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Abstract 

The current research represents the planning, design, implementation and evaluation 

of a user directed software clustering approach that utilizes Search Based Software 

Engineering (SBSE). The aim of this research is to examine if a user directed software 

clustering approach contributes to the quality of software clustering. Because of the 

explorative and constructive character this research project utilises the System 

Development Research Methodology. 

This research is enabled by the implementation of the Search Based Reverse 

Engineering (SBRE) component. The SBRE component features multiple similarity 

measurements and the inclusion of user constraints in the clustering process to create 

different implementation perspectives of the software system depending on the 

requirements and preferences of the stakeholders. These similarity measurements are 

based on software metrics, which measure different software-attributes. The SBRE 

component utilizes a greedy and tabu search algorithm for the identification of the 

cluster landscape of the analyzed software systems. 

The evaluation showed that a user controlled SBSE cluster approach is able to adapt to 

different user configurations and derive corresponding cluster landscapes from 

software systems. Different measures are introduced to control the cluster process. It 

has been shown how these measures contribute to the quality of the clustering. It is 

demonstrated that tabu search is applicable in the field of software clustering. Finally, 

it has been examined that a multiple metric approach allows adapting the clustering 

process to the requirements of the stakeholders and the design of the software system 

to optimize the clustering result. 
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1 Introduction 

This chapter presents the motivation for this research and derives from it the direction 

of the present research. A more detailed consideration of the research objective is 

given in chapter four after the research environment is further investigated with an in-

depth literature review. 

1.1 Motivation and Background 

Forty years ago, the term ‘software crisis’ was first mentioned at the NATO Software 

Engineering Conference of 1968 (Randell, 1996). The term describes the circumstance 

of software systems being resistant to change and difficult to maintain. With unclear 

and changing requirements the result was a predominance of inflexible and unstable 

software systems (Glass, 2002). Many software projects were exhibiting problems due 

to these weaknesses. 

The paradigms, processes, tools, computational platforms and techniques in the field 

of software engineering have changed immensely over the past 40 years, but the 

problems which have been summarized under the term ‘software crisis’ still exist. One 

reason for this is the high complexity of non-trivial software systems. 

Contemporary software systems that comprise a reasonable (non-trivial) amount of 

functionality and size are invariably accompanied by a non-trivial degree of complexity 

(Bass, Clements, & Kazman, 2003). One reason for this complexity is the diversity of 

the artefacts (e.g. files, methods, classes, packages) involved in the software system. 

Furthermore, any given system structure is not continuous; the structure of the system 

changes through maintenance, requirements changes, added features and refactorings 

(Bosch, 2004). This creates difficulties for individuals attempting to understand the 

design, structures, dependencies and the architecture of a software system. As a 

result, realizing new requirements and maintaining a large software system is 

challenging. A good understanding of the system architecture is necessary to align the 

development of new requirements and the maintenance of the software system with 

the aspired system design (Bass et al., 2003).  
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If new functionality is added to an existing software system, without considering the 

software architecture or maintaining the integrity of the software system, then system 

erosion will occur. As a consequence software quality decreases and the system will be 

less flexible, less robust and harder to both maintain and to understand (Banker, Datar, 

Kemerer, & Zweig, 1993). Therefore the software maintenance cost increases. Finally, 

the system will be so substantially deteriorated that a complete rebuild will become 

necessary. 

This general scenario illustrates the importance for development stakeholders to 

access current and consistent documentation of the architecture and structure of the 

software system in order to form a good understanding of the current system 

organization in a timely manner. Because of the evolving character of software 

systems and their often substantial scale it is certainly beneficial if this documentation 

could be created automatically. 

An approach to increase the maintainability and understandability of software systems 

is to hide the complexity of a software system by abstraction. One implementation of 

this approach is called software clustering and arose in the field of reverse engineering 

(Chikofsky & Cross, 1990). Software clustering attempts to partition a software system 

into subsystems and thereby create a new level of system abstraction. Through these 

subsystems stakeholders could be provided with abstract information about design, 

structure, organization and dependencies of the software system. 

1.2 Goal of the Research Project 

The objective of the current research is to design, implement and evaluate an 

approach, which provides useful information to developers and architects about 

software architecture clustering, subsystem decomposition and problematic source 

code segments. This should enable the stakeholders, depending on their requirements, 

to derive a flexible and maintainable implementation structure of the system. Isolating 

code smells (Fowler, 1999) within software system could also assist the stakeholders to 

plan appropriate refactorings to eliminate longer terms problems arising. 
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To control and observe the development process and manage the complexity of non 

trivial software systems the application of software development tools is necessary. An 

emerging approach is to integrate software development components directly into the 

Integrated Development Environment (IDE). The advantage is that the necessary 

information is directly available when a task is planned or implemented. Contemporary 

IDEs offer extension possibilities to integrate external components into the 

development process to allow a flexible adaption to the stakeholder requirements. 

One framework for these extensions is the Eclipse
1 plug-in concept. This work follows 

these ideas and integrates the process of software clustering into the Eclipse 

development environment and obtains information for stakeholders regarding design, 

structure and dependencies analyses. Regarding the prototype characteristic of this 

project and the established popularity of object oriented software systems, this work 

focuses on the analyses of such systems and especially of java software systems. 

Considering the intent to support an integrated approach, one of the challenges of this 

project is to provide architecture information in a reasonable time. Regarding the size 

and increasing complexity of current software systems any solution should also feature 

effective scalability.  

One field of research, which may support adherence to these requirements, is that of 

Search Based Software Engineering (SBSE), introduced by Harman and Jones (2001). 

SBSE describes the application of metaheuristic algorithms in the area of software 

engineering. Encouraging results have been achieved to date in the areas of testing, 

standalone cluster analysis, release-planning and requirement analysis.  

The present research examines the application of Search Based Software Engineering 

(SBSE) in the area of software clustering with a special focus on user directed software 

clustering. The research of Harman and Jones (2001), Mitchell (2002) and Seng, Bauer, 

Biehl & Pache (2005) provides a degree of evidence that the computational challenges 

in the area of software clustering and subsystem decomposition can be solved with the 

application of SBSE. These studies lend support to the belief that an SBSE-based 

                                                      
 

1
 http://eclipse.org/ 
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solution should provide the developer with architecture information after a sufficiently 

short processing time. 

The modularization of software systems as a basis for refactorings or rearchitecturing 

can utilize a variety of variables. Because of the multi-objective nature of software 

development these objectives can often be in direct conflict with each other. 

Considering this, it can be said that no universal solution can be created to solve a 

given problem. Because of a focus on different attributes or even personal preferences 

there can be a range of solutions that are all “equally optimal”. To create a flexible 

solution, which adapts well to the reviewed system and the preferences of the 

stakeholders the inclusion of specific user knowledge to control the cluster process is 

necessary. Hence a clustering approach should not aim for a final and perfect solution. 

It should rather aim for a flexible solution that can be quickly created and easily 

manipulated.  

Based on an in-depth literature review in chapter three and the identification of 

challenges and limitations of the relevant studies the following research questions are 

examined during the present research: 

• Can a user directed and semi-automatic clustering approach contribute to the 

quality of software clustering? 

• Is tabu search applicable in the area of software clustering? 

• Does the inclusion of multiple metrics in the fitness function enable the 

clustering of a software system into multiple implementation perspectives? 

Based on this motivation and broad illustration of the direction of the research the 

following section provides an overview of the structure of this thesis. 

1.3 Thesis Structure 

This work is subdivided into six chapters. Chapter one illustrates the motivation and 

placement of the research. The remaining chapters of the thesis are structured as 

follows: Chapter two examines relevant research in the areas of this research and 

introduces relevant terms which are necessary for the understanding and 

development of this work. Based on this literature review, the identification of 
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limitations of the current research and illustration of a promising research path, the 

final research objective and research questions are depicted in chapter three. 

Additionally, the research methodology and design of the research is illustrated within 

this chapter. Chapter four illustrates the design and implementation of the research 

objective, which is utilized by the Search Based Reverse Engineering (SBRE) 

component. Chapter five demonstrates the evaluation process and portrays the results of 

this evaluation and discusses and aligns them with the research questions. Finally, Chapter 

seven presents the conclusions for this research, highlights the contribution of this study 

to the related research fields, considers the limitations of this study and provides 

recommendations for future research. 
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2 Literature Review 

This research project draws on a number of different fields within software 

engineering particularly software clustering and search based software engineering. 

Furthermore, the concepts and terms used in the field of software architecture are 

important in supporting an understanding of the purpose of this research. This 

literature review considers these areas with special attention to the proposed 

research. The area of software architecture can be seen as the application domain of 

this work and hence is addressed first.  

2.1 Software Architectures 

Software architectures provide a framework for the development of software systems 

(Bass et al., 2003). The architecture is an orientation within which the developer is able 

to create a uniform software design. The program design should remain consistent so 

developers who are familiar with the architecture can understand the design of other 

system parts. In theory, effective software architectures support the continuous 

conservation of maintainability and extensibility that can prevent the erosion of the 

software system. But certainly not all software architectures are similar. Different 

factors influence the design of a software architecture e.g. performance, 

modularisation, system distribution. Not all of these factors correspond with the 

requirement to preserve maintainability and extensibility. 

A technique that enables developers to obtain insight into non-trivial software systems 

is the decomposition into modules (Courses & Surveys, 2002). This modularisation can 

be driven by different aspects. Possible classifications can be to follow a functional, 

object oriented or data driven decomposition (Bass et al., 2003). A software 

architecture portrays the structure and the decomposition of a software system into 

components and the relations between these components. To define a software 

architecture a meaningful decomposition of subsystems, according to the domain-, 

system- and quality- requirements, has to be identified. Additionally, the   

dependencies between these subsystems have to be defined. Effective software 

architectures should help developers to control the stability of large systems, which 

feature a high degree of complexity (Bass et al., 2003). This is enabled through the 
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modularisation, classification and aggregation of smaller unstructured elements into 

bigger controlled structures. 

In the next sections relevant terms and definitions used in the area of software 

architectures are introduced. 

2.1.1 Artefact 

One goal of software architecture development is the abstraction of software systems. 

Software systems feature different levels of abstraction (e.g. files, folders, methods, 

classes, packages). For some design rules and analyses the application level is 

irrelevant. For example, the maxim of low coupling is relevant on class and package 

level. To express these generalisations the term artefact is introduced. The term 

artefact allows discussing problems and solution strategies on an abstract level.  

Within this work the term artefact abstracts the design levels class, package and 

subsystem. A subsystem is an aggregation of artefacts, which exhibits a certain 

similarity. 

2.1.2 Complexity 

The term complexity in the context of the present research relates to the level of 

difficulty encountered by a developer, who is attempting to understand a software 

system (Zuse, 1991). A high level of complexity causes problems for the maintenance 

and modification of software systems. This aspect is especially significant because 

maintenance cost is one of the main cost factors in software projects (Banker et al., 

1993). Darcy and Kemerer (2002) listed possible reasons for high complexity in a 

software system: complexity and difficulty of the problem itself, an inappropriate 

solution design, a high coupling between artefacts or even a high flexibility of the 

software system itself.  

Complexity Classifications 

In the software engineering literature different classifications of software complexity 

can be found. To outline the field of software complexity this work utilises the 

classification introduced by Fenton and Pfleeger (1997), which is taken up in other 

established research papers, e.g. Van Vliet (2000) and Mens and Demeyer (2001) . 
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Fenton and Pfleeger (1997) classified software complexity into four categories: 

algorithmic, structural, cognitive and problem complexity. Structural complexity 

depicts the complexity of relations and dependencies between artefacts and the 

consideration of these structures in the context of the complete software system. 

These relations are of special importance for cohesion and complexity analysis. The 

algorithmic complexity portrays the intricacy of a particular algorithm. The cognitive 

complexity describes the effort for a person to understand an artefact of a software 

system. The estimation of cognitive complexity underlies a quite subjective and 

individual assumption. Cognitive complexity can be considered as the inverse to the 

understandability software quality attribute. The subjective and individual factors of 

cognitive complexity make the investigation and estimation of cognitive complexity 

difficult. The problem complexity expresses the complexity of an optimal algorithm to 

solve a problem. The problem complexity is always smaller or equal to the algorithmic 

complexity.  

Computational Complexity 

Besides the classification of Fenton and Pfleeger (1997) the term computational 

complexity exists. Because of the focus of this work computational complexity is of 

special importance and will be further illustrated in this section. 

The term computational complexity should not be mixed up with the algorithmic 

complexity. As mentioned previously, algorithmic complexity describes the difficulty of 

an algorithm and the difficulty of understanding a certain algorithm. 

The computational complexity defines the needed time and space resources to solve a 

problem depending on a certain input size (Zuse, 1991). It is the aim of the 

computational complexity analysis to estimate the resource demand regarding the 

change of the input size. It is not the goal of the computational complexity analysis to 

give an exact step count of a certain algorithm, but rather give an asymptotic step 

count of the algorithm. The time complexity defines the number of required steps to 

solve a problem of the input size n (Yang, 2008). The time complexity is usually given 

for the worst case scenario. 
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Referring to Yang (2008) an algorithm is tractable, if it is solvable in polynomial time. 

On the other hand it is intractable, if no algorithm exists which can solve the problem 

in polynomial time. A problem is solvable in polynomial time, if an algorithm exists 

which is solvable on a deterministic and sequential computer and if the calculation 

time does not grow stronger with the input problem size than a polynomial function. 

Consequently, the term polynomial time distinguishes whether a problem is practically 

solvable or not. Even with a relatively small input size the computational complexity of 

an intractable problem will grow so quickly that a practical application of this algorithm 

is impossible. 

Importance of Complexity 

It has to be considered that the different complexities influence each other. A very 

complex algorithm has also a negative effect on the cognitive and structural 

complexity. Hence it is not possible to examine the certain complexities individually.  

The computational complexity of the cluster partitioning problem is of particular 

relevance to this research as it applies Search Based Software Engineering (SBSE) in the 

field of cluster partitioning. The field of SBSE is depicted in section 2.2. The field of 

cluster partitioning and cluster analysis is further described in section 2.3. However, 

the aim of this work is to assess and reduce predominantly structural complexity by 

using clustering and abstraction techniques in a way that does not exceed polynomial 

bounds of computational complexity. As a consequence of the reduction of structural 

complexity the cognitive complexity imposed on developers should also be reduced by 

these refactorings. 

2.1.3 Cohesion and Coupling 

The terms cohesion and coupling are of central importance for the decomposition and 

modularization of software systems (Darcy & Kemerer, 2002). The coupling 

measurement defines the strength of binding between two artefacts. A higher number 

of dependencies and interconnections between two artefacts increases the coupling 

between these artefacts. A high coupling between two artefacts hinders the reusability 

and understandability of these artefacts (Gui & Scott, 2006).  
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Cohesion describes the internal coherence of an artefact (Counsell, Swift, & Crampton, 

2006). A reason for a low level of cohesion could be the implementation of two 

different functionalities within an artefact. The semantics of the functionality provided 

in the artefact is therefore not coherent. This inclusion of multiple functionalities 

hinders reusability and understandability of the affected artefact.  

In relation to these characteristics the aims of modularization are low coupling 

between artefacts and high cohesion within each artefact. 

2.1.4 Software Architecture Views 

The main aim of architectures is the reduction of complexity (Taylor & Van Der Hoek, 

2007). All the information relating to any non-trivial architecture could not generally 

be illustrated in one view, as a reduction of complexity would certainly not be possible. 

To investigate certain attributes of software architectures different views of a software 

system exist. A view depicts a software system from a certain architectural view. If 

details are not relevant for a certain view, they are abstracted or excluded. In the 

literature there is no general classification of architecture views. Bass et al. (2003) 

suggested a division into the five architecture views: conception, infrastructure, 

implementation, runtime and data architecture views. Within the present research the 

implementation view is of special importance. However, the other views are also 

briefly introduced to allow the differentiation of the individual views.  

The conceptual view displays the functionality of the system in an abstract manner. 

The system is portrayed in its logical system environment. System borders, user and 

surrounding systems are visualized in interaction with the system. The internal system 

workflows are not displayed. The infrastructure view documents the platform and 

system environment of a system. These could be computers, processors, network 

topologies or other parts of the physical system environment. The implementation 

view illustrates the internal configuration of a system on the level of software 

artefacts. The system is distinguished into components to a particular level of detail. 

Depending on the programming language and paradigm, artefacts within the 

implementation view can be subsystems, components, packages, classes or files. 

Further on, the interfaces and dependencies between the individual artefacts are 
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illustrated within the implementation view. The runtime view describes which 

instances of artefact exist during the execution of a component and the interaction of 

these components between each other. Finally, the data view illustrates the structure 

of data elements and their interrelationships. 

Different views are appropriate or relevant to analyse a system regarding a certain 

aspect or requirement. It also has to be illustrated that these views do not ensure the 

architectural quality of a software system. They rather display the actual condition of 

the software system from a certain perspective. Thus an architectural view does 

certainly help to understand and analyse a software system, but does not conserve the 

architecture of the system. As depicted in the beginning of the section, one aim of 

software architectures is to anticipate the deterioration of a software system. Certainly 

the possibility to analyse and understand a system contributes to a design which aligns 

with the actual architecture, but it does not ensure that this complies with the 

architecture definition. The architecture definition describes the decomposition and 

dependencies of a software system (Shaw & Garlan, 1996). The architecture definition 

is therefore a description of the target architecture. The design of current and future 

implementations should align with this target architecture. The compliance with the 

target architecture should obtain a robust, clearly arranged, modularized, 

maintainable and expandable software system (Bass et al., 2003).  

It is certainly possible to define a target-architecture for every architecture view of a 

software system. However, as described in section 1.1 the main problem of current 

software systems are the high maintenance costs caused by the deterioration of the 

software system. This illustrates that the definition and observation of the 

implementation view is of special interest within the present research.  

Further on, the process of architecture observation to ensure the architectural quality 

is illustrated and discussed to highlight the actual problems with these approaches. 
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2.1.5 Ensuring Architectural Quality 

Different workflows exist to monitor and ensure the quality of a software-architecture 

(Bass et al., 2003). Often, approaches to monitor and obtain the software architecture 

deal with the implementation of tasks and the observation of the software 

architecture separately (Bischofberger, Kuhl, & Loffler, 2004; Hofmeister, Nord, & Soni, 

2000; Salger, Bennicke, Engels, & Lewerentz, 2008). These approaches suggest that a 

developer is focusing on the completion of tasks. The Integrated Development 

Environment (IDE) supports the developer to finish these tasks. The IDE usually 

provides limited information regarding the desired software architecture or to support 

the creation of a design with high quality. Often a software architect later assesses the 

committed changes and identifies possible architecture violations and code smells 

(Bosch, 2004). An architecture violation arises when resources are accessed in an 

inconsistent manner to the architecture definition. The term code smell (Fowler, 1999) 

describes the occurrence of symptoms within the source code that could indicate a 

deeper design problem. The elimination and prevention of code smells and 

architecture violations should abolish, or at least reduce, the deterioration of the 

software system and obtain the above mentioned robust, clearly arranged, 

modularized, maintainable and expandable software system. 

Bischofberger, Kuhl and Loffler (2004) introduced approaches to identify architecture 

violations and to obtain a preferred architecture of a software system. They are based 

primarily on the comparison of an architecture definition with the actual system 

source code. The comparison between the target architecture and the current 

architecture identifies architecture violations. 

The identification of code smells relies extensively on software metrics, which indicate 

possible problematic code segments and artefacts. Based on these indications a visual 

code inspection should identify the problem and a refactoring can be planned.  

The architect creates tasks for the detected architecture violations and code smells 

and the developer has to implement these tasks. This procedure uncouples the quality 

assurance process and the implementation process. Unfortunately, this approach 

slows down the development process and creates turnaround times. This motivates 
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that an early identification or prevention of architecture violations and code smells 

increases the productivity and decreases the costs of software system development. A 

similar link between the time of software failure identification and the effect on 

development costs is well known knowledge in the field of software engineering and 

drawn in various publications (Knox, 1993; Pham, 2003; Swanson, 1976). 

This overhead could be decreased, if the developer has a good understanding of the 

software system and information that would help him to prevent architecture 

violations and code smells. The architecture monitoring process should be integrated 

directly into the IDE to decrease turnaround times. The advantage should be that the 

developer is getting information about the software architecture and the influences of 

his changes instantly and as consequence produces fewer architecture violations and 

code smells.  

The consideration of architecture monitoring raises the question of how to define the 

target architecture. Certainly the definition of a target-architecture within newly 

developed systems with a well planned design would normally be relatively easy. But 

within older systems, which have grown and changed over a long period of time, the 

definition of a target architecture can be much harder. 

This current work attempts to address this challenge. The objective of this research is 

to derive a structure of the current system architecture and identify clusters within 

that system. The intent is to provide the developer with a sufficient understanding of 

the system organization in a timely manner. This would enable them to identify code 

smells and produce fewer architecture violations. Identification of the dependency 

relationships among components should help the developer to understand the 

connections and identify subsystems of the software system. A subsequent step would 

be to classify the extracted artefacts in a system specific architecture raster. Only this 

alignment of the actual architecture and the desired architecture gives the possibility 

to identify a lack of quality e.g cycles, or architecture violations, and to derive quality 

improvement opportunities (Bass et al., 2003). However, the application of this 

component will not remove the necessity of an appropriate architecture definition and 

monitoring. 
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2.2 Search Based Software Engineering 

This research focuses on the application of Search Based Software Engineering (SBSE) 

in the area of software clustering. Accordingly, this section illustrates the fundamental 

characteristics and concepts of SBSE as well as exposing some of the most pertinent 

literature in this field. 

For some problems in the domain of software engineering e.g. release planning, 

clustering and testing more or less optimal solutions exist. From a formal viewpoint it 

is possible to identify the optimal solution to a problem in each of these contexts. 

However, the computational complexity to achieve this optimal solution may be very 

high if the solution space (i.e. the number of potential solutions) is large. Instead a 

good or nearly optimal solution that can be found more quickly than the optimal 

solution may be sufficient. Harman and Jones (2001) introduced SBSE as the 

application of metaheuristic algorithms to solve linear optimization problems in the 

area of software engineering.  

SBSE has emerged as a vibrant research topic with evidence in the literature showing 

that it is widely applicable across the whole spectrum of lifecycles activities e.g. from 

requirements engineering (Bagnall, Rayward-Smith, & Whittley, 2001), project 

planning and estimation (Burgess & Lefley, 2001), refactoring and maintenance 

(Harman & Tratt, 2007; O’Keeffe & Ó Cinnéidea, 2008), testing (Ribeiro, Rela, & Vega, 

2008; Wegener, Baresel, & Sthamer, 2001) and quality assurance (Khoshgoftaar, Yi, & 

Seliya, 2004). 

A key element of an SBSE implementation is the choice of search algorithm used. A 

wide range of search techniques could be applied, including gradient methods, direct 

search or metaheuristics. Metaheuristics have become more common in recent 

literature, because the complexity of many problems does not suit gradient or direct 

search methods. 

