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Abstract 

With the growing use of solar thermal energy systems and small scale photovoltaic power 

generation by domestic users, there is increasing need to develop intelligent controllers that allow 

these users to efficiently manage the energy generated by these systems. Ideally these intelligent 

controllers will be able to forecast the availability and magnitude of the solar resource to plan in 

advance for periods when the solar irradiance magnitude is small or unavailable. In addition, the 

method used to provide this forecast needs to be adaptable to a range of timescales and locations. 

With this in mind, this study examined the possibility of providing a 24-hour ahead forecast of 

hourly global solar irradiation in New Zealand using several approaches but with particular 

reference to nonlinear autoregressive recurrent neural networks with exogenous inputs (NARX). 

 

Hourly time series data for nine historic weather variables recorded over a three year period was 

used to train and test the forecasting methods for New Zealand’s largest city, Auckland. Results 

from forecasts based on the NARX were compared with an artificial neural network (ANN) based 

Multilayer Perceptron (MLP) method, a statistical approach using auto regressive moving average 

(ARMA) and a reference persistence approach. Predicted values of hourly global solar irradiation 

were compared with the measured values, and it was found that the root mean squared error 

(RMSE) was 0.243 MJ/m2 for the NARX method as compared to 0.484 MJ/m2, 0.315 MJ/m2 and 

0.514 MJ/m2 for the MLP, ARMA and persistence approaches respectively. Subsequently the 

NARX approach was used to forecast global solar irradiation for other major cities across New 

Zealand. The results demonstrate the ability of the NARX approach to forecast irradiation values 

at a later time and across a number of different locations. As such it is foreseeable that such an 

approach could serve as the basis of a forecasting system in future intelligent controllers.    
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1. Introduction 

Building and operating reliable solar energy systems requires information about global solar 

irradiation in the region where the system is. To best manage the energy generated by these 

systems, the solar irradiation has to be predicted accurately for their location. This can be achieved 

using various solar irradiation estimation techniques that can help efficiently optimize energy 

distribution between loads and the local grid.  

 

In many cases limited coverage of irradiation measuring networks prompts the development of 

techniques for estimating and forecasting the global irradiation using climatological parameters 

(Maitha, et al., 2011). Several techniques have been developed in order to estimate solar 

irradiance data at different scales including empirical (Loutzenhier et al., 2007), analytical (Ulgen 

and Hepbasli, 2009) and numerical techniques, as well as neural network approaches (Moustrisa 

et al., 2008). Additionally, a significant number of studies have used physics-based approaches 

as shown by Gueymard, (2005, 2008), and Perez at al., (2007) and also statistical forecasting of 

solar irradiation (Goh and Tan, 1977).  

 

Approaches based on statistical processes such as autoregressive (AR), moving-average (MA), 

autoregressive moving-average (ARMA), autoregressive-integrated moving-average (ARIMA) 

and Markov chain have also been widely used. However, these approaches require some statistical 

transformations to the data before they are applied. Due to these transformations, it is not possible 

to ensure that the results are accurate and represent a precise correlation with the measured solar 

irradiance values (Al-Alawi and Al-Hinai, 1998) and so it is necessary to develop alternative 

approaches (Mellit et al., 2010).  

 

In this regard, artificial neural network (ANN) techniques for predicting irradiation have been 

shown to have greater accuracy than other techniques such as linear, nonlinear and fuzzy 

approaches (Yadav and Chandel, 2014) and so have been used in a number of solar energy 

applications. Kalogirou, (2001) has reviewed the use of ANN in renewable energy systems 

applications while Mellit and Kalogirou, (2008) and Mellit et al. (2009) reviewed ANN’s in 

photovoltaic applications and for sizing of photovoltaic systems respectively. Similarly authors 

such as Esen et al. (2008) have examined adaptive neuro-fuzzy inference systems (ANFIS) and 

ANN models of ground-coupled heat pump (GCHP) systems.  

 

Based on the predictive capabilities of ANN systems, a number of studies have begun to examine 

the ability of these systems to forecast future values of solar irradiation. Mellit, (2008) presented 



  

a review of artificial intelligence techniques for solar radiation forecasting and concluded that 

ANN models can be generalized to be used in different locations around the world. 

