 ∈ ℝ𝑛×ℎ  and the output gate 𝑂𝑡 ∈

ℝ𝑛×ℎ are calculated as follows: 

𝐼𝑡 = 𝜎(𝑊𝑖𝑛𝑥𝑡 + 𝑊𝑖ℎ𝐻𝑡−1 + 𝑏𝑖)    (2-3) 

𝐹𝑡 = 𝜎(𝑊𝑓𝑛𝑥𝑡 + 𝑊𝑓ℎ𝐻𝑡−1 + 𝑏𝑓)    (2-4) 

𝑂𝑡 = 𝜎(𝑊𝑜𝑛𝑥𝑡 + 𝑊𝑜ℎ𝐻𝑡−1 + 𝑏𝑜)    (2-5) 

Among them, 𝑊 and 𝑏 are learnable weight parameters and bias terms, respectively. 

And the forget gate and input gate control the memory neuron 𝐶𝑡 ∈ ℝ𝑛×ℎ by formula 

(2-6): 

𝐶𝑡 = 𝐹𝑡 ⊙ 𝐶𝑡−1 + 𝐼𝑡 ⊙ 𝐶𝑡̃    (2-6) 

Where ⊙ represents the Hamada multiplication in which the element corresponds to 

the multiplication. 𝐶𝑡̃ represents a candidate memory neuron. Use tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 

as the activation function: 

𝐶𝑡̃ = tanh (𝑊𝑥 + 𝑊ℎ𝐻𝑡−1 + 𝑏)    (2-7) 

Among them, 𝑊 and 𝑏 are learnable weights and bias items. 
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The information in the memory neuron 𝐶𝑡 will be incorporated into the hidden layer 

state 𝐻𝑡 by the output gate 𝑂𝑡: 

𝐻𝑡 = 𝑂𝑡 ⊙ tanh (Ct)    (2-8) 

Among them, ⊙  represents the Hadamard multiplication of the element 

corresponding to the multiplication. 

In short, it can be obtained from formula (2-6) that the forgetting gate 𝐹𝑡 can control 

whether the information of the memory neuron at the previous time step needs to be 

integrated into the memory neuron at the current time step. The input gate 𝐼𝑡 controls 

whether the input information of the current time step needs to be incorporated into 

the memory neuron. For example, when 𝐹𝑡 = 1 and 𝐼𝑡 = 0, then 𝐶𝑡 = 𝐶𝑡−1 , which 

means that the information of the historical time step is passed on consistently. 

Therefore, LSTM can well capture the long-term dependencies in the sequence, and 

the problem of gradient disappearance in RNN will not occur. However, the LSTM 

network architecture is too complicated, and there are too many parameters, which 

affects the computational efficiency of the model. 

2.3.2 GRU neural network architecture 

GRU (Gate Recurrent Unit) [77] is a recurrent neural network structure. The main 

idea of GRU is the same as LSTM. However, to alleviate the overcomplication of the 

LSTM structure, the GRU streamlined it. It simplifies the three “gates” in LSTM into 

two “gates”: reset gate 𝑅𝑡 ∈ ℝ𝑛×ℎ  and update gate 𝑈𝑡 ∈ ℝ𝑛×ℎ , the calculation

formula is as follows: 

𝑅𝑡 = 𝜎(𝑊𝑟𝑛𝑥𝑡 + 𝑊𝑟ℎ𝐻𝑡−1 + 𝑏𝑟)    (2-9) 

𝑈𝑡 = 𝜎(𝑊𝑢𝑛𝑥𝑡 + 𝑊𝑢ℎ𝐻𝑡−1 + 𝑏𝑢)    (2-10) 

Among them, 𝑊 and 𝑏 are learnable weights and bias items. 

GRU abandons the memory neuron, and directly uses the update gate 𝑈𝑡 to linearly 

combine the hidden layer state 𝐻𝑡−1  of the previous time step and the current 

candidate hidden layer state 𝐻̃𝑡: 
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𝐻𝑡 = 𝑈𝑡 ⊙ Ht−1 + (1 − 𝑈𝑡) ⊙ 𝐻̃𝑡    (2-11) 

The candidate hidden layer state 𝐻̃𝑡 is controlled by resetting the gate: 

𝐻̃𝑡 = tanh (𝑊ℎ𝑛𝑥𝑡 + 𝑅𝑡 ⊙ 𝑊ℎ𝑛𝐻𝑡−1 + 𝑏ℎ)    (2-12) 

Among them, 𝑊  and 𝑏  are learnable weight parameters and bias terms, and ⊙ 

represents the Hamada multiplication of the element corresponding to the 

multiplication. 

In short, only the hidden layer state of the previous time step contains historical 

information. When the reset gate 𝑅𝑡 = 0, the hidden layer state at the last moment 

will be discarded. Therefore, the reset gate can capture the short-term dependence of 

the network. When the update gate 𝑈𝑡 = 1 , 𝐻𝑡 = 𝐻𝑡−1  means that all historical 

information is retained so that the update gate can control the long-term dependence 

of the network. 

Figure 2.10 Architecture of GRU block[77] 

The basic unit structure of GRU is shown in Figure 2.10. In the figure, 𝑅𝑡 represents 

the reset gate, and 𝑈𝑡 represents the update gate. The reset gate can control the hidden 

state at the previous moment and control how much information is input into the 

current state. 

However, whether it is RNN, LSTM or GRU, they are all recurrent structures. 

Therefore, when calculating the current output, they must wait for the previous neuron 

to complete the calculation and pass the hidden layer state before moving forward. 
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Therefore, the network model of the structure cannot be calculated in parallel on a 

large scale like the CNN architecture model. 

2.3.3 Temporal convolutional network(TCN) architecture 

From the discussion of RNN in the previous section, it can be seen that LSTM, GRU 

and other recurrent neural networks can indeed model sequences very well. However, 

the recurrent neural network itself has the problems of gradient dispersion and 

gradient explosion. Variants such as LSTM and GRU only alleviate the gradient 

dispersion problem. At the same time, the recurrent neural network is difficult to 

obtain high training efficiency due to its unique calculation method. Because the 

output of the RNN at each moment is produced by performing the same operation on 

the output at the previous moment. The calculation at the current moment depends on 

the calculation result at the previous moment. This inherent characteristic makes RNN 

can only calculate serially one by one, which is difficult to parallelize. It is even more 

difficult to have a better acceleration effect on the GPU. Therefore, in terms of traffic 

flow prediction, some of these shortcomings cause the performance of RNN in all 

aspects of this field to fail to achieve the desired effect. 

Compared with RNN, CNN allows parallel convolution calculations, making CNN 

have a good acceleration effect on GPU. However, traditional CNN has big flaws in 

dealing with time series problems. On the one hand, the size of the convolution kernel 

is limited. On the other hand, it integrates the past and future time feature information 

into the features of the node indiscriminately. To solve this problem, Bai et al.[78] 

proposed a new architecture-TCN in 2018, hoping to defeat RNN in a variety of 

mainstream RNN applications such as Polyphonic Music Modeling, Word-and 

Character-Level Language Modeling. In simulations, comparing it with a variety of 

RNN structures, it is found that TCN can reach or even exceed the RNN model on a 

variety of tasks. Although RNNs can theoretically have infinite "memory", they are 

difficult to train and parallel. Compared with RNN, TCN inherits the advantages of 

CNN and has the characteristics of longer "memory" and easier parallelism. Therefore, 
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TCN can take advantage of the parallel computing features of GPU to greatly speed 

up the model training process. 

Theoretically, TCN[79] discards the value after 𝑡 time in each step of convolution, so 

that the output at time 𝑡 depends only on the input before time 𝑡. Therefore, in TCN, 

the function of the convolution kernel is to remove part of the information in the input, 

leaving only valid information. When the convolution operation does not depend on 

future information, it is TCN. 

Moreover, it should be noted that TCN is not a single network structure but a type of 

neural network that is improved based on convolutional neural networks and used to 

solve sequence problems. It involves the idea of causal convolution, expansion 

convolution and one-dimensional convolution. Among them, the causal convolution 

can be understood as: the time series prediction requires that the prediction 𝑦𝑡 at time 

𝑡 can only be judged by the input 𝑥1 to 𝑥𝑡−1 before time 𝑡. Similar to the idea of the 

Markov chain. Compared with traditional convolutional neural networks, causal 

convolution can only "see" the past data but cannot "see" the future data. Therefore, 

the information leakage is solved well. One-dimensional causal convolution is 

generally implemented by Padding,  and the front end of the sequence is filled with 

zeros of the corresponding number of bits. In addition, no padding is performed at the 

end of the sequence. 

The expansion convolution is to add weights with a value of zero to the convolution 

kernel to broaden the receptive field under the premise of the same amount of 

calculation. Compared with the traditional convolutional neural network, although the 

actual size of the convolution kernel remains the same, the size of the receptive field 

is enlarged. Therefore, the advantage of expanded convolution is that it enlarges the 

field of perception without loss of information by pooling. It allows each convolution 

output to contain a larger range of information. 

Therefore, through TCN, it is possible for the network to capture the long-term 

memory of the traffic flow, and it also ensures that only the data of the past moment is 
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used when predicting the future traffic flow. It avoids the information leakage 

problem of traditional CNN in this respect. 

2.3.4 RNN based traffic flow prediction models 

In the scenario of traffic flow prediction, RNN and its variants (LSTM or GRU) can 

well complete the processing task of sequence data, so they are often used to capture 

the correlation of traffic flow data in the time dimension. 

Chen et al. [80] proposed a new traffic prediction framework based on multiple 

residual recurrent graph neural networks. In this framework, residual neural networks 

and GNN are used to solve the problem of gradient explosion and disappearance, as 

well as the extraction of spatial features. On this basis, the model uses GRU further to 

extract the temporal dynamic features of high-dimensional feature data. Through the 

combined application of multiple neural networks, the task of traffic flow prediction 

is completed. In the study of Cui et al. [81], LSTM was used as a neural unit for 

temporal feature extraction. The data features as input to LSTM are extracted by 

Traffic Graph Convolution (TGC) in the original traffic flow data set. Guo et al. [82] 

proposed an Optimized Graph Convolution Recurrent Neural Network (OGCRNN) 

model, which captures traffic flow's temporal and spatial characteristics through the 

combination of GCN and GRU modules. The difference from the previous study is 

that this study optimizes the traffic flow data periodically during the input phase. The 

Seq2Seq + Spatial Relation model proposed by Liao et al. [83] still uses the 

combination of GCN+LSTM. Its characteristic is that according to the characteristics 

of the actual road network nodes, the data in the data set is filtered and eliminated.  

There are many pieces of research in this area, and most of them use LSTM or GRU 

to extract the temporal dimension features of traffic flow. This work will not repeat 

them one by one here. In summary, through the above examples, it can be seen that 

RNN and its variants cannot be applied to prediction tasks alone in the field of traffic 

flow prediction. Researches use the excellent performance of RNN for time series 

feature extraction. The temporal features of traffic flow are extracted based on the 
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high-dimensional feature data captured by other models in advance. Through the form 

of the combined model, the entire flow forecasting task is completed. 

2.4 GCN based Traffic Flow Prediction Models 

CNN has been successfully applied to image classification [84], semantic 

segmentation [85], machine translation [86] and other fields. The underlying data 

representations in these fields are all grid-like. However, the data involved in many 

interesting tasks cannot be represented in a grid-like structure. They are located in an 

irregular domain. This is the case with three-dimensional grids, social networks, 

telecommunications networks, biological networks, or brain connections. These data 

can usually be represented in the form of graphs. 

Graph Neural Network (GNN) [6, 87], as a generalization of cyclic neural networks, 

can directly process more general graphs, such as cyclic, directed, and undirected 

graphs. The graph neural network is composed of an iterative process. First, the 

iterative process propagates the state of the nodes to the equilibrium state. Then there 

is a neural network, which generates the final output based on the state of each node. 

In recent years, graph neural networks have been widely used in various fields such as 

social networks, knowledge graphs, recommendation systems, and even life sciences. 

The graph neural network has powerful functions that can model the dependency 

relationship between graph nodes, so this makes a major breakthrough in the research 

field related to graph analysis. 

2.4.1 Graph theory 

Graph theory is the basis of graph neural networks. Before studying the graph neural 

network, it is of great significance for this work to clarify the related concepts of the 

graph to be studied. Graphs are one of the most powerful frameworks in data 

structures and algorithms. Almost all structures or systems such as transportation 

networks, chess games, and interpersonal interaction networks can be represented by 

graphs. Generally speaking, a graph can be regarded as an abstract network composed 



38 

of "vertices", and each vertex in the network is connected to each other through 

"edges". That is, the existence of an edge between two points means that the two 

vertices are related [88]. 

2.4.1.1 The concept of graph theory 

In graph theory, a graph is often written as 𝐺 = (𝑉, 𝐸). That is, a graph is an ordered 

two-tuple < 𝑉, 𝐸 >, marked as 𝐺. 

(1) 𝑉 = {𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛} is the vertex set of graph 𝐺 . It is a finite non-empty set

whose elements are called vertices or nodes. 

(2) 𝐸 = {𝑒1, 𝑒2, 𝑒3 … 𝑒𝑚} is the edge set. It is a finite set, and each element in 𝐸 has a

pair of nodes in 𝑉 corresponding to it, called an edge. 

According to whether the edges are directed or not, graphs can be divided into two 

categories. The most basic graph is usually defined as an "undirected graph". The 

edges in the graph are all undirected, and the undirected edge ｅ corresponds to the 

unordered vertex pair < 𝑢, 𝑣 >. 𝑢  and 𝑣  are called the two end points of e. In an 

undirected graph, the degree of a vertex is the number of edges (or arcs) adjacent to 

the vertex. The corresponding undirected graph is called "directed graph". The edges 

in the figure are all directed. The directed edge 𝑒 corresponds to the ordered pair of 

vertices < 𝑢, 𝑣 >. At this time, 𝑢 is called the starting point of 𝑒, and 𝑣 is the ending 

point of 𝑒 . In a directed graph, degrees are divided into "in-degrees" and "out-

degrees" according to the direction of the edges. The degree of the vertex is the sum 

of the in-degree and the out-degree. The number of edges that end at a vertex is called 

the in-degree of the vertex. The number of edges starting from a vertex is called the 

vertex's out-degree. 

2.4.1.2 Matrix representation of the graph 

A graph can be described by definition, or it can be represented graphically. In 

addition, it can also be represented by a matrix, like a binary relationship. Using a 
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matrix to represent a graph, it is possible to understand some properties and 

construction algorithms of the graph through matrix operations. This is also easier for 

computer processing. 

The elements in the degree matrix are the vertex degrees. Except for the main 

diagonal, all other values are 0. In an undirected graph, the value of the main diagonal 

of the degree matrix is the degree of the vertex. In a directed graph, only one of the in-

degree or out-degree needs to be considered. The value of the main diagonal of the 

matrix is the in-degree (or out-degree) of the vertex. 

The adjacency matrix is a matrix that represents the adjacency relationship between 

vertices. Similarly, use 𝐺 = (𝑉, 𝐸) to represent the graph. If < 𝑢, 𝑣 >∈ 𝐸, then 𝑢 and 

𝑣  are called adjacent nodes. If the two points are not adjacent, the relationship 

between the two points in the adjacency matrix is 0, and the relationship between the 

two points is 1. Using the adjacency matrix to represent the graph, it is easy to 

determine whether any two vertices in the graph are connected by edges[89]. 

Laplace matrix [90] is an important matrix often used in graph theory. It is defined as 

𝐿 = 𝐷 − 𝐴, where 𝐷 is the degree matrix of the graph, and 𝐴 is the adjacency matrix 

of the graph. Figure 2.11 shows a simple graph, and Figure 2.12 shows its degree 

matrix, adjacency matrix and Laplacian matrix. The Laplacian matrix has the 

following properties: 

(1) The Laplace matrix is a positive semi-definite matrix.

(2) The minimum eigenvalue is 0 because the sum of each row of the Laplacian

matrix is 0.

(3) The smallest non-zero eigenvalue of the Laplacian matrix is the algebraic

connectivity of the graph.

(4) The number of feature values of 0 is the number of connected regions in the graph.
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Figure 2.11 Example graph 

 

Figure 2.12 The degree matrix, adjacency matrix and Laplacian matrix of Figure 2.11 

2.4.2 Graph neural network analysis 

Through the overview of graph theory in the above section, the concept of the graph is 

clarified. According to the concept of graph theory, in computer science, a graph is a 

data structure composed of two parts: vertices and edges. There are many types of 

graphs, including undirected graphs, undirected graphs with weights, directed graphs, 

directed graphs with weights, cyclic graphs. The graph 𝐺  can be described by the 

vertex set 𝑉 and the edges 𝐸 it contains, that is, 𝐺 = (𝑉, 𝐸). Depending on whether 

there is a direct dependency between the vertices, the edges can be directed or 

undirected. In addition, it should be noted that vertices are also called nodes, and 

these two terms can be interchanged in this work. Figure 2.13 lists several types of 

graphs. 



 

41 

 

 

Figure 2.13 Four types of graphs[6] 

Graph neural network (GNN) is a kind of neural network that runs directly on graph 

structure. A typical application of GNN is node classification. GNN is the first 

algorithm proposed by F. Scarselli et al. in the paper [6], so it is usually considered as 

the foundation and the beginning of research for GNN. In the node classification 

problem setting, the feature 𝑣𝑥 of each node 𝑣 is associated with a true label 𝑡𝑣. Given 

a partially labeled graph 𝐺, the task goal is to use these labeled nodes to predict the 

labels of unlabelled nodes. It learns each node represented by a 𝑑-dimensional vector 

ℎ𝑣 containing neighbourhood information : 

ℎ𝑣 = 𝑓(𝑥𝑣, 𝑥𝑐𝑜[𝑣], ℎ𝑛𝑒[𝑣], 𝑥𝑛𝑒[𝑣])    (2-13) 

Where 𝑥𝑐𝑜[𝑣] represents the feature of the edge connected to 𝑣. ℎ𝑛𝑒[𝑣] represents the 

embedding of adjacent nodes of 𝑣. 𝑥𝑛𝑒[𝑣] represents the characteristics of the adjacent 

nodes of 𝑣. The function f is a transition function that maps these inputs to a 𝑑-

dimensional space. To find the unique solution of ℎ𝑣, the algorithm applies Banach 

fixed point theorem to rewrite the above equation as an iterative update process. 

𝐻𝑡+1 = 𝐹(𝐻𝑡, 𝑋)    (2-14) 

𝐻 and 𝑋 represent the concatenation of all ℎ and 𝑥  respectively. The output of the 

GNN is calculated by passing the state ℎ𝑣  and the characteristic 𝑥𝑣  to the output 
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function 𝑔. 

𝑂𝑣 = 𝑔(ℎ𝑣, 𝑋𝑣)    (2-15) 

Both 𝑓 and 𝑔 here can be interpreted as a feedforward fully connected neural network. 

𝐿1 loss can be directly expressed as: 

𝑙𝑜𝑠𝑠 = ∑ (𝑡𝑖 − 𝑜𝑖)𝑝
𝑖−1     (2-16) 

It can be optimized by gradient descent. 

However, the original GNN has three main limitations: 

(1) If the assumption of "fixed point" is relaxed, then a more stable representation can 

be learned by using a multilayer perceptron, and the iterative update process can be 

eliminated. This is because, in the original paper, different iterations use the same 

parameters of the transfer function 𝑓, and different parameters in different layers of 

MLP allow hierarchical feature extraction. 

(2) It cannot handle edge information. For example, different edges in the knowledge 

graph may represent different relationships between nodes. 

(3) Fixed points will hinder the diversity of node distribution and are not suitable for 

learning to represent nodes. 

To solve the above problems, researchers have proposed a graph convolutional neural 

network (GCN), a variant of GNN. GCN is used to make up for the limitations of 

GNN. 

2.4.3 Overview of GCN 

At present, convolutional neural networks have achieved good results in computer 

vision, natural language processing and other fields. Data that can be gridded, such as 

images and voices, can be called Euclidean style data. For example, traditional 

network models (LSTM) or CNN convolutional neural networks can efficiently 

process this grid-based data and extract features from the data. However, there are a 
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lot of non-Euclidean data in the real world, such as social network data, biological 

gene protein data, traffic data. A graph structure can well represent this kind of data. 

However, machine learning on graphs is a very difficult task because graphs are a 

very complex but informative data structure. 

 

Figure 2.14 The difference between standard convolution and graph convolution 

The basic idea of the convolutional neural network is as described in the previous 

section. It uses the receptive field of the grid data and the parameter matrix of the 

convolution kernel to perform an inner product operation to obtain the convolution 

output value of the position, as shown in Figure 2.5. However, when CNN processes 

the graph structure data shown in Figure 2.14, the number of neighbor nodes of 

different nodes is not equal. Most of the graphs are heterogeneous, so it is difficult to 

determine the parameter dimension of the convolution kernel. Arranging the relative 

position relationship between the weight matrix and the nodes in the neighborhood for 

effective inner product calculation has become a big problem. 