The term heuristic refers to problem solving strategies, which apply general sense and 

assumptions and loosely applicable information to arrive at a nearly optimal solution in 

a relatively short period of time (Yang, 2008). Heuristic algorithms are a branch of 
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operations research. Heuristics are often applied, if there is no formal method known 

to calculate the optimal solution or there is a formal way known but the computational 

complexity exceeds polynomial time.  

Heuristic algorithms can be distinguished into specific heuristic algorithms and 

metaheuristic algorithms. Lin & Kernighan (1973) introduced for example a specific 

heuristic algorithm to solve the travelling salesman problem. In comparison to specific 

heuristic algorithms metaheuristic algorithms are designed more generically to be able 

to solve different problems (Yang, 2008). The term ‘meta’ relates to ‘upper’ or ‘higher 

level methodology’.  

Talbi (2009) suggested a range of classifications of metaheuristics in terms of nature 

inspired vs. non-nature inspired, memory usage vs. memory less methods, 

deterministic vs. stochastic and iterative vs. greedy metaheuristics. To position this 

research and provide sufficient detail regarding the diversity of algorithms this 

classification will be constituted. 

2.2.1 Classification of Metaheuristics 

Many metaheuristic algorithms are inspired by the behaviour of animals or natural 

processes. The most important of these nature inspired algorithms are briefly 

described here to give an idea about their inspiration. Evolutionary Algorithms utilize 

the model of biological evolution and copy the three main biological principles 

mutation, recombination and selection (Bäck, 1996). The best adapted individuals form 

the solution representation in keeping with the principle of survival of the fittest. 

Evolutionary Algorithms are distinguished into the four categories of genetic 

algorithms, evolution strategies, genetic programming and evolutionary programming 

(Bäck, Fogel, & Michalewicz, 1997). Ant Colony Optimization clones a strategy which 

can be found in the complex social behaviour of ants during their forage (Dorigo & 

Stützle, 2004), whilst Particle Swarm Optimization problems based on the forage 

process of bird- and fish swarms (Kennedy, Eberhart, & Shi, 2001). Simulated 

Annealing is based on an analogy from thermal substance physics, namely the 

crystallization in metals, which are released out of the melting process and are in a 

controlled cooling down process (Kirkpatrick, Gelatt, & Vecchi, 1983, p: 670). 



Literature Review 

  

16 
 

Some metaheuristic algorithms are stateless and store no information of previous 

iterations or solutions to guide their next search step or search in general. One 

example of a metaheuristic which does not use any memory is the greedy algorithm. In 

contrast, an example of a metaheuristic which does use memory is the tabu search, 

which employs both short- and long-term memory as tabu lists (Glover, 1989). 

Another classification mechanism relies on the distinction between deterministic and 

stochastic algorithms. Based on the same search space and the same search 

parameters a deterministic metaheuristic will find the same solution in multiple runs. 

Examples for deterministic metaheuristics are hillclimbing and tabu search. In 

stochastic algorithms the application of random rules could lead to different solutions 

even within the same starting configuration. Examples of stochastic algorithms are 

simulated annealing and evolutionary algorithms. 

Finally, the last classification is based on the distinction between iterative and non-

iterative algorithms. Iterative metaheuristics start with an initial solution. Based on this 

initial solution the algorithm tries to improve the solution. Examples of iterative 

algorithms are hill climbing and tabu search. In comparison the greedy algorithms start 

their search with an empty solution (DeVore & Temlyakov, 1996).  

2.2.2 Implementation of Metaheuristics 

Certain components and steps have to be considered when developing and applying 

metaheuristics for a given problem. These components relate to the representation of 

the solution, the determination of the fitness function, the handling of constraints, the 

interaction of users and finally a process to implement the metaheuristics.  

Representation 

Iterative metaheuristics manipulate solutions to derive new solutions. It is therefore 

necessary that  these algorithms incorporate a suitable representation for these 

solutions (Glover & Kochenberger, 2003). An instance of the representation reflects a 

specific solution within the solution space. The term solution space describes all 

possible solutions of a certain optimization problem. The representation has to be 

aligned with the optimization problem and the applied operators, so that it is indeed 
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possible to manipulate the solutions. An operator is a function that transforms the 

current candidate solution from the solution space into another solution in the same 

solution space. The representation is an important component for the efficient and 

effective application of metaheuristics (Birattari, 2005).  

A useful representation fulfils the requirements of completeness, connectivity and 

efficiency (Birattari, 2005; Glover & Kochenberger, 2003). Completeness describes the 

necessity of the representation to express every solution of the solution space. 

Connectivity describes the requirement of a search path between every two solution 

representations. That is, that for every solution S1 of the search space exist at least 

one set of operations for any other solution of the search space S2, which, applied in a 

certain order, transforms S1 into S2. Finally efficiency describes the requirement that 

the handling of the representation should be minimal in reference to the time and 

space complexity.  

The Fitness Function 

Whilst metaheuristics can produce a variety of different solution candidates, out of 

these the “best” solution has to be identified. This raises the requirement for a method 

to compare solutions with each other. This requirement is satisfied by the fitness 

function (also referred to as the objective function)  (Harman & Jones, 2001). 

The fitness function � quantifies the optimality of a solution (Harman & Jones, 2001) 

and therefore expresses the goal of the search. The fitness function is a surjective 

transformation, which maps the solution space into the set of real numbers �: � →
ℝ  . The fitness function allows a ranking of solutions with each other. A fitness function 

consists of a combination of different factors, which reflect the quality and value of a 

given solution. As such, the quality of the fitness function depends on a sound 

orchestration and estimation of the influencing factors. If the fitness function is not 

well designed it will lead to unacceptable or poor solutions. 

Constraint Handling 

With reference to Talbi (2009) many optimization problems are constrained. Talbi 

(2009) introduces five strategies to handle constraints within metaheuristics, namely 
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reject, penalizing, repairing, preserving and decoding. These constraint strategies work 

either on the objective function, the representation of solutions or are included into 

the metaheuristic algorithm itself. The penalizing and preserving strategies are of 

particular importance for the application of metaheuristics in the area of software 

clustering and so are further discussed in this section.  

Depending on by how much a constraint is violated, some solutions in a given solution 

space are more feasible than others. Often patterns can help to identify infeasible 

solutions (Talbi, 2009), and these infeasible solutions can be penalized. One way to 

implement these penalties is to add a linear factor to the fitness function  � and obtain 

a new fitness function �′, which includes the penalizing strategy. 

�′�s
 = ��s
 +  δ�s
 

Preserving constraints are another important constraint strategy for the application of 

metaheuristics in the area of software-clustering. Preserving constraints obtain the 

feasibility of a solution considering a set of constraints (Glover & Kochenberger, 2003). 

The aim is that every preserving constraint is valid for each generated solution. As 

mentioned above, the preserving constraints have to be considered during the 

creation of the solution, which implies that the handling of preserving constraints has 

to be included in the metaheuristic algorithm. An example of a preserving constraint in 

the area of software clustering could relate to the requirement for a ‘locked’ cluster, 

comprising certain entities. The configuration of this cluster should be equal for every 

generated solution, if the lock constraint is set for this cluster.  

Interactive Optimization 

For some optimization problems the addition of certain information to improve the 

solution quality during the search can be beneficial. Birattari (2005) described the 

possible interactions in terms of two categories: User interaction to guide the search 

process and user intervention to evaluate a solution. The user can influence the search 

process to guide the search process into more promising areas. The aim is to improve 

the efficiency and performance of the search and to hopefully improve the solution 

quality. User intervention to evaluate a solution does not influence the search process. 
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Rather it leverages user information where no formal definition exists to quantify a 

solution. An example would be to evaluate the visual appeal, taste or attractiveness of 

an attribute or solution.  

Relating to the application of metaheuristics in the area of software clustering it would 

be conceivable to allow the inclusion of special design knowledge to guide the search. 

The design of a software system occurs under a variety of external influences and 

personal preferences and as such informed by a wide variety of tacit knowledge that is 

difficult to encapsulate in mathematical form. Thus to recover the complete design of 

an existing system in an entirely automatic manner is a challenging problem. Given 

this, the user should have the chance to include domain and design knowledge into the 

search process. 

The Design Process of Metaheuristics 

In Talbi (2009) a set of guidelines is given for the application of metaheuristics. The 

first step is to model the problem. Based on this model and the nature of the problem 

an assessment of whether metaheuristics are applicable to this problem can be made. 

Factors that influence this decision are the computational complexity, size and 

structure of the problem and also the requirements of the application. Important 

requirements for a metaheuristic-based approach may relate to search time, quality of 

solutions, and solution robustness. When a metaheuristic-based approach is 

considered applicable the metaheuristic can be designed. Referring again to Talbi 

(2009), the representation of the problem, guiding of the objective function, constraint 

handling and selection of the algorithm need to be defined within the design phase. 

Based on the design, the metaheuristic-based approach can then be implemented. 

After the implementation the performance evaluation and parameter tuning phases 

are conducted. These phases are interconnected and can influence each other. This 

evaluation may reveal drawbacks with the search or the solution(s), which may make it 

necessary to change the model, the design and/or the implementation. Reflecting on, 

Talbi (2009) suggested an iterative and incremental approach for the development of 

metaheuristic-based applications.  
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2.2.3 Metaheuristic Algorithms 

A variety of different metaheuristic algorithms exist. The various algorithms all aim to 

achieve the same end result in different ways. The intent is to carry out an efficient, 

yet effective search of the solution space in order to identify the best (and hopefully 

close to optimal) solution. This intent is embedded in the concepts of diversification 

and intensification. In the design of a metaheuristic the two conflictive parameters of 

exploration of the search space (diversification) and exploitation of the best solutions 

(intensification) have to be balanced  (Glover & Kochenberger, 2003). The term 

diversification describes the necessity to explore non-visited areas to ensure that all 

regions of the search space are explored and that the search is not limited to only a 

small number of regions. Intensification describes the more focused exploration of 

promising areas that have delivered already good solutions. Certainly some 

metaheuristic algorithms focus more on diversification and others more on 

intensification. An example of an algorithm that focuses on diversification is the 

random search (Yang, 2008). The random search algorithm is creating a new random 

solution within every algorithm-iteration without considering previous solutions. In 

comparison to the random search the basic local search (hillclimbing) algorithm selects 

the best neighbour solution and is an example of a strong intensification approach. 

The number of defined metaheuristics is large and the selection of a suitable 

metaheuristic depends on a variety of different requirements e.g. quality of the 

solution, possibilities for the manipulation of the search process and the acceptable 

complexity of the search (Birattari, 2005). 

The greedy- and tabu search (TS) metaheuristics have been chosen for the 

implementation within this research project. The reasons for this are a lack of 

application in the area of software clustering within previous research (Jiang, Gold, 

Harman, & Li, 2007; Mitchell, 2002; Seng, Bauer, Biehl, & Pache, 2005), a high flexibility 

and controllability of the tabu search algorithms (Glover & Kochenberger, 2003) and a 

good performance of the greedy algorithms (Yang, 2008). A more detailed illustration 

of the motivation, reasons and relevance for the application of these algorithms within 
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this research is given in section 2.3. The tabu search and greedy metaheuristics 

demand special attention and will be illustrated in the next sections.  

Greedy Algorithms 

Greedy algorithms follow the problem solving metaheuristic of considering only the 

next possible steps at each stage within the search and selecting the best step of this 

set of possibilities (Cormen, Leiserson, Rivest, & Stein, 2001). The greedy algorithm 

chooses the step which promises the highest reward. By applying this approach the 

greedy algorithms tries to find the global optimum.  

The advantages of greedy algorithms over alternatives are that they are easy to design, 

command low complexity and deliver solutions in a relatively short period of time 

(Glover & Kochenberger, 2003). The disadvantages of greedy algorithms are that the 

quality of the delivered solution can be very poor and they provide no backtracking to 

reverse decisions (Glover & Kochenberger, 2003). Additionally, greedy algorithms have 

a tendency to stall in local optima. A local optima characterizes a current solution, 

which cannot be improved by the applied metaheuristic (Glover & Kochenberger, 

2003). The metaheuristic is not able to manipulate the solution candidate to escape 

the local optima and find the globally optimum solution. But this solution (local 

minima) is not the global optimum. To overcome this problem multiple start 

constellations can be used. This approach creates a solution for every start point. After 

the creation of this set of solutions the best solution is selected (DeVore & Temlyakov, 

1996). Referring to Voßs, Fink and Duin (2005) special greedy algorithms (e.g. pilot 

method) incorporate look-ahead features to evaluate the consequences of a planned 

decision.  

Iterative metaheuristic algorithms assume a start solution, which is manipulated by the 

algorithm. This raises the question how this start solution is generated. The greedy 

algorithm starts with an empty solution (DeVore & Temlyakov, 1996). Based on this, 

the algorithm adds every step the most appropriate decision until a final solution is 

found.  
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Tabu Search Algorithms 

Tabu Search is a metaheuristic algorithm introduced by Glover (1989) and further 

developed in Glover & Laguna (1997). Glover (1990) illustrated a deterministic 

algorithm, which escapes local optima inspired by the controlled randomization 

applied in Simulated Annealing (SA). The particular feature of tabu search is the use of 

memory which stores information related to the search process. Tabu search improves 

the navigation during the local search to find better solutions. This is achieved by 

forbidding solutions, which are not promising or which have been investigated before. 

Tabu search replaces the current best solution, as hillclimbing, if a neighbour features 

a better solution quality. If a local optimum is reached and no improving neighbour can 

be selected then tabu search selects a non improving neighbour to continue the 

search. This approach itself creates cycles and the algorithm would not terminate 

properly.  To overcome these cycles the visited solutions are stored in the short-term 

tabu list. Solutions which are stored in the short term-tabu list are not visited again by 

the algorithm, as evolution potential of this branch is already investigated. The tabu 

list is updated with every selection of a new current solution. The algorithm has to 

check every algorithm-iteration, if a solution candidate is already in the tabu list. These 

continuous checks of all previously visited solutions are time and space consuming. 

This challenge desires the implementation of a small and easy to identify solution 

representation. Another method to reduce the computational complexity of the 

algorithm is to limit the maximum size of the tabu list. This approach prevents cycles 

with a maximum length of the maximum number of elements within the tabu list. 

Another way to reduce the computational complexity of tabu search is to store a 

record of the applied moves (Glover & Kochenberger, 2003). These moves are stored 

in relation to the created solutions. A move � which creates a new solution �� based 

on a solution �� is not allowed for a number of iterations. The inverse move ���, 

which creates the solution �� based on the solution ��  is also blocked for a given 

number of iterations. Referring to Glover (1995) the number of iterations for which a 

certain move is blocked is called tabu tenure.  

Another concept of tabu search is the application of aspiration criteria (Glover & 

Kochenberger, 2003). These criteria allow the selection of a solution, even when this 
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solution is within the tabu list. The reason for the application of aspiration criteria is 

that some tabu search implementations restrict attributes of solutions. This can 

exclude a large area of the search space. An easy aspiration criterion is for example the 

acceptance of all improving solutions, even if they are tabu. 

Glover (1989) also illustrated the concept of medium-term and long-term memory 

illustrated to balance the conflictive parameters intensification and diversification.  

The medium term memory records the outstanding solutions. Similarities within these 

most promising solutions are identified. Based on these similarities the search can be 

intensified in the area of solutions with these characteristics. The mechanism 

illustrated by Glover (1989) to  encourage the diversification of the tabu search is the 

long-term memory. The algorithm records information about visited solutions along 

the search. This information could be for example: How often a certain component is 

included into the solution. This information can be used to guide the search into 

previously unvisited areas of the search space. For example: The algorithm could be 

forced to include components into the solutions which have not been included in any 

previous solution.  

Tabu search is an especially interesting approach, because it combines and balances 

the conflictive parameter of intensification and diversification. Further on, it does 

overcome the problem of greedy algorithms and hillclimbing to stall in local minima 

and has been shown that a given implementation can have robust performance across 

a range of problems with different problem representations (Connor, Clarkson, 

Shahpar, & Leonard, 2000).   

2.3 Software Clustering 

This section illustrates the field of software clustering. Firstly the term and 

classification are illustrated. Secondly the development of the field software clustering 

and relevant research in this area is described. Additionally, the necessary steps for the 

development of software clustering approaches are demonstrated and a framework 

for the development of software clustering is introduced. Further on, in regard to the 

research objective the inclusion of user knowledge into the cluster process and 
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possible approaches for the evaluation of the clustering quality are demonstrated. 

Finally, the relevant research studies are analyzed and related to this research project. 

Software clustering is in essence a sub domain of reverse engineering (Chikofsky & 

Cross, 1990). The term software clustering describes the classification of a software 

system into partitions (Tzerpos & Holt, 2000). The artefacts of the software systems 

are distributed into different partitions according to measures of artefact similarity. 

These partitions are called clusters. These clusters are created by the identification of 

similarities between the artefacts. The clustering identifies similar artefacts and 

abstracts them into clusters with consideration of certain similarity attributes. 

Regarding this, the result of the clustering is a new abstraction level of the software 

system. A concrete representation of this clustering is called a cluster landscape. 

According to the application of metaheuristics in the field of software clustering during 

this research a cluster landscape represents a candidate solution. Additionally, another 

term which is of relevance for this work and will be used within this chapter is the term 

implementation perspective. The term implementation perspective should not be 

mixed up with the term implementation view (discussed in section 2.1.4). The term 

implementation perspective defines, within the present research, the clustering of the 

artefacts of the implementation view by certain criteria. These criteria define a specific 

perspective on the implementation view. 

2.3.1 The Development of Software Clustering 

The published literature in the area of software clustering shows that this has been an 

intense field of research during the last 15 years. Referring to Mitchell (2002) and Bass 

et al. (2003) the principal reasons for this are the migration from two-tiered to three-

tiered and n-tiered client/server architectures and the partitioning of systems into 

vertical domain oriented slices (Zhao, 1998). Furthermore, the number of legacy 

systems that are difficult to maintain is increasing and the desire to replace these 

systems is growing. However, to estimate and plan the migration progress these legacy 

systems must be understood and documented. According to Hunold, Krellner, Rauber, 

Reichel and Rünger (2009) these systems may have grown over decades and hence no 

clear understanding and definition of the system architecture and structure exists. 
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Documentation of the system may be scant or out of date. In these circumstances, 

software clustering may provide support so that developers are able to gather 

information, to understand the structure, decomposition and dependencies of the 

software system and to plan and implement refactorings and extensions of the system.  

The concept of clustering has a long history in software. Parnas (1972) voiced the idea 

to unite low level software entities into modules. He further suggested that 

procedures that manipulate the same data entities should be united into one module. 

Each module should hide its inner design to other modules behind interfaces. The 

interfaces therefore form a thin communication mechanism through which other 

modules can access functionality. The key of this information hiding principle is that 

the interface does not unfold information about the internal module design. This 

information hiding principle makes it feasible for a developer to safely replace the 

implementation behind the interfaces. It can also be seen as the cornerstone for a high 

cohesion and low coupling design approach. 

Some of the basic principles for good object oriented design have their origin in the 

ideas of Parnas (1972). The object oriented paradigm incorporates the notions of 

clustering and abstraction by uniting methods, attributes and data in classes.  

Booch (1994) emphasizes the importance of using abstraction to unite similar structure 

and behaviour in related objects and of using encapsulation and interfaces to 

implement information hiding and modularization to support high cohesion and low 

coupling. As illustrated in the next paragraphs, nearly all software clustering 

approaches are based on these principles. 

Software clustering results in a new level of abstraction by dividing a software system 

into different subsystems (Wiggerts, 1997). Through this abstraction the number of 

artefacts in the system will be reduced. Mancoridis, Mitchell, Chen and Gansner (1999) 

suggest that this reduction of artefacts reduces the system’s evident structural 

complexity and should increase the understandability of the system design, structure 

and dependencies.  



Literature Review 

  

26 
 

From its early origins, software clustering has continued to be an active area of 

research. Much of the more recent work has relevance to this current study. For 

example Lee and Yoo (2000) introduced a method which applies reverse engineering 

for object oriented systems. This methodology is divided into five different phases: 

form usage analysis, form object slicing, object structure modelling, scenario design, 

and model integration. This model delivers an approach to conduct reverse 

engineering, which adheres to the principles of the object orientated paradigm. 

Tichelaar (2001) proposed a framework which analyzes object orientated code 

dependencies. Tichelaar (2001) reflected the aspects of object-oriented systems that 

are relevant to reengineering. Furthermore, Tichelaar (2001) showed how a 

metamodel can effectively deal with differences of programming languages, such as 

static versus dynamic typing and single versus multiple inheritances versus Java 

interfaces. Tichelaar (2001) showed how the use of an independent core together with 

mappings of multiple object orientated languages provides an effective common 

coverage of these languages. Even though the implementation of a dependency graph 

algorithm is not part of this work, the paper from Tichelaar (2001) supports the 

process of extracting a dependency graph and is therefore relevant as a basis for the 

work reported here.  

An approach to include external additional data in the reverse engineering approach is 

introduced in Xiaomin, Murray, Storey, & Lintern (2004) who combined a task concept 

and the logs of the version control system into the reverse engineering process. This 

additional information allowed the authors to identify the reasons for certain system 

dependencies. Based on the dependencies the correlating tasks can be identified. 

Furthermore, Xiaomin et. al (2004) saw a future trend in the integration of reverse 

engineering tools in the development context to provide architecture and dependency 

information to the developer. In the opinion of Xiaomin et. al (2004) this integration 

will help developers to orientate themselves in the system and be sensitized to the 

system architecture. Even if the inclusion of external data will not be relevant within 

this research, Xiaomin et. al (2004) hinted that the reverse engineering process can be 

guided by different data.  
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The studies of Jiang, Golf, Harman and Li (2007), Seng, Bauer, Biehl and Pache (2005) 

and Mancoridis, Mitchell, Chen and Gansner (1999) combined the areas of reverse 

engineering and SBSE and so are of particular relevance here. Jiang et. al (2007) 

introduced a framework for search based slicing. SBSE was here used to identify and 

decompose dependency structures within software systems. In addition to the 

development of the framework, the approach is applied within a case study. Within 

this case study they evaluated the application of the search based algorithms greedy, 

hill climbing and genetic algorithms regarding performance and similarity of results. In 

summary, the greedy algorithm outperformed the other algorithms in regard of the 

processing time to create a solution. This result is certainly based in the simplicity of 

the greedy algorithm. Jiang et. al (2007) did not explicitly discuss whether the quality 

of the cluster results of the hill climbing and genetic algorithms are better than the 

results of the greedy algorithm. The research of Seng, Bauer, Biehl and Pache (2005) 

revealed an approach to improve the subsystem decomposition of a software system. 

The basis of this approach was a genetic algorithm that computes a decomposition of a 

software system into subsystems. Seng et al. (2005) used a fitness function that 

incorporated heuristic data in terms of certain metrics such as cohesion, coupling, 

complexity and cycle analysis. These metrics are described in detail by other authors, 

such as Martin (1994). Additionally, Seng et al. (2005) motivated the idea that the 

research can be expanded with other architecture-related metrics and that weighted 

graphs could add further information to the fitness function. Jiang et al. (2007), Seng et 

al. (2005) and Mancoridis et al. (1999) depicted that the cluster analysis of software 

systems can be seen as a search based problem and that metaheuristic algorithms are 

potentially able to deliver good solutions in reasonable time. To illustrate the possible 

application of SBSE in the field of software engineering the Bunch tool was developed 

in the research of Mancoridis et al. (1999) and Mitchell (2002). The tool Bunch is able 

to identify clusters and display dependency graphs within software systems. Bunch is 

running as a standalone system and is not integrated into a development environment. 

