

User Directed Search Based
Reverse Engineering

Frederik Schmidt

Student-ID: 787975

A thesis submitted to Auckland University of Technology in partial
fulfilment of the requirements for the degree of Master of Computer and

Information Sciences (MCIS)

2009

School of Computing and Mathematical Sciences

Primary Supervisor: Andy Connor

Secondary Supervisor: Stephen MacDonell

II

Abstract

The current research represents the planning, design, implementation and evaluation

of a user directed software clustering approach that utilizes Search Based Software

Engineering (SBSE). The aim of this research is to examine if a user directed software

clustering approach contributes to the quality of software clustering. Because of the

explorative and constructive character this research project utilises the System

Development Research Methodology.

This research is enabled by the implementation of the Search Based Reverse

Engineering (SBRE) component. The SBRE component features multiple similarity

measurements and the inclusion of user constraints in the clustering process to create

different implementation perspectives of the software system depending on the

requirements and preferences of the stakeholders. These similarity measurements are

based on software metrics, which measure different software-attributes. The SBRE

component utilizes a greedy and tabu search algorithm for the identification of the

cluster landscape of the analyzed software systems.

The evaluation showed that a user controlled SBSE cluster approach is able to adapt to

different user configurations and derive corresponding cluster landscapes from

software systems. Different measures are introduced to control the cluster process. It

has been shown how these measures contribute to the quality of the clustering. It is

demonstrated that tabu search is applicable in the field of software clustering. Finally,

it has been examined that a multiple metric approach allows adapting the clustering

process to the requirements of the stakeholders and the design of the software system

to optimize the clustering result.

III

Attestation of Authorship

“I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by

another person (except where explicitly defined in the acknowledgements), nor

material which to a substantial extent has been submitted for the award of any other

degree or diploma of a university or other institution of higher learning.”

Yours sincerely,

Frederik Schmidt

IV

Acknowledgements

There are many who supported to the completion of this work. To these individuals I

express my most sincere thanks.

In particular, I wish to express my gratitude to my supervisors Dr. Andrew Connor and

Prof. Steven MacDonnell for their continued encouragement and invaluable

suggestions during this work.

I would also like to thank the staff and lecturers from the Auckland University of

Technology, who supported me during the past two years of my studies. Furthermore,

I would like to thank my postgraduate colleagues and friends for their personal

encouragement and great support during this study.

Special thanks goes out to my partner for her patient and enormous support during

good and tough times of this research. Her encouragement helped me through to the

completion of this research.

V

Table of Contents

Abstract .. II

Attestation of Authorship .. III

Acknowledgements .. IV

List of Figures ... VIII

List of Tables ... X

List of Algorithms .. X

List of Abbreviations .. XI

1 Introduction .. 1

1.1 Motivation and Background ... 1

1.2 Goal of the Research Project .. 2

1.3 Thesis Structure .. 4

2 Literature Review .. 6

2.1 Software Architectures ... 6

2.1.1 Artefact.. 7

2.1.2 Complexity .. 7

2.1.3 Cohesion and Coupling ... 9

2.1.4 Software Architecture Views .. 10

2.1.5 Ensuring Architectural Quality .. 12

2.2 Search Based Software Engineering ... 14

2.2.1 Classification of Metaheuristics .. 15

2.2.2 Implementation of Metaheuristics ... 16

2.2.3 Metaheuristic Algorithms ... 20

2.3 Software Clustering .. 23

2.3.1 The Development of Software Clustering ... 24

2.3.2 The Software Clustering Process ... 28

VI

2.3.3 Inclusion of Expert Knowledge .. 34

2.3.4 Evaluation of Software Clustering Quality .. 35

2.4 Software Metrics .. 36

2.4.1 Classification of Software Metrics .. 38

2.4.2 Application of Software Metrics in SBSE ... 39

2.5 Summary ... 41

3 Research Objectives and Methodology .. 43

3.1 Research Objectives ... 43

3.2 Research Methodology .. 44

3.3 Research Design ... 45

4 Design and Implementation of the SBRE Component 50

4.1 Development Environment .. 51

4.1.1 The Barrio Framework .. 51

4.1.2 The Bunch Framework .. 52

4.2 Exposure of the Artefacts ... 53

4.3 Design and Implementation of the Similarity Measurements 55

4.4 Design and Implementation of the Cluster Algorithms 61

4.4.1 Solution Representation ... 61

4.4.2 Fitness Function .. 63

4.4.3 User Constraints .. 68

4.4.4 Metaheuristics .. 69

4.5 Functionality of the SBRE System ... 81

4.6 Summary ... 83

5 Evaluation of the SBRE component .. 84

5.1 Experiment Design ... 84

5.2 Evaluation of the Fitness Function ... 85

VII

5.3 Evaluation of the Cluster Algorithms ... 90

5.3.1 Evaluation of the GreedyBestNeighbour Algorithm 90

5.3.2 Evaluation of the TabuSearchStrategy Algorithm 92

5.4 Evaluation of the SBRE Cluster Analysis ... 106

5.4.1 Evaluation of Multiple Implementation Perspectives 107

5.4.2 Evaluation of Rearchitecturing Functionality .. 114

5.4.3 Inclusion of User Domain Knowledge ... 117

5.4.4 Cluster Analysis on Different Abstraction Levels 119

5.5 Comparison of the SBRE component with Bunch and Barrio 121

5.6 Summary ... 124

6 Limitations, Future Research and Conclusion ... 125

6.1 Answer of the Research Questions .. 125

6.1.1 Application of the Tabu Search Algorithm .. 125

6.1.2 Multiple Implementation Perspectives ... 127

6.1.3 User Directed Software Clustering .. 129

6.2 Limitations .. 132

6.3 Future Directions .. 133

6.4 Conclusion .. 135

7 References .. 136

Appendix A: CD – Enclosure .. 141

VIII

List of Figures

Figure 3.1 : Research process of the SDRM (Nunamaker & Chen, 1990) 45

Figure 4.1 : Barrio software clustering process .. 52

Figure 4.2 : UML class diagram of the SBRE ProjectSelectionTable 54

Figure 4.3 : Visualisation of the project selection component 54

Figure 4.4 : Illustration of the design of the SBRE metric framework 59

Figure 4.5 : Illustration of the metric configuration component 60

Figure 4.6 : Class diagram of the SBRE representation ... 62

Figure 4.7 : Illustration of the coupling between clusters .. 64

Figure 4.8 : Complexity of a system in relation to the granularity: adapted from Baas

(2003) .. 65

Figure 4.9 : Class diagram of the SBRE cluster constraint framework 68

Figure 4.10 : Class diagram of the SBRE cluster framework ... 70

Figure 4.11 : Allocation into existing clusters of the SBRE greedy algorithm 72

Figure 4.12 : Assignment of artefact into a new cluster of the SBRE greedy algorithm 72

Figure 4.13 : Class diagram of the TabuSearchStrategy algorithm 75

Figure 4.14 : Example of the clustering process of the TabuSearchStrategy algorithm. 77

Figure 4.15 : Example of the TabuSearchStrategy configuration component 80

Figure 4.16 : Screenshot of the SBRE component .. 83

Figure 5.1 : Initial solution of the fitness function experiment 87

Figure 5.2 : Solution of the fitness function experiment with a separated metric and

cluster package ... 88

Figure 5.3 : Solution of the fitness function experiment with combined cluster and

junumberfield package .. 89

Figure 5.4 : Runtime of the GreedyBestNeighbour algorithm depending on the artefact

input size ... 92

Figure 5.5 : Configuration of the TabuSearchStrategy evaluation component 93

Figure 5.6 : Illustration of the metric configuration during the cluster algorithm

evaluation .. 95

Figure 5.7 : Configuration of the maximal tested solutions experiment 96

IX

Figure 5.8 : Solution quality in relation to maximum algorithm iterations of the SBRE

system (package level) .. 97

Figure 5.9 : Solution quality in relation to maximum algorithm iterations of the SBRE

system (class level) .. 98

Figure 5.10 : Algorithm runtime in relation to number of artefacts 99

Figure 5.11 : TabuSearchStrategy configuration of the tabu list length experiment ... 100

Figure 5.12 : Solution quality in relation to the length of the tabu list 101

Figure 5.13 : Rejected solution candidates in comparison to the length of the tabu list

 ... 101

Figure 5.14 : TabuSearchStrategy configuration for the diversification experiment ... 103

Figure 5.15 : Solution quality in relation to idle diversification iterations (package level)

 ... 104

Figure 5.16 : Number of triggered diversification runs in relation to idle diversification

iterations ... 104

Figure 5.17 : Solution quality in relation to idle diversification iterations (class level)

 ... 105

Figure 5.18 : Configuration of the TabuSearchStrategy algorithm within the multiple

view experiment ... 107

Figure 5.19 : Result of the multiple view experiment with 100% weight on the CBO

metric .. 108

Figure 5.20 : Result of the multiple view experiment with 100% weight on the CON

metric .. 109

Figure 5.21 : Extract of the CON analysis cluster landscape of the „crm domain

example“ ... 111

Figure 5.22 : Result of the deterioration cluster analysis with 100% weight on the static

elements metric .. 113

Figure 5.23 : Metric configuration of the rearchitecturing analysis 115

Figure 5.24 : TabuSearchStrategy configuration of the rearchitecturing experiment . 115

Figure 5.25 : Solution of the rearchitecturing analysis of the SBRE component 116

Figure 5.26 : Solution of the SBRE component with cluster constraints 118

Figure 5.27 : Clustering of the SBRE system (class level) .. 120

X

List of Tables

Table 5.1 : Solution quality values of the fitness function experiment 89

Table 5.2 : Runtime in milliseconds of the GreedyBestNeighbour algorithm 91

Table 5.3 : Example of one result of the TabuSearchStrategy algorithm evaluation 94

Table 5.4 : Comparison clustering solution with 100% weight on the CBO or CON metric

 ... 110

List of Algorithms

Algorithm 4.1 : PseudoCode of the GreedyBestNeighbour cluster method 74

Algorithm 4.2 : PseudoCode of the TabuSearchStrategy spreadSolution method 78

XI

List of Abbreviations

CDA - Code Dependency Analyzer

CBO - Cohesion Between Objects

CON - Correlation of Names

GA - Genetic Algorithms

GUI - Graphical User Interface

IDE - Integrated Development Environment

LoC - Lines of Code

MDG - Module Dependency Graph

MQ - Module Quality

SA - Simulated Annealing

SBRE - Search Based Reverse Engineering

SBSE - Search Based Software Engineering

SDRM - System Development Research Methodology

SQ - Solution Quality

TS - Tabu Search

Introduction

1

1 Introduction

This chapter presents the motivation for this research and derives from it the direction

of the present research. A more detailed consideration of the research objective is

given in chapter four after the research environment is further investigated with an in-

depth literature review.

1.1 Motivation and Background

Forty years ago, the term ‘software crisis’ was first mentioned at the NATO Software

Engineering Conference of 1968 (Randell, 1996). The term describes the circumstance

of software systems being resistant to change and difficult to maintain. With unclear

and changing requirements the result was a predominance of inflexible and unstable

software systems (Glass, 2002). Many software projects were exhibiting problems due

to these weaknesses.

The paradigms, processes, tools, computational platforms and techniques in the field

of software engineering have changed immensely over the past 40 years, but the

problems which have been summarized under the term ‘software crisis’ still exist. One

reason for this is the high complexity of non-trivial software systems.

Contemporary software systems that comprise a reasonable (non-trivial) amount of

functionality and size are invariably accompanied by a non-trivial degree of complexity

(Bass, Clements, & Kazman, 2003). One reason for this complexity is the diversity of

the artefacts (e.g. files, methods, classes, packages) involved in the software system.

Furthermore, any given system structure is not continuous; the structure of the system

changes through maintenance, requirements changes, added features and refactorings

(Bosch, 2004). This creates difficulties for individuals attempting to understand the

design, structures, dependencies and the architecture of a software system. As a

result, realizing new requirements and maintaining a large software system is

challenging. A good understanding of the system architecture is necessary to align the

development of new requirements and the maintenance of the software system with

the aspired system design (Bass et al., 2003).

Introduction

2

If new functionality is added to an existing software system, without considering the

software architecture or maintaining the integrity of the software system, then system

erosion will occur. As a consequence software quality decreases and the system will be

less flexible, less robust and harder to both maintain and to understand (Banker, Datar,

Kemerer, & Zweig, 1993). Therefore the software maintenance cost increases. Finally,

the system will be so substantially deteriorated that a complete rebuild will become

necessary.

This general scenario illustrates the importance for development stakeholders to

access current and consistent documentation of the architecture and structure of the

software system in order to form a good understanding of the current system

organization in a timely manner. Because of the evolving character of software

systems and their often substantial scale it is certainly beneficial if this documentation

could be created automatically.

An approach to increase the maintainability and understandability of software systems

is to hide the complexity of a software system by abstraction. One implementation of

this approach is called software clustering and arose in the field of reverse engineering

(Chikofsky & Cross, 1990). Software clustering attempts to partition a software system

into subsystems and thereby create a new level of system abstraction. Through these

subsystems stakeholders could be provided with abstract information about design,

structure, organization and dependencies of the software system.

1.2 Goal of the Research Project

The objective of the current research is to design, implement and evaluate an

approach, which provides useful information to developers and architects about

software architecture clustering, subsystem decomposition and problematic source

code segments. This should enable the stakeholders, depending on their requirements,

to derive a flexible and maintainable implementation structure of the system. Isolating

code smells (Fowler, 1999) within software system could also assist the stakeholders to

plan appropriate refactorings to eliminate longer terms problems arising.

Introduction

3

To control and observe the development process and manage the complexity of non

trivial software systems the application of software development tools is necessary. An

emerging approach is to integrate software development components directly into the

Integrated Development Environment (IDE). The advantage is that the necessary

information is directly available when a task is planned or implemented. Contemporary

IDEs offer extension possibilities to integrate external components into the

development process to allow a flexible adaption to the stakeholder requirements.

One framework for these extensions is the Eclipse
1 plug-in concept. This work follows

these ideas and integrates the process of software clustering into the Eclipse

development environment and obtains information for stakeholders regarding design,

structure and dependencies analyses. Regarding the prototype characteristic of this

project and the established popularity of object oriented software systems, this work

focuses on the analyses of such systems and especially of java software systems.

Considering the intent to support an integrated approach, one of the challenges of this

project is to provide architecture information in a reasonable time. Regarding the size

and increasing complexity of current software systems any solution should also feature

effective scalability.

One field of research, which may support adherence to these requirements, is that of

Search Based Software Engineering (SBSE), introduced by Harman and Jones (2001).

SBSE describes the application of metaheuristic algorithms in the area of software

engineering. Encouraging results have been achieved to date in the areas of testing,

standalone cluster analysis, release-planning and requirement analysis.

The present research examines the application of Search Based Software Engineering

(SBSE) in the area of software clustering with a special focus on user directed software

clustering. The research of Harman and Jones (2001), Mitchell (2002) and Seng, Bauer,

Biehl & Pache (2005) provides a degree of evidence that the computational challenges

in the area of software clustering and subsystem decomposition can be solved with the

application of SBSE. These studies lend support to the belief that an SBSE-based

1
 http://eclipse.org/

Introduction

4

solution should provide the developer with architecture information after a sufficiently

short processing time.

The modularization of software systems as a basis for refactorings or rearchitecturing

can utilize a variety of variables. Because of the multi-objective nature of software

development these objectives can often be in direct conflict with each other.

Considering this, it can be said that no universal solution can be created to solve a

given problem. Because of a focus on different attributes or even personal preferences

there can be a range of solutions that are all “equally optimal”. To create a flexible

solution, which adapts well to the reviewed system and the preferences of the

stakeholders the inclusion of specific user knowledge to control the cluster process is

necessary. Hence a clustering approach should not aim for a final and perfect solution.

It should rather aim for a flexible solution that can be quickly created and easily

manipulated.

Based on an in-depth literature review in chapter three and the identification of

challenges and limitations of the relevant studies the following research questions are

examined during the present research:

• Can a user directed and semi-automatic clustering approach contribute to the

quality of software clustering?

• Is tabu search applicable in the area of software clustering?

• Does the inclusion of multiple metrics in the fitness function enable the

clustering of a software system into multiple implementation perspectives?

Based on this motivation and broad illustration of the direction of the research the

following section provides an overview of the structure of this thesis.

1.3 Thesis Structure

This work is subdivided into six chapters. Chapter one illustrates the motivation and

placement of the research. The remaining chapters of the thesis are structured as

follows: Chapter two examines relevant research in the areas of this research and

introduces relevant terms which are necessary for the understanding and

development of this work. Based on this literature review, the identification of

Introduction

5

limitations of the current research and illustration of a promising research path, the

final research objective and research questions are depicted in chapter three.

Additionally, the research methodology and design of the research is illustrated within

this chapter. Chapter four illustrates the design and implementation of the research

objective, which is utilized by the Search Based Reverse Engineering (SBRE)

component. Chapter five demonstrates the evaluation process and portrays the results of

this evaluation and discusses and aligns them with the research questions. Finally, Chapter

seven presents the conclusions for this research, highlights the contribution of this study

to the related research fields, considers the limitations of this study and provides

recommendations for future research.

Literature Review

6

2 Literature Review

This research project draws on a number of different fields within software

engineering particularly software clustering and search based software engineering.

Furthermore, the concepts and terms used in the field of software architecture are

important in supporting an understanding of the purpose of this research. This

literature review considers these areas with special attention to the proposed

research. The area of software architecture can be seen as the application domain of

this work and hence is addressed first.

2.1 Software Architectures

Software architectures provide a framework for the development of software systems

(Bass et al., 2003). The architecture is an orientation within which the developer is able

to create a uniform software design. The program design should remain consistent so

developers who are familiar with the architecture can understand the design of other

system parts. In theory, effective software architectures support the continuous

conservation of maintainability and extensibility that can prevent the erosion of the

software system. But certainly not all software architectures are similar. Different

factors influence the design of a software architecture e.g. performance,

modularisation, system distribution. Not all of these factors correspond with the

requirement to preserve maintainability and extensibility.

A technique that enables developers to obtain insight into non-trivial software systems

is the decomposition into modules (Courses & Surveys, 2002). This modularisation can

be driven by different aspects. Possible classifications can be to follow a functional,

object oriented or data driven decomposition (Bass et al., 2003). A software

architecture portrays the structure and the decomposition of a software system into

components and the relations between these components. To define a software

architecture a meaningful decomposition of subsystems, according to the domain-,

system- and quality- requirements, has to be identified. Additionally, the

dependencies between these subsystems have to be defined. Effective software

architectures should help developers to control the stability of large systems, which

feature a high degree of complexity (Bass et al., 2003). This is enabled through the

Literature Review

7

modularisation, classification and aggregation of smaller unstructured elements into

bigger controlled structures.

In the next sections relevant terms and definitions used in the area of software

architectures are introduced.

2.1.1 Artefact

One goal of software architecture development is the abstraction of software systems.

Software systems feature different levels of abstraction (e.g. files, folders, methods,

classes, packages). For some design rules and analyses the application level is

irrelevant. For example, the maxim of low coupling is relevant on class and package

level. To express these generalisations the term artefact is introduced. The term

artefact allows discussing problems and solution strategies on an abstract level.

Within this work the term artefact abstracts the design levels class, package and

subsystem. A subsystem is an aggregation of artefacts, which exhibits a certain

similarity.

2.1.2 Complexity

The term complexity in the context of the present research relates to the level of

difficulty encountered by a developer, who is attempting to understand a software

system (Zuse, 1991). A high level of complexity causes problems for the maintenance

and modification of software systems. This aspect is especially significant because

maintenance cost is one of the main cost factors in software projects (Banker et al.,

1993). Darcy and Kemerer (2002) listed possible reasons for high complexity in a

software system: complexity and difficulty of the problem itself, an inappropriate

solution design, a high coupling between artefacts or even a high flexibility of the

software system itself.

Complexity Classifications

In the software engineering literature different classifications of software complexity

can be found. To outline the field of software complexity this work utilises the

classification introduced by Fenton and Pfleeger (1997), which is taken up in other

established research papers, e.g. Van Vliet (2000) and Mens and Demeyer (2001) .

Literature Review

8

Fenton and Pfleeger (1997) classified software complexity into four categories:

algorithmic, structural, cognitive and problem complexity. Structural complexity

depicts the complexity of relations and dependencies between artefacts and the

consideration of these structures in the context of the complete software system.

These relations are of special importance for cohesion and complexity analysis. The

algorithmic complexity portrays the intricacy of a particular algorithm. The cognitive

complexity describes the effort for a person to understand an artefact of a software

system. The estimation of cognitive complexity underlies a quite subjective and

individual assumption. Cognitive complexity can be considered as the inverse to the

understandability software quality attribute. The subjective and individual factors of

cognitive complexity make the investigation and estimation of cognitive complexity

difficult. The problem complexity expresses the complexity of an optimal algorithm to

solve a problem. The problem complexity is always smaller or equal to the algorithmic

complexity.

Computational Complexity

Besides the classification of Fenton and Pfleeger (1997) the term computational

complexity exists. Because of the focus of this work computational complexity is of

special importance and will be further illustrated in this section.

The term computational complexity should not be mixed up with the algorithmic

complexity. As mentioned previously, algorithmic complexity describes the difficulty of

an algorithm and the difficulty of understanding a certain algorithm.

The computational complexity defines the needed time and space resources to solve a

problem depending on a certain input size (Zuse, 1991). It is the aim of the

computational complexity analysis to estimate the resource demand regarding the

change of the input size. It is not the goal of the computational complexity analysis to

give an exact step count of a certain algorithm, but rather give an asymptotic step

count of the algorithm. The time complexity defines the number of required steps to

solve a problem of the input size n (Yang, 2008). The time complexity is usually given

for the worst case scenario.

Literature Review

9

Referring to Yang (2008) an algorithm is tractable, if it is solvable in polynomial time.

On the other hand it is intractable, if no algorithm exists which can solve the problem

in polynomial time. A problem is solvable in polynomial time, if an algorithm exists

which is solvable on a deterministic and sequential computer and if the calculation

time does not grow stronger with the input problem size than a polynomial function.

Consequently, the term polynomial time distinguishes whether a problem is practically

solvable or not. Even with a relatively small input size the computational complexity of

an intractable problem will grow so quickly that a practical application of this algorithm

is impossible.

Importance of Complexity

It has to be considered that the different complexities influence each other. A very

complex algorithm has also a negative effect on the cognitive and structural

complexity. Hence it is not possible to examine the certain complexities individually.

The computational complexity of the cluster partitioning problem is of particular

relevance to this research as it applies Search Based Software Engineering (SBSE) in the

field of cluster partitioning. The field of SBSE is depicted in section 2.2. The field of

cluster partitioning and cluster analysis is further described in section 2.3. However,

the aim of this work is to assess and reduce predominantly structural complexity by

using clustering and abstraction techniques in a way that does not exceed polynomial

bounds of computational complexity. As a consequence of the reduction of structural

complexity the cognitive complexity imposed on developers should also be reduced by

these refactorings.

2.1.3 Cohesion and Coupling

The terms cohesion and coupling are of central importance for the decomposition and

modularization of software systems (Darcy & Kemerer, 2002). The coupling

measurement defines the strength of binding between two artefacts. A higher number

of dependencies and interconnections between two artefacts increases the coupling

between these artefacts. A high coupling between two artefacts hinders the reusability

and understandability of these artefacts (Gui & Scott, 2006).

Literature Review

10

Cohesion describes the internal coherence of an artefact (Counsell, Swift, & Crampton,

2006). A reason for a low level of cohesion could be the implementation of two

different functionalities within an artefact. The semantics of the functionality provided

in the artefact is therefore not coherent. This inclusion of multiple functionalities

hinders reusability and understandability of the affected artefact.

In relation to these characteristics the aims of modularization are low coupling

between artefacts and high cohesion within each artefact.

2.1.4 Software Architecture Views

The main aim of architectures is the reduction of complexity (Taylor & Van Der Hoek,

2007). All the information relating to any non-trivial architecture could not generally

be illustrated in one view, as a reduction of complexity would certainly not be possible.

To investigate certain attributes of software architectures different views of a software

system exist. A view depicts a software system from a certain architectural view. If

details are not relevant for a certain view, they are abstracted or excluded. In the

literature there is no general classification of architecture views. Bass et al. (2003)

suggested a division into the five architecture views: conception, infrastructure,

implementation, runtime and data architecture views. Within the present research the

implementation view is of special importance. However, the other views are also

briefly introduced to allow the differentiation of the individual views.

The conceptual view displays the functionality of the system in an abstract manner.

The system is portrayed in its logical system environment. System borders, user and

surrounding systems are visualized in interaction with the system. The internal system

workflows are not displayed. The infrastructure view documents the platform and

system environment of a system. These could be computers, processors, network

topologies or other parts of the physical system environment. The implementation

view illustrates the internal configuration of a system on the level of software

artefacts. The system is distinguished into components to a particular level of detail.

Depending on the programming language and paradigm, artefacts within the

implementation view can be subsystems, components, packages, classes or files.

Further on, the interfaces and dependencies between the individual artefacts are

Literature Review

11

illustrated within the implementation view. The runtime view describes which

instances of artefact exist during the execution of a component and the interaction of

these components between each other. Finally, the data view illustrates the structure

of data elements and their interrelationships.

Different views are appropriate or relevant to analyse a system regarding a certain

aspect or requirement. It also has to be illustrated that these views do not ensure the

architectural quality of a software system. They rather display the actual condition of

the software system from a certain perspective. Thus an architectural view does

certainly help to understand and analyse a software system, but does not conserve the

architecture of the system. As depicted in the beginning of the section, one aim of

software architectures is to anticipate the deterioration of a software system. Certainly

the possibility to analyse and understand a system contributes to a design which aligns

with the actual architecture, but it does not ensure that this complies with the

architecture definition. The architecture definition describes the decomposition and

dependencies of a software system (Shaw & Garlan, 1996). The architecture definition

is therefore a description of the target architecture. The design of current and future

implementations should align with this target architecture. The compliance with the

target architecture should obtain a robust, clearly arranged, modularized,

maintainable and expandable software system (Bass et al., 2003).

It is certainly possible to define a target-architecture for every architecture view of a

software system. However, as described in section 1.1 the main problem of current

software systems are the high maintenance costs caused by the deterioration of the

software system. This illustrates that the definition and observation of the

implementation view is of special interest within the present research.

Further on, the process of architecture observation to ensure the architectural quality

is illustrated and discussed to highlight the actual problems with these approaches.

Literature Review

12

2.1.5 Ensuring Architectural Quality

Different workflows exist to monitor and ensure the quality of a software-architecture

(Bass et al., 2003). Often, approaches to monitor and obtain the software architecture

deal with the implementation of tasks and the observation of the software

architecture separately (Bischofberger, Kuhl, & Loffler, 2004; Hofmeister, Nord, & Soni,

2000; Salger, Bennicke, Engels, & Lewerentz, 2008). These approaches suggest that a

developer is focusing on the completion of tasks. The Integrated Development

Environment (IDE) supports the developer to finish these tasks. The IDE usually

provides limited information regarding the desired software architecture or to support

the creation of a design with high quality. Often a software architect later assesses the

committed changes and identifies possible architecture violations and code smells

(Bosch, 2004). An architecture violation arises when resources are accessed in an

inconsistent manner to the architecture definition. The term code smell (Fowler, 1999)

describes the occurrence of symptoms within the source code that could indicate a

deeper design problem. The elimination and prevention of code smells and

architecture violations should abolish, or at least reduce, the deterioration of the

software system and obtain the above mentioned robust, clearly arranged,

modularized, maintainable and expandable software system.

Bischofberger, Kuhl and Loffler (2004) introduced approaches to identify architecture

violations and to obtain a preferred architecture of a software system. They are based

primarily on the comparison of an architecture definition with the actual system

source code. The comparison between the target architecture and the current

architecture identifies architecture violations.

The identification of code smells relies extensively on software metrics, which indicate

possible problematic code segments and artefacts. Based on these indications a visual

code inspection should identify the problem and a refactoring can be planned.

The architect creates tasks for the detected architecture violations and code smells

and the developer has to implement these tasks. This procedure uncouples the quality

assurance process and the implementation process. Unfortunately, this approach

slows down the development process and creates turnaround times. This motivates

Literature Review

13

that an early identification or prevention of architecture violations and code smells

increases the productivity and decreases the costs of software system development. A

similar link between the time of software failure identification and the effect on

development costs is well known knowledge in the field of software engineering and

drawn in various publications (Knox, 1993; Pham, 2003; Swanson, 1976).

