Global Software Engineering Education Practice Continuum
Special Issue of the ACM Transactions on Computing
Education

TONY CLEAR, Auckland University of Technology, New Zealand
SARAH BEECHAM, Lero—The Irish Software Research Centre, University of Limerick, Ireland

We are pleased to introduce this Special Issue on Global Software Engineering Education published by the
ACM Transactions on Computing Education (TOCE) that focuses on educational practices to prepare students
for a global workplace. This issue comes at a time when universities are recognizing the need to provide
courses that address the challenges of distributed development and presents research that will facilitate course
leaders currently running, or embarking on, Global Software Engineering Education (GSE-Ed).

ACM Reference format:

Tony Clear and Sarah Beecham. 2018. Global Software Engineering Education Practice Continuum Special
Issue of the ACM Transactions on Computing Education. ACM Trans. Comput. Educ. 19, 2, Article 7 (January
2019), 8 pages.

https://doi.org/10.1145/3294011

1 INTRODUCTION

This Special Issue was sparked by recent interest in GSE-Ed evident at a workshop held in
August 2016 at the International Conference on Global Software Engineering (http://www.icgse.
org), which, in turn, was triggered by an ITiCSE Working Group Systematic Literature Review re-
port of the field [1]. GSE-Ed research looks at how university-based software engineering courses
can meet the needs of industry. The studies in this area suggest that conventional approaches
to teaching SE are increasingly outdated and lack authenticity. There is an urgent need for well-
trained global software engineers, since the majority of development jobs now involve some level
of globalization, where individuals from different cultures, geographies, and time zones must col-
laborate, share tasks, and share knowledge. In order to remain competitive and increase productiv-
ity, software organizations are practicing Global Software Engineering (GSE). GSE promises orga-
nizations certain advantages, such as access to a larger skills base, new markets, and reduced labor
costs. Yet, GSE projects often fail to realize hoped-for advantages, and research shows that this
is largely due to Global Distance (where teams suffer overheads associated with operating across
temporal, geographic, and cultural distances)—a symptom of distributed teamwork. Organizations
are attempting to improve their productivity by reducing global distance, improving individual
motivation, and strengthening team collaboration through careful task allocation [2], cultural and
interaction training [3], and scaling agile methods [4]. Preparing tomorrow’s engineers for the

This work was supported, in part, by Science Foundation Ireland grant 13/RC/2094 and co-funded under the European
Regional Development Fund through the Southern & Eastern Regional Operational Programme to Lero—The Irish Software
Research Centre (www.lero.ie).

Authors’ addresses: T. Clear; email: tony.clear@aut.ac.nz; S. Beecham; email: sarah.beecham@lero.ie.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the Owner/Author.

© 2018 Copyright held by the owner/author(s).

1946-6226/2018/01-ART7

https://doi.org/10.1145/3294011

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 7. Publication date: January 2019.



https://doi.org/10.1145/3294011
http://www.icgse.org
http://www.icgse.org
https://www.lero.ie
https://doi.org/10.1145/3294011

7:2 T. Clear and S. Beecham

High Level of Academic Effort Distributed GSE-Ed Courses
FULLY IMMERSIVE
(%]
o c
o )
Q SEMI IMMERSIVE s
3
o )
g —— - S B
2 00
g GSE SIMULATIONS, g
S PRACTICE ROLE PLAY ©
© et
o
GSE CASE STUDIES,
EXERCISES
Low Level of Academic Effort Co-located GSE-Ed Courses

Fig. 1. A continuum model of global software engineering education.

complexities of GSE is therefore imperative and requires more than producing engineers who can
develop code.

The article selection process started in 2016, when we solicited abstracts to review for suitability
for the special issue. We received 28 abstract submissions from which 15 were invited to submit full
articles, and 12 submissions were eventually received. Following two cycles of double-blind peer
review by up to four reviewers, we finally selected eight articles for publication in this bumper
special issue. We were pleased with the care taken by the reviewers, who we thank for their time,
and to the authors in their responses, and the variety and quality of the articles we present to you
here. Through the collection of articles that follow, we aim to provide sound examples of courses
and initiatives for GSE-Ed and identify new directions for future research and education.