The Bunch tool can process files, which are stored in the Module Dependency Graph 

(MDG). This describes a text file, in which every line represents a dependency with a 

source artefact and a destination artefact. The work of Mancoridis et al. (1999) and 
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Mitchell (2002) are relevant sources for the implementation of this research hence 

they will be further examined throughout this research. 

In conclusion, this section has given an overview of the development in the field of 

software clustering and describes relevant research in this area. Additionally, this 

paragraph emphasized the application of SBSE in the area of software clustering. The 

next section portrays the software clustering process.  

2.3.2 The Software Clustering Process 

The research objective of this work involves the implementation of a software 

component to decompose software systems. Hence it is important to create a good 

understanding of the software clustering process. 

In the literature a variety of different clustering approaches can be found. This section 

examines the similarities between these clustering approaches. Wiggerts (1997) 

identifies three important elements that must be addressed in order to design  

software clustering systems. Mitchell (2002) also expressed these important elements, 

namely: 

• Exposure of the artefacts to be clustered 

• Identification and measurement of criteria to determine the similarity between 

the artefacts 

• A clustering algorithm which applies the similarity measurement 

 

Within the next three sections these three fundamental phases are illustrated and the 

important parts for this research are elucidated. 

Exposure of the Artefacts 

To derive a cluster landscape from a software system a sufficient representation of the 

software system artefacts and their dependencies to each other have to be identified. 

This representation depends on the requirements of the clustering approach.  

Within the reviewed software clustering approaches, e.g. Mancoridis et al. (1999) and  

Dietrich, Yakovlev, McCartin, Jenson and Duchrow (2008), the software system is 
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represented as a directed graph G = (V;E). The set of nodes V represent the artefacts of 

the software system. The edges )( VVE ×⊆ represent the relations between the 

artefacts. The goal of software clustering is to partition this graph into meaningful 

subsystems. This illustrates that software clustering can be seen as a graph partitioning 

problem. The graph partitioning problem has a computational complexity of NP 

(Mancoridis, Mitchell, Rorres, Chen, & Gansner, 1998). The number of possible 

solutions to cluster software graph increases exponentially with the number of 

artefacts (nodes) within the software system. The optimal solution of a software 

clustering problem cannot be found in polynomial time. Regarding this the application 

of heuristics to reduce the computational complexity of the software clustering 

problem is interesting.  

Mitchell (2002)  and Wiggerts (1997) described factors which they asserted need to be 

considered when designing the representation of the artefacts. One of the influencing 

factors is the desired granularity of the recovered system. This refers to the level of the 

clustering approach. The clustering, for example, can be applied at method, class or 

package level or even a multi-level approach can be required, which considers more 

than one artefact level. Another factor considers the attributes of the relations 

between two artefacts. Is it beneficial if the relations between two artefacts carry a 

weighting to express some form of connection strength? If a weighting is considered, 

there is a need to determine which attributes are of special relevance. They have to be 

included into the weighting. This countenances also the possibility to include multiple 

weights.  

Identification and Measurement Similarity Criteria 

After the representation of the artefacts and their relations between the artefacts are 

defined, the similarity between two related artefact representations has to be 

determined. The similarity defines the connection strength between two related 

objects. Higher similarity measurements indicate a stronger similarity or connection 

between two artefact representations. 

If a multiple weight approach is chosen, consideration then needs to be given if there 

is a different importance between the individual weights. For example, because of the 
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different character of the implements or extends relationships within a Java based 

software system, these could potentially have a different weighting than the 

dependency relationship. The implements and extends relationships hint a high degree 

of similarity and express a high similarity and connection between these classes. 

Another example is the inclusion of interfaces in the dependency relationship. The 

interface encapsulates the specific implementation from the accessing class. This 

relationship should command a lower weighting then the relationship between two 

concrete classes. 

In Muller, Orgun, Tilley and Uhl (1993) a similarity measurement called Interconnection 

Strength was used to determine the strength between two artefacts, which expresses 

the number of common artefacts which are accessed, exchanged or shared by two 

components. In Schwanke and Hanson (1994) a similarity measurement is identified 

which evaluates a set of features. Each feature represents a similarity measurement 

between a pair of artefacts. As a result the similarity feature can either exist or not 

exist within the two artefacts. Schwanke and Hanson (1994) presented a formula to 

normalise and weigh these similarity and distinction features. Constants were also 

included to allow a user-defined weight for similarities and distinction between 

artefacts. 

The Cluster Algorithm 

After defining the representation and similarity measurement method, the data 

required to cluster the dependency graph is available. Based on the representation 

and the similarity measurement the cluster algorithm can create a cluster landscape of 

the software system. The distribution of the artefacts is the task of the clustering 

algorithm as the central core of the software clustering process.  

Mitchell (2002) stressed that most clustering algorithms arrange their clusters 

hierarchically. Hierarchical clustering begins with the low level artefacts (e.g. methods, 

procedures, classes) and organises them into subsystems. Based on these subsystems 

the cluster algorithm creates the next level of abstraction and clusters these 

subsystems based on the similarity measurements into new larger subsystems. Finally, 

it would be possible that only one subsystem is left, which contains all subsystems of 
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the previous hierarchy. As a result a tree is created comprising leaves that are the low 

level software artefacts and inner nodes that are subsystems. According to Mitchell 

(2002) this hierarchical clustering is beneficial in terms of aiding a developer to 

understand the structure of a software system. This hierarchical approach facilitates 

the developer in understanding, analysing and revising the software design at different 

abstraction levels and supports the ‘fading out’ of irrelevant system components. 

Schwanke and Hanson (1994) proposed a hierarchical algorithm that combines the two 

artefacts with the highest similarity into one new subsystem until only one subsystem 

is left. This offers the user a variety of different solutions on different abstraction 

levels. A disadvantage of the approach is that some subsystems evolve more quickly 

than others. Certain system parts may evolve into higher subsystem levels during the 

first iteration while other system parts are still on a low artefact level.  

The clustering of a software system in a hierarchical manner is inappropriate for this 

project. It does not align with the objective of this research. The aim of this research is 

to present clustering results which feature the same evolution level. The asymmetry of 

the hierarchical cluster development is contradictory to this requirement. However, 

the idea to apply an iterative cluster process and evolve the cluster quality during the 

multiple cluster cycles is promising. For this, the inclusion of user knowledge into these 

cluster runs to direct the clustering results is a promising approach that will be 

discussed in section 2.3.3. But this user influence does not lift the clustering onto a 

new abstraction level but rather redirects the cluster process to improve the cluster 

quality. An additional approach, which is driven by the hierarchical clustering is the 

clustering on abstraction levels. The hierarchical clustering approach from Schwanke 

and Hanson (1994) produced the basis for the next clustering results from the previous 

clustering results. But as mentioned in section 2.1.1, current software systems exhibit 

already mechanisms to abstract software systems. For example: Java based software 

systems merge methods into classes and classes into packages. Current cluster 

approaches often work on file or class level (Anquetil & Lethbridge, 1999a; Jiang et al., 

2007; Seng et al., 2005). The work of Dietrich et al. (2008) introduced the Barrio 

component, a non search based approach which is able to cluster Java systems on 

class level. The Barrio tool partitions a graph, based on the smallest path between two 
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sub graphs utilizing the Girvan-Newman algorithm (Girvan & Newman, 2002). The user 

can control the separation level, which determines the maximum strength between 

two sub graphs. Depending on the separation level the clustering produces different 

cluster landscapes. As the clustering relies on the weakest path between two sub 

graphs, the Barrio tool can give good indications for the decomposition of the system. 

Additionally, the cluster result can be compared with the real package classification. 

As the approach of Mitchell (2002) reads an input file with the dependency 

information, it is independent of the application level. But it cannot utilise any special 

characteristic of the dependencies or different levels of the analysis. Aligned with the 

research objective of this work to reduce the complexity of software systems, the 

application of a cluster approach, which is able to cluster also on higher abstraction, is 

beneficial on higher abstraction levels e.g. package level. Certainly it is important that 

the system commands about a system wide high functional cohesion on the clustered 

artefact level. Would this not be the case the cluster algorithm would be misled by the 

multiple connections of the artefact. 

Muller et al. (1993) introduced a cluster approach, which includes an artefact into a 

cluster, when the similarity measure (Interconnection Strength) extends a threshold. 

This threshold can be defined by the user. If an artefact exceeds these thresholds with 

two relating artefacts all three involved artefacts are combined in one cluster. A 

disadvantage of this approach is the missing transparency of the Interconnection 

Strength for the user. The introduction of thresholds to control the clustering will give 

the user the chance to further adapt the result to his personal preferences. As 

mentioned before the transparency of the impact of the threshold is also of 

importance.  

Anquetil and Lethbridge (1999b) illustrated the recovering of a software architecture 

based on the similarity of file names. The artefact representations are labelled based 

on established file abbreviations for source code files (e.g. “domain”, “material”, 

“tool”) and name similarities. Based on this approach, a heuristic-based cluster 

algorithm assigns the artefacts into clusters. Anquetil and Lethbridge (1999b) 

suggested a variety of different heuristics to distribute the artefacts into clusters, but 
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favoured a heuristic that assigns artefacts into clusters based on the first name 

abbreviation. The disadvantage of this approach is that if a software system is not built 

with a strictly followed naming policy then it is not applicable. Furthermore, if a 

particular file name does not follow the name policy, it is unlikely that it will be 

assigned into the correct cluster. In Mitchell (2002) three clustering algorithms 

(exhaustive, hill-climbing, genetic algorithm) were pioneered to cluster software 

systems into subsystems. The goal of these heuristic cluster algorithms is to maximize 

an objective function. Mancoridis et al. (1999) introduced the term Module Quality 

(MQ) as a description for the quality of a cluster solution. In Mitchell (2002) the two 

objective functions BasicMQ and TurboMQ were introduced. Each of these fitness 

functions rewards high cohesion within a subsystem and penalizes high coupling 

between subsystems. The BasicMQ fitness function measures the inter-connectivity as 

the connection between the artefacts of two distinct clusters and intra-connectivity as 

the connections between the artefacts of the same cluster. Based on the 

measurement of the inter-connectivity and intra-connectivity for every cluster is the 

tradeoff between inter-connectivity and intra-connectivity calculated by rewarding the 

existence of highly-cohesive clusters and the penalization of too many inter-edges. 

Mitchell (2002) asserted that the BasicMQ fitness function delivers good results but 

also involves a high computational complexity. Respectively, the TurboMQ 

measurement was introduced. The TurboMQ measurement features a computation 

complexity of O(|E|), where E represents the set of edges of the analyzed graph. 

TurboMQ fitness function measures a ClusterFactor for every cluster of the partitioned 

graph. It is calculated for every cluster of the partitioned graph. The ClusterFactor is 

defined as a normalized ratio between the total weight of the internal edges (edges 

within the cluster) and half of the total weight of the external edges (edges that exit or 

enter the cluster). The half weight is applied as the external dependencies are 

connected with two clusters and respectively penalizes two clusters. Mitchell (2002) 

contemplated that the ClusterFactor could be calculated by the application of 

weighted edges. This approach was not further examined and evaluated by Mitchell 

(2002) or continuative work as (Mitchell & Mancoridis, 2006, 2008). In regard to the 

performance the genetic algorithm introduced in Mitchell (2002) is able to identify 
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better solutions than the hill climbing algorithm. This observation is independent of 

the BasicMQ and TurboMQ fitness function. On the opposite, the hill climbing 

algorithm outperforms the genetic algorithm in computational time.   

In conclusion, this section has illustrated relevant research in regard to the clustering 

process of software systems. The illustration of the research followed the classification 

of Wiggerts (1997) into the three main fields exposure of artefacts, similarity 

measurement and the cluster algorithm. Further on an aim of this research is to 

investigate the performance and quality of the clustering by including expert and 

domain knowledge into the clustering process. Regarding this, the next section gives 

an overview about relevant research, which enables the inclusion of expert and 

domain knowledge into the clustering process. 

2.3.3 Inclusion of Expert Knowledge  

This section discusses relevant research in the field of expert and domain knowledge 

inclusion into the cluster process. 

The software clustering approaches can be distinguished in manual, semiautomatic 

and fully-automatic clustering (Mitchell & Mancoridis, 2006). Manual clustering 

approaches supply the user with a framework to implement the clustering, but do not 

support the user with any suggestions or help to partition the software system 

automatically. On the contrary fully automatic approaches do not allow the user to 

influence the cluster process. Mitchell and Mancoridis (2006) stressed that semi-

automatic cluster approaches support the user with automatic functions, but also 

require manual user interaction to conduct the software partitioning. According to  

Mitchell and Mancoridis (2006) the clustering approach introduced by Mitchell (2002) 

is a fully automatic approach, which allows the user to manually supply additional 

cluster information. However, the Bunch tool only allows the user to add additional 

knowledge about the structural information in the format of a text file. This 

information is read once and included at the beginning of the cluster process. Bunch 

does not support the interactive inclusion of user data in an iterative or incremental 

manner.  
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The Bunch tool produces different cluster results with the same user input data. 

Mitchell (2002) argued that because of the heuristic search approach a deterministic 

solution is not possible. This behaviour may be confusing for the user – especially if he 

or she is not familiar with stochastic processes - and so instead anticipates a precise 

manipulation of the solution. In conclusion, non-deterministic behaviour of the cluster 

algorithm would corrupt an interactive approach. 

2.3.4 Evaluation of Software Clustering Quality 

This section demonstrates approaches to evaluate software clustering solutions.  The 

evaluation of clustering solutions features a variety of challenges. The challenges are 

the compliance of the objectivity, the determination of the relevant aspects to 

evaluate a cluster solution and the consideration of the aim of the clustering. 

Most research in the area of software clustering promotes the use of experts to 

evaluate their clustering approach (Mitchell & Mancoridis, 2001). This approach can 

deliver a high quality evaluation, but relies on the subjective perceptions of the expert. 

In addition, the expectations of expert effort and necessary knowledge to evaluate a 

cluster solution are drawbacks of this approach. This motivates the desire to find a 

more formal way to evaluate cluster solutions. 

A distance metric for software clustering was introduced by Tzerpos and Holt (1999) to 

evaluate the similarity of two software system decompositions. The research assumed 

the existence of an expert decomposition against which to validate the cluster 

approach decomposition. Anquetil and Lethbridge (1999b) adopted an approach to 

compare different similarity measurements to estimate the quality of a clustering 

approach. Meanwhile, Mitchell & Mancoridis (2001) introduced the CRAFT framework, 

which offers a more formal way to evaluate and compare clustering approaches. The 

CRAFT framework uses the hillclimbing and genetic algorithm from the Bunch tool. It is 

also possible to add individual algorithms to compare the results with these 

algorithms. The idea of the research of Mitchell and Mancoridis (2001) was that the 

intersection of all algorithms is likely to deliver a good basis on which to evaluate any 

individual algorithm.  
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The validation basis for a cluster landscape evaluation is created by multiple runs, 

illustrating that the CRAFT framework aims especially for non deterministic algorithms, 

which create different cluster outputs. Based on these multiple runs the CRAFT 

framework calculates the distribution for each artefact. A possible result for one 

artefact could be that artefact A1 is combined with artefact A2 in 90% of the 

evaluation runs and combined with artefact A3 in 10% of the evaluation runs. This 

outcome can be compared with the results of another cluster algorithm and an 

aggregate outcome can be determined. 

In such a scenario it has to be considered that the included cluster algorithms should 

take into account the same software attributes. Otherwise the outcomes would not be 

comparable in any valid way. Considering the possibility to visualize a software system 

from different perspectives the evaluation should also consider the perspective criteria 

to evaluate the clustering result. If the cluster algorithms within the CRAFT framework 

do not focus on the same perspective criteria the evaluation with the CRAFT 

framework would be meaningless.  

2.4 Software Metrics 

This section introduces the field of software metrics. Beginning with the theory of 

measurement the motivation for the application of software metrics in SBSE is drawn. 

Additionally different classes of software metrics are demonstrated and it is stated 

which metric class is suitable for this research. Further on, recent research in the area 

of software metrics, with special focus on software clustering and SBSE, is examined.  

The measuring theory model of metrics is based on the empirically relational system 

and on the numerically relational system (Fenton & Pfleeger, 1997). An empirically 

relational system exists of an amount of objects of the reality. Objects can be physical 

objects, events or also abstract things. Examples of objects are people, programs, 

documents or test phases. Attributes are qualities of objects which can be, for 

example, the size of a person, the circumference of a document or the complexity of a 

program. This illustrates that an object itself cannot be measured but the attributes, 

which describe the characteristic of the object, can be measured. 
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On account of the different attribute values an order originates between the quantities 

of objects. The objects have an order in relation to an attribute. The relation shows an 

ordinal criterion for the objects. Because of the relation an order is defined between 

two objects. Empiric relations can be for example, "is longer" or "is more structured 

than”. A mapping of concrete values does not exist in the empirically relational system. 

The difficulty of classification of an empiric relation is applied, for example, in the 

relation is "more complex than" to an amount from software programs. These empiric 

relations between two software programs cannot be ascertained objectively. With the 

help of a relation the empiric order is based on observations, comparisons and 

appraisals of the reality. On the other hand the numerical relational system defines 

formal objects (e.g. figures) and exact relations (e.g. ">"). The purpose of a 

measurement is the transformation of informal (empiric) objects to formal objects. 

The aim of a transformation from a relational system (empirically to relational system) 

in another (numerically relational system) is to express the empiric order within the 

numerical system.  

This transformation is the task of a metric. A metric is a surjective function �: � →  ℝ , 
which transforms an attribute set S into the numerical relational system ℝ 

(Schneidewind, 1992). Based on this formal definition of a metric, and with reference 

to section 2.2.2, the similarity of the fitness function and a metric can be recognised. 

This link was also drawn in the research of Harman and Clark (2004) that illustrates the 

similar characteristics of metrics and the fitness functions and motivates the possibility 

to include different metrics into the fitness function. Thus the work of  Harman and 

Clark (2004) constituted the base to apply further software metrics in the field of 

software clustering and SBSE. 

The purpose of metrics is the measurement of certain software qualities (Erhard, 

1991). These qualities cannot be measured by metrics directly. A metric measures 

attributes of an artefact which gives an indication for certain quality attributes (El-

Wakil, El-Bastawisi, & Boshra, 2004). Considering this, a metric is rather an 

interpretation of a software quality attribute and does not express the quality 
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attribute itself. The aim of metrics is to transfer these measured attributes into a 

comparable scale (Schneidewind, 1992).  

An example of an easy-to-understand metric is the Lines of Code (LoC) metric. The LoC 

metric counts the total number of code lines within an artefact usually without 

counting the empty lines (Erhard, 1991). A high LoC value can be an indication of a very 

complex class or even a god class (Riel, 1996; Smith & Williams, 2000), which 

comprises a high amount of functionality and breaks the principle of encapsulation 

(Gamma, Helm, Johnson, & Vlissides, 1995). However, it may also identify GUI 

artefacts, which tend in general to be longer than service or domain artefacts. Use of 

this metric could help the developer to identify problematic code segments, but it 

would still be an individual decision if an artefact has to be refactored or not.   

Considering this, a metric-based analysis should rather consider different metrics to 

identify problematic artefacts. A collection of metrics is called a metric suite (Hitz & 

Montazeri, 1996). If multiple metrics of a well combined suite produce high metric 

values for a certain artefact a more detailed analysis of this artefact would likely be 

necessary. 

2.4.1 Classification of Software Metrics 

To isolate software metrics, which are suitable for the work reported here, the division 

of software metrics  by Fenton and Pfleeger (1997) into process, product and resource 

metrics is briefly described. This subsection provides a short overview over these three 

metric groups. The commentary on product metrics has greater depth, given their 

greater relevance to this research project.  

Process metrics concern the development process associated with a software-system. 

Examples are the number of mistakes/week, expenditure estimates or indicators of the 

project progress. Resource metrics measure the available or expended resources. 

Examples are the utilization of personnel resources or computer resources. Product 

metrics reflect aspects of the artefacts that comprise the software product. These 

metrics characterize the specification, the design or source code attributes of a 

software product. Examples are the lines of code (LoC) metric or the number of 
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methods/class. A further division of product metrics into traditional and object-

oriented metrics can be found in the literature (Chidamber & Kemerer, 1994). The use 

of traditional metrics is not purely bounded on procedural programming 

environments. However, the use of traditional metrics within object-oriented systems 

should be undertaken with caution as within the object-oriented paradigm some 

factors are added, which are not considered by traditional metrics. These factors have 

an impact on the complexity of the system and need to be included in the metric 

analysis of an object-oriented system. These object-oriented criteria are abstractions in 

classes, inheritance, packaging and polymorphism. The application of a traditional 

metric in conjunction with these OO-specific metrics, as for example the Lines of Code 

(LOC) metric, can be meaningful within an object-oriented system. Apart from these 

distinctions, a classification of metrics according to different degrees of abstraction is 

possible. In this case a classification can be made into micro-level and macro-level 

metrics. Macro-level metrics consider characteristics on the level between modules 

(inter-module level). The investigation of micro-level metrics is bounded on internal 

module characteristics. This classification is very rough, because inter- and intra-

module communication can take place on different artefact levels. A further 

partitioning of metrics according to the application level is also possible. For example 

this classification could be, according to the object-oriented paradigm, a partitioning 

on system -, subsystem -, classes and method level. (Kiebusch, Franczyk, & Speck, 

2005). These examples illustrate that many different classifications of metrics can be 

found in the literature. The most important point before introducing the use of metrics 

in relation to a software system is to determine if the metric is appropriate and 

useable in the environment and on which artefact level the metric analysis is 

considered to be most reasonable. 

2.4.2 Application of Software Metrics in SBSE 

This paragraph illustrates the application of metrics in relevant research projects and, 

with regard to the research objective of this work, focuses on the application of 

metrics in the area of SBSE and software clustering.  
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As stressed by Harman and Clark (2004), the application of metrics in search based 

software engineering and software clustering is promising. Harman and Clark (2004) 

illustrated the similar characteristics of metrics and the fitness functions and 

motivated the possibility to include different metrics into the fitness function. Anquetil 

and Lethbridge  (1999b), Mitchell (2002), Seng et al. (2005) and Jiang et al. (2007) have 

all included metric values into the fitness function for different clustering approaches. 

Anquetil and Lethbridge  (1999b), for example, the similarity of names as a ratio value 

and used this information to rebuild the structure of a software system. 

The research of Mitchell (2002) was based on the measurement of cohesion and 

coupling measurements. This cohesion and coupling measurement was based on the 

measurement of the dependencies. Mitchell (2002) did not feature a difference 

strength or characteristic of the dependencies.  

Seng et al. (2005) and Jiang et al. (2007) introduced search based clustering and slicing 

approaches, which were using software metrics to guide the search process. Seng et al. 