This overhead could be decreased, if the developer has a good understanding of the

software system and information that would help him to prevent architecture

violations and code smells. The architecture monitoring process should be integrated

directly into the IDE to decrease turnaround times. The advantage should be that the

developer is getting information about the software architecture and the influences of

his changes instantly and as consequence produces fewer architecture violations and

code smells.

The consideration of architecture monitoring raises the question of how to define the

target architecture. Certainly the definition of a target-architecture within newly

developed systems with a well planned design would normally be relatively easy. But

within older systems, which have grown and changed over a long period of time, the

definition of a target architecture can be much harder.

This current work attempts to address this challenge. The objective of this research is

to derive a structure of the current system architecture and identify clusters within

that system. The intent is to provide the developer with a sufficient understanding of

the system organization in a timely manner. This would enable them to identify code

smells and produce fewer architecture violations. Identification of the dependency

relationships among components should help the developer to understand the

connections and identify subsystems of the software system. A subsequent step would

be to classify the extracted artefacts in a system specific architecture raster. Only this

alignment of the actual architecture and the desired architecture gives the possibility

to identify a lack of quality e.g cycles, or architecture violations, and to derive quality

improvement opportunities (Bass et al., 2003). However, the application of this

component will not remove the necessity of an appropriate architecture definition and

monitoring.

Literature Review

14

2.2 Search Based Software Engineering

This research focuses on the application of Search Based Software Engineering (SBSE)

in the area of software clustering. Accordingly, this section illustrates the fundamental

characteristics and concepts of SBSE as well as exposing some of the most pertinent

literature in this field.

For some problems in the domain of software engineering e.g. release planning,

clustering and testing more or less optimal solutions exist. From a formal viewpoint it

is possible to identify the optimal solution to a problem in each of these contexts.

However, the computational complexity to achieve this optimal solution may be very

high if the solution space (i.e. the number of potential solutions) is large. Instead a

good or nearly optimal solution that can be found more quickly than the optimal

solution may be sufficient. Harman and Jones (2001) introduced SBSE as the

application of metaheuristic algorithms to solve linear optimization problems in the

area of software engineering.

SBSE has emerged as a vibrant research topic with evidence in the literature showing

that it is widely applicable across the whole spectrum of lifecycles activities e.g. from

requirements engineering (Bagnall, Rayward-Smith, & Whittley, 2001), project

planning and estimation (Burgess & Lefley, 2001), refactoring and maintenance

(Harman & Tratt, 2007; O’Keeffe & Ó Cinnéidea, 2008), testing (Ribeiro, Rela, & Vega,

2008; Wegener, Baresel, & Sthamer, 2001) and quality assurance (Khoshgoftaar, Yi, &

Seliya, 2004).

A key element of an SBSE implementation is the choice of search algorithm used. A

wide range of search techniques could be applied, including gradient methods, direct

search or metaheuristics. Metaheuristics have become more common in recent

literature, because the complexity of many problems does not suit gradient or direct

search methods.

The term heuristic refers to problem solving strategies, which apply general sense and

assumptions and loosely applicable information to arrive at a nearly optimal solution in

a relatively short period of time (Yang, 2008). Heuristic algorithms are a branch of

Literature Review

15

operations research. Heuristics are often applied, if there is no formal method known

to calculate the optimal solution or there is a formal way known but the computational

complexity exceeds polynomial time.

Heuristic algorithms can be distinguished into specific heuristic algorithms and

metaheuristic algorithms. Lin & Kernighan (1973) introduced for example a specific

heuristic algorithm to solve the travelling salesman problem. In comparison to specific

heuristic algorithms metaheuristic algorithms are designed more generically to be able

to solve different problems (Yang, 2008). The term ‘meta’ relates to ‘upper’ or ‘higher

level methodology’.

Talbi (2009) suggested a range of classifications of metaheuristics in terms of nature

inspired vs. non-nature inspired, memory usage vs. memory less methods,

deterministic vs. stochastic and iterative vs. greedy metaheuristics. To position this

research and provide sufficient detail regarding the diversity of algorithms this

classification will be constituted.

2.2.1 Classification of Metaheuristics

Many metaheuristic algorithms are inspired by the behaviour of animals or natural

processes. The most important of these nature inspired algorithms are briefly

described here to give an idea about their inspiration. Evolutionary Algorithms utilize

the model of biological evolution and copy the three main biological principles

mutation, recombination and selection (Bäck, 1996). The best adapted individuals form

the solution representation in keeping with the principle of survival of the fittest.

Evolutionary Algorithms are distinguished into the four categories of genetic

algorithms, evolution strategies, genetic programming and evolutionary programming

(Bäck, Fogel, & Michalewicz, 1997). Ant Colony Optimization clones a strategy which

can be found in the complex social behaviour of ants during their forage (Dorigo &

Stützle, 2004), whilst Particle Swarm Optimization problems based on the forage

process of bird- and fish swarms (Kennedy, Eberhart, & Shi, 2001). Simulated

Annealing is based on an analogy from thermal substance physics, namely the

crystallization in metals, which are released out of the melting process and are in a

controlled cooling down process (Kirkpatrick, Gelatt, & Vecchi, 1983, p: 670).

Literature Review

16

Some metaheuristic algorithms are stateless and store no information of previous

iterations or solutions to guide their next search step or search in general. One

example of a metaheuristic which does not use any memory is the greedy algorithm. In

contrast, an example of a metaheuristic which does use memory is the tabu search,

which employs both short- and long-term memory as tabu lists (Glover, 1989).

Another classification mechanism relies on the distinction between deterministic and

stochastic algorithms. Based on the same search space and the same search

parameters a deterministic metaheuristic will find the same solution in multiple runs.

Examples for deterministic metaheuristics are hillclimbing and tabu search. In

stochastic algorithms the application of random rules could lead to different solutions

even within the same starting configuration. Examples of stochastic algorithms are

simulated annealing and evolutionary algorithms.

Finally, the last classification is based on the distinction between iterative and non-

iterative algorithms. Iterative metaheuristics start with an initial solution. Based on this

initial solution the algorithm tries to improve the solution. Examples of iterative

algorithms are hill climbing and tabu search. In comparison the greedy algorithms start

their search with an empty solution (DeVore & Temlyakov, 1996).

2.2.2 Implementation of Metaheuristics

Certain components and steps have to be considered when developing and applying

metaheuristics for a given problem. These components relate to the representation of

the solution, the determination of the fitness function, the handling of constraints, the

interaction of users and finally a process to implement the metaheuristics.

Representation

Iterative metaheuristics manipulate solutions to derive new solutions. It is therefore

necessary that these algorithms incorporate a suitable representation for these

solutions (Glover & Kochenberger, 2003). An instance of the representation reflects a

specific solution within the solution space. The term solution space describes all

possible solutions of a certain optimization problem. The representation has to be

aligned with the optimization problem and the applied operators, so that it is indeed

Literature Review

17

possible to manipulate the solutions. An operator is a function that transforms the

current candidate solution from the solution space into another solution in the same

solution space. The representation is an important component for the efficient and

effective application of metaheuristics (Birattari, 2005).

A useful representation fulfils the requirements of completeness, connectivity and

efficiency (Birattari, 2005; Glover & Kochenberger, 2003). Completeness describes the

necessity of the representation to express every solution of the solution space.

Connectivity describes the requirement of a search path between every two solution

representations. That is, that for every solution S1 of the search space exist at least

one set of operations for any other solution of the search space S2, which, applied in a

certain order, transforms S1 into S2. Finally efficiency describes the requirement that

the handling of the representation should be minimal in reference to the time and

space complexity.

The Fitness Function

Whilst metaheuristics can produce a variety of different solution candidates, out of

these the “best” solution has to be identified. This raises the requirement for a method

to compare solutions with each other. This requirement is satisfied by the fitness

function (also referred to as the objective function) (Harman & Jones, 2001).

The fitness function � quantifies the optimality of a solution (Harman & Jones, 2001)

and therefore expresses the goal of the search. The fitness function is a surjective

transformation, which maps the solution space into the set of real numbers �: � →
ℝ . The fitness function allows a ranking of solutions with each other. A fitness function

consists of a combination of different factors, which reflect the quality and value of a

given solution. As such, the quality of the fitness function depends on a sound

orchestration and estimation of the influencing factors. If the fitness function is not

well designed it will lead to unacceptable or poor solutions.

Constraint Handling

With reference to Talbi (2009) many optimization problems are constrained. Talbi

(2009) introduces five strategies to handle constraints within metaheuristics, namely

Literature Review

18

reject, penalizing, repairing, preserving and decoding. These constraint strategies work

either on the objective function, the representation of solutions or are included into

the metaheuristic algorithm itself. The penalizing and preserving strategies are of

particular importance for the application of metaheuristics in the area of software

clustering and so are further discussed in this section.

Depending on by how much a constraint is violated, some solutions in a given solution

space are more feasible than others. Often patterns can help to identify infeasible

solutions (Talbi, 2009), and these infeasible solutions can be penalized. One way to

implement these penalties is to add a linear factor to the fitness function � and obtain

a new fitness function �′, which includes the penalizing strategy.

�′�s
 = ��s
 + δ�s

Preserving constraints are another important constraint strategy for the application of

metaheuristics in the area of software-clustering. Preserving constraints obtain the

feasibility of a solution considering a set of constraints (Glover & Kochenberger, 2003).

The aim is that every preserving constraint is valid for each generated solution. As

mentioned above, the preserving constraints have to be considered during the

creation of the solution, which implies that the handling of preserving constraints has

to be included in the metaheuristic algorithm. An example of a preserving constraint in

the area of software clustering could relate to the requirement for a ‘locked’ cluster,

comprising certain entities. The configuration of this cluster should be equal for every

generated solution, if the lock constraint is set for this cluster.

Interactive Optimization

For some optimization problems the addition of certain information to improve the

solution quality during the search can be beneficial. Birattari (2005) described the

possible interactions in terms of two categories: User interaction to guide the search

process and user intervention to evaluate a solution. The user can influence the search

process to guide the search process into more promising areas. The aim is to improve

the efficiency and performance of the search and to hopefully improve the solution

quality. User intervention to evaluate a solution does not influence the search process.

Literature Review

19

Rather it leverages user information where no formal definition exists to quantify a

solution. An example would be to evaluate the visual appeal, taste or attractiveness of

an attribute or solution.

Relating to the application of metaheuristics in the area of software clustering it would

be conceivable to allow the inclusion of special design knowledge to guide the search.

The design of a software system occurs under a variety of external influences and

personal preferences and as such informed by a wide variety of tacit knowledge that is

difficult to encapsulate in mathematical form. Thus to recover the complete design of

an existing system in an entirely automatic manner is a challenging problem. Given

this, the user should have the chance to include domain and design knowledge into the

search process.

The Design Process of Metaheuristics

In Talbi (2009) a set of guidelines is given for the application of metaheuristics. The

first step is to model the problem. Based on this model and the nature of the problem

an assessment of whether metaheuristics are applicable to this problem can be made.

Factors that influence this decision are the computational complexity, size and

structure of the problem and also the requirements of the application. Important

requirements for a metaheuristic-based approach may relate to search time, quality of

solutions, and solution robustness. When a metaheuristic-based approach is

considered applicable the metaheuristic can be designed. Referring again to Talbi

(2009), the representation of the problem, guiding of the objective function, constraint

handling and selection of the algorithm need to be defined within the design phase.

Based on the design, the metaheuristic-based approach can then be implemented.

After the implementation the performance evaluation and parameter tuning phases

are conducted. These phases are interconnected and can influence each other. This

evaluation may reveal drawbacks with the search or the solution(s), which may make it

necessary to change the model, the design and/or the implementation. Reflecting on,

Talbi (2009) suggested an iterative and incremental approach for the development of

metaheuristic-based applications.

Literature Review

20

2.2.3 Metaheuristic Algorithms

A variety of different metaheuristic algorithms exist. The various algorithms all aim to

achieve the same end result in different ways. The intent is to carry out an efficient,

yet effective search of the solution space in order to identify the best (and hopefully

close to optimal) solution. This intent is embedded in the concepts of diversification

and intensification. In the design of a metaheuristic the two conflictive parameters of

exploration of the search space (diversification) and exploitation of the best solutions

(intensification) have to be balanced (Glover & Kochenberger, 2003). The term

diversification describes the necessity to explore non-visited areas to ensure that all

regions of the search space are explored and that the search is not limited to only a

small number of regions. Intensification describes the more focused exploration of

promising areas that have delivered already good solutions. Certainly some

metaheuristic algorithms focus more on diversification and others more on

intensification. An example of an algorithm that focuses on diversification is the

random search (Yang, 2008). The random search algorithm is creating a new random

solution within every algorithm-iteration without considering previous solutions. In

comparison to the random search the basic local search (hillclimbing) algorithm selects

the best neighbour solution and is an example of a strong intensification approach.

The number of defined metaheuristics is large and the selection of a suitable

metaheuristic depends on a variety of different requirements e.g. quality of the

solution, possibilities for the manipulation of the search process and the acceptable

complexity of the search (Birattari, 2005).

The greedy- and tabu search (TS) metaheuristics have been chosen for the

implementation within this research project. The reasons for this are a lack of

application in the area of software clustering within previous research (Jiang, Gold,

Harman, & Li, 2007; Mitchell, 2002; Seng, Bauer, Biehl, & Pache, 2005), a high flexibility

and controllability of the tabu search algorithms (Glover & Kochenberger, 2003) and a

good performance of the greedy algorithms (Yang, 2008). A more detailed illustration

of the motivation, reasons and relevance for the application of these algorithms within

Literature Review

21

this research is given in section 2.3. The tabu search and greedy metaheuristics

demand special attention and will be illustrated in the next sections.

Greedy Algorithms

Greedy algorithms follow the problem solving metaheuristic of considering only the

next possible steps at each stage within the search and selecting the best step of this

set of possibilities (Cormen, Leiserson, Rivest, & Stein, 2001). The greedy algorithm

chooses the step which promises the highest reward. By applying this approach the

greedy algorithms tries to find the global optimum.

The advantages of greedy algorithms over alternatives are that they are easy to design,

command low complexity and deliver solutions in a relatively short period of time

(Glover & Kochenberger, 2003). The disadvantages of greedy algorithms are that the

quality of the delivered solution can be very poor and they provide no backtracking to

reverse decisions (Glover & Kochenberger, 2003). Additionally, greedy algorithms have

a tendency to stall in local optima. A local optima characterizes a current solution,

which cannot be improved by the applied metaheuristic (Glover & Kochenberger,

2003). The metaheuristic is not able to manipulate the solution candidate to escape

the local optima and find the globally optimum solution. But this solution (local

minima) is not the global optimum. To overcome this problem multiple start

constellations can be used. This approach creates a solution for every start point. After

the creation of this set of solutions the best solution is selected (DeVore & Temlyakov,

1996). Referring to Voßs, Fink and Duin (2005) special greedy algorithms (e.g. pilot

method) incorporate look-ahead features to evaluate the consequences of a planned

decision.

Iterative metaheuristic algorithms assume a start solution, which is manipulated by the

algorithm. This raises the question how this start solution is generated. The greedy

algorithm starts with an empty solution (DeVore & Temlyakov, 1996). Based on this,

the algorithm adds every step the most appropriate decision until a final solution is

found.

Literature Review

22

Tabu Search Algorithms

Tabu Search is a metaheuristic algorithm introduced by Glover (1989) and further

developed in Glover & Laguna (1997). Glover (1990) illustrated a deterministic

algorithm, which escapes local optima inspired by the controlled randomization

applied in Simulated Annealing (SA). The particular feature of tabu search is the use of

memory which stores information related to the search process. Tabu search improves

the navigation during the local search to find better solutions. This is achieved by

forbidding solutions, which are not promising or which have been investigated before.

Tabu search replaces the current best solution, as hillclimbing, if a neighbour features

a better solution quality. If a local optimum is reached and no improving neighbour can

be selected then tabu search selects a non improving neighbour to continue the

search. This approach itself creates cycles and the algorithm would not terminate

properly. To overcome these cycles the visited solutions are stored in the short-term

tabu list. Solutions which are stored in the short term-tabu list are not visited again by

the algorithm, as evolution potential of this branch is already investigated. The tabu

list is updated with every selection of a new current solution. The algorithm has to

check every algorithm-iteration, if a solution candidate is already in the tabu list. These

continuous checks of all previously visited solutions are time and space consuming.

This challenge desires the implementation of a small and easy to identify solution

representation. Another method to reduce the computational complexity of the

algorithm is to limit the maximum size of the tabu list. This approach prevents cycles

with a maximum length of the maximum number of elements within the tabu list.

Another way to reduce the computational complexity of tabu search is to store a

record of the applied moves (Glover & Kochenberger, 2003). These moves are stored

in relation to the created solutions. A move � which creates a new solution �� based

on a solution �� is not allowed for a number of iterations. The inverse move ���,

which creates the solution �� based on the solution �� is also blocked for a given

number of iterations. Referring to Glover (1995) the number of iterations for which a

certain move is blocked is called tabu tenure.

Another concept of tabu search is the application of aspiration criteria (Glover &

Kochenberger, 2003). These criteria allow the selection of a solution, even when this

Literature Review

23

solution is within the tabu list. The reason for the application of aspiration criteria is

that some tabu search implementations restrict attributes of solutions. This can

exclude a large area of the search space. An easy aspiration criterion is for example the

acceptance of all improving solutions, even if they are tabu.

Glover (1989) also illustrated the concept of medium-term and long-term memory

illustrated to balance the conflictive parameters intensification and diversification.

The medium term memory records the outstanding solutions. Similarities within these

most promising solutions are identified. Based on these similarities the search can be

intensified in the area of solutions with these characteristics. The mechanism

illustrated by Glover (1989) to encourage the diversification of the tabu search is the

long-term memory. The algorithm records information about visited solutions along

the search. This information could be for example: How often a certain component is

included into the solution. This information can be used to guide the search into

previously unvisited areas of the search space. For example: The algorithm could be

forced to include components into the solutions which have not been included in any

previous solution.

Tabu search is an especially interesting approach, because it combines and balances

the conflictive parameter of intensification and diversification. Further on, it does

overcome the problem of greedy algorithms and hillclimbing to stall in local minima

and has been shown that a given implementation can have robust performance across

a range of problems with different problem representations (Connor, Clarkson,

Shahpar, & Leonard, 2000).

2.3 Software Clustering

This section illustrates the field of software clustering. Firstly the term and

classification are illustrated. Secondly the development of the field software clustering

and relevant research in this area is described. Additionally, the necessary steps for the

development of software clustering approaches are demonstrated and a framework

for the development of software clustering is introduced. Further on, in regard to the

research objective the inclusion of user knowledge into the cluster process and

Literature Review

24

possible approaches for the evaluation of the clustering quality are demonstrated.

Finally, the relevant research studies are analyzed and related to this research project.

Software clustering is in essence a sub domain of reverse engineering (Chikofsky &

Cross, 1990). The term software clustering describes the classification of a software

system into partitions (Tzerpos & Holt, 2000). The artefacts of the software systems

are distributed into different partitions according to measures of artefact similarity.

These partitions are called clusters. These clusters are created by the identification of

similarities between the artefacts. The clustering identifies similar artefacts and

abstracts them into clusters with consideration of certain similarity attributes.

Regarding this, the result of the clustering is a new abstraction level of the software

system. A concrete representation of this clustering is called a cluster landscape.

According to the application of metaheuristics in the field of software clustering during

this research a cluster landscape represents a candidate solution. Additionally, another

term which is of relevance for this work and will be used within this chapter is the term

implementation perspective. The term implementation perspective should not be

mixed up with the term implementation view (discussed in section 2.1.4). The term

implementation perspective defines, within the present research, the clustering of the

artefacts of the implementation view by certain criteria. These criteria define a specific

perspective on the implementation view.

2.3.1 The Development of Software Clustering

The published literature in the area of software clustering shows that this has been an

intense field of research during the last 15 years. Referring to Mitchell (2002) and Bass

et al. (2003) the principal reasons for this are the migration from two-tiered to three-

tiered and n-tiered client/server architectures and the partitioning of systems into

vertical domain oriented slices (Zhao, 1998). Furthermore, the number of legacy

systems that are difficult to maintain is increasing and the desire to replace these

systems is growing. However, to estimate and plan the migration progress these legacy

systems must be understood and documented. According to Hunold, Krellner, Rauber,

Reichel and Rünger (2009) these systems may have grown over decades and hence no

clear understanding and definition of the system architecture and structure exists.

Literature Review

25

Documentation of the system may be scant or out of date. In these circumstances,

software clustering may provide support so that developers are able to gather

information, to understand the structure, decomposition and dependencies of the

software system and to plan and implement refactorings and extensions of the system.

The concept of clustering has a long history in software. Parnas (1972) voiced the idea

to unite low level software entities into modules. He further suggested that

procedures that manipulate the same data entities should be united into one module.

Each module should hide its inner design to other modules behind interfaces. The

interfaces therefore form a thin communication mechanism through which other

modules can access functionality. The key of this information hiding principle is that

the interface does not unfold information about the internal module design. This

information hiding principle makes it feasible for a developer to safely replace the

implementation behind the interfaces. It can also be seen as the cornerstone for a high

cohesion and low coupling design approach.

Some of the basic principles for good object oriented design have their origin in the

ideas of Parnas (1972). The object oriented paradigm incorporates the notions of

clustering and abstraction by uniting methods, attributes and data in classes.

Booch (1994) emphasizes the importance of using abstraction to unite similar structure

and behaviour in related objects and of using encapsulation and interfaces to

implement information hiding and modularization to support high cohesion and low

coupling. As illustrated in the next paragraphs, nearly all software clustering

approaches are based on these principles.

Software clustering results in a new level of abstraction by dividing a software system

into different subsystems (Wiggerts, 1997). Through this abstraction the number of

artefacts in the system will be reduced. Mancoridis, Mitchell, Chen and Gansner (1999)

suggest that this reduction of artefacts reduces the system’s evident structural

complexity and should increase the understandability of the system design, structure

and dependencies.

Literature Review

26

From its early origins, software clustering has continued to be an active area of

research. Much of the more recent work has relevance to this current study. For

example Lee and Yoo (2000) introduced a method which applies reverse engineering

for object oriented systems. This methodology is divided into five different phases:

form usage analysis, form object slicing, object structure modelling, scenario design,

and model integration. This model delivers an approach to conduct reverse

engineering, which adheres to the principles of the object orientated paradigm.

Tichelaar (2001) proposed a framework which analyzes object orientated code

dependencies. Tichelaar (2001) reflected the aspects of object-oriented systems that

are relevant to reengineering. Furthermore, Tichelaar (2001) showed how a

metamodel can effectively deal with differences of programming languages, such as

static versus dynamic typing and single versus multiple inheritances versus Java

interfaces. Tichelaar (2001) showed how the use of an independent core together with

mappings of multiple object orientated languages provides an effective common

coverage of these languages. Even though the implementation of a dependency graph

algorithm is not part of this work, the paper from Tichelaar (2001) supports the

process of extracting a dependency graph and is therefore relevant as a basis for the

work reported here.

An approach to include external additional data in the reverse engineering approach is

introduced in Xiaomin, Murray, Storey, & Lintern (2004) who combined a task concept

and the logs of the version control system into the reverse engineering process. This

additional information allowed the authors to identify the reasons for certain system

dependencies. Based on the dependencies the correlating tasks can be identified.

Furthermore, Xiaomin et. al (2004) saw a future trend in the integration of reverse

engineering tools in the development context to provide architecture and dependency

information to the developer. In the opinion of Xiaomin et. al (2004) this integration

will help developers to orientate themselves in the system and be sensitized to the

system architecture. Even if the inclusion of external data will not be relevant within

this research, Xiaomin et. al (2004) hinted that the reverse engineering process can be

guided by different data.

Literature Review

27

The studies of Jiang, Golf, Harman and Li (2007), Seng, Bauer, Biehl and Pache (2005)

and Mancoridis, Mitchell, Chen and Gansner (1999) combined the areas of reverse

engineering and SBSE and so are of particular relevance here. Jiang et. al (2007)

introduced a framework for search based slicing. SBSE was here used to identify and

decompose dependency structures within software systems. In addition to the

development of the framework, the approach is applied within a case study. Within

this case study they evaluated the application of the search based algorithms greedy,

hill climbing and genetic algorithms regarding performance and similarity of results. In

summary, the greedy algorithm outperformed the other algorithms in regard of the

processing time to create a solution. This result is certainly based in the simplicity of

the greedy algorithm. Jiang et. al (2007) did not explicitly discuss whether the quality

of the cluster results of the hill climbing and genetic algorithms are better than the

results of the greedy algorithm. The research of Seng, Bauer, Biehl and Pache (2005)

revealed an approach to improve the subsystem decomposition of a software system.

The basis of this approach was a genetic algorithm that computes a decomposition of a

software system into subsystems. Seng et al. (2005) used a fitness function that

incorporated heuristic data in terms of certain metrics such as cohesion, coupling,

complexity and cycle analysis. These metrics are described in detail by other authors,

such as Martin (1994). Additionally, Seng et al. (2005) motivated the idea that the

research can be expanded with other architecture-related metrics and that weighted

graphs could add further information to the fitness function. Jiang et al. (2007), Seng et

al. (2005) and Mancoridis et al. (1999) depicted that the cluster analysis of software

systems can be seen as a search based problem and that metaheuristic algorithms are

potentially able to deliver good solutions in reasonable time. To illustrate the possible

application of SBSE in the field of software engineering the Bunch tool was developed

in the research of Mancoridis et al. (1999) and Mitchell (2002). The tool Bunch is able

to identify clusters and display dependency graphs within software systems. Bunch is

running as a standalone system and is not integrated into a development environment.

The Bunch tool can process files, which are stored in the Module Dependency Graph

(MDG). This describes a text file, in which every line represents a dependency with a

source artefact and a destination artefact. The work of Mancoridis et al. (1999) and

Literature Review

28

Mitchell (2002) are relevant sources for the implementation of this research hence

they will be further examined throughout this research.

In conclusion, this section has given an overview of the development in the field of

software clustering and describes relevant research in this area. Additionally, this

paragraph emphasized the application of SBSE in the area of software clustering. The

next section portrays the software clustering process.

2.3.2 The Software Clustering Process

The research objective of this work involves the implementation of a software

component to decompose software systems. Hence it is important to create a good

understanding of the software clustering process.

In the literature a variety of different clustering approaches can be found. This section

examines the similarities between these clustering approaches. Wiggerts (1997)

identifies three important elements that must be addressed in order to design

software clustering systems. Mitchell (2002) also expressed these important elements,

namely:

• Exposure of the artefacts to be clustered

• Identification and measurement of criteria to determine the similarity between

the artefacts

• A clustering algorithm which applies the similarity measurement

Within the next three sections these three fundamental phases are illustrated and the

important parts for this research are elucidated.

Exposure of the Artefacts

To derive a cluster landscape from a software system a sufficient representation of the

software system artefacts and their dependencies to each other have to be identified.

This representation depends on the requirements of the clustering approach.

Within the reviewed software clustering approaches, e.g. Mancoridis et al. (1999) and

Dietrich, Yakovlev, McCartin, Jenson and Duchrow (2008), the software system is

Literature Review

29

represented as a directed graph G = (V;E). The set of nodes V represent the artefacts of

the software system. The edges)(VVE ×⊆ represent the relations between the

artefacts. The goal of software clustering is to partition this graph into meaningful

subsystems. This illustrates that software clustering can be seen as a graph partitioning

problem. The graph partitioning problem has a computational complexity of NP

(Mancoridis, Mitchell, Rorres, Chen, & Gansner, 1998). The number of possible

solutions to cluster software graph increases exponentially with the number of

artefacts (nodes) within the software system. The optimal solution of a software

clustering problem cannot be found in polynomial time. Regarding this the application

of heuristics to reduce the computational complexity of the software clustering

problem is interesting.

Mitchell (2002) and Wiggerts (1997) described factors which they asserted need to be

considered when designing the representation of the artefacts. One of the influencing

factors is the desired granularity of the recovered system. This refers to the level of the

clustering approach. The clustering, for example, can be applied at method, class or

package level or even a multi-level approach can be required, which considers more

than one artefact level. Another factor considers the attributes of the relations

between two artefacts. Is it beneficial if the relations between two artefacts carry a

weighting to express some form of connection strength? If a weighting is considered,

there is a need to determine which attributes are of special relevance. They have to be

included into the weighting. This countenances also the possibility to include multiple

weights.

Identification and Measurement Similarity Criteria

After the representation of the artefacts and their relations between the artefacts are

defined, the similarity between two related artefact representations has to be

determined. The similarity defines the connection strength between two related

objects. Higher similarity measurements indicate a stronger similarity or connection

between two artefact representations.