2 GLOBAL SOFTWARE ENGINEERING CONTINUUM

In framing the set of articles in this special issue, we sought to classify them in some meaning-
ful way. Drawing on the debate on relative merits of three candidate approaches to the teaching
of GSE-Ed [5] and on the Work Integrated Learning continuum outlined in Clear et al. [6], we
developed the framework above as a continuum model of Global Software Engineering Education.

The continuum model shown in Figure 1 depicts a progression starting with lower instructor
effort co-located courses and components, which aim to provide GSE-Ed experiences through case
studies, exercises, role-play and simulations, in the classroom. Moving up the continuum we see half-
way houses of semi-immersive experiences provided through Open Source Software Development
team projects. At the top of the continuum sits the model most demanding on instructors and
with the highest degree of distribution, where we see fully distributed courses delivered through a
collaboration among several institutions. This special issue adopts this framework as an organizing
vehicle and presents the articles in descending order from fully immersive to simulations and finally
classroom exercises.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 7. Publication date: January 2019.



Global Software Engineering Education Practice Continuum 7:3

3 A CONTINUUM OF EIGHT GSE-ED SPECIAL ISSUE ARTICLES
3.1 Fully Immersive GSE Courses

The first of our articles fits the description of a fully immersive course, where students develop
software in projects that span different institutions, countries and time zones. Ivana Bosnic et al.’s
impressive longitudinal study places the student at the center of the investigation and traces their
progress over time to the point where we learn about the value of such courses to those students
who now work as professional software engineers in large and small organizations. The inclusion
of “Assessing the Impact of the Distributed Software Development Course on the Careers of Young
Software Engineers” in our special issue presents a rare opportunity to understand what students
think about these immersive courses from a real-world professional perspective. We learn about
the relevance of the course, and what the course offers over and above other software engineering
courses (which presumably are of the standard co-located project team variety). The results are
encouraging in addressing several known GSE problems to include strategic, cultural, communi-
cation, knowledge management, project and process management, and technical issues.

To understand the impact of the distributed software development (DSD) course, 79 former DSD
course students (mostly now employed in the Croatian IT industry—in companies representing a
range of sizes and levels of globalization)—completed a survey in which they were asked a range
of questions related to the relevance of the DSD course. Bosnic and colleagues present many com-
pelling and motivating results. The benefits that emerge include the ability to demonstrate new
skills to prospective employers, and giving students an edge and extra confidence during an in-
terview. Also, soft skills learned as a by-product were also important. An unexpected finding was
that the course had a social impact, in which working with students from other universities led
to long-lasting friendships and even a start-up. We encourage readers to read this article to find
out more about what can be learned from conducting these fully immersive distributed software
development courses, both from a project management, technical, and the all-important soft skills
viewpoint. Developing an engineering way of thinking, problem-solving, and wide theoretical
technical knowledge were deemed the most useful knowledge/skills learned.

Another strength of this first article is that the authors share their extensive experience of run-
ning distributed courses over 15 consecutive years. They observe, for example, a change in the
organizations that their students join, which many years ago started with 25% of students joining
distributed organizations, to now, after graduating, where practically all students end up working
for global companies however small. This suggests that GSE-Ed courses are becoming even more
important, and hence, the kind of advice offered in this special issue can help motivate all software
engineering undergraduate courses to change and update their current offerings.

The second in our list of articles, “Assessing Students’ IT Professional Values in a Global Project
Setting,” by Frezza et al., is set in the context of a fully immersive course, IT in Society, a collabora-
tion between Uppsala University in Sweden, and Gannon University and Rose Hulman Institute of
Technology in the United States. Working with a hospital in Uppsala as their client, students form
a whole cohort working jointly on an Open Ended Group Project [7] in which, given a considerable
scope for action, they ideate and frame the objective with their client and then work as a group
toward a resolution. In this article, Stephen Frezza and colleagues investigate how students and
alumni of the course perceive professional values in the quest of developing an instrument that
can assess the extent to which these have been developed in the course. So while the context is
fully immersive, the focus is on developing professional values as a consequence of exercising pro-
fessional practices. This is important work for those of us who proudly state the graduate attributes
that our students are meant to possess on completion of their degrees. Often these attributes are
expressed in terms of broad competences such as “learning how to learn” [8]. Competences have

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 7. Publication date: January 2019.


https://doi.org/10.1145/3274529
https://doi.org/10.1145/3274529
https://doi.org/10.1145/3231710
https://doi.org/10.1145/3231710

7:4 T. Clear and S. Beecham

been expressed in Ref. [9] as comprising “knowledge + skills + dispositions”. Of these, “disposi-
tions” are the most problematic, representing a mindset and tendency toward action. So to what
extent they can be effectively assessed remains a somewhat open question, cf. Ref. [10].