 

In an early study in this area Sfetsos and Coonick, (2000) introduced an approach for a single step 

ahead prediction of mean hourly solar radiation received by a horizontal surface through ANN 

and ANFIS models. It was shown that the performance of the models was enhanced when a wind 

direction term was included in the input list. They also found that the best prediction resulted from 

the use of a multivariate Levenberg Marquardt (LM) case that exhibited a 74% improvement in 

the Root Mean Square error when compared with a persistence approach. The results indicated 

that the ANN models predict the solar radiation time series more effectively than procedures 

based on the clearness index. 

 

Christophe et al. (2010) also used an ANN prediction approach based on Multi-Layer Perceptron 

to determine global irradiation at daily horizon (d+1). Their proposed model was compared with 

AR, ARMA, k-Nearest Neighbors (k-NN) and Markov Chains approaches. Without pre-

processing AR and ANN models showed a daily normalised Root Mean Square Error (nRMSE) 

of approximately 21% compared to Markov chain, Bayes and k-NN methods where nRMSE was 

in the order of 25–26%. 

 

More recently, Voyant et al. (2014) developed an ANN based MLP model that was applied to 

two years of pre-treated time series data in order to forecast global solar irradiation 24-hours 

ahead. The results of the MLP were compared with those of ARMA and persistence approaches 

and showed that the prediction error could be reduced when compared to ARMA the persistence 

approach. 

 

Similarly, Rich et al. (2013) developed statistical models, ANN models, satellite imaging based 

models, numerical based models and hybrid methods for solar irradiance forecasting. In their 

work, they found that regressive methods such as AR, MA, ARMA and ARIMA take advantage 

of the correlated nature of the irradiance observations and tend to work well in both data-poor and 

data-rich environments. However, it was concluded that ANN modelling offers improved 

nonlinear approximator performance and provides an alternative approach to physical modelling 

for irradiance data when enough historical data is available and are not typically temporally 

limited.  

 

 



  

Now, it is noted in the literature that physics-based, statistical and ANN based feed-forward 

network techniques have demonstrated their ability to predict future values of solar irradiation, 

however, recurrent neural network based methods have received little attention. Therefore this 

study aims to investigate several techniques for forecasting solar irradiation that could be 

implemented into future solar control systems, and particularly, the ability of nonlinear 

autoregressive recurrent neural networks to forecast global solar irradiation 24 hours in advance 

for a number of major New Zealand cities, as shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Map of New Zealand with major cities. 

 

2. Methodology 

For this work several forecasting techniques were utilised: NARX, MLP, ARMA and persistence. 

However, given the lack of attention it has received in the literature, the NARX ANN architecture 

is the main typology described in this paper.  

 

For each approach mentioned in this study, three years of historic hourly data for: Temperature 

(Tmax, Tmin), Barometric Pressure (P), Relative Humidity (RH), Solar Zenith Angle (SZA), 

Azimuth Angle (Az), Rain amount (Ra), Wind speed (Ws) and Wind direction (Wd) were taken 

from the National Institute of Water and Atmosphere’s (NIWA) CliFlo database (2014) to test 

each method, with hourly global solar irradiation 24 hours in advance being the target output 

variable.  
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For the ANN approaches, that is NARX and MLP, the input weather data was presented as 

unprocessed data, to study the effect of real input variables on the predicted values of the target 

variable. In doing this 70% of the historic data was presented to the network during training, 

allowing the network to be adjusted according to its error. Subsequently 15% of the data was used 

to measure network generalization, and to halt training when generalization stops improving. 

Finally, the remaining 15% of the data was used to test the network thus providing an independent 

measure of the network performance during and after training. 

For the ARMA and persistence approach, the same data was utilised in developing the forecast, 

however, a more detailed account of these methods is provided in the latter discussion of each of 

these. 