If a multiple weight approach is chosen, consideration then needs to be given if there

is a different importance between the individual weights. For example, because of the

Literature Review

30

different character of the implements or extends relationships within a Java based

software system, these could potentially have a different weighting than the

dependency relationship. The implements and extends relationships hint a high degree

of similarity and express a high similarity and connection between these classes.

Another example is the inclusion of interfaces in the dependency relationship. The

interface encapsulates the specific implementation from the accessing class. This

relationship should command a lower weighting then the relationship between two

concrete classes.

In Muller, Orgun, Tilley and Uhl (1993) a similarity measurement called Interconnection

Strength was used to determine the strength between two artefacts, which expresses

the number of common artefacts which are accessed, exchanged or shared by two

components. In Schwanke and Hanson (1994) a similarity measurement is identified

which evaluates a set of features. Each feature represents a similarity measurement

between a pair of artefacts. As a result the similarity feature can either exist or not

exist within the two artefacts. Schwanke and Hanson (1994) presented a formula to

normalise and weigh these similarity and distinction features. Constants were also

included to allow a user-defined weight for similarities and distinction between

artefacts.

The Cluster Algorithm

After defining the representation and similarity measurement method, the data

required to cluster the dependency graph is available. Based on the representation

and the similarity measurement the cluster algorithm can create a cluster landscape of

the software system. The distribution of the artefacts is the task of the clustering

algorithm as the central core of the software clustering process.

Mitchell (2002) stressed that most clustering algorithms arrange their clusters

hierarchically. Hierarchical clustering begins with the low level artefacts (e.g. methods,

procedures, classes) and organises them into subsystems. Based on these subsystems

the cluster algorithm creates the next level of abstraction and clusters these

subsystems based on the similarity measurements into new larger subsystems. Finally,

it would be possible that only one subsystem is left, which contains all subsystems of

Literature Review

31

the previous hierarchy. As a result a tree is created comprising leaves that are the low

level software artefacts and inner nodes that are subsystems. According to Mitchell

(2002) this hierarchical clustering is beneficial in terms of aiding a developer to

understand the structure of a software system. This hierarchical approach facilitates

the developer in understanding, analysing and revising the software design at different

abstraction levels and supports the ‘fading out’ of irrelevant system components.

Schwanke and Hanson (1994) proposed a hierarchical algorithm that combines the two

artefacts with the highest similarity into one new subsystem until only one subsystem

is left. This offers the user a variety of different solutions on different abstraction

levels. A disadvantage of the approach is that some subsystems evolve more quickly

than others. Certain system parts may evolve into higher subsystem levels during the

first iteration while other system parts are still on a low artefact level.

The clustering of a software system in a hierarchical manner is inappropriate for this

project. It does not align with the objective of this research. The aim of this research is

to present clustering results which feature the same evolution level. The asymmetry of

the hierarchical cluster development is contradictory to this requirement. However,

the idea to apply an iterative cluster process and evolve the cluster quality during the

multiple cluster cycles is promising. For this, the inclusion of user knowledge into these

cluster runs to direct the clustering results is a promising approach that will be

discussed in section 2.3.3. But this user influence does not lift the clustering onto a

new abstraction level but rather redirects the cluster process to improve the cluster

quality. An additional approach, which is driven by the hierarchical clustering is the

clustering on abstraction levels. The hierarchical clustering approach from Schwanke

and Hanson (1994) produced the basis for the next clustering results from the previous

clustering results. But as mentioned in section 2.1.1, current software systems exhibit

already mechanisms to abstract software systems. For example: Java based software

systems merge methods into classes and classes into packages. Current cluster

approaches often work on file or class level (Anquetil & Lethbridge, 1999a; Jiang et al.,

2007; Seng et al., 2005). The work of Dietrich et al. (2008) introduced the Barrio

component, a non search based approach which is able to cluster Java systems on

class level. The Barrio tool partitions a graph, based on the smallest path between two

Literature Review

32

sub graphs utilizing the Girvan-Newman algorithm (Girvan & Newman, 2002). The user

can control the separation level, which determines the maximum strength between

two sub graphs. Depending on the separation level the clustering produces different

cluster landscapes. As the clustering relies on the weakest path between two sub

graphs, the Barrio tool can give good indications for the decomposition of the system.

Additionally, the cluster result can be compared with the real package classification.

As the approach of Mitchell (2002) reads an input file with the dependency

information, it is independent of the application level. But it cannot utilise any special

characteristic of the dependencies or different levels of the analysis. Aligned with the

research objective of this work to reduce the complexity of software systems, the

application of a cluster approach, which is able to cluster also on higher abstraction, is

beneficial on higher abstraction levels e.g. package level. Certainly it is important that

the system commands about a system wide high functional cohesion on the clustered

artefact level. Would this not be the case the cluster algorithm would be misled by the

multiple connections of the artefact.

Muller et al. (1993) introduced a cluster approach, which includes an artefact into a

cluster, when the similarity measure (Interconnection Strength) extends a threshold.

This threshold can be defined by the user. If an artefact exceeds these thresholds with

two relating artefacts all three involved artefacts are combined in one cluster. A

disadvantage of this approach is the missing transparency of the Interconnection

Strength for the user. The introduction of thresholds to control the clustering will give

the user the chance to further adapt the result to his personal preferences. As

mentioned before the transparency of the impact of the threshold is also of

importance.

Anquetil and Lethbridge (1999b) illustrated the recovering of a software architecture

based on the similarity of file names. The artefact representations are labelled based

on established file abbreviations for source code files (e.g. “domain”, “material”,

“tool”) and name similarities. Based on this approach, a heuristic-based cluster

algorithm assigns the artefacts into clusters. Anquetil and Lethbridge (1999b)

suggested a variety of different heuristics to distribute the artefacts into clusters, but

Literature Review

33

favoured a heuristic that assigns artefacts into clusters based on the first name

abbreviation. The disadvantage of this approach is that if a software system is not built

with a strictly followed naming policy then it is not applicable. Furthermore, if a

particular file name does not follow the name policy, it is unlikely that it will be

assigned into the correct cluster. In Mitchell (2002) three clustering algorithms

(exhaustive, hill-climbing, genetic algorithm) were pioneered to cluster software

systems into subsystems. The goal of these heuristic cluster algorithms is to maximize

an objective function. Mancoridis et al. (1999) introduced the term Module Quality

(MQ) as a description for the quality of a cluster solution. In Mitchell (2002) the two

objective functions BasicMQ and TurboMQ were introduced. Each of these fitness

functions rewards high cohesion within a subsystem and penalizes high coupling

between subsystems. The BasicMQ fitness function measures the inter-connectivity as

the connection between the artefacts of two distinct clusters and intra-connectivity as

the connections between the artefacts of the same cluster. Based on the

measurement of the inter-connectivity and intra-connectivity for every cluster is the

tradeoff between inter-connectivity and intra-connectivity calculated by rewarding the

existence of highly-cohesive clusters and the penalization of too many inter-edges.

Mitchell (2002) asserted that the BasicMQ fitness function delivers good results but

also involves a high computational complexity. Respectively, the TurboMQ

measurement was introduced. The TurboMQ measurement features a computation

complexity of O(|E|), where E represents the set of edges of the analyzed graph.

TurboMQ fitness function measures a ClusterFactor for every cluster of the partitioned

graph. It is calculated for every cluster of the partitioned graph. The ClusterFactor is

defined as a normalized ratio between the total weight of the internal edges (edges

within the cluster) and half of the total weight of the external edges (edges that exit or

enter the cluster). The half weight is applied as the external dependencies are

connected with two clusters and respectively penalizes two clusters. Mitchell (2002)

contemplated that the ClusterFactor could be calculated by the application of

weighted edges. This approach was not further examined and evaluated by Mitchell

(2002) or continuative work as (Mitchell & Mancoridis, 2006, 2008). In regard to the

performance the genetic algorithm introduced in Mitchell (2002) is able to identify

Literature Review

34

better solutions than the hill climbing algorithm. This observation is independent of

the BasicMQ and TurboMQ fitness function. On the opposite, the hill climbing

algorithm outperforms the genetic algorithm in computational time.

In conclusion, this section has illustrated relevant research in regard to the clustering

process of software systems. The illustration of the research followed the classification

of Wiggerts (1997) into the three main fields exposure of artefacts, similarity

measurement and the cluster algorithm. Further on an aim of this research is to

investigate the performance and quality of the clustering by including expert and

domain knowledge into the clustering process. Regarding this, the next section gives

an overview about relevant research, which enables the inclusion of expert and

domain knowledge into the clustering process.

2.3.3 Inclusion of Expert Knowledge

This section discusses relevant research in the field of expert and domain knowledge

inclusion into the cluster process.

The software clustering approaches can be distinguished in manual, semiautomatic

and fully-automatic clustering (Mitchell & Mancoridis, 2006). Manual clustering

approaches supply the user with a framework to implement the clustering, but do not

support the user with any suggestions or help to partition the software system

automatically. On the contrary fully automatic approaches do not allow the user to

influence the cluster process. Mitchell and Mancoridis (2006) stressed that semi-

automatic cluster approaches support the user with automatic functions, but also

require manual user interaction to conduct the software partitioning. According to

Mitchell and Mancoridis (2006) the clustering approach introduced by Mitchell (2002)

is a fully automatic approach, which allows the user to manually supply additional

cluster information. However, the Bunch tool only allows the user to add additional

knowledge about the structural information in the format of a text file. This

information is read once and included at the beginning of the cluster process. Bunch

does not support the interactive inclusion of user data in an iterative or incremental

manner.

Literature Review

35

The Bunch tool produces different cluster results with the same user input data.

Mitchell (2002) argued that because of the heuristic search approach a deterministic

solution is not possible. This behaviour may be confusing for the user – especially if he

or she is not familiar with stochastic processes - and so instead anticipates a precise

manipulation of the solution. In conclusion, non-deterministic behaviour of the cluster

algorithm would corrupt an interactive approach.

2.3.4 Evaluation of Software Clustering Quality

This section demonstrates approaches to evaluate software clustering solutions. The

evaluation of clustering solutions features a variety of challenges. The challenges are

the compliance of the objectivity, the determination of the relevant aspects to

evaluate a cluster solution and the consideration of the aim of the clustering.

Most research in the area of software clustering promotes the use of experts to

evaluate their clustering approach (Mitchell & Mancoridis, 2001). This approach can

deliver a high quality evaluation, but relies on the subjective perceptions of the expert.

In addition, the expectations of expert effort and necessary knowledge to evaluate a

cluster solution are drawbacks of this approach. This motivates the desire to find a

more formal way to evaluate cluster solutions.

A distance metric for software clustering was introduced by Tzerpos and Holt (1999) to

evaluate the similarity of two software system decompositions. The research assumed

the existence of an expert decomposition against which to validate the cluster

approach decomposition. Anquetil and Lethbridge (1999b) adopted an approach to

compare different similarity measurements to estimate the quality of a clustering

approach. Meanwhile, Mitchell & Mancoridis (2001) introduced the CRAFT framework,

which offers a more formal way to evaluate and compare clustering approaches. The

CRAFT framework uses the hillclimbing and genetic algorithm from the Bunch tool. It is

also possible to add individual algorithms to compare the results with these

algorithms. The idea of the research of Mitchell and Mancoridis (2001) was that the

intersection of all algorithms is likely to deliver a good basis on which to evaluate any

individual algorithm.

Literature Review

36

The validation basis for a cluster landscape evaluation is created by multiple runs,

illustrating that the CRAFT framework aims especially for non deterministic algorithms,

which create different cluster outputs. Based on these multiple runs the CRAFT

framework calculates the distribution for each artefact. A possible result for one

artefact could be that artefact A1 is combined with artefact A2 in 90% of the

evaluation runs and combined with artefact A3 in 10% of the evaluation runs. This

outcome can be compared with the results of another cluster algorithm and an

aggregate outcome can be determined.

In such a scenario it has to be considered that the included cluster algorithms should

take into account the same software attributes. Otherwise the outcomes would not be

comparable in any valid way. Considering the possibility to visualize a software system

from different perspectives the evaluation should also consider the perspective criteria

to evaluate the clustering result. If the cluster algorithms within the CRAFT framework

do not focus on the same perspective criteria the evaluation with the CRAFT

framework would be meaningless.

2.4 Software Metrics

This section introduces the field of software metrics. Beginning with the theory of

measurement the motivation for the application of software metrics in SBSE is drawn.

Additionally different classes of software metrics are demonstrated and it is stated

which metric class is suitable for this research. Further on, recent research in the area

of software metrics, with special focus on software clustering and SBSE, is examined.

The measuring theory model of metrics is based on the empirically relational system

and on the numerically relational system (Fenton & Pfleeger, 1997). An empirically

relational system exists of an amount of objects of the reality. Objects can be physical

objects, events or also abstract things. Examples of objects are people, programs,

documents or test phases. Attributes are qualities of objects which can be, for

example, the size of a person, the circumference of a document or the complexity of a

program. This illustrates that an object itself cannot be measured but the attributes,

which describe the characteristic of the object, can be measured.

Literature Review

37

On account of the different attribute values an order originates between the quantities

of objects. The objects have an order in relation to an attribute. The relation shows an

ordinal criterion for the objects. Because of the relation an order is defined between

two objects. Empiric relations can be for example, "is longer" or "is more structured

than”. A mapping of concrete values does not exist in the empirically relational system.

The difficulty of classification of an empiric relation is applied, for example, in the

relation is "more complex than" to an amount from software programs. These empiric

relations between two software programs cannot be ascertained objectively. With the

help of a relation the empiric order is based on observations, comparisons and

appraisals of the reality. On the other hand the numerical relational system defines

formal objects (e.g. figures) and exact relations (e.g. ">"). The purpose of a

measurement is the transformation of informal (empiric) objects to formal objects.

The aim of a transformation from a relational system (empirically to relational system)

in another (numerically relational system) is to express the empiric order within the

numerical system.

This transformation is the task of a metric. A metric is a surjective function �: � → ℝ ,
which transforms an attribute set S into the numerical relational system ℝ

(Schneidewind, 1992). Based on this formal definition of a metric, and with reference

to section 2.2.2, the similarity of the fitness function and a metric can be recognised.

This link was also drawn in the research of Harman and Clark (2004) that illustrates the

similar characteristics of metrics and the fitness functions and motivates the possibility

to include different metrics into the fitness function. Thus the work of Harman and

Clark (2004) constituted the base to apply further software metrics in the field of

software clustering and SBSE.

The purpose of metrics is the measurement of certain software qualities (Erhard,

1991). These qualities cannot be measured by metrics directly. A metric measures

attributes of an artefact which gives an indication for certain quality attributes (El-

Wakil, El-Bastawisi, & Boshra, 2004). Considering this, a metric is rather an

interpretation of a software quality attribute and does not express the quality

Literature Review

38

attribute itself. The aim of metrics is to transfer these measured attributes into a

comparable scale (Schneidewind, 1992).

An example of an easy-to-understand metric is the Lines of Code (LoC) metric. The LoC

metric counts the total number of code lines within an artefact usually without

counting the empty lines (Erhard, 1991). A high LoC value can be an indication of a very

complex class or even a god class (Riel, 1996; Smith & Williams, 2000), which

comprises a high amount of functionality and breaks the principle of encapsulation

(Gamma, Helm, Johnson, & Vlissides, 1995). However, it may also identify GUI

artefacts, which tend in general to be longer than service or domain artefacts. Use of

this metric could help the developer to identify problematic code segments, but it

would still be an individual decision if an artefact has to be refactored or not.

Considering this, a metric-based analysis should rather consider different metrics to

identify problematic artefacts. A collection of metrics is called a metric suite (Hitz &

Montazeri, 1996). If multiple metrics of a well combined suite produce high metric

values for a certain artefact a more detailed analysis of this artefact would likely be

necessary.

2.4.1 Classification of Software Metrics

To isolate software metrics, which are suitable for the work reported here, the division

of software metrics by Fenton and Pfleeger (1997) into process, product and resource

metrics is briefly described. This subsection provides a short overview over these three

metric groups. The commentary on product metrics has greater depth, given their

greater relevance to this research project.

Process metrics concern the development process associated with a software-system.

Examples are the number of mistakes/week, expenditure estimates or indicators of the

project progress. Resource metrics measure the available or expended resources.

Examples are the utilization of personnel resources or computer resources. Product

metrics reflect aspects of the artefacts that comprise the software product. These

metrics characterize the specification, the design or source code attributes of a

software product. Examples are the lines of code (LoC) metric or the number of

Literature Review

39

methods/class. A further division of product metrics into traditional and object-

oriented metrics can be found in the literature (Chidamber & Kemerer, 1994). The use

of traditional metrics is not purely bounded on procedural programming

environments. However, the use of traditional metrics within object-oriented systems

should be undertaken with caution as within the object-oriented paradigm some

factors are added, which are not considered by traditional metrics. These factors have

an impact on the complexity of the system and need to be included in the metric

analysis of an object-oriented system. These object-oriented criteria are abstractions in

classes, inheritance, packaging and polymorphism. The application of a traditional

metric in conjunction with these OO-specific metrics, as for example the Lines of Code

(LOC) metric, can be meaningful within an object-oriented system. Apart from these

distinctions, a classification of metrics according to different degrees of abstraction is

possible. In this case a classification can be made into micro-level and macro-level

metrics. Macro-level metrics consider characteristics on the level between modules

(inter-module level). The investigation of micro-level metrics is bounded on internal

module characteristics. This classification is very rough, because inter- and intra-

module communication can take place on different artefact levels. A further

partitioning of metrics according to the application level is also possible. For example

this classification could be, according to the object-oriented paradigm, a partitioning

on system -, subsystem -, classes and method level. (Kiebusch, Franczyk, & Speck,

2005). These examples illustrate that many different classifications of metrics can be

found in the literature. The most important point before introducing the use of metrics

in relation to a software system is to determine if the metric is appropriate and

useable in the environment and on which artefact level the metric analysis is

considered to be most reasonable.

2.4.2 Application of Software Metrics in SBSE

This paragraph illustrates the application of metrics in relevant research projects and,

with regard to the research objective of this work, focuses on the application of

metrics in the area of SBSE and software clustering.

Literature Review

40

As stressed by Harman and Clark (2004), the application of metrics in search based

software engineering and software clustering is promising. Harman and Clark (2004)

illustrated the similar characteristics of metrics and the fitness functions and

motivated the possibility to include different metrics into the fitness function. Anquetil

and Lethbridge (1999b), Mitchell (2002), Seng et al. (2005) and Jiang et al. (2007) have

all included metric values into the fitness function for different clustering approaches.

Anquetil and Lethbridge (1999b), for example, the similarity of names as a ratio value

and used this information to rebuild the structure of a software system.

The research of Mitchell (2002) was based on the measurement of cohesion and

coupling measurements. This cohesion and coupling measurement was based on the

measurement of the dependencies. Mitchell (2002) did not feature a difference

strength or characteristic of the dependencies.

Seng et al. (2005) and Jiang et al. (2007) introduced search based clustering and slicing

approaches, which were using software metrics to guide the search process. Seng et al.

(2005) included the cohesion, coupling, complexity, cycles, and bottleneck metric into

the fitness function. The work of Jiang et al. (2007) focused on the slicing of software

systems and applied the coverage and overlap metrics, which were inspired by the

slicing approaches from Ott and Thuss (1993). As illustrated in section 2.2 and 2.3 the

research of Anquetil and Lethbridge (1999b), Mitchell (2002), Seng et al. (2005) and

Jiang et al. (2007) concentrates on the application of the hillclimbing and the genetic

algorithm metaheuristic.

In conclusion, little research has been conducted in the overlapping fields of software

metrics, SBSE and software clustering. The research of Mitchell (2002) and Anquetil

and Lethbridge (1999b) concentrated on the application of one measurement to derive

a cluster landscape. On the opposite, the research of Seng et al. (2005) and Jiang et al.

(2007) applied a set of metrics to offer a decision base for the fitness function. But the

weighting of these metrics in combination with each other is fixed. Seng et al. (2005)

and Jiang et al. (2007) both applied the same weighting for all metrics and did not

allow the changing of the weighting of these metrics. The research of Mitchell (2002),

Seng et al. (2005) and Jiang et al. (2007) was able to identify different solutions by

Literature Review

41

changing the applied fitness function or the metaheuristics. These solutions differ

merely because a better or less feasible solution is found within the search space. This

illustrates that the exploration of the search space is influenced by the fitness function,

but the criteria which define a good or bad solution do not change. Mitchell and

Mancoridis (2008), Seng et al. (2005) and Jiang et al. (2007) motivated that a

configurable fitness function would be interesting and a field for further research.

2.5 Summary

This section concludes the literature review in the areas of software architecture, SBSE,

software clustering and software metrics. Based on the literature review of the studies

the limitations and challenges can be derived to develop the research questions of this

research.

In particular, the work of Jiang et. al (2007), Seng et. al (2005) and Mitchell (2002)

constitute the main basis for the present research. These research projects combine

the areas of SBSE and reverse engineering and encourage the further exploration of

SBSE in the field of software clustering. A relevant finding within the software

clustering literature review is that it seems to be at least beneficial, to include

additional user data and expert knowledge to the clustering process. To date user

input has been limited to the application of thresholds and the provision of an initial

user data set which is considered by the cluster process (Mitchell, 2002). A user

directed guiding of the clustering process, where the user is able to contribute

additional user data into the cluster process to influence the search process and its

outcomes would be possibly beneficial and increase the likelihood of identifying good

solutions. Integration of such support into a development environment should simplify

the orientation of developers within a given software architecture and rapidly provide

information regarding the dependency structure. A developer can then obtain the

necessary information for further modularization and equalization of the software

system.

Mitchell (2002) depicted the inclusion of one dimensional weight into the dependency

graph. Furthermore, the work of Seng et. al (2005) and Jiang et. al (2007) portrayed

the possibility to include weighted graphs into a fitness function to identify important

Literature Review

42

dependency structures. Harman and Clark (2004) illustrated the similarity of the fitness

functions and software metrics. So far research was limited to the application of

cohesion and coupling, name similarity, cycle and bottleneck metrics. There is

potential, then, to explore further software metrics for inclusion into the fitness

function. In Seng et. al (2005) the combination of multiple metrics was applied.

However, Seng et. al (2005) did not envisage a controlled manipulation of the inclusion

strength of these metrics. Mitchell (2002) stressed that the inclusion of multiple

metrics would be interesting to examine a software system from different

perspectives. It appears that to date no research has been conducted to recover the

structure of a software system to create different cluster landscapes of the

implementation perspective. Considering this, the inclusion of multiple weights in a

fitness function would seem promising to support multiple implementation

perspectives and to identify problematic code segments (code smells).

The application of metaheuristics in software clustering appears to be limited to the

application of hillclimbing (Jiang et al., 2007; Mitchell, 2002), genetic algorithms (Jiang

et al., 2007; Mitchell, 2002; Seng et al., 2005) and the greedy algorithms (Seng et al.,

2005). Nevertheless, Seng et. al (2005) applied the greedy algorithm in the similar field

of software slicing and not directly in the field of software clustering. None of the

previous research applied tabu search to the challenge of software clustering. Tabu

search with its deterministic character and its efficient memory exploration model

(Sung & Jin, 2000) is certainly promising for the application in software clustering.

Considering the challenges and limitations of current studies and the opportunities for

promising research paths the final research objectives can be stated.

Research Objectives and Methodology

43

3 Research Objectives and Methodology

Based on the outcomes of the literature review and the discussion of promising

research opportunities, this chapter states the research objectives, identifies the

research questions and thereon describes the methodology and design of this

research.

3.1 Research Objectives

The aim of this research is to determine if a user-directed search-based software

clustering approach is applicable to support stakeholders with information about the

structure and dependencies of a software system. This aim has arisen from the

literature review, with the outcomes and limitations of prior work leading to an

assumption that a user directed clustering approach, which would give the

stakeholders more control over the clustering process, has the potential to contribute

to the quality of software clustering.

Regarding the previously applied metaheuristics in the field of software clustering, the

application of tabu search in the area of software clustering is adopted here. The

flexibility and possibility of parameterisation of the tabu search algorithm should align

with the requirements of a user-directed software clustering approach. Additionally,

the application of the greedy algorithm as a comparison and evaluation baseline is

intended, building on the research of Jiang, Gold, Harman, & Li (2007) who applied the

greedy algorithm in the similar field of software slicing.

A further aim of this research is to investigate if the inclusion of multiple metrics in the

search fitness function enables the user to create different implementation

perspectives of a software system.

Based on these formulated research objectives the research questions for this work

are derived.

Research Objectives and Methodology

44

Research Questions

The following research questions are answered within this research:

• Can a user directed and semi-automatic clustering approach contribute to the

quality of software clustering?

• Is tabu search applicable in the area of software clustering?

• Does the inclusion of multiple metrics in the fitness function enable the

clustering of a software system into multiple implementation perspectives?

Based on the research objectives and the identified research questions the research

methodology is now described.

3.2 Research Methodology

In order to address the research questions in a robust and rigorous way and to

demonstrate and evaluate the effectiveness of the approach adopted, an appropriate

methodology needs to be selected. As this research is both exploratory and

constructivist in nature it therefore utilises the system development research

methodology (SDRM) of Nunamaker et al. (1990) in accordance with the design-

science research guidelines introduced by Hevner et al. (2004) to specify, design,

develop and evaluate a software component to exploit search based principles in the

analysis of the dependencies within a software system. Constructive methodologies

(Jones, 2004; Nunamaker & Chen, 1990), comprising the main steps of building and

evaluating an artefact, is commonly employed in software engineering and information

systems research. Figure 3.1 depicts the individual stages of the SDRM research

process. Because of the explorative character of systems development research

projects the SDRM research methodology does not demand a strict sequential process.

Findings in later stages can mean that previous stages have to be revisited. Each stage

features activities to reach certain goals. The next section describes the design of this

research applying the SDRM.

Figure

3.3 Research Design

Based on the research objective

the SDRM research methodology, the design of the research is

Construct a Conceptual Framework

To employ a constructive paradigm without fully understanding the problem space

could potentially lead to inconclusive research or misleading results.

founded on an in-depth literature review in the area of software architecture analysis,

software metrics, software clustering and search based software engineering. The

research aim and research questions have been derived based on the consideration of

promising paths and a discussion of the placement of this research

work.

Research Objectives and Methodology

45

Figure 3.1 : Research process of the SDRM (Nunamaker & Chen, 1990)

Research Design

Based on the research objectives, the resulting research questions and the selection of

the SDRM research methodology, the design of the research is as follows

Construct a Conceptual Framework

To employ a constructive paradigm without fully understanding the problem space

lly lead to inconclusive research or misleading results.

depth literature review in the area of software architecture analysis,

software metrics, software clustering and search based software engineering. The

and research questions have been derived based on the consideration of

promising paths and a discussion of the placement of this research

(Nunamaker & Chen, 1990)

, the resulting research questions and the selection of

as follows.

To employ a constructive paradigm without fully understanding the problem space

lly lead to inconclusive research or misleading results. This research is

depth literature review in the area of software architecture analysis,

software metrics, software clustering and search based software engineering. The

and research questions have been derived based on the consideration of

promising paths and a discussion of the placement of this research relative to prior

Research Objectives and Methodology

46

Design and Implementation

With the context of the research defined, a constructive methodology lends support to

the design and implementation of a component that addresses the research aim and

the identified research questions. Within this research this phase comprises the steps

and goals of the “develop a system architecture”, “analyse and design the system” and

“build the prototype” stages of the SDRM. The scope and functionality of the

developed Search Based Reverse Engineering (SBRE) component are defined as

follows.

One research objective of this work is to examine if tabu search is applicable in the

field of software clustering. This demands that a specific implementation of the tabu

search metaheuristic, with its ideas and concepts, is applied within the SBRE

component. However, the framework should not be bounded only to the application

of tabu search. An implementation of the greedy algorithm should also be

implemented to provide a basis for comparison and evaluation of the tabu search.

More generally, the SBRE component should be built so that it is supports the

inclusion of additional metaheuristics.

An examination of the effectiveness of applying multiple metrics in positively

influencing clustering outcomes is another important element of this research. In

particular, the use of multiple metrics should enable the illustration of different

implementation perspectives and the identification of code smells. This requires that a

framework is developed which supports the flexible inclusion, extension and exclusion

of metrics into the clustering process. To enable this flexible configuration of metrics

the user has to be able to configure the inclusion of every metric individually.