The graph convolutional neural network is designed to be applied to graph data and 

use graph structure information directly. GCN [91] is a neural network structure that 
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can effectively mine the features of graph data. For example, social network [92], 

protein molecular structure [93], communication network [94] and so on. GCN can 

dig deep into their characteristic laws, and the scope of application is gradually 

expanded to various fields. 

Many scholars have explored the above problems and achieved some results. The 

mainstream graph convolution methods include spatial methods and spectrogram 

methods. 

The idea of the spatial method is to directly apply the convolution kernel to the nodes 

and their neighborhoods on the graph. The core of this method is how to properly 

select the neighborhood of nodes for heterogeneous graph data. Niepert et al. [95] 

proposed the PATCHY-SAN method, first selecting the candidate node sequence as 

the central node. Then heuristically select the neighborhood for the central node 

linearly, map it to a vector and then perform the traditional convolution operation. It 

has achieved good results in social network tasks. Li et al. [96] introduced graph 

convolution operations in human action recognition tasks. A variety of division 

strategies are proposed to divide the neighborhood of nodes into different subsets. By 

controlling the number of subsets, it is ensured that different nodes can share the 

weight of the convolution kernel. Cui et al. [97] proposed a high-order graph 

convolutional recurrent neural network model, which considered the high-order 

neighbor information of the spatial dimension to learn and predict traffic volume. 

The spectrogram method extends the convolution operation on the grid data to the 

graph structure data through the graph Laplacian matrix. Bruna et al. [98] proposed a 

general graph convolution framework in 2014 to transform the eigenvectors of the 

Laplacian matrix into the spectral domain. Then it is approximated by the method of 

spline interpolation. But this method does not solve the problem of convolution kernel 

sharing. Subsequently, Defferrard et al. [99] optimized the method, replacing the 

spline interpolation with the K-order truncated approximate solution of the Chebyshev 

polynomial. This method realizes parameter sharing in the entire network and proves 
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that the scope of the convolution kernel is strictly limited to the K-order neighbors of 

the central node, and at the same time, reduces the complexity of the model.  

Many people have tried to use graph convolution methods to solve practical problems 

in recent years and have achieved some research results. However, the theory is not 

yet complete. The feature description and specific analysis of graph structure data in 

specific problems are still being explored.  

2.4.4 Principle of GCN 

Same as the convolutional neural network. For the feature extraction of graphs, a 

multilayer neural network structure can also be used. For each layer, the following 

mapping function can be used to calculate:  

𝐻(𝑙+1) = 𝑓(𝐻(𝑙), 𝐴)    (2-17) 

Among them, 𝐻(𝑙) ∈ ℝ𝑁×𝑑(𝑙)
 represents the node-level expression of the 𝑙-th layer 

graph. It is an 𝑁 × 𝑑(𝑙)-dimensional matrix. 𝑁 represents the number of nodes, and 

𝑑(𝑙) represents the dimension expressed by the nodes of the lth layer (the dimension 

expressed by the nodes can be different in each layer, which is determined by 𝑓 and 

can be flexibly set). 𝐻(0) = 𝑋 represents the initial node expression matrix of the 0-th 

layer. Assuming that there are a total of 𝐿-layer networks, 𝐻(𝐿) = 𝑍 represents the 

node expression matrix output by the last layer. 

Similar to CNN, graph convolution also uses shared weights. However, unlike CNN, 

the weight of each kernel is a regular matrix, which is assigned according to the 

corresponding position. The weight in the graph convolution is usually a set. When 

calculating the aggregate feature value for a node, all points participating in the 

aggregation are allocated to multiple different subsets according to a certain rule. The 

nodes in the same subset adopt the same weight to realize weight sharing. 

In a nutshell, the graph convolution operation weighs each node's features and the 

features of its neighbor nodes and then propagates to the next layer. This kind of 
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graph convolution operation is called graph convolution in the spatial domain, and it 

has the following characteristics: 

(1) As the number of layers deepens, the farther features each node can aggregate. 

(2) The weight is shared and will not be specific to each node, which is the same as 

traditional CNN. Intuitively, if the weight is different from node to node. Then once 

the graph structure changes, the weight will immediately become invalid. 

(3) The number of neighbor nodes of each vertex may be different, which leads to 

more significant eigenvalues of vertices with more neighbor nodes. 

(4) When calculating the adjacency matrix, the characteristics of the node itself cannot 

be included in the aggregated eigenvalues. 

In addition, to overcome the shortcomings of spatial graph convolution, scholars 

proposed graph convolution in the spectral domain [91, 99]. The idea is to use the 

Laplacian matrix and Fourier transform of the graph to perform convolution 

operations. This method is also the method used in this research to extract spatial 

features, and the details will be described in the next chapter. 

2.4.5 GCN based traffic flow prediction models 

There is a great correlation between traffic conditions and the road traffic network, so 

recently, researchers formulated the traffic flow prediction model as a graphical 

modeling problem. Because of the spatial characteristics of road networks, GCN is 

more suitable for modeling non-Euclidean spatial structure data than CNN. It is also 

more suitable for extracting spatial feature data from the structure of the traffic road 

network. Through spatial graph convolution or spectral graph convolution, GCN can 

aggregate the neighbor node information of each road network node. Combine this 

information with its own node information and update it to high-dimensional node 

feature information. The upgraded feature data contains richer node features, enabling 

the neural network to capture deeper feature rules. 



 

47 

 

Diao et al. [45] used a dynamic Laplacian matrix estimator to decompose real-time 

traffic data into global components that are stable and depend on long-term temporal 

and spatial traffic relationships. This method is used to extract spatial features that 

change over time. Thus, the characteristics of the time dimension are obtained through 

GCN in the space dimension. Extracting traffic flow data features in temporal and 

spatial dimensions respectively is also an important idea for applying deep learning 

models in Wu et al. [100]. They proposed integrating WaveNet into GCN for spatial-

temporal modeling to form a Graph WaveNet model, which can handle long 

sequences. Song et al. [101] proposed a spatial-temporal synchronization graph 

convolutional network (STSGCN) model. This model mainly divides the data into 

different time periods in the time dimension. The feature information extracted by 

GCN in different time periods is spliced together in the time dimension, and then 

further spatial-temporal correlation extraction is performed through the neural 

network. Seo et al. [40] proposed Graph Convolutional Recurrent Neural Network 

(GCRN), a model that combines recurrent network and graph convolution operations. 

Subsequently, Li et al. [42] proposed a DCRNN (Diffusion Convolutional Recurrent 

Neural Network) model that successfully used GRU and graph convolution for long-

term traffic prediction. Yu et al. [43] proposed a GCN with a gating mechanism and 

applied it to the traffic volume prediction problem. Guo et al. [18] used the GCN 

spectrogram method to extract spatial features from the original data. Then input it 

into the CNN model to further extract temporal features. On this basis, through the 

stacking of spatiotemporal modules, higher-dimensional spatiotemporal feature 

information can be obtained. 

In summary, the application of graph neural network in the field of traffic flow 

prediction needs to fully consider the time dimension or time series. In other words, 

the application of graph neural networks to traffic prediction problems must fully 

consider the complex time-space correlation in a road traffic network. At the same 

time, in the modeling process, the relationship between various model combinations 

must be considered. Special attention is needed to avoid the problem of error 
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propagation between steps brought about by the step-by-step generation of prediction 

results. 

2.5 Enhancement Mechanism of Models 

2.5.1 Deep residual network 

The residual network was proposed in 2015, and the core is to solve the side effects 

caused by increasing the depth of the network. Once it was born, it has achieved good 

results in image classification, detection, and positioning based on ImageNet data 

[102]. Through in-depth research on the residual network. Researchers found that it is 

not that the deeper the network, the better the effect of the neural network. 

Researchers found through simulations that as the number of network layers continues 

to increase, the model's accuracy will continue to improve. But when the level of the 

network increases to a certain number, the training accuracy and testing accuracy 

begin to decline rapidly. This shows that when the network becomes very deep, it will 

become more difficult to train it. 

In theory, regardless of the depth of the network model, it is possible to approximate 

the intrinsic relationship and essential characteristics of the data through functions. 

But when solving complex problems in real situations, the number of computing units 

required increases exponentially. Shallow networks often have the problem of 

insufficient function expression capabilities, while deep networks may only require 

fewer computing units. However, the network hierarchy is not as deep as possible. 

With the increase of network levels, on the one hand, the excessive number of layers 

will lead to the wasteful occupation of video memory and "eating" computing power. 

On the other hand, problems such as overfitting, gradient dispersion, and network 

degradation will also occur. However, the deep residual network can well solve the 

degradation problem caused by increasing the network depth. 

There are two main designs for the residual network: shortcut connection and identity 

mapping. The shortcut connection makes the residual possible, and the identity 
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mapping makes the network deeper. The structure of the residual block is shown in 

Figure 2.15. 

 

Figure 2.15 Residual learning unit 

One or more layers of networks can be skipped using this quick connection method. 

The input result before the jumped layer is directly used as the output result of the 

stacked layer. The shortcut connection method neither adds additional parameters nor 

increases the computational complexity. Its existence can still use backpropagation 

stochastic gradient descent to train the entire network end-to-end. Moreover, it is easy 

to use public libraries to implement without modifying any content [103]. 

2.5.2 Attention mechanism 

The attention mechanism is a deep learning technique that imitates humans paying 

more attention to important areas when observing things [104]. The attention 

mechanism was first applied to the image classification task by the Google DeepMind 

team, which can accurately identify multiple objects in the image, reducing the error 

rate of the MINIST classification task by 4% [105]. The effectiveness of the attention 

mechanism in image classification tasks is demonstrated. Later, Bahdanau et al. [106] 

applied the attention mechanism to machine translation tasks for the first time based 

on previous work. The Google machine translation team proposed a sequence network 

model Transformer [107] based on the attention mechanism, which attracted 

widespread attention. The attention mechanism has become one of the commonly 
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used techniques in deep learning. In deep learning, different weights are assigned to 

different parts of interest so that the model can effectively learn important information. 

That is beneficial to the task and filter noise information. 

2.5.2.1 Definition of attention mechanism 

Figure 2.16 Encoder-Decoder abstract framework diagram[43] 

In general, most attention mechanisms are implemented based on the Encoder-

Decoder framework structure. The abstract framework diagram of Encoder-Decoder 

is shown in Figure 2.16. The model maps an input sequence of variable length 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑛)  to another output sequence of variable length  𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑚). 

Among them, the encoder compresses the information of the entire input sequence 

into an intermediate semantic vector 𝐶 . The decoder generates 𝑦𝑖  through the 

intermediate semantic vector 𝐶 and the generated output sequence 𝑦1, 𝑦2, … , 𝑦𝑖−1, that 

is, 𝑦𝑖 = 𝑓(𝑦1, 𝑦2, … , 𝑦𝑖−1, 𝐶) . 𝑓  represents the decoding function. In the entire

decoding process, the intermediate semantic code 𝐶 is a constant, which is shared in 

the decoding process at each time step. This results in the output sequence 𝑦𝑖 having 

no discrimination for each 𝑥𝑖 in the input sequence. To solve this problem, Bahdanau 

introduced an attention mechanism in the Encoder-Decoder structure [106], the 

structure diagram is shown in Figure 2.17. Among them, 𝑠𝑡−1 is the hidden vector at 

step 𝑡 − 1 in the decoding process, 𝑠𝑡 = 𝑓(𝑠𝑡−1, 𝑦𝑡−1, 𝐶𝑡). 𝐶𝑡 represents the semantic 

vector corresponding to step 𝑡 − 1, 𝐶𝑡 = 𝑎𝑡,1ℎ1 + 𝑎𝑡,2ℎ2 + ⋯ + 𝑎𝑡,𝑇ℎ𝑇 . Where 𝑇  is 

the length of the input sequence, ℎ𝑗  represents the hidden vector of the 𝑗-th step in the 

encoding process, and 𝑎𝑡,𝑗 represents the degree of 𝐶𝑡 's attention to the hidden vectors 

of different time steps. The calculation method of 𝑎𝑡,𝑗 is shown in formulas (2-18) and 
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(2-19). 

𝑎𝑡,𝑗 = 𝑎(𝑠𝑡−1, ℎ𝑖)    (2-18) 

𝑎𝑡,𝑗 = exp(𝑎𝑡,𝑗) / ∑ exp(𝑎𝑡,𝑗)𝑇
𝑗=1     (2-19) 

Where 𝑎 represents the alignment model, which is used to calculate the degree of 

alignment or influence of ℎ𝑗  on 𝑠𝑡−1 . Then 𝑎𝑡,𝑗  is normalized by SoftMax. Under 

normal circumstances, parameterize 𝑎 and participate in training together in the neural 

network. The four commonly used alignment methods [108] are shown below. 

(1) Additive Attention 

The alignment shown in formula (2-20) is often used in additive attention, where 𝑤 

and 𝑤𝑎 are both parameter matrices. 

𝑎(𝑠𝑡−1, ℎ𝑗) = 𝑤𝑇tanh (𝑊𝑎[𝑠𝑡−1: ℎ𝑗])    (2-20) 

(2) Multiplicative Attention 

Multiplicative attention often uses the alignment shown in formulas (2-21) and (2-22), 

where 𝑤𝑎 is the alignment matrix. 

𝑎(𝑠𝑡−1, ℎ𝑗) = 𝑠𝑡−1𝑊𝑎ℎ𝑗    (2-21) 

𝑎(𝑠𝑡−1, ℎ𝑗) = 𝑠𝑡−1ℎ𝑗     (2-22) 

(3) Multi-layer perceptron attention (MLP) Attention 

The attention of MLP often adopts the alignment shown in formula (2-23). 

𝑎(𝑠𝑡−1, ℎ𝑗) = 𝜎(𝑤𝑇 tanh(𝑊𝑎[𝑠𝑡−1: ℎ𝑗] + 𝑏1) + 𝑏2)    (2-23) 
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Figure 2.17 Attention mechanism structure diagram 

2.5.2.2 Types of attention mechanism 

Nowadays, the idea of the attention mechanism has been widely used in various deep 

learning tasks. Such as machine translation [49], image caption generation [109], 

question answering system [110], speech recognition [111]. The idea of the attention 

mechanism has multiple implementation methods in different application scenarios. 

According to its implementation, its structure category can be roughly divided into 

two categories. One is the basic attention mechanism structure, and the other is the 

combined attention mechanism structure. In the basic attention mechanism structure, 

there are mainly soft attention mechanism, hard attention mechanism, and self-

attention mechanism. Some scholars further proposed local attention mechanism and 

global attention mechanism based on soft attention and hard attention [112]. In the 

structure of the combined attention mechanism, there are mainly Co-Attention [110], 

Attention-Over-Attention [97], Multi-Head Attention [107]. 

2.5.2.3 Overview of graph attention (GAT) mechanism  

Graph Attention Network (GAT) [113] is a new type of neural network structure, 

which is very important in GNN. The introduction of the attention mechanism based 

on the graph convolutional network GCN is very practical. It operates on the graph 

structure data and uses the attention layer to solve the previous shortcomings based on 



53 

graph convolution. By stacking layers, nodes can pay attention to their neighborhood 

characteristics. Implicitly assign different weights to different nodes in a 

neighborhood. Moreover, it does not require any expensive matrix operations, such as 

inversion, and does not require prior knowledge of the graph's structure. In this way, 

GAT simultaneously solves several key challenges of spectrum-based graph neural 

networks and makes the model easy to apply to induction and conversion problems. 

GAT introduces an attention-based architecture, which can handle node classification 

tasks where the data structure is a graph. Its idea is to update the vector representation 

of each node by paying attention to the neighbor node characteristics of each node. 

The attention structure has the following outstanding characteristics: (1) The 

operation is efficient because it can be parallelized across pairs of nodes. (2) By 

assigning arbitrary weights to adjacent nodes, it can be applied to graph nodes of 

different degrees. (3) The model is directly applicable to inductive learning problems. 

The model can be extended to graph tasks where the structure is completely invisible. 

2.5.2.4 Enhancement through the self-attention mechanism 

In many sequence-based tasks, the attention mechanism has almost become the de 

facto standard [106, 114]. One of the benefits of the attention mechanism is that it 

allows the processing of variable size input. Focus on the most relevant part of the 

input to make a decision. When an attention mechanism is used to calculate the 

representation of a single sequence, it is usually called self-attention or internal 

attention. With RNN or CNN, self-attention is useful in tasks such as machine reading 

[72] and learning sentence representation [115]. Vaswani et al. [107] showed that not

only self-attention can improve methods based on RNN or CNN, but it is also 

sufficient to build a powerful model to obtain the most advanced performance in 

machine translation tasks. 

In recent years, the attention mechanism has also been applied in the field of traffic 

flow prediction. Chen et al. [116] designed a multi-range attention two-component 

GCN (MRA-BGCN) model. This model introduces a multi-range attention 
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mechanism to aggregate information in different adjacent areas and automatically 

learn the importance of different areas. On this basis, the weighted traffic information 

of adjacent areas is used as the input of the graph convolutional neural module. Guo et 

al. [18] also used graph attention mechanisms in the task of traffic flow prediction. In 

their proposed Attention Based Spatial-Temporal Graph Convolutional Networks 

(ASTGCN) model, the temporal attention mechanism and the spatial attention 

mechanism are respectively applied before the temporal and the spatial module to 

capture the dynamic dependence of time and space, respectively. In addition, in the 

field of traffic flow prediction, Geng et al. [117] and Li et al. [118] respectively 

introduced the Masked Multi-head self-attention mechanism in their research. 

Furthermore, in the research of Li et al. [119] and Park et al. [120], the GAT 

mechanism has also been fully discussed and applied. 

In general, the attention mechanism can effectively mine the dynamic spatial-temporal 

patterns of traffic flow data, which is very suitable for the application scenarios of 

traffic flow prediction problems. In the studies mentioned above, the models with the 

attention mechanism often show better performance than those without this 

mechanism. Moreover, the computational complexity of the attention mechanism is 

low and will not cause additional computational overhead to the model. Therefore, it 

has received more and more attention from researchers. 

2.6 Discussion 

Through the analysis of different types of prediction methods, some research gaps can 

be found. Due to the random, dynamic and non-linear characteristics of traffic flow 

data and insufficient flexibility of the models, part of the existing models lack a 

reasonable understanding and interpretation of the data, resulting in low prediction 

accuracy. Due to the lack of consideration of the periodic characteristics of traffic 

flow data, some deep learning models cannot reasonably learn the periodic 

characteristics of traffic flow data. Most existing traffic flow prediction methods 

modeled from the temporal dimension do not fully consider the direct correlation 
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between the traffic flow sequences in the spatial dimension. The model capacity is 

limited, and it is not easy to expand. The combined deep learning models ignore the 

high-order correlation between the feature representations of different nodes on the 

graph structure. In addition, the spatial-temporal correlation feature extracted based 

on the relationship between nodes lacks consideration of the dynamics between them. 

 

Figure 2.18 Category comparison of traffic flow prediction research 

According to the survey in this chapter, this work draws a category comparison of 

traffic flow prediction research in Figure 2.18 to describe the latest research focus in 

the field. These latest methods are indicated to be the most effective way to fill these 

gaps. It can be seen from the figure that in recent years, research in the field of traffic 

flow forecasting has mainly focused on three directions. Deep learning is considered a 

better prediction method than Classical statistical models and traditional machine 

learning methods. In the deep learning model, the spectral method of GCN is 

demonstrated to have the best performance in terms of spatial dependence extraction. 

RNN variants (GRU, LSTM) are reported to have the best performance in terms of 

time-dependent extraction. CNN's TCN model is also proved to have certain 
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advantages in capturing time features. In addition, researchers are also concerned with 

the attention mechanism and deep residual network because they have very good 

effects on the optimization of the model and the improvement of calculation accuracy. 

In summary, the research on the deep learning traffic flow prediction model is still in 

the stage of theoretical research and preliminary testing. Especially based on the 

research of graph neural networks. Moreover, most models focus on research in a 

certain aspect, and there are relatively few comprehensive research models. By 

comparison, Guo et al.  [18]'s research is more advanced in many prediction models, 

and its performance is also more prominent. Therefore, this work plan uses its 

research as a comparison and reference. On this basis, this thesis plans to improve the 

prediction accuracy by improving the spatial-temporal prediction model and data 

processing method in the modeling chapter.  

2.7 Summary 

This chapter details the basic theories and research results related to the research 

content of traffic flow forecasting. Explains the understanding of spatial-temporal 

data, including basic concepts and the mining of temporal and spatial data. In addition, 

it deeply explores the related theoretical knowledge of deep neural networks and the 

research of these theories and models in the field of traffic flow forecasting. Including 

the discussion on the application of convolutional neural networks, recurrent neural 

networks, graph convolutional neural networks in this field. On this basis, this study 

also explored the feasibility and performance of deep residual networks and attention 

mechanisms as optimization methods for predictive models in this field. Finally, in the 

discussion session, some advanced traffic flow prediction methods were compared. 