 

2.1 Input variables selection for all prediction methods 

The prediction accuracy of the proposed methods is dependent on the combination of weather 

predictor variables and training algorithm (Yadav and Chandel, 2014). This is particularly 

pertinent, as one of the key tasks in time series prediction is the selection of the input variables 

and the choice of variables depends on data availability, its quality and their correlation. To 

provide a sound analytical basis for the choice of variables, a statistical analysis was carried out 

to check the correlation of each input variable with global solar irradiance. The Pearson 

correlation coefficient (R) is a measure of the linear correlation between two variables, giving a 

value between +1 and −1 inclusive, where 1 is total positive correlation, 0 is no correlation, and 

−1 is total negative correlation. The R values for each input variable with respect to global solar 

irradiance is shown in Table 1. 

 Table 1: Regression values for input weather variables vs global solar irradiance 

Input variables R 

Max Temperature (Tmax) 0.462 

Min Temperature (Tmin) 0.404 

Relative Humidity (RH) 0.505 

Rain Amount (Ra) 0.055 

Solar Zenith Angle (SZA) 0.066 

Azimuth (Az) 0.183 

Pressure (P) 0.020 

Wind Speed (Ws) 0.002 

Wind Direction (Wd) 0.005 

 

From Table 1 it can be seen that RH, Tmax and Tmin have a reasonable degree of correlation with 

solar irradiance, while Ws and Wd have almost no correlation. To group the input weather 

variables, Moody et al. (1995), two-step sensitivity analysis technique was utilized. Once the most 



  

significant variables were determined (based on the regression values), twelve significant 

combinations of the nine weather predictor variables as shown in Table 2 were tested in order to 

investigate their effect on the accuracy of the global solar irradiation forecast for Auckland. 

Table 2: Test cases based on different combinations of input variables. 

Case  Input Parameters Case  Input Parameters 

1 Tmax, Tmin, P, RH, SZA, Az, Ra, Ws, Wd 7 P, RH, SZA, Az, Ra 

2 Tmax, Tmin, P, RH, SZA, Az, Ra 8 Tmax, Tmin, SZA 

3 Tmax, Tmin, P, RH, SZA, Az 9 Tmax, Tmin, P, SZA, Az 

4 P, RH, SZA, Az, Ra, Ws, Wd 10 RH, SZA, Az, Ra 

5 Tmax, Tmin, P, RH, SZA 11 Tmax, Tmin, P 

6 Tmax, Tmin, SZA, Az 12 Tmax, Tmin, Ws, Wd 

 

2.2 Nonlinear Autoregressive with exogenous input (NARX) 

Having determined the input variables, a NARX recurrent neural network was developed to 

forecast future values of global solar irradiation in Auckland, based on the previous values of 

global solar irradiation and the nine weather predictor variables described. The approach can be 

expressed mathematically by predicting future values of the solar irradiation time series y(t) from 

past values of that time series and past values of the weather predictor variables time series x(t). 

This NARX approach is based on the linear ARX approach that is commonly used in time-series 

modelling and can be represented by Equation Error! Reference source not found., where the 

next value of the dependent output signal (global solar irradiation) y(t) is regressed on previous 

values of the output signal and previous values of an independent input signal (historic weather 

data). 

 𝑦(𝑡) = 𝑓 (𝑦(𝑡 − 24), 𝑦(𝑡 − 25), … , 𝑦(𝑡 − 𝑛𝑦), 𝑥(𝑡 − 24), 𝑥(𝑡 − 25), … , 𝑥(𝑡 − 𝑛𝑥)) (1) 

The NARX approach is implemented using a feed-forward neural network to approximate the 

function f. A diagram of the resulting network is shown in Figure 2, where the y(t) output series 

is predicted from past values of y(t) and another input series x(t). 

 

 

 

 

 

Figure 2: NARX block diagram 

There are different connection styles and learning algorithms in neural networks, the most 

common being the back propagation algorithm. The back propagation algorithm consists of two 
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phases: a training phase and recall phase (Fatih et al. 2008). Before the training phase starts, the 

weights of the network are randomly initialized. Then the output of the network is calculated and 

compared to the desired value. At each step during training, error of the network is calculated by 

means of gradient methods and used to adjust the weights of the output layer (Haykin, 1998). In 

the case of more than one network layer the error is propagated backward to adjust the weights of 

the previous layers. Once the weights are determined, after several training steps and correlation 

between different combinations of input variables with targets are finalized, the recall phase may 

run. In doing this the network output computations are performed using finalized iterations of 

input data and weights from the training phase. 