In a carefully designed process, the authors draw on relevant literature, which has bearing on
Global IT professional values, to develop a set of statements to deconstruct and crisply reflect
specific values.

Developing a set of Thurstone scales, they build a set of actionable value statements which rep-
resent behavioral aspects of an agreed set of values, developed and refined by an expert team of
12 colleagues. This led to an instrument with the aim of assessing student valuing of global IT pro-
fessional values. The validated instrument was emailed in a survey to both current students and
alumni of the course, with some 26 responses. Student responses were broadly in agreement with
the experts’ views suggesting an alignment of perspective on IT Professional values. In a com-
parison of their own values with those of the team, there were some interesting differences (e.g.,
“forgives teammates for technical and cultural mistakes”), suggesting the modeling of these values
by the team gave students insight into their own values. The authors acknowledge that this work
was exploratory, yet the instrument appears “inexpensive and reusable, and consequently shows
promise for use in the development and use of values-centered student learning outcomes.” As an
article investigating approaches to assessment of the affective as opposed to the more traditional
cognitive domain, this novel work charts an intriguing path toward the assessment of global IT
values.

In article three, “Managing Diversity in Distributed Software Development Education—A
Longitudinal Case Study,” Ivana Bosnic and colleagues discuss the diverse range of issues to be ad-
dressed in conducting fully immersive GSE courses. They draw on 14 years’ experience in running
a distributed course across three European Universities, combining Action Research and drawing
upon longitudinal case study data. The results are presented based on a three-layer model—the
institutional layer, the teaching layer, and the project layer—each of which has its own diverse
dimensions, which may become amplified across sites, and which are captured in a crisp set of key
takeaways. While concrete and practical strategies to address the issues identified are provided, the
authors also acknowledge the multi-layered nature of the diverse challenges that will be encoun-
tered in a fully immersive GSE course. Some of these institutional differences such as enrollment
systems, grading systems, and course volatility cannot be removed but need strategies to mitigate
them. Likewise, the number of participating students and disproportionate team numbers across
sites cannot be avoided. So, in many cases, a balancing act is required. A key conclusion is that
within the teaching teams, continuous interaction is critical, as well as a willingness to be open to
others’ opinions and ideas.

3.2 Semi-Immersive GSE Courses

Article four by Isométtonen and colleagues asks the question “Can Students Capitalize on Enabling
Learning Environments?” in their search for global employability. Isométtonen et al.’s article fo-
cuses on creating “enabling” learning environments that prepare students for the global work-
place. Also in common with Ivana Bosnic and colleagues’ article on course impact, appearing first
in our Special Issue, Isomottonen et al. have their lens firmly fixed on creating courses that give
students the opportunity to think for themselves. In the context of our course structure contin-
uum, we have termed this article as semi-immersive since the empirical study is designed around
student-driven project work and the use of Open Data,. The authors exercise a number of the di-
mensions of learning about GSE noted as missing in Clear et al. [1] (e.g., regulatory and intellectual
property issues, student responsibility and decision making, software process, and management
through self-reliance) and developing the well-rounded “independent” thinking student, which is

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 7. Publication date: January 2019.


https://doi.org/10.1145/3218310
https://doi.org/10.1145/3218310
https://doi.org/10.1145/3277568
https://doi.org/10.1145/3277568

Global Software Engineering Education Practice Continuum 7:5

especially important when building software in virtual teams. Methodologically, this article pro-
vides a unique example of an article that adopts a critical stance by positioning the student expe-
rience and opportunities for real learning within the wider context of the distortions imposed by
the steering mechanisms and regulatory context in which their course is situated.