Through analysis, this thesis found the research gap and the direction that can be 

improved in this field. The traffic flow data processing and improved traffic flow 

prediction model we proposed will be presented and discussed in detail in the next 

chapter. 
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Chapter 3                                

Traffic Flow Prediction Modeling 

In Chapter 2, through the analysis of different prediction methods, some research gaps 

can be found. First, the existing models have insufficient flexibility and 

interpretability of traffic flow data with random, dynamic, and nonlinear 

characteristics, resulting in low prediction accuracy. Second, the models and methods 

lack the extraction of periodic features of traffic flow data, which leads to the inability 

to learn more powerful feature data of traffic flow data reasonably. The third is that 

the existing traffic flow prediction methods that model from the time dimension do 

not fully consider the correlation between the traffic flow sequences in the space 

dimension, which makes the general applicability of the model insufficient. Fourth, 

the combined deep neural network model ignores the characteristics of the graph 

structure of the traffic road network and cannot express the high-order correlation 

between different nodes. Finally, although the latest traffic flow prediction application 

models have improved feature capture and scalability, they often have insufficient 

capabilities in capturing the dynamic correlation between nodes. 

In this chapter, we propose two types of traffic flow prediction models. These two 

types of models are mainly used to solve the last research gaps and improve the 

prediction accuracy of the models. These two types of models are mainly based on the 

GCN+RNN models and the GCN+CNN models. In addition, the attention mechanism 

and some effective machine learning optimization methods have also been applied to 

improve the model's performance. In the next few subsections of this chapter, the 

research problem is first explained. Second, we use a framework graph to explain our 

proposed model's detailed structure, some traffic flow data processing methods, and 

model optimization methods. Finally, according to the framework structure, the 

details of our proposed models are elaborated. 
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3.1 Problem Statement 

The purpose of traffic flow prediction is to predict the future traffic flow based on the 

traffic flow observed by 𝑁 related sensors on the road network. The use of our deep 

learning models for traffic flow prediction requires a large amount of road traffic data 

support in the real world. The sensors on the road network can be represented as a 

figure 3.1, or as shown in formula (3-1): 

𝐺 =  (𝑉, 𝐸)         (3-1) 

Figure 3.1 Inter-city connectivity in the composite infrastructure network[3] 

Among them, 𝑉  is the node set |𝑉|  =  𝑁 , and 𝐸  is the edge set. The relationship 

between the sensors can be embodied by different graph neural network message 

transmission methods according to actual needs. Express the traffic flow observed on 

graph 𝐺 as a graphical signal 𝑋 ∈  ℝ𝑁×𝑃，where 𝑃 represents the number of features

of each node, and let 𝑋(𝑡) represent the graphical signal observed at time 𝑡. Then the

goal of the traffic flow prediction problem is to learn a function ℎ(·) to map the 

graphical signal at the historical time 𝑇′to the graphical signal at the future time 𝑇.

Given the graph 𝐺, the traffic flow prediction problem can be represented by Figure 

3.2. 
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Figure 3.2 Illustration of traffic flow prediction problem[12] 

Furthermore, the input signal 𝑋 should include two important features. In the spatial 

dimension, it is expressed as a collection of basic parameters of traffic flow at a 

certain moment. In the temporal dimension, it is expressed as a collection of basic 

parameter data of traffic flow in a time sequence. We use three important parameters 

(traffic flow, traffic flow density, and average vehicle speed) to describe the traffic 

operation status and traffic flow's temporal and spatial features. This means that 𝑃 in 

𝑋 ∈  ℝ𝑁×𝑃 is 3. The definitions of these three parameters are as follows: 

Definition 1: Traffic flow. The total number of vehicles passing through a certain 

section in a unit time. Its expression is shown in formula (3-2). 

𝑄 = 𝐾𝑉    (3-2) 

Among them, 𝑄 represents the flow rate. 𝑉 represents speed. 𝐾 represents density. 

Definition 2: Traffic flow density. Traffic flow density generally refers to the density 

of motor vehicles in a lane. Its expression is shown in formula (3-3). 

𝐾 =
𝑁

𝐿
   (3-3) 

Among them, 𝑁 represents the number of vehicles in the road segment. 𝐿 represents 

the length of the road section. 

Definition 3: Average vehicle speed. The ratio of the length of a certain road segment 

to the average travel time of all vehicles passing through the road segment. Its 

expression is shown in formula (3-4). 

𝑉̅𝑠 =
𝑆
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    (3-4) 
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Among them, 𝑉̅𝑠 represents the interval average speed. 𝑆 represents the length of the 

road section. 𝑡𝑖 represents the travel time of the i-th vehicle. n represents the number 

of vehicles observed. 𝑣𝑖 represents the travel speed of the 𝑖-th vehicle. 

3.2 Models Framework 

In sections 2.6 and 3.1, the existing research gaps and traffic flow prediction problem 

statements are discussed separately. It can be seen from the analysis and discussion 

that our proposed model needs to realize the task of traffic flow prediction and 

improve the prediction accuracy. That is, the traffic flow value for a period of time 𝑇 

after the time 𝑡:( 𝑋(𝑡+1), … , 𝑋(𝑡+𝑇) ) is predicted by inputting the traffic flow data for a

period of time 𝑇′before the time 𝑡:( 𝑋(𝑡−𝑇′+1), … , 𝑋(𝑡) ). From a model point of view,

it is to solve several shortcomings of the existing models. One is to improve the 

interpretability of input data. The second is to extract the periodic characteristics of 

traffic flow data effectively. The third is to improve the deep learning model's ability 

to capture high-order correlations between space and time. The fourth is to effectively 

extract the dynamic associations between nodes in the traffic road network structure. 

To solve the above problems, the model framework we proposed is shown in Figure 

3.3. 
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Figure 3.3 The framework of Models proposed 
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The models we proposed are mainly composed of three modules. The first module is 

the feature analysis and periodic data fusion module. Through the first and second 

parts of this module, the composition of the characteristic data input by the model is 

determined based on Pearson correlation analysis and periodic analysis of the data. 

The multi-dimensional time series data is mapped on a time axis through the third part 

of the data fusion method. The second module is two models based on spatial-

temporal graph convolution. In this module, this thesis uses MST-GCRN (Multiple 

layers Spatial-temporal aware Graph Convolutional Recurrent Network model) and 

MST-GCTN (Multiple layers Spatial-temporal aware Graph Convolutional and 

Temporal Convolutional Network model) to extract high-dimensional spatiotemporal 

features of the data processed by the previous module. This is also the embedding 

process of feature data. The third module is two improved models that have added a 

self-attention mechanism. MST-AGCRN and MST-AGCTN based on the self-

attention mechanism are used to extract more powerful high-dimensional spatial-

temporal features of traffic flow data. The main principle is to capture the dynamic 

spatial-temporal correlation between nodes by adding a spatiotemporal self-attention 

module between the input data and the machine learning module. Finally, all four 

models we proposed can input the extracted feature data into the Readout module for 

traditional machine learning training and prediction tasks. 

Through these three main modules, the problems raised in section 3.1 can be 

effectively solved. The differences between the models proposed in this study and 

previous research models are: 1. Data qualitative analysis and fusion technology 

improve the quality and reliability of input data. This enables the model to fuse 

feature data of different dimensions into a time dimension during the input stage. This 

simplifies the calculation process, enhances the connection between components, and 

makes it more scalable. 2. The models use GRU and TCN to capture data features in 

the temporal dimension. Through the advantages of GRU and TCN in sequence data 

processing, the interpretability and accuracy of the model in the time dimension are 

improved. 3. By adding a two-dimensional self-attention block of time and space to 
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the model, the weight of the node can be more reasonably distributed. Thereby, the 

dynamic spatial-temporal correlation on the transportation network can be captured 

more accurately. The following sections of this chapter will explain each module in 

detail. 

3.3 Traffic Flow Data Feature Analysis and Periodic 

Spatiotemporal Data Fusion 

3.3.1 Periodic quantitative analysis of traffic flow 

This section uses Pearson correlation analysis to prove the periodicity of traffic flow 

data quantitatively. Pearson correlation analysis can intuitively demonstrate which 

traffic flow data in the past ( 𝑋(𝑡−𝑇′+1), … , 𝑋(𝑡) ) plays a key role in predicting future

data ( 𝑋(𝑡+1), … , 𝑋(𝑡+𝑇) ).

In this work, according to the periodic division method commonly used in traffic flow 

prediction, the traffic flow input data is divided into three components according to 

the periodicity. The three periodic components are the recent time segment, the daily 

periodic time segment, and the weekly periodic time segment in sequence. Recency 

periodicity describes the similarity of traffic flow at a specific time during the day. 

Daily periodicity describes the similarity of traffic flows at specific times of the day. 

Weekly periodicity describes the similarities in traffic flow at specific times of the 

week. To further confirm that the traffic flow data set we used meets the three periodic 

characteristics. This work conducts a Pearson correlation analysis based on real data. 

The value obtained by Pearson correlation analysis can be represented by a heat map. 

Therefore, it is possible to intuitively prove the periodic characteristics of the traffic 

flow data and the closeness of each other. 

Pearson correlation analysis refers to the analysis of two or more correlated variables 

to measure the closeness of the correlation between the variables. Many indicators 

characterize the degree of correlation between variables, and the Pearson correlation 
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coefficient is currently more commonly used.  

In terms of traffic flow prediction, the Pearson correlation coefficient 𝑟  between 

historical data 𝑋 and forecast data 𝑃 can be calculated as shown in formula (3-5): 

𝑟 =
∑ (𝑋𝑖−𝑋̅)(𝑃𝑖−𝑃̅)𝑇

𝑖=1

√∑ (𝑋𝑖−𝑋̅)2(𝑃𝑖−𝑃̅)2𝑇
𝑖=1

          （3-5） 

Among them, 𝑇 indicates the prediction duration, 𝑃 indicates the time series data of 

the traffic flow to be predicted, and 𝑋 indicates the time series data of the historical 

traffic flow. Moreover, 𝑋̅ represents the mean value of the random variable 𝑋, and 𝑃̅ 

represents the mean value of the random variable 𝑃. Then the value of the Pearson 

correlation coefficient 𝑟 indicates the degree of correlation between the sequence 𝑋 

and the sequence 𝑃, and the value range is between −1 and 1. The closer the absolute 

value of the correlation coefficient is to 1, the stronger the correlation between the 

variables; conversely, the closer the correlation coefficient is to 0, the weaker the 

correlation. The specific correlation degree division is shown in Table 3-1. 

Table 3-1 Correspondence table of Pearson coefficient and correlation degree 

PEARSON CORRELATION COEFFICIENT CORRELATION DEGREE 

|R|≥0.8 Highly correlated 

0.5≤|R|<0.8 Moderately related 

0.3≤|R|<0.5 Low correlation 

|R|<0.3 Basically irrelevant 

 

Figure 3.4 Periodic dependence degree heatmap 

Figure 3.4 is a heat map of the Pearson correlation coefficient between the predicted 
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target in a certain period and all other periods in the representative real data set that 

we obtained through calculation. The deeper the red, the greater the correlation value. 

Each square in the figure represents 60 minutes. It can be seen that, for the selected 

control forecast data, the two closest periods (data 120 minutes before the forecast 

node) are the most relevant to it. The characteristics are very obvious, and the closer 

to the forecast period, the greater the value of the Pearson correlation coefficient. If 

the time period is more detailed, its gradual characteristics will be more obvious. The 

contrast is also very obvious for daily periodicity and weekly periodicity (horizontal 

black frame part). The characteristic of daily periodicity is that its Pearson correlation 

coefficient value is the largest in the same time period of the previous day. This value 

gradually changes gradually according to the distance according to the distance in the 

selected period of the previous day. For a week, since city residents work from 

Monday to Friday and rest on weekends, people's travel patterns during the week will 

be similar during the working days from Monday to Friday. The travel patterns of 

non-working days, such as Saturdays and Sundays, are more similar. Therefore, the 

Pearson correlation coefficient values of the same period of working days and non-

working days are significantly different from the selected time period. The 

corresponding value will gradually change in the horizontal direction on different 

dates according to the distance from the selected date. It should be noted that the 

selected period is a working day period. Therefore, according to the difference 

between working days and rest days, the difference can be clearly shown in the heat 

map. 

The results obtained through Pearson correlation analysis are used as the objective 

basis for this research to confirm our division of periodic components. At the same 

time, it also verifies the correctness and universal applicability of the data set we have 

selected. 

3.3.2 Periodic component division of traffic flow data 

This thesis divides the input traffic flow data along the horizontal time axis based on 
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Pearson correlation analysis. The periodic characteristics of the input data are shown 

in Figure 3.4. Assuming that the collection frequency of the data collection equipment 

deployed on the transportation network is 𝑞 times/day, that is, each node collects 𝑞 

data values every day. At this node, set the current time to 𝑡0 time, and then specify 

the length of the future time segment that needs to be predicted as 𝑇. That is to say, 

the prediction duration 𝑇 is used as the time window unit. Then this study can divide 

the input flow data 𝑥 along the horizontal time axis according to the recent periodicity, 

daily periodicity and weekly periodicity. The method is to intercept three time 

segments with a length of an integer multiple of  𝑇 respectively along the horizontal 

time axis as the input of the three periodic components. The three input time segments 

can be represented as 𝑇ℎ , 𝑇𝑑 , and 𝑇𝑤 , respectively. Then the input data can be 

expressed as 𝑥ℎ , 𝑥𝑑  and 𝑥𝑤 . Among them, the subscript ℎ  represents the recent 

periodic hour. The subscript 𝑑 represents the daily periodicity-day. The subscript 𝑤 

represents the weekly periodicity-week. 

The specific representations of the three time series segments are as follows: 

(1) The recent components 

As shown in the Pearson correlation analysis section. At a certain node, the traffic 

flow in the predicted time segment 𝑇0 will inevitably be affected by the traffic flow at 

the previous moment of the day or the previous stage of the day. The most obvious 

example is the influence of different periods of the working day on the traffic flow in 

the next period. Such as traffic accidents, weather changes. And it can be clearly seen 

that such an impact will gradually weaken or increase with the distance from the 

prediction period. Its expression is shown in formula (3-6). 

𝑋ℎ = (𝑋𝑡0−𝑇ℎ+1, 𝑋𝑡0−𝑇ℎ+2, … , 𝑋𝑡0
)    (3-6) 

(2) The daily periodic components 

The daily periodicity component can be expressed as the correlation between the data 

in the predicted time period and the traffic flow data in the same time period in the 
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previous few days. Because there is a strong similarity between the traffic flow data 

of the previous few days and the data of the forecast period. Therefore, the data in this 

time segment in the previous few days can be used as the basis for predicting the data 

in the 𝑇0 time period. For example, during the working day, subject to the cyclical 

changes of morning and evening peak traffic flow, the changing trend of its traffic 

flow data will show a trend of convergence. The daily periodic component models the 

traffic flow data in units of days. Its expression is shown in formula (3-7). 

𝑋𝑑 = (𝑋𝑡0−(𝑇𝑑/𝑇)∗𝑞+1, … , 𝑋𝑡0−(𝑇𝑑/𝑇)∗𝑞+𝑇 , 𝑋𝑡0−(𝑇𝑑/𝑇−1)∗𝑞+1, …, 

                  𝑋𝑡0−(𝑇𝑑/𝑇−1)∗𝑞+𝑇 , … , 𝑋𝑡0−1∗𝑞+1, … , 𝑋𝑡0−1∗𝑞+𝑇)    (3-7)  

(3) The weekly periodic components 

The weekly periodicity component can be expressed as the correlation between the 

data in the predicted time period and the traffic flow data in the same time period in 

the previous few weeks. Because there is a strong similarity between the traffic flow 

data of the previous few weeks and the data of the forecast period. Therefore, the data 

in this time segment in the previous few weeks can be used as the basis for predicting 

the data in the 𝑇0 time period. For example, during the working day of this week, the 

cyclical change of the morning and evening peak traffic flow is similar to the morning 

and evening peak traffic flow data of the previous week or earlier. The weekly 

periodic component models the traffic flow data on a weekly basis. Its expression is 

shown in formula (3-8). 

𝑋𝑤 = (𝑋𝑡0−7∗(𝑇𝑤/𝑇)∗𝑞+1, … , 𝑋𝑡0−7∗(𝑇𝑤/𝑇)∗𝑞+𝑇 , 𝑋𝑡0−7∗(𝑇𝑤/𝑇−1)∗𝑞+1, …, 

                  𝑋𝑡0−7∗(𝑇𝑤/𝑇−1)∗𝑞+𝑇 , … , 𝑋𝑡0−7∗1∗𝑞+1, … , 𝑋𝑡0−7∗1∗𝑞+𝑇)    (3-8)  
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Figure 3.5 An example of periodic factor input 

Take the real data set used in this thesis as an example. It can be seen from Figure 3.5 

that the green traffic flow data corresponds to the recent component 𝑇ℎ. The orange 

traffic flow data corresponds to the daily periodic component 𝑇𝑑. The blue traffic flow 

data corresponds to the weekly periodic component 𝑇𝑤. The prediction of traffic flow 

data from 10:00 to 11:00 on June 18, 2020, requires the input of data corresponding to 

09:00 to 10:00 on June 18, 2020, in the recent component. In addition, the daily 

periodic component is required to input data corresponding to 10:00 to 11:00 on June 

16, 2020, and 10:00 to 11:00 on June 17, 2020. The weekly periodic component is 

also required to input data corresponding to 10:00~11:00 on June 4, 2020, and 

10:00~11:00 on June 11, 2020. 

3.3.3 Multi-component fusion 

In this part, this work integrates periodic data through a multi-component fusion 

method. In summary, to simplify the model's calculation process, enhance the 

connection between components, and make the model more scalable. Using the idea 

of data dimensionality reduction or data compression, this thesis redesigned a feature 

data fusion method. Specifically, it is to compress three groups of periodic data and 

reduce the dimensionality to one dimension. That is, three groups of periodic 

components are projected onto the same time coordinate axis. Then, a set of inputs 

can be comprehensively trained through a model. This can reduce the computational 

complexity and improve the integration of the model in terms of periodicity. 

In the periodic analysis section, this work demonstrates the influence of the three 

different dimensions of the space-time components contained in the model on the 
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prediction results through periodic quantitative analysis. And in the periodic 

dependency component division, the recent dependency, daily periodic dependency 

and weekly periodic dependency of traffic flow data are specifically divided. 

According to existing research, most of the research in this field has adopted multi-

component fusion technology [4, 18, 41, 43]. The idea of multi-component fusion is 

first to train each component separately and then fuse the output results obtained from 

the training to obtain the final prediction result Y, as shown in formula (3-9): 

𝑌 = 𝑊𝐻 ⊙ 𝑌𝐻 + 𝑊𝐷 ⊙ 𝑌𝐷 + 𝑊𝑊 ⊙ 𝑌𝑊    (3-9) 

In the formula: ⊙ means Hadamard product. 𝑌𝐻，𝑌𝐷，𝑌𝑊 correspond to the output of 

adjacent components, daily periodic components and weekly periodic components, 

respectively. 𝑊𝐻 represents the weight matrix of adjacent components, 𝑊𝐷 represents 

the weight matrix of daily periodic components, and 𝑊𝑊 represents the weight matrix 

of weekly components. 

It can be seen from the above formula (3-9) that the traffic flow prediction model 

based on multi-component fusion learns the degree of influence of different 

components on different nodes by learning from historical data. It can maximize the 

role of multiple components at different nodes. However, it can also be seen that the 

model needs to implement three relatively independent prediction models of short-

term, daily-period, and weekly-period components. This invisibly increases the 

volume of the model, which means an increase in the number of overall parameters of 

the model and an increase in computational complexity. As a result, it will also cause 

a decrease in the degree of parallelization of the model during the training process and 

a decrease in the overall computing speed. In addition, the three periodic component 

models only fuse feature data together in the last layer. Such an approach actually 

weakens the mutual influence of the three components during the training process. 
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Figure 3.6 Schematic diagram of feature data dependency 

As shown in Figure 3.6. According to the quantitative analysis of the Pearson 

correlation coefficient, it can be seen intuitively that the influence of the three 

components on the value to be predicted can be divided into two parts: the vertical 

axis and the horizontal axis. Therefore, all periodic dependent components can be 

projected on a new coordinate axis in terms of data mapping, as shown in Figure 3.7. 

Figure 3.7 Feature data fusion 

As a result, the model can merge the three components into one time dimension in the 

early stage of feature data input. So as to avoid the shortcomings of fusion in the later 

stage mentioned above. On this basis, the specific formula of the fusion method we 

proposed is as follows: 
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𝑋 = 𝐶𝑂𝑁𝐶𝐴𝑇(
𝑋ℎ

𝑐𝑜𝑠𝜃
,

𝑋𝑤

𝑠𝑖𝑛𝜃
,

𝑋𝑑

𝑠𝑖𝑛𝜃
)    (3-10) 

Among them, 𝐶𝑂𝑁𝐶𝐴𝑇(∙) means to concatenate all three sets of feature data in the 

same dimension. 𝑋 ∈ ℝ𝑁×𝐶×𝐿. When 𝑁 and 𝐶 remain unchanged, the length 𝐿 of the 

feature data input increases, and its length is the sum of the three time component 

dimensions. Therefore, the model simplifies the calculation process through this 

method, strengthens the connection between components, and makes it more scalable. 