 

The training phase is important as it determines the success of the resulting network. In back 

propagation, there are two methods of updating the weights. In the first method, weights are 

updated for each of the input patterns using an iteration method. In the second method, used in 

this study, the mean value of input and output patterns of the training sets is calculated 

(Yousefizadeh and Zilouchian, 2001). As soon as the weight update values are obtained, the new 

weights and biases can be calculated using Equation 2. 

 

 𝑊𝑖𝑗,𝑛 =  𝑈𝑛 +  𝛼𝑊𝑖𝑗,𝑛 − 1 (2) 

where Wij,n is a vector of current weights and biases, α is the momentum factor rate which 

determines how the past weights will reflect to the current value, and Un  is the update function 

which can be chosen according to the problem and data type.  

 

According to Fatih et al. (2008) and Yousefizadeh and Zilouchian, (2001) the most commonly 

used equation solving algorithm is the LM algorithm. It can be considered as an alternative to the 

conjugate methods for second derivative optimization. In LM, the update function, Un  can be 

calculated using Equation 3. 

 𝑈𝑛 = −[𝐽𝑇  × 𝐽 +  µ𝐼]−1  ×  𝐽𝑇  × 𝑒 (3) 

where J is the Jacobian matrix that contains the first derivatives of the network errors with respect 

to the weights and biases, and e is a vector of network errors. The parameter µ is a scalar number 

and I is the identity matrix. Depending on when the µ parameter is large, the update function Un 

becomes identical to the basic back propagation (with a small step size). During processing the µ 

value decreases after each successful step and should be increased only when a tentative step 

increases the error term or performance function. Consequently the performance function is 

guaranteed to reduce or to become bounded at each iteration (Martin and Mohammad, 1994).  

 



  

In order to determine the performance of developed ANNs quantitatively, and verify whether 

there was any underlying trend in performance of the ANNs, the regression (R) and root mean 

squared error (RMSE) values were analysed. The root mean squared error (Equation 4) provides 

information on the short term performance and is a measure of the variation of predicated values 

around the measured data, where the lower the RMSE, the more accurate is the estimation.  

 RMSE = √
1

N
∑(Ip − Ii)²

N

i=1

 (4) 

where Ip  is the predicted solar irradiance in MJ/m², Ii is the measured solar irradiance in MJ/m², 

and N denotes the number of observations. 

 

2.2.1 Number of Hidden Neurons and Delays 

Now in developing a NARX ANN there is an important trade-off to be made between the size 

and the predictive capability of the network. If the number of neurons or number of delays is 

increased, the network has the tendency to overfit the data and allows the network to solve more 

complicated problems but on the other hand requires more computation. Therefore the effect of 

changing the number of neurons in the hidden layer, increasing and decreasing the number of 

delays was also investigated. During experiments both the number of neurons in the hidden layer 

and the number of delays in the tapped delay lines were increased until the network performed 

well in terms of the root mean square error and the regression values. Using tapped delay lines in 

the network is essential as it stores previous values of x(t) and y(t) sequences. The number of 

hidden neurons, network delays and time steps for training, validation and test were varied to 

determine which network exhibited the best performance.  

 

In this respect, an initial network was developed with the minimum number of neurons and this 

the number was increased until the network performed well in terms of the root mean square error 

and regression values. During this phase, each proposed configuration was trained multiple times 

to stabilize the weight initialization process and deliver the best accuracy in the shortest 

processing time. As such, networks with up to 250 neurons were examined as part of this 

sensitivity analysis, however, it was found that a network of 90 neurons was more than adequate, 

as beyond this the computing time of the network increased significantly without significant 

increase in the accuracy, similarly delays between 1 and 5 were also tested.  