The main objective of this research is to determine if a user-directed approach can

contribute to the quality of software clustering. During the literature review and the

identification of limitations of prior research four approaches that give the user more

control over the cluster process have been identified. The first approach aims to

increase the efficiency of the clustering process through the inclusion of user

knowledge in an interactive manner. This can guide the search into more promising

areas of the search space. The user can add constraints into the clustering process

Research Objectives and Methodology

47

interactively and is able to trigger the clustering process for the recalculation of the

software clustering. An additional user-directed clustering mechanism is intended to

deliver a reduction in the complexity of the software clustering by transposing the

clustering to a higher level of abstraction. Programming languages offer different levels

of abstraction e.g. classes and packages in Java systems. It has to be examined, then, if

it is beneficial that the system is clustered at higher abstraction levels than class level.

To evaluate this, the search based software clustering system has to be able to cluster

software systems at various abstraction levels.

Hence the applicability of the flexible multiple metric approach and the tabu search

algorithm are to be examined to determine if these approaches contribute to the

quality of software clustering. The tabu search algorithm features a variety of

influencing parameters e.g. number of maximum tested solution candidates, length of

the tabu list and the triggering of the intensification and diversification method. The

component should support the flexible configuration of these parameters to enable

the examination of the contribution to software clustering quality.

Evaluation

The SDRM requires the observation and evaluation of the constructed component to

gather the necessary data to answer the research questions. To enable the evaluation

of the SBRE component, an experimental methodology is applied to assess both utility

and performance (Collis & Hussey, 2009). The experimental methodology can confirm

a theory, examine a relationship, evaluate the accuracy of a model or validate a

measure (Collis & Hussey, 2009). To conduct the experimental methodology an

expected outcome has to be determined. Additionally, the environment and the

procedure have to be defined to enable the reproduction of the experiment. After data

collection, the results are interpreted and compared with the expected outcome. The

design of the experiment should be aligned with the research objectives in order to

ensure that the necessary data are collected and thus the research is able to answer

the identified research questions. With regard to the research questions stated above,

the next section illustrates the requirements to collect a sufficient data base.

Research Objectives and Methodology

48

The main research question of this research addresses the contribution of a user-

directed approach to the quality of software clustering. The term ‘quality of software

clustering’ has a variety of interpretations. For this research, the influence of user

interaction on the feasibility of achieving cluster solutions and the effect of interaction

on the complexity of the software clustering process are relevant software quality

dimensions. A collection of experiments, which are described in Chapter five,

contribute data to this aspect. An assessment of the technical applicability of the

inclusion of user knowledge into the clustering process and an interpretation of the

effects of the clustering result are given in section 5.4.3. The other approaches

incorporated in the user-directed clustering strategy adopted here are considered as

part of the evaluation of the additional research questions. A final discussion is

provided in section 6.1.3 to address the research question and to determine if a user

directed clustering and semi-automatic clustering approach can contribute to the

quality of software clustering.

The evaluation of the tabu search algorithm includes an analysis of the applicability,

performance and limitations of tabu search within a software clustering approach. The

applicability of the tabu search implementation is assessed via analysis and

interpretation of the software clustering results. The corresponding experiments are

illustrated in section 5.3. In particular, attention is focused on the effect of the tabu

search algorithm on the fitness function measurements or the computational time

required to create a solution. The implementation and results of these experiments

are illustrated in section 5.3.2. These data are interpreted and compared with the

results of the implemented greedy algorithm, which is evaluated in section 5.3.1. A

final discussion regarding the applicability of the tabu search algorithm is given in

section 6.1.1.

This research considers the extraction of different implementation perspectives by

including a flexible multiple-metric approach in the fitness function. The intent is that

metrics can support the identification of different implementation perspectives

depending on specific metric configurations. As a result, created solutions should vary

depending on the configuration and should reflect the intent of the corresponding

Research Objectives and Methodology

49

metric configuration. Additionally, other tests are designed to assess whether a

multiple metric approach is able to support the identification of code smells at an

abstract level. A final discussion and answer to the associated research question is

given in section 6.1.2.

Based on the description of the design of this research, the design and implementation

of the component to enable the achievement of the research objectives is now

described.

Design and Implementation of the SBRE Component

50

4 Design and Implementation of the SBRE Component

Driven by the objectives and the selected design methodology of this research, this

chapter illustrates in detail the design and implementation of the Search Based

Reverse Engineering (SBRE) component. The SBRE component embodies the designed

and implemented artefact of this research. Because of the explorative character of this

research and the necessity of reviewing design decisions based on findings during the

development process (as is common in contemporary iterative approaches), the design

and implementation processes are consolidated in one chapter. This chapter defines

and describes the architecture, the components and the algorithms. It constitutes the

end products of this research endeavour to enable the user to control the clustering

process by the configuration of metrics and adding domain knowledge.

The overall aim of the present work is to help the developer and architect in arriving at

an optimal structure for a software product. This emphasizes the development of a

software clustering framework which applies a metaheuristic guided search process.

As mentioned in section 2.3.2, and introduced by Wiggerts (1997), a clustering

framework comprises the three phases: exposure of the artefacts to be clustered,

identification and measurement of criteria to determine the similarity between the

artefacts and a clustering algorithm which utilises the similarity measurement. For the

design of the system architecture of this component, this work allocates the selected

approach for software clustering systems into these three phases. Referring to the

research objective, this research project will employ the tabu search metaheuristic.

The special requirements for the design of metaheuristics are covered in the algorithm

design section. As described in section 2.2.2, a framework for the design of this

metaheuristic is provided by Talbi (2009). Talbi (2009) subdivides the metaheuristic

design process into three phases: design of the solution representation, design of the

fitness function and design of the constraint handling.

Before the design and implementation of the individual components of the SBRE

component are described, the next section outlines the development environment

used to support this research.

Design and Implementation of the SBRE Component

51

4.1 Development Environment

Given the research goals and the benefits of the integration of components into one or

more IDEs, this component is intended to be developed as an integrated development

component. In the present research the SBRE component is to be developed within the

Eclipse plug-in framework, due to the easy deployment process and modular

architecture of this particular framework. As a consequence the analysis will be bound

to Java systems only. While this represents a limitation on the applicability of the work,

it is appropriate to fulfil the proof of concept- and prototype-character of this project.

The design, implementation and evaluation should be guided by the identified

research questions and the stated research scope. Also taking into account the limited

time and resources of the project, it is meaningful and appropriate to utilise external

components to promote the project quickly into an applicable prototype stage. The

early application of a prototype will allow an early evaluation and consideration of the

applicability of the SBRE component.

It is evident that a software clustering framework is needed to answer the formulated

research questions. An appropriate candidate for this project is the Barrio clustering

component introduced by Dietrich, Yakovlev, McCartin, Jenson, & Duchrow (2008).

The Barrio component is an Eclipse plug-in and the source code is available at the

project home page (Dietrich, 2009).

4.1.1 The Barrio Framework

The Barrio framework comprises the three necessary phases for cluster analysis

mentioned by Wiggerts (1997). For the source code analysis the Code Dependency

Analyzer (CDA) framework is used (Duchrow, 2009), which creates a dependency graph

and stores it in the open Object Dependency Exploration Model (ODEM) format. The

output in ODEM format is transferred into the internal Barrio graph representation.

The Barrio framework uses the Jung graph library (O'Madadhain, Fisher, & Nelson,

2009) as internal graph representation. Based on the exposure of the artefacts, the

classification and clustering analysis are executed. Finally, the graph including the

clustering information is displayed. For the visualization the prefuse graph system

Design and Implementation of the SBRE Component

52

introduced in Heer, Card, & Landay (2005) is used. The clustering process of the Barrio

framework is illustrated in Figure 4.1.

Figure 4.1 : Barrio software clustering process

The Barrio framework does not support search based algorithms in the classification

process. Given the aims of this research project, the classification and clustering

component of the Barrio framework had to be replaced to apply a search based

clustering approach. Additionally, the visualization component had to be replaced to

address the research questions of this research related to incorporating a greater

element of user direction. However, the Barrio component contributed positively to

this research, especially in relation to the transformation of the Java source code into a

representation suitable for the similarity measurement, classifying and clustering

process. In retrospect, the Barrio framework provided an initial infrastructure that

enabled this work to achieve a quick project start-up, but during the evolution of this

research project a majority of the Barrio components had to be discarded or replaced.

4.1.2 The Bunch Framework

An initial idea was to include the Bunch framework introduced by Mitchell (2002) in

the Barrio software clustering component, since the Bunch framework applies heuristic

search approaches. The Bunch framework can modularize software systems by

applying Hill Climbing and Genetic Algorithms as clustering algorithms. Furthermore,

the Bunch framework offers an extension API to integrate independently developed

search-based algorithms.

Unfortunately, a number of drawbacks made the application of the Bunch framework

within this project impractical, meaning that it would not be possible for the outcomes

to address the formulated research questions. The Bunch system is only available as a

binary jar file. Thus, no source code of the Bunch tool is available to conduct source

code analysis and modifications within the Bunch tool.

Java
Source
Code

Code
Dependency

Analyser

ODEM
Format

Jung
Graph
Toolkit

Classification
and Clustering

Visualisation
with prefuse

Design and Implementation of the SBRE Component

53

As the Bunch framework uses the MDG file to load the artefact and dependency

information and no cluster information is stored in the MDG file, an iterative and

incremental clustering approach is not possible with the Bunch framework. The

recommended source analysis tools (Chava and BAT) to create the MDG graph are no

longer available or supported. This further complicated the application of the Bunch

tool.

Mitchell & Mancoridis (2006, 2008) stated that the Bunch framework can consider

graphs with weights. The TurboMQ fitness function in combination with the genetic

algorithms provides this capability. However, it is not possible to ascertain whether an

integration of metric values would have been possible or if an interactive and

incremental clustering approach could be employed, as only on the basis of an

algorithm extension would it have been possible to evaluate these changes.

The utilisation of the Bunch tool in an integrated approach is theoretically possible

according to the API specification. However, the Eclipse class loader concept does not

harmonize with the Bunch object instantiation mechanism. This caused class not found

exceptions because of incorrect class loader assumptions within the Barrio source

code. This problem could not be solved even in collaboration with the Bunch

developers. It became evident that integration into the Eclipse (IDE) framework is not

possible without major changes within the Bunch software system. This prohibited the

use of the Bunch tool in terms of enabling an integrated approach.

In conclusion, the Bunch framework is not applicable to address the research objective

within this project and so a novel search-based cluster framework had to be

developed. That said, the Bunch framework provided a useful benchmark for the

evaluation of this research.

The next sections describe the design process of this component following the design

framework of Wiggerts (1997).

4.2 Exposure of the Artefacts

As stated in section 4.1 the exposure of the artefacts is conducted by the Barrio tool.

During this research project a component is extracted from the Barrio tool, which

Design and Implementation of the SBRE Component

54

allows the user to select one Java project based on the existing Java projects in the

current Eclipse workspace. Figure 4.2 illustrates the interface of the project selection

component.

Figure 4.2 : UML class diagram of the SBRE ProjectSelectionTable

The component detects the existing Java projects of the Eclipse workspace. The

component is implemented as a table with one column for the project selection status

and one column for the java project name. Figure 4.3 depicts the visualisation of the

Java project selection component. Based on the selection the component is able to

return the selected Java project as an instance of the IJavaProject interface.

Figure 4.3 : Visualisation of the project selection component

The SBRE component hands the chosen Java project on to the CDA component and the

artefact extraction process is triggered. As a result, a directed graph is returned. The

graph is an instance of the Jung graph framework introduced in O'Madadhain, Fisher

and Nelson (2009). It takes the form of a set of nodes, which represent the artefacts of

the selected Java project, and a set of edges, which represent the dependencies

between the nodes. The Jung graph instance can be seen as the result of the artefact

exposure process.

Design and Implementation of the SBRE Component

55

4.3 Design and Implementation of the Similarity Measurements

Based on the exposure of the artefacts the similarity between the extracted artefacts

has to be determined. The basis for the similarity measurement is the extracted Jung

graph instance. The result of the similarity measurement forms the decision basis

enabling the clustering algorithm to decompose the software system into clusters.

This section therefore describes the design of a framework, which determines the

similarity of artefacts. As derived from the literature and formulated in the research

objective, the similarity measurement is implemented by the application of multiple

software metrics. This requires the measurement of multiple aspects of the artefacts,

with each similarity measured by the application of one suitable metric. The aim of this

research project is not to recommend novel metrics or to evaluate whether certain

metrics are more suitable than others for the application to the task of software

clustering. It is rather the aim of this research to examine if a multiple metric approach

delivers the possibility to generate and visualise different perspectives of a software

system. Considering this, the selection of metrics should vary regarding their

measurement goals. Additionally, the metrics should impose low computational

complexity, be easy to understand and easy to implement. The inclusion of additional

metrics may be appropriate if the concept has been proven as feasible. One aim of this

research is to apply software clustering at the package level of Java programs. This

requires that the metrics are applicable at different artefact levels. Depending on the

focus of the clustering, some factors have to be considered, which could hinder the

aim of the clustering. These are the identification of logical or functional subsystems

and the existence of a dependency flow within the system. Dependency flow,

describes the dependency direction of the system from higher to lower layers or

subsystems in the architecture e.g. visualisation components access domain or base

functionality. If the clustering algorithm simply follows this dependency flow the

clustering of functional connected subsystems would not be possible. This could be

overcome by considering attributes, which indicate functional connections between

artefacts e.g. the rewarding of interface and inheritance relationships.

Design and Implementation of the SBRE Component

56

Considering the results of previous research the cohesion and coupling of artefacts

(Mitchell, 2002) and the similarity of names measurements (Anquetil & Lethbridge,

1999b) have already delivered good results and thus were also utilised within this

research. Each of these metrics quantify the relationship between two artefacts.

Metrics of this nature have shown to deliver a good decision basis for the clustering

process. In addition, there is likely to be complementary benefit in considering metrics

that describe the artefact itself rather than the relation between two artefacts.

Two metrics that each measure an attribute of a given artefact have been chosen.

These are the Lines of Code (LoC) metric and the Number of Static Elements within an

artefact. As described above, these metrics differ in character in comparison to the

name similarity and cohesion between objects measurement. These metrics do not

measure the relation between two artefacts. They rather describe the artefact itself.

Considering this, the research objective includes an examination also whether artefact

metrics are able to guide the clustering search process. The next four sections describe

the chosen metrics in detail.

Cohesion Between Objects (CBO)

The measurement of cohesion and coupling is of central importance in the field

of software clustering (Jiang et al., 2007; Mitchell, 2002; Seng et al., 2005). The

application of cohesion and coupling to clustering software systems is also

meaningful for this project. This research project focuses on the decomposition

of object oriented software systems. Hence, the applied metric particularly

considers the examination of the influencing factors of cohesion and coupling in

object oriented systems. The result is an implemented metric class

CohesionBetweenObjects that measures the cohesion between two artefacts on

the basis of the given source code and incorporates object oriented aspects. If a

dependency from artefact A1 to artefact A2 exists (e.g. A1

calls/implements/inherits A2), then the CohesionBetweenObjects is calculated

counting the direct usage of the class name occurrence, the method calls and

the direct field accesses from A1 to elements of A2. The sum of the class,

method and field occurrences is divided by the number of elements (class,

Design and Implementation of the SBRE Component

57

method and field) of artefact A2. Every occurrence of the class name, method

and field has the same weight. No special weight is included for the interface or

inheritance relationship as the depending artefact should use a high amount of

the code elements of the interface or of the abstract artefact. Considering this,

the implements and inheritance relationship is rewarded. For the clustering on

package level, the relevant measurements are compressed to one

measurement for every package dependency and divided by the number of

dependencies between these packages.

Correlation of Names (CoN)

It has been shown in Anquetil and Lethbridge (1999b) that the similarity of

artefact names can produce meaningful results in terms of clustering. This

depends mainly on the patency of the system naming conventions. In their

study, Anquetil and Lethbridge (1999b) constrained the name similarity

measurement to the exposure of file names. For this project, with its particular

focus on java projects, the inclusion of class and package names is meaningful.

The package naming is relevant, because it can be driven by the

implementation architecture of the system. The similarity is calculated by

identifying the length of the longest identical substring for the names of two

artefacts. A ratio value is created by dividing this value through the length of

the longer string. The CorrelationOfNames metric determines the similarity

measurement of class and package names on class level with an equal weight.

For the clustering on package level only the package name is considered.

Lines of Code (LoC)

The LoC metric is a low level measurement, which counts the number of lines of

code within an artefact. As stated in section 2.4, high measurements of the LoC

metric can be indicative of high complexity of an artefact. Within the research

community the LoC metric is often criticised as being unable to identify

complex artefacts that may not be long or to estimate the evolution of a

software system (Fenton & Pfleeger, 1997; Rosenberg, 1997). However, the LoC

metric is easy to understand, independent of the applied artefact level and

Design and Implementation of the SBRE Component

58

imposes low computational complexity. Additionally the LoC metric examines a

different characteristic of the software system than the

CohesionBetweenObjects and Name Similarity measurement. Considering this,

the application of the LoC metric is appropriate in this project. The class

TotalLOCMetric metric comprises the functionality for measuring the lines of

codes within a given artefact. To enable the clustering on package applying the

TotalLOCMetric the sum of every artefact is calculated.

Number of Static Elements

The class StaticElementsMetric comprises a metric that counts the occurrence

of static elements within an artefact. The employment of static elements

bypasses the object oriented encapsulation principle, which is discouraged as

the static elements are visible and accessible system wide. This increases the

coupling between artefacts and erodes the modularisation of the system. As a

result, frequent occurrence of static elements is generally an indication of a

poor software design. For the clustering on package level is the sum of every

artefact calculated.

Based on the described requirements and the selected metrics a framework can be

designed. Figure 4.4 illustrates the class design of the metric framework. This follows

the strategy design pattern, introduced by Gamma, Helm, Johnson and Vlissides

(1995). The MetricEngine class symbolises the context of the metric framework and

administers and encapsulates the metric behaviour. The interface MetricStrategy

defines the interface for all specific metrics. Additionally to the strategy design pattern

the abstract class AbstractMetricStrategy is introduced as an implementor of the

MetricStrategy interface to comprise the overlapping functionality of the metrics.

These overlapping requirements are the defined weighting of a metric and of the

selected Java project. They have to be accessed by the metric implementation to

calculate the metric value for a concrete artefact. The metric implementations inherit

from the abstract class AbstractMetricStrategy. The metric framework stores the

measured value directly into the node or the relation of the analyzed Jung graph.

Design and Implementation of the SBRE Component

59

Figure 4.4 : Illustration of the design of the SBRE metric framework

The framework is able to analyze a Jung graph and to assign the containing nodes and

relations with metric values. The framework is extensible, meaning that other metrics

can also be integrated. For each metric a weighting can be set by the user to reflect its

importance relative to other metrics. This weighting is set as a ratio value at the

concrete MetricStrategy instance. The getMetricValue(Edge) combines all registered

metric values and considers their weighting. The following formula describes the

calculation of the normalized metric value where S = f is a set of registered

MetricStrategy instances and � (as instance of the type Edge) represents a dependency

between two artefacts.

������������������� ���
 = ∑ ��. #����� ���
 ∗ ��. #��%��#ℎ���
'�(�
)

If a metric describes an artefact and not the relation between two artefacts, the

measured value has to be stored in the vertex of the graph e.g. TotalLocMetric and

Design and Implementation of the SBRE Component

60

StaticElementsMetric. As the edge stores the connected vertices, the edge can gather

the metric information from the destination vertex.

An additional objective of the research is to examine whether it is possible within an

SBRE based cluster approach to identify code smells at a higher abstraction level. For

the achievement of this objective it is not meaningful to cluster all of the artefacts of

the software system, rather it is necessary to consider only artefacts that feature

attributes which are indicators of code smells. For the realization of this requirement

the user should be able to define a threshold. The exceeding of this threshold

determines that an artefact should be considered during the clustering. In terms of the

metrics selected for use here, it should be noted that the definition of a threshold for

the CohesionBetweenObjects and NameSimilarity measures is not meaningful, as these

metrics describe the relation between two artefacts and do not indicate a code smell.

On the other hand, the TotalLOCMetric and the StaticElementsMetric, as node metrics,

are suitable to derive an indication for a code smell. Thus, the user can define

thresholds for these node metrics to reduce the set of clustered artefacts.

Based on this description of the design of the metric framework, the corresponding

SBRE component is illustrated in Figure 4.5, which enables the user to configure the

metric framework.

Figure 4.5 : Illustration of the metric configuration component

The sliders underneath the metric labelling enable the user to manipulate the

weighting of the corresponding metrics. Each slider determines the weight in percent

from zero to one hundred of the corresponding metric. Respectively, the positioning of

the slider at the right side includes the measured metric value at one hundred percent

in the similarity measurement. Configuration at the left side excludes the metric from

the similarity measurement. Below the slider the input fields are arranged to indicate

the threshold values which serve to limit the number of clustered artefacts. A

Design and Implementation of the SBRE Component

61

threshold of zero defines the threshold as not active. A value larger than zero

determines that every artefact with a value lower than the corresponding threshold

value is excluded from the cluster analysis. As the Correlation of Names and Cohesion

Between Objects metrics are not suitable for the application of a threshold, the fields

for these metrics are not active and no threshold can be determined.

Based on the measurements of the artefacts and of the relationships between the

artefacts in correspondence with the configuration of the metric framework, the

cluster search can be executed. For this the cluster algorithms have to be designed and

implemented.

4.4 Design and Implementation of the Cluster Algorithms

The measurements described above represent the decision basis for the clustering

process. As described in section 2.2.2, Talbi (2009) suggested a framework for the

design and implementation of metaheuristics into the three phases of solution

representation, design of the objective function and constraint handling.

4.4.1 Solution Representation

It has been demonstrated in section 2.3.2 that the software clustering problem is a

graph partitioning problem. It has been illustrated in section 4.2 that the software

system is available as a Jung graph instance. A requirement for a search based

clustering framework is the easy manipulation of the graph and the storage of multiple

variations of the graphs. Additionally, it should be relatively straightforward to

compare and evaluate a graph. The Jung graph framework does not fulfil these

requirements. The graph stores information which is irrelevant for the clustering

process and which hinders their use in the area of search based software engineering.

Additionally, the interface of the Jung graph framework is not optimized for

application within a search based environment. Considering these reasons, a different

lightweight representation is designed.

Within an implementation perspective the artefacts and dependencies between these

artefacts has to be visualized. In object oriented systems three different kinds of

dependencies exist: the “uses”, the “implements” and the “extends” dependency.

Design and Implementation of the SBRE Component

62

Each is associated with two classes and has a direction to indicate which is the

depending class. Given this, a software system can be modeled as a directed graph G =

(V;E). The set of nodes represents the artefacts of the software system and the set of

edges)(VVE ×⊆ represents the dependencies between these artefacts. As stated in

section 2.3 the goal of software clustering is the partitioning of a software system into

meaningful clusters. A cluster comprises a set of artefacts. One artefact can only be a

member of one cluster, and every cluster in the system contains at least one artefact.

Based on this, a class model can be derived to represent the clustering of a software

system. Figure 4.6 illustrates the corresponding model with the classes of the SBRE

representation.

Figure 4.6 : Class diagram of the SBRE representation

An instance of the SBRENode represents an artefact of the software system. The

SBREEdge embodies the dependencies between the artefacts. The field _value

represents the combined metric value of the applied metrics including the weight

adjustment of the user.

Design and Implementation of the SBRE Component

63

The SBREEdge class associates two instances of the class SBRENode. This is illustrated

by the fields _src and _dest and fulfils the requirement to represent the direction of

dependencies. The class SBREGraph relates to a set of SBRECluster instances. An

instance of the class SBRECluster represents a cluster. The class SBRECluster comprises

a set of SBRENode instances as a representation of the artefacts that are contained in

the cluster.

An instance of the illustrated model is not only the representation of the artefacts,

dependencies and similarities between these artefacts, it also represents a solution

within the search space if all nodes of the graph are assigned to clusters.

4.4.2 Fitness Function

The fitness function evaluates the quality of a solution and enables the comparison of

candidate solutions. As this research focuses on the application of multiple metrics and

incorporates functionality that enables the user to adjust the weighting of these

metrics, the fitness function includes these user adjustments and the selection of

metrics to evaluate solution quality.

The fitness function for this project promotes high cohesion within the clusters and

penalize high coupling between the clusters. This rewards solutions which feature a

high cohesion of the configured metric weighting and finally reflects the assumptions

of the user. Compared to other approaches (Mitchell, 2002; Seng et al., 2005) that also

promote high cohesion and low coupling, in this case the numerical base does not only

reflect the dependency binding between the connected artefacts, it also reflects the

measured metric values and the configured weighing of the user. To assess this, the

measurement of ClusterCohesion is introduced. The ClusterCohesion is inspired by the

ClusterFactor introduced in Mitchell (2002), but considers in comparison to Mitchell

(2002) the configured metric weighting.

The cluster quality for a cluster c which includes a set of artefacts A= {a1,a2, …, an} is

calculated as follows:

Design and Implementation of the SBRE Component

� �����

The ClusterCohesion

solution. The cluster quality has to be calculated for all existing clusters. This sum is

then divided by the number of existing clusters. So we define C = {c1, c2, c3, ..., cn} as

the set of clusters within a solution representation.

+,���#�*� ����*�

As described previously the coupling of clusters is also of relevance for the

construction of the fitness function. To examine the coupling between two clusters the

edges are of relevance, as t

source artefact representation is dedicated to another artefact than the destination

artefact representation.

them.

Figure 4.7 : Illustration of the

As described previousl

G=(V;E) with (VE ⊆

analyses as:

� = - � . /: e. getDest

Based on this set the

Design and Implementation of the SBRE Component

64

� �����&����)��
 �
∑ ��. #����� �

|5|

�(�

|+|

ClusterCohesion represents the cohesion measurement for one cluster of a

r quality has to be calculated for all existing clusters. This sum is

then divided by the number of existing clusters. So we define C = {c1, c2, c3, ..., cn} as

the set of clusters within a solution representation.

+,���#�*� ����*�&����)�6
 �
∑ *�. #��*� ����7 ����8

|9|

�(�

|*|

As described previously the coupling of clusters is also of relevance for the

construction of the fitness function. To examine the coupling between two clusters the

edges are of relevance, as these act as a link between two clusters. This means that the

source artefact representation is dedicated to another artefact than the destination

artefact representation. Figure 4.7 illustrates two clusters with a linking edge between

the coupling between clusters

As described previously, a software system within this work is represented as a graph

)VV × . The set of edges which are relevant for the coupling

getDest�
. getCluster�
! � e. getSource().getCluster()

Based on this set the ClusterCoupling of the graph G can be calculated.

Design and Implementation of the SBRE Component

#����� ��

represents the cohesion measurement for one cluster of a

r quality has to be calculated for all existing clusters. This sum is

then divided by the number of existing clusters. So we define C = {c1, c2, c3, ..., cn} as

#��*� ����7 ����8�

|

As described previously the coupling of clusters is also of relevance for the

construction of the fitness function. To examine the coupling between two clusters the

hese act as a link between two clusters. This means that the

source artefact representation is dedicated to another artefact than the destination

illustrates two clusters with a linking edge between

represented as a graph

of edges which are relevant for the coupling

Source().getCluster()

calculated.

Design and Implementation of the SBRE Component

� ����� ?��)#

Based on the Avera

solution can be calculated

high coupling and delivers the

within this research.

��� ���)7 ����8

Note that if the AverageClusterCohesion(G)

result, the calculation cannot be determined and

Additionally, a clustering should ideally result in a homo

software system. As illustrated in

complexity of the software system. This principle

clusters within a software system.

should be penalized

system.

Figure 4.8 : Complexity of a system in relation to the granularity

Design and Implementation of the SBRE Component

65

� ����� ?��)#�6
 =
∑ ��. #��������������������� �

|@|

�(�

|�|

ageClusterCohesion and the ClusterCoupling

alculated. The following formula supports high cohesion and penaliz

and delivers the basic fitness function for the evaluation of solutions

��� ���)7 ����8�6
 �
+,���#�*� ����*�&����)

� ����� ?��)#�6

AverageClusterCohesion(G) or the ClusterCoupling(G)

the calculation cannot be determined and it is an invalid solution.