(2005) included the cohesion, coupling, complexity, cycles, and bottleneck metric into 

the  fitness function.  The work of Jiang et al. (2007) focused on the slicing of software 

systems and applied the coverage and overlap metrics, which were inspired by the 

slicing approaches from Ott and Thuss (1993). As illustrated in section 2.2 and 2.3 the 

research of Anquetil and Lethbridge  (1999b), Mitchell (2002), Seng et al. (2005) and 

Jiang et al. (2007) concentrates on the application of the hillclimbing and the genetic 

algorithm metaheuristic. 

In conclusion, little research has been conducted in the overlapping fields of software 

metrics, SBSE and software clustering. The research of Mitchell (2002) and Anquetil 

and Lethbridge (1999b) concentrated on the application of one measurement to derive 

a cluster landscape. On the opposite, the research of Seng et al. (2005) and Jiang et al. 

(2007) applied a set of metrics to offer a decision base for the fitness function. But the 

weighting of these metrics in combination with each other is fixed. Seng et al. (2005) 

and Jiang et al. (2007) both applied the same weighting for all metrics and did not 

allow the changing of the weighting of these metrics.  The research of Mitchell (2002), 

Seng et al. (2005) and Jiang et al. (2007) was able to identify different solutions by 
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changing the applied fitness function or the metaheuristics. These solutions differ 

merely because a better or less feasible solution is found within the search space. This 

illustrates that the exploration of the search space is influenced by the fitness function, 

but the criteria which define a good or bad solution do not change. Mitchell and 

Mancoridis (2008),  Seng et al. (2005) and Jiang et al. (2007) motivated that a 

configurable fitness function would be interesting and a field for further research.  

2.5 Summary 

This section concludes the literature review in the areas of software architecture, SBSE, 

software clustering and software metrics. Based on the literature review of the studies 

the limitations and challenges can be derived to develop the research questions of this 

research. 

In particular, the work of Jiang et. al (2007), Seng et. al (2005) and Mitchell (2002) 

constitute the main basis for the present research. These research projects combine 

the areas of SBSE and reverse engineering and encourage the further exploration of 

SBSE in the field of software clustering. A relevant finding within the software 

clustering literature review is that it seems to be at least beneficial, to include 

additional user data and expert knowledge to the clustering process. To date user 

input has been limited to the application of thresholds and the provision of an initial 

user data set which is considered by the cluster process (Mitchell, 2002). A user 

directed guiding of the clustering process, where the user is able to contribute 

additional user data into the cluster process to influence the search process and its 

outcomes would be possibly beneficial and increase the likelihood of identifying good 

solutions. Integration of such support into a development environment should simplify 

the orientation of developers within a given software architecture and rapidly provide 

information regarding the dependency structure. A developer can then obtain the 

necessary information for further modularization and equalization of the software 

system.  

Mitchell (2002) depicted the inclusion of one dimensional weight into the dependency 

graph. Furthermore, the work of Seng et. al (2005) and Jiang et. al (2007) portrayed 

the possibility to include weighted graphs into a fitness function to identify important 
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dependency structures. Harman and Clark (2004) illustrated the similarity of the fitness 

functions and software metrics. So far research was limited to the application of 

cohesion and coupling, name similarity, cycle and bottleneck metrics. There is 

potential, then, to explore further software metrics for inclusion into the fitness 

function. In Seng et. al (2005) the combination of multiple metrics was applied. 

However, Seng et. al (2005) did not envisage a controlled manipulation of the inclusion 

strength of these metrics. Mitchell (2002) stressed that the inclusion of multiple 

metrics would be interesting to examine a software system from different 

perspectives. It appears that to date no research has been conducted to recover the 

structure of a software system to create different cluster landscapes of the 

implementation perspective.  Considering this, the inclusion of multiple weights in a 

fitness function would seem promising to support multiple implementation 

perspectives and to identify problematic code segments (code smells).  

The application of metaheuristics in software clustering appears to be limited to the 

application of hillclimbing (Jiang et al., 2007; Mitchell, 2002), genetic algorithms (Jiang 

et al., 2007; Mitchell, 2002; Seng et al., 2005) and the greedy algorithms (Seng et al., 

2005). Nevertheless, Seng et. al (2005) applied the greedy algorithm in the similar field 

of software slicing and not directly in the field of software clustering. None of the 

previous research applied tabu search to the challenge of software clustering. Tabu 

search with its deterministic character and its efficient memory exploration model 

(Sung & Jin, 2000) is certainly promising for the application in software clustering. 

Considering the challenges and limitations of current studies and the opportunities for 

promising research paths the final research objectives can be stated. 
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3 Research Objectives and Methodology 

Based on the outcomes of the literature review and the discussion of promising 

research opportunities, this chapter states the research objectives, identifies the 

research questions and thereon describes the methodology and design of this 

research. 

3.1  Research Objectives 

The aim of this research is to determine if a user-directed search-based software 

clustering approach is applicable to support stakeholders with information about the 

structure and dependencies of a software system. This aim has arisen from the 

literature review, with the outcomes and limitations of prior work leading to an 

assumption that a user directed clustering approach, which would give the 

stakeholders more control over the clustering process, has the potential to contribute 

to the quality of software clustering.  

Regarding the previously applied metaheuristics in the field of software clustering, the 

application of tabu search in the area of software clustering is adopted here. The 

flexibility and possibility of parameterisation of the tabu search algorithm should align 

with the requirements of a user-directed software clustering approach. Additionally, 

the application of the greedy algorithm as a comparison and evaluation baseline is 

intended, building on the research of Jiang, Gold, Harman, & Li (2007) who applied the 

greedy algorithm in the similar field of software slicing.  

A further aim of this research is to investigate if the inclusion of multiple metrics in the 

search fitness function enables the user to create different implementation 

perspectives of a software system. 

Based on these formulated research objectives the research questions for this work 

are derived.  
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Research Questions 

The following research questions are answered within this research: 

• Can a user directed and semi-automatic clustering approach contribute to the 

quality of software clustering? 

• Is tabu search applicable in the area of software clustering? 

• Does the inclusion of multiple metrics in the fitness function enable the 

clustering of a software system into multiple implementation perspectives? 

Based on the research objectives and the identified research questions the research 

methodology is now described. 

3.2 Research Methodology  

In order to address the research questions in a robust and rigorous way and to 

demonstrate and evaluate the effectiveness of the approach adopted, an appropriate 

methodology needs to be selected. As this research is both exploratory and 

constructivist in nature it therefore utilises the system development research 

methodology (SDRM) of Nunamaker et al. (1990) in accordance with the design-

science research guidelines introduced by Hevner et al. (2004) to specify, design, 

develop and evaluate a software component to exploit search based principles in the 

analysis of the dependencies within a software system. Constructive methodologies 

(Jones, 2004; Nunamaker & Chen, 1990), comprising the main steps of building and 

evaluating an artefact, is commonly employed in software engineering and information 

systems research. Figure 3.1 depicts the individual stages of the SDRM research 

process. Because of the explorative character of systems development research 

projects the SDRM research methodology does not demand a strict sequential process. 

Findings in later stages can mean that previous stages have to be revisited. Each stage 

features activities to reach certain goals. The next section describes the design of this 

research applying the SDRM. 
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Figure 3.1 : Research process of the SDRM (Nunamaker & Chen, 1990)
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Design and Implementation 

With the context of the research defined, a constructive methodology lends support to 

the design and implementation of a component that addresses the research aim and 

the identified research questions. Within this research this phase comprises the steps 

and goals of the “develop a system architecture”, “analyse and design the system” and 

“build the prototype” stages of the SDRM. The scope and functionality of the 

developed Search Based Reverse Engineering (SBRE) component are defined as 

follows.  

One research objective of this work is to examine if tabu search is applicable in the 

field of software clustering. This demands that a specific implementation of the tabu 

search metaheuristic, with its ideas and concepts, is applied within the SBRE 

component. However, the framework should not be bounded only to the application 

of tabu search. An implementation of the greedy algorithm should also be 

implemented to provide a basis for comparison and evaluation of the tabu search. 

More generally, the SBRE component should be built so that it is supports  the 

inclusion of additional metaheuristics.  

An examination of the effectiveness of applying multiple metrics in positively 

influencing clustering outcomes is another important element of this research. In 

particular, the use of multiple metrics should enable the illustration of different 

implementation perspectives and the identification of code smells. This requires that a 

framework is developed which supports the flexible inclusion, extension and exclusion 

of metrics into the clustering process. To enable this flexible configuration of metrics 

the user has to be able to configure the inclusion of every metric individually.  

The main objective of this research is to determine if a user-directed approach can 

contribute to the quality of software clustering. During the literature review and the 

identification of limitations of prior research four approaches that give the user more 

control over the cluster process have been identified. The first approach aims to 

increase the efficiency of the clustering process through the inclusion of user 

knowledge in an interactive manner. This can guide the search into more promising 

areas of the search space. The user can add constraints into the clustering process 
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interactively and is able to trigger the clustering process for the recalculation of the 

software clustering. An additional user-directed clustering mechanism is intended to 

deliver a reduction in the complexity of the software clustering by transposing the 

clustering to a higher level of abstraction. Programming languages offer different levels 

of abstraction e.g. classes and packages in Java systems. It has to be examined, then, if 

it is beneficial that the system is clustered at higher abstraction levels than class level. 

To evaluate this, the search based software clustering system has to be able to cluster 

software systems at various abstraction levels.  

Hence the applicability of the flexible multiple metric approach and the tabu search 

algorithm are to be examined to determine if these approaches contribute to the 

quality of software clustering. The tabu search algorithm features a variety of 

influencing parameters e.g. number of maximum tested solution candidates, length of 

the tabu list and the triggering of the intensification and diversification method. The 

component should support the flexible configuration of these parameters to enable 

the examination of the contribution to software clustering quality.  

Evaluation 

The SDRM requires the observation and evaluation of the constructed component to 

gather the necessary data to answer the research questions. To enable the evaluation 

of the SBRE component, an experimental methodology is applied to assess both utility 

and performance (Collis & Hussey, 2009). The experimental methodology can confirm 

a theory, examine a relationship, evaluate the accuracy of a model or validate a 

measure (Collis & Hussey, 2009). To conduct the experimental methodology an 

expected outcome has to be determined. Additionally, the environment and the 

procedure have to be defined to enable the reproduction of the experiment. After data 

collection, the results are interpreted and compared with the expected outcome. The 

design of the experiment should be aligned with the research objectives in order to 

ensure that the necessary data are collected and thus the research is able to answer 

the identified research questions. With regard to the research questions stated above, 

the next section illustrates the requirements to collect a sufficient data base.  
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The main research question of this research addresses the contribution of a user-

directed approach to the quality of software clustering. The term ‘quality of software 

clustering’ has a variety of interpretations. For this research, the influence of user 

interaction on the feasibility of achieving cluster solutions and the effect of interaction 

on the complexity of the software clustering process are relevant software quality 

dimensions. A collection of experiments, which are described in Chapter five, 

contribute data to this aspect. An assessment of the technical applicability of the 

inclusion of user knowledge into the clustering process and an interpretation of the 

effects of the clustering result are given in section 5.4.3. The other approaches 

incorporated in the user-directed clustering strategy adopted here are considered as 

part of the evaluation of the additional research questions. A final discussion is 

provided in section 6.1.3 to address the research question and to determine if a user 

directed clustering and semi-automatic clustering approach can contribute to the 

quality of software clustering.  

The evaluation of the tabu search algorithm includes an analysis of the applicability, 

performance and limitations of tabu search within a software clustering approach. The 

applicability of the tabu search implementation is assessed via analysis and 

interpretation of the software clustering results. The corresponding experiments are 

illustrated in section 5.3. In particular, attention is focused on the effect of the tabu 

search algorithm on the fitness function measurements or the computational time 

required to create a solution. The implementation and results of these experiments 

are illustrated in section 5.3.2. These data are interpreted and compared with the 

results of the implemented greedy algorithm, which is evaluated in section 5.3.1. A 

final discussion regarding the applicability of the tabu search algorithm is given in 

section 6.1.1.  

This research considers the extraction of different implementation perspectives by 

including a flexible multiple-metric approach in the fitness function. The intent is that 

metrics can support the identification of different implementation perspectives 

depending on specific metric configurations. As a result, created solutions should vary 

depending on the configuration and should reflect the intent of the corresponding 



Research Objectives and Methodology 

  

49 
 

metric configuration. Additionally, other tests are designed to assess whether a 

multiple metric approach is able to support the identification of code smells at an 

abstract level. A final discussion and answer to the associated research question is 

given in section 6.1.2. 

Based on the description of the design of this research, the design and implementation 

of the component to enable the achievement of the research objectives is now 

described. 
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4 Design and Implementation of the SBRE Component 

Driven by the objectives and the selected design methodology of this research, this 

chapter illustrates in detail the design and implementation of the Search Based 

Reverse Engineering (SBRE) component. The SBRE component embodies the designed 

and implemented artefact of this research. Because of the explorative character of this 

research and the necessity of reviewing design decisions based on findings during the 

development process (as is common in contemporary iterative approaches), the design 

and implementation processes are consolidated in one chapter. This chapter defines 

and describes the architecture, the components and the algorithms. It constitutes the 

end products of this research endeavour to enable the user to control the clustering 

process by the configuration of metrics and adding domain knowledge.  

The overall aim of the present work is to help the developer and architect in arriving at 

an optimal structure for a software product. This emphasizes the development of a 

software clustering framework which applies a metaheuristic guided search process.  

As mentioned in section 2.3.2, and introduced by Wiggerts (1997), a clustering 

framework comprises the three phases: exposure of the artefacts to be clustered, 

identification and measurement of criteria to determine the similarity between the 

artefacts and a clustering algorithm which utilises the similarity measurement. For the 

design of the system architecture of this component, this work allocates the selected 

approach for software clustering systems into these three phases. Referring to the 

research objective, this research project will employ the tabu search metaheuristic. 

The special requirements for the design of metaheuristics are covered in the algorithm 

design section. As described in section 2.2.2, a framework for the design of this 

metaheuristic is provided by Talbi (2009). Talbi (2009) subdivides the metaheuristic 

design process into three phases: design of the solution representation, design of the 

fitness function and design of the constraint handling.  

Before the design and implementation of the individual components of the SBRE 

component are described, the next section outlines the development environment 

used to support this research.  



Design and Implementation of the SBRE Component 

  

51 
 

4.1 Development Environment 

Given the research goals and the benefits of the integration of components into one or 

more IDEs, this component is intended to be developed as an integrated development 

component. In the present research the SBRE component is to be developed within the 

Eclipse plug-in framework, due to the easy deployment process and modular 

architecture of this particular framework. As a consequence the analysis will be bound 

to Java systems only. While this represents a limitation on the applicability of the work, 

it is appropriate to fulfil the proof of concept- and prototype-character of this project.  

The design, implementation and evaluation should be guided by the identified 

research questions and the stated research scope. Also taking into account the limited 

time and resources of the project, it is meaningful and appropriate to utilise external 

components to promote the project quickly into an applicable prototype stage. The 

early application of a prototype will allow an early evaluation and consideration of the 

applicability of the SBRE component.  

It is evident that a software clustering framework is needed to answer the formulated 

research questions. An appropriate candidate for this project is the Barrio clustering 

component introduced by Dietrich, Yakovlev, McCartin, Jenson, & Duchrow (2008). 

The Barrio component is an Eclipse plug-in and the source code is available at the 

project home page (Dietrich, 2009). 

4.1.1 The Barrio Framework 

The Barrio framework comprises the three necessary phases for cluster analysis 

mentioned by Wiggerts (1997). For the source code analysis the Code Dependency 

Analyzer (CDA) framework is used (Duchrow, 2009), which creates a dependency graph 

and stores it in the open Object Dependency Exploration Model (ODEM) format. The 

output in ODEM format is transferred into the internal Barrio graph representation. 

The Barrio framework uses the Jung graph library (O'Madadhain, Fisher, & Nelson, 

2009) as internal graph representation. Based on the exposure of the artefacts, the 

classification and clustering analysis are executed. Finally, the graph including the 

clustering information is displayed. For the visualization the prefuse graph system 
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introduced in Heer, Card, & Landay (2005) is used. The clustering process of the Barrio 

framework is illustrated in Figure 4.1.  

 

Figure 4.1 : Barrio software clustering process 

The Barrio framework does not support search based algorithms in the classification 

process. Given the aims of this research project, the classification and clustering 

component of the Barrio framework had to be replaced to apply a search based 

clustering approach. Additionally, the visualization component had to be replaced to 

address the research questions of this research related to incorporating a greater 

element of user direction. However, the Barrio component contributed positively to 

this research, especially in relation to the transformation of the Java source code into a 

representation suitable for the similarity measurement, classifying and clustering 

process. In retrospect, the Barrio framework provided an initial infrastructure that 

enabled this work to achieve a quick project start-up, but during the evolution of this 

research project a majority of the Barrio components had to be discarded or replaced. 

4.1.2 The Bunch Framework 

An initial idea was to include the Bunch framework introduced by Mitchell (2002) in 

the Barrio software clustering component, since the Bunch framework applies heuristic 

search approaches. The Bunch framework can modularize software systems by 

applying Hill Climbing and Genetic Algorithms as clustering algorithms. Furthermore, 

the Bunch framework offers an extension API to integrate independently developed 

search-based algorithms. 

Unfortunately, a number of drawbacks made the application of the Bunch framework 

within this project impractical, meaning that it would not be possible for the outcomes 

to address the formulated research questions. The Bunch system is only available as a 

binary jar file. Thus, no source code of the Bunch tool is available to conduct source 

code analysis and modifications within the Bunch tool.  
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As the Bunch framework uses the MDG file to load the artefact and dependency 

information and no cluster information is stored in the MDG file, an iterative and 

incremental clustering approach is not possible with the Bunch framework. The 

recommended source analysis tools (Chava and BAT) to create the MDG graph are no 

longer available or supported. This further complicated the application of the Bunch 

tool.  

Mitchell & Mancoridis (2006, 2008) stated that the Bunch framework can consider 

graphs with weights. The TurboMQ fitness function in combination with the genetic 

algorithms provides this capability. However, it is not possible to ascertain whether an 

integration of metric values would have been possible or if an interactive and 

incremental clustering approach could be employed, as only on the basis of an 

algorithm extension would it have been possible to evaluate these changes.  

The utilisation of the Bunch tool in an integrated approach is theoretically possible 

according to the API specification. However, the Eclipse class loader concept does not 

harmonize with the Bunch object instantiation mechanism. This caused class not found 

exceptions because of incorrect class loader assumptions within the Barrio source 

code. This problem could not be solved even in collaboration with the Bunch 

developers. It became evident that integration into the Eclipse (IDE) framework is not 

possible without major changes within the Bunch software system. This prohibited the 

use of the Bunch tool in terms of enabling an integrated approach. 

In conclusion, the Bunch framework is not applicable to address the research objective 

within this project and so a novel search-based cluster framework had to be 

developed. That said, the Bunch framework provided a useful benchmark for the 

evaluation of this research. 

The next sections describe the design process of this component following the design 

framework of Wiggerts (1997). 

4.2 Exposure of the Artefacts 

As stated in section 4.1 the exposure of the artefacts is conducted by the Barrio tool. 

During this research project a component is extracted from the Barrio tool, which 
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allows the user to select one Java project based on the existing Java projects in the 

current Eclipse workspace. Figure 4.2 illustrates the interface of the project selection 

component.  

 

Figure 4.2 : UML class diagram of the SBRE ProjectSelectionTable 

The component detects the existing Java projects of the Eclipse workspace. The 

component is implemented as a table with one column for the project selection status 

and one column for the java project name. Figure 4.3 depicts the visualisation of the 

Java project selection component. Based on the selection the component is able to 

return the selected Java project as an instance of the IJavaProject interface. 

 

Figure 4.3 : Visualisation of the project selection component 

The SBRE component hands the chosen Java project on to the CDA component and the 

artefact extraction process is triggered. As a result, a directed graph is returned. The 

graph is an instance of the Jung graph framework introduced in O'Madadhain, Fisher 

and Nelson (2009). It takes the form of a set of nodes, which represent the artefacts of 

the selected Java project, and a set of edges, which represent the dependencies 

between the nodes. The Jung graph instance can be seen as the result of the artefact 

exposure process.  
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4.3 Design and Implementation of the Similarity Measurements 

Based on the exposure of the artefacts the similarity between the extracted artefacts 

has to be determined. The basis for the similarity measurement is the extracted Jung 

graph instance. The result of the similarity measurement forms the decision basis 

enabling the clustering algorithm to decompose the software system into clusters. 

This section therefore describes the design of a framework, which determines the 

similarity of artefacts. As derived from the literature and formulated in the research 

objective, the similarity measurement is implemented by the application of multiple 

software metrics. This requires the measurement of multiple aspects of the artefacts, 

with each similarity measured by the application of one suitable metric. The aim of this 

research project is not to recommend novel metrics or to evaluate whether certain 

metrics are more suitable than others for the application to the task of software 

clustering. It is rather the aim of this research to examine if a multiple metric approach 

delivers the possibility to generate and visualise different perspectives of a software 

system. Considering this, the selection of metrics should vary regarding their 

measurement goals. Additionally, the metrics should impose low computational 

complexity, be easy to understand and easy to implement. The inclusion of additional 

metrics may be appropriate if the concept has been proven as feasible. One aim of this 

research is to apply software clustering at the package level of Java programs. This 

requires that the metrics are applicable at different artefact levels. Depending on the 

focus of the clustering, some factors have to be considered, which could hinder the 

aim of the clustering. These are the identification of logical or functional subsystems 

and the existence of a dependency flow within the system. Dependency flow, 

describes the dependency direction of the system from higher to lower layers or 

subsystems in the architecture e.g. visualisation components access domain or base 

functionality. If the clustering algorithm simply follows this dependency flow the 

clustering of functional connected subsystems would not be possible. This could be 

overcome by considering attributes, which indicate functional connections between 

artefacts e.g. the rewarding of interface and inheritance relationships. 
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Considering the results of previous research the cohesion and coupling of artefacts 

(Mitchell, 2002) and the similarity of names measurements (Anquetil & Lethbridge, 

1999b) have already delivered good results and thus were also utilised within this 

research. Each of these metrics quantify the relationship between two artefacts. 

Metrics of this nature have shown to deliver a good decision basis for the clustering 

process. In addition, there is likely to be complementary benefit in considering metrics 

that describe the artefact itself rather than the relation between two artefacts. 

Two metrics that each measure an attribute of a given artefact have been chosen.  

These are the Lines of Code (LoC) metric and the Number of Static Elements within an 

artefact. As described above, these metrics differ in character in comparison to the 

name similarity and cohesion between objects measurement. These metrics do not 

measure the relation between two artefacts. They rather describe the artefact itself. 

Considering this, the research objective includes an examination also whether artefact 

metrics are able to guide the clustering search process. The next four sections describe 

the chosen metrics in detail.  