3.4 MST-GCRN and MST-GCTN Models 

The second module of the model framework comprises two parts: MST-GCRN 

(Multiple layers Spatial-temporal aware Graph Convolutional Recurrent Network 

model) and MST-GCTN (Multiple layers Spatial-temporal aware Graph 

Convolutional and Temporal Convolutional Network model). Both neural network 

modules have the ability to extract the temporal and spatial characteristics of traffic 

flow data. Moreover, these two neural network models work independently. 

According to the current research status of traffic flow prediction in the literature 

review part and the discussion in the relevant sections of graph neural network, this 

research divides the modeling into three parts. 

The first part of the two neural network models is GCN modules. The GCN module 

designed in our simulation can be called a spatial graph convolution module. This 

module is used to extract the spatial characteristics of the traffic flow. Using the idea 

of graph convolutional neural network, the spatial characteristics of the road network 

traffic flow at each node are used for message passing. So as to realize the feature 

aggregation and update in the spatial structure. This thesis demonstrates that GCN is 

superior in its ability to aggregate structural feature information, which can be seen 

from the general use of GCN to aggregate spatial structure features in many types of 

research on deep learning-based traffic flow prediction problems. 

In the second part, there are recurrent neural network (GRU) module and temporal 

convolution neural network (TCN) module, respectively. In this part, we designed 
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these two modules to extract the temporal features of traffic flow data. These two 

methods respectively perform convolution/recurrent neural network operations on the 

features of each node of the road network traffic flow in the temporal dimension. 

Therefore, the features of the entire model in the temporal dimension are updated. 

The third part is the prediction part of traffic flow. Through T iterations of the model 

in the temporal and spatial dimension, the characteristics of the flow data are fully 

learned. Therefore, the models can obtain sufficient and reliable high-dimensional 

features information on the temporal and spatial structure of road network traffic. 

Then, input this high-dimensional information into a standard neural network with a 

fully connected layer. Next, the machine learning training and model parameter 

adjustment is carried out through the neural network's forward and backward 

transmission process. Finally, through multi-epoch training, the models can obtain a 

prediction of traffic flow at a certain node and a certain time segment. 

3.4.1 Spatial convolution model for traffic flow prediction 

This work takes the extraction of the spatial structure of the road network within a 

certain period of time as the first step. In general, this thesis comprehensively weighs 

the pros and cons of multiple methods. GCN was chosen as the spatial convolution 

model for traffic flow prediction. Through the superposition of multiple space-time 

modules, the depth of the GCN layer is deepened. This can provide richer and more 

powerful features data for the prediction models. The accuracy and reliability of the 

prediction models are further improved. 

As mentioned in the previous chapter, convolutional neural networks have been 

successfully applied to extract meaningful patterns and features from large-scale, 

high-dimensional data sets. The traffic flow data containing hidden local features are 

well suited for retrieving the correlation between its location and neighbors through 

CNN. However, due to the inability to process data with a non-European structure, 

standard CNN cannot solve complex road network problems. Therefore, GCN based 

on graph structure has become a more feasible alternative method, effectively 
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extracting spatial features from such data structure (topological graph) for machine 

learning. Specifically, graph convolution can effectively extract spatial information on 

sparse graphs, and only a few trainable parameters are needed. Moreover, the 

operation of graph convolution can be seen as applying a strictly localized filter to 

traverse the graph. Therefore, the information between adjacent nodes can be grouped 

and distributed through graph convolution. 

3.4.1.1 Spatial GCN modeling for traffic flow prediction 

In this part, this thesis will prove why GCN can well capture the spatial features of 

traffic flow data. In other words, this work aggregates the spatial features of adjacent 

nodes (𝑘 = 1) and higher-order neighbor nodes (𝑘 = 2, . . . , 𝑛) for the target node 

through the message passing of multi-layer spatial modules. Figure 3.8 shows a 

simplified diagram of the adjacency relationship between nodes in the road network 

structure. 

 
Figure 3.8 Message passing approach of GCN 

As shown in Figure 3.8, in the process of a single message passing, GCN only 

transfers and aggregates the characteristic values of the surrounding red nodes and 

their own characteristic values. Therefore, it is considered to have the problem of 

insufficient scalability. However, through the multiple message transmission process 

of the multi-layer spatial GCN module, the star node can aggregate the influence of 

surrounding nodes and higher-order neighbor nodes. At the same time, it also includes 
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the adjacency relationships that may exist between neighboring nodes. It should be 

noted that GCN uses a full-graph training method, which means that the nodes of the 

full-graph must be updated in each iteration. Therefore, the complexity of GCN is 

𝑂(𝑛3). When the scale of the graph is large, this training method is undoubtedly time-

consuming or even impossible to update. However, according to the data set and node 

scale in the field of traffic flow prediction, the size of 𝑛 is moderate and acceptable. 

Taking the PeMSD data set as an example, there are about 100-300 data nodes after 

processing. Therefore, the complexity of using GCN in this research field is quite low 

compared to the tasks of social networks or knowledge networks. Therefore, such 

characteristic data is sufficient and feasible for us to predict future traffic flow. 

3.4.1.2 Mathematical modeling of spatial GCN module 

We use the graph convolution operation based on the spectrogram theory to process 

the traffic flow data directly and use the data correlation on the traffic network to 

extract the high-order features of the nodes in the spatial dimension.  

First, only consider the spatial graph 𝐺 on a certain time slice, and use this as an entry 

point to understanding the process of modeling spatial features. In the model proposed 

in this thesis, the spectrogram method is used to extend the convolution operation to 

graph structure data. Treat the data as signals on the graph, and then process the graph 

signals directly on the graph to capture meaningful data patterns and features in the 

space. 

In spectrogram convolution, the feature of each node is regarded as a signal on the 

graph, expressed as 𝑥 ∈ ℝ𝑁. 𝐴 represents the adjacency matrix of the graph, and the

corresponding Laplacian matrix of the graph is 𝐿 = 𝐷 − 𝐴. 𝐷 ∈ ℝ𝑁×𝑁 is the diagonal

matrix of the graph, 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 . The standardized format of 𝐿 is 𝐿 = 𝐼𝑁 − 𝐷−
1

2𝐴𝐷
1

2. 

𝐿 ∈ ℝ𝑁×𝑁 , 𝐼𝑁  is the identity matrix. The eigenvalue decomposition of 𝐿  has 𝐿 =

𝑈Ʌ𝑈𝑇, where Ʌ ∈ ℝ𝑁×𝑁 is a diagonal matrix composed of the eigenvalues of 𝐿. 𝑈 is

the Fourier basis, the eigenvector matrix of 𝐿 . Use ∗𝒢  to denote the convolution 
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operation on the graph, and then use the convolution kernel 𝛩 to convolve the signal 

on the graph, which can be expressed as shown in formula (3-11). Its meaning is to 

first map the image signal 𝑥 to the spectral domain through the Fourier transform of 

the image. Then use the convolution kernel 𝛩(Ʌ) to convolve the image signal 𝑥 in 

the spectral domain and then perform the inverse Fourier transform. Finally, the result 

of graph convolution is obtained. Since formula (3-11) exists in the Fourier basis 

product operation of the graph, the computational complexity of formula (3-11) is 

𝛰(𝑛2) [99]. 𝑛 is the number of nodes. To reduce the computational cost of the graph 

convolution operation, the Chebyshev polynomial or the first-order approximation can 

be used to approximate the equation (3-11). 

𝛩 ∗𝒢 𝑥 = 𝛩(𝐿)𝑥 = 𝛩(𝑈Ʌ𝑈𝑇)𝑥 = 𝑈𝛩(Ʌ)𝑈𝑇𝑥    (3-11) 

(1) Chebyshev graph convolution 

To allow each filtering operation to be performed in the local space of the graph node 

and to reduce the filter parameters as much as possible, a polynomial filter can be 

used, and the convolution operation is shown in formula (3-12): 

𝛩(Ʌ) = ∑ 𝜃𝑘Ʌ𝑘𝐾−1
𝑘=0     (3-12) 

Where 𝜃 ∈ ℝ𝑘  is a vector of polynomial coefficients.  𝐾  is the size of the graph 

convolution kernel, which represents the maximum radius of the center node of the 

convolution operation. It can be approximated by Chebyshev polynomial to 𝛩(Ʌ), as 

shown in formulas (3-13) and (3-14): 

𝛩(Ʌ) ≈ ∑ 𝜃𝑘𝑇𝑘(Ʌ̃)𝐾−1
𝑘=0     (3-13) 

Ʌ̃ =
2Ʌ

𝜆𝑚𝑎𝑥
− 𝐼𝑛    (3-14) 

Where 𝜆𝑚𝑎𝑥  is the maximum eigenvalue of the Laplacian matrix 𝐿. Therefore, the 

graph convolution in formula (3-11) can be expressed by formulas (3-15) and (3-16): 

𝛩 ∗𝒢 𝑥 = 𝛩(𝐿)𝑥 ≈ ∑ 𝜃𝑘𝑇𝑘(𝐿̃)𝑥𝐾−1
𝑘=0     (3-15) 
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𝐿̃ =
2𝐿

𝜆𝑚𝑎𝑥
− 𝐼𝑛    (3-16)

The recursive definition of Chebyshev polynomial is 𝑇𝑘(𝑥) = 2𝑥𝑇𝑘−1(𝑥) − 𝑇𝑘−2(𝑥),

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥. An approximate solution based on Chebyshev polynomial can

reduce the computational complexity of equation (3-11) to 𝛰(𝐾𝜀), where 𝜀 represents 

the number of edges in the graph. 

The above-defined Chebyshev graph convolution operation defined in the single-

dimensional graph signal data 𝑥 ∈ ℝ𝑁 can be extended to multi-dimensional data. For

two-dimensional data 𝑥 ∈ ℝ𝑁×𝐶𝑖, 𝐶𝑖 represents the feature dimension of the node. Let

𝑦 ∈ ℝ𝑁×𝐶𝑜 denote the output of 𝑋 after graph convolution. 𝐶𝑜 represents the feature

dimension of each node after graph convolution. Then the Chebyshev graph 

convolution operation on 𝑋 is shown in formula (3-17), where 𝛩 ∈ ℝ𝐾×𝐶𝑖×𝐶𝑜  is the

convolution kernel parameter to be learned. 

𝑌 = 𝛩 ∗𝒢 𝑋 = 𝛩(𝐿)𝑋 = ∑ 𝑇𝑘(𝐿̃)𝑋𝑘𝛩𝑘
𝐾−1
𝑘=0     (3-17) 

(2) First-order approximate graph convolution

The neural network model based on graph convolution can be realized by stacking 

multiple graph convolution layers as shown in equation (3-15), and a nonlinear layer 

needs to be connected after each layer of graph convolution. The 𝐾 in formula (3-15) 

is set to 2, which can indicate the convolution of the graph with the first-order 

neighbors in the convolution range. A larger local area graph convolutional neural 

network can be realized by stacking multiple layers of first-order neighbor graph 

convolution plus a nonlinear layer [91]. When 𝐾 takes 2, formula (3-15) is as shown 

in formula (2-18). Since the Chebyshev graph convolution network uses a normalized 

Laplacian matrix, it can be assumed that the normalized Laplacian matrix has 𝜆𝑚𝑎𝑥 ≈

2, then the formula (3-18) can be written as the formula (3-19). 

𝛩 ∗𝒢 𝑥 ≈ 𝜃0𝑥 + 𝜃1(
2𝐿

𝜆𝑚𝑎𝑥
− 𝐼𝑛)𝑥    (3-18)

𝛩 ∗𝒢 𝑥 = 𝜃0𝑥 − 𝜃1(𝐷−
1

2𝐴𝐷
1

2)𝑥    (3-19)
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Among them, 𝜃0 and 𝜃1 are filter parameters, which are shared across the entire graph. 

In order to limit the number of parameters of the model and avoid overfitting. It can 

be assumed that 𝜃 = 𝜃0 = −𝜃1, so the first-order approximate graph convolution can 

be expressed by the formula (3-20):     

𝛩 ∗𝒢 𝑥 = 𝜃 (𝐼𝑛 + 𝐷−
1

2𝐴𝐷
1

2) 𝑥 = 𝜃(𝐷̃−
1

2𝐴̃𝐷̃
1

2)𝑥    (3-20)

Where 𝐴̃ = 𝐴 + 𝐼𝑛,𝐷̃𝑖𝑖 = ∑ 𝐴̃𝑖𝑗𝑗 .

The first-order approximate graph convolution operation defined above on the one-

dimensional graph signal data 𝑥 ∈ ℝ𝑁 can be extended to the multi-dimensional graph

signal data. For the two-dimensional graph signal data 𝑥 ∈ ℝ𝑁×𝐶𝑖, 𝐶𝑖 represents the

characteristic dimension of the node. Let 𝑍 ∈ ℝ𝑁×𝐶𝑜 represent the output of 𝑋 after

the graph convolution operation, and the first-order approximate graph convolution 

operation of 𝑋  is shown in formula (3-21). Where 𝛩 ∈ ℝ𝐶𝑖×𝐶𝑜  represents the

parameter matrix of the convolution kernel. 

𝑍 = 𝐷̃−
1

2𝐴̃𝐷̃
1

2𝑋𝛩    (3-21) 

Figure 3.9 can be used to briefly show the feature extraction process of the 0-1 order 

neighbor information of the spatial node in the graph convolution process. Figure 

3.9(a) is a simple topology diagram of the spatial road network structure. Figure 3.9(b) 

is the adjacency matrix and degree matrix calculated from the road network in Figure 

3.9(a). The matrix representation of 𝐷̃−
1

2𝐴̃𝐷̃
1

2  and input data 𝑋  is shown in Figure 

3.9(c). For a more intuitive representation, assume that the current input data 𝑋 has 

only one-dimensional features and the length of the time dimension is 1. From this, 

the result of a graph convolution operation performed by the convolution kernel on 

the data 𝑋 is calculated, as shown in Figure 3.9(d). Among them, the value of space 

node 1 at time 𝑡 is updated by itself and the information of the three nodes 2, 4, and 5. 

It changed from the original 𝑥𝑡
1 to 𝛩1(0.25𝑥𝑡

1 + 0.29𝑥𝑡
2 + 0.25𝑥𝑡

4 + 0.29𝑥𝑡
5). That is,

the input data is updated by the information of its 0-1 order neighbors. In the same 
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way, a graph convolution operation is performed on the entire input data 𝑋 to obtain 

𝛩 ∗𝒢 𝑋, and the value of each node is updated by the information of the node's 0- 𝐾 −

1 order neighbors. When expanding to multi-dimensional data, the operation remains 

the same. 

 

3.9(a) 

 

3.9(b) 

 

3.9(c) 

 

3.9(d) 

Figure 3.9 GCN matrix representation 
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Figure 3.10 Spatially dependent feature aggregation at time 𝑡 

As shown in Figure 3.10, ℎ𝑙 represents the feature input of the 𝑙-th neural network 

module at time 𝑡. ℎ𝑙1 represents the feature input of node 1 at time 𝑡. Through the 

message sending process, each node on the graph structure obtains the feature value 

set of the neighbor node (for example, the neighbor node of node 1 is ℎ𝑙2, ℎ𝑙𝑛) and the 

current state of its own node (ℎ𝑙1). Through the aggregation operation, the node is 

updated to the high-dimensional node feature (ℎ𝑙1
′ ) in the spatial dimension and used

as the input for the next round of spatiotemporal feature extraction. Through the 

above method, the value of a certain sensor node 𝐴 in the road network space at time 𝑡 

is updated by the information of itself and its 𝑛-th order neighbors. Extending to the 

whole world, this method also performs graph convolution operations on all nodes of 

the input traffic flow data in batches. Thus, the feature data information update based 

on the entire graph structure is obtained. 

3.4.2 GRU based temporal feature extraction module 

Through the GCN module, spatial feature dependence is effectively extracted. On this 

basis, our spatial-temporal convolution module uses GRU or TCN to extract the 

temporal feature dependence of traffic flow data. In this part, this work uses a simple 

and powerful variant of the recurrent neural network gated recursive unit GRU to 

capture the temporal dependence of the road network traffic flow. As mentioned 

earlier, the RNN model can effectively capture the temporal dependence of the road 

network traffic flow in the traffic flow prediction. The special structure inside the 
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RNN can store and memorize the context information of the sequence and use the 

stored information in future operations. This shows that RNN has a strong time series 

learning ability.  

In the machine learning research of time series data, the Recurrent Neural Network is 

most commonly used to model the time dependence relationship, so as to extract the 

temporal dependence relationship from the series data. Some articles [121-123] 

believe that for the time series of sequence data, its distinguishing feature is that the 

context of the sequence is highly relevant. The special structure inside the RNN can 

store and memorize the contextual information of the sequence and use the stored 

information in future operations. For RNN, the output of its hidden layer not only 

enters the output end but also enters the next hidden layer. Thereby it can have an 

impact on the weight on the next time step. The internal memory unit of RNN can be 

used to process any sequence of input data，so that RNN has the ability of time 

sequence learning. Moreover, to solve the problem of gradient explosion and 

disappearance when the input sequence is relatively long, these problems can be 

solved by using an improved recurrent neural network LSTM or GRU. 

3.4.2.1 Mathematical modeling of GRU module 

This thesis uses GRU for temporal dependence modeling. Use 𝑥𝑡  to represent the 

input signal of the current node. Use ℎ𝑡−1 to represent the hidden state passed down 

from the previous node. Then the GRU uses 𝑥𝑡 and ℎ𝑡−1 to obtain two gate control 

states, and the formulas for the reset gate and update gate are as follows: 

𝑟 = 𝜎(𝑊𝑟) ∙ [ℎ𝑡−1, 𝑥𝑡]    (3-22) 

𝑧 = 𝜎(𝑊𝑧) ∙ [ℎ𝑡−1, 𝑥𝑡]    (3-23) 

Among them, 𝑊 is the weight matrix that needs to be trained in the model. After 

getting the gating signal, first, use the reset gate to get the reset data ℎ(𝑡−1)′
=  𝑟𝑡 ⊙

 ℎ𝑡−1 , and then ℎ(𝑡−1)′
 and 𝑥𝑡  are spliced together. Then use a 𝑡𝑎𝑛ℎ  activation 

function to shrink the data to the range of (−1,1), and get ℎ′: 
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ℎ′ = tanh (𝑊ℎ′
[ℎ𝑡−1 ⊙ 𝑟, 𝑥𝑡])    (3-24) 

⊙ stands for multiplication of matrix elements. ℎ′ mainly contains the currently input 

𝑥𝑡 data. A targeted pair ℎ′ is added to the current hidden state, which is equivalent to 

"memorizing the state at the current moment". The final update memory stage uses 

both forgetting and memory steps, using the previously obtained update gate 𝑧, and 

the update expression is as follows: 

ℎ𝑡 = 𝑧 ⊙ ℎ𝑡−1 + (1 − 𝑧) ⊙ ℎ′    (3-25) 

𝑟 and 𝑧 denote the reset gate and update gate of the GRU, respectively. ℎ′ represents 

the output of the network at time 𝑡. The input of each layer of GRU considers the 

output of the previous layer of GRU, thereby capturing the timing relationship of the 

road network traffic flow. 

3.4.3 TCN based temporal feature extraction module 

In this work, in the temporal-dimensional modeling process, not only from the 

perspective of RNN but also from the perspective of CNN to perform temporal-

dependent modeling. From the comparison between RNN and CNN, we can more 

clearly confirm their respective advantages and disadvantages, and which model is 

more suitable for traffic flow prediction tasks. By discussing the advantages and 

disadvantages of the GCN+CNN model and the GCN+RNN model in the field of 

traffic flow prediction, a more accurate method of predicting traffic flow can be 

reflected. To model the temporal dimension from the perspective of CNN, we mainly 

have the following considerations. 

First of all, this can strengthen the degree of integration of the spatial-temporal neural 

network layer in the spatial-temporal module. Secondly, for a relatively complex 

network with many graph nodes, the relatively complex single-layer neural network 

module used by RNN will cause problems such as large time overhead and slow 

response to dynamic changes of data. Compared with GRU, CNN has the advantage 

of fewer non-linear operations. It can effectively reduce the phenomenon of gradient 
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dispersion, making model convergence and training easier. In addition, in GRU, the 

model's output at the next moment depends on the state of the hidden layer at the 

previous moment. Therefore, the model cannot be parallelized. However, CNN does 

not need this kind of dependence and can be easily parallelized, thereby achieving an 

increase in computing speed. 