Additionally, a clustering should ideally result in a homogeneous decomposition of the

software system. As illustrated in Figure 4.8 a consistent artefact size can reduce the

complexity of the software system. This principle can also be assigned to the size of

clusters within a software system. It motivates that very small or very big clusters

should be penalized, depending on the total number of clusters in the software

: Complexity of a system in relation to the granularity: adapted from

Design and Implementation of the SBRE Component

#��������������������� ��

ClusterCoupling the quality of the

high cohesion and penalizes

for the evaluation of solutions

����)�6

�6

ClusterCoupling(G) return zero as a

is an invalid solution.

geneous decomposition of the

a consistent artefact size can reduce the

can also be assigned to the size of

motivates that very small or very big clusters

depending on the total number of clusters in the software

: adapted from Baas (2003)

Design and Implementation of the SBRE Component

66

This research adopts the principle represented in Figure 4.8 and derives the

penalization for excessively small or large clusters from the characteristic of a

parabola. First the angular point for the optimal cluster size has to be defined. For this

research project the optimal cluster size is defined as 10 percent of the entire artefact

count. Hence, approximately ten clusters are included in the system. It is fair to say

that this approach is naïve and does not consider that with larger systems it would be

necessary to have more clusters in the system. But to illustrate if a parabola function is

adequate, this assumption is appropriate at this stage.

The application of a parabola as a penalizing instrument has two disadvantages. First,

every deviation from the determined optimum would be penalized. However,

depending on the system or the classification in the system architecture, the optimal

size of a cluster can vary. This problem can be attenuated with a shallow ascent around

the angular point. Additionally, as a second potential drawback, parabolic functions are

isosceles around the angular point. Thus a given deviation in a positive or negative way

based on the optimum causes the same function result. This can cause problems when

the function results should differ regarding the direction of the infraction. However,

this is not relevant in the application of a penalizing function in the area of software

clustering, because every solution with excessively small clusters should also incur the

same penalty as a solution with too many oversized clusters. Hence the application of

a parabola function provides appropriate penalization in the evaluation of software

cluster solutions.

As determined previously the anchor point is set at 10 percent of the entire artefact

count. The following formula is derived to penalize the system function. The solution

� ∈ � represents any solution of the search space. The set * = { �1, �2, … , �)} defines

the set of clusters of a given solution s. G ∈ ℝ is defined as the ratio of artefacts within

a certain cluster c ∈ * depending on the total number of artefacts within the system:

G = �. #��+�������H�����

��G
 = �G − 0.1
²

Design and Implementation of the SBRE Component

67

Transformed to:

 ��G
 = G² − 0.2G + 0.01

Additionally the function has to be normalized. For this research project it is assumed

that a solution, which exhibits more than fifty percent of the entire system artefacts, is

not feasible and should generate a penalty that defines the solution as completely

infeasible. The penalty is given as ratio value and therefore, a penalty of 1.00 signifies a

solution as completely infeasible. As a result of this derivation the following formula is

defined to penalize a cluster:

��G
 = 6G² − 1.2G + 0.06

This formula represents the penalty for one cluster. It is understandable, that every

cluster of a solution has to be penalized and be added up to a total solution penalty. It

is accepted that solutions with a higher number of clusters are more strongly penalized

under this approach.

δ�s
 = M ����. #��+�������H�����

|9|

�(�

In conclusion, the surjective function δ: S → ℝ supports the identification of

inhomogeneous solutions. To derive an indication of a final solution quality the fitness

function and the penalizing function have to be combined.

The previously introduced SolutionQuality (SQ) fitness function is a surjective

function�: � → ℝ , which transforms a solution from the solution space � into the

numerical relational system ℝ. Additionally a penalizing function δ: S → ℝ has been

defined which evaluates and penalizes the lack of homogeneity of a given solution. The

combination of the fitness function and the penalizing function �O��
 = ���
 ∗ �1 −
 δ�s

 determines the penalized solution quality for any solution of the solution space

� ∈ �. Finally, the combined fitness function �O��
 enables the comparison of

individual solutions considering the aspect of homogeneity. The fitness function

�O��
 is offered as the method getSolutionQuality() as a part of the SBREGraph

interface.

Design and Implementation of the SBRE Component

68

4.4.3 User Constraints

An important part of this research is the evaluation, which comprises approaches that

can improve the effectiveness of the search process. As stated in section 4.1, the

approach adopted here utilises an interactive clustering process, which allows the user

to include data in the process to guide the search into more promising areas of the

search space. The design strategy is to include this additional user data as constraints

on the clustering process. The requirements are therefore to administer cluster

constraints, to verify, if a solution candidate adheres to the configured constraints and

to generate initial solutions that align with the configured constraints. To fulfil these

requirements the class ConstraintEngine is designed, which comprises a set of

ClusterConstraint instances. Figure 4.9 depicts the class diagram for the constraint

component:

Figure 4.9 : Class diagram of the SBRE cluster constraint framework

Besides the administration of constraints with the methods addConstraint(),

deleteConstraint() and clearConstraints(), the degree to which a solution aligns with

the configured constraints can be determined using the method verify(SBREGraph

solution). Solutions that do not align with the configured constraints are rejected. A

ClusterConstraint instance accepts three parameters, which are the two constraint

artefacts and the type of the constraint.

Three constraints have been identified and implemented during this research to force

the search into different areas of the search space. The Combine Constraint accepts

Design and Implementation of the SBRE Component

69

only solutions that combine two determined artefacts in the same cluster. The

converse is the Separate Constraint, which only accepts solutions that place the two

given artefacts in separate clusters. The Exclude Constraint excludes artefacts from the

cluster process. This latter functionality is useful to reduce the search space for the

identification of “code smells” or to exclude irrelevant artefacts from candidate

solutions.

4.4.4 Metaheuristics

The core of this research is the process of creating a solution candidate within the

search space. This task is executed by the search algorithm. As previously described,

this work focuses on metaheuristics to solve the software clustering problem and

especially on the application of tabu search. To apply tabu search, a start solution is

necessary. To create this initial solution, an algorithm is needed which does not

assume an initial solution. As described in section 2.2.3, the greedy algorithm is a

metaheuristic that is able to create a solution from scratch. Hence, it is meaningful for

this research project to implement a greedy algorithm and tabu search algorithm

individually. However, before the design of these algorithms can be pursued, a

framework has to be designed, within which these metaheuristic algorithms can be

applied.

Design and Implementation of the SBRE Cluster Framework

The responsibility of the cluster framework is the management of the cluster

algorithms and the triggering of the clustering process. Figure 4.10 illustrates the

design of the cluster framework.

Design and Implementation of the SBRE Component

70

Figure 4.10 : Class diagram of the SBRE cluster framework

The class ClusterEngine represents the communication interface for the system. The

ClusterEngine manages a set of registered ClusterStrategy instances. One

ClusterStrategy instance is the currently active cluster strategy. The most significant

functionality of the ClusterEngine class is the cluster() method. Within the cluster

method the Jung graph instance is transformed to a SBREGraph instance. The

SBSEGraph instance is handed to the currently selected cluster algorithm. The cluster

algorithms are implemented following the design strategy pattern concept by Gamma,

Helm, Johnson and Vlissides (1995) with the additional inserted abstract class

AbstractClusterStrategy. The abstract class AbstractClusterStrategy pools overlapping

functionality to enable code reuse. Specific cluster algorithms inherit from

AbstractClusterStrategy. As previously described the SBRE framework offers the two

ClusterStrategy implementations GreedyBestNeighbour algorithm and

TabuSearchClusterStrategy, which represent the implementation of the greedy and

tabu search clustering respectively. The design and implementation of these

algorithms is described in the following sections.

Design and Implementation of the SBRE Component

71

Design and Implementation of the Greedy Algorithm

Within this research a Greedy algorithm has been designed. The functionality of this

greedy algorithm is encapsulated in the class GreedyBestNeighbour. The objective of

this search process is the assignment of artefacts into an unknown number of clusters.

As described, greedy algorithms usually start from scratch.

Hence, the GreedyBestNeighbour algorithm can start from scratch or build up from a

preconfigured incomplete solution. This behaviour has been chosen to incorporate

user data into the clustering process. The received initial solution includes the

executed user constraints as initial clusters and assigned artefacts. Based on this, the

algorithm then classifies the unassigned artefacts to clusters. If an artefact should be

assigned, it can be included in one of the existing clusters or it can be assigned into a

new cluster. The objective of this process is to isolate depending artefacts with high

similarity. Given this, it is not the aim of this research to combine artefacts in clusters

that exhibit high similarity, but in clusters which are not depending on each other.

Therefore the dependency between two artefacts is of central importance for the

assignment into one cluster. This requirement also reduces the search space, as two

artefacts can only be members of the same cluster when a path exists between these

two artefacts.

The algorithm starts with selecting the next unassigned artefact from the graph

representation. Based on this current artefact all incoming and outgoing edges to or

from the artefact are identified. Based on the metric value of these edges the best

suitable neighbour is identified. The metric value represents the combination of all

registered metrics including the weight adjustment. If the best neighbour is already a

member of an existing cluster the current artefact is also assigned to this cluster.

Figure 4.11 illustrates the assignment of one unassigned artefact into an existing

cluster.

Design and Implementation of the SBRE Component

Figure 4.11 : Allocation into

If the best neighbour is not a member of an existing cluster

and the current artefact is the first member of this new cluster, as illustrated in

4.12. The greedy algorithm considers only the strongest dependency for the decision

process. It could be possible that two weak dependencies exist, which lead into one

cluster, which then would ce

that cluster. This circumstance is not considered by the algorithm at this stage.

4.12 illustrates that the artefact is assigned into a new cluster, even though there exist

two connections to artefacts from

Figure 4.12 : Assignment of

Design and Implementation of the SBRE Component

72

nto existing clusters of the SBRE greedy algorithm

If the best neighbour is not a member of an existing cluster, a new cluster is created

and the current artefact is the first member of this new cluster, as illustrated in

. The greedy algorithm considers only the strongest dependency for the decision

process. It could be possible that two weak dependencies exist, which lead into one

would certainly indicate that the candidate could be a member of

that cluster. This circumstance is not considered by the algorithm at this stage.

t the artefact is assigned into a new cluster, even though there exist

two connections to artefacts from Cluster1 exist.

f artefact into a new cluster of the SBRE greedy algorithm

Design and Implementation of the SBRE Component

a new cluster is created

and the current artefact is the first member of this new cluster, as illustrated in Figure

. The greedy algorithm considers only the strongest dependency for the decision

process. It could be possible that two weak dependencies exist, which lead into one

rtainly indicate that the candidate could be a member of

that cluster. This circumstance is not considered by the algorithm at this stage. Figure

t the artefact is assigned into a new cluster, even though there exist

Design and Implementation of the SBRE Component

73

To overcome the problem of stalling in local minima, the algorithms start a separate

search for every possible unassigned artefact. The best solution is evaluated using the

fitness function introduced in section 4.4.2. The designed greedy algorithm is offered

as a separate strategy in the SBRE tool, but also delivers the starting point for the

design and implementation of the tabu search algorithm.

Algorithm 4.1 illustrates the pseudo code for the cluster method of the class

GreedyBestNeighbour algorithm. The illustrated cluster method is called for every

artefact of the graph as a start node. After the cluster method delivers a result with

every artefact as a start solution, the best solution is selected using the fitness

function.

Design and Implementation of the SBRE Component

74

cluster(SBSEGraph initalSolution, SBRENode startNode)

Let G = initalSolution.copy()
repeat
 Let N = G.getNodesWithoutCluster()
 Let C = G.getCluster()

Let node = startNode
Let bestMetricVaue = 0;

 Let bestCluster = null;

 if (startNode == null) then
 node = N.getFirst()
 startNode = null
 end

 foreach (c € C) do
 foreach (n € c.getNodes()) do

 foreach (e € getEdges()) do

 if (e.getMetricValue >= bestMetricValue) then

 bestCluster = c
 bestMetricValue = e.getMetricValue()
 end
 end
 end
 end
 if (bestCluster != null) then
 node.setCluster(bestCluster)
 else
 cluster = createCluster()
 node.setCluster(cluster)
 end

until “all nodes without cluster are assigned into cluste rs”

return G;

Algorithm 4.1 : PseudoCode of the GreedyBestNeighbour cluster method

Design and Implementation of the Tabu Search Algorithm

One aim of this research is to assess the applicability of tabu search in the field of

software clustering. To address this aim the class TabuSearchStrategy is designed

within this research project.

Tabu search algorithms require an initial solution as a basis for further solution

improvement. To create an initial solution the GreedyBestNeighbour algorithm, which

has been described in the previous section, is applied within the TabuSearchStrategy

clustering process. By default, the best identified solution from the class

GreedyBestNeighbour is used as the initial solution for the TabuSearchStrategy.

Additionally, the previously clustered graph can be used as the initial graph for the

Design and Implementation of the SBRE Component

75

tabu search clustering. This graph can be created from the GreedyBestNeighbour

algorithm or from the TabuSearchStrategy itself. This enables the user to change the

metric configuration and constraints at any time in the search to guide the search into

different areas of the search space.

Based on this start solution, the search can begin to identify improved solutions. While

the GreedyBestNeighbour algorithm follows a relatively naive approach of classifying

the system, the TabuSearchStrategy on the contrary explores more solution candidates

of the search space and as a result can hopefully seek better results than the greedy

algorithm. To simplify the illustration of the main components and method of

operation of the TabuSearchStrategy algorithm, the interface of the

TabuSearchStrategy is portrayed in Figure 4.13.

Figure 4.13 : Class diagram of the TabuSearchStrategy algorithm

Design and Implementation of the SBRE Component

76

The core algorithm is implemented in the method spreadSolution(SBREGraph

initalGraph). Because of its importance in this research, this method is described in

more detail. The spreadSolution method receives an instance of the SBREGraph class

as an argument. The SBREGraph instance represents a solution of the search space,

including a set of clusters with the assigned SBRENode instances. The second

parameter nodeCandidatesForDistribution contains a set of SBRENode instances as

representation of artefacts. These SBRENode instances of artefacts are members of

the SBREGraph solution. As a default, the nodeCandidatesForDistribution set contains

every SBRENode instance of the solution. It can also contain a subset of SBRENode

instances; this is of interest if the search should be intensified or diversified with a

special focus on this subset of SBRENode instances.

The cluster information of the received nodes is reset by the algorithm. To prevent the

same solution being identified within the next generation, the algorithm refuses to

classify an artefact into the same cluster. This anticipates unnecessary comparisons

with the members of the tabu list, because this branch is already examined with the

current search iteration. The solutions of the new solution set represent the initial

solutions for the next iteration of the search.

An example should help to illustrate the method of operation of the tabu search

algorithm. The initial solution Si consists of two clusters C = {c1, c2}. Every cluster

contains a set of artefacts c1 = {a1, a2, a3} and c2 = {a4}. To simplify the illustration a

solution is given as a set with an amount of subsets. Every subset represents a cluster

with the associated artefacts. Regarding this the representation for the initial solution

is Si = {{a1, a2, a3}, {a4}}. The set of artefacts which should be distributed is defined as

the complete set of artefacts within the solution A = {a1, a2, a3, a4}. Figure 4.14

visualizes the first search generation of this example. The example illustrates, based on

the initial solution, the creation of four new solutions within the first generation. Every

created solution represents a solution candidate. The solution candidate is evaluated

by the developed fitness function. The best solution out of this set is chosen using the

fitness function. This “best” solution represents the base for the next search iteration.

Design and Implementation of the SBRE Component

In this example it is assumed that {{a1, a2}, {a3, a4}} represent the best solution, the

other solutions are discarded.

Figure 4.14 drafts also the second generation of the search w

the initial solution. As illustrated the nodes are only assigned into the existing cluster.

It would certainly also be possible to include

Figure 4.14 : Example of the clustering process of the

Evaluated solutions are stored in the tabu list and during the creation of a new solution

candidate the list is examined to determine if the solution

investigated. If a solution is stored in the tabu list, the solution branch is not further

examined. This prevents the algorithm from exploring previously investigated branches

of the search space.

The maximum number of stored entr

A long tabu list will prevent the occurrence of cycles and the stalling of the algorithm

within an infinite loop. However a longer list will also decrease the performance of the

algorithm.

In addition to the length of the tabu list

candidates can be determined. This value can be set by the user to manipulate the

Design and Implementation of the SBRE Component

77

it is assumed that {{a1, a2}, {a3, a4}} represent the best solution, the

other solutions are discarded.

drafts also the second generation of the search with {{a1, a2}, {a3, a4}} as

the initial solution. As illustrated the nodes are only assigned into the existing cluster.

It would certainly also be possible to include every assigned node into

of the clustering process of the TabuSearchStrategy algorithm

Evaluated solutions are stored in the tabu list and during the creation of a new solution

candidate the list is examined to determine if the solution branch has already been

investigated. If a solution is stored in the tabu list, the solution branch is not further

examined. This prevents the algorithm from exploring previously investigated branches

The maximum number of stored entries of the tabu list can be determined by the user.

A long tabu list will prevent the occurrence of cycles and the stalling of the algorithm

within an infinite loop. However a longer list will also decrease the performance of the

the length of the tabu list, the number of maximum created solution

candidates can be determined. This value can be set by the user to manipulate the

Design and Implementation of the SBRE Component

it is assumed that {{a1, a2}, {a3, a4}} represent the best solution, the

ith {{a1, a2}, {a3, a4}} as

the initial solution. As illustrated the nodes are only assigned into the existing cluster.

node into a new cluster.

Evaluated solutions are stored in the tabu list and during the creation of a new solution

branch has already been

investigated. If a solution is stored in the tabu list, the solution branch is not further

examined. This prevents the algorithm from exploring previously investigated branches

ies of the tabu list can be determined by the user.

A long tabu list will prevent the occurrence of cycles and the stalling of the algorithm

within an infinite loop. However a longer list will also decrease the performance of the

the number of maximum created solution

candidates can be determined. This value can be set by the user to manipulate the

Design and Implementation of the SBRE Component

78

depth of the search. A higher number of tested solutions increases the chance of

finding better solutions within the search space, but on the other side it increases the

required computational time of the search.

Algorithm 4.2 illustrates the pseudo code of the spreadSolution code, the main

algorithm of the implemented tabu search metaheuristic.

spreadSolution(SBSEGraph initalSolution)

 Let P the current best solution

Let � be the set of all artefacts of the initalSolution
Let * be the set of all clusters of the initalSolution
Let � be an empty set of solutions/SBREGraphs

if (testedCandidates() > maxTestedCandidates()) then
 return P
end

foreach) ∈ � do
 foreach � ∈ * do

 Let Q = initalSolution.copy()
 Let c2 = I.getSBRECluster(c)
 Let n2 = I.getSBRENode(n)

n2.setCluster(c2)

increaseTestedCandidates()

//check constraints and tabu list
if (verifySolution(Q)) then
 S.add(Q)

if (isImprovingSolution()) then
P = Q

 end

 end

 if (isTimeForIntensification()) then
 intensify()
 end

 if (isTimeForDiversify()) then
 diversify()
 end

 end

end

spreadSolution(S.getBestSolution())

end

Algorithm 4.2 : PseudoCode of the TabuSearchStrategy spreadSolution method

Design and Implementation of the SBRE Component

79

The algorithm illustrates that tabu search algorithms rely strongly on the creation,

evaluation and rejection of solutions. This motivates the importance of a lightweight

representation and an efficient comparison and duplication mechanism for solutions.

The TabuSearchAlgorithm also implements intensification and diversification strategies

to overcome local optima and to approach the global optimum. The intensification and

diversification are triggered by an idle value, which counts the number of non-

improving solution candidates. The identification of an improving solution or the

triggering of the diversification or intensification process resets the corresponding idle

parameter. Both methods are controlled by their own idle values. Correspondingly, the

search can be focused more on intensification or diversification. The number of idle

iterations can be configured by the user.

The TabuSearchAlgorithm algorithm stores the elite solutions of the search in a

separate list. For the proof of concept of this research project the ten best solutions

are stored in the elite solution list. This simple approach is sufficient to examine the

method of operation of tabu search within the field of software clustering. Certainly a

more intelligent or flexible approach would also be possible, which would store the

elite solutions depending on user input or input size parameters. From these elite

solutions a new solution is derived, which exhibits the highest similarities of artefact

combinations in one cluster. For example, if artefact A1 was the most combined

artefact with A2, A1 and A2 are combined in one cluster within this new solution. This

solution represents the initial solution for the next iteration of the search. Hence, the

created solution is handed to the spreadSolution() method as an initial solution during

the next search iteration. Based on this, the search will be intensified in this region of

the search space.

If the algorithm cannot improve in the current area of the search space, the

diversification strategy can be applied to guide the search into a different area of the

search space. The implemented diversification method within this research is based on

the homogeneity of the cluster landscape and combines small clusters and separates

bigger clusters. The diversification method separates every cluster of the current best

solution into two clusters, which has more than five artefacts. Sets of two clusters with

Design and Implementation of the SBRE Component

80

fewer than five artefacts are combined into one cluster and the remaining empty

cluster is discarded. The selection of a fixed separation level is certainly naïve, but

again it is not a central component of the research to evaluate the optimal

diversification method in the area of software clustering. As such, a naïve

diversification approach is sufficient within this research project.

As illustrated during the previous paragraph the TabuSearchAlgorithm is influenced by

the “Idle Diversification”, the “Idle Intensification”, the “Maximum Tested Solutions”

and the “Length of the Tabu List” parameters. These parameters can be configured by

the user. Before every search, which applies the TabuSearchAlgorithm a configuration

window is displayed, which enables the tuning of these parameters. Figure 4.15

illustrates the configuration window for the TabuSearchAlgorithm.

Figure 4.15 : Example of the TabuSearchStrategy configuration component

As stated, the TabuSearchAlgorithm can use any clustered SBREGraph instance as the

initial start solution. By default, the best solution from GreedyAlgorithmBestNeighboor

algorithm is used. However, it is also possible that a previously clustered graph can be

the basis for further clustering. This allows the user to manipulate a graph with

constraints or to change the metric configuration and to retrigger the clustering with

this graph. To facilitate this behaviour the checkbox “Current Graph is Start Graph” has

to be selected.

The next section provides an overview of the functionality of the SBRE system. As the

purpose of the SBRE system is to enable the implementation and examination of the

Design and Implementation of the SBRE Component

81

research objective, this overview focuses on the necessary components and

functionality to deliver against the research objective.

4.5 Functionality of the SBRE System

This section describes the functionality and application of the Search Based

Rearchitecturing Engineering (SBRE) component. The SBRE component acts as an

enabler to examine the application of the greedy and tabu search metaheuristic in the

area of software clustering and to examine the feasibility of a user-controlled

clustering process. Regarding this, the SBRE component is a semi-automatic clustering

component that allows the user to control the clustering process by adjusting metrics

and by including user-constraints. The advantage of this approach is that the user can

include domain knowledge into the clustering process and align the clustering with

needed preferences. It is important to note that the metrics and constraints make no

decisions for the user regarding the clustering. Rather, they determine the direction of

the clustering. The following section gives an overview of the components and their

functionality. Figure 4.16 displays a screenshot of the complete SBRE tool and names

the relevant components. Based on this, the SBRE components are briefly described.

The navigation, project selection and visualisation capabilities are plausible, but are

not relevant for the examination of the research objective and as a result are not

further illustrated here.

Cluster Component

Within this component the cluster process can be triggered by pressing the Calculate

button. The applied metaheuristic can also be chosen within the Heuristic Strategy

selection box. Additionally, the cluster level can be determined. The user can choose to

apply the clustering on class or package level.

Constraint Component

The Constraint Component features a table that displays the active constraints. Every

constraint consists of the type, which can be connect- or disconnect elements, the

source and the destination artefact. A constraint can be created within the graph by a

right click onto an artefact or manually by executing the create button underneath the

Design and Implementation of the SBRE Component

82

table. Additionally, a constraint can be edited within the table or deleted by selecting it

and executing the delete button underneath the table.

Metric Configuration Component

The Metric Component enables the user to determine the weighting of the individual

metrics by adjusting the sliders. Additionally, a threshold can be defined. Artefacts that

have metric values, which fall below the defined threshold are excluded from the next

cluster iteration. A threshold of zero signifies the threshold as not active. As stated

previously, the threshold field for the Correlation of Names and Cohesion Between

Objects metrics are not active.

Info Component

The info box displays cluster information. The number of artefacts, number of edges,

the number of clusters and the solution quality is displayed. In addition, the

information level can be changed by executing a left mouse click onto clusters of

artefacts within the displayed graph.

Visualisation Component

The visualisation component displays the clustered graph with its artefacts and

dependencies between the artefacts. The SBRE component features a horizontal,

initial ordering of the clusters. This ordering is based on a ratio of outgoing

dependencies divided by the incoming dependencies. This ratio is calculated for every

cluster. The clusters are ordered downwards from the top to the bottom within the

graph visualisation component applying this ratio. The ordering mechanism is

refreshed when the clustering process is triggered with a new or different java project.

Furthermore, the ordering can be executed manually by a right click on the

visualisation component and the execution of the ‘Rearrange Graph’ menu item.

Design and Implementation of the SBRE Component

83

Figure 4.16 : Screenshot of the SBRE component

4.6 Summary

This chapter described the design and implementation of the SBRE component. This

component enables the application of greedy algorithm and tabu search in the area of

software clustering. Based on the preliminary literature review and guided by the

research objective three different frameworks emerged. These frameworks are a

MetricEngine for the measurement of similarities between artefacts and artefact

dependencies, a ConstraintEngine for the administration of user constraints and

verification of aligning solutions and a ClusterEngine for the exploration within the

search space and creation of solutions. Additionally, the design and implementation of

the solution representation SBREGraph is portrayed, which allows the efficient

duplication and evaluation of solutions. The core components of the SBRE have also

been illustrated from a user point of view.

Metric Configuration

Component

Constraint

Component

Cluster

Component

Project Selection

Component

Info

Component

Navigation

Component

Component

Evaluation of the SBRE component

84

5 Evaluation of the SBRE component

This chapter describes the evaluation of the SBRE component that has been developed

in the course of this research. The evaluation phase reveals the utility of the

constructed component and delivers the data to answer the formulated research

questions. Regarding this, it is important that a sufficient and appropriate method for

the evaluation of the research objective is chosen. As described within the research

design chapter, and in alignment with the constructive and explorative character of

this research, the execution of experiments is selected as the method to be employed

in this study. Section 3.3 already developed a mapping of the conducted experiments

to the research questions. The next section describes the design of and environment

for the experiments conducted to evaluate the SBRE component.

5.1 Experiment Design

The main purpose of this research is to examine the potential quality contribution of

applying a user directed SBSE based software clustering approach. The application of

the clustering evaluation methods introduced in Mitchell (2002) and Anquetil and

Lethbridge (1999b) to evaluate the quality of clustering are not applicable here. This is

due to the greater flexibility of the solution generation approach adopted within this

research project. The cluster evaluation approaches from Mitchell (2002) and Anquetil

and Lethbridge (1999b) assume a perfect solution as a mix of all applied cluster

algorithms and evaluate the distance to this perfect solution for the evaluation of a

cluster approach. This implies that all cluster approaches aim for this perfect solution

and variations are founded in the deficiency of the cluster algorithms itself. In contrast,

the approach within the SBRE component follows the philosophy that a multiplicity of

optimal solutions exists. Hence it rather depends on the user needs and the desired

perspective of the software system as to which solution is most appropriate. As a

result, the formal evaluation mechanisms of Mitchell (2002) and Anquetil and

Lethbridge (1999b) are not applicable for the evaluation of the SBRE research

component. Instead, an evaluation of the clustering results by a system expert is

applied within this research.

Evaluation of the SBRE component

85

To evaluate the cluster results in this way it is necessary to select one or more known

software systems for indicative analysis. As the evaluation of the delivered results have

an interpreted character it is important that the evaluator in this case has a good

knowledge of the design of the analysed software system. Fairly naturally, this

motivates the selection of the source code of the SBRE component itself for the

evaluation analysis, as the design and components of the SBRE system are well-

described during the previous chapters of this research project. The SBRE software

system represents a small to middle sized software project, comprising 163 classes,

352 dependencies between these classes, 18 packages and 48 dependencies between

these packages. The analysis of the SBRE system therefore enables conclusions to be

drawn for software systems of a similar size. Additionally, the publicly available “crm

domain example” project is used in some experiments as a second, slightly bigger,

software system to broaden the results and provide a basis for comparisons.

Aligned with the research objective, the evaluation consists of four different sections.

These sections represent the evaluation of the fitness function, the evaluation of the

performance of the implemented cluster algorithms, the evaluation of the clustering

capability of the SBRE tool and the comparison of the Barrio and Bunch component

with the SBRE component.

5.2 Evaluation of the Fitness Function

An important component of this work is the fitness function as it evaluates the

solution candidates and identifies the most feasible solution. The fitness function

within this research is called SolutionQuality (SQ). If the SolutionQuality measurement

is not actually able to distinguish the quality of a solution, the approach has limited

merit. Accordingly, the evaluation of the fitness function does not contribute directly

to the answer of one of the research objectives. It rather provides a necessary basis for

the further evaluation of the research objectives.