Cohesion Between Objects (CBO) 

The measurement of cohesion and coupling is of central importance in the field 

of software clustering (Jiang et al., 2007; Mitchell, 2002; Seng et al., 2005). The 

application of cohesion and coupling to clustering software systems is also 

meaningful for this project. This research project focuses on the decomposition 

of object oriented software systems. Hence, the applied metric particularly 

considers the examination of the influencing factors of cohesion and coupling in 

object oriented systems. The result is an implemented metric class 

CohesionBetweenObjects that measures the cohesion between two artefacts on 

the basis of the given source code and incorporates object oriented aspects. If a 

dependency from artefact A1 to artefact A2 exists (e.g. A1 

calls/implements/inherits A2), then the CohesionBetweenObjects is calculated 

counting the direct usage of the class name occurrence, the method calls and 

the direct field accesses from A1 to elements of A2. The sum of the class, 

method and field occurrences is divided by the number of elements (class, 
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method and field) of artefact A2. Every occurrence of the class name, method 

and field has the same weight. No special weight is included for the interface or 

inheritance relationship as the depending artefact should use a high amount of 

the code elements of the interface or of the abstract artefact. Considering this, 

the implements and inheritance relationship is rewarded. For the clustering on 

package level, the relevant measurements are compressed to one 

measurement for every package dependency and divided by the number of 

dependencies between these packages. 

Correlation of Names (CoN) 

It has been shown in Anquetil and Lethbridge (1999b) that the similarity of 

artefact names can produce meaningful results in terms of clustering. This 

depends mainly on the patency of the system naming conventions. In their 

study, Anquetil and Lethbridge (1999b) constrained the name similarity 

measurement to the exposure of file names. For this project, with its particular 

focus on java projects, the inclusion of class and package names is meaningful. 

The package naming is relevant, because it can be driven by the 

implementation architecture of the system. The similarity is calculated by 

identifying the length of the longest identical substring for the names of two 

artefacts. A ratio value is created by dividing this value through the length of 

the longer string. The CorrelationOfNames metric determines the similarity 

measurement of class and package names on class level with an equal weight. 

For the clustering on package level only the package name is considered. 

Lines of Code (LoC) 

The LoC metric is a low level measurement, which counts the number of lines of 

code within an artefact. As stated in section 2.4, high measurements of the LoC 

metric can be indicative of high complexity of an artefact. Within the research 

community the LoC metric is often criticised as being unable to identify 

complex artefacts that may not be long or to estimate the evolution of a 

software system (Fenton & Pfleeger, 1997; Rosenberg, 1997). However, the LoC 

metric is easy to understand, independent of the applied artefact level and 
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imposes low computational complexity. Additionally the LoC metric examines a 

different characteristic of the software system than the 

CohesionBetweenObjects and Name Similarity measurement. Considering this, 

the application of the LoC metric is appropriate in this project. The class 

TotalLOCMetric metric comprises the functionality for measuring the lines of 

codes within a given artefact. To enable the clustering on package applying the 

TotalLOCMetric the sum of every artefact is calculated. 

Number of Static Elements 

The class StaticElementsMetric comprises a metric that counts the occurrence 

of static elements within an artefact. The employment of static elements 

bypasses the object oriented encapsulation principle, which is discouraged as 

the static elements are visible and accessible system wide. This increases the 

coupling between artefacts and erodes the modularisation of the system. As a 

result, frequent occurrence of static elements is generally an indication of a 

poor software design. For the clustering on package level is the sum of every 

artefact calculated. 

Based on the described requirements and the selected metrics a framework can be 

designed. Figure 4.4 illustrates the class design of the metric framework. This follows 

the strategy design pattern, introduced by Gamma, Helm, Johnson and Vlissides 

(1995). The MetricEngine class symbolises the context of the metric framework and 

administers and encapsulates the metric behaviour. The interface MetricStrategy 

defines the interface for all specific metrics. Additionally to the strategy design pattern 

the abstract class AbstractMetricStrategy is introduced as an implementor of the 

MetricStrategy interface to comprise the overlapping functionality of the metrics. 

These overlapping requirements are the defined weighting of a metric and of the 

selected Java project. They have to be accessed by the metric implementation to 

calculate the metric value for a concrete artefact. The metric implementations inherit 

from the abstract class AbstractMetricStrategy. The metric framework stores the 

measured value directly into the node or the relation of the analyzed Jung graph.   
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Figure 4.4 : Illustration of the design of the SBRE metric framework 

The framework is able to analyze a Jung graph and to assign the containing nodes and 

relations with metric values. The framework is extensible, meaning that other metrics 

can also be integrated. For each metric a weighting can be set by the user to reflect its 

importance relative to other metrics. This weighting is set as a ratio value at the 

concrete MetricStrategy instance. The getMetricValue(Edge) combines all registered 

metric values and considers their weighting. The following formula describes the 

calculation of the normalized metric value where S = f is a set of registered 

MetricStrategy instances and � (as instance of the type Edge) represents a dependency 

between two artefacts. 
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If a metric describes an artefact and not the relation between two artefacts, the 

measured value has to be stored in the vertex of the graph e.g. TotalLocMetric and 
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StaticElementsMetric. As the edge stores the connected vertices, the edge can gather 

the metric information from the destination vertex.   

An additional objective of the research is to examine whether it is possible within an 

SBRE based cluster approach to identify code smells at a higher abstraction level. For 

the achievement of this objective it is not meaningful to cluster all of the artefacts of 

the software system, rather it is necessary to consider only artefacts that feature 

attributes which are indicators of code smells. For the realization of this requirement 

the user should be able to define a threshold. The exceeding of this threshold 

determines that an artefact should be considered during the clustering. In terms of the 

metrics selected for use here, it should be noted that the definition of a threshold for 

the CohesionBetweenObjects and NameSimilarity measures is not meaningful, as these 

metrics describe the relation between two artefacts and do not indicate a code smell. 

On the other hand, the TotalLOCMetric and the StaticElementsMetric, as node metrics, 

are suitable to derive an indication for a code smell. Thus, the user can define 

thresholds for these node metrics to reduce the set of clustered artefacts. 

Based on this description of the design of the metric framework, the corresponding 

SBRE component is illustrated in Figure 4.5, which enables the user to configure the 

metric framework.  

 

Figure 4.5 : Illustration of the metric configuration component 

The sliders underneath the metric labelling enable the user to manipulate the 

weighting of the corresponding metrics. Each slider determines the weight in percent 

from zero to one hundred of the corresponding metric. Respectively, the positioning of 

the slider at the right side includes the measured metric value at one hundred percent 

in the similarity measurement. Configuration at the left side excludes the metric from 

the similarity measurement. Below the slider the input fields are arranged to indicate 

the threshold values which serve to limit the number of clustered artefacts. A 
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threshold of zero defines the threshold as not active. A value larger than zero 

determines that every artefact with a value lower than the corresponding threshold 

value is excluded from the cluster analysis. As the Correlation of Names and Cohesion 

Between Objects metrics are not suitable for the application of a threshold, the fields 

for these metrics are not active and no threshold can be determined. 

Based on the measurements of the artefacts and of the relationships between the 

artefacts in correspondence with the configuration of the metric framework, the 

cluster search can be executed. For this the cluster algorithms have to be designed and 

implemented.  

4.4 Design and Implementation of the Cluster Algorithms 

The measurements described above represent the decision basis for the clustering 

process. As described in section 2.2.2, Talbi (2009) suggested a framework for the 

design and implementation of metaheuristics into the three phases of solution 

representation, design of the objective function and constraint handling. 

4.4.1 Solution Representation 

It has been demonstrated in section 2.3.2 that the software clustering problem is a 

graph partitioning problem. It has been illustrated in section 4.2 that the software 

system is available as a Jung graph instance. A requirement for a search based 

clustering framework is the easy manipulation of the graph and the storage of multiple 

variations of the graphs. Additionally, it should be relatively straightforward to 

compare and evaluate a graph. The Jung graph framework does not fulfil these 

requirements. The graph stores information which is irrelevant for the clustering 

process and which hinders their use in the area of search based software engineering. 

Additionally, the interface of the Jung graph framework is not optimized for 

application within a search based environment. Considering these reasons, a different 

lightweight representation is designed.  

Within an implementation perspective the artefacts and dependencies between these 

artefacts has to be visualized. In object oriented systems three different kinds of 

dependencies exist: the “uses”, the “implements” and the “extends” dependency. 
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Each is associated with two classes and has a direction to indicate which is the 

depending class. Given this, a software system can be modeled as a directed graph G = 

(V;E). The set of nodes represents the artefacts of the software system and the set of 

edges )( VVE ×⊆ represents the dependencies between these artefacts. As stated in 

section 2.3 the goal of software clustering is the partitioning of a software system into 

meaningful clusters. A cluster comprises a set of artefacts. One artefact can only be a 

member of one cluster, and every cluster in the system contains at least one artefact. 

Based on this, a class model can be derived to represent the clustering of a software 

system. Figure 4.6 illustrates the corresponding model with the classes of the SBRE 

representation.  

 

Figure 4.6 : Class diagram of the SBRE representation
 

An instance of the SBRENode represents an artefact of the software system. The 

SBREEdge embodies the dependencies between the artefacts. The field _value 

represents the combined metric value of the applied metrics including the weight 

adjustment of the user.  
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The SBREEdge class associates two instances of the class SBRENode. This is illustrated 

by the fields _src and _dest and fulfils the requirement to represent the direction of 

dependencies. The class SBREGraph relates to a set of SBRECluster instances. An 

instance of the class SBRECluster represents a cluster. The class SBRECluster comprises 

a set of SBRENode instances as a representation of the artefacts that are contained in 

the cluster.  

An instance of the illustrated model is not only the representation of the artefacts, 

dependencies and similarities between these artefacts, it also represents a solution 

within the search space if all nodes of the graph are assigned to clusters.  

4.4.2 Fitness Function 

The fitness function evaluates the quality of a solution and enables the comparison of 

candidate solutions. As this research focuses on the application of multiple metrics and 

incorporates functionality that enables the user to adjust the weighting of these 

metrics, the fitness function includes these user adjustments and the selection of 

metrics to evaluate solution quality.  

The fitness function for this project promotes high cohesion within the clusters and 

penalize high coupling between the clusters. This rewards solutions which feature a 

high cohesion of the configured metric weighting and finally reflects the assumptions 

of the user. Compared to other approaches (Mitchell, 2002; Seng et al., 2005) that also 

promote high cohesion and low coupling, in this case the numerical base does not only 

reflect the dependency binding between the connected artefacts, it also reflects the 

measured metric values and the configured weighing of the user. To assess this, the 

measurement of ClusterCohesion is introduced. The ClusterCohesion is inspired by the 

ClusterFactor introduced in Mitchell (2002), but considers in comparison to Mitchell 

(2002) the configured metric weighting. 

The cluster quality for a cluster c which includes a set of artefacts A= {a1,a2, …, an} is 

calculated as follows: 
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solution.  The cluster quality has to be calculated for all existing clusters. This sum is 

then divided by the number of existing clusters. So we define C = {c1, c2, c3, ..., cn} as 

the set of clusters within a solution representation. 
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As described previously the coupling of clusters is also of relevance for the 
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As described previously the coupling of clusters is also of relevance for the 

construction of the fitness function. To examine the coupling between two clusters the 

edges are of relevance, as these act as a link between two clusters. This means that the 

source artefact representation is dedicated to another artefact than the destination 

artefact representation. Figure 4.7 illustrates two clusters with a linking edge between 

the coupling between clusters 

As described previously, a software system within this work is represented as a graph 

)VV × . The set of edges which are relevant for the coupling 

getDest� 
. getCluster� 
! � e. getSource().getCluster()

Based on this set the ClusterCoupling of the graph G can be calculated.
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Additionally, a clustering should ideally result in a homogeneous decomposition of the 

software system. As illustrated in Figure 4.8 a consistent artefact size can reduce the 

complexity of the software system. This principle can also be assigned to the size of 

clusters within a software system. It motivates that very small or very big clusters 

should be penalized, depending on the total number of clusters in the software 
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This research adopts the principle represented in Figure 4.8 and derives the 

penalization for excessively small or large clusters from the characteristic of a 

parabola. First the angular point for the optimal cluster size has to be defined. For this 

research project the optimal cluster size is defined as 10 percent of the entire artefact 

count. Hence, approximately ten clusters are included in the system. It is fair to say 

that this approach is naïve and does not consider that with larger systems it would be 

necessary to have more clusters in the system. But to illustrate if a parabola function is 

adequate, this assumption is appropriate at this stage.  

The application of a parabola as a penalizing instrument has two disadvantages. First, 

every deviation from the determined optimum would be penalized. However, 

depending on the system or the classification in the system architecture, the optimal 

size of a cluster can vary. This problem can be attenuated with a shallow ascent around 

the angular point. Additionally, as a second potential drawback, parabolic functions are 

isosceles around the angular point. Thus a given deviation in a positive or negative way 

based on the optimum causes the same function result. This can cause problems when 

the function results should differ regarding the direction of the infraction. However, 

this is not relevant in the application of a penalizing function in the area of software 

clustering, because every solution with excessively small clusters should also incur the 

same penalty as a solution with too many oversized clusters. Hence the application of 

a parabola function provides appropriate penalization in the evaluation of software 

cluster solutions. 

As determined previously the anchor point is set at 10 percent of the entire artefact 

count. The following formula is derived to penalize the system function. The solution  

� ∈ � represents any solution of the search space. The set  * = { �1, �2, … , �)} defines 

the set of clusters of a given solution s. G ∈ ℝ is defined as the ratio of artefacts within 

a certain cluster c ∈ * depending on the total number of artefacts within the system: 

G = �. #��+�������H�����
 

��G
 = �G − 0.1
² 
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Transformed to: 

    ��G
 = G² − 0.2G + 0.01 

Additionally the function has to be normalized. For this research project it is assumed 

that a solution, which exhibits more than fifty percent of the entire system artefacts, is 

not feasible and should generate a penalty that defines the solution as completely 

infeasible. The penalty is given as ratio value and therefore, a penalty of 1.00 signifies a 

solution as completely infeasible. As a result of this derivation the following formula is 

defined to penalize a cluster: 

��G
 = 6G² − 1.2G + 0.06 

This formula represents the penalty for one cluster. It is understandable, that every 

cluster of a solution has to be penalized and be added up to a total solution penalty. It 

is accepted that solutions with a higher number of clusters are more strongly penalized 

under this approach. 

δ�s
 =  M ����. #��+�������H����� 


|9|

�(�
 

In conclusion, the surjective function δ: S →  ℝ  supports the identification of 

inhomogeneous solutions. To derive an indication of a final solution quality the fitness 

function and the penalizing function have to be combined. 

The previously introduced SolutionQuality (SQ) fitness function is a surjective 

function�: � →  ℝ , which transforms a solution from the solution space � into the 

numerical relational system ℝ. Additionally a penalizing function δ: S →  ℝ has been 

defined which evaluates and penalizes the lack of homogeneity of a given solution. The 

combination of the fitness function and the penalizing function   �O��
 = ���
 ∗ �1 −
 δ�s

 determines the penalized solution quality for any solution of the solution space 

� ∈  �.  Finally, the combined fitness function �O��
 enables the comparison of 

individual solutions considering the aspect of homogeneity. The fitness function 

�O��
 is offered as the method getSolutionQuality() as a part of the SBREGraph 

interface.  



Design and Implementation of the SBRE Component 

  

68 
 

4.4.3 User Constraints 

An important part of this research is the evaluation, which comprises approaches that 

can improve the effectiveness of the search process. As stated in section 4.1, the 

approach adopted here utilises an interactive clustering process, which allows the user 

to include data in the process to guide the search into more promising areas of the 

search space. The design strategy is to include this additional user data as constraints 

on the clustering process. The requirements are therefore to administer cluster 

constraints, to verify, if a solution candidate adheres to the configured constraints and 

to generate initial solutions that align with the configured constraints. To fulfil these 

requirements the class ConstraintEngine is designed, which comprises a set of 

ClusterConstraint instances. Figure 4.9 depicts the class diagram for the constraint 

component: 

 

Figure 4.9 : Class diagram of the SBRE cluster constraint framework 

Besides the administration of constraints with the methods addConstraint(), 

deleteConstraint() and clearConstraints(), the degree to which a solution aligns with 

the configured constraints can be determined using the method verify(SBREGraph 

solution). Solutions that do not align with the configured constraints are rejected. A 

ClusterConstraint instance accepts three parameters, which are the two constraint 

artefacts and the type of the constraint. 

Three constraints have been identified and implemented during this research to force 

the search into different areas of the search space. The Combine Constraint accepts 
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only solutions that combine two determined artefacts in the same cluster. The 

converse is the Separate Constraint, which only accepts solutions that place the two 

given artefacts in separate clusters. The Exclude Constraint excludes artefacts from the 

cluster process. This latter functionality is useful to reduce the search space for the 

identification of “code smells” or to exclude irrelevant artefacts from candidate 

solutions. 

4.4.4 Metaheuristics 

The core of this research is the process of creating a solution candidate within the 

search space. This task is executed by the search algorithm. As previously described, 

this work focuses on metaheuristics to solve the software clustering problem and 

especially on the application of tabu search. To apply tabu search, a start solution is 

necessary. To create this initial solution, an algorithm is needed which does not 

assume an initial solution. As described in section 2.2.3, the greedy algorithm is a 

metaheuristic that is able to create a solution from scratch. Hence, it is meaningful for 

this research project to implement a greedy algorithm and tabu search algorithm 

individually. However, before the design of these algorithms can be pursued, a 

framework has to be designed, within which these metaheuristic algorithms can be 

applied. 

Design and Implementation of the SBRE Cluster Framework 

The responsibility of the cluster framework is the management of the cluster 

algorithms and the triggering of the clustering process. Figure 4.10 illustrates the 

design of the cluster framework.  
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Figure 4.10 : Class diagram of the SBRE cluster framework 

The class ClusterEngine represents the communication interface for the system. The 

ClusterEngine manages a set of registered ClusterStrategy instances. One 

ClusterStrategy instance is the currently active cluster strategy. The most significant 

functionality of the ClusterEngine class is the cluster() method. Within the cluster 

method the Jung graph instance is transformed to a SBREGraph instance. The 

SBSEGraph instance is handed to the currently selected cluster algorithm.  The cluster 

algorithms are implemented following the design strategy pattern concept by Gamma, 

Helm, Johnson and Vlissides (1995) with the additional inserted abstract class 

AbstractClusterStrategy. The abstract class AbstractClusterStrategy pools overlapping 

functionality to enable code reuse. Specific cluster algorithms inherit from 

AbstractClusterStrategy. As previously described the SBRE framework offers the two 

ClusterStrategy implementations GreedyBestNeighbour algorithm and 

TabuSearchClusterStrategy, which represent the implementation of the greedy and 

tabu search clustering respectively. The design and implementation of these 

algorithms is described in the following sections. 
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Design and Implementation of the Greedy Algorithm 

Within this research a Greedy algorithm has been designed. The functionality of this 

greedy algorithm is encapsulated in the class GreedyBestNeighbour. The objective of 

this search process is the assignment of artefacts into an unknown number of clusters. 

As described, greedy algorithms usually start from scratch.   

Hence, the GreedyBestNeighbour algorithm can start from scratch or build up from a 

preconfigured incomplete solution. This behaviour has been chosen to incorporate 

user data into the clustering process. The received initial solution includes the 

executed user constraints as initial clusters and assigned artefacts. Based on this, the 

algorithm then classifies the unassigned artefacts to clusters. If an artefact should be 

assigned, it can be included in one of the existing clusters or it can be assigned into a 

new cluster.  The objective of this process is to isolate depending artefacts with high 

similarity. Given this, it is not the aim of this research to combine artefacts in clusters 

that exhibit high similarity, but in clusters which are not depending on each other. 

Therefore the dependency between two artefacts is of central importance for the 

assignment into one cluster. This requirement also reduces the search space, as two 

artefacts can only be members of the same cluster when a path exists between these 

two artefacts. 

The algorithm starts with selecting the next unassigned artefact from the graph 

representation.  Based on this current artefact all incoming and outgoing edges to or 

from the artefact are identified. Based on the metric value of these edges the best 

suitable neighbour is identified. The metric value represents the combination of all 

registered metrics including the weight adjustment. If the best neighbour is already a 

member of an existing cluster the current artefact is also assigned to this cluster. 

Figure 4.11 illustrates the assignment of one unassigned artefact into an existing 

cluster. 
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Figure 4.11 : Allocation into 

If the best neighbour is not a member of an existing cluster

and the current artefact is the first member of this new cluster, as illustrated in 

4.12. The greedy algorithm considers only the strongest dependency for the decision 

process. It could be possible that two weak dependencies exist, which lead into one 

cluster, which then would ce

that cluster. This circumstance is not considered by the algorithm at this stage. 

4.12 illustrates that the artefact is assigned into a new cluster, even though there exist 

two connections to artefacts from 

Figure 4.12 : Assignment of 
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nto existing clusters of the SBRE greedy algorithm 

If the best neighbour is not a member of an existing cluster, a new cluster is created 

and the current artefact is the first member of this new cluster, as illustrated in 

. The greedy algorithm considers only the strongest dependency for the decision 

process. It could be possible that two weak dependencies exist, which lead into one 

would certainly indicate that the candidate could be a member of 

that cluster. This circumstance is not considered by the algorithm at this stage. 

t the artefact is assigned into a new cluster, even though there exist 

two connections to artefacts from Cluster1 exist. 

f artefact into a new cluster of the SBRE greedy algorithm 
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To overcome the problem of stalling in local minima, the algorithms start a separate 

search for every possible unassigned artefact. The best solution is evaluated using the 

fitness function introduced in section 4.4.2. The designed greedy algorithm is offered 

as a separate strategy in the SBRE tool, but also delivers the starting point for the 

design and implementation of the tabu search algorithm.  

Algorithm 4.1 illustrates the pseudo code for the cluster method of the class 

GreedyBestNeighbour algorithm. The illustrated cluster method is called for every 

artefact of the graph as a start node. After the cluster method delivers a result with 

every artefact as a start solution, the best solution is selected using the fitness 

function.  
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cluster(SBSEGraph initalSolution, SBRENode startNode ) 
 
Let G = initalSolution.copy() 
repeat  
 Let N = G.getNodesWithoutCluster() 
 Let C = G.getCluster() 

Let node = startNode 
Let bestMetricVaue = 0; 

 Let bestCluster = null; 
 

 if (startNode == null) then 
  node = N.getFirst() 
  startNode = null 
 end 
 
 foreach (c € C) do 
  foreach (n € c.getNodes()) do 
   
   foreach (e € getEdges()) do 
   
    if (e.getMetricValue >= bestMetricValue) then 
 
     bestCluster = c 
     bestMetricValue = e.getMetricValue() 
    end 
   end 
  end 
 end 
 if (bestCluster != null) then 
  node.setCluster(bestCluster) 
 else 
  cluster = createCluster() 
  node.setCluster(cluster)   
 end 
 
until “all nodes without cluster are assigned into cluste rs”  
 
return G; 
 
Algorithm 4.1 : PseudoCode of the GreedyBestNeighbour cluster method 

Design and Implementation of the Tabu Search Algorithm 

One aim of this research is to assess the applicability of tabu search in the field of 

software clustering. To address this aim the class TabuSearchStrategy is designed 

within this research project.  