3.4.3.1 Temporal CNN modeling for traffic flow prediction 

According to the discussion of RNN and GNN in the previous chapter, and compared 

with the prediction model based on the recurrent structure, CNN has better feature 

value extraction capabilities and can achieve better prediction results. Therefore, in 

recent years, many scholars have used the CNN architecture in time series processing 

tasks, and the same is true in the field of traffic flow prediction. Such as ST-ResNet 

[37], MSTGCN [18] and so on. The CNN architecture shows strong learning ability in 

the field of image processing and has a better prediction accuracy than the recurrent 

structure on timing tasks in some scenarios. However, it is not supported by a 

complete basic theory like the recurrent structure. Therefore, the traditional CNN 

architecture does not have good interpretability in time series data processing. 

Figure 3.11 shows the difference between the recurrent structure and the convolution 

structure in processing time series data. The recurrent structure adds connection 

operations in chronological order through neurons in the hidden layer. It transfers 

historical feature information to the next neuron in the form of a hidden layer state so 

that the network maintains the ability of historical memory. The convolutional 

structure does not join the connection operation in the hidden layer, so it can only 

extract features in a local range and treat any neuron indiscriminately. Therefore, 

traditional convolution will converge the characteristic information of the "future" 

time step to the current time step, so it is not interpretable. 



 

83 

 

 

Figure 3.11 RNN structure and CNN structure 

3.4.3.2 TCN based temporal dependence modeling 

The traffic flow has a certain trend and correlation in the adjacent time interval. 

Therefore, after the space-dimensional convolution module, this work uses the 

temporal convolutional network (TCN) to perform convolution operations on the 

features of different time intervals of the station along the direction of the temporal 

dimension. This method can capture the temporal feature of the site. It can be seen 

from section 2.3.3 that TCN not only has the learning ability of CNN architecture but 

also has better interpretability than traditional convolution. From the perspective of 

the time dimension, causal convolution can solve the problem of information leakage 

very well. 

For sequence tasks such as traffic flow prediction, it is necessary to model the traffic 

flow in the previous period of time instead of relying solely on the traffic flow at the 

previous moment. According to section 2.2 Convolutional Neural Networks, 

convolutional neural networks can form "memory" through convolution calculations. 

However, the biggest problem of using traditional convolutional neural networks in 

sequence prediction tasks is how to obtain the long-term memory of the sequence and 

how to deal with the problem of information leakage. Information leakage refers to 

sequence processing problems such as traffic flow forecasting. It needs to ensure that 

the model cannot reverse the sequence order. When the model predicts time 𝑡, future 

time data such as 𝑡 +  1 , 𝑡 +  2  cannot be used. Therefore, this thesis uses the 

temporal convolutional network (TCN) model [124] to solve these problems. It is a 
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CNN architecture that uses causal convolution and dilated convolution instead of 

traditional convolution. The calculation formula of causal convolution is as follows: 

𝐹(𝑠) = (𝑥 ∗ 𝑓)(𝑠) = ∑ 𝑓(𝑖)𝑥𝑠−𝑖
𝐾−1
𝑖=0      （3-26） 

Among them, 𝐾 is the size of the causal convolution kernel. 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑖} is the 

convolution kernel. 𝑥  is the feature vector of 𝑠(𝑡, 𝑛)  ( 𝑛  node at time 𝑡 ). 𝐹(𝑠) 

represents the causal convolution at 𝑠 . However, in practical applications, the 

convolution kernel of the causal convolution is generally set to a fixed value. It causes 

the limited range of the receptive field of causal convolution, and the limited memory 

capacity makes it unable to preserve long-term historical memory. Therefore, TCN 

uses dilated convolutions to expand the range of receptive fields. Dilated convolution 

extends the memory capacity of the network by expanding the convolution window. 

The calculation formula is as follows: 

𝐹(𝑠) = (𝑥 ∗𝑑 𝑓)(𝑠) = ∑ 𝑓(𝑖)𝑥𝑠−𝑑×𝑖
𝐾−1
𝑖=0     (3-27) 

Among them, 𝑑 is the dilation factor, that is, the size of the evaluation convolution 

window. When 𝑑 is 1, the dilated convolution degenerates into ordinary convolution. 

By controlling the size of 𝑑, the receptive field is widened, and the memory capacity 

of the model is prolonged under the premise of the same amount of calculation. 
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Figure 3.12 The difference between CNN (up) and TCN (down) 

Figure 3.12 shows the structure and difference between traditional convolution and 

TCN. It can be seen that, compared to traditional convolution, TCN will not merge the 

feature information of the "future" time step into the current time step. That is, for the 

value at time t of the previous layer, it only depends on the value at time t and before 

the next layer. The difference from traditional CNN is that TCN cannot "see" future 

data. It has a one-way structure, not a two-way structure. That is to say, only the first 

cause can have the latter result, which is a strict time constraint model. Therefore, the 

TCN model has better interpretability and long-term memory ability than the CNN 

model. 

The advantages of TCN are: 

1. Parallelism. TCN can process feature data in parallel, without the need for 

sequential processing like RNN. 

2. Flexible receptive field. The receptive field of TCN is determined by multiple 

factors (such as convolution kernel and dilation factor), and it can be flexibly 

customized according to different requirements and characteristics. 

3. Stable gradient. RNN often has the problem of gradient disappearance and gradient 

explosion, which is mainly caused by the sharing of parameters in different time 

periods. Like traditional CNN, TCN has almost no gradient disappearance and 
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explosion problems. 

4. Lower memory requirements. The convolution kernel of TCN is shared in one layer, 

and the memory usage is lower, which is quite different from RNN. 

 

Figure 3.13 Temporal dependent feature aggregation 

As shown in Figure 3.13, the GCN+TCN model obtains higher-dimensional feature 

values through the message passing process of neighbor nodes. The model updates the 

node in the time dimension to higher-dimensional node features through the 

aggregation operation and uses it as the input for the next spatial and temporal feature 

extraction round. 

In summary, the input of the temporal-dimensional GRU/TCN module is the output of 

the spatial feature learning unit. Through the superposition of the spatial-temporal 

modules, the traffic flow features of the nodes already contain rich spatial feature 

information. Therefore, using the GRU/TCN module to superimpose the spatial 

module can effectively capture the temporal and spatial features of the traffic flow of 
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the stations. 

3.4.4 Readout phase 

For this thesis, the task of the Readout phase is to input the high-level traffic flow 

spatiotemporal feature information obtained through the learning of multiple 

spatiotemporal graph neural networks into the standard supervised machine learning 

neural network training task. Find the hidden relationship between the predicted value 

and the label to achieve the purpose of learning and prediction by adjusting various 

parameters in the neural network. This process is also the process of building a 

standard neural network to solve linear regression problems. In this process, two main 

tasks need to be solved. One is to determine the depth of the neural network, and the 

other is how to solve the problem of neural network overfitting. 

For the first question, we increase the depth and feature richness of neural networks 

by stacking spatial-temporal modules. Therefore, the model has obtained sufficiently 

high-order and powerful features before the Readout phase. The model does not need 

too many hidden layers to learn from the data in the Readout phase. Therefore, only a 

neural network containing two hidden layers is required to complete the machine 

learning task at this stage. This setting can be verified in the next simulation stage. In 

the field of machine learning, the formula part of the multivariate linear regression 

model has been very mature, and we will not elaborate too much here. 

For the second problem, over-fitting is a very critical problem that affects neural 

network learning. The way to solve the over-fitting problem is to adopt a 

regularization method and add a dropout layer in the process of machine learning. The 

learning effect of the combined use of these two methods is ideal. Therefore, in this 

work, first, use the 𝐿1 or 𝐿2 regularization method to assist in solving the problem of 

overfitting. For the neural network structure, by inserting a two-layer dropout layer in 

the neural network to prevent over-fitting. 
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3.4.5 Proposed MST-GCRN and MST-GCTN models 

 A fully functional traffic flow prediction model was built through the feature analysis 

and periodic data fusion module, spatial-temporal convolution module, and readout 

module. The overall model is shown in Figure 3.14. 

 

Figure 3.14 Spatial-temporal graph neural networks model 

In the feature analysis and periodic data fusion module, the periodic spatial-temporal 

data is concatenated to the same temporal dimension according to the quantitative 

analysis method of the data. The processed traffic flow data first passes through the 

GCN-based spatial convolution module to extract spatial dependent features. After the 

spatial module, high-order features are input to the temporal dependence module. 

Then, the temporal dependence is extracted separately through the GRU/TCN module. 
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By adding a simple but effective residual network between spatial-temporal modules, 

the problem of network degradation caused by the increase of network depth is solved. 

Finally, the updated traffic flow feature is used as the input of the next spatial-

temporal module. Feature extraction and update through several times of spatial-

temporal modules, high-level feature data is input into a neural network with a fully 

connected layer to read out the prediction results and carry out neural network 

training tasks. 

3.5 Attention Mechanism based MST-AGCRN and 

MST-AGCTN Models 

In this section, we propose the MST-GCRN (MST-AGCRN) and MST-GCTN (MST-

AGCTN) models based on the self-attention mechanism to improve the scalability, 

flexibility and accuracy of the prediction. Specifically, based on the self-attention 

mechanism, this thesis designs the attention model as a two-dimensional attention 

mechanism module about time and space (spatial attention and temporal attention). 

This module can learn the mutual influence weights between nodes for different 

spatiotemporal scenarios and adjust the input data. It can be seen from the formula 

that when the GCN-based model captures the spatial-temporal relationship between 

nodes, the weight of the model's edges is unchanged. Through the self-attention 

mechanism, our improved new model can dynamically adjust the weights imposed by 

neighbor nodes on the target node. Through this mechanism, different neighbor nodes 

have different influences on the target node. It makes the node's attention distribution 

more reasonable and can effectively capture the dynamic spatial-temporal correlation 

on the transportation network. Furthermore, dynamically capture the high-

dimensional feature data of each node in different time and space dimensions, which 

can better reflect the actual characteristics of the traffic road network. 

3.5.1 Spatial-temporal attention mechanism module 

The spatial-temporal-based attention mechanism proposed in this work is to introduce 
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the attention mechanism based on the spatial-temporal graph neural network. The 

module contains temporal attention modules and spatial attention modules. The two 

modules analyze the spatial attention and temporal attention of the traffic flow, 

respectively, and set the weight of the edge as a learnable function between nodes to 

capture the dynamic temporal and spatial characteristics. By paying attention to its 

neighbors and following a self-attention strategy, the spatial and temporal features of 

the road network can be better extracted. So as to achieve a better effect than the 

spatiotemporal graph neural network. On this basis, the module based on the 

spatiotemporal attention mechanism is combined with the spatiotemporal 

convolutional network proposed in the previous chapter. A graph spatiotemporal 

convolutional network based on the attention mechanism is formed. 

From the description in the previous section, it can be seen that although the GCN 

model based on spatial features and the GRU/TCN model based on time features can 

effectively extract the temporal and spatial dependence of traffic flow. However, the 

model does not take into account the dynamic correlation characteristics of space-time 

dimensions. 

In the model in the previous section, the weight of the edge between nodes is only 

related to the degree of the node. Although the model can reflect the road network 

structure, because the degree matrix of the fixed network structure is fixed, the weight 

of the edge is fixed and unlearnable. However, in the actual situation, the weight of 

the "edge" should not be fixed and unlearnable. In the spatial dimension, the traffic 

conditions of different locations will influence each other, and this influence is highly 

dynamic. In the temporal dimension, there is a correlation between the traffic 

conditions in the same place at different time periods. This correlation also changes 

with the change of space and time. Therefore, considering the temporal and spatial 

dynamic correlation of traffic flow in the model is beneficial to improve the model's 

prediction accuracy. 
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3.5.2 Spatial attention mechanism module 

In the spatial dimension, the traffic conditions of different nodes will influence each 

other, and this influence is highly dynamic. This work enables the spatial attention 

module to adaptively capture the correlation between sensors in the road network 

through the self-attention mechanism. The key idea is to dynamically assign different 

weights to different nodes at different time steps. Through SoftMax, all attention 

coefficients of the node at a certain time are weighted and summed to make the sum 

equal to 1. As shown in Figure 3.15, when calculating the spatial attention coefficient 

of the 𝑙-th spatiotemporal attention module of node 𝐶 at 𝑡𝑗, the attention coefficients 

of node 𝐶 and all nodes in the road network must be calculated separately, and the 

road network structure must also be considered. To this end, the hidden state and the 

spatial-temporal embedded module are connected together. In this way, the dynamic 

correlation between nodes in the spatial dimension can be adaptively captured so that 

the nodes in the road network can exert a reasonable influence. 

Figure 3.15 Calculation of spatial attention coefficient 

At this stage, the application of graph attention mechanism in the research of the 

traffic flow prediction model based on the spatial-temporal dimension is still in the 

research and exploration stage. Among them, Guo et al.'s [18] research in this area is 

more representative. Their model also provided great inspiration for this research. In 

its ASTGCN model, the spatial attention coefficient of node 𝑣𝑗  to node 𝑣𝑖  can be 
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expressed as 𝛼𝑖,𝑗. According to the attention mechanism of this model, the calculation 

method of the spatial attention matrix is shown in formula (3-28) and formula (3-29): 

𝑆 = 𝑉𝑠 ∙ 𝜎((𝑥(𝑟−1)𝑊1 )𝑊2(𝑊3𝑥(𝑟−1))
𝑇

+ 𝑏𝑠)    (3-28) 

𝑆′ = 𝛼𝑖,𝑗 =
exp(𝑆𝑖,𝑗)

∑ exp(𝑆𝑖,𝑗) 𝑁
𝑗=1

    (3-29) 

Among them, 𝑥ℎ
(𝑟−1)

∈ ℝ𝑁×𝐶×𝑇, is the input of the 𝑟-th layer of the spatial-temporal 

module. 𝑉𝑠 ∈ ℝ𝑁×𝑁 , 𝑏𝑠 ∈ ℝ𝑁×𝑁 , where 𝑁  is the number of nodes. 𝑊1 ∈ ℝ𝑇 , 𝑊2 ∈

ℝ𝐶×𝑇, 𝑊3 ∈ ℝ𝐶, 𝑇 is the length of the time dimension of the input data of the 𝑟-th 

layer, and 𝐶  is the number of channels. In addition, 𝑉𝑠 , 𝑏𝑠 , 𝑊1 , 𝑊2 , 𝑊3  are all 

parameters that can be learned, and 𝜎 is the activation function. 𝑆  is the attention 

matrix, and 𝑆′ is the attention matrix standardized by the SoftMax function. Through 

the above matrix calculation, the normalized spatial attention matrix of the 𝑟-th layer 

finally output can be obtained as 𝑆′ ∈ ℝ𝑁×𝑁 . However, it can be seen from the 

formula (3-28) that when matrix calculation is performed, the information of all time 

dimensions on all nodes has been accumulated. From the perspective of the spatial 

dimension, the calculated attention coefficient is the sum of the attention coefficients 

between nodes in the time length 𝑇. In other words, the ideal spatial attention matrix 

of 𝑆𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ∈ ℝ𝑁×𝑁×𝑇  is compressed into 𝑆𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ∈ ℝ𝑁×𝑁 . Therefore, the 

temporal attention coefficients of all nodes at time 𝑡𝑗 to time 𝑡𝑖 are the same. Such a 

method cannot fully consider the degree of influence on all nodes in different time 

dimensions 𝑡. It will make it difficult for the spatiotemporal attention mechanism to 

meet the requirements of this research (as shown in Figure 3.15) for using the 

attention mechanism to capture more detailed spatiotemporal dynamics in traffic flow 

prediction. 

Therefore, this thesis proves that a more fine-grained method is to calculate the 

attention coefficient matrix between different nodes at different time steps 𝑡 . By 

calculating the degree of mutual influence between different nodes simultaneously, 

the dynamic weight of the mutual influence of feature data in the spatial dimension is 



93 

captured. Therefore, adaptive learning using the self-attention mechanism has become 

the choice of this work. The self-attention mechanism is a variant of the attention 

mechanism, which reduces the dependence on external information and is better at 

capturing the internal correlation of data or features. 

First, the query matrix 𝑄, the key matrix 𝐾 and the value matrix 𝑉 of the spatial data 

input matrix of the traffic flow at time t are sequentially calculated. It can be seen 

intuitively from Figure 3.17 that in the process of matrix operation, if a one-

dimensional convolutional network with a convolution kernel set to 1 × 1 is used 

instead of matrix multiplication as the coding function. In this way, the complexity of 

the calculation can be simplified, and the consistency of the input feature and the 

output feature in the dimension can be maintained. The matrix calculation formula is 

defined as follows: 

𝐾 = 𝑘(𝑥) = 𝑊𝑘𝑥 ∈ ℝ𝐶×𝑁    (3-30)

𝑄 = 𝑞(𝑥) = 𝑊𝑞𝑥 ∈ ℝ𝐶×𝑁    (3-31)

𝑉 = 𝑣(𝑥) = 𝑊𝑣𝑥 ∈ ℝ𝐶×𝑁    (3-32)

Among them, 𝑥 ∈ ℝ𝐶×𝑁 is the spatial feature vector, 𝑁 is the number of spatial nodes,

and 𝐶 is the dimension of the data. 

Secondly, normalize the weight scores obtained in the above steps, that is, use 

SoftMax to calculate. Let the sum of all weight factors be 1. The calculation formula 

is: 

𝑆𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐾, 𝑄) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝐾𝑇) ∈ ℝ𝑁×𝑁    (3-33)

Thus, the probability representation of the degree of influence of all nodes at time t is 

obtained. 𝑆 ∈ ℝ𝑁×𝑁 . Let 𝑆𝑖,𝑗  represent the attention matrix. In the 𝑗  column, 𝑆𝑖,𝑗

represents the weight of the 𝑖-th node to the 𝑗-node. The sum of the probabilities of 

accumulating the weights ∑ 𝑆𝑖,𝑗
𝑁
𝑖=1  is 1. By multiplying each node with the probability

weight, the characteristic information of the 𝑗  node can capture the dynamic 
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correlation between other nodes and the 𝑗-th node in the transportation network. And, 

it can be extended to the time length 𝑇, 𝑆 ∈ ℝ𝑁×𝑁×𝑇. So as to meet the calculation 

requirements for the spatial attention coefficient. 

At the same time, the value of 𝑉 is dot multiplied, and the value is weighted and 

summed according to the normalized weight coefficient. The calculation formula is: 

𝑥̂𝑠 = 𝑉𝑆𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐾, 𝑄) ∈ ℝ𝐶×𝑁    (3-34) 

Therefore, based on the input 𝑥 at time 𝑡, the output 𝑥̂𝑠  with dynamic weight after 

being weighted by the spatial self-attention mechanism is obtained. Taking 𝑥̂𝑠 as the 

spatial feature input of the subsequent spatial-temporal module can enable the model 

to better extract the spatial features of the road network. So as to achieve better results 

than simply using graph convolutional networks. Extending to the entire spatial-

temporal input dimension, the features matrix obtained by the spatial self-attention 

mechanism is 𝑋̂𝑠 ∈ ℝ𝑁×𝐶×𝑇. 

3.5.3 Temporal attention mechanism module 

The attention mechanism of the temporal dimension is similar to that of the spatial 

dimension. Traffic conditions at different times affect each other, and this effect is 

also highly dynamic. In other words, the traffic condition of a location is related to its 

previous traffic condition, and the correlation changes nonlinearly with the time step. 

Therefore, this work uses a concept similar to the spatial attention mechanism module 

to construct the temporal attention mechanism module. 
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Figure 3.16 Calculation of temporal attention coefficient 

As shown in Figure 3.16, at the time step 𝑡𝑗, the traffic condition of node 𝐶 will be 

affected by the unexpected situation that occurred before the last or several time steps. 

Therefore, the non-linear correlation between traffic flow features and different time 

steps should be considered when calculating the attention coefficient. At the same 

time, the impact of the road network structure on the traffic flow must also be 

considered. On this basis, the temporal self-attention mechanism is used to adaptively 

model the nonlinear correlation between different time steps. By calculating the 

degree of mutual influence of the same node at different times, the dynamic weight of 

the mutual influence of the features data in the temporal dimension is captured. 

Same as the previous section. First, the query matrix 𝑄, the key matrix 𝐾 and the 

value matrix 𝑉  of the time data input matrix of the traffic flow at the 𝑛 node are 

sequentially calculated. The same as the spatial self-attention mechanism, the 

convolution kernel is set to a 1 × 1 one-dimensional convolution network during the 

matrix operation. Use it instead of matrix multiplication as the encoding function. It is 

used to simplify calculation complexity and maintain the consistency of input features 

and output features in dimensionality. The matrix calculation formula is defined as 

follows: 

𝐾 = 𝑘(𝑥) = 𝑊𝑘𝑥 ∈ ℝ𝐶×𝑇    (3-35) 
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𝑄 = 𝑞(𝑥) = 𝑊𝑞𝑥 ∈ ℝ𝐶×𝑇    (3-36) 

𝑉 = 𝑣(𝑥) = 𝑊𝑣𝑥 ∈ ℝ𝐶×𝑇    (3-37) 

Among them, 𝑥 ∈ ℝ𝐶×𝑇 is the time feature vector, 𝑇 is the length of the time period, 

and 𝐶 is the data dimension. 