Taking a qualitative approach in which a group of software engineering students were inter-
viewed, Isomottonen and colleagues warn of the dangers of too much regulation, in which edu-
cation system-imposed and group-imposed regulations narrow student opportunities for learning
and creativity. Students appear to embrace autonomy when offered, which was linked, not sur-
prisingly, to motivation. Offering students, as a group, the opportunity to take care of their own
learning was an important condition. These authors also advocate giving students complex and
open-ended problems.

The article takes the reader through courses run at their institution, the University of Jyvaskyla
in Finland, in which they explore giving the students control over their learning using Open Data
and project-based learning. Distilling the student responses, the authors present three thematic
networks representing students’ experiences of the education system: the first of which they term:
“Search for meaningfulness in ‘foundation’ education.” The second network presented describes
students’ experiences of constrained opportunities for learning, entitled “Opportunity narrowed;”
and a third network centers on aspects that underpin positive “Transformations and success.” Al-
though drawing on the results of semi-structured interviews with 13 students, this article succeeds
in shedding some light on the difficult and opaque question of what students gain from project-
based learning in terms of learning outcomes, and how those opportunities for learning can be
unwittingly narrowed. The resulting themes and networks can help other course leaders design
similar novel interventions that attempt to improve and widen students’ learning possibilities, and
prepare them for the complexities of GSE.

The fifth article in the issue “Exploring and Expanding GSE Education with Open Source
Software Development” by Deepti Mishra situates itself within the semi-immersive layer of our
GSE Education continuum. It reports experiences from the Norwegian University of Science and
Technology in adopting an Open Source Software Development (OSSD) approach as an alterna-
tive to their previous multi-site collaborative GSE course. The article provides an honest account
of the challenges and differences between the two approaches, framing the comparison within
the extended GSE taxonomy of Britto et al. [11]. The course aimed to teach GSE, with aspects of
outsourcing (not always part of GSE courses) and OSSD. It combined practical work with OSSD
projects and research seminars in which readings on key topics were critiqued and related to ex-
periences in the course. The authors argue that OSSD enabled students to realistically experience
many of the issues faced in a typical distributed GSE course, but with less demand on the instruc-
tor. The article adds to the debate on optimal approaches to teaching GSE coined by Beecham and
colleagues [12]. Some key messages relate to the need to manage risks in an OSSD project to en-
sure that the project will expose students to a core set of GSE challenges. One proposed strategy is
ensuring that a key member of the OSS project is available as a mentor to help with onboarding, so
that students can readily come to grips with the important but non-trivial task of comprehending
large and complex code bases [13], tool sets, and standards. Those complexities necessarily dictate
an initial learning phase in an OSSD project. Further risks to be managed are lack of responsive-
ness from the OSSD team, so selecting a suitable project and a supportive community to work with
are key considerations.

3.3 GSE Simulations and Practice Role-Play

In article six, Billingsley et al. report on a GSE-Ed related course they have been running for 6 years
at their Australian university. With a primary initial aim of exercising GSE Professional Practices

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 7. Publication date: January 2019.


https://doi.org/10.1145/3230012
https://doi.org/10.1145/3230012

7:6 T. Clear and S. Beecham

through extending the studio model delivery to a distance version of the course, the research
team explain how they emulate many GSE team practices in a local and time-restricted classroom
environment. Two layers of collaboration are set up in which small teams of students work on
different features of a common product. Students work intensively together on a given feature but
must collaborate with other teams on the common product. This experience is further enriched
as the course design requires students to use continuous integration, asynchronous communica-
tions channels, and work on complex software projects. The overhead of running such courses is
kept to a minimum, as the students are based at the same university and self-organize inter- and
intra-team collaborations to meet their goals. Course organizers therefore do not need to concern
themselves with uneven team sizes, re-adjustment of assessment schemes, and different university
structures, all of which is the case in the fully immersive experience we see in articles one, two, and
three.

The study reported here “Taking a Studio Course in Distributed Software Engineering from a
Large Local Cohort to a Small Global Cohort” takes an action research approach, where over a
number of years, a group of researchers and practitioners have tried to combine theory, action,
reflection, and practice to improve software engineering studio education. The authors find this
approach as particularly appropriate for their course that uses studio pedagogies, which are them-
selves grounded in theories of reflective practice and situated learning. The authors explain how
the original (co-located) course has been adapted to fit the needs of an online, geographically dis-
tributed course, delivered at a different university. This transfer allowed Billingsley and colleagues
to evaluate the distributed nature of the course, and compare the behavior of those students work-
ing remotely with those who met face to face occasionally. In all cases, students were forced to
work remotely, with data from development logs indicating that much of the development oc-
curred outside of synchronous class hours.