Tabu search algorithms require an initial solution as a basis for further solution 

improvement. To create an initial solution the GreedyBestNeighbour algorithm, which 

has been described in the previous section, is applied within the TabuSearchStrategy 

clustering process. By default, the best identified solution from the class 

GreedyBestNeighbour is used as the initial solution for the TabuSearchStrategy. 

Additionally, the previously clustered graph can be used as the initial graph for the 
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tabu search clustering. This graph can be created from the GreedyBestNeighbour 

algorithm or from the TabuSearchStrategy itself. This enables the user to change the 

metric configuration and constraints at any time in the search to guide the search into 

different areas of the search space. 

Based on this start solution, the search can begin to identify improved solutions. While 

the GreedyBestNeighbour algorithm follows a relatively naive approach of classifying 

the system, the TabuSearchStrategy on the contrary explores more solution candidates 

of the search space and as a result can hopefully seek better results than the greedy 

algorithm. To simplify the illustration of the main components and method of 

operation of the TabuSearchStrategy algorithm, the interface of the 

TabuSearchStrategy is portrayed in Figure 4.13. 

 

Figure 4.13 : Class diagram of the TabuSearchStrategy algorithm 
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The core algorithm is implemented in the method spreadSolution(SBREGraph 

initalGraph). Because of its importance in this research, this method is described in 

more detail. The spreadSolution method receives an instance of the SBREGraph class 

as an argument. The SBREGraph instance represents a solution of the search space, 

including a set of clusters with the assigned SBRENode instances. The second 

parameter nodeCandidatesForDistribution contains a set of SBRENode instances as 

representation of artefacts. These SBRENode instances of artefacts are members of 

the SBREGraph solution. As a default, the nodeCandidatesForDistribution set contains 

every SBRENode instance of the solution. It can also contain a subset of SBRENode 

instances; this is of interest if the search should be intensified or diversified with a 

special focus on this subset of SBRENode instances. 

The cluster information of the received nodes is reset by the algorithm. To prevent the 

same solution being identified within the next generation, the algorithm refuses to 

classify an artefact into the same cluster. This anticipates unnecessary comparisons 

with the members of the tabu list, because this branch is already examined with the 

current search iteration. The solutions of the new solution set represent the initial 

solutions for the next iteration of the search. 

An example should help to illustrate the method of operation of the tabu search 

algorithm. The initial solution Si consists of two clusters C = {c1, c2}. Every cluster 

contains a set of artefacts c1 = {a1, a2, a3} and c2 = {a4}. To simplify the illustration a 

solution is given as a set with an amount of subsets. Every subset represents a cluster 

with the associated artefacts. Regarding this the representation for the initial solution 

is Si = {{a1, a2, a3}, {a4}}.  The set of artefacts which should be distributed is defined as 

the complete set of artefacts within the solution A = {a1, a2, a3, a4}. Figure 4.14 

visualizes the first search generation of this example. The example illustrates, based on 

the initial solution, the creation of four new solutions within the first generation. Every 

created solution represents a solution candidate. The solution candidate is evaluated 

by the developed fitness function.  The best solution out of this set is chosen using the 

fitness function. This “best” solution represents the base for the next search iteration. 
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In this example it is assumed that {{a1, a2}, {a3, a4}} represent the best solution, the 

other solutions are discarded. 

Figure 4.14 drafts also the second generation of the search w

the initial solution. As illustrated the nodes are only assigned into the existing cluster. 

It would certainly also be possible to include 

Figure 4.14 : Example of the clustering process of the 

Evaluated solutions are stored in the tabu list and during the creation of a new solution 

candidate the list is examined to determine if the solution

investigated. If a solution is stored in the tabu list, the solution branch is not further 

examined. This prevents the algorithm from exploring previously investigated branches 

of the search space. 

The maximum number of stored entr

A long tabu list will prevent the occurrence of cycles and the stalling of the algorithm 

within an infinite loop. However a longer list will also decrease the performance of the 

algorithm.  

In addition to the length of the tabu list

candidates can be determined. This value can be set by the user to manipulate the 
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it is assumed that {{a1, a2}, {a3, a4}} represent the best solution, the 

other solutions are discarded.  

drafts also the second generation of the search with {{a1, a2}, {a3, a4}} as 

the initial solution. As illustrated the nodes are only assigned into the existing cluster. 

It would certainly also be possible to include every assigned node into 

of the clustering process of the TabuSearchStrategy algorithm   

Evaluated solutions are stored in the tabu list and during the creation of a new solution 

candidate the list is examined to determine if the solution branch has already been 

investigated. If a solution is stored in the tabu list, the solution branch is not further 

examined. This prevents the algorithm from exploring previously investigated branches 

 

The maximum number of stored entries of the tabu list can be determined by the user. 

A long tabu list will prevent the occurrence of cycles and the stalling of the algorithm 

within an infinite loop. However a longer list will also decrease the performance of the 

the length of the tabu list, the number of maximum created solution 

candidates can be determined. This value can be set by the user to manipulate the 
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depth of the search. A higher number of tested solutions increases the chance of 

finding better solutions within the search space, but on the other side it increases the 

required computational time of the search. 

Algorithm 4.2 illustrates the pseudo code of the spreadSolution code, the main 

algorithm of the implemented tabu search metaheuristic.  

spreadSolution(SBSEGraph initalSolution ) 
 
 Let P the current best solution 

Let � be the set of all artefacts of the initalSolution  
Let * be the set of all clusters of the initalSolution  
Let � be an empty set of solutions/SBREGraphs 
 
if (testedCandidates() > maxTestedCandidates()) then 
 return P 
end 
 
foreach ) ∈ � do 
 foreach � ∈ * do 
 
  Let Q = initalSolution.copy() 
  Let c2 = I.getSBRECluster(c) 
  Let n2 = I.getSBRENode(n) 
 

n2.setCluster(c2) 
 
increaseTestedCandidates() 
 
//check constraints and tabu list 
if (verifySolution( Q)) then 
 S.add( Q) 

if (isImprovingSolution()) then 
P = Q 

    end 
 
   end 
 
   if (isTimeForIntensification()) then 
    intensify() 
   end 
  
   if (isTimeForDiversify()) then 
    diversify() 
   end 
   
  end 

end 
 
spreadSolution(S.getBestSolution()) 

end 
 
Algorithm 4.2 : PseudoCode of the TabuSearchStrategy spreadSolution method 
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The algorithm illustrates that tabu search algorithms rely strongly on the creation, 

evaluation and rejection of solutions. This motivates the importance of a lightweight 

representation and an efficient comparison and duplication mechanism for solutions.  

The TabuSearchAlgorithm also implements intensification and diversification strategies 

to overcome local optima and to approach the global optimum. The intensification and 

diversification are triggered by an idle value, which counts the number of non-

improving solution candidates. The identification of an improving solution or the 

triggering of the diversification or intensification process resets the corresponding idle 

parameter. Both methods are controlled by their own idle values. Correspondingly, the 

search can be focused more on intensification or diversification. The number of idle 

iterations can be configured by the user.   

The TabuSearchAlgorithm algorithm stores the elite solutions of the search in a 

separate list. For the proof of concept of this research project the ten best solutions 

are stored in the elite solution list. This simple approach is sufficient to examine the 

method of operation of tabu search within the field of software clustering. Certainly a 

more intelligent or flexible approach would also be possible, which would store the 

elite solutions depending on user input or input size parameters. From these elite 

solutions a new solution is derived, which exhibits the highest similarities of artefact 

combinations in one cluster. For example, if artefact A1 was the most combined 

artefact with A2, A1 and A2 are combined in one cluster within this new solution. This 

solution represents the initial solution for the next iteration of the search. Hence, the 

created solution is handed to the spreadSolution() method as an initial solution during 

the next search iteration. Based on this, the search will be intensified in this region of 

the search space. 

If the algorithm cannot improve in the current area of the search space, the 

diversification strategy can be applied to guide the search into a different area of the 

search space. The implemented diversification method within this research is based on 

the homogeneity of the cluster landscape and combines small clusters and separates 

bigger clusters. The diversification method separates every cluster of the current best 

solution into two clusters, which has more than five artefacts. Sets of two clusters with 
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fewer than five artefacts are combined into one cluster and the remaining empty 

cluster is discarded. The selection of a fixed separation level is certainly naïve, but 

again it is not a central component of the research to evaluate the optimal 

diversification method in the area of software clustering. As such, a naïve 

diversification approach is sufficient within this research project.  

As illustrated during the previous paragraph the TabuSearchAlgorithm is influenced by 

the “Idle Diversification”, the “Idle Intensification”, the “Maximum Tested Solutions” 

and the “Length of the Tabu List” parameters. These parameters can be configured by 

the user. Before every search, which applies the TabuSearchAlgorithm a configuration 

window is displayed, which enables the tuning of these parameters. Figure 4.15 

illustrates the configuration window for the TabuSearchAlgorithm. 

 

Figure 4.15 : Example of the TabuSearchStrategy configuration component 

As stated, the TabuSearchAlgorithm can use any clustered SBREGraph instance as the 

initial start solution. By default, the best solution from GreedyAlgorithmBestNeighboor 

algorithm is used. However, it is also possible that a previously clustered graph can be 

the basis for further clustering. This allows the user to manipulate a graph with 

constraints or to change the metric configuration and to retrigger the clustering with 

this graph. To facilitate this behaviour the checkbox “Current Graph is Start Graph” has 

to be selected.   

The next section provides an overview of the functionality of the SBRE system. As the 

purpose of the SBRE system is to enable the implementation and examination of the 
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research objective, this overview focuses on the necessary components and 

functionality to deliver against the research objective. 

4.5 Functionality of the SBRE System 

This section describes the functionality and application of the Search Based 

Rearchitecturing Engineering (SBRE) component. The SBRE component acts as an 

enabler to examine the application of the greedy and tabu search metaheuristic in the 

area of software clustering and to examine the feasibility of a user-controlled 

clustering process. Regarding this, the SBRE component is a semi-automatic clustering 

component that allows the user to control the clustering process by adjusting metrics 

and by including user-constraints. The advantage of this approach is that the user can 

include domain knowledge into the clustering process and align the clustering with 

needed preferences.  It is important to note that the metrics and constraints make no 

decisions for the user regarding the clustering. Rather, they determine the direction of 

the clustering. The following section gives an overview of the components and their 

functionality. Figure 4.16 displays a screenshot of the complete SBRE tool and names 

the relevant components. Based on this, the SBRE components are briefly described. 

The navigation, project selection and visualisation capabilities are plausible, but are 

not relevant for the examination of the research objective and as a result are not 

further illustrated here. 

Cluster Component 

Within this component the cluster process can be triggered by pressing the Calculate 

button. The applied metaheuristic can also be chosen within the Heuristic Strategy 

selection box. Additionally, the cluster level can be determined. The user can choose to 

apply the clustering on class or package level. 

Constraint Component 

The Constraint Component features a table that displays the active constraints. Every 

constraint consists of the type, which can be connect- or disconnect elements, the 

source and the destination artefact. A constraint can be created within the graph by a 

right click onto an artefact or manually by executing the create button underneath the 
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table. Additionally, a constraint can be edited within the table or deleted by selecting it 

and executing the delete button underneath the table. 

Metric Configuration Component 

The Metric Component enables the user to determine the weighting of the individual 

metrics by adjusting the sliders. Additionally, a threshold can be defined. Artefacts that 

have metric values, which fall below the defined threshold are excluded from the next 

cluster iteration. A threshold of zero signifies the threshold as not active. As stated 

previously, the threshold field for the Correlation of Names and Cohesion Between 

Objects metrics are not active.  

Info Component 

The info box displays cluster information. The number of artefacts, number of edges, 

the number of clusters and the solution quality is displayed. In addition, the 

information level can be changed by executing a left mouse click onto clusters of 

artefacts within the displayed graph. 

Visualisation Component 

The visualisation component displays the clustered graph with its artefacts and 

dependencies between the artefacts. The SBRE component features a horizontal, 

initial ordering of the clusters. This ordering is based on a ratio of outgoing 

dependencies divided by the incoming dependencies. This ratio is calculated for every 

cluster. The clusters are ordered downwards from the top to the bottom within the 

graph visualisation component applying this ratio. The ordering mechanism is 

refreshed when the clustering process is triggered with a new or different java project. 

Furthermore, the ordering can be executed manually by a right click on the 

visualisation component and the execution of the ‘Rearrange Graph’ menu item. 
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Figure 4.16 : Screenshot of the SBRE component 

4.6 Summary 

This chapter described the design and implementation of the SBRE component. This 

component enables the application of greedy algorithm and tabu search in the area of 

software clustering. Based on the preliminary literature review and guided by the 

research objective three different frameworks emerged. These frameworks are a 

MetricEngine for the measurement of similarities between artefacts and artefact 

dependencies, a ConstraintEngine for the administration of user constraints and 

verification of aligning solutions and a ClusterEngine for the exploration within the 

search space and creation of solutions. Additionally, the design and implementation of 

the solution representation SBREGraph is portrayed, which allows the efficient 

duplication and evaluation of solutions. The core components of the SBRE have also 

been illustrated from a user point of view. 
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5 Evaluation of the SBRE component 

This chapter describes the evaluation of the SBRE component that has been developed 

in the course of this research. The evaluation phase reveals the utility of the 

constructed component and delivers the data to answer the formulated research 

questions. Regarding this, it is important that a sufficient and appropriate method for 

the evaluation of the research objective is chosen. As described within the research 

design chapter, and in alignment with the constructive and explorative character of 

this research, the execution of experiments is selected as the method to be employed 

in this study. Section 3.3 already developed a mapping of the conducted experiments 

to the research questions. The next section describes the design of and environment 

for the experiments conducted to evaluate the SBRE component.  

5.1 Experiment Design 

The main purpose of this research is to examine the potential quality contribution of 

applying a user directed SBSE based software clustering approach. The application of 

the clustering evaluation methods introduced in Mitchell (2002) and Anquetil and 

Lethbridge (1999b) to evaluate the quality of clustering are not applicable here. This is 

due to the greater flexibility of the solution generation approach adopted within this 

research project. The cluster evaluation approaches from Mitchell (2002) and Anquetil 

and Lethbridge (1999b) assume a perfect solution as a mix of all applied cluster 

algorithms and evaluate the distance to this perfect solution for the evaluation of a 

cluster approach. This implies that all cluster approaches aim for this perfect solution 

and variations are founded in the deficiency of the cluster algorithms itself. In contrast, 

the approach within the SBRE component follows the philosophy that a multiplicity of 

optimal solutions exists. Hence it rather depends on the user needs and the desired 

perspective of the software system as to which solution is most appropriate. As a 

result, the formal evaluation mechanisms of Mitchell (2002) and Anquetil and 

Lethbridge (1999b) are not applicable for the evaluation of the SBRE research 

component. Instead, an evaluation of the clustering results by a system expert is 

applied within this research. 
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To evaluate the cluster results in this way it is necessary to select one or more known 

software systems for indicative analysis. As the evaluation of the delivered results have 

an interpreted character it is important that the evaluator in this case has a good 

knowledge of the design of the analysed software system. Fairly naturally, this 

motivates the selection of the source code of the SBRE component itself for the 

evaluation analysis, as the design and components of the SBRE system are well-

described during the previous chapters of this research project. The SBRE software 

system represents a small to middle sized software project, comprising 163 classes, 

352 dependencies between these classes, 18 packages and 48 dependencies between 

these packages. The analysis of the SBRE system therefore enables conclusions to be 

drawn for software systems of a similar size. Additionally, the publicly available “crm 

domain example” project is used in some experiments as a second, slightly bigger, 

software system to broaden the results and provide a basis for comparisons.  

Aligned with the research objective, the evaluation consists of four different sections. 

These sections represent the evaluation of the fitness function, the evaluation of the 

performance of the implemented cluster algorithms, the evaluation of the clustering 

capability of the SBRE tool and the comparison of the Barrio and Bunch component 

with the SBRE component. 

5.2 Evaluation of the Fitness Function 

An important component of this work is the fitness function as it evaluates the 

solution candidates and identifies the most feasible solution. The fitness function 

within this research is called SolutionQuality (SQ). If the SolutionQuality measurement 

is not actually able to distinguish the quality of a solution, the approach has limited 

merit. Accordingly, the evaluation of the fitness function does not contribute directly 

to the answer of one of the research objectives. It rather provides a necessary basis for 

the further evaluation of the research objectives. 

The SolutionQuality calculates a numerical value, which enables the solutions to be 

ordered and compared. A comparison of two such measurements is only sensible, 

however, if they feature the same metric weighting and analyzed the same software 

system, as the weighting of the metrics and the composition and dependencies of the 



Evaluation of the SBRE component 

  

86 
 

software system influence the calculation of the SolutionQuality measurement. As a 

result, it is not possible to derive an absolute quality-estimation depending on the 

measurement itself. The exchange of the cluster algorithm is unproblematic as the 

SolutionQuality evaluates a solution irrespective of the cluster algorithms. Thus the 

aim within this experiment is to determine if the SolutionQuality measurement enables 

the identification of good solutions regarding the SBRE tool configuration. In other 

words, the SolutionQuality measurements align with the quality difference of the 

actual solutions. As the metric configuration defines the behaviour of the fitness 

function, the metric configuration has to be considered in order to consistently 

examine the quality of the identified solutions.   

An experiment is therefore conducted in which existing solutions are deliberately 

deteriorated by the inclusion of user constraints, which determine a qualitatively bad 

cluster landscape. A risk of this experiment is that the inclusion of constraints 

influences the complete solution. A constraint, which has a negative impact on a part 

of the solution can still guide the search into another area of the search space, where 

an improved solution may be found. To minimize this risk the clustered artefacts of the 

SBRE system are reduced to the four packages cluster, metric, cluster.constraint and 

jnumberfield. Artefacts can be excluded by pressing the right mouse button onto an 

artefact and choosing the menu item “Ignore artefact ... in next analysis”. The 

configured Exclude Patterns are displayed in the Constraint Component. This 

experiment is conducted with full weight on the CohesionBetweenObjects metric and 

the analysis is conducted on package level. The other metrics are fully disabled and not 

considered during the cluster analysis. This configuration rewards solutions that 

combine artefacts in clusters with a high cohesion. Figure 5.1 illustrates the initial 

result of the clustering without deteriorating constraints and the configuration of the 

SBRE component. 



Evaluation of the SBRE component 

  

87 
 

 

Figure 5.1 : Initial solution of the fitness function experiment 

The metric, cluster and cluster.constraints packages feature many dependencies 

between each other. Regarding this and the concentration on the Cohesion Between 

Objects metric this solution can be considered as feasible. 

Based on this initial solution, constraints are introduced, which deteriorate the 

solution. The first constraint forces the cluster algorithm to separate the cluster and 

metric packages. Figure 5.2 demonstrates the result of this clustering.  
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Figure 5.2 : Solution of the fitness function experiment with a separated metric and cluster package  

Given the emphasis on the CohesionBetweenObjects measurement and the high 

dependency between the metric package and the cluster and cluster.constraints 

packages, this solution is less desirable. As illustrated in Table 5.1, this is also expressed 

in a lower SolutionQuality measurement. Within the next clustering the jnumberfield 

package is forced to be included in the same cluster as the cluster package. The result 

of this clustering is illustrated in Figure 5.3. 
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Figure 5.3 : Solution of the fitness function experiment with combined cluster and junumberfield package 

Again taking into account the focus on the CohesionBetweenObjects metric and the 

missing dependencies of the jnumberfield package to the cluster and 

cluster.constraints package, this solution can be seen as the most infeasible of those 

considered. These observations align with the measurements of the SolutionQuality 

fitness function. Table 5.1 illustrates the results of the fitness function experiment. It 

can be observed that the solution quality is reduced with the inclusion of deteriorating 

constraints.  

Active Constraints SolutionQuality 

no deteriorating constraints 0.0176 

cluster and metric package separated 0.0062 

cluster and metric package separated ∧  jnumberfield and cluster package 

combined 

0.0048 

Table 5.1 : Solution quality values of the fitness function experiment 

While the significance of this simple experiment is certainly limited, it serves to 

demonstrate that a forced deterioration also causes a reduction of the measured 

SolutionQuality. This indicates that a connection exists between the quality of the 

solution, from a software design point of view, and the SolutionQuality measurement. 
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5.3 Evaluation of the Cluster Algorithms  

Within this research the two SBSE based algorithms GreedyBestNeighbour and 

TabuSearchStrategy have been designed and implemented. This section reports on the 

evaluation of the performance and quality of these algorithms. This section contributes 

especially to the evaluation whether the tabu search concepts are applicable in the 

area of software clustering. The GreedyBestNeighbour algorithm is used as a 

benchmark. Therefore an evaluation of the GreedyBestNeighbour is initially conducted. 

The SolutionQuality fitness function measurement, which has been introduced in 

section 4.4.2, remains as a measurement to estimate the quality of a solution and also 

enables the user to compare the quality of the different cluster algorithm strategies. 

Certainly, this approach could be seen as subjective as the SolutionQuality is also 

applied as the fitness function within this research to evaluate solutions. However, as 

the SolutionQuality fitness function has been evaluated in section 5.2 and has been 

shown to be able to distinguish the quality of solutions, the application of the 

SolutionQuality fitness function is, in the opinion of the researcher, meaningful. Other 

SBSE-based research also relies on the application of the fitness function to evaluate 

and compare approaches (Jiang et al., 2007; Mitchell, 2002; Seng et al., 2005). All 

performance experiments described below, which explore the runtime of the 

algorithms, were conducted twenty five times and the average of the relevant 

measurements calculated. This should minimize variations caused by the execution of 

other programs (e.g. virus scans). Further efforts have been taken to minimize these 

influencing factors with the researcher not working at the test machine during the test 

runs and disabling unnecessary programs.  

5.3.1 Evaluation of the GreedyBestNeighbour Algorithm 

This section describes the evaluation of the GreedyBestNeighbour algorithm. The only 

input variable for the greedy algorithm is the analyzed software system. As described 

previously, the comparison of the solution quality of different software systems is not 

valid as the design and size of the software system has a direct influence on the 

calculation of the SolutionQuality. Given this, the quantitative evaluation is restricted 
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to the effect on the runtime of the algorithm regarding the analysis of differently sized 

software systems. 

Runtime Evaluation of the GreedyBestNeighbour Algorithm 

Based on the body of the algorithm the computational complexity of the 

GreedyBestNeighbour can be determined as O(n²), where n is the number of artefacts 

within the software system. The runtime of the clustering process is n as any node is 

accessed once and the best move is chosen from the remaining node set. Furthermore, 

every node is used as a start point for the clustering iteration. The algorithm is 

additionally influenced by the number of dependencies within the system, as every in- 

or outgoing dependency of a node is checked to select the best move. To illustrate the 

computational complexity of the GreedyBestNeighbour algorithm, two software 

systems of different sizes are clustered: the SBRE system and the publicly available 

“crm domain example”. The analysis for both systems is undertaken at both class and 

package level. In both cases a SBREGraph instance is handed to the algorithm instance, 

where the SBRENode instances contain either packages or class information. Regarding 

this, the analysis at different levels does not affect the runtime characteristic. In Table 

5.2 the results of this analysis are illustrated. The measured runtime in milliseconds 

contains only the cluster process of the GreedyBestNeighbour algorithm from the 

moment where the cluster() method is executed until the return of the best identified 

solution. The measuring of the metric values, conversion into different graph models 

and visualization of the graph is excluded from these measurements. 