Secondly, normalize the weight scores obtained in the above steps. That is, use 

SoftMax to calculate so that the sum of all weight factors is 1. The calculation 

formula is: 

𝐸𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐾, 𝑄) = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄𝐾𝑇) ∈ ℝ𝑇×𝑇    (3-38) 

The probability expression of the degree of influence on a certain node at different 

times is obtained from this. 𝑆 ∈ ℝ𝑁×𝑁. Let 𝐸𝑖,𝑗 represent the attention matrix. In the 𝑗-

th column, 𝐸𝑖,𝑗 represents the weight of time 𝑖 to time 𝑗. The sum of the probabilities 

of accumulating the weights ∑ 𝐸𝑖,𝑗
𝑁
𝑖=1  is 1. By multiplying each time with the 

probability weight, the feature information at time 𝑗  can capture the dynamic 

correlation between other times and the 𝑗-th time. And, it can be extended to 𝑛 nodes, 

𝐸 ∈ ℝ𝑇×𝑇×𝑁 . In this way, the calculation requirements for the time attention 

coefficient can be met. 

At the same time, by dot multiplying the value of 𝑉 , the value is weighted and 

summed according to the normalized weight coefficient. The calculation formula is: 

𝑥̂𝑡 = 𝐸𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐾, 𝑄)𝑉 ∈ ℝ𝑇×𝐶    (3-39) 

Thus, based on the input 𝑥 of 𝑛 nodes, the output 𝑥̂𝑡 with dynamic weight after the 

weighting of the temporal self-attention mechanism is obtained. Taking 𝑥̂𝑡  as the 

temporal feature input of the subsequent spatiotemporal module can make the model 

better extract the temporal feature of the road network. So as to achieve better results 

than simply using graph convolutional networks. Extending to the entire spatial-

temporal input dimension, the characteristic matrix obtained by the temporal self-

attention mechanism is 𝑋̂𝑇 ∈ ℝ𝑁×𝐶×𝑇. 
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3.5.4 Spatial-temporal self-attention mechanism module 

Temporal self-attention and spatial self-attention are designed according to the above 

two sections. This thesis uses the self-attention mechanism to separate spatial-

temporal attention effectively. This design can effectively calculate the weights of the 

dynamic influence of attention on different locations and moments so that the model 

can learn more effectively from the input data. 

 

Figure 3.17 Spatial-temporal attention mechanism 

As shown in Figure 3.17, the self-attention mechanism can effectively separate 

spatial-temporal feature vectors. Then calculate the temporal attention matrix and the 

spatial attention matrix using their relatively independent matrix calculation methods. 

Thirdly, the feature information is weighted and converged to all spatial-temporal 

positions by dot multiplying the 𝑉 value, that is, the dot multiplying value matrix. 

This can adaptively capture the temporal and spatial dynamic correlation of traffic 

flow data. Finally, the separated two sets of eigenvectors are merged into eigenvectors 

containing spatiotemporal attention through Hadamard matrix multiplication: 𝑋̂ =
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𝑋̂𝑆 ⊙ 𝑋̂𝑇 ∈ ℝ𝑁×𝐶×𝑇.

3.5.5 Spatial-temporal self-attention graph convolution models 

The modeling idea of the spatiotemporal graph neural network model based on the 

attention mechanism is similar to the previous chapter. The feature extraction model 

in the spatial dimension still uses the GCN model. In the temporal dimension, GRU or 

TCN models are also used to extract the trend of traffic flow data. The difference 

between the models is that the spatiotemporal graph neural network model based on 

the self-attention mechanism adds a spatiotemporal separation attention extraction 

module before the spatiotemporal feature extraction module. According to the spatial 

attention matrix, the feature information of other nodes is gathered into the features of 

all nodes to capture the dynamic correlation effects of different nodes. Then, 

according to the temporal attention matrix, the feature information of other moments 

is aggregated into the features of all moments to capture the dynamic correlation 

effects of different time steps. Finally, the feature vector 𝑥̂𝑡 containing the temporal 

dimension of attention and the feature vector of the spatial dimension 𝑥̂𝑠 are merged 

to obtain the spatiotemporal attention feature vector 𝑥̂. Before feature extraction, each 

layer of spatiotemporal module passes through a layer of spatiotemporal attention 

module. It combines the spatiotemporal attention mechanism module and 

spatiotemporal module into a spatiotemporal self-attention graph convolution module. 

At the same time, this work uses a very popular residual network in the field of 

convolutional neural network models to solve the problem of network degradation 

caused by gradient dispersion or gradient explosion during model training. Finally, by 

integrating the spatial-temporal modules one by one, a traffic flow-oriented spatial-

temporal self-attention graph convolution prediction model is constructed. 
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Figure 3.18 Spatial-temporal attention graph neural networks model 

In short, three periodic components are merged into one component through 

dimensionality reduction or mapping of input data. This simplifies the model and 

reduces the computational complexity. The temporal and spatial features of traffic 

data can be captured well through the Spatial-temporal convolution module. By 

combining spatiotemporal self-attention mechanism and spatiotemporal module, the 

models we designed can effectively obtain the dynamic spatiotemporal features of 

data. Then, by stacking multiple spatiotemporal modules, more abundant 

spatiotemporal dynamic dependent features can be extracted. 

Moreover, the use of residual connections makes the training process more stable. 

Finally, a fully connected layer is passed to ensure that the component's output has the 

same dimension as the predicted target. Through this process, the models can get the 

final prediction result. 
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3.6 Summary 

In this chapter, this thesis starts from the reality of traffic flow prediction and 

discusses the pros and cons of specific methods needed for prediction. Based on 

existing research and prediction methods, this work proposes four models for traffic 

flow prediction. Two are traffic flow prediction models based on spatial-temporal 

graph convolutional neural networks. The other two are improved on this basis, 

adding a spatial-temporal graph convolutional neural network model with a self-

attention mechanism. And, in this chapter, the reasons for choosing these four models 

are also discussed. Moreover, the rationality and implementation ability of this choice 

are analyzed. This thesis will use the actual traffic data set to simulate and compare 

the models in the next chapter. 
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Chapter 4                           

Simulation Studies 

This chapter conducted extensive simulation research on the four proposed graph 

neural network-based models under the Pytorch framework. The MST-GCRN, MST-

GCTN, MST-AGCRN, and MST-AGCTN models have been experimentally verified 

on two actual traffic data sets. First, introduce the model-building platform, traffic 

data set, and related processing of the data set used in this work. Then the relevant 

parameter settings in the simulations are introduced, and the commonly used 

indicators in traffic flow forecasting are given. Then, by comparing some baseline 

methods to evaluate the performance of the model proposed in this thesis. We have 

selected several representative models in classical statistical theories and analytical 

models, traditional machine learning methods, and deep learning methods. By 

predicting and evaluation criteria, the performance of these models on the same data 

set is compared objectively with the models proposed by this thesis. At the same time, 

to verify the importance of spatial-temporal dual-module modeling, this chapter 

specifically validates the proposed method in this aspect. The model's actual 

performance is used to demonstrate the influence of spatial correlation modeling and 

temporal correlation modeling on prediction accuracy. Then, based on the different 

performance of different models on the same data set, node and forecast period. This 

work also tested the four models' prediction capabilities proposed in the road network 

structure for different traffic flows and time steps. By comparing the predicted value 

and the real value, the actual prediction ability of the models and some of their 

advantages and disadvantages are clearly displayed and discussed. Finally, the 

performance of the model in training is also mentioned. Through the different 

performances of the TCN module and the GRU module in terms of time performance, 

we discussed our basic modeling ideas, the rationality and feasibility of modeling, the 

models' deficiencies, and the direction that needs further research. This chapter will 
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show the simulation results through some graphs, so that readers have a clearer 

understanding.  

4.1 Simulation Environment 

4.1.1 Hardware environment 

This thesis is based on the Pytorch framework for modeling and verification. In the 

actual simulation, this work uses a Windows system laptop as the Simulation platform. 

The main hardware configuration information of it is shown in Table 4-1. 

Table 4-1 Basic hardware description 

CPU Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz 1.99GHz 

RAM 20 GB (Crucial DDR4 2666MHz ) 

Storage Samsung MZVLB256HBHQ-000L2 ( 256GB/SSD ) 

Graphics Nvidia GeForce MX250 ( 4GB ) 

4.1.2 Software environment 

This thesis uses PyTorch as the modeling framework for the four traffic flow 

prediction models designed in this work. The specific configuration of the software 

environment is shown in Table 4-2. Among them, it calls third-party libraries such as 

Torch, Math, Numpy. 

Table 4-2 Software configuration 

Item Version 

OS Windows 10 Home edition & Ubuntu 18.04 LTS 

Anaconda3 V4.3.1 

Python V3.7.0 

PyTorch V0.4.1 

CUDA V10.0 

The reason for choosing PyTorch as the modeling framework is its strong technical 

accumulation, stable performance, and outstanding performance in machine learning. 

PyTorch is a Python open-source machine learning library based on Torch. PyTorch is 

essentially a replacement for Numpy, and it supports GPU and has advanced features 
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that can be used to build and train deep neural networks [125]. Compared with 

TensorFlow, PyTorch is more concise and easy to use, which is very suitable for 

small-scale model building and testing. Moreover, PyTorch is very suitable for high-

performance numerical calculations.  

4.1.3 Simulation data set 

This thesis selects the public traffic flow data set provided by the PeMS (Performance 

Measurement System) of the California Department of Transportation, the public 

traffic data platform, as the input data set. 

PeMS (http://pems.dot.ca.gov/) data set is the most commonly used data set in the 

field of transportation research. PeMS is an intelligent traffic monitoring system 

developed by the California Department of Transportation. It is mainly composed of 

vehicle sensors, which cover most of the highway network in California. The PeMS 

system collects real-time data from more than 45,000 detectors. It processes the raw 

data collected by the sensors, then aggregates them according to time periods such as 

5 minutes, 10 minutes, and 30 minutes, and uploads them to the platform for public 

disclosure. At the same time, PeMS provides Archived Data User Service (ADUS). It 

provides users with more than ten years of historical data. The data of this platform 

covers a wide range of space. The data indicators are relatively comprehensive, and 

the data missing rate is low. Therefore, it has become the preferred traffic flow data 

platform for many management, design and research personnel. Figure 4.1 shows the 

Web interface of the PeMS system. The red dots in the figure are the different 

detectors. 
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Figure 4.1 PeMS system web interface 

At present, a large number of researchers have conducted related research in the field 

of transportation on PeMS. Huang et al. [126] used multiple detector traffic flow data 

on PeMS to study a short-term traffic flow prediction method based on deep learning. 

Oh et al. [127] selected 16 detectors on the SR-78E highway on the PeMS system to 

study the traffic state prediction. Lopez et al. [128] used the I5 highway to study 

traffic congestion. Moylan et al. [129] used multiple detectors in the San Francisco 

Bay Area to study the impact of congestion status, traffic demand, road conditions, 

and weather conditions on Travel Time. Wu et al. [36] data source is the I-405N 

highway on the PeMS system and proposed the DNN-BTF model, which obtained the 

best prediction effect at the time. Therefore, in order to better conduct comparative 

research, the data selection of this thesis will be consistent with many previous studies 

in data selection and data division. The PeMS detector collects traffic flow data every 

30s and gathers them in different lengths of time to provide services for users. The 

original data format is shown in Figure 4.2. 

 

Figure 4.2 Example of traffic flow data 
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The first column is a time stamp with 5-minute intervals. Columns 2 to 5 are the 

respective traffic flows on the four lanes. The sixth column is the total road traffic 

flow. The last column is the percentage of data quality given by PeMS. The table 

shows the section where the VDS1214209 detector is located on highway I-405S, a 

four-lane section. Figure 4.3 shows the street scene near the VDS1214209 detector on 

Google Maps. The leftmost is two High Occupancy Vehicle (HOV) lanes, the 

rightmost is the ramp, and the middle four are the main lanes. From left to right 

correspond to Lane1-Lane4 in Figure 4.2. Lane1 is close to the central separation 

zone and is usually a passing lane or an expressway. Lane4 is close to the shoulder of 

the road, and vehicles will continue to flow in. To reflect the road traffic more truly, 

this work uses the total road traffic flow. 

Figure 4.3 Google Map street view near the VDS1214209 detector 

This thesis uses PeMSD8 and PeMSD4 as the benchmark data set to verify the 

method and models proposed in this thesis. The acquisition frequency is the 30s/time. 

PeMS also provides time series data of 30s, 5min, 1h and other time slices for 

research needs. Studies have shown that predicting traffic flow in congested traffic 

conditions with a time interval of 5 minutes can provide drivers with the most 

effective help [36]. Therefore, this work uses a 5min time slice data set for research 

and prediction. This thesis will select the traffic flow, traffic flow density, and average 

vehicle speed as the characteristic dimensions of the data set. The specific data 

information is as follows: 

1. PeMSD4 data set: The data comes from the traffic data of San Francisco Bay Area
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highways. The transportation network in this area includes 29 highways and a total of 

3848 data collection devices. The collection time range is the traffic data of 59 days 

from January to February 2018. In this work, the first fifty days of data will be used as 

the training set, and the last nine days of data will be used as the test set.  

2. PeMSD8 data set: The data comes from the traffic data of the highway in San 

Bernardino, including eight roads and a total of 1979 collection devices. The time 

range is from July to August 2016, a total of 62 days of data records were collected. 

The first fifty days are used as the training set, and the last twelve days are used as the 

test set. 

4.2 Data Pre-processing 

4.2.1 Data analysis 

1. Temporal correlation analysis 

As shown in Figure 4.4, using the overall traffic flow data in the test set, it can be 

seen that the traffic flow trend has a significant periodicity and fluctuation law. 

 

Figure 4.4 Historical traffic data of the VDS 1214209 detector in July 2021 

Analyze the traffic data of a certain working day, as shown in Figure 4.4. It can be 

seen that the traffic flow of this working day is obviously more vehicles during the 

day and fewer vehicles at night, which is consistent with the law of human activities. 
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There are two peaks in the vehicle number curve in a day, and the number near the 

peak fluctuates sharply. Comparing the traffic flow data of different dates, it also has a 

certain degree of randomness, but the overall movement pattern is obvious and 

periodic. It can also be seen from the time points and data on the graph that the 

change curve waveform of traffic flow is similar to the fact that people commute and 

participate in other social activities. 

2. Spatial correlation analysis

The flow of traffic circulates in space. Therefore, the traffic flow of a place is not only 

related to its own time change characteristics, but also closely related to its spatial 

distribution characteristics. This work arbitrarily selects the traffic flow data of 4 

adjacent detection stations on the same day for spatial correlation analysis. As shown 

in Figure 4.5, although the traffic flow of different detection stations on the same day 

is slightly different, the overall distribution trend is roughly the same. Moreover, the 

higher the correlation of the distance between the two stations, the closer the traffic 

flow connection between the two points. 

Figure 4.5 Traffic flow on the same day at different detection stations 
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4.2.2 Data filling 

 
Figure 4.6 Schematic diagram of missing data 

In the data processing, it is found that some traffic flow data of the detection station is 

missing, as shown in Figure 4.6. The lack of traffic data will have a greater impact on 

the prediction of subsequent data analysis so that this work will repair the missing part 

of the data. To make the filling data more accurate and able to combine the 

characteristics of both historical data and the data of the day, this thesis uses the KNN 

algorithm to fill the missing data. The main calculation idea of KNN is: calculating 

the distance between the target value and the data record in the data set. Then select 

the k values with the smallest distance from the target data as the nearest neighbors of 

the target value. The weighted average or mode of the k nearest neighbor values is the 

estimated value of missing target data. 

 

Figure 4.7 Schematic diagram of filling data with KNN algorithm 

Divide the time into two-dimensional data according to 5 minutes as a unit. The 

horizontal axis is 288 units of time in a day, and the vertical axis is days, as shown in 
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Figure 4.7. Then the nearest neighbor algorithm is to determine the points in the circle 

in the figure. In this way, the data in the entire two-dimensional coordinates are taken 

into account. That is, both historical data and current data are taken into consideration. 

For the choice of distance, this work uses Manhattan distance: 

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| (4-1) 

After parameter adjustment, K=3 is finally selected as the final result. 

4.2.3 Node screening 

To better conduct comparative simulations. In this work, the node screening method is 

consistent with the node screening method adopted by Guo et al. [18] in the study of 

MCSTGCN and ASTGCN models. The detectors in the PeMSD4 data set and the 

PeMSD8 data set are screened separately, and some detectors that are too close are 

removed to ensure that the distance between the detector nodes is greater than 3.5 

miles. Due to the characteristics of the highway dataset, the data similarity of the 

nodes with closer distances is high. While increasing the complexity of the data, it 

cannot help the spatiotemporal model to extract feature data very well. 

After processing, the PeMSD4 data set retains a total of 307 data collection stations 

related to traffic flow data information. The PeMSD8 data set retains a total of 170 

data collection stations related to traffic flow data information. 

4.2.4 Data standardization 

This work uses the Z-score method to standardize the data. Every deep learning model 

must perform data normalization, which is one of the most basic tasks of deep 

learning. When forecasting traffic flow, data using different evaluation indicators 

often have different magnitudes and units. This situation will affect the temporal and 

spatial feature extraction of traffic flow data. Therefore, the data in the traffic flow 

data set must be normalized to the same magnitude for subsequent feature extraction. 

The standard deviation and mean value of the data are uniformly processed by the 
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standardized method so that the data in the data set conforms to the standard normal 

distribution. After processing, the mean value of the data is equal to 0, and the 

standard deviation is equal to 1. Normalized data are all values with a size between 

[0, 1] , which facilitates data processing and simplifies complex data [130]. The 

formula is as follows: 

𝑥̂ =
𝑥−𝜇

𝛿
    (4-2) 

In the above formula, 𝑥 is the traffic flow data obtained by the traffic sensor, 𝜇 is the 

mean of the overall traffic flow data, and 𝛿 is the standard deviation of the overall 

traffic flow data. 

4.3 Data Set Division and Evaluation Criteria 

4.3.1 Data set division 

As mentioned in node screening, the PeMSD8 data set retains 170 data nodes, and the 

PeMSD4 data set retains 307 data nodes. According to the division and fusion method 

of periodic components discussed in section 3.3.2. This thesis keeps the size settings 

of the recent periodic dependency, daily periodic dependency, and weekly periodic 

dependency consistent with the settings in the MSTGCN and ASTGCN models [18]. 

Then, perform data fusion on the input feature data according to the data fusion 

method in section 3.3.3. Since the data sample collection interval is selected to be 5 

minutes, the duration of the model's prediction target is 60 minutes. Therefore, the 

dimension of the input data is (
60

5
× 3 +

60

5
× 1 +

60

5
× 1) × 𝐶 = 60 × 𝐶. 𝐶 is the channel 

dimension (the number of different types of feature information). 

According to the results of data processing and the basic rules of data set division in 

the field of machine learning, this work divides the data set into a proportion of 60% 

for the training set, 20% for the validation set, and 20% for the test set. The feature 

input matrix dimension of the PeMSD4 data set is spatial dimension (307 nodes) × 

channel dimension (3 traffic flow features information) × temporal dimension (60 



 

111 

 

periodic time data points at 5-minute intervals). The feature input matrix dimension of 

the PeMSD8 data set is spatial dimension (170) × channel dimension (3) × temporal 

dimension (60). The output dimension of PeMSD4 is 307 × 12 (12 time steps of 307 

nodes with a time window of 60 minutes) of predicted information (traffic flow). The 

output dimension of PeMSD8 is 170 × 12. The description of the data set is shown in 

Table 4-3. 

Table 4-3 Dataset description 

Datasets Number of sensors Time range Number of samples 

PeMSD4 307 1/1/2018-2/28/2018 16992 

PeMSD8 170 7/1/2016-8/31/2016 17856 

4.3.2 Evaluation criteria 

To evaluate the pros and cons of traffic flow prediction models, evaluation criteria are 

usually used. Commonly used evaluation indicators are: Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Mean Relative Error (MRE), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE). The specific calculation 

formula is as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑ |𝑦̂ − 𝑦𝑖|

2𝑛
𝑖=1     (4-3)  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ |𝑦̂ − 𝑦𝑖|2𝑛

𝑖=1      (4-4) 

 𝑀𝑅𝐸 =
1

𝑛
∑

|𝑦̂−𝑦𝑖|

𝑦𝑖

𝑛
𝑖=1      (4-5) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦̂ − 𝑦𝑖|

𝑛
𝑖=1     (4-6) 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑

|𝑦̂−𝑦𝑖|

𝑦𝑖

𝑛
𝑖=1      (4-7) 

In the formula, 𝑦𝑖  represents the true value, 𝑦 ̂ represents the predicted value, and 𝑛 

represents the total number of samples. 