 

Computing time was observed and it was noted that time increased with increasing numbers of 

neurons or delays. However, after several trials, it was decided that the most suitable network, 



  

considering accuracy and computing time, had 90 hidden neurons and 2 delays in the tapped delay 

lines. The reason computing time was closely monitored, was because if the approach was to be 

implemented on a standalone hardware platform, such as a solar controller, processing power and 

memory would be limited compared to desktop resources. Using the weather data for Auckland 

from Case 2 as an example, Table 3 shows the RMSE and R values for various numbers of neurons 

in the hidden layer. 

Table 3: RMSE, R and computing time values for different numbers of neurons and delays 

using Case 2 weather data 

Number of 

Neurons 

Number of  

Delays  

RMSE 

(MJ/m2) 

R  Computing Time 

(min:sec)  

5 2 0.287 0.950 00:20 

10 2 0.277 0.951 00:24 

20 2 0.274 0.952 00:22 

30 2 0.266 0.955 00:48 

40 2 0.257 0.957 00:53 

50 2 0.263 0.956 00:50 

50 3 0.249 0.964 01:02 

90 2 0.243 0.963 01:20 

90 3 0.232 0.966 02:20 

90 5 0.221 0.969 04:42 

150 2 0.251 0.963 02:02 

200 2 0.251 0.963 04:33 

250 2 0.247 0.964 05:10 

 

2.2.2 NARX Results 

To validate the approach used, the root mean squared error (RMSE) performance function was 

examined during the training phase. Network training could be stopped early by the validation 

vectors if the network performance on the validation vectors failed to improve or remained the 

same, as indicated by an increase in the root mean square error of the validation samples. Test 

vectors were used as a further check that the network was generalizing well, but did not have any 

effect on training. The best validation performance for the Auckland weather data shown in Case 

2 was 0.2699 MJ/m2 at epoch 9 (a measure of the number of times all of the training vectors are 

used once to update the weights) with seven input variables. 

 

Further, the network outputs with respect to the target for training, validation, and test sets are 

shown in Figure 3. The dashed line in each axis represents the perfect result, that is: outputs = 

targets. The solid line represents linear best fit between the outputs and targets. For this problem, 

the fit is reasonably good for all data sets, with the overall regression values as high as 0.963. 



  

 

Figure 3: Regression analysis of the network outputs with respect to targets for training, 

validation and test sets 

For the twelve cases described in Table 1, the NARX network architecture with LM training 

algorithm was trained, validated and tested. Values of RMSE and regression were closely 

monitored to find the best approach; Table 4 shows the RMSE and R values for 90 neurons in the 

hidden layer.  

Table 4: RMSE and Regression values for all 12 NARX networks 

Case RMSE (MJ/m2) R  Case RMSE (MJ/m2) R  

1 0.259 0.956 7 0.270 0.953 

2 0.243 0.963 8 0.270 0.953 

3 0.257 0.957 9 0.259 0.956 

4 0.266 0.953 10 0.274 0.952 

5 0.268 0.953 11 0.280 0.949 

6 0.261 0.956 12 0.277 0.950 

 

Figure 4 illustrates this point further, by showing the forecast for an arbitrarily selected single 

day, that for the first three cases there is correlation between the measured and NARX forecast 

values for global solar irradiation in Auckland. However, in Table 4, it can be seen that Case 2 is 

the best among all 12 configurations, with a 0.243 MJ/m2 RMSE and a 0.963 regression value. 



  

 

Fig. 4: Measured and predicted irradiation values for Auckland using NARX ANN  

Exploring the predictive capability of the NARX architecture further, Figure 5 shows a randomly 

selected one week forecast of global solar irradiation in Auckland using the weather data from 

Case 2, presented earlier.  It can be seen that over this single week, that the NARX forecasts the 

solar irradiation with a high degree of accuracy.  