The SolutionQuality calculates a numerical value, which enables the solutions to be

ordered and compared. A comparison of two such measurements is only sensible,

however, if they feature the same metric weighting and analyzed the same software

system, as the weighting of the metrics and the composition and dependencies of the

Evaluation of the SBRE component

86

software system influence the calculation of the SolutionQuality measurement. As a

result, it is not possible to derive an absolute quality-estimation depending on the

measurement itself. The exchange of the cluster algorithm is unproblematic as the

SolutionQuality evaluates a solution irrespective of the cluster algorithms. Thus the

aim within this experiment is to determine if the SolutionQuality measurement enables

the identification of good solutions regarding the SBRE tool configuration. In other

words, the SolutionQuality measurements align with the quality difference of the

actual solutions. As the metric configuration defines the behaviour of the fitness

function, the metric configuration has to be considered in order to consistently

examine the quality of the identified solutions.

An experiment is therefore conducted in which existing solutions are deliberately

deteriorated by the inclusion of user constraints, which determine a qualitatively bad

cluster landscape. A risk of this experiment is that the inclusion of constraints

influences the complete solution. A constraint, which has a negative impact on a part

of the solution can still guide the search into another area of the search space, where

an improved solution may be found. To minimize this risk the clustered artefacts of the

SBRE system are reduced to the four packages cluster, metric, cluster.constraint and

jnumberfield. Artefacts can be excluded by pressing the right mouse button onto an

artefact and choosing the menu item “Ignore artefact ... in next analysis”. The

configured Exclude Patterns are displayed in the Constraint Component. This

experiment is conducted with full weight on the CohesionBetweenObjects metric and

the analysis is conducted on package level. The other metrics are fully disabled and not

considered during the cluster analysis. This configuration rewards solutions that

combine artefacts in clusters with a high cohesion. Figure 5.1 illustrates the initial

result of the clustering without deteriorating constraints and the configuration of the

SBRE component.

Evaluation of the SBRE component

87

Figure 5.1 : Initial solution of the fitness function experiment

The metric, cluster and cluster.constraints packages feature many dependencies

between each other. Regarding this and the concentration on the Cohesion Between

Objects metric this solution can be considered as feasible.

Based on this initial solution, constraints are introduced, which deteriorate the

solution. The first constraint forces the cluster algorithm to separate the cluster and

metric packages. Figure 5.2 demonstrates the result of this clustering.

Evaluation of the SBRE component

88

Figure 5.2 : Solution of the fitness function experiment with a separated metric and cluster package

Given the emphasis on the CohesionBetweenObjects measurement and the high

dependency between the metric package and the cluster and cluster.constraints

packages, this solution is less desirable. As illustrated in Table 5.1, this is also expressed

in a lower SolutionQuality measurement. Within the next clustering the jnumberfield

package is forced to be included in the same cluster as the cluster package. The result

of this clustering is illustrated in Figure 5.3.

Evaluation of the SBRE component

89

Figure 5.3 : Solution of the fitness function experiment with combined cluster and junumberfield package

Again taking into account the focus on the CohesionBetweenObjects metric and the

missing dependencies of the jnumberfield package to the cluster and

cluster.constraints package, this solution can be seen as the most infeasible of those

considered. These observations align with the measurements of the SolutionQuality

fitness function. Table 5.1 illustrates the results of the fitness function experiment. It

can be observed that the solution quality is reduced with the inclusion of deteriorating

constraints.

Active Constraints SolutionQuality

no deteriorating constraints 0.0176

cluster and metric package separated 0.0062

cluster and metric package separated ∧ jnumberfield and cluster package

combined

0.0048

Table 5.1 : Solution quality values of the fitness function experiment

While the significance of this simple experiment is certainly limited, it serves to

demonstrate that a forced deterioration also causes a reduction of the measured

SolutionQuality. This indicates that a connection exists between the quality of the

solution, from a software design point of view, and the SolutionQuality measurement.

Evaluation of the SBRE component

90

5.3 Evaluation of the Cluster Algorithms

Within this research the two SBSE based algorithms GreedyBestNeighbour and

TabuSearchStrategy have been designed and implemented. This section reports on the

evaluation of the performance and quality of these algorithms. This section contributes

especially to the evaluation whether the tabu search concepts are applicable in the

area of software clustering. The GreedyBestNeighbour algorithm is used as a

benchmark. Therefore an evaluation of the GreedyBestNeighbour is initially conducted.

The SolutionQuality fitness function measurement, which has been introduced in

section 4.4.2, remains as a measurement to estimate the quality of a solution and also

enables the user to compare the quality of the different cluster algorithm strategies.

Certainly, this approach could be seen as subjective as the SolutionQuality is also

applied as the fitness function within this research to evaluate solutions. However, as

the SolutionQuality fitness function has been evaluated in section 5.2 and has been

shown to be able to distinguish the quality of solutions, the application of the

SolutionQuality fitness function is, in the opinion of the researcher, meaningful. Other

SBSE-based research also relies on the application of the fitness function to evaluate

and compare approaches (Jiang et al., 2007; Mitchell, 2002; Seng et al., 2005). All

performance experiments described below, which explore the runtime of the

algorithms, were conducted twenty five times and the average of the relevant

measurements calculated. This should minimize variations caused by the execution of

other programs (e.g. virus scans). Further efforts have been taken to minimize these

influencing factors with the researcher not working at the test machine during the test

runs and disabling unnecessary programs.

5.3.1 Evaluation of the GreedyBestNeighbour Algorithm

This section describes the evaluation of the GreedyBestNeighbour algorithm. The only

input variable for the greedy algorithm is the analyzed software system. As described

previously, the comparison of the solution quality of different software systems is not

valid as the design and size of the software system has a direct influence on the

calculation of the SolutionQuality. Given this, the quantitative evaluation is restricted

Evaluation of the SBRE component

91

to the effect on the runtime of the algorithm regarding the analysis of differently sized

software systems.

Runtime Evaluation of the GreedyBestNeighbour Algorithm

Based on the body of the algorithm the computational complexity of the

GreedyBestNeighbour can be determined as O(n²), where n is the number of artefacts

within the software system. The runtime of the clustering process is n as any node is

accessed once and the best move is chosen from the remaining node set. Furthermore,

every node is used as a start point for the clustering iteration. The algorithm is

additionally influenced by the number of dependencies within the system, as every in-

or outgoing dependency of a node is checked to select the best move. To illustrate the

computational complexity of the GreedyBestNeighbour algorithm, two software

systems of different sizes are clustered: the SBRE system and the publicly available

“crm domain example”. The analysis for both systems is undertaken at both class and

package level. In both cases a SBREGraph instance is handed to the algorithm instance,

where the SBRENode instances contain either packages or class information. Regarding

this, the analysis at different levels does not affect the runtime characteristic. In Table

5.2 the results of this analysis are illustrated. The measured runtime in milliseconds

contains only the cluster process of the GreedyBestNeighbour algorithm from the

moment where the cluster() method is executed until the return of the best identified

solution. The measuring of the metric values, conversion into different graph models

and visualization of the graph is excluded from these measurements.

Analyzed System Number of Nodes Runtime in Milliseconds (Ø of 25 runs)

SBRE (Package Level) 20 38

CRM (Package Level) 46 708

SBRE (Class Level) 163 12710

CRM (Class Level) 192 40645

Table 5.2 : Runtime in milliseconds of the GreedyBestNeighbour algorithm

Figure 5.4 illustrates the progression of the GreedyBestNeighbour algorithm runtime in

milliseconds relating to the number of input artefacts.

Evaluation of the SBRE component

92

Figure 5.4 : Runtime of the GreedyBestNeighbour algorithm depending on the artefact input size

As assumed in the previous section and reflected in Figure 5.4 the runtime of the

GreedyBestNeighbour algorithm develops within the upper boundary of O(n²). An

interpretation of the delivered solutions is not possible at this stage as the basis for

comparison in this analysis is missing. The analysis of the solution quality is conducted

in combination with the TabuSearchStrategy analysis in the next section.

5.3.2 Evaluation of the TabuSearchStrategy Algorithm

In contrast to the GreedyBestNeighbour algorithm the TabuSearchStrategy algorithm

features a wider range of input parameters. These input parameters are the length of

the tabu list, the number of iterations until the algorithm terminates, the frequency of

the diversification to guide the search into unexplored areas of the search space, the

frequency of the intensification to guide the search into the most promising areas and

finally the size of the analyzed software system. Each of these parameters has an

influence on the runtime of the algorithm, the search and solution improvement

process and finally the solution quality. To evaluate the applicability of the

TabuSearchStrategy algorithm, which is addressed by the second research question,

these parameters and their influence on the performance and solution quality of the

TabuSearchStrategy algorithm have to be examined separately. During this evaluation

process a component is developed which enables the tuning of the parameters of the

TabuSearchStrategy. This component is introduced in the next section.

-10000

0

10000

20000

30000

40000

50000

0 50 100 150 200 250

R
u

n
ti

m
e

 I
n

 M
il

li
se

co
n

d
s

Number of Artefacts

GreedyBestNeighboor

Evaluation of the SBRE component

93

Implementation Tabu Search Evaluation

The Heuristic Strategy selection field of the SBRE component supports the

TabuSearchEvaluation strategy. Additionally to the algorithmic functionality of the

TabuSearchAlgorithm, the TabuSearchEvaluation strategy features a data input view,

which allows the tuning of the input parameters of the tabu search and enables the

user to run it multiple times with ascending parameter attributes. The configuration

window is illustrated in Figure 5.5.

Figure 5.5 : Configuration of the TabuSearchStrategy evaluation component

The four parameters Maximum Tested Solutions, Length of the Tabu List, Idle

Intensification and Idle Diversification can be tuned. Every parameter is split into three

values, the “from” input value defines the start value of the search, the “until” value

determines the termination condition and the last tested configuration, and finally the

step size defines the changing interval. As a consequence the search is executed n

times, with n = (“until input value” – “from input value”)/”step size”. The iterations of

the cluster analysis are executed independently and build up respectively on the best

identified solution of the GreedyBestNeighbour algorithm analysis. The result of each

iteration is displayed in the Eclipse Console.

Table 5.3 illustrates the result of a single iteration with one parameter configuration.

Besides the TabuSearchStrategy algorithm parameter configuration for the current

run, the table also shows the runtime in ms, the SolutionQuality of the best found

solution, the number of rejected solution candidates and the number of diversification

and intensification runs.

Evaluation of the SBRE component

94

M
a

xim
u

m
 T

e
ste

d

S
o

lu
tio

n
s

L
e

n
g

th
 T

a
b

u
 L

ist

Id
le

 In
te

n
sifica

tio
n

Id
le

 D
ive

rsifica
tio

n

R
u

n
tim

e
 in

 m
s

S
o

lu
tio

n
 Q

u
a

lity

T
a

b
u

L
ist R

e
je

cts

N
u

m
b

e
r o

f

D
ive

rsifica
tio

n
s

N
u

m
b

e
r o

f

In
te

n
sifica

tio
n

s

467

40

150

100

397

0.54

8

10

7

Table 5.3 : Example of one result of the TabuSearchStrategy algorithm evaluation

The GreedyBestNeighbour algorithm delivers within the conducted experiments the

initial graph for the TabuSearchStrategy algorithm analysis, which is also the default

behaviour of the TabuSearchStrategy algorithm. However, the time measurements of

the TabuSearchEvaluation component do not include the runtime of this

GreedyBestNeighbour algorithm run. The reason for this is, that the

TabuSearchStrategy algorithm allows the employment of previously created solutions

as the initial solution (see also: Figure 4.15). This motivates that any solution could be

utilized as the initial graph for the TabuSearchStrategy algorithm, this solution can be

created by any algorithm or even created or manipulated by the interaction of user. As

the time effort to create the initial solution cannot be determined, the runtime

measurements of the TabuSearchStrategy algorithm are specified without the creation

of an initial solution.

As described previously the TabuSearchStrategy algorithm is influenced by the “Idle

Diversification”, the “Idle Intensification”, the “Maximum Tested Solutions” and the

“Length of the Tabu List” parameters. It should also be considered that the individual

parameters have an influence on each other. Regarding this, the conducted

experiments have the aim to illustrate that the individual parameters influence the

behaviour of the algorithm. Additionally, it should be shown if the tabu search

algorithm is able to improve the search in comparison to the output of the

GreedyBestNeighbour algorithm. The aim of these experiments is not to derive general

assumptions about the configuration of the tabu search, rather it should provide some

Evaluation of the SBRE component

95

degree of evidence as to whether the tabu search algorithm is applicable in the field of

software decomposition. Where it is possible and appropriate to generalize a result, a

hypothesis is formulated to give an idea for such a generalization. However, the

experiments reported here do not have sufficient scope to support or refute these

general assertions.

As the metric configuration is not part of this experiment and does not influence the

outcome, the metric configuration is untouched for the evaluation of the cluster

algorithms. This means that every metric is defined with a weight of 0.5, where 1.0

would be the maximum weight. Figure 5.6 illustrates the metric configuration used

during the following experiments.

Figure 5.6 : Illustration of the metric configuration during the cluster algorithm evaluation

To examine, if the TabuSearchAlgorithm is able to improve the identified solution of

the GreedyBestNeighbour solution, the following experiment is conducted. It examines

the change of the SolutionQuality regarding the increase of the tested solution

candidates.

Evaluation Maximal Tested Solutions

The termination of the tabu search clustering algorithm is determined by the number

of maximal tested solution candidates. The number of maximal tested solutions

influences the SolutionQuality and the runtime of the algorithm. Within this

experiment the number of maximal tested solutions is increased from 1 until 1000 in

single unit increments. The accompanying parameters are the length of the tabu list

and the number of iterations without improvement until the activation of the

diversification algorithm. The tabu list is confined to a maximum length of 40 entries

and the diversification and intensification processes are triggered after 100 iterations

without an improvement of the solution quality. The following experiments within this

section will show that this configuration is optimal for the intensification and

Evaluation of the SBRE component

96

diversification parameterisation to obtain the best SolutionQuality measurement. The

excessive length of the tabu list prohibits the confinement in an infinite loop. Figure

5.7 displays the parameter configuration of the conducted experiment.

Figure 5.7 : Configuration of the maximal tested solutions experiment

This experiment aims to evaluate the performance of the TabuSearchStrategy

algorithm to improve the SolutionQuality measurement and the impact on the runtime

in comparison with the GreedyBestNeighbour algorithm. Therefore the experiment

contributes to the evaluation of the applicability of the TabuSearchStrategy in the area

of software clustering.

The experiment is conducted with the SBRE system at both package and class level,

which enables a degree of analysis of different system sizes. Figure 5.8 and Figure 5.9

illustrate the results as the development of the SolutionQuality measurement relating

to the number of maximal tested solutions.

Figure 5.8 pictures the analysis of the SBRE system at the package level and represents

a small system with 20 SBRENode instances and 56 SBREEdge instances.

Evaluation of the SBRE component

97

Figure 5.8 : Solution quality in relation to maximum algorithm iterations of the SBRE system (package level)

Figure 5.8 illustrates a continuous improvement regarding the SolutionQuality based

on the best identified solution of the previous GreedyBestNeighbour algorithm

analysis. A maximum level of solution improvement will be obtained after a certain

number of iterations. No further improvement of the SolutionQuality will be possible

with the current parameter configuration. To illustrate the performance of the tabu

search algorithm with bigger systems, the SBRE system is also clustered at the class

level. In this case the SBREGraph comprises a system with 163 nodes and 352 edges.

Figure 5.9 demonstrates the development of the solution quality in regard to the

increased number of maximum tabu search iterations for the SBRE system analysis at

the class level.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 200 400 600 800 1000

S
o

lu
ti

o
n

 Q
u

a
li

ty

Number of Maximum Tested Solutions

SBRE system (package
level) 20 nodes/ 56 edges

Evaluation of the SBRE component

98

Figure 5.9 : Solution quality in relation to maximum algorithm iterations of the SBRE system (class level)

The plateau and lack of improvement from iteration 250 onwards can be caused by a

variety of reasons, for example, a too short tabu list and, as a result, confinement in an

infinite loop. A deficiency in the diversification or intensification triggering could also

force or confine the search in a non-improving area of the search space. Also an

insufficient selection of solution candidates of the tabu search algorithm itself could

lead the search into non-improving areas of the search space. Finally, the reason for

the plateau could also be that an optimal solution within the search space has been

identified and no further improvement is possible with the current configuration. As it

is not central to this work the reasons for this plateau have not been further

investigated.

Figure 5.10 assesses the runtime of the TabuSearchStrategy and GreedyBestNeighbour

algorithm regarding “the number of artefacts” within the software system. As data

basis is the SBRE system and the „crm domain example“ project used. Both projects

are clustered on class and package level to broaden the data base. The clustering with

the TabuSearchStrategy run is conducted with 100 and 1000 as the “number of

maximal tested solutions”. The measurement of the TabuSearchStrategy runs do not

include the runtime of the GreedyBestNeighbour, which is executed by default if no

other initial solution is supplied. If the default behaviour is applied, the runtime of the

GreedyBestNeighbour function would have to be added on top of the both

0

0,0005

0,001

0,0015

0,002

0,0025

0 200 400 600 800 1000

S
o

lu
ti

o
n

 Q
u

a
li

ty

Number of Maximum Tested Solutions

SBRE system (class level)
163 nodes/ 352 edges

Evaluation of the SBRE component

99

TabuSearchStrategy runtime functions. Considering this, the runtime of the

TabuSearchAlgorithm is higher than the runtime of the GreedyBestNeighbour

algorithm.

Figure 5.10 : Algorithm runtime in relation to number of artefacts

Figure 5.10 illustrate that the TabuSearchStrategy algorithm exhibits a runtime, which

is smaller than a polynomial function. This contributes to the applicability of the

TabuSearchStrategy in the field of graph partitioning, which is a NP hard problem.

In conclusion, this section illustrated the impact of the variation of the maximal tested

solutions on the SolutionQuality. It has been observed that the TabuSearchStrategy

algorithm is able to improve the delivered solutions of the GreedyBestNeighbour

algorithm. Furthermore, it could be shown that the SolutionQuality increases with the

number of tested solution candidates, but also the runtime of the solution finding

process increases. It depends, on the requirements of the stakeholders, if the increase

of the SolutionQuality justifies the longer runtime of the TabuSearchStrategy.

The TabuSearchStrategy algorithm features additional input variables, which have an

influence on the search process. The previous section assumed a fixed length of the

tabu list and of the idle diversification and intensification iterations. It is of importance

for the evaluation for the first research objective whether the length of the tabu list

influences the solution finding process. The next experiment illustrates the

consequences of variations of the tabu list length on the SolutionQuality.

-10000

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 50 100 150 200 250

R
u

n
ti

m
e

 I
n

 M
il

li
se

co
n

d
s

Number of Artefacts

GreedyBestNeighboor

TabuSearchStrategy (max
100 tested solutions)

TabuSearchStrategy (max
1000 tested solutions)

Evaluation of the SBRE component

100

Evaluation Length Tabu List

The entries of the tabu list help to prevent solution cycles confining the search in an

infinite loop. The following experiment examines the influence of the tabu list length

on the performance on the SolutionQuality. Thence the experiment contributes to the

evaluation of the applicability of the TabuSearchStrategy algorithm in the area of

software clustering. Figure 5.11 illustrates the configuration of the parameters. It can

be assumed that a high number of tested solutions also increase the chance of

duplicates. To combat this, the maximum tested solutions are increased to 1000. The

idle intensification and diversification values are set at 100. The experiment is realized

with these values and an ascending length of the tabu list from 0 to 20. In total 21

experiment runs are conducted. The experiment addresses the effect of the variation

for the illustrates that the length of the tabu list has an influence on the

SolutionQuality measurement.

Figure 5.11 : TabuSearchStrategy configuration of the tabu list length experiment

Figure 5.12 illustrates the development of the solution quality in relation to the

increase of the tabu list length. The value at -1 on the x axis represents the initial

SolutionQuality delivered by the GreedyBestNeighbour algorithm.

Evaluation of the SBRE component

101

Figure 5.12 : Solution quality in relation to the length of the tabu list

Figure 5.13 illustrates the increasing number of rejected solutions in relation to the

length of the tabu list. This increase aligns with the change of the SolutionQuality

measurement from Figure 5.12.

Figure 5.13 : Rejected solution candidates in comparison to the length of the tabu list

The examination of the influence of the tabu list length on the SolutionQuality of the

SBRE system at the class level discovered no improvement in relation to the increased

length of the tabu list. A reason for this could be that the TabuSearchStrategy

indentifies an optimal solution, which is in the direct neighbourhood to the initial

discovered solution from the GreedyBestNeighbour algorithm. In this case the

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

-5 0 5 10 15 20 25

F
in

a
l

S
o

lu
ti

o
n

 Q
u

a
li

ty

Length Tabu List

SBRE system (package
level) 20 nodes/ 56
edges

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30

R
e

je
ct

e
d

 S
o

lu
ti

o
n

s

Length Tabu List

SBRE system (package
level) 20 nodes/ 56
edges

Evaluation of the SBRE component

102

TabuSearchStrategy would only need a small number of iterations to find an optimal

solution. Another explanation is that the enlargement of the search space reduces the

risk to create the same solution again. An argument for this is that the number of

rejected solutions did not increase to any noteworthy degree during the experiment

process.

In conclusion, it has been demonstrated that the application of the tabu list is able to

prevent cycles within the SBRE system. Another finding is that a relatively short tabu

list even in combination with a high number of maximal tested solutions can have a

significant influence on the solution quality. In relation to the SBRE cluster example a

maximal tabu length of six entries is sufficient to prevent the occurrence of cycles

within a search of 1000 solution candidates.

Evaluation Idle Diversification and Intensification Iterations

The remaining parameters that control the TabuSearchStrategy are the “Idle

Diversification” and “Idle intensification” parameters. These parameters feature a

similar characteristic. Because of this, the consideration of both is consolidated within

this section. The evaluation of these parameters adds to the second research objective

whether tabu search is applicable in the field of software clustering. Note that it is not

part of the research objective to examine the best parameter configuration to trigger

the diversification and intensification process.

The consequence of diversification and intensification is that the search does not

proceed in the current area of the search space. Instead, the search is continued in a

different area of the search space, which is determined by the intensification or

diversification strategy. However, there is of course a chance that the search in the

current search area would have identified an improved solution candidate within the

next iterations. It cannot be determined in any absolute sense that diversification or

intensification will improve or reduce the effectiveness of the search in any general

sense. The optimal configuration, for these parameters, depends on the analyzed

software system, on the other parameter configurations and also on the requirements

of the stakeholders. The triggering of the diversification and intensification at a certain

stage of the search can be beneficial where it leads from another state of the search

Evaluation of the SBRE component

103

into improving areas of the search space. However, the objective of this research is to

evaluate the application of tabu search in the area of software clustering, and for this

it is sufficient to evaluate if the diversification and intensification have an influence on

the search. Given this aim, it has to be examined, if the diversification and

intensification processes are able to be activated and lead the search into different

areas of the search space. This would be sufficient to demonstrate the successful

application of diversification and intensification strategies within the SBRE tool. The

remaining paragraph portrays the results of the experiment to examine the application

of the diversification and intensification strategy within the SBRE tool.

The “Idle Diversification” parameter defines the number of non-improving solution

candidates to be tested in a row, until the diversification method is started, so as to

guide the search into an unexplored area of the search space. From a hypothetical

point of view there is an expectation that too low an idle number of iterations would

not allow the algorithm to explore the area of the current search space adequately in

order to identify improving solutions, but too high an idle number is also not beneficial

as the algorithm could spend too long in non-improving areas of the search space. Two

experiments with the SBRE system (at the package level) have been conducted to

examine the influence of the diversification start point on the algorithm runtime and

solution quality. Figure 5.14 illustrates the configuration of the first experiment.

Figure 5.14 : TabuSearchStrategy configuration for the diversification experiment

The first experiment is conducted with a maximum of 100 tested solutions. The second

experiment tests 1000 solution candidates per experiment run. Referring to the

previous tabu search experiment, it is important that the length of the tabu list is

Evaluation of the SBRE component

104

sufficient to not bias the data collection caused by confinement in an infinite loop. The

“Idle Diversification” parameter is increased from 2 until 150 during each experiment.

Respectively, 149 independent experiment runs are conducted for each of the both

experiments. As a consequence is the number of diversification runs reduced by the

increasing of the “Idle Diversification” parameter.

Figure 5.15 : Solution quality in relation to idle diversification iterations (package level)

In line with the experiment results are the number of triggered diversification

executions illustrated in Figure 5.16.

Figure 5.16 : Number of triggered diversification runs in relation to idle diversification iterations

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 50 100 150

S
o

lu
ti

o
n

 Q
u

a
li

ty

Idle Diversifications Iterations

SBRE system (package
level) 20 nodes/ 56
edges -
MaxTestedSolutions =
100

SBRE system (package
level) 20 nodes/ 56
edges -
MaxTestedSolutions =
1000

-100

0

100

200

300

400

500

600

0 50 100 150

T
ri

g
g

e
ri

n
g

 D
iv

e
rs

if
ic

a
ti

o
n

Idle Diversifications Iterations

SBRE system (package
level) 20 nodes/ 56
edges -
MaxTestedSolutions =
100

SBRE system (package
level) 20 nodes/ 56
edges
- MaxTestedSolutions
= 1000

Evaluation of the SBRE component

105

Based on these experiment results, it can be stated that the triggering of the

diversification process changes the SolutionQuality. Furthermore, a more frequent

triggering of the diversification reduces the SolutionQuality, which aligns with the

expected results. However a rare execution of the diversification leads, within this

example, to only a slight deterioration in the 100 maximal tested solution example.

The experiment with a maximum of 1000 tested solutions finds even the optimal

results when the diversification is not started during the search process. These results

can be a coincidence in combination with the analysed software system or an

insufficient design of the diversification method. Based on this, the same experiment is

conducted at the class level of the SBRE system. The number of maximal tested

solution candidates is confined to 1000. Figure 5.17 illustrates the results of this

experiment.

Figure 5.17 : Solution quality in relation to idle diversification iterations (class level)

The results of the analysis of the larger system illustrate that the diversification can

indeed guide the search process into more feasible areas of the search space. A

hypothesis regarding the different outcomes of the experiments on package and class

level could be that the search within the previous experiment, with a maximal number

of 1000 tested solution candidates, already achieves a reasonable coverage of the

search space without the application of the diversification process. This could explain

why the application of the diversification has only a negative effect on the

0

0,0005

0,001

0,0015

0,002

0,0025

0 50 100 150

S
o

lu
ti

o
n

 Q
u

a
li

ty

Idle Diversification Iterations

SBRE system (class
level) 147 nodes/ 352
edges

Evaluation of the SBRE component

106

SolutionQuality. However as stated this is just a hypothesis and the examination of the

reasons for this behaviour exceeds the scope of the present research.

Finally as the last parameter the “Idle Intensification” has to be considered. The

approach to intensify the search within the search space, by generating a solution that

comprises the highest occurrence of artefact combinations, has not improved the

identified solutions. The best results are retrieved, when the intensification

mechanism is disabled. The collected data of these measurements can be found on the

enclosed CD. However, even the deterioration of the frequent application of the

intensification shows that the intensification has an effect on the TabuSearchStrategy

solution finding process. It is noted that the intensification solution is generated and

used as the initial solution for the continuing search. The analysis of a different

software system could discover that the same intensification measure is applicable and

effectuates a SolutionQuality improvement

5.4 Evaluation of the SBRE Cluster Analysis

As stated before, the SBRE component does not aim for a perfect solution; rather, it

creates different perspectives and views into the software system in keeping with the

user configuration and preferences.

The particular strength of this research is that the search algorithm and fitness

function adapt to the metric configuration of the SBRE component. To illustrate, the

following experiments demonstrate the cluster capability of the SBRE component with

a particular focus on the metric configuration of the SBRE component. In addition, the

cluster capability of the TabuSearchStrategy algorithm is examined. The execution of

these experiments demands the application of the main components of the SBRE

cluster component. And these components and their interplay are then evaluated. The

first component is the metric framework and the weighting of the individual metrics to

focus the search on a certain perspective of the software implementation view.

Additionally, the application of user constraints to include design knowledge into the

cluster process is intended to guide the search into a special area of the search space.

Finally, the use of SolutionQuality as the fitness function is involved to identify the

optimal solution of the current search. The conduct and results of these experiments

Evaluation of the SBRE component

107

are described within the next three sections. The next paragraph examines the

capability of the SBRE component to change the cluster outcome in line with different

metric configurations.