Analyzed System Number of Nodes Runtime in Milliseconds (Ø of 25 runs) 

SBRE (Package Level) 20 38 

CRM (Package Level) 46 708 

SBRE (Class Level) 163 12710 

CRM (Class Level) 192 40645 

Table 5.2 : Runtime in milliseconds of the GreedyBestNeighbour algorithm 

Figure 5.4 illustrates the progression of the GreedyBestNeighbour algorithm runtime in 

milliseconds relating to the number of input artefacts. 
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Figure 5.4 : Runtime of the GreedyBestNeighbour algorithm depending on the artefact input size 

As assumed in the previous section and reflected in Figure 5.4  the runtime of the 

GreedyBestNeighbour algorithm develops within the upper boundary of O(n²). An 

interpretation of the delivered solutions is not possible at this stage as the basis for 

comparison in this analysis is missing. The analysis of the solution quality is conducted 

in combination with the TabuSearchStrategy analysis in the next section.  

5.3.2 Evaluation of the TabuSearchStrategy Algorithm 

In contrast to the GreedyBestNeighbour algorithm the TabuSearchStrategy algorithm 

features a wider range of input parameters. These input parameters are the length of 

the tabu list, the number of iterations until the algorithm terminates, the frequency of 

the diversification to guide the search into unexplored areas of the search space, the 

frequency of the intensification to guide the search into the most promising areas and 

finally the size of the analyzed software system. Each of these parameters has an 

influence on the runtime of the algorithm, the search and solution improvement 

process and finally the solution quality. To evaluate the applicability of the 

TabuSearchStrategy algorithm, which is addressed by the second research question, 

these parameters and their influence on the performance and solution quality of the 

TabuSearchStrategy algorithm have to be examined separately. During this evaluation 

process a component is developed which enables the tuning of the parameters of the 

TabuSearchStrategy. This component is introduced in the next section. 
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Implementation Tabu Search Evaluation 

The Heuristic Strategy selection field of the SBRE component supports the 

TabuSearchEvaluation strategy. Additionally to the algorithmic functionality of the 

TabuSearchAlgorithm, the TabuSearchEvaluation strategy features a data input view, 

which allows the tuning of the input parameters of the tabu search and enables the 

user to run it multiple times with ascending parameter attributes. The configuration 

window is illustrated in Figure 5.5.  

 

Figure 5.5 : Configuration of the TabuSearchStrategy evaluation component 

The four parameters Maximum Tested Solutions, Length of the Tabu List, Idle 

Intensification and Idle Diversification can be tuned. Every parameter is split into three 

values, the “from” input value defines the start value of the search, the “until” value 

determines the termination condition and the last tested configuration, and finally the 

step size defines the changing interval. As a consequence the search is executed n 

times, with n = (“until input value” – “from input value”)/”step size”. The iterations of 

the cluster analysis are executed independently and build up respectively on the best 

identified solution of the GreedyBestNeighbour algorithm analysis. The result of each 

iteration is displayed in the Eclipse Console.  

Table 5.3 illustrates the result of a single iteration with one parameter configuration. 

Besides the TabuSearchStrategy algorithm parameter configuration for the current 

run, the table also shows the runtime in ms, the SolutionQuality of the best found 

solution, the number of rejected solution candidates and the number of diversification 

and intensification runs. 
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Table 5.3 : Example of one result of the TabuSearchStrategy algorithm evaluation 

The GreedyBestNeighbour algorithm delivers within the conducted experiments the 

initial graph for the TabuSearchStrategy algorithm analysis, which is also the default 

behaviour of the TabuSearchStrategy algorithm. However, the time measurements of 

the TabuSearchEvaluation component do not include the runtime of this 

GreedyBestNeighbour algorithm run. The reason for this is, that the 

TabuSearchStrategy algorithm allows the employment of previously created solutions 

as the initial solution (see also: Figure 4.15). This motivates that any solution could be 

utilized as the initial graph for the TabuSearchStrategy algorithm, this solution can be 

created by any algorithm or even created or manipulated by the interaction of user. As 

the time effort to create the initial solution cannot be determined, the runtime 

measurements of the TabuSearchStrategy algorithm are specified without the creation 

of an initial solution. 

As described previously the TabuSearchStrategy algorithm is influenced by the “Idle 

Diversification”, the “Idle Intensification”, the “Maximum Tested Solutions” and the 

“Length of the Tabu List” parameters. It should also be considered that the individual 

parameters have an influence on each other. Regarding this, the conducted 

experiments have the aim to illustrate that the individual parameters influence the 

behaviour of the algorithm. Additionally, it should be shown if the tabu search 

algorithm is able to improve the search in comparison to the output of the 

GreedyBestNeighbour algorithm. The aim of these experiments is not to derive general 

assumptions about the configuration of the tabu search, rather it should provide some 
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degree of evidence as to whether the tabu search algorithm is applicable in the field of 

software decomposition. Where it is possible and appropriate to generalize a result, a 

hypothesis is formulated to give an idea for such a generalization. However, the 

experiments reported here do not have sufficient scope to support or refute these 

general assertions. 

As the metric configuration is not part of this experiment and does not influence the 

outcome, the metric configuration is untouched for the evaluation of the cluster 

algorithms. This means that every metric is defined with a weight of 0.5, where 1.0 

would be the maximum weight. Figure 5.6 illustrates the metric configuration used 

during the following experiments. 

 

Figure 5.6 : Illustration of the metric configuration during the cluster algorithm evaluation 

To examine, if the TabuSearchAlgorithm is able to improve the identified solution of 

the GreedyBestNeighbour solution, the following experiment is conducted. It examines 

the change of the SolutionQuality regarding the increase of the tested solution 

candidates.  

Evaluation Maximal Tested Solutions 

The termination of the tabu search clustering algorithm is determined by the number 

of maximal tested solution candidates. The number of maximal tested solutions 

influences the SolutionQuality and the runtime of the algorithm. Within this 

experiment the number of maximal tested solutions is increased from 1 until 1000 in 

single unit increments. The accompanying parameters are the length of the tabu list 

and the number of iterations without improvement until the activation of the 

diversification algorithm. The tabu list is confined to a maximum length of 40 entries 

and the diversification and intensification processes are triggered after 100 iterations 

without an improvement of the solution quality. The following experiments within this 

section will show that this configuration is optimal for the intensification and 
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diversification parameterisation to obtain the best SolutionQuality measurement. The 

excessive length of the tabu list prohibits the confinement in an infinite loop. Figure 

5.7 displays the parameter configuration of the conducted experiment. 

 

Figure 5.7 : Configuration of the maximal tested solutions experiment 

This experiment aims to evaluate the performance of the TabuSearchStrategy 

algorithm to improve the SolutionQuality measurement and the impact on the runtime 

in comparison with the GreedyBestNeighbour algorithm. Therefore the experiment 

contributes to the evaluation of the applicability of the TabuSearchStrategy in the area 

of software clustering. 

The experiment is conducted with the SBRE system at both package and class level, 

which enables a degree of analysis of different system sizes. Figure 5.8 and Figure 5.9 

illustrate the results as the development of the SolutionQuality measurement relating 

to the number of maximal tested solutions.  

Figure 5.8 pictures the analysis of the SBRE system at the package level and represents 

a small system with 20 SBRENode instances and 56 SBREEdge instances.  
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Figure 5.8 : Solution quality in relation to maximum algorithm iterations of the SBRE system (package level) 

Figure 5.8 illustrates a continuous improvement regarding the SolutionQuality based 

on the best identified solution of the previous GreedyBestNeighbour algorithm 

analysis. A maximum level of solution improvement will be obtained after a certain 

number of iterations. No further improvement of the SolutionQuality will be possible 

with the current parameter configuration. To illustrate the performance of the tabu 

search algorithm with bigger systems, the SBRE system is also clustered at the class 

level. In this case the SBREGraph comprises a system with 163 nodes and 352 edges. 

Figure 5.9 demonstrates the development of the solution quality in regard to the 

increased number of maximum tabu search iterations for the SBRE system analysis at 

the class level. 
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Figure 5.9 : Solution quality in relation to maximum algorithm iterations of the SBRE system (class level) 

The plateau and lack of improvement from iteration 250 onwards can be caused by a 

variety of reasons, for example, a too short tabu list and, as a result, confinement in an 

infinite loop. A deficiency in the diversification or intensification triggering could also 

force or confine the search in a non-improving area of the search space. Also an 

insufficient selection of solution candidates of the tabu search algorithm itself could 

lead the search into non-improving areas of the search space. Finally, the reason for 

the plateau could also be that an optimal solution within the search space has been 

identified and no further improvement is possible with the current configuration. As it 

is not central to this work the reasons for this plateau have not been further 

investigated.  

Figure 5.10 assesses the runtime of the TabuSearchStrategy and GreedyBestNeighbour 

algorithm regarding “the number of artefacts” within the software system. As data 

basis is the SBRE system and the „crm domain example“ project used. Both projects 

are clustered on class and package level to broaden the data base. The clustering with 

the TabuSearchStrategy run is conducted with 100 and 1000 as the “number of 

maximal tested solutions”. The measurement of the TabuSearchStrategy runs do not 

include the runtime of the GreedyBestNeighbour, which is executed by default if no 

other initial solution is supplied. If the default behaviour is applied, the runtime of the 

GreedyBestNeighbour function would have to be added on top of the both 
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TabuSearchStrategy runtime functions. Considering this, the runtime of the 

TabuSearchAlgorithm is higher than the runtime of the GreedyBestNeighbour 

algorithm.  

 

Figure 5.10 : Algorithm runtime in relation to number of artefacts 

Figure 5.10 illustrate that the TabuSearchStrategy algorithm exhibits a runtime, which 

is smaller than a polynomial function. This contributes to the applicability of the 

TabuSearchStrategy in the field of graph partitioning, which is a NP hard problem.  

In conclusion, this section illustrated the impact of the variation of the maximal tested 

solutions on the SolutionQuality. It has been observed that the TabuSearchStrategy 

algorithm is able to improve the delivered solutions of the GreedyBestNeighbour 

algorithm. Furthermore, it could be shown that the SolutionQuality increases with the 

number of tested solution candidates, but also the runtime of the solution finding 

process increases. It depends, on the requirements of the stakeholders, if the increase 

of the SolutionQuality justifies the longer runtime of the TabuSearchStrategy. 

The TabuSearchStrategy algorithm features additional input variables, which have an 

influence on the search process. The previous section assumed a fixed length of the 

tabu list and of the idle diversification and intensification iterations. It is of importance 

for the evaluation for the first research objective whether the length of the tabu list 

influences the solution finding process. The next experiment illustrates the 

consequences of variations of the tabu list length on the SolutionQuality. 
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Evaluation Length Tabu List 

The entries of the tabu list help to prevent solution cycles confining the search in an 

infinite loop. The following experiment examines the influence of the tabu list length 

on the performance on the SolutionQuality. Thence the experiment contributes to the 

evaluation of the applicability of the TabuSearchStrategy algorithm in the area of 

software clustering. Figure 5.11 illustrates the configuration of the parameters. It can 

be assumed that a high number of tested solutions also increase the chance of 

duplicates. To combat this, the maximum tested solutions are increased to 1000. The 

idle intensification and diversification values are set at 100. The experiment is realized 

with these values and an ascending length of the tabu list from 0 to 20. In total 21 

experiment runs are conducted. The experiment addresses the effect of the variation  

for the illustrates that the length of the tabu list has an influence on the 

SolutionQuality measurement. 

 

Figure 5.11 : TabuSearchStrategy configuration of the tabu list length experiment 

Figure 5.12 illustrates the development of the solution quality in relation to the 

increase of the tabu list length. The value at -1 on the x axis represents the initial 

SolutionQuality delivered by the GreedyBestNeighbour algorithm.  
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Figure 5.12 : Solution quality in relation to the length of the tabu list 

Figure 5.13 illustrates the increasing number of rejected solutions in relation to the 

length of the tabu list. This increase aligns with the change of the SolutionQuality 

measurement from Figure 5.12. 

 

Figure 5.13 : Rejected solution candidates in comparison to the length of the tabu list 
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TabuSearchStrategy would only need a small number of iterations to find an optimal 

solution. Another explanation is that the enlargement of the search space reduces the 

risk to create the same solution again. An argument for this is that the number of 

rejected solutions did not increase to any noteworthy degree during the experiment 

process.  

In conclusion, it has been demonstrated that the application of the tabu list is able to 

prevent cycles within the SBRE system. Another finding is that a relatively short tabu 

list even in combination with a high number of maximal tested solutions can have a 

significant influence on the solution quality. In relation to the SBRE cluster example a 

maximal tabu length of six entries is sufficient to prevent the occurrence of cycles 

within a search of 1000 solution candidates. 

Evaluation Idle Diversification and Intensification Iterations 

The remaining parameters that control the TabuSearchStrategy are the “Idle 

Diversification” and “Idle intensification” parameters. These parameters feature a 

similar characteristic. Because of this, the consideration of both is consolidated within 

this section. The evaluation of these parameters adds to the second research objective 

whether tabu search is applicable in the field of software clustering. Note that it is not 

part of the research objective to examine the best parameter configuration to trigger 

the diversification and intensification process.  

The consequence of diversification and intensification is that the search does not 

proceed in the current area of the search space. Instead, the search is continued in a 

different area of the search space, which is determined by the intensification or 

diversification strategy. However, there is of course a chance that the search in the 

current search area would have identified an improved solution candidate within the 

next iterations. It cannot be determined in any absolute sense that diversification or 

intensification will improve or reduce the effectiveness of the search in any general 

sense. The optimal configuration, for these parameters, depends on the analyzed 

software system, on the other parameter configurations and also on the requirements 

of the stakeholders. The triggering of the diversification and intensification at a certain 

stage of the search can be beneficial where it leads from another state of the search 
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into improving areas of the search space. However, the objective of this research is to 

evaluate the application of tabu search in the area of software clustering, and for this 

it is sufficient to evaluate if the diversification and intensification have an influence on 

the search. Given this aim, it has to be examined, if the diversification and 

intensification processes are able to be activated and lead the search into different 

areas of the search space. This would be sufficient to demonstrate the successful 

application of diversification and intensification strategies within the SBRE tool. The 

remaining paragraph portrays the results of the experiment to examine the application 

of the diversification and intensification strategy within the SBRE tool.  

The “Idle Diversification” parameter defines the number of non-improving solution 

candidates to be tested in a row, until the diversification method is started, so as to 

guide the search into an unexplored area of the search space. From a hypothetical 

point of view there is an expectation that too low an idle number of iterations would 

not allow the algorithm to explore the area of the current search space adequately in 

order to identify improving solutions, but too high an idle number is also not beneficial 

as the algorithm could spend too long in non-improving areas of the search space. Two 

experiments with the SBRE system (at the package level) have been conducted to 

examine the influence of the diversification start point on the algorithm runtime and 

solution quality. Figure 5.14 illustrates the configuration of the first experiment. 

  

Figure 5.14 : TabuSearchStrategy configuration for the diversification experiment 

The first experiment is conducted with a maximum of 100 tested solutions. The second 

experiment tests 1000 solution candidates per experiment run. Referring to the 

previous tabu search experiment, it is important that the length of the tabu list is 
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sufficient to not bias the data collection caused by confinement in an infinite loop. The 

“Idle Diversification” parameter is increased from 2 until 150 during each experiment. 

Respectively, 149 independent experiment runs are conducted for each of the both 

experiments. As a consequence is the number of diversification runs reduced by the 

increasing of the “Idle Diversification” parameter. 

 

Figure 5.15 : Solution quality in relation to idle diversification iterations (package level) 

In line with the experiment results are the number of triggered diversification 

executions illustrated in Figure 5.16.  

 

Figure 5.16 : Number of triggered diversification runs in relation to idle diversification iterations 
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Based on these experiment results, it can be stated that the triggering of the 

diversification process changes the SolutionQuality. Furthermore, a more frequent 

triggering of the diversification reduces the SolutionQuality, which aligns with the 

expected results. However a rare execution of the diversification leads, within this 

example, to only a slight deterioration in the 100 maximal tested solution example. 

The experiment with a maximum of 1000 tested solutions finds even the optimal 

results when the diversification is not started during the search process. These results 

can be a coincidence in combination with the analysed software system or an 

insufficient design of the diversification method. Based on this, the same experiment is 

conducted at the class level of the SBRE system. The number of maximal tested 

solution candidates is confined to 1000. Figure 5.17 illustrates the results of this 

experiment. 

 

Figure 5.17 :  Solution quality in relation to idle diversification iterations (class level) 
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hypothesis regarding the different outcomes of the experiments on package and class 
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SolutionQuality. However as stated this is just a hypothesis and the examination of the 

reasons for this behaviour exceeds the scope of the present research. 

Finally as the last parameter the “Idle Intensification” has to be considered. The 

approach to intensify the search within the search space, by generating a solution that 

comprises the highest occurrence of artefact combinations, has not improved the 

identified solutions. The best results are retrieved, when the intensification 

mechanism is disabled. The collected data of these measurements can be found on the 

enclosed CD. However, even the deterioration of the frequent application of the 

intensification shows that the intensification has an effect on the TabuSearchStrategy 

solution finding process. It is noted that the intensification solution is generated and 

used as the initial solution for the continuing search. The analysis of a different 

software system could discover that the same intensification measure is applicable and 

effectuates a SolutionQuality improvement  

5.4 Evaluation of the SBRE Cluster Analysis  

As stated before, the SBRE component does not aim for a perfect solution; rather, it 

creates different perspectives and views into the software system in keeping with the 

user configuration and preferences.  

The particular strength of this research is that the search algorithm and fitness 

function adapt to the metric configuration of the SBRE component. To illustrate, the 

following experiments demonstrate the cluster capability of the SBRE component with 

a particular focus on the metric configuration of the SBRE component. In addition, the 

cluster capability of the TabuSearchStrategy algorithm is examined. The execution of 

these experiments demands the application of the main components of the SBRE 

cluster component. And these components and their interplay are then evaluated. The 

first component is the metric framework and the weighting of the individual metrics to 

focus the search on a certain perspective of the software implementation view. 

Additionally, the application of user constraints to include design knowledge into the 

cluster process is intended to guide the search into a special area of the search space. 

Finally, the use of SolutionQuality as the fitness function is involved to identify the 

optimal solution of the current search. The conduct and results of these experiments 
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are described within the next three sections. The next paragraph examines the 

capability of the SBRE component to change the cluster outcome in line with different 

metric configurations. 

5.4.1 Evaluation of Multiple Implementation Perspectives  

This section demonstrates how the application of the metric configuration enables the 

manipulation of the solution search process. The conducted experiments contribute to 

the evaluation whether a multi metric approach is able to create different 

implementation perspectives and therefore contributes to the third research question. 

These experiments are divided into two parts. The first experiment aims to examine 

the effect of the configuration of the CoN and CBO metric to derive different cluster 

landscapes of the structure of the software system.  The second section evaluates the 

capability of the multi metric approach to identify clusters, which feature a certain 

degree of deterioration.  

It is not the intent of it to determine whether one particular solution is better than 

another. This depends on the design of the metrics, the perceptions of the user and 

also the design of the analysed software system. Rather, the intent is to show if the 

approach is able to produce different cluster landscapes depending on the metric 

configuration of the SBRE component. 

Derivation of a structure using the CON and CBO metrics 

To conduct this experiment the TabuSearchAlgorithm is applied to create the 

solutions. The configuration of the TabuSearchAlgorithm is illustrated in Figure 5.18. 

 

Figure 5.18 : Configuration of the TabuSearchStrategy algorithm within the multiple view experiment 
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This first experiment run is conducted by applying the full metric weight onto the CBO 

metric whereas the second experiment run is conducted by applying the full metric 

weight onto the CON metric. The expected result is that the cluster landscape should 

change for the two runs. Additionally, the clusters in the second run should comprise 

artefacts that feature a high correlation of names. Figure 5.19 illustrates the result of 

the experiment. The cluster results are also displayed in Table 5.4. 

 

Figure 5.19 : Result of the multiple view experiment with 100% weight on the CBO metric 

The second experiment is conducted with the same TabuSearchAlgorithm 

configuration. The full weight of the CON metric is enabled and the CBO metric is 

disabled for this experiment run. The result of the second experiment run is illustrated 

in Figure 5.20. The positions of the artefacts have not been changed during the 

clustering. This implies that every artefact is visualised at the same position of the 

graph and therefore the changes in dependencies and clusters are more visible. A 

comparison of the cluster results of the previous two experiments is also visualized in 

Table 5.4. 
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Figure 5.20 : Result of the multiple view experiment with 100% weight on the CON metric 

Figure 5.20 illustrates that the clustering result changed in keeping with the 

configuration of the metric weighting, demonstrating that the metric configuration 

influences the clustering process. By examining the two figures it can be verified that 

the second configuration focuses on the similarity of names and assigns artefacts that 

feature a high CON measurement into the same clusters e.g. the artefacts 

graphManager, displaygraph, displaygraph.controls are combined in one cluster. 

These artefacts feature a dependency between each other, but they were not 

combined into one cluster in the previous experiment run, which focused on the CBO 

metric. However, it should also be noted that other artefacts that are not interrelated 

but feature high name similarity are not combined in one cluster. This is because the 

fitness function penalises the combination of artefacts that do not feature a 

dependency between each other. The assignment of unrelated artefacts in one cluster 

contributes to the total number of artefacts within a cluster, but the similarity 

between these unrelated artefacts is assumed to be zero, even if the CON measures a 

high level of similarity of names between the artefacts. This has a negative effect on 

the cluster quality measurement (compare: 4.4.2). This behaviour is beneficial in 

keeping with the assumption that only clusters which feature dependencies among 

artefacts should be identified. The converse is a situation in which interconnected 
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artefacts are combined in a cluster, yet they feature only low name similarity. Another 

reason for this obfuscation is the penalizing of heterogeneous clusters. The fitness 

function penalizes small and very large clusters to support a homogeneous cluster 

landscape. This behaviour is beneficial and necessary to deliver simple cluster 

landscapes. If a system is not designed following the corresponding metric 

configuration, the penalizing strategy obfuscates the clustering result and enables 

solutions that do not represent the configured cluster results. 

Full Weight - CBO Metric Full Weight - CON Metric 
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Table 5.4 : Comparison clustering solution with 100% weight on the CBO or CON metric 

The design of the SBRE system has not followed a strict name policy, hence the reason 

for the poor cluster result of the CorrelationOfNames analysis of the SBRE system. To 

support this assertion the „crm domain example“ project is also clustered. The „crm 

domain example“ follows a clear naming policy. The previous TabuSearchStrategy 

displayed in Figure 5.20 is applied. Because of the size of the cluster landscape only an 
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extract of the CON clustering result is displayed in Figure 5.21. The complete result can 

be reproduced applying the SBRE tool or the cluster result can be found as file on the 

enclosed CD. The outcomes of this analysis showed that the clustering landscape 

changed, depending on whether the metric configuration focused on the CBO or CON 

metric. The clustering results of the „crm domain example“ with a focus on the CON 

metric reflect a high name correlation within the artefacts of the individual clusters. 