 

Figure 5. Measured and predicted solar irradiation values using NARX ANN 

2.3 Other forecasting techniques 

Having developed an appropriate NARX ANN forecasting system for Auckland, it was decided 

to benchmark this approach against three other common forecasting approaches: a Multilayer 

Perceptron ANN (MLP), an Auto Regressive Moving Average (ARMA) prediction and a 

persistence forecast to provide a comparative assessment of their forecasting abilities in 

Auckland. 
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2.3.1 Multilayer perceptron (MLP)  

MLP is a feed forward ANN approach that maps a set of input data onto a set of appropriate 

output data. An MLP is made of several layers: one input layer, one or several intermediate layers 

and one output layer as shown in Figure 6. Neurons in input layer only act as buffers for 

distributing the input signals xi (i=1, 2….n) to neurons in the hidden layer. As shown in Figure 7, 

each neuron j in the hidden layer sums up its input signals Xi after weighting them with the 

strengths of the respective connections wij from the input layer and computes its output yi as a 

function f of the sum given by Equation 5. 

 

 𝑦𝑖 = 𝑓 (∑ 𝑤𝑗𝑖𝑥𝑖

𝑛

𝑖=1

) (5) 

f can be a simple threshold function or a sigmoidal, hyperbolic tangent or radial basis function.  

 

Figure 6. Multi-layered perceptron (MLP) network 

In most cases, a single neuron is of no interest however, interconnected single neurons build a 

network of neurons that can solve complex problems such as classification, pattern recognition 

and time series prediction. The output of neurons in the output layer is computed similarly and 

the backpropagation and gradient descent are the most commonly adopted MLP training 

algorithm. The MLP gives the change ∆wji the weight of a connection between neurons i and j as 

given by Equation 6. 

 

 ∆𝑤𝑗𝑖 = 𝜂𝛿𝑗𝑥𝑖 (6) 

where η is a parameter called the learning rate and δj  is a factor depending on whether neuron j 

is an input neuron or a hidden neuron. 



  

 

 

 

 

 

 

Figure 7. 

Detail of the perceptron process 

For output neurons, Equation 7 applies, where 𝑛𝑒𝑡𝑗 is the total weighted sum of input signals to 

neurons j and 𝑦𝑗
(𝑡)

 is the target output for neuron j. 

 𝛿𝑗 = (
𝜕𝑓

𝜕𝑛𝑒𝑡𝑗
⁄ ) (𝑦𝑗

(𝑡)
− 𝑦𝑗) (7) 

And for hidden neurons as there are no target outputs Equation 8 applies, where the difference 

between the target and actual output of a hidden neurons j is replaced by the weighted sum of the 

𝛿𝑞 terms already obtained for neurons q connected to the output of j. 

 

 𝛿𝑗 = (
𝜕𝑓

𝜕𝑛𝑒𝑡𝑗
⁄ ) (𝛴𝑞𝑤𝑗𝑞𝛿𝑞) (8) 

The process begins with the output layer, the δ term is computed for neurons in all layers and 

weight updates determined for all connections, iteratively. The weight updating process can 

happen after the presentation of each training pattern (pattern-based training) or after the 

presentation of the whole set of training patterns (batch training). Training the epoch is completed 

when all training patterns have been presented once to the MLP. 

 

A commonly adopted method to speed up the training is to add a “momentum” term to Equation 

9, which effectively lets the previous weight change influence the new weight change: 

 ∆𝑤𝑖𝑗(𝐼 + 1) = 𝜂𝛿𝑗𝑥𝑖 + 𝜇∆𝑤𝑖𝑗(𝐼) 
(9) 

 

where ∆𝑤𝑖𝑗(𝐼 + 1) and ∆𝑤𝑖𝑗(𝐼) are weight changes in epochs (I+1) and (I), respectively, and µ 

is the “momentum” coefficient (Jayawardena & Fernando, 1998). Now using the weather data 

from Case 2, presented earlier, Figure 8 shows a randomly selected one week forecast of global 

solar radiation in Auckland using the ANN based MLP architecture. RMSE for the ANN based 

MLP approach was found to be 0.484 𝑀𝐽/𝑚2 and it can be seen that, in general, the MLP network 

is able to provide a reasonable forecast of the future irradiation values. 