5.4.1 Evaluation of Multiple Implementation Perspectives

This section demonstrates how the application of the metric configuration enables the

manipulation of the solution search process. The conducted experiments contribute to

the evaluation whether a multi metric approach is able to create different

implementation perspectives and therefore contributes to the third research question.

These experiments are divided into two parts. The first experiment aims to examine

the effect of the configuration of the CoN and CBO metric to derive different cluster

landscapes of the structure of the software system. The second section evaluates the

capability of the multi metric approach to identify clusters, which feature a certain

degree of deterioration.

It is not the intent of it to determine whether one particular solution is better than

another. This depends on the design of the metrics, the perceptions of the user and

also the design of the analysed software system. Rather, the intent is to show if the

approach is able to produce different cluster landscapes depending on the metric

configuration of the SBRE component.

Derivation of a structure using the CON and CBO metrics

To conduct this experiment the TabuSearchAlgorithm is applied to create the

solutions. The configuration of the TabuSearchAlgorithm is illustrated in Figure 5.18.

Figure 5.18 : Configuration of the TabuSearchStrategy algorithm within the multiple view experiment

Evaluation of the SBRE component

108

This first experiment run is conducted by applying the full metric weight onto the CBO

metric whereas the second experiment run is conducted by applying the full metric

weight onto the CON metric. The expected result is that the cluster landscape should

change for the two runs. Additionally, the clusters in the second run should comprise

artefacts that feature a high correlation of names. Figure 5.19 illustrates the result of

the experiment. The cluster results are also displayed in Table 5.4.

Figure 5.19 : Result of the multiple view experiment with 100% weight on the CBO metric

The second experiment is conducted with the same TabuSearchAlgorithm

configuration. The full weight of the CON metric is enabled and the CBO metric is

disabled for this experiment run. The result of the second experiment run is illustrated

in Figure 5.20. The positions of the artefacts have not been changed during the

clustering. This implies that every artefact is visualised at the same position of the

graph and therefore the changes in dependencies and clusters are more visible. A

comparison of the cluster results of the previous two experiments is also visualized in

Table 5.4.

Evaluation of the SBRE component

109

Figure 5.20 : Result of the multiple view experiment with 100% weight on the CON metric

Figure 5.20 illustrates that the clustering result changed in keeping with the

configuration of the metric weighting, demonstrating that the metric configuration

influences the clustering process. By examining the two figures it can be verified that

the second configuration focuses on the similarity of names and assigns artefacts that

feature a high CON measurement into the same clusters e.g. the artefacts

graphManager, displaygraph, displaygraph.controls are combined in one cluster.

These artefacts feature a dependency between each other, but they were not

combined into one cluster in the previous experiment run, which focused on the CBO

metric. However, it should also be noted that other artefacts that are not interrelated

but feature high name similarity are not combined in one cluster. This is because the

fitness function penalises the combination of artefacts that do not feature a

dependency between each other. The assignment of unrelated artefacts in one cluster

contributes to the total number of artefacts within a cluster, but the similarity

between these unrelated artefacts is assumed to be zero, even if the CON measures a

high level of similarity of names between the artefacts. This has a negative effect on

the cluster quality measurement (compare: 4.4.2). This behaviour is beneficial in

keeping with the assumption that only clusters which feature dependencies among

artefacts should be identified. The converse is a situation in which interconnected

Evaluation of the SBRE component

110

artefacts are combined in a cluster, yet they feature only low name similarity. Another

reason for this obfuscation is the penalizing of heterogeneous clusters. The fitness

function penalizes small and very large clusters to support a homogeneous cluster

landscape. This behaviour is beneficial and necessary to deliver simple cluster

landscapes. If a system is not designed following the corresponding metric

configuration, the penalizing strategy obfuscates the clustering result and enables

solutions that do not represent the configured cluster results.

Full Weight - CBO Metric Full Weight - CON Metric

Cluster0
 cluster
 cluster.constraints
 layout
 metric
 representation

Cluster1
 activator
 graphMLReader
 inputReader

Cluster2
 classifier
 graphBuilding

Cluster3
 displaygraph.controls
 jnumberfield
 unitmetricsExt

Cluster4
 displaygraph
 graphManager
 progressMonitor
 tabusearch-
 evaluationconfigurator

Cluster5
 sbse.handlers
 sourceReader

Cluster0
 displaygraph
 displaygraph.controls
 graphManager

Cluster1
 activator
 jnumberfield
 progressMonitor
 representation

Cluster2
 classifier
 graphBuilding
 inputReader
 unitmetricsExt

Cluster3
 cluster
 cluster.constraints
 layout
 metric

Cluster4
 graphMLReader
 sbse.handlers
 sourceReader
 tabusearch-
 evaluationconfigurator

Table 5.4 : Comparison clustering solution with 100% weight on the CBO or CON metric

The design of the SBRE system has not followed a strict name policy, hence the reason

for the poor cluster result of the CorrelationOfNames analysis of the SBRE system. To

support this assertion the „crm domain example“ project is also clustered. The „crm

domain example“ follows a clear naming policy. The previous TabuSearchStrategy

displayed in Figure 5.20 is applied. Because of the size of the cluster landscape only an

Evaluation of the SBRE component

111

extract of the CON clustering result is displayed in Figure 5.21. The complete result can

be reproduced applying the SBRE tool or the cluster result can be found as file on the

enclosed CD. The outcomes of this analysis showed that the clustering landscape

changed, depending on whether the metric configuration focused on the CBO or CON

metric. The clustering results of the „crm domain example“ with a focus on the CON

metric reflect a high name correlation within the artefacts of the individual clusters.

This illustrates that the successful application of a certain metric configuration

depends also on the design of the analysed software system. If the design of the

analysed software system does not support the attributes of the metric configuration,

the produced cluster landscape will also be unfeasible.

Figure 5.21 : Extract of the CON analysis cluster landscape of the „crm domain example“

In conclusion, it has been shown in this experiment that the modification of the metric

weighting guides the search into different areas of the search space. It is also evident

that other factors beside the metric configuration e.g. design of the metric, design of

the fitness function and design of the analysed software system, can all influence the

search process and can obfuscate the result.

Evaluation of the SBRE component

112

Identification of Deteriorated Subsystems

This section evaluates if it is feasible to use SBSE-based software clustering in

combination with metrics to identify problematic code segments at a high abstraction

level. It is important that artefacts that are combined in one cluster feature a

dependency connection between one another. Only a dependency between these

artefacts acknowledges a design connection between them. This design connection is

of relevance as an identified cluster should give an indication of an interconnected

subsystem, signalled by a high value for the metric measurement. Only interconnected

subsystems are relevant to estimate the strength of a metric violation within a certain

part of the software system. The supporting idea is that the refactoring and

elimination of two unrelated high metric measurements would be better planned as

two independent development tasks. The GreedyBestNeighbour algorithm uses the

dependencies between artefacts to indentify a solution. This favours the

GreedyBestNeighbour for the implementation of this experiment. Additionally, for the

identification of problematic artefacts it is interesting to identify the originating

artefacts as concrete as possible. Given this requirement the experiment should be

conducted on class level.

The SBRE system provides two metrics that support the identification of deteriorated

subsystems. These metrics measure aspects of each artefact: the Lines of Code and

Number of Static Elements.

Not all artefacts are of interest for this view so only artefacts that feature a high metric

value should be included. The determination of the metric threshold depends strongly

on the expectations of the stakeholders and the intention of the analysis. This

experiment focuses on the identification of a high incidence of static elements within

an artefact. Figure 5.22 illustrates the configuration and cluster result of the analysis.

The metric configuration focuses completely on the measurement of the Static

Elements. The Correlation of Names, Cohesion Between Objects and Lines of Code

Metric are not considered for the creation of the clusters. The threshold of the Static

Element metric is confined to six. This value has been determined by trial and error

Evaluation of the SBRE component

113

and delivers a clear result for the SBRE system. A lower threshold, for example, can be

chosen when these violations are eliminated and higher quality software is aspired.

Figure 5.22 : Result of the deterioration cluster analysis with 100% weight on the static elements metric

During this experiment four artefacts were identified as exceeding the defined

threshold. The GreedyBestNeighbour cluster algorithm combined these artefacts into

two clusters. One cluster comprises the Strings class of the jnumberfield package. This

class constitutes a part of an external library, which offers external functionality for the

SBRE system. Of greater interest is the bigger cluster which constitutes the

MetricEngine, ClusterEngine and SBSEPositionMapper. These classes are of central

importance for the SBRE system. As described in sections 4.3 and 4.4.4 the

MetricEngine and the ClusterEngine represent the context classes of the encapsulated

frameworks. In this light it is appropriate that these classes are known system-wide.

However, instead of offering the structure and behaviour through static elements, one

instance of the class should be available system-wide following the singleton design

pattern introduced by Gamma, Helm, Johnson and Vlissides (1995). The same

argument can be applied to the SBSEPositionMapper, which should also be refactored

using the singleton design pattern. These actions should abrogate the cluster and the

elimination of this cluster should improve the quality of the software system.

Evaluation of the SBRE component

114

It would also be possible to combine different metrics to identify deteriorated

subsystems. As described previously the SBRE system also offers the Lines of Code

metric. The combination of these metrics with thresholds would additionally decrease

the number of artefacts to be traversed and concentrate the search for more strongly

deteriorated subsystems. Additionally, it is possible to extend the number of available

node metrics to change the focus of the search.

In conclusion, it has been shown in this experiment that the application of the Static

Elements metric can help the user to identify deteriorated subsystems. Based on this

knowledge a refactoring can be planned to eliminate these clusters with the intention

to improve the quality of the software system.

5.4.2 Evaluation of Rearchitecturing Functionality

The aim of the following experiment is to identify a feasible and suitable structure for a

software system after applying the clustering functionality of the SBRE component.

This experiment applies the TabuSearchStrategy and evaluates therefore the capability

of this algorithm to produce meaningful cluster results.

As the analysis focuses on the rearchitecturing of the software system, the

CohesionBetweenObjects and the Correlation of Names metric are relevant. The

CohesionBetweenObjects is relevant, because the clustering should identify artefacts

that feature high cohesion between each other on a design and dependency level.

With respect to the correlation of names, it has already been shown that the design of

the SBRE system did not follow a strict naming policy. Nevertheless, through trial and

error it has been found that a combination of the CohesionBetweenObjects and the

Correlation of Names metrics produces the best result to identify a structure and

functional correlating clusters. The identified configuration is illustrated in Figure 5.23.

This configuration considers the CON metric with fifty percent and the CBO metric with

one hundred percent.

Evaluation of the SBRE component

115

Figure 5.23 : Metric configuration of the rearchitecturing analysis

The metric configuration therefore supports the identification of modules with high

cohesion between each other and also takes account of the similarity of names for this

modularisation. Utilising this approach, Figure 5.20 illustrates the subsequent

configuration of the TabuSearchStrategy. The default parameters of the

TabuSearchStrategy are used, with the exception that the maximal tested solutions are

determined with 1000.

Figure 5.24 : TabuSearchStrategy configuration of the rearchitecturing experiment

Based on this configuration, the visualisation of the cluster analysis is illustrated in

Figure 5.25. In addition to the displayed result for the SBRE cluster landscape,

textboxes and separators have been superimposed to simplify the discussion and to

provide an indication of the comprised functionality within the clusters. These cluster

descriptions represent a functional interpretation of the system, but should not be

misinterpreted as a layering of the system or architecture definition of the system. This

interpretation is conducted by the developer of the SBRE system.

The system has been classified into six clusters. The cluster at the top of Figure 5.25

includes the sbse.handler package, which is called by the external Eclipse plug-in

framework to start the application. Additionally the sourceReader package is included,

Evaluation of the SBRE component

116

which has a dependency to the sbse.handler package, but does not feature similar

functionality.

The second cluster from the top exclusively comprises visualisation and tool packages.

The main domain functionality of the SBRE is combined in the domain cluster. This

comprises the cluster, metric, representation and cluster.constraints packages, which

are known from the design and implementation of the SBRE software system.

The cluster below pools the source code reader and graph building functionality.

Regarding the functionality of the included packages, the sourceReader package from

the top cluster should have belonged in the Source Reading cluster. Additionally

smaller clusters are identified, which contain library and base functionality. These

clusters are visualized at the bottom of the graph.

Figure 5.25 : Solution of the rearchitecturing analysis of the SBRE component

Domain

Visualisation

Source Reading

Base

Starter

Evaluation of the SBRE component

117

It can be recognized, then, that the SBRE system is not perfectly designed. Assuming

that the current cluster landscape reflects a sufficient modularisation of the system,

some clusters show cycles between each other e.g. the Domain and Visualisation

cluster (metric package -> displaygraph package -> metric package). These cycles

reduce the independent reusability of the involved components and increase the

complexity of the software system. Such cycles and architecture violations are a first

lead for possible refactorings. Only the implementation of these refactorings would

improve the quality of the software system. Additionally, it should be mentioned that

these cycles and architecture violations misguide the cluster algorithm, as the cluster

algorithms do not know if a dependency follows the normal dependency flow or if it is

perhaps an architecture violation. Considering this, it is probably easier to derive an

optimal structure from a clustered system when the system features minimal

deterioration. This is also an argument to distribute the clustering on the

measurement of different metrics and also consider if these measurements reflect the

design of the system (as is done here in SBRE). The illustrated clustering result of the

SBRE system with the focus on the Cohesion Between Objects and Correlation of

Names did deliver a meaningful cluster landscape, which allowed the identification of

the core modules of the system. Based on this, a first architecture definition can be

derived – but as illustrated with examples this first solution can still be improved.

5.4.3 Inclusion of User Domain Knowledge

The main research question of this research is whether a user directed and semi-

automatic clustering approach can contribute to the quality of software clustering.

Different measures have been introduced within the SBRE component to enable the

user to control the clustering process. The SBRE tool supports the definition of

constraints for the manual refinement of solutions. The evaluation of this measure

contributes to the evaluation of the main research question.

An experiment is conducted that evaluates the inclusion of user constraints in the

cluster process. The baseline for this experiment is the cluster configuration and result

from the previous section. As described in the previous section the sourceReader

Evaluation of the SBRE component

118

package is combined with the sbse.handler package. However, from a functionality

aspect it should be combined with the packages from the Source Reading cluster.

To force the search into this area of the search space, two constraints have been

formulated. The first one disconnects the sourceReader package from the sbse.handler

package and the second one connects the sourceReader package with the

graphBuilding package. The search then allows only solutions, which fulfil these

constraints. Figure 5.26 illustrates the new cluster landscape.

Figure 5.26 : Solution of the SBRE component with cluster constraints

The new cluster landscape consists of just five clusters. This solution aligns with the

defined constraints. The main clusters Visualisation, Source Reading and Domain are

fundamentally conserved. However, the inclusion of the constraints had also some side

effects on packages, which were not included in the constraint definition. Examples of

this are the allocation of the activator package into the SourceReader cluster and the

classification of the layout package into the Domain cluster. This is plausible because,

the results of the previous search are not influencing the search with the constraints.

The new cluster landscape can also be a good solution – although it differs significantly

from the previous one. This seemingly undirected behaviour may confuse the user.

Furthermore, a strongly changed solution may discourage the user from trusting the

Source Reading

Domain

Visualisation

Base

Evaluation of the SBRE component

119

process. This apparently major change does not align with the idea of iterative user

refinement of the solution, because the stakeholders would now have to understand

and analyze the new solution and probably plan new constraints to correct the side

effects of the last constraint inclusion. In turn, this may cause new side effects. The

application of constraints in an interactive manner to refine a solution is therefore not

effective as currently implemented in combination with metaheuristic algorithms. For

a successful application of interactive solution refinement another path would have to

be followed which aligns more with the results of the previous iteration.

5.4.4 Cluster Analysis on Different Abstraction Levels

Another user-directed clustering approach enabled within the SBRE component is the

clustering of a software system on different abstraction levels. Specifically, the SBRE

component currently provides the capability to cluster the system at the class or

package level. This measure does provide more control over the software clustering

process. Hence, the evaluation of this measure contributes to the evaluation of the

main research objective, if a user directed and semi-automatic clustering approach can

contribute to the quality of software clustering.

The previous experiments were applied at the package level, whereas this following

experiment depicts clustering at class level. The same TabuSearchStrategy and metric

configuration as portrayed in Figure 5.23 and Figure 5.24 are applied within this

experiment. Accordingly, the result of the clustering, which is portrayed in Figure 5.27,

is comparable with the clustering result of Figure 5.25.

The clustered SBRE system features 163 artefacts and 420 edges, with the clustering

procedure combining these artefacts into 35 clusters. It has not been determined

whether the created solution is meaningful in terms of the configuration. Rather, as

intended, this experiment depicts the difference in complexity that results from the

clustering of the same system at class and package level.

Evaluation of the SBRE component

120

Figure 5.27 : Clustering of the SBRE system (class level)

The depiction of the identified solution at class level conveys a very high complexity in

comparison to the software system analyzed at package level. In fact it would be

challenging to recognize or derive a structure from the class-level clustered software

system. The reason for this is the high number of clustered edges and artefacts within

the graph, but also the overload of the visualization and navigation component. It

remains to be investigated whether better concepts for visualization and navigation

exist to illustrate and structure a software system of this size. This observation

corresponds with that of Mitchell (2002), who stated that the clustering of a system

with more than seventy-five artefacts tends to get confusing and that it is difficult to

derive a structure from such a system. In conclusion, the clustering at higher

abstraction levels can hide the complexity of software systems and enables the

derivation of a suitable structure (at that level) for larger software systems. For even

larger systems, it may be necessary to consider yet higher levels of abstraction. For

these systems it may be difficult to derive a structure at the package level, so

subsystems may need to be used.

Evaluation of the SBRE component

121

5.5 Comparison of the SBRE component with Bunch and Barrio

The Barrio and Bunch clustering components had a substantial influence to the present

research. This section emphasizes the differences of these clustering components in

comparison with the SBRE component. This comparison contributes to the evaluation

of the main research question, as the comparison with the Barrio and Bunch

component delivers a benchmark for the evaluation, if a user directed and semi-

automatic clustering approach is able to contribute to the quality of software

clustering.

The comparison with the Barrio and Bunch framework is not a complete review of the

functionality of these tools. Only functionality is discussed, which relates to the

objectives of this research. The comparison of specific clustering results is not

conducted, as all three components offer the possibility to influence the clustering

output and as the parameterization follows different aspects the results are not

comparable. Additionally, a comparison of specific cluster results would, in the opinion

of the researcher, not contribute to the objectives of the present research. Within this

section it is rather interesting, which functionality is offered by the SBRE component in

comparison to the functionality of the Bunch and Barrio component.

Barrio Component

The Barrio component delivered the source code to enable an early applicability of the

SBRE component. It contributed the “exposure of the artefacts” mechanism, the

navigation component and partially the visualisation component. However, the Barrio

component follows no search based cluster strategy and offers only a limited

possibility for the user to influence the clustering. The only measure for the

stakeholder is the separation level, which defines the minimum number of

dependencies between two sub graphs. The separation level is certainly of importance

for special analysis such as the identification of starting points for the decoupling of

sub graphs. However, the measurement itself comprises also a certain degree of

subjectivity as no other clustering criteria can be determined. In comparison, the SBRE

component enabled the minimisation of this subjectivity by applying a multi metric

approach. The Barrio component does not feature the inclusion of user constraints or

Evaluation of the SBRE component

122

the clustering on different abstraction levels. A feature of the Barrio component is that

the clustering result can be compared with the package structure of the system.

Finally, no artefact ordering is suggested from the Barrio component, this reduces the

clearness of a cluster landscape in comparison to the visualisation of the SBRE

component, which offers an initial ordering of the cluster landscape.

Bunch Component

The Bunch component as a SBSE based clustering component features a similar cluster

strategy as the SBRE component. With the difference that the SBRE component applies

different metaheuristics (greedy and tabu search) and focuses on the examination of a

multiple metric and user directed clustering process.

The Bunch component, with the application of Genetic Algorithms, does not follow a

deterministic clustering approach. As a consequence the cluster results differ with

each attempt at the clustering. In comparison, the SBRE component utilises a

deterministic approach. The non-deterministic approach of the Bunch component is

confusing for the stakeholder as the user has to trigger the clustering repeatedly until a

good solution is found.

To conserve the extensibility of the visualisation no data exchange between the

visualisation component and the Bunch component is designated. The Bunch

component utilizes the external graph visualisation component dotty
2.

The cluster process of the Bunch component is completed with the visualisation of the

cluster landscape. This prohibits any direct user interaction with the visualized cluster

landscape. In comparison, the SBRE component features the functionality to arrange

artefacts, add user-constraints, use the current cluster result as an initial solution for

the next clustering, configure thresholds, exclude artefacts and change the metric

configuration. This interaction with the visualisation component enables the iterative

and incremental clustering approach of the SBRE component. The disadvantage is a

2
 http://graphviz.org/

Evaluation of the SBRE component

123

strong interconnection and dependency between the SBRE clustering and visualisation

component, which prohibits the individual employment of the SBRE clustering process.

In retrospect, and with regards to the reduction of the metric measurements into one

compressed dependency similarity within the SBREMetricEngine, the design of the

SBRERepresenation, the design of the TabuSearchStrategy and the applicability of the

CDA component, it seems to be promising that the examination of the multiple metric

approach to create different implementation perspectives and the examination of the

applicability of tabu search would have been also possible by applying these

approaches in combination with the Bunch component. However, this solution would

have prohibited an interactive, integrated and user directed approach. This means

that, the lack of interface and communication mechanisms within the Bunch

component between the exposure of the artefact, the clustering process and the

visualisation component would have prohibited the adjustment of the metric

weighting and tabu search configuration within a Bunch based solution.

In conclusion, it can be stated that the Bunch component as a SBSE based clustering

component follows a similar clustering approach as the SBRE component. However,

the non-deterministic character of the GA algorithm of the Bunch component

introduces additional complexity for the stakeholder to select the optimal solution, as

well as making a comparison of results across different tools more complex.

Additionally, the detachment of the Bunch clustering component and the visualisation

prohibits the interactive manipulation of the cluster landscape. It can be stated that

the interactive, iterative and incremental clustering approach of the SBRE component

contributed to enable a flexible user-directed software clustering environment. This

allows the continuing of the clustering process, where the Barrio and Bunch

component stopped their cluster analysis.

Evaluation of the SBRE component

124

5.6 Summary

This chapter evaluated the capability of the SBRE component to cluster a software

system into subsystems. Different aspects of the SBRE component have been

examined. The TabuSearchStrategy and GreedyBestNeighbour algorithm are

evaluated. A runtime evaluation of both algorithms and comparison of the runtime

behaviour has been conducted. Furthermore, an evaluation of the TabuSearchStrategy

parameters is implemented to examine the applicability of the tabu search concepts in

the area of software clustering. Furthermore, the capability to adapt the clustering

result to the metric configuration has been evaluated. It has been shown that the SBRE

component is able to indentify interrelated clusters, which feature a certain degree of

deterioration. Additionally, it has been shown that the SBRE system is able to identify

the core components of the SBRE system in a special configuration of metrics. It has

been illustrated that this modularisation can be used as a first draft to define an

architecture definition. However, it has also been acknowledged that the SBRE

approach will not be able to derive a complete target-architecture for a system as the

cluster algorithms cannot distinguish between dependencies that follow the normal

dependency flow or are architecture violations. The latter have the potential to

misguide the clustering process. In addition, the constraint mechanism of the SBRE

system has been applied to refine an existing cluster solution. It has been shown that

this may result in side effects and lack accordance with a previous solution, which

could confuse the user and therefore disqualifies the application of interactive

constraints in combination with metaheuristic algorithms. Finally, a comparison of the

SBRE clustering approach with the Barrio and Bunch component has been conducted.

Limitations, Future Research and Conclusion

125

6 Limitations, Future Research and Conclusion

The following chapter answers the identified research questions, illustrates limitations,

discusses suggestions for further research and draws a final conclusion for the

conducted research.

6.1 Answer of the Research Questions

This research has applied SBSE in the area of software clustering. Based on a literature

review in the areas software-architecture, SBSE, software-clustering and software

metrics the research objective has been derived. Regarding the constructive and

explorative character of this research project the SDRM was applied. The following

three research questions have been identified and answered during this research.

• Can a user directed and semi-automatic clustering approach contribute to the

quality of software clustering?

• Is tabu search applicable in the area of software clustering?

• Does the inclusion of multiple metrics in the fitness function enable the

clustering of a software system into multiple implementation perspectives?

To enable the examination of the research objective the SBRE component has been

designed and implemented. The SBRE component allowed formulated research

questions to be addressed by conducting a range of experiments that involved the

clustering of two software products. Based on this experimentation the findings can be

discussed and the answers to the research questions can be addressed. The ordering

of the research questions is changed for the answering, as the answer of the second

and third research question also contributes to the answer of the main research

question.

6.1.1 Application of the Tabu Search Algorithm

This subsection discusses the findings regarding the research question: ’Is tabu search

applicable in the area of software clustering?’.

Two algorithms have been designed, implemented and evaluated within this research,

namely the GreedyBestNeighbour and the TabuSearchStrategy algorithm. These

Limitations, Future Research and Conclusion

126

algorithms are specific implementations of the greedy and tabu search metaheuristics

respectively, and their development was informed by consideration of the research

literature in this area.

In section 5.4.2 it has been shown that clustering with the TabuSearchStrategy allows

the identification of a structure of the SBRE software system. In section 5.3.1 and 5.3.2

a performance analysis of the GreedyBestNeighbour and the TabuSearchStrategy is

described. The results of these analyses are compared with each other. It has been

shown that the TabuSearchStrategy algorithm is able to effectuate an improvement of

the SolutionQuality in comparison to the best identified solution of the

GreedyBestNeighbour algorithm. Whilst the TabuSearchStrategy demands more

computational resources to achieve this improvement in SolutionQuality, the

difference is insignificant when put into the context of actual use by a human software

developer. It has been found that varying the length of the tabu list can prevent

confinement in cycles within the SBRE tool and as a consequence enables the

improvement of the SolutionQuality.

Furthermore, the triggering of diversification has an influence on the search process

and is able to affect the cluster process. It has not been investigated whether the

applied intensification and diversification methods are optimal or if other approaches

would lead to a better solution outcome. This would be useful future work. In this

respect it should be noted that the actual effect of intensification and diversification

on the search result would also depend on the analyzed software system and the

related parameters. As such, the application of the intensification and diversification

can be beneficial but also could negatively impact the results of the search.

In conclusion, the TabuSearchAlgorithm as a specific implementation following the

concepts of Glover (1989) is applicable in the area of software clustering. Additionally,

the TabuSearchAlgorithm features a variety of parameters. The configuration of these

parameters enables the guiding of the search and the adaption to the preferences of

the stakeholder. This flexibility allows the user to adjust parameters and return to

previous solutions. However, the complexity of the algorithm requires that the user

has a good understanding of the tabu search concept in order to apply and configure

Limitations, Future Research and Conclusion

127

the algorithm efficiently. At present, there is a limited body of knowledge in the area

of search based clustering, primarily formed by the work of Mitchell (2002), Jiang et al.

(2007) and Seng et al. (2005). This research contributes to this body of knowledge with

the development of GreedyBestNeighbour and TabuSearchAlgorithm, both of which

are deterministic search based clustering approaches. The deterministic nature of both

algorithms increases the transparency for the user and enables them to return to

previous solutions given a particular parameter configuration.

6.1.2 Multiple Implementation Perspectives

The following subsection discusses the findings regarding the second research

question: ‘Does the inclusion of multiple metrics into the fitness function enable the

clustering of a software system into multiple implementation perspectives?’

To examine this research objective the four metrics Correlation of Names, Cohesion

Between Objects, Total Lines of Code and Number of Static Elements have been

implemented. The user can individually control the weighting of each metric which

defines the degree of consideration given to each metric during the clustering process.

In essence, this weighting of metrics gives the user the ability to control the nature of

the fitness function to ensure that the clustering process is directed towards solutions

that suit a particular set of preferences or project constraints. This is achieved because

the metric measurements and their weights are considered by the fitness function

when evaluating a solution. To examine the effectiveness of this approach,

experiments have been conducted that assess whether the metric configuration is able

to guide the search into areas of the search space that align with the metric

configuration and hence the users preferences.