RMSE measures the error between the predicted and true values and squares the error 

value, making RMSE more sensitive to outliers. MAPE not only considers the error 
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between the predicted value and the true value but also considers the difference 

between the error and the true value. Proportion. Some researchers believe that it is 

more practical to use MAPE as a performance indicator because the peaks and valleys 

of the traffic flow may be quite different. At the same time, the use of MAPE can 

evaluate the effects of different models on different data sets to a certain extent [26]. 

However, when the real traffic flow is zero (𝑦𝑖 = 0), MAPE cannot be calculated. This 

work will use RMSE and MAE as the main evaluation indicators, and at the same 

time, it will be supplemented by the observation of changes in MAPE. When 

calculating MAPE, zero-value samples will be eliminated. 

4.3.3 Baseline method 

This thesis will compare and analyze with the following methods: HA (History 

Average), Auto-regressive integrated moving average (ARIMA), Long and short-term 

memory neural network model (LSTM). In addition, a Multi-Component Spatial-

Temporal Graph Convolution Networks (MSTGCN) and an attention based spatial-

temporal graph convolutional network (ASTGCN). For the settings of HA, ARIMA, 

LSTM and GRU, refer to the prediction results of Guo et al. [18]. MSTGCN, 

ASTGCN refer to the default settings of the original author's paper [18]. 

(1) HA (History Average): The average value of historical traffic is used as the 

predicted value of the traffic to be predicted. 

(2) ARIMA (Autoregressive Integrated Moving Average) [131]: This model regards 

the data sequence formed by the forecast object over time as a random sequence, 

based on the autocorrelation analysis of the time series, and predicts future values 

through the historical data of the time series. 

(3) LSTM [71]. LSTM alleviates the problem of gradient disappearance to a certain 

extent through the "gate" mechanism. As a common method of time series prediction, 

it takes the flow of the previous moment as input to predict the flow of the next 

moment. 
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(4) MSTGCN [18]: A spatial-temporal prediction model that contains a convolution

module of spatial-temporal graphs similar to a sandwich structure. The road network 

structure models the relationship between the stations as the basis of graph 

convolution. A good prediction accuracy has been achieved on the traffic flow 

prediction issue. 

(5) ASTGCN [18]: A spatiotemporal graph convolution model based on

spatiotemporal attention mechanism. It uses the road network structure to model the 

relationship between stations as the basis for graph convolution. A good prediction 

accuracy has been achieved on the problem of road flow prediction. 

4.4 Analysis of Simulation Results 

4.4.1 The parameter settings of the prediction models 

The main parameters involved in the simulation of the traffic flow prediction models 

(MST-GCRN, MST-GCTN, MST-AGCRN, and MST-AGCTN) proposed in this 

thesis are: 

(1) As mentioned in the GCN-based spatial module modeling section, Chebyshev

graph convolution is used in the graph convolution module, where the convolution 

kernel size K is 2, and the number of convolution kernels is 64. 

(2) The number of layers of Recurrent neural network. In temporal dependency

modeling, the sequence-to-sequence model is used to predict the temporal dimension. 

The encoder and decoder in the model are both recurrent neural networks with GRU. 

The selection of the number of layers of the recurrent neural network should not be 

too large. In the simulation of this work, both the encoder and the decoder are 

equipped with two layers of recurrent neural networks, which achieves the best results. 

(3) The number of GRU in the recurrent neural network. The recurrent neural network

of each layer of the encoder and decoder has many GRU. The selection of the number 

of GRU is generally an exponent of 2, and it is generally appropriate to set it between 



114 

16 and 128. If it is too large, it will increase the complexity of the calculation and 

make the training time-consuming. If it is too small, it will also affect the 

effectiveness of the model. In the simulation of this work, the best performance is 

reached when it is set to 24. 

(4) The size of the convolution kernel of the temporal convolution model is 𝑘 = 4,

and the number of convolution kernels is 32. The dilation factor 𝑑 = 2𝑛−1  is the

expansion factor of the 𝑛-th spatial-temporal convolution module. 

(5) Common parameters of deep learning. The number of layers of the spatial-

temporal module is set to 5. Too many layers will cause overfitting, and too few layers 

will cause insufficient feature learning. Epoch is set to 100, and early stopping 

technology is used to avoid overfitting. The initial learning rate is set to 0.003. 

Starting from the 5th epoch, the epoch learning rate decay interval is 5, 20, 40, 70. 

Each time the learning rate decays to 0.3 times the initial learning rate. In this thesis, 

Mini-Batch is used in training, the Batch-Size is set to 64, and ReLU is used as the 

activation function of the neural network. The loss function uses Mean Absolute Error 

(MAE), and the optimizer chooses Adam. 

4.4.2 Case study 1: The impact of traffic flow volume on the accuracy 

of prediction Models 

This section demonstrates and discusses the impact of traffic flow volume at different 

spatial-temporal locations on the model's prediction accuracy to enable readers to 

understand the performance of the four models designed by this work on the PeMSD4 

and PeMSD8 data sets. Our models all have the ability to predict traffic flow, but their 

prediction accuracy differs significantly when dealing with different volumes of 

traffic flow at different spatial-temporal locations. As mentioned in the data 

processing section, the minimum interval for data collection of the data set is 5 

minutes. So in the following discussion, we will use the time step as the unit of time, 

and each time step represents 5 minutes. Therefore, the one-day predict curve will be 
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divided into 288-time steps, and the one-hour predict curve will be divided into 12-

time steps. Based on this, the actual effect of the models in extracting traffic flow is 

discussed by comparing the predicted value with the real value. 

 
Figure 4.8  The MST-GCRN prediction accuracy on PeMSD4-node180 

 

Figure 4.9 The MST-GCRN prediction accuracy on PeMSD4-node108 

The figure above shows the prediction accuracy of the MST-GCRN model on the 

PeMSD4 data set. Figures 4.8and 4.9 show the comparison between the predicted data 

and actual data of nodes 180 and 108 on February 20, 2018. The red is the value of 

the actual traffic flow, and the green is the predicted result. The X-axis coordinates 

represent time steps, and each time step is 5 minutes. So a day is 288 time steps. We 

found that the prediction performance of the MST-GCRN model will be affected by 

the volume of traffic flow. At nodes where the volume of traffic flow is small, the 

model performs better. 

On the contrary, The performance of the model has decreased. As shown in Figure 4.9, 
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especially in the period when the traffic flow value is large, the model's prediction 

accuracy decreases significantly. As shown in Figure 4.10 (a) and (b), this 

phenomenon is also reflected in our MST-AGCRN model. 

  

Figure 4.10 (a/b) The MST-AGCRN prediction accuracy on PeMSD4-node180/108 

Judging from the prediction performance of the MST-AGCRN model, during rush 

hours, the model's prediction accuracy is worse than usual. To analyze this 

phenomenon more fine-grained. We selected the models' prediction performance 

during the peak hours of these two nodes on this day. Figures 4.11 and 4.12 show the 

comparison between the predicted data and actual data of nodes 180 and 108 within 

one hour from 11:00 to 12:00 on February 20, 2018, on the MST-GCRN model. 

    

Figure 4.11 The MST-GCRN prediction accuracy on PeMSD4-node180-1hour 
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Figure 4.12 The MST-GCRN prediction accuracy on PeMSD4-node108-1hour 

The performance of the MST-GCRN model during peak hours reflects this 

phenomenon more directly. From the degree of fit between the predicted value and the 

true value and the fluctuation of the predicted value, it can be seen that when the flow 

volume is small, the model's predictive ability is stronger. On the contrary, the gap 

between the predicted and true values is obvious, and the predicted value does not 

fluctuate over time. This conclusion can also be clearly reflected in Figure 4.13 (left) 

and (right). It shows the comparison between the predicted data and actual data of 

nodes 180 and 108 from 11:00 to 12:00 on February 20, 2018, on MST-AGCRN. 

Figure 4.13 The MST-AGCRN prediction accuracy on PeMSD4-node180/108 

It can be seen from the above two sets of figures that the traffic flow extraction 

performance of the models is better on nodes with small traffic flow volumes than on 

nodes with large volumes. To further confirm this conclusion, we did the same 

simulation on PeMSD8. The result is shown in the figure below. 
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Figure 4.14 The MST-GCRN prediction accuracy on PeMSD8-node50/80 

Because the PeMSD8 data set is smaller than the PeMSD4 data set. Its performance is 

not as obvious as the data set, but we can still clearly see this phenomenon during 

peak hours. As shown in the figure below, this performance is clearer within one hour. 

  

Figure 4.15 The MST-GCRN prediction accuracy on PeMSD8-node50/80-1hour 

In addition, this work uses PeMSD4 data set to do the same simulation on the MST-

GCTN model and MST-AGCTN model, respectively. Firstly, the simulation selects 

the same node and time period as the MST-GCRN model and MST-AGCTN model. 

The result is shown in the figure below. Among them, the blue line is the prediction 

accuracy of the MST-GCTN model. Green is the prediction accuracy of the MST-

AGCTN model. The red is the actual value. 
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Figure 4.16 The predictive accuracy of the TCN models on the PeMSD4 

Secondly, we selected two other nodes (node 20 and node 57). As shown in the figure 

below, the left figure shows the prediction accuracy of node 20 with a small traffic 

flow. The following figure shows the prediction accuracy of node 57 with a larger 

volume of traffic flow. 

 

Figure 4.17 The predictive accuracy of the TCN models on the PeMSD4 

From the above series of analyses, we can draw such a conclusion from case study 1. 

The prediction performance of our proposed models at different nodes will vary 

according to the volume of traffic flow of the node. At nodes with small traffic flow, 

the models have excellent predictive capabilities. But at nodes with large traffic flow, 

the predictive ability of the models has decreased. In addition, in horizontal 

comparison, the prediction accuracy of the model with the self-attention mechanism 

added is better than that of the model without the self-attention mechanism. 

Longitudinal comparison, the accuracy of the model based on GCN+RNN is better 

than the accuracy of the model based on GCN+TCN. This feature is caused by the 
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GCN model. The disadvantage of GCN in the embedding phase is that it cannot 

assign different weights to different neighbor nodes. However, in actual situations, the 

impact of different traffic flow nodes on other nodes is very different in temporal and 

spatial dimensions, and there are dynamic effects between nodes. Therefore, at nodes 

with high frequency or large traffic flow volume, such shortcomings will be 

prominent. For this reason, we have added a self-attention mechanism to capture the 

dynamic dependence of traffic flow to make up for the deficiencies brought by GCN. 

As the results show, although this characteristic still exists, the prediction results have 

been effectively improved. These aspects will be demonstrated in detail in the next 

case study. 

4.4.3 Case study 2: The impact of self-attention mechanism on the 

accuracy of prediction Models 

In this section, we will simulate the performance of the self-attention mechanism on 

our proposed models. From case study 1, we can see that the models perform better 

on nodes with smaller traffic flow. To highlight the difference in prediction accuracy 

between the models with the self-attention mechanism and the models without the 

self-attention mechanism, we chose the nodes with a larger traffic flow volume as a 

comparison in this case study. First, on the PeMSD4 data set, we show the prediction 

performance of MST-GCRN and MST-AGCRN on node 108. 

Figure 4.18 The predictive accuracy of MST-GCRN and MST-AGCRN on node 108 
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In Figure 4.18, the time period in the left figure is one day. The picture on the right 

shows the time range from 11 o'clock to 12 o'clock. The blue line is the performance 

of the MST-GCRN model without the self-attention mechanism, the green is the 

MST-AGCRN model with the self-attention mechanism, and the red is the actual 

traffic flow. It can be clearly seen from the figure that the traffic flow prediction 

accuracy of the model with the self-attention mechanism is significantly better than 

that of the model without the self-attention mechanism. The difference in predictive 

ability between the two models is most obvious during peak hours. In addition, we 

chose node 57 with a larger traffic flow as further proof. 

 

Figure 4.19 The predictive accuracy of MST-GCTN and MST-AGCTN on node 57 

As shown in Figure 4.19, the predictive ability of MST-AGCTN is better than MST-

GCTN. In the prediction performance during peak hours, the addition of the self-

attention mechanism enhances the model's ability to extract dynamic traffic flow data 

and makes the prediction curve fluctuate. Next, this work performed similar 

simulations on the other models (MST-GCTN and MST-AGCTN) on PeMSD4 and 

PeMSD8 data sets. 
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Figure 4.20 The predictive accuracy of MST-GCTN and MST-AGCTN 

In Figure 4.20, the figure on the left is the performance of the MST-GCTN and MST-

AGCTN models on node 108 of PeMSD4. On the right is their performance on node 

80 of PeMSD8. As mentioned earlier, these two nodes are the nodes with larger traffic 

flow volumes in their respective data sets. It can be seen that on the two data sets, the 

addition of the self-attention mechanism has an obvious effect on the improvement of 

the model's prediction accuracy. By increasing the dynamic dependence of features, 

the predictive model can better capture the temporal and spatial dependence of the 

traffic flow between nodes. We can prove that the model with self-attention is better 

in terms of overall prediction accuracy through comparison and analysis. The addition 

of the self-attention mechanism can well enhance the model's ability to extract traffic 

flow, which is rich in dynamic features. In addition, in the course of this simulation, 

we also found differences in the predictive capabilities of the four models we 

proposed.    

   

Figure 4.21 The predictive accuracy of our models 
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Figure 4.21 shows the prediction accuracy of our four models at node 108 of PeMSD4 

and node 80 of PeMSD8. Green and magenta represent MST-GCRN and MST-

AGCRN, respectively. Blue and green represent MST-GCTN and MST-AGCTN, 

respectively. As shown in the figure, the prediction accuracy of the MST-GCTN 

model and MST-AGCTN model is significantly lower than that of the MST-GCRN 

model and MST-AGCRN model. Moreover, the difference is even more obvious at 

node 108 and node 80, with larger traffic flow. The simulation results are quite 

different from the assumptions in the model design chapter. Originally, this simulation 

wanted to use the causal and dilated convolution of TCN to increase the 

interpretability and reliability of the model to achieve more accurate prediction results. 

However, the actual simulation results show significant differences. According to the 

analysis, this thesis believes that as the dilation factor in the TCN model gradually 

increases, the model accuracy will decrease. The reason is that the increase in the 

dilation factor leads to a larger receptive field. The benefit of the increased receptive 

field is that it can obtain a longer temporal dependency of the traffic flow. However, 

as the dilation factor increases, the number of network layers gradually deepens, and 

the amount of calculation and computational complexity increases. At the same time, 

this also increases the unpredictability of the data. When convolutional layers with the 

same dilation factor are stacked multiple times, part of the data may not participate in 

the calculation, so that the model ignores this part of useful information. As a result, 

the model is more difficult to train, and the model's accuracy decreases. 

Secondly, the reason for the unsatisfactory performance of the MST-GCTN model and 

MST-AGCTN model may also be related to the preprocessing of the data set. From 

the perspective of data processing, there is a big difference between holiday data and 

weekday data due to the periodic characteristics of traffic flow data. This work 

believes that this is also a reason that restricts TCN from exerting its advantages. 

Generally speaking, there will be two peaks in traffic flow from Monday to Friday: 

morning peak and evening peak. The traffic volume on weekdays is significantly 

higher than that on weekends. There is only one peak in traffic flow for two days on 
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weekends, which usually occurs around noon. Suppose the model cannot explain the 

difference between working days and non-working days well. In that case, it will 

extract too much irrelevant feature information, thereby reducing the performance of 

the model. In addition, as far as the causality of data is concerned, we believe that the 

data at the subsequent time point still has a certain impact and reference value on the 

data at the previous time point. The idea of only focusing on the data before the time 

point may be under consideration. 

Taken together, all of the above factors will have a subtle impact on the predictive 

performance of the TCN model. The TCN model may be more suitable for long-term 

sequence forecasting. In the follow-up work, the data can be pre-processed more 

finely, and the model and parameter settings can be further improved and explored. 

Perhaps by removing some holiday data and improving the TCN model, it can achieve 

more ideal prediction results. 
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Figure 4.22 The evaluation results of the models on the PeMSD4 

Figure 4.22 is the evaluation results of deep learning models on PeMSD4. From the 

results, we can see the problem raised in the previous paragraph. The two models of 

GCTN are 1.89 and 1.35 higher in MAE than the two models of GCRN we proposed. 

In addition, it is 4.2 and 2.7 higher in RMSE and 0.49% and 0.56% higher in MAPE. 

Moreover, it can also be seen from the figure that the prediction performance of the 

GCTN model is worse than the performance of MSTGCN and ASTGCN that we have 

chosen as the comparison baseline. This pattern can also be seen from the evaluation 

results of the models on PeMSD8 in Figure 4.23. 
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Figure 4.23 The evaluation results of the models on the PeMSD8 

On the whole,  from the evaluation results of the models. As shown in Figures 4.22 

and 4.23. The performance of the MST-GCTN model and MST-AGCTN model is 

worse than the MST-GCRN model and MST-AGCRN model. Moreover, it is not as 

effective as previous models based on GCN and CNN (such as MSTGCN, ASTGCN). 

Therefore, this work will not discuss the MST-GCTN model and the MST-AGCTN 

model in the following sections.  

In summary, As can be seen from case study 1 and case study 2. In our proposed 

models, the performance of the MST-AGCRN model on the data set is the best, 

followed by the MST-GCRN model. The addition of the self-attention mechanism is 

the reason why the MST-AGCRN model is more effective than the MST-GCRN 

model. The difference in the performance of predicting traffic flow data of different 

volumes also proves the model's ability to perceive the temporal and spatial features 

of traffic flow. The different performances of the models can be clearly seen from the 

comprehensive evaluation results in Figure 4.22 and Figure 4.23. Therefore, this 
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thesis selects the MST-GCRN model and MST-AGCRN model as the final model of 

this thesis in the following sections. Through them, the overall prediction accuracy of 

the models is compared and analyzed with the baseline models. Due to time and 

capacity constraints, the TCN-based models can be left in future research for more in-

depth investigation and research. 

4.4.4 Case study 3: The accuracy comparison study with some 

benchmarking models 

Through the model analysis and comparison in section 4.4.3, this section mainly uses 

the MST-GCRN model and the MST-AGCRN model as the final model of this thesis. 

It compares it with several typical traffic flow prediction models on the PeMSD4 data 

set and PeMSD8 data set. Based on the three evaluation criteria results, we analyze 

the performance of different models on two data sets and focus on demonstrating the 

good performance of the models proposed in this thesis on the two data sets. 

1. Overall performance analysis of prediction models 

Figure 4.24,  Figure 4.25 and Figure 4.26 show the comprehensive prediction results 

of several different traffic flow prediction models. First, calculate the MAE, RMSE, 

and MAPE results of each traffic flow prediction model on two different data sets. 

Then carry out a comparative analysis. 
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Figure 4.24 The MAE results of the models 

It is not difficult to see from the above figures that the MST-GCRN model and MST-

AGCRN model proposed by this thesis show good performance in comprehensive 

prediction performance. On the PeMSD4 data set, the MAE results of our two models 

are 1.53 and 2.05 respectively, lower than the previous best-performing ASTGCN 

model. On the PeMSD8 data set, the MAE results of our two models are 1.05 and 

1.67 respectively, lower than the previous best-performing ASTGCN model. From the 

most concise MAE results, we can see that our MST-GCRN model and MST-AGCRN 

model are more excellent than classical statistical theories and analytical models (HA, 

ARIMA). They use the powerful feature extraction capabilities of neural networks to 

learn the nonlinear data structure. Compared with traditional machine learning 

methods (LSTM), they can extract data features from two dimensions of time and 

space through multi-layer modules. Through the graph convolutional neural network, 

the features representation of the node in the spatial and temporal dimensions are 

obtained, so more powerful features of traffic flow data are extracted. This also brings 

about an improvement in forecast accuracy. 
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Figure 4.25 The RMSE results of the models 

Compared with the ASTGCN model, the RMSE results on PeMSD4 are reduced by 

0.95 and 1.85 respectively. Compared with the ASTGCN model, the RMSE results on 

PeMSD8 are reduced by 0.91 and 2.04, respectively. From the RMSE results, our 

MST-GCRN model and MST-AGCRN model have also improved their prediction 

accuracy. Compared with the ASTGCN model with the smallest root mean square 

error among other models, our model uses a GRU module and a self-attention 

mechanism instead of a CNN module and a graph attention mechanism. Therefore, 

the accuracy has been improved to a certain extent under similar circumstances.  
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Figure 4.26 The MAPE results of the models 

Compared with the ASTGCN model, the MAPE results of the models are respectively 

reduced by 1.31% and 1.81% on PeMSD4. Compared with the ASTGCN model, the 

MAPE results on PeMSD8 are reduced by 0.63% and 0.67%, respectively. In general, 

the prediction model proposed in this work has achieved advanced prediction 

accuracy on both real data sets. 