 

 



  

 

Figure 8. Measured and predicted solar irradiation values using an MLP ANN 

 

2.3.2 Auto Regressive Moving Average (ARMA) 

ARMA is a type of the time-series analysis that can be used in situations that deal with a large 

amount of observed data from the past. The ARMA system is developed using Equation Error! 

Reference source not found.0 and consists of two parts, the auto-regressive (AR) part and the 

moving average (MA) part. 

 𝑆(𝑡) = ∑ 𝛼𝑖𝑆(𝑡 − 𝑖) + ∑ 𝛽𝑗𝑒(𝑡 − 𝑗)

𝑞

𝑗=1

𝑝

𝑖=1

 (10) 

where S(t) is the forecasted solar irradiance at time t. In the AR part, p is the order of the AR 

process, and 𝛼𝑖 is the AR coefficient. In the MA part, q is the order of the MA error term, 𝛽𝑗 is 

the MA coefficient and e(t) is the white noise that produces random uncorrelated variables with 

zero mean and constant variance (Rajagopalan and Santoso 2009). Typically, this method requires 

large amount of historical data to obtain the ARMA, that is, to find the orders p, q and the 

coefficients 𝛼𝑖 and 𝛽𝑗. In addition, due to the geographical differences, each location requires its 

own unique coefficients. Based on the given historical data, the construction of the ARMA for 

each location consists of two phases, identifying the orders p, q and determining the coefficients 

𝛼𝑖 and 𝛽𝑗.  

 

The mathematical methods of finding the orders and coefficients of the ARMA architecture are 

introduced in Torres et al. (2005). The order identification is proposed by Daniel and Chen (1991), 

and coefficients determination is calculated by applying the Yule-Walker relations for i and the 

Newton-Raphson algorithms for j.  
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The ARMA approach was implemented using the MATLAB System Identification Toolbox using 

the same three years of historical data used for ANN based NARX and MLP approaches. Orders 

and coefficients for the ARMA model were calculated, as shown in Table 5. 

Table 5: Orders and coefficients of the realized ARMA system 

p q 𝛂𝐢 𝛃𝐣 

 

2 

 

3 
𝛂𝟏 = −𝟏. 𝟔𝟔𝟐 

𝛂𝟏 = 𝟎. 𝟕𝟖𝟓𝟔 

𝛃𝟏 = −𝟎. 𝟑𝟐𝟐𝟑 

𝛃𝟐 = 𝟎. 𝟔𝟎𝟕𝟒 

𝛃𝟑 =0.0591 

 

Utilising these parameters the global solar irradiance in Auckland was forecast using Equation 11 

giving the results for a single week (as used in the MLP forecast) as shown in Figure 9, with a 

RMSE of 0.315 𝑀𝐽/𝑚2. From this it can be seen that on the first and seventh day the ARMA 

forecast values vary considerably from the actual data, while on days 2-6 the forecasted values 

resemble the actual data.  From this it can be suggested that the ARMA approach performs well 

on a sunny days and its accuracy decreases with increasing clouds cover. 

 

 𝑆(𝑡 + ℎ) = ∑ 𝛼𝑖𝑆(𝑡 − 𝑖)

𝑝

𝑖=1

+ ∑ 𝛽𝑗

𝑞

𝑗=1

𝑒(𝑡 − 𝑗) (11) 

where S(t+h) is the forecasted solar irradiance at time t+h.  

 

Figure 9. Measured and predicted solar irradiation values using ARMA 

 

2.3.3 Persistence Forecasting Approach 

As a comparative study, a persistence forecast was developed using Equation 12 to provide the 

day-ahead forecast (ℎ = 24 ℎ𝑜𝑢𝑟𝑠).  

 𝑆(𝑡 + ℎ) = 𝑆(𝑡) (12) 

where S(t+h) is the forecast solar irradiance at time t+h. 
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Figure 10 shows a one week forecast of global solar irradiance in Auckland using a persistence 

approach and the same data used for the MLP and ARMA systems. The average RMSE for the 

persistence forecast was found to be 0.514 𝑀𝐽/𝑚2, which was the highest of all the prediction 

methods discussed. It can be seen in Figure 10 that the persistence model performs well on days 

3, 4, 5 and 6 whereas the forecasted values for days 1, 2, and 7 vary considerably from the actual 

data.  