In alignment with the research of Harman & Clark (2004) it has been shown that

metrics are able to influence the clustering of software systems in an understandable

and consistent way. During the evaluation it has been found that the multiple-metric

approach is able to produce different cluster landscapes, which align with the metric

configuration and the users preferences. This enables the stakeholder to guide the

search into the intended areas of the search space. These intentions can exhibit

different characteristics; examples would be to identify highly cohesive clusters within

Limitations, Future Research and Conclusion

128

the system or to isolate clusters that feature high name similarity of the included

artefacts. It has also been demonstrated that the metric configuration can be aligned

with the design strength of the analyzed software system. This simplifies the

identification of feasible solutions for the cluster algorithms. For example, in some

cluster analyses, the search can be guided to more feasible solutions if the fitness

function focuses on the Correlation of Names metric. Other software systems feature a

good modularity. In this case the system can be more effectively clustered by applying

the CohesionBetweenObjects metric. A combination of metrics can also deliver an

optimal solution, if the analyzed software system design reflects this combination. This

optimal solution is balanced by the multi-metric approach so whilst the solution

exhibits certain characteristics, these characteristics do not dominate the solution by

taking them to extremes.

It has also been shown that a multiple-metric approach is able to identify a cluster

landscape that features components with high functional cohesion. This cluster

landscape could be effective in enabling the user to improve their understanding of

the software system. This system understanding, in association with the domain and

system knowledge of the stakeholders, could provide a sound basis for an architecture

definition. As such, this work is in agreement with the research of Mitchell (2002) in

stating that a software clustering approach can contribute to an increase in system

understanding and, as a consequence, deliver a basis for the derivation of an

architecture definition. It is therefore not in agreement with the research of Anquetil &

Lethbridge (1999b), which states that a software clustering approach is able to derive

an architecture definition from a system, one that can then be used as an architecture

pattern for the further development process. The reason for this is that even if a global

optimum is identified during the search, this optimum may not necessarily align with

the expected result of the stakeholder. This global optimum represents only the

optimum according to the selected fitness function. It is doubtful whether a specific

metric configuration and a selected fitness function respectively will be able to

optimize the intended architecture of a system. Given the additional assumption that

every software system features a certain degree of deterioration, it is even more likely

that the global optimum will not represent the best solution for the stakeholder, as the

Limitations, Future Research and Conclusion

129

deterioration will guide the search into areas of the search space that do not align with

the intended architecture design. Additionally, it has been evaluated that it is possible

to identify clusters that feature a high occurrence of threshold violations. This enables

the user to identify “code smells” on an abstract level. These “code smell” clusters can

be considered for the planning of refactorings.

In conclusion, it can be stated that a flexible multiple metric approach supports the

adaptation of the search to the preferences of the stakeholders and to the design and

characteristics of the analyzed software system within the implementation

perspective. But the success of a metric configuration to gather the intended structure

of the software system depends also on the quality of the design of the software

system.

6.1.3 User Directed Software Clustering

This subsection discusses the findings regarding the main research question ‘Can a user

directed and semi-automatic clustering approach contribute to the quality of software

clustering?’.

Within section 3.2 it has been emphasised that the term ‘quality of software clustering’

within this work focuses on the feasibility of the identified solution and the flexibility of

the clustering process. The SBRE component features four mechanisms to enable the

user to control the clustering process.

The first is the adjustment of metric weights to guide the search into the intended

areas of the search space. The applicability of this approach is discussed in the

previous section.

It has been shown in section 5.4.1, that the configuration of the metric configuration

allows the clustering result to be aligned with the preferences and requirements of the

stakeholders. This approach increases the feasibility of the solution in relation to the

requirements of the stakeholder. This feasibility is based primarily on the minimization

of subjectivity and the elimination of dependence on just one fixed measurement

when identifying a cluster solution, and hence a more balanced solution can be

determined.

Limitations, Future Research and Conclusion

130

The second user-directed mechanism is the capability for the user to adjust

parameters of the TabuSearchStrategy algorithm, which enables the user to adapt the

search process to the requirements of the search and the analyzed software system.

Clearly not all software systems are similar, depending on their size and structure

different parameters will guide the search to better results. It has been shown in

section 5.4.1 that the configuration of the TabuSearchStrategy algorithm is able to find

different clustering results, depending on the algorithm configuration. Regarding this,

the opportunity to configure these parameters increases the flexibility of the clustering

approach and affects the search. However, the necessity to configure the parameters

of the TabuSearchStrategy algorithm increases the complexity of the clustering in

comparison to the application of the GreedyBestNeighbour algorithm and forces the

user to have a good understanding of the tabu search concepts. Additionally, the

transparency and effect of the intensification and diversification triggering is not clear

for the user, as the success of the triggering depends also on the analyzed software

system and the configuration of the other tabu search parameters.

The third mechanism is the facility to include user constraints. This mechanism enables

the user to include domain knowledge into the clustering process. It has been shown in

section 5.4.3 that user constraints are applicable to force the metaheuristic algorithms

into certain areas of the search space. One could say that already the fulfilment of this

technical requirement increases the quality of the clustering result as the result

features the user constraint. However, it has also been shown that the inclusion of

user constraints influences the clustering of the remaining artefacts. These side effects

increase the complexity imposed on the user in terms of their understanding of the

new clustering result and destroy the recognition value from the previous solution.

Finally, the last user directed approach examined the clustering on different

abstraction levels. Except from the illustration of the clustering on class level in section

5.4.4 and the identification of deteriorated subsystems in section 5.4.2, every

experiment is conducted on package level. The experiment in section 5.4.4 shows that

the clustering of the SBRE system on class level features a high degree of complexity.

Hence it is hard to identify system structures. The clustering on package level within

Limitations, Future Research and Conclusion

131

bigger systems contributes to the understandability of the cluster landscape and

simplifies the derivation of a structure. The novelty of this approach is the contribution

of the multi-metric approach to the clustering on different abstraction levels. The

metric values are compressed from the class into the package level depending on the

metric type. Regarding this, the approach does not only reduce the amount of

artefacts, it also incorporates the measured metric values and therefore also enables

the clustering on package level with the inclusion of a multi metric approach.

The clustering of smaller software systems on class level could be beneficial, even if it

is questionable if the need exists to cluster small software systems. Furthermore, for

the derivation of deteriorated subsystems, the clustering on class level is beneficial.

Here the number of artefacts to be clustered is reduced by the inclusion of thresholds.

In light of the results presented in this research, no firm conclusion about whether a

user directed approach increases the quality of software clustering can be made. Each

aspect used in the clustering process can only be evaluated individually in terms of

how it influences the end result. Additionally, the developed mechanisms are only

examples for the possibilities of user directed approaches. Certainly, further user

directed approaches are imaginable to give the user more control over the clustering

process.

But it can be stated that the application of certain user directed clustering approaches

has the potential to increase the quality of the clustering results in comparison to

other zero- or single-measurement-based approaches. Further work is necessary to

quantify this improvement across a broader range of experiments. However, it should

be noted that the flexibility gain is accompanied by an associated increase in the

complexity of the clustering configuration. The user requires a good knowledge about

the domain and architecture of the software to effectively use the described

functionality to guide the search process.

Additionally, to effectively manage the application of specialised algorithms, e.g. the

TabuSearchStrategy algorithm, a high level of understanding of the method of

operation is required. Furthermore, it remains the position of this research that the

Limitations, Future Research and Conclusion

132

variety of solutions and requirements within the area of software clustering are so

complex that a fully automated approach would lead to unsatisfactory results and

cannot fulfil all user requirements. In contrast, a manual approach requires many

decisions to be taken, which increases the complexity of the clustering. Hence, it can

be stated that the flexible combination of semi-automated or user-directed clustering

and the capacity for user adjustment represents the most promising approach. It

enables the user to decide if a quick solution is preferred, without the necessity of user

configuration, or if a more specialized solution is needed, which requires the inclusion

of domain-knowledge and the alignment of the available metrics.

6.2 Limitations

This section describes the limitations of the research that has been conducted. This

research project is applied in an experimental environment. The evaluation of the

developed approach is only conducted with a small set of test data, which was mainly

the SBRE system itself. This has shown the applicability of a user directed SBRE based

approach in the area of reverse engineering, but does not feature sufficient scale or

variety to allow a general statement to confirm if this approach is also feasible for

other software systems, which exhibit a different structure and size. Furthermore, the

SBRE system is restricted to the analysis of Java systems. This restriction is based on

the application of the Eclipse environment and the application of software metrics

which are only able to analyze Java code.

As described in section 4.2, the SBRE component applies the CDA component to

extract the dependency graph of the analyzed software system. A substantial part of

current software frameworks(e.g. EJB (3.0+), Spring, PicoContainer for Java systems or

Spring.Net) feature a concept called dependency injection. Dependency Injection is a

design pattern, which allows reducing the dependencies between components and

objects in object oriented systems. Dependency Injection is an application of the

Inversion of Control (IoC) principle and can be understood as a generalization of the

factory method approach. Dependency Injection assigns the responsibility for the

creation and the linkage from objects to an external framework. Through this

assignment the source code is removed from its environment and from the specific

Limitations, Future Research and Conclusion

133

implementation of the classes. The CDA component does not consider dependencies

which are injected by inversion of control frameworks. Regarding this the SBRE

component cannot analyze software systems that feature dependency injection.

6.3 Future Directions

This section describes some suggestions for the extension of this research project and

opportunities for future research directions are indicated.

This work illustrated the applicability of the tabu search algorithm in the area of

software clustering. It has been examined that the tabu search concepts and

parameters are influencing the solution finding process within the area of software

clustering. The main tabu search concepts (e.g. tabu list concepts, intensification and

diversification) have been implemented in a very basic manner. The results of the

intensification and diversification approach were poor within the conducted

experiments. It would be a point of further research to examine if these approaches

are feasible or if better concepts are imaginable. Furthermore, it would be interesting

if a correlation exist between an optimal tabu search parameter configuration and the

characteristic of the analyzed software system.

It could also be considered to apply statistical and random approaches, which would

break the deterministic character of this research, but also have the potential to

discover better solutions.

It has been shown within this research that it is possible to create different

implementation perspectives for a software system by applying software metrics. The

chosen metrics represent only a very small compendium of the available metrics.

Especially, the approach to include metrics that measure attributes of the artefact

itself opens a variety of possibilities for the application of other metrics. It would be

interesting to further investigate the capability and benefits of the identification of

abstract refactoring units. However, it should be recognised that including additional

metrics does increase the complexity of choosing how each metric should be applied.

As shown within the present research the developed fitness function features some

limitations, which does not allow exploiting the full capacity of a user directed

Limitations, Future Research and Conclusion

134

clustering approach. The aim within this research was to implement a fitness function

which selects feasible solutions and supports the examination of the research

objective. As described, the fitness function does not consider the similarity of

artefacts which do not exhibit a dependency between each other. This anticipates the

clustering of artefacts which do not feature an interrelation between each other. It

would be interesting to investigate if the clustering of non-dependant artefacts allows

deriving clustering landscapes which provide meaningful cluster information for the

stakeholders. Another qualification of the fitness function is the penalization of small

and big clusters. During the design and implementation phase the fitness function

selected solutions which exhibit a high degree of homogeneity. These solutions were

hard to understand and infeasible for the analyses of software systems. Based on this,

a penalizing strategy was introduced to create more homogeneous solutions. This

approach improved the solution finding process and created solutions, which were

easier to understand. But especially, if the design of the analyzed software system

does not align with the aim of the metric configuration, this penalizing strategy forces

the search into areas of the search space which do not reflect the aim of the metric

configuration. It would be interesting to examine if a more flexible configuration of the

fitness function would allow better adaptation of the search to the requirements of

the stakeholders. Finally, the evaluation has been applied in a very small scope. The

next step would be to apply the SBRE approach within larger environments and

conduct software cluster analysis outside of these experimental conditions.

Limitations, Future Research and Conclusion

135

6.4 Conclusion

At the beginning of this research has been stated that within the past forty years no

approach has arisen to confine the software crisis. Therefore the problem still exists as

to how to control and maintain non trivial software systems. Certainly, the presented

approach is not the only possible solution to confine the software crisis, or indeed

solve the software crisis in its entirety. But it has been shown that the proposed

approach has the potential to help development stakeholders to create abstract

perspectives of the system structure. This is the key contribution of this work to the

body of knowledge in this field. The SBSE based clustering approach can help these

stakeholders to gather information about the software system, which can be utilized

for the further development, design and maintenance of the system. This increase of

understanding of software systems can contribute to the confinement of software

deterioration and therefore potentially enhance the efficiency of the software

development and maintenance processes.

The novelty of the presented approach is the focus on the user directed clustering. This

approach allows the alignment of the clustering with the requirements of the

stakeholders and the design of the software system. A variety of user directed

measures have been introduced and evaluated within this research to enable the

stakeholder to influence the clustering process without being occupied with trivial

clustering tasks. It has been found that user directed clustering approaches have the

potential to contribute to the quality of software clustering in comparison with other

non-interactive and non-user directed approaches. As shown during the present

research this increases the application area of the clustering approach and removes

subjectivity of the clustering process. Finally, it can be stated that this research

illustrated the feasibility of a user directed and interactive SBSE based clustering

approach and reported on the benefits for development stakeholders. The next step

would be the enlargement of the conducted research to evaluate the applicability

outside of an experimental environment.

References

136

7 References

Anquetil, N., & Lethbridge, T. C. (1999a). Experiments with clustering as a software

remodularization method. Paper presented at the Sixth Working Conference on
Reverse Engineering (WCRE), Atlanta, Georgia, USA 6-8 October 1999.

Anquetil, N., & Lethbridge, T. C. (1999b). Recovering software architecture from the
names of source files. Journal of Software Maintenance: Research and Practice,

11(3), 201-221.
Bäck, T. (1996). Evolutionary algorithms in theory and practice: Evolution strategies,

evolutionary programming, genetic algorithms. Oxford: Oxford University
Press.

Bäck, T., Fogel, D. B., & Michalewicz, Z. (1997). Handbook of evolutionary computation.
New York: Taylor & Francis Group.

Banker, R. D., Datar, S. M., Kemerer, C. F., & Zweig, D. (1993). Software complexity and
maintenance costs. Communications of the ACM, 36(11), 81-94.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd ed.).
Reading, Massachusetts: Addison-Wesley Professional.

Birattari, M. (2005). The problem of tuning metaheuristics: As seen from a machine

learning perspective. Amsterdam: IOS Press Publication.
Bischofberger, W., Kuhl, J., & Loffler, S. (2004). Sotograph - A pragmatic approach to

source code architecture conformance checking. In G. Goos, J. Hartmanis & J.
Van Leeuwe (Eds.), Software architecture (pp. 1-9). Berlin: Springer.

Booch, G., Maksimchuk, R., Engle, M., Young, B., Conallen, J., & Houston, K. (1994).
Object-oriented analysis and design with applications. Reading, Massachussets:
Addisson-Wesley Professional.

Bosch, J. (2004). Software architecture: The next step. In G. Goos, J. Hartmanis & J. Van
Leeuwe (Eds.), Software architecture (pp. 194-199). Berlin: Springer.

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design.
IEEE Transactions on Software Engineering, 20(6), 476-493.

Chikofsky, E. J., & Cross, J. H. (1990). Reverse engineering and design recovery: A
taxonomy. Software IEEE, 7(1), 13-17.

Collis, J., & Hussey, R. (2009). Business research: A practical guide for undergraduate

and postgraduate students (3rd ed.). Basingstoke: Palgrave Macmillan.
Connor, A., Clarkson, P. J., Shahpar, S., & Leonard, P. (2000, 27-29th June). Engineering

design optimization using Tabu search. Paper presented at the Proceedings of
Design for Excellence: Engineering Design Conference (EDC 2000), Brunel, UK.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to

algorithms (2nd ed.). Massachusetts: The MIT Press.
Counsell, S., Swift, S., & Crampton, J. (2006). The interpretation and utility of three

cohesion metrics for object-oriented design. ACM Transactions on Software

Engineering and Methodology (TOSEM), 15(2), 123-149.
Courses, E., & Surveys, T. (2002). Object-oriented system decomposition quality. Paper

presented at the High Assurance Systems Engineering, 2002. 7th IEEE
International Symposium on 23-25 October 2002, Tokyo, Japan.

References

137

Darcy, D. P., & Kemerer, C. F. (2002). Software complexity: Toward a unified theory of

coupling and cohesion. Paper presented at the International Conference on
Software Engineering (ICSE), Orlando, Florida, USA 19-25 May 2002.

DeVore, R. A., & Temlyakov, V. N. (1996). Some remarks on greedy algorithms.
Advances in Computational Mathematics, 5(1), 173-187.

Dietrich, J. (2009). Barrio Project Home Page. Retrieved 15/09/2009, from
http://code.google.com/p/barrio/

Dietrich, J., Yakovlev, V., McCartin, C., Jenson, G., & Duchrow, M. (2008). Cluster

analysis of Java dependency graphs. Paper presented at the SOFTVIS 2008: 4th
ACM Symposium on Software Visualization, Herrsching am Ammersee,
Germany, September 16-17, 2008.

Dorigo, M., & Stützle, T. (2004). Ant colony optimization. Massachusetts: The MIT
Press.

Duchrow, M. (2009). Class dependency analyzer Retrieved 30/07/2009, from
http://www.dependency-analyzer.org/

El-Wakil, M., El-Bastawisi, A., & Boshra, M. (2004). Software metrics - A taxonomy.
Retrieved 10/05/2008, from
http://homepages.wmich.edu/~m5elwakil/CSITeA04_ElWakil.pdf

Erhard, K. (1991). Software metrics, measurement theory, and viewpoints. SIGPLAN

Notices, 26(3), 53-62.
Fenton, N., & Pfleeger, S. L. (1997). Software metrics: A rigorous and practical

approach. Boston, Massachusetts, USA: PWS Publishing Co.
Fowler, M. (1999). Refactoring: Improving the design of existing code. Reading,

Massachusetts: Addison-Wesley Professional.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of

reusable object-oriented software. Reading, Massachusetts: Addison-Wesley
Publishing Co.

Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological
networks. Proceedings of the National Academy of Sciences, 99(12), 7821.

Glass, R. L. (2002). Sorting out software complexity. Communications of the ACM,

45(11), 19-21.
Glover, F. (1989). Tabu search--part I. INFORMS Journal on Computing, 1(3), 190.
Glover, F. (1990). Tabu search-part II. ORSA Journal on computing, 2(1), 4-32.
Glover, F. (1995). Tabu search fundamentals and uses. Boulder, Colorado: Graduate

School of Business, University of Colorado
Glover, F., & Kochenberger, G. A. (2003). Handbook of metaheuristics. Berlin: Springer.
Glover, F., & Laguna, M. (1997). Tabu search. Berlin: Springer.
Gui, G., & Scott, P. D. (2006). Coupling and cohesion measures for evaluation of

component reusability. Paper presented at the MSR 2006: International
Workshop on Mining Software Repositories 22-23 May 2006, Shanghai, China.

Harman, M., & Clark, J. (2004). Metrics are fitness functions too. Paper presented at
the International Software Metrics Symposium, Chicago, Illinois, USA, 14-16
September 2004.

Harman, M., & Jones, B. F. (2001). Search-based software engineering. Information and

Software Technology, 43(14), 833-839.

References

138

Heer, J., Card, S. K., & Landay, J. A. (2005). Prefuse: A toolkit for interactive information

visualization. Paper presented at the SIGCHI Conference on Human Factors in
Computing Systems, Portland, Oregon, USA 2-7 April 2005.

Hitz, M., & Montazeri, B. (1996). Chidamber and Kemerer's metrics suite: A
measurement theory perspective. IEEE Transactions on Software Engineering,

22(4), 267-271.
Hofmeister, C., Nord, R., & Soni, D. (2000). Applied software architecture: A practical

guide for software designers. Reading, Massachusetts: Addison-Wesley
Professional.

Hunold, S., Krellner, B., Rauber, T., Reichel, T., & Rünger, G. (2009). Pattern-based

refactoring of legacy software systems. Paper presented at the ICEIS
International Conference on Enterprise Information Systems, Milan, Italy 6-10
May 2009.

Jiang, T., Gold, N., Harman, M., & Li, Z. (2007). Locating dependence structures using
search-based slicing. Information and Software Technology, 50(12), 1189-1209.

Jones, M. R. (2004). Debatable advice and inconsistent evidence: Methodology in
information systems research. In B. Kaplan, D. P. Truex III, D. WasteII, A. T.
Wood-Harper & J. I. DeGross (Eds.), Information Systems Research: Relevant

Theory and Informed Practice (pp. 121–142). Boston: Springer.
Kennedy, J., Eberhart, R. C., & Shi, Y. (2001). Swarm intelligence. In A. Y. Zomaya (Ed.),

Handbook of nature-inspired and innovative computing integrating classical

models with emerging technologies (pp. 187-219). Boston: Springer.
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598), 671-680.
Knox, S. T. (1993). Modeling the cost of software quality. Digital Technical Journal, 5(4),

9-17.
Lee, H., & Yoo, C. (2000). A form driven object-oriented reverse engineering

methodology. Information Systems, 25(3), 235-259.
Lin, S., & Kernighan, B. W. (1973). An effective heuristic algorithm for the traveling-

salesman problem. Operations Research, 21(2), 498-516.
Mancoridis, S., Mitchell, B. S., Chen, Y., & Gansner, E. R. (1999). Bunch: A clustering

tool for the recovery and maintenance of software system structures. Paper
presented at the IEEE International Conference on Software Maintenance
(ICSM'99), Oxford, England, UK 30 August - 3 September 1999.

Mancoridis, S., Mitchell, B. S., Rorres, C., Chen, Y., & Gansner, E. R. (1998). Using

automatic clustering to produce high-level system organizations of source code.
Paper presented at the 6th International Workshop on Program
Comprehension (IWPC'98) Ischia, Italy 24-26 June 1998.

Martin, R. (1994). OO Design Quality Metrics-An Analysis of Dependencies Report On

Object Analysis and Design 2.
Mens, T., & Demeyer, S. (2001). Future trends in software evolution metrics. Paper

presented at the International Workshop on Principles of Software Evolution,
Vienna, Austria 10 - 11 September 2001.

Mitchell. (2002). A heuristic search approach to solving the software clustering

problem. Drexel University, Drexel.

References

139

Mitchell, & Mancoridis. (2001). Comparing the decompositions produced by software

clustering algorithms using similarity measurements. Paper presented at the
International Conference on Software Maintenance (ICSM 2001), Florence, Italy
6-10 November 2001.

Mitchell, & Mancoridis. (2006). On the automatic modularization of software systems
using the Bunch tool. IEEE Transactions on Software Engineering, 32(3), 193-
208.

Mitchell, & Mancoridis. (2008). On the evaluation of the Bunch search-based software
modularization algorithm. Soft Computing- A Fusion of Foundations,

Methodologies and Applications, 12(1), 77-93.
Mitchell, B. S., & Mancoridis, S. (2001). Craft: A framework for evaluating software

clustering results in the absence of benchmark decompositions.
Muller, H. A., Orgun, M. A., Tilley, S. R., & Uhl, J. S. (1993). A reverse engineering

approach to subsystem structure identification. Practice, 5(4), 181-204.
Nunamaker, J. F., & Chen, M. (1990). Systems development in information systems

research. Paper presented at the Twenty-Third Annual Hawaii International
Conference on System Sciences, Kailua-Kona, HI, USA 2-5 January 1990.

O'Madadhain, J., Fisher, D., & Nelson, T. (2009). Java Universal Network/Graph
Framework. Retrieved 15/09/2009, from
http://jung.sourceforge.net/index.html

Ott, L. M., & Thuss, J. J. (1993). Slice based metrics for estimating cohesion. Paper
presented at the First International Software Metrics Symposium 1993,
Baltimore, MD, USA 21-22 May 1993

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12), 1053-1058.

Pham, H. (2003). Software reliability and cost models: Perspectives, comparison, and
practice. European Journal of Operational Research, 149(3), 475-489.

Randell, B. (1996). The 1968/69 NATO software engineering reports. Paper presented
at the Dagstuhl Seminar on: The History of Software Engineering, Schloss
Dagstuhl, Leibniz, Germany 26 - 30 August 1996.

Riel, A. J. (1996). Object-oriented design heuristics. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc. .

Rosenberg, J. (1997). Some misconceptions about lines of code. Paper presented at the
4th International Symposium on Software Metrics, Albuquerque, NM, USA 5-7
November 1997.

Salger, F., Bennicke, M., Engels, G., & Lewerentz, C. (2008). Comprehensive architecture

evaluation and management in large software-systems. Paper presented at the
Quality of Software Architecture Conference (QoSA 2008), University of
Karlsruhe (TH), Germany 14-17 October 2008.

Schneidewind, N. F. (1992). Methodology for validating software metrics. IEEE

Transactions on Software Engineering, 18(5), 410-422.
Schwanke, R. W., & Hanson, S. J. (1994). Using neural networks to modularize

software. Machine Learning, 15(2), 137-168.
Seng, O., Bauer, M., Biehl, M., & Pache, G. (2005). Search-based improvement of

subsystem decompositions. Paper presented at the Genetic and Evolutionary

References

140

Computation Conference (GECCO 2005), Washington D.C., USA 25-29 June
2005.

Shaw, M., & Garlan, D. (1996). Software architecture. Upper Saddle River, N.J.: Prentice
Hall.

Smith, C. U., & Williams, L. G. (2000). Software performance antipatterns. Paper
presented at the 2nd International Workshop on Software and Performance
(WOSP 2000), Ottawa, Canada 17-20 September 2000.

Sung, C. S., & Jin, H. W. (2000). A tabu-search-based heuristic for clustering. Pattern

Recognition, 33(5), 849-858.
Swanson, E. B. (1976). The dimensions of maintenance. Paper presented at the 2nd

International Conference on Software Engineering, San Francisco, California13-
15 October 1976

Talbi, E.-G. (2009). Metaheuristics: From design to implementation (Vol. 1). Hoboken,
N.J.: John Wiley & Sons.

Taylor, R. N., & Van Der Hoek, A. (2007). Software design and architecture: The once

and future focus of software engineering. Paper presented at the Future of
Software Engineering Conference (FoSE 2007), Minneapolis, MN, USA 23 - 25
May 2007.

Tichelaar, S. (2001). Modeling object-oriented software for reverse engineering and

refactoring. University of Berne, Berne, Switzerland.
Tzerpos, V., & Holt, R. C. (1999). MoJo: A distance metric for software clusterings.

Paper presented at the Sixth Working Conference on Reverse Engineering
(WCRE'99), Atlanta, Georgia, USA 6 - 8 October 1999

Tzerpos, V., & Holt, R. C. (2000). On the stability of software clustering algorithms.
Paper presented at the 8th International Workshop on Program
Comprehension (IWPC 2000) Limerick, Ireland 10-11 June 2000.

Van Vliet, H. (2000). Software engineering: Principles and practice (2nd ed.).
Chichester, England: John Wiley.

Voßs, S., Fink, A., & Duin, C. (2005). Looking ahead with the pilot method. Annals of

Operations Research, 136(1), 285-302.
Wiggerts, T. A. (1997). Using clustering algorithms in legacy systems remodularization.

Paper presented at the Fourth Working Conference on Reverse Engineering
(WCRE'97), Amsterdam, Netherlands 6-8 October 1997.

Xiaomin, W., Murray, A., Storey, M. A., & Lintern, R. (2004). A reverse engineering

approach to support software maintenance: Version control knowledge

extraction. Paper presented at the 11th Working Conference on Reverse
Engineering (WCRE'04), Delft University of Technology, Netherlands 8 -12
November 2004

Yang, X. S. (2008). Introduction to mathematical optimization. Singapore, Hackensack,
N.J: World Scientific Publications.

Zhao, J. (1998). Applying slicing technique to software architectures. Paper presented
at the Fourth International Conference on Engineering of Complex Computer
Systems (ICECCS'98), Monterey, CA, USA 10-14 August 1998.

Zuse, H. (1991). Software complexity: Measures and methods. Hawthorne, NJ, USA:
Walter de Gruyter & Co.

Appendix A: CD – Enclosure

141

Appendix A: CD – Enclosure

The enclosed CD embodies the following content:

The Eclipse framework including the SBRE plug-in

The folder ‘eclipse’ contains an Eclipse Ganymede V. 3.4.2 that includes the SBRE plug-

in. The Eclipse version can be copied on a computer that operates with the Windows

Vista or the Windows XP operating system. After starting the Eclipse IDE, by executing

the eclipse.exe executable and selecting an Eclipse workspace, the SBRE plug-in can be

started by pressing the ‘Search Based Reverse Engineering’ label in the top menu.

The Evaluation Workspace

The folder ‘sbre_workspace’ contains the workspace, which was used for the

evaluation of the SBRE component. It contains the source code of the SBRE

component.

Evaluation Results

The folder ‘evaluation_data’ contains the results of the experiments, which have been

conducted during the present research.