Although, in both example cases, much of the development is conducted in the same country
(and therefore with students from a similar culture and time zone), the distributed nature and
extensive use of asynchronous communication channels evident from this course indicate that
many GSE challenges are experienced. Transferring from a classroom-based studio course to an
online course allowed the authors to identify which parts of the course needed to change to meet
the needs of a geographically distributed course. As such, the authors claim that the resulting
course (detailed in their study) is extremely flexible, will suit large and small classes, and will
work as part of a local or a global course.

Article seven, “Evaluating GSD-Aware: A Serious Game for Discovering Global Software
Development Challenges” by Vizcaino and colleagues, fits within the GSE Simulation layer of our
continuum. The article argues for the merits of simulation as an approach to learning GSE (or
Global Software Development), echoing the views of Noll and Scacchi in Beecham et al. [12]. The
authors “propose the use of a serious game called GSD-Aware, with which students can ‘suffer’
some of the typical challenges of GSD by interacting with avatars and by using several means
of communication to solve a number of problems posed.” The article describes the game and an
evaluation of its effectiveness in helping students develop awareness of GSD challenges. Although
a relatively short (1 hour) intervention, the game did appear to have a positive impact on the GSE
knowledge of a cohort of 40 students. They realized that issues such as lack of coordination, lack
of trust between members of a team, cultural differences between team members, lack of commu-
nication, and differences in time zones had a far greater influence than they had initially thought.

3.4 GSE Case Studies and Exercises

In the final article, “Building LEGO Towers: An Exercise for Teaching the Challenges of Global
Work,” Sablis and colleagues “present a small-scale exercise that uses LEGO bricks to teach skills

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 7. Publication date: January 2019.


https://doi.org/10.1145/3218284
https://doi.org/10.1145/3218284
https://doi.org/10.1145/3218279
https://doi.org/10.1145/3218279
https://doi.org/10.1145/3218249
https://doi.org/10.1145/3218249

Global Software Engineering Education Practice Continuum 7:7

necessary for global work.” This article fits within the GSE exercises layer of our continuum, with
the authors suggesting such an exercise (of 75 minutes duration) as a complement to a larger GSE
course, or a partial substitute if such a course is not possible. The exercise involves the students
building two identical LEGO towers, working “as a virtual team with members separated in dif-
ferent locations, starting with an incomplete set of instructions and an incomplete set of building
blocks. The communication between remote team members is restricted to the simulated lean
communication channels, such as written notes delivered by facilitators.” The authors argue that
the exercise can usefully explore particularly troublesome GSE issues in depth, in a concrete and
meaningful way. Unlike many of the other articles in the issue, which have adopted a macro-level
view, this article outlines the results of a micro-level set of task-based experiments. After iden-
tifying a set of threshold concepts in GSE, the article provides a carefully designed and detailed
analysis of varying experimental configurations of the exercise, and their outcomes. The results
suggest that the exercise may provide an accessible and relatively low-effort means of teaching
and evaluating selected, highly focused but important aspects of GSE knowledge.

4 FINAL WORDS ON GSE-ED RESEARCH

The eight articles included in our special issue reflect the breadth of research currently conducted
on GSE-Ed course design in undergraduate programs. GSE principles are shown to be taught in a
multitude of ways, and there are examples of quick and easy solutions that should motivate those
thinking of embarking on this form of teaching for the first time. In addition, for those who have
experience in teaching such courses, there is a raft of new ideas and guidelines to draw on. For
example, those new to GSE-Ed could start with the quick to administer GSE-Ed games and simula-
tion options offered in articles seven and eight. Alternatively, something a little more heavyweight
might be more suitable like the studio course detailed in article six where students engaging in
GSE professional practices develop large software systems that require cross team collaboration.
Moving away from the classroom and for those wanting their students to experience building real
systems and working remotely, the open source option is what we view as semi-immersive. Es-
says on professional values, approaches to their assessment, and how to prepare the student for
the global workplace, in terms of lifelong learning and students’ disposition to learn are topics of
debate in article four. Finally, for the fully immersive experience, in which the students experience
the gamut of responsibilities and issues present in GSE, see articles one, two, and three. The effort
of running the multi-site, multi-university courses across different countries and time zones are
shown to reap rich rewards for both the student, the profession they enter, and the reputation of
the university who runs the courses.