 

Figure 10. Measured and predicted solar irradiation values using a persistence approach  

 

3. Results 

3.1 Comparison of Methods 

In the previous section a discussion of each method was presented and some broad findings were 

presented, where the same three years of measured data used for the ARMA, MLP and NARX 

approaches were utilized, with global solar irradiation as the objective function. For each forecast 

approach the root mean square errors were closely monitored to quantify the performance of the 

approach and assess their accuracy.  Now, Table 6 shows the RMSE and nRMSE values using 

Equation 4 and 13 respectively for all four approaches, where the same number of hourly data 

(26363 samples) points for the input variables and the target variable (Global Solar Irradiance) 

were used to forecast the day ahead solar irradiance in 𝑀𝐽/𝑚2 for a single year. 

 

 nRMSE = √
1

N
∑(Ii − Ip)

2
/Ii,max − Ii,min

N

i=1

 (13) 

where Ip  is the predicted solar irradiance in MJ/m², Ii is the measured solar irradiance in MJ/m², 

and N denotes the number of observations. 

Table 6: RMSE and nRMSE values for all forecasting approaches 

Approach RMSE (MJ/m2) nRMSE (MJ/m2) 
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MLP 0.484 0.0968 

NARX 0.243 0.0495 

ARMA 0.315 0.0656 

Persistence 0.514 0.0901 

From Table 6 it can be seen that the ARMA approach performs well in terms of the annual RMSE 

value. Similarly, it was previously demonstrated that the MLP approach performed well for 

certain days but the RMSE value increases as the number of data sets increases due to the feed-

forward architecture of the approach, this is borne out by its poor RMSE.  In contrast the NARX 

approach appears to perform well in terms of short term and long term forecasting, and has the 

lowest annual RMSE of the forecasting approaches tested.   

 

To illustrate this point further, Figure 11 shows an example of the day ahead solar irradiation 

forecast and measured data curves for all four methods for 1 January 2014 in Auckland. From this 

it can be seen that the NARX forecast closely follows the actual measurements, whereas the 

persistence forecast shows a significant under-prediction. 

 

Figure 11. Day ahead solar irradiation forecast and actual data for Auckland on 1 January 2014 

 

3.2 Irradiation Prediction for New Zealand Cities 

Having determined the most suitable method for forecasting solar irradiation for Auckland, the 

NARX based Case 2 (as given in Table 2 and trained with data from each location) was used to 

predict global solar irradiation in ten cities across New Zealand. Figure 12 shows the forecast and 

measured results for a common single arbitrary day from a one year prediction horizon. Though 

there is a degree of variation for some locations, as a result of choosing a common single day 

rather than the best day, it can be seen that using real data to train the ANN gives predicted values 
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of global irradiation similar to those measured for the majority of the locations. In this regard, it 

suggests that recurrent NARX with the LM training algorithm offers a suitable predictive tool for 

global irradiation in New Zealand. Moreover, it shows that training neural networks with real data 

can deliver satisfactory prediction of the output variable, in this case the solar irradiation.  
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Figure 12: Predicted irradiation for New Zealand cities 

4. Conclusion 

 The need for improved solar controllers necessitates the ability of such devices to have an 

understanding of the future magnitude of the solar resource. This work has examined possible 

ways in which this can be achieved, with particular reference to a NARX ANN forecasting 

method. In testing the methods input and target data were used unprocessed to study the real 

effects of input variables on outputs. Based on an analysis of the root mean squared error, 

regression and time series response, a NARX approach was proposed as a means to forecast global 

solar irradiation values at a later time. Subsequently, the NARX architecture was used to 

successfully forecast global solar irradiation in ten major cities across New Zealand. These results 

have demonstrated the generalization capability of this approach and its ability to produce 

accurate forecasts for global irradiation that can be translated to a number of diverse locations. 

On this basis it is conceivable that such a NARX ANN forecasting approach could be embedded 

into future solar controllers to better manage the energy generated by solar energy systems. 
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