According to the type of model, among all models, the traffic flow prediction models 

based on deep learning (LSTM, MSTGCN, ASTGCN, MST-GCRN, MST-AGCRN) 

outperform classical statistical theories and analytical models (HA, ARIMA). The 

indexes of the deep learning model in MAE, RMSE, and MAPE are all lower, which 

shows that the deep learning method is more accurate and deeper in the feature 

extraction of traffic flow data. They are more powerful in analyzing non-linear data 

structures. In the deep learning prediction model, the performance of LSTM is weaker 

than that of the prediction network model based on graph neural networks. This is 
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because the LSTM model does not take the spatial information of the road network 

structure into consideration. This also fully shows that it is important to consider the 

structure of the graph of the road network in the prediction model. 

2. Performance changes at different prediction time steps

In addition, this thesis also compares the performance changes of four deep learning 

models based on graph neural networks (MSTGCN, ASTGCN, MST-GCRN, MST-

AGCRN) on two data sets at different prediction time steps. With 5 minutes as the 

interval, the predicted time step increases from 5 minutes to 1 hour. The simulation 

results are shown in Figure 4.27, Figure 4.28 and Figure 4.29. 

Figure 4.27 The MAE results of the models at different time steps 

It can be seen from Figure 4.27 that our models have an outstanding ability to predict 

longer time steps. They are the most obvious difference in the prediction accuracy of 

60-minute predictions than the two deep learning baseline models. As shown in

Figures 4.28 and 4.29, this trend is similar in the other two evaluation results. 
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Figure 4.28 The RMSE results of the models at different time steps 

  

Figure 4.29 The MAPE results of the models at different time steps 

As can be seen from the figures, as a whole, with the gradual increase of prediction 

time, the difficulty of prediction becomes more and more difficult. Their errors 

generally show an upward trend. The four models showed the same growth trend on 

the PeMSD4 data set and PeMSD8 data set. Compared with the MSTGCN model, the 

prediction errors of the three prediction models, ASTGCN, MST-GCRN, and MST-

AGCRN, increase relatively slowly. Moreover, the prediction accuracy of the two 

models used in this study are better than the MSTGCN model and the ASTGCN 

model at 12 time steps (except for the first 5 minutes). This shows that the MST-

GCRN model and MST-AGCRN model can fully mine the spatial-temporal patterns 

of data, and show more obvious advantages in mid-and long-term predictions. This 

advantage is due to the use of GRU modules instead of CNN modules. It is because 

the recurrent neural network has a stronger ability to extract time series information 

and has a better ability to process historical information. 

3. Performance changes at different nodes (stations) 

To analyze the prediction accuracy of the MST-GCRN model and MST-AGCRN 

model more three-dimensionally. Figure 4.30, Figure 4.31 and Figure 4.32 show the 

RMSE, MAE and MAPE results of the four deep learning models' traffic predictions 

at each node.  
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Figure 4.30 The MAE results of the models at each node 

It can be seen from Figure 4.30 that the MST-GCRN model and MST-AGCRN model 

proposed in this thesis can achieve the best prediction accuracy for most stations. For 

nodes that are more difficult to predict and have greater prediction errors in public 

data sets, the prediction advantages of the two models of this thesis are more obvious. 

In addition, the model of this work also shows more prominent and outstanding 

results on the PeMSD4 data set, which is more complex than the PeMSD8 data set. 

The trend of such evaluation results is also evident in Figures 4.31 and 4.32. 
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Figure 4.31 The RMSE results of the models at each node 

 

 
Figure 4.32 The MAPE results of the models at each node 

In summary, the MST-GCRN model and MST-AGCRN model proposed by this thesis 

can effectively capture the relationship between stations and learn rich feature 

representations, which is beneficial to traffic flow prediction. Therefore, the models 

can be effectively applied to traffic flow prediction tasks on two real data sets 

(PeMSD4 and PeMSD8) to achieve ideal prediction results. 
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4.4.5 Case study 4: Model training performance comparison 

In this section, we will discuss the comprehensive capabilities of the MST-(A)GCRN 

models and the MST-(A)GCTN models through the model's performance in training. 

The actual training effect of each deep learning model and the algorithm efficiency of 

the models are discussed through the time performance of the model in the training 

process. And, through the evolution of the loss function of the models, we will discuss 

the actual effects of using the residual network, the self-attention mechanism and 

adding the dropout layer in the Readout phase. 

1. Time performance.  

Based on the hyperparameter settings, the time performance of the four models in 

PeMSD4 and PeMSD8 is shown in the following table. 

Table 4-4 Time performance (mins) 100 epoch 

 PeMSD4 PeMSD8 

MST-GCRN 62 34 

MST-AGCRN 49 40 

MST-GCTN 178 46 

MST-AGCTN 179 46 

It can be seen from the time performance of model training. Due to the relatively 

small sample size of the data set, the four models have little difference in the time 

performance of the PeMSD8 data set. Moreover, due to the low computational 

complexity of the self-attention mechanism module, there is no obvious difference in 

the time performance of training between the model with the self-attention 

mechanism and the model without the self-attention mechanism. On the PeMSD4 data 

set, the training time of the TCN-based model is longer than that of the GRU-based 

model. It can be seen that the TCN model is affected by the number of model layers, 

hyperparameters, and the size of the data set is larger than other models. Therefore, as 

the amount of data increases, the temporal convolutional network model will increase 

the training time more significantly than the training time of other models. 
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2. The loss function of the models

The figure below shows the evolution of the loss (MAE) metric of each model. 

Figure 4.33 The loss metric of the MST-GCRN model on the data set 

Figure 4.34 The loss metric of the MST-AGCRN model on the data set 

As shown from Figure 4.33, the evolution of the loss function of the MST-GCRN 

model on the PeMSD4 and PeMSD8 data sets. Around the 80th epoch, the loss 

function of the model tends to stabilize at around 0.019/0.018. Figure 4.34 shows the 

loss function of the MST-AGCRN model, as for the model that adds the self-attention 

mechanism. The model's loss function converges faster than the model without the 

attention mechanism. It can be seen from the figure that the loss function of the MST-

AGCRN model on the PeMSD4 and PeMSD8 data sets began to stabilize at about 

0.0198/0.0178 at the 60th epoch. After adding the self-attention mechanism, this fully 

shows that the model has successfully learned the dynamic related features of 

spatiotemporal data. With the enrichment of feature data, the flexibility of the model 

and the accuracy of prediction are improved. 
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Figure 4.35 The loss metric of the MST-GCTN model on the data set 

 

Figure 4.36 The loss metric of the MST-AGCTN model on the data set 

As shown from Figure 4.35, the evolution process of the loss function of the MST-

GCTN model on the PeMSD4 and PeMSD8 data sets. Around the 100th epoch, the 

loss function of the model tends to stabilize at about 0.0229/0.0208. As shown from 

Figure 4.36, the evolution process of the loss function of the MST-AGCTN model on 

the PeMSD4 and PeMSD8 data sets. For models that add a self-attention mechanism. 

The model's loss function converges faster than the model without the attention 

mechanism. The loss function of the MST-AGCTN model on the PeMSD4 and 

PeMSD8 data sets began to stabilize at about 0.0237/0.0227 at the 80th epoch. 

In general, from the evolution curve of the model loss function. The models we 

proposed can effectively converge in the final stage. This also proves that the machine 

learning method we used solves the two problems raised in the Readout phase of the 

previous chapter. In addition, from the overall performance and efficiency, the MST-

AGCRN model with the self-attention mechanism is the best. It can converge most 

effectively during training. Moreover, as can be seen from the previous sections, its 

prediction accuracy is also the best. 
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4.5 Summary 

This chapter conducts simulations on real traffic flow data sets based on the proposed 

four models and the selected baseline models. Simulations show that the overall 

prediction effect of the MST-AGCRN model is the best of them. Simulations have 

verified from three case studies that the model has advantages in extracting 

spatiotemporal features and spatial correlation. Moreover, the model based on graph 

neural networks also has good interpretability. In case study 1, the models' predicted 

values at different nodes were compared with the true values. The Simulation results 

show the advantages of the MST-AGCRN model in the extraction of spatial-temporal 

features, especially in the nodes with large traffic flow. However, the two models 

based on temporal convolutional networks are not as ideal as those in the modeling 

chapter due to the range of receptive fields, model parameter settings and 

computational complexity. In case study 2, the comparison with the baseline also fully 

demonstrated the outstanding capabilities of MST-AGCRN. Furthermore, It also 

shows the shortcomings of models based on temporal convolutional networks. In case 

study 3, the comprehensive training performance of the models is discussed. Overall, 

MST-AGCRN is still the best performer among them. 
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Chapter 5                           

Conclusion and Future Work 

The purpose of this thesis was to provide an in-depth understanding of the 

fundamentals of traffic flow prediction problems through graph neural networks based 

approach in the field of ITS. Using the characteristics of graph neural networks to 

capture the spatial and temporal dependence of road structure, enhance the 

learnability and universal applicability of the prediction models, so as to improve the 

prediction accuracy of the prediction models are the focus of this thesis. By using a 

neural network model based on graph neural network and self-attention mechanism, 

we have contributed new knowledge and solutions to the traffic flow prediction 

problem in ITS. 

5.1 Conclusion 

Through the analysis of different types of prediction methods, some research gaps 

such as low predictive credibility, insufficient general applicability and insufficient 

feature capture ability have been identified. In this thesis, we propose two types of 

traffic flow prediction models based on graph neural networks. These two types of 

models are mainly used to solve the gaps in previous research and improve the 

model's prediction accuracy. The simulation studies have validated that the prediction 

accuracy of the models proposed in this thesis is better than other existing baseline 

methods. 

First, we improved the credibility of the prediction. Some previous models and 

methods lacked the extraction of periodic characteristics of traffic flow data, which 

led to the inability to learn more powerful traffic flow features reasonably. Based on 

this problem, we divided the period dependence of the traffic flow data into three 

types of time components. Furthermore, we carried out a Pearson correlation analysis 
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on the real traffic flow data. Through this work, the periodic correlation degree of 

traffic flow data is quantitatively analyzed instead of dividing the periodic 

components based on experience. On this basis, this work also adopted reasonable 

data dimensionality reduction strategies to reduce the complexity of input data and the 

complexity of model calculations. After the above methods, the model's ability to 

extract traffic flow feature data is improved in the data input stage. 

Second, based on the graph neural networks, our models use GRU and TCN 

respectively, to capture data features in the temporal dimension. The existing traffic 

flow prediction methods modeled from the temporal dimension do not fully consider 

the correlation between traffic flow sequences in the spatial dimension, which makes 

the general applicability of the model insufficient. In addition, some combined deep 

neural network models ignore the characteristics of the traffic road network graph 

structure and cannot express the high-order correlation between different nodes. 

Based on the research of existing traffic flow prediction methods and models in the 

field of traffic flow prediction, this work proposes spatiotemporal traffic flow 

prediction modeling methods based on graph neural networks. Through the 

advantages of the GRU module in MST-GCRN and the TCN module in MST-GCTN 

in sequence data processing, the interpretability and accuracy of the traffic flow 

prediction models in temporal dimension are improved. Based on using the GCN 

module to model the spatial dimension, MST-GCRN and MST-GCTN also fully 

consider the correlation of traffic flow data in the temporal dimension. Therefore, the 

universal applicability and prediction accuracy of the models are enhanced at the 

same time. 

Third, this thesis uses the self-attention mechanism of temporal and spatial separation 

to capture the temporal and spatial dynamics of traffic flow data at a more detailed 

level. Although the latest traffic flow prediction application models have improved 

feature capture and scalability, they are often insufficient in capturing the dynamic 

correlation between nodes. By adding a two-dimensional spatial-temporal self-

attention module to the models, our proposed MST-AGCRN and MST-AGCTN 



 

141 

 

models can allocate node weights more reasonably and effectively in the machine 

learning process. This enables the models to more accurately capture the dynamic 

spatial-temporal correlations on the traffic network. 

5.2 Future Work 

Considering the limitations of the research time of this thesis and the rapid 

development trend in the field of machine learning, this research has also realized 

some areas that need improvement and further research. 

First of all, the complexity of the data set can be further improved. The data sets used 

in this simulation are two highway traffic data sets (PeMSD4 and PeMSD8). These 

data sets have two characteristics. One is the lower difficulty of collection. Compared 

with complex road conditions, the loop detector used in traffic flow data collection is 

very easy to plan and deploy on highways. The second is the low data complexity. 

The collected data is relatively tidy and easy to use because highways generally do 

not have interference factors such as intersections, traffic lights, and pedestrians. 

Although these two features improve data quality, reduce the difficulty of data 

processing, and improve the accuracy of model prediction, from another perspective, 

they also reduce the general applicability of the model. Lower data complexity means 

lower data features, which makes the model unable to be applied to the traffic flow 

prediction of urban roads and crossroads.  

Furthermore, from a modeling perspective, the universal applicability of the model 

can be further strengthened. It can be seen from the simulation that the performance 

of the models in periods and nodes with a large amount of data is worse than under 

normal circumstances, which is a common shortcoming of traffic flow prediction 

models at this stage. With the advancement of neural network models, this problem 

needs to be noticed and resolved in future work. It can be foreseen that with the 

emergence of more excellent neural network models and data collection methods in 

the future, increasing the complexity of the data set and designing better model 

algorithms may be able to bring better universality and wider application scope to the 
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model. In addition, the application range of the model can be further expanded. The 

traffic flow prediction model can also be applied to people flow prediction and other 

similar flow prediction fields. 

More specifically, the performance and application of the temporal convolution model 

are worthy of further exploration. In our Simulations, the performance of the temporal 

convolution model is far from as good as expected. The reason is more complicated, 

and the operation mechanism for this has not been completely clarified in this work. 

Therefore, clarifying the mechanism of TCN and improving the ability of the TCN 

model is worthy of further research in the future. 

The prediction accuracy of the model can be further improved by increasing the 

dimensionality of the data. With the improvement of machine learning capabilities, 

some recent studies have proposed to improve the dimensionality of input data further. 

For example, when predicting traffic flow, real-time weather, temperature, human 

factors and other more multi-dimensional environmental factors are taken into 

account in the input of the model. Although most of these studies stay at the 

theoretical stage, it is expected that these methods should improve the model's 

prediction accuracy, thus theses directions are worthy of further research.
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Appendix A: Sample Codes for 

Proposed Models 

AGCRN module 

Below is part of the sample code of the AGCRN module. 

class GCRN(nn.Module): 

 def __init__(self, node_num, dim_in, dim_out, cheb_k, embed_dim, 

num_layers=1, num_node=170, use_att=True): 

 super(GCRN, self).__init__() 

 assert num_layers >= 1, 'At least one GCRN layer in the 

Encoder.' 

 self.node_num = node_num 

 self.input_dim = dim_in 

 self.num_layers = num_layers 

 self.gcrnn_cells = nn.ModuleList() 

 self.gcrnn_cells.append(AGCRNCell(node_num, dim_in, dim_out, 

cheb_k, embed_dim, num_node, use_att)) 

 for _ in range(1, num_layers): 

 self.gcrnn_cells.append(AGCRNCell(node_num, dim_out, dim_out, 

cheb_k, embed_dim, num_node, use_att)) 

 def forward(self, x, init_state, node_embeddings): 

 #shape of x: (B, T, N, D) 

 #shape of init_state: (num_layers, B, N, hidden_dim) 

 assert x.shape[2] == self.node_num and x.shape[3] == 

self.input_dim 

 seq_length = x.shape[1] 

 current_inputs = x 

 output_hidden = [] 

 for i in range(self.num_layers): 

 state = init_state[i] 

 inner_states = [] 

 for t in range(seq_length): 

 state = self.gcrnn_cells[i](current_inputs[:, t, :, :], 

state, node_embeddings) 

 inner_states.append(state) 
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            output_hidden.append(state) 

            current_inputs = torch.stack(inner_states, dim=1) 

       #current_inputs: the outputs of last layer: (B, T, N, hidden_dim) 

        #output_hidden: the last state for each layer: (num_layers, B, 

N, hidden_dim) 

        #last_state: (B, N, hidden_dim) 

        return current_inputs, output_hidden 

 

    def init_hidden(self, batch_size): 

        init_states = [] 

        for i in range(self.num_layers): 

            init_states.append(self.gcrnn_cells[i].init_hidden_state(ba

tch_size)) 

        return torch.stack(init_states, dim=0)      #(num_layers, B, N, 

hidden_dim) 

 

class AGCRN(nn.Module): 

    def __init__(self, args): 

        super(AGCRN, self).__init__() 

        self.num_node = args.num_nodes 

        self.input_dim = args.input_dim 

        self.hidden_dim = args.rnn_units 

        self.output_dim = args.output_dim 

        self.horizon = args.horizon 

        self.num_layers = args.num_layers 

        self.use_att = args.use_att 

 

        self.default_graph = args.default_graph 

        self.node_embeddings = nn.Parameter(torch.randn(self.num_node, 

args.embed_dim), requires_grad=True) 

 

        self.encoder = GCRN(args.num_nodes, args.input_dim, args.rnn_units, 

args.cheb_k, args.embed_dim, args.num_layers, self.num_node, self.use_att) 

 

        #predictor 

        self.end_conv = nn.Conv2d(1, args.horizon * self.output_dim, 

kernel_size=(1, self.hidden_dim), bias=True) 

 

    def forward(self, source, targets, teacher_forcing_ratio=0.5): 

        #source: B, T_1, N, D 

        #target: B, T_2, N, D 

        #supports = F.softmax(F.relu(torch.mm(self.nodevec1, 

self.nodevec1.transpose(0,1))), dim=1) 
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        init_state = self.encoder.init_hidden(source.shape[0]) 

        output, _ = self.encoder(source, init_state, 

self.node_embeddings)      #B, T, N, hidden 

        output = output[:, -1:, :, :]   #B, 1, N, hidden 

 

        #CNN based predictor 

        output = self.end_conv((output))   #B, T*C, N, 1 

        output = output.squeeze(-1).reshape(-1, self.horizon, 

self.output_dim, self.num_node) 

        output = output.permute(0, 1, 3, 2)    #B, T, N, C 

 

        return output 

 

AGCTN module 

Below is part of the sample code of the AGCTN module.  

class AGCTN(nn.Module): 

    def __init__(self, args): 

        super(AGCTN, self).__init__() 

        self.num_node = args.num_nodes 

        self.input_dim = args.input_dim 

        self.output_dim = args.output_dim 

        self.horizon = args.horizon 

        self.use_att = args.use_att 

        self.hidden_dim = 12 

 

        self.default_graph = args.default_graph 

        self.node_embeddings = nn.Parameter(torch.randn(self.num_node, 

args.embed_dim), requires_grad=True) 

 

        self.encoder = GCTN(args.num_nodes, args.input_dim, args.cheb_k, 

args.embed_dim, self.num_node, self.use_att) 

 

        #predictor 

        self.end_conv = nn.Conv2d(1, args.horizon * self.output_dim, 

kernel_size=(1, self.hidden_dim), bias=True) 

 

    def forward(self, source, targets, teacher_forcing_ratio=0.5): 

        init_state = self.encoder.init_hidden(source.shape[0]) 

        output, _ = self.encoder(source, init_state, 

self.node_embeddings)      #B, T, N, hidden 
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        output = output[:, -1:, :, :]             #B, 1, N, hidden 

#CNN based predictor 

        output = self.end_conv((output))          #B, T*C, N, 1 

        output = output.squeeze(-1).reshape(-1, self.horizon, 

self.output_dim, self.num_node) 

        output = output.permute(0, 1, 3, 2)       #B, T, N, C 

 

        return output 

 

Self-attention module 

Below is part of the sample code of the Self-attention module. 

class SelfAttention(nn.Module): 

    def __init__(self, in_dim, activation=F.relu): 

        super(SelfAttention, self).__init__() 

        self.chanel_in = in_dim 

        self.activation = activation 

         

        self.f = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, 

kernel_size=1) 

        self.g = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, 

kernel_size=1) 

        self.h = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, 

kernel_size=1)   

       

        self.gamma = torch.zeros(1).cuda() 

        #self.gamma = torch.zeros(1) 

 

        self.softmax  = nn.Softmax(dim=-1) 

 

        init_conv(self.f) 

        init_conv(self.g) 

        init_conv(self.h)  

        

    def forward(self, x): 

        """ 

            inputs : 

                x : input feature maps( B X C X DIM) 

            returns : 

                out : self attention feature maps                 

        """ 

 

        m_batchsize, C, dim = x.size() 



154 

 x_1 = x.view(m_batchsize, C, dim, 1) # B * C * dim * 1 

 f = self.f(x_1).view(m_batchsize, -1, dim) # B * C * dim 

 g = self.g(x_1).view(m_batchsize, -1, dim) # B * C * dim 

 h = self.h(x_1).view(m_batchsize, -1, dim) # B * C * dim 

 attention = torch.bmm(f.permute(0, 2, 1), g) # B * dim * dim 

 attention = self.softmax(attention) 

 self_attention = torch.bmm(h, attention) # B * C * dim 

 self_attention = self_attention.view(m_batchsize, C, dim) 

 out = self.gamma * self_attention + x 

 return out 