We hope that the ideas and guidelines presented in this special issue will provide a valuable
resource for educators embarking on GSE-Ed courses and stimulate further research in this area,
which is only now starting to build momentum and become identified as an educational field in
its own right.

ACKNOWLEDGMENTS

We also thank the many reviewers who participated in this special issue; the final set of articles
have benefitted from the constructive feedback.

REFERENCES

[1] Tony Clear, Sarah Beecham, John Barr, Mats Daniels, Roger McDermott, Michael Oudshoorn, Airina Savickaite, and
John Noll. 2015. Challenges and recommendations for the design and conduct of global software engineering courses:
A systematic review. In ACM Proceedings of the Working Group Reports of the 2015 on Innovation & Technology in
Computer Science Education Conference (ITiCSE’15).

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 7. Publication date: January 2019.



7:8

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]
[10]
(11]
[12]

[13]

T. Clear and S. Beecham

Outi Sievi-Korte, Sarah Beecham, and Ita Richardson. 2019. Challenges and recommended practices for software
architecting in global software development. Information and Software Technology 106 (2019), 234-253. https://doi.
0rg/10.1016/j.infs0f.2018.10.008

Miguel J. Monasor, Aurora Vizcaino, Mario Piattini, John Noll, and Sarah Beecham. 2014. Evaluation of a simulation
platform for interaction training: A multi-phased methodology. In Proceedings of the Frontiers in Education Conference
(FIE’14). TEEE.

Mohammad Abdur Razzak, Ita Richardson, John Noll, Clodagh Nic Canna, and Sarah Beecham. 2018. Scaling agile
across the global organization: An early stage industrial SAFe self-assessment. In Proceedings of the 13th Conference
on Global Software Engineering. ACM.

Sarah Beecham, Tony Clear, John Barr, Mats Daniels, Michael Oudshoorn, and John Noll. 2017. Preparing tomorrow’s
software engineers for work in a global environment. IEEE Software 34, 1 (2017), 9-12.

Tony Clear, Gwyn Caxton, Simon Thompson, and Sally Fincher. 2011. Cooperative and work-integrated education
in information technology. In Integrated Handbook for Cooperative and Work-Integrated Education, R. Coll and K.
Zegwaard (Eds.). World Association for Cooperative Education Inc, Lowell, MA, 182-196.

Mats Daniels, Christine Faulkner, and Ian Newman. 2002. Open ended group projects, motivating students and
preparing them for the “real world.” In Proceedings 15th Conference on Software Engineering Education and Train-
ing (CSEE&T’02).

Tony Clear, Elin Parsjd, Asa Cajander, Mats Daniels, Nanna Lagerqvist, and Roger McDermott. 2016. A framework
for writing learning agreements. In Proceedings of the 46th ASEE/IEEE Frontiers in Education Conference, D. Trytten,
H. Matusovich, and M. Castro (Eds.). IEEE.

Stephen Frezza et al. 2018. Modeling global competencies for computing education. In Proceedings of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science Education. ACM, 348-349.

Tony Clear. 2017. Meeting employers expectations of DevOps roles: Can dispositions be taught? ACM Inroads 8, 2
(2017), 19-21.

Ricardo Britto, Claes Wohlin, and Emilia Mendes. 2016. An extended global software engineering taxonomy. Journal
of Software Engineering Research and Development 4, 1 (2016), 3.

Sarah Beecham, Tony Clear, Daniela Damian, John Barr, John Noll, and Walt Scacchi. 2017. How best to teach global
software engineering? Educators are divided. IEEE Software 34, 1 (2017), 16-19.

Tony Clear. 2005. Comprehending large code bases—The skills required for working in a “brown fields” environment.
SIGCSE Bulletin 37, 2 (2005), 12-14.

ACM Transactions on Computing Education, Vol. 19, No. 2, Article 7. Publication date: January 2019.


https://doi.org/10.1016/j.infsof.2018.10.008
https://doi.org/10.1016/j.infsof.2018.10.008