This illustrates that the successful application of a certain metric configuration 

depends also on the design of the analysed software system. If the design of the 

analysed software system does not support the attributes of the metric configuration, 

the produced cluster landscape will also be unfeasible.  

 

Figure 5.21 : Extract of the CON analysis cluster landscape of the „crm domain example“ 

In conclusion, it has been shown in this experiment that the modification of the metric 

weighting guides the search into different areas of the search space. It is also evident 

that other factors beside the metric configuration e.g. design of the metric, design of 

the fitness function and design of the analysed software system, can all influence the 

search process and can obfuscate the result. 
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Identification of Deteriorated Subsystems 

This section evaluates if it is feasible to use SBSE-based software clustering in 

combination with metrics to identify problematic code segments at a high abstraction 

level. It is important that artefacts that are combined in one cluster feature a 

dependency connection between one another. Only a dependency between these 

artefacts acknowledges a design connection between them. This design connection is 

of relevance as an identified cluster should give an indication of an interconnected 

subsystem, signalled by a high value for the metric measurement. Only interconnected 

subsystems are relevant to estimate the strength of a metric violation within a certain 

part of the software system. The supporting idea is that the refactoring and 

elimination of two unrelated high metric measurements would be better planned as 

two independent development tasks. The GreedyBestNeighbour algorithm uses the 

dependencies between artefacts to indentify a solution. This favours the 

GreedyBestNeighbour for the implementation of this experiment. Additionally, for the 

identification of problematic artefacts it is interesting to identify the originating 

artefacts as concrete as possible. Given this requirement the experiment should be 

conducted on class level.  

The SBRE system provides two metrics that support the identification of deteriorated 

subsystems. These metrics measure aspects of each artefact: the Lines of Code and 

Number of Static Elements.  

Not all artefacts are of interest for this view so only artefacts that feature a high metric 

value should be included. The determination of the metric threshold depends strongly 

on the expectations of the stakeholders and the intention of the analysis. This 

experiment focuses on the identification of a high incidence of static elements within 

an artefact. Figure 5.22 illustrates the configuration and cluster result of the analysis. 

The metric configuration focuses completely on the measurement of the Static 

Elements. The Correlation of Names, Cohesion Between Objects and Lines of Code 

Metric are not considered for the creation of the clusters. The threshold of the Static 

Element metric is confined to six. This value has been determined by trial and error 
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and delivers a clear result for the SBRE system. A lower threshold, for example, can be 

chosen when these violations are eliminated and higher quality software is aspired. 

 

Figure 5.22 : Result of the deterioration cluster analysis with 100% weight on the static elements metric 

During this experiment four artefacts were identified as exceeding the defined 

threshold. The GreedyBestNeighbour cluster algorithm combined these artefacts into 

two clusters. One cluster comprises the Strings class of the jnumberfield package. This 

class constitutes a part of an external library, which offers external functionality for the 

SBRE system. Of greater interest is the bigger cluster which constitutes the 

MetricEngine, ClusterEngine and SBSEPositionMapper. These classes are of central 

importance for the SBRE system. As described in sections 4.3 and 4.4.4 the 

MetricEngine and the ClusterEngine represent the context classes of the encapsulated 

frameworks. In this light it is appropriate that these classes are known system-wide. 

However, instead of offering the structure and behaviour through static elements, one 

instance of the class should be available system-wide following the singleton design 

pattern introduced by Gamma, Helm, Johnson and Vlissides (1995). The same 

argument can be applied to the SBSEPositionMapper, which should also be refactored 

using the singleton design pattern. These actions should abrogate the cluster and the 

elimination of this cluster should improve the quality of the software system.  
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It would also be possible to combine different metrics to identify deteriorated 

subsystems. As described previously the SBRE system also offers the Lines of Code 

metric. The combination of these metrics with thresholds would additionally decrease 

the number of artefacts to be traversed and concentrate the search for more strongly 

deteriorated subsystems. Additionally, it is possible to extend the number of available 

node metrics to change the focus of the search. 

In conclusion, it has been shown in this experiment that the application of the Static 

Elements metric can help the user to identify deteriorated subsystems. Based on this 

knowledge a refactoring can be planned to eliminate these clusters with the intention 

to improve the quality of the software system.   

5.4.2 Evaluation of Rearchitecturing Functionality 

The aim of the following experiment is to identify a feasible and suitable structure for a 

software system after applying the clustering functionality of the SBRE component. 

This experiment applies the TabuSearchStrategy and evaluates therefore the capability 

of this algorithm to produce meaningful cluster results.  

As the analysis focuses on the rearchitecturing of the software system, the 

CohesionBetweenObjects and the Correlation of Names metric are relevant. The 

CohesionBetweenObjects is relevant, because the clustering should identify artefacts 

that feature high cohesion between each other on a design and dependency level. 

With respect to the correlation of names, it has already been shown that the design of 

the SBRE system did not follow a strict naming policy. Nevertheless, through trial and 

error it has been found that a combination of the CohesionBetweenObjects and the 

Correlation of Names metrics produces the best result to identify a structure and 

functional correlating clusters. The identified configuration is illustrated in Figure 5.23. 

This configuration considers the CON metric with fifty percent and the CBO metric with 

one hundred percent. 
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Figure 5.23 : Metric configuration of the rearchitecturing analysis 

The metric configuration therefore supports the identification of modules with high 

cohesion between each other and also takes account of the similarity of names for this 

modularisation. Utilising this approach, Figure 5.20 illustrates the subsequent 

configuration of the TabuSearchStrategy. The default parameters of the 

TabuSearchStrategy are used, with the exception that the maximal tested solutions are 

determined with 1000.  

  

Figure 5.24 : TabuSearchStrategy configuration of the rearchitecturing experiment 

Based on this configuration, the visualisation of the cluster analysis is illustrated in 

Figure 5.25. In addition to the displayed result for the SBRE cluster landscape, 

textboxes and separators have been superimposed to simplify the discussion and to 

provide an indication of the comprised functionality within the clusters. These cluster 

descriptions represent a functional interpretation of the system, but should not be 

misinterpreted as a layering of the system or architecture definition of the system. This 

interpretation is conducted by the developer of the SBRE system. 

The system has been classified into six clusters. The cluster at the top of Figure 5.25 

includes the sbse.handler package, which is called by the external Eclipse plug-in 

framework to start the application. Additionally the sourceReader package is included, 
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which has a dependency to the sbse.handler package, but does not feature similar 

functionality. 

The second cluster from the top exclusively comprises visualisation and tool packages.  

The main domain functionality of the SBRE is combined in the domain cluster. This 

comprises the cluster, metric, representation and cluster.constraints packages, which 

are known from the design and implementation of the SBRE software system. 

The cluster below pools the source code reader and graph building functionality. 

Regarding the functionality of the included packages, the sourceReader package from 

the top cluster should have belonged in the Source Reading cluster. Additionally 

smaller clusters are identified, which contain library and base functionality. These 

clusters are visualized at the bottom of the graph. 

 

 

Figure 5.25 : Solution of the rearchitecturing analysis of the SBRE component 
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It can be recognized, then, that the SBRE system is not perfectly designed. Assuming 

that the current cluster landscape reflects a sufficient modularisation of the system, 

some clusters show cycles between each other e.g. the Domain and Visualisation 

cluster (metric package -> displaygraph package -> metric package). These cycles 

reduce the independent reusability of the involved components and increase the 

complexity of the software system. Such cycles and architecture violations are a first 

lead for possible refactorings. Only the implementation of these refactorings would 

improve the quality of the software system. Additionally, it should be mentioned that 

these cycles and architecture violations misguide the cluster algorithm, as the cluster 

algorithms do not know if a dependency follows the normal dependency flow or if it is 

perhaps an architecture violation. Considering this, it is probably easier to derive an 

optimal structure from a clustered system when the system features minimal 

deterioration. This is also an argument to distribute the clustering on the 

measurement of different metrics and also consider if these measurements reflect the 

design of the system (as is done here in SBRE). The illustrated clustering result of the 

SBRE system with the focus on the Cohesion Between Objects and Correlation of 

Names did deliver a meaningful cluster landscape, which allowed the identification of 

the core modules of the system. Based on this, a first architecture definition can be 

derived – but as illustrated with examples this first solution can still be improved.  

5.4.3 Inclusion of User Domain Knowledge 

The main research question of this research is whether a user directed and semi-

automatic clustering approach can contribute to the quality of software clustering. 

Different measures have been introduced within the SBRE component to enable the 

user to control the clustering process. The SBRE tool supports the definition of 

constraints for the manual refinement of solutions. The evaluation of this measure 

contributes to the evaluation of the main research question. 

An experiment is conducted that evaluates the inclusion of user constraints in the 

cluster process. The baseline for this experiment is the cluster configuration and result 

from the previous section. As described in the previous section the sourceReader 
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package is combined with the sbse.handler package. However, from a functionality 

aspect it should be combined with the packages from the Source Reading cluster.  

To force the search into this area of the search space, two constraints have been 

formulated. The first one disconnects the sourceReader package from the sbse.handler 

package and the second one connects the sourceReader package with the 

graphBuilding package. The search then allows only solutions, which fulfil these 

constraints. Figure 5.26 illustrates the new cluster landscape.  

 

Figure 5.26 : Solution of the SBRE component with cluster constraints 

The new cluster landscape consists of just five clusters. This solution aligns with the 

defined constraints. The main clusters Visualisation, Source Reading and Domain are 

fundamentally conserved. However, the inclusion of the constraints had also some side 

effects on packages, which were not included in the constraint definition. Examples of 

this are the allocation of the activator package into the SourceReader cluster and the 

classification of the layout package into the Domain cluster. This is plausible because, 

the results of the previous search are not influencing the search with the constraints. 

The new cluster landscape can also be a good solution – although it differs significantly 

from the previous one. This seemingly undirected behaviour may confuse the user. 

Furthermore, a strongly changed solution may discourage the user from trusting the 

Source Reading 

Domain  

Visualisation 

Base  
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process. This apparently major change does not align with the idea of iterative user 

refinement of the solution, because the stakeholders would now have to understand 

and analyze the new solution and probably plan new constraints to correct the side 

effects of the last constraint inclusion. In turn, this may cause new side effects. The 

application of constraints in an interactive manner to refine a solution is therefore not 

effective as currently implemented in combination with metaheuristic algorithms. For 

a successful application of interactive solution refinement another path would have to 

be followed which aligns more with the results of the previous iteration.  

5.4.4 Cluster Analysis on Different Abstraction Levels 

Another user-directed clustering approach enabled within the SBRE component is the 

clustering of a software system on different abstraction levels. Specifically, the SBRE 

component currently provides the capability to cluster the system at the class or 

package level. This measure does provide more control over the software clustering 

process. Hence, the evaluation of this measure contributes to the evaluation of the 

main research objective, if a user directed and semi-automatic clustering approach can 

contribute to the quality of software clustering. 

The previous experiments were applied at the package level, whereas this following 

experiment depicts clustering at class level. The same TabuSearchStrategy and metric 

configuration as portrayed in Figure 5.23 and Figure 5.24 are applied within this 

experiment. Accordingly, the result of the clustering, which is portrayed in Figure 5.27, 

is comparable with the clustering result of Figure 5.25. 

The clustered SBRE system features 163 artefacts and 420 edges, with the clustering 

procedure combining these artefacts into 35 clusters. It has not been determined 

whether the created solution is meaningful in terms of the configuration. Rather, as 

intended, this experiment depicts the difference in complexity that results from the 

clustering of the same system at class and package level.  
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Figure 5.27 : Clustering of the SBRE system (class level) 

The depiction of the identified solution at class level conveys a very high complexity in 

comparison to the software system analyzed at package level. In fact it would be 

challenging to recognize or derive a structure from the class-level clustered software 

system. The reason for this is the high number of clustered edges and artefacts within 

the graph, but also the overload of the visualization and navigation component. It 

remains to be investigated whether better concepts for visualization and navigation 

exist to illustrate and structure a software system of this size. This observation 

corresponds with that of Mitchell (2002), who stated that the clustering of a system 

with more than seventy-five artefacts tends to get confusing and that it is difficult to 

derive a structure from such a system. In conclusion, the clustering at higher 

abstraction levels can hide the complexity of software systems and enables the 

derivation of a suitable structure (at that level) for larger software systems. For even 

larger systems, it may be necessary to consider yet higher levels of abstraction. For 

these systems it may be difficult to derive a structure at the package level, so 

subsystems may need to be used. 
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5.5 Comparison of the SBRE component with Bunch and Barrio 

The Barrio and Bunch clustering components had a substantial influence to the present 

research. This section emphasizes the differences of these clustering components in 

comparison with the SBRE component. This comparison contributes to the evaluation 

of the main research question, as the comparison with the Barrio and Bunch 

component delivers a benchmark for the evaluation, if a user directed and semi-

automatic clustering approach is able to contribute to the quality of software 

clustering. 

The comparison with the Barrio and Bunch framework is not a complete review of the 

functionality of these tools. Only functionality is discussed, which relates to the 

objectives of this research. The comparison of specific clustering results is not 

conducted, as all three components offer the possibility to influence the clustering 

output and as the parameterization follows different aspects the results are not 

comparable. Additionally, a comparison of specific cluster results would, in the opinion 

of the researcher, not contribute to the objectives of the present research. Within this 

section it is rather interesting, which functionality is offered by the SBRE component in 

comparison to the functionality of the Bunch and Barrio component.  

Barrio Component 

The Barrio component delivered the source code to enable an early applicability of the 

SBRE component. It contributed the “exposure of the artefacts” mechanism, the 

navigation component and partially the visualisation component. However, the Barrio 

component follows no search based cluster strategy and offers only a limited 

possibility for the user to influence the clustering. The only measure for the 

stakeholder is the separation level, which defines the minimum number of 

dependencies between two sub graphs. The separation level is certainly of importance 

for special analysis such as the identification of starting points for the decoupling of 

sub graphs. However, the measurement itself comprises also a certain degree of 

subjectivity as no other clustering criteria can be determined. In comparison, the SBRE 

component enabled the minimisation of this subjectivity by applying a multi metric 

approach. The Barrio component does not feature the inclusion of user constraints or 
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the clustering on different abstraction levels. A feature of the Barrio component is that 

the clustering result can be compared with the package structure of the system. 

Finally, no artefact ordering is suggested from the Barrio component, this reduces the 

clearness of a cluster landscape in comparison to the visualisation of the SBRE 

component, which offers an initial ordering of the cluster landscape. 

Bunch Component 

The Bunch component as a SBSE based clustering component features a similar cluster 

strategy as the SBRE component. With the difference that the SBRE component applies 

different metaheuristics (greedy and tabu search) and focuses on the examination of a 

multiple metric and user directed clustering process.  

The Bunch component, with the application of Genetic Algorithms, does not follow a 

deterministic clustering approach. As a consequence the cluster results differ with 

each attempt at the clustering. In comparison, the SBRE component utilises a 

deterministic approach. The non-deterministic approach of the Bunch component is 

confusing for the stakeholder as the user has to trigger the clustering repeatedly until a 

good solution is found.  

To conserve the extensibility of the visualisation no data exchange between the 

visualisation component and the Bunch component is designated. The Bunch 

component utilizes the external graph visualisation component dotty
2. 

The cluster process of the Bunch component is completed with the visualisation of the 

cluster landscape. This prohibits any direct user interaction with the visualized cluster 

landscape. In comparison, the SBRE component features the functionality to arrange 

artefacts, add user-constraints, use the current cluster result as an initial solution for 

the next clustering, configure thresholds, exclude artefacts and change the metric 

configuration. This interaction with the visualisation component enables the iterative 

and incremental clustering approach of the SBRE component. The disadvantage is a 

                                                      
 

2
 http://graphviz.org/ 
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strong interconnection and dependency between the SBRE clustering and visualisation 

component, which prohibits the individual employment of the SBRE clustering process. 

In retrospect, and with regards to the reduction of the metric measurements into one 

compressed dependency similarity within the SBREMetricEngine, the design of the 

SBRERepresenation, the design of the TabuSearchStrategy and the applicability of the 

CDA component, it seems to be promising that the examination of the multiple metric 

approach to create different implementation perspectives and the examination of the 

applicability of tabu search would have been also possible by applying these 

approaches in combination with the Bunch component. However, this solution would 

have prohibited an interactive, integrated and user directed approach. This means 

that, the lack of interface and communication mechanisms within the Bunch 

component between the exposure of the artefact, the clustering process and the 

visualisation component would have prohibited the adjustment of the metric 

weighting and tabu search configuration within a Bunch based solution.  

In conclusion, it can be stated that the Bunch component as a SBSE based clustering 

component follows a similar clustering approach as the SBRE component. However, 

the non-deterministic character of the GA algorithm of the Bunch component 

introduces additional complexity for the stakeholder to select the optimal solution, as 

well as making a comparison of results across different tools more complex. 

Additionally, the detachment of the Bunch clustering component and the visualisation 

prohibits the interactive manipulation of the cluster landscape. It can be stated that 

the interactive, iterative and incremental clustering approach of the SBRE component 

contributed to enable a flexible user-directed software clustering environment. This 

allows the continuing of the clustering process, where the Barrio and Bunch 

component stopped their cluster analysis. 
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5.6 Summary 

This chapter evaluated the capability of the SBRE component to cluster a software 

system into subsystems. Different aspects of the SBRE component have been 

examined. The TabuSearchStrategy and GreedyBestNeighbour algorithm are 

evaluated. A runtime evaluation of both algorithms and comparison of the runtime 

behaviour has been conducted. Furthermore, an evaluation of the TabuSearchStrategy 

parameters is implemented to examine the applicability of the tabu search concepts in 

the area of software clustering. Furthermore, the capability to adapt the clustering 

result to the metric configuration has been evaluated. It has been shown that the SBRE 

component is able to indentify interrelated clusters, which feature a certain degree of 

deterioration. Additionally, it has been shown that the SBRE system is able to identify 

the core components of the SBRE system in a special configuration of metrics. It has 

been illustrated that this modularisation can be used as a first draft to define an 

architecture definition. However, it has also been acknowledged that the SBRE 

approach will not be able to derive a complete target-architecture for a system as the 

cluster algorithms cannot distinguish between dependencies that follow the normal 

dependency flow or are architecture violations. The latter have the potential to 

misguide the clustering process. In addition, the constraint mechanism of the SBRE 

system has been applied to refine an existing cluster solution. It has been shown that 

this may result in side effects and lack accordance with a previous solution, which 

could confuse the user and therefore disqualifies the application of interactive 

constraints in combination with metaheuristic algorithms. Finally, a comparison of the 

SBRE clustering approach with the Barrio and Bunch component has been conducted. 
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6  Limitations, Future Research and Conclusion 

The following chapter answers the identified research questions, illustrates limitations, 

discusses suggestions for further research and draws a final conclusion for the 

conducted research.  

6.1 Answer of the Research Questions 

This research has applied SBSE in the area of software clustering. Based on a literature 

review in the areas software-architecture, SBSE, software-clustering and software 

metrics the research objective has been derived. Regarding the constructive and 

explorative character of this research project the SDRM was applied. The following 

three research questions have been identified and answered during this research. 

• Can a user directed and semi-automatic clustering approach contribute to the 

quality of software clustering? 

• Is tabu search applicable in the area of software clustering? 

• Does the inclusion of multiple metrics in the fitness function enable the 

clustering of a software system into multiple implementation perspectives? 

To enable the examination of the research objective the SBRE component has been 

designed and implemented. The SBRE component allowed formulated research 

questions to be addressed by conducting a range of experiments that involved the 

clustering of two software products. Based on this experimentation the findings can be 

discussed and the answers to the research questions can be addressed. The ordering 

of the research questions is changed for the answering, as the answer of the second 

and third research question also contributes to the answer of the main research 

question. 

6.1.1 Application of the Tabu Search Algorithm 

This subsection discusses the findings regarding the research question: ’Is tabu search 

applicable in the area of software clustering?’.  

Two algorithms have been designed, implemented and evaluated within this research, 

namely the GreedyBestNeighbour and the TabuSearchStrategy algorithm. These 
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algorithms are specific implementations of the greedy and tabu search metaheuristics 

respectively, and their development was informed by consideration of the research 

literature in this area.  

In section 5.4.2 it has been shown that clustering with the TabuSearchStrategy allows 

the identification of a structure of the SBRE software system. In section 5.3.1 and 5.3.2 

a performance analysis of the GreedyBestNeighbour and the TabuSearchStrategy is 

described. The results of these analyses are compared with each other. It has been 

shown that the TabuSearchStrategy algorithm is able to effectuate an improvement of 

the SolutionQuality in comparison to the best identified solution of the 

GreedyBestNeighbour algorithm. Whilst the TabuSearchStrategy demands more 

computational resources to achieve this improvement in SolutionQuality, the 

difference is insignificant when put into the context of actual use by a human software 

developer. It has been found that varying the length of the tabu list can prevent 

confinement in cycles within the SBRE tool and as a consequence enables the 

improvement of the SolutionQuality.  

Furthermore, the triggering of diversification has an influence on the search process 

and is able to affect the cluster process. It has not been investigated whether the 

applied intensification and diversification methods are optimal or if other approaches 

would lead to a better solution outcome. This would be useful future work. In this 

respect it should be noted that the actual effect of intensification and diversification 

on the search result would also depend on the analyzed software system and the 

related parameters. As such, the application of the intensification and diversification 

can be beneficial but also could negatively impact the results of the search. 

In conclusion, the TabuSearchAlgorithm as a specific implementation following the 

concepts of Glover (1989) is applicable in the area of software clustering. Additionally, 

the TabuSearchAlgorithm features a variety of parameters. The configuration of these 

parameters enables the guiding of the search and the adaption to the preferences of 

the stakeholder. This flexibility allows the user to adjust parameters and return to 

previous solutions. However, the complexity of the algorithm requires that the user 

has a good understanding of the tabu search concept in order to apply and configure 
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the algorithm efficiently. At present, there is a limited body of knowledge in the area 

of search based clustering, primarily formed by the work of Mitchell (2002), Jiang et al. 

(2007) and Seng et al. (2005). This research contributes to this body of knowledge with 

the development of GreedyBestNeighbour and TabuSearchAlgorithm, both of which 

are deterministic search based clustering approaches. The deterministic nature of both 

algorithms increases the transparency for the user and enables them to return to 

previous solutions given a particular parameter configuration. 

6.1.2 Multiple Implementation Perspectives 

The following subsection discusses the findings regarding the second research 

question: ‘Does the inclusion of multiple metrics into the fitness function enable the 

clustering of a software system into multiple implementation perspectives?’ 

To examine this research objective the four metrics Correlation of Names, Cohesion 

Between Objects, Total Lines of Code and Number of Static Elements have been 

implemented. The user can individually control the weighting of each metric which 

defines the degree of consideration given to each metric during the clustering process. 

In essence, this weighting of metrics gives the user the ability to control the nature of 

the fitness function to ensure that the clustering process is directed towards solutions 

that suit a particular set of preferences or project constraints. This is achieved because 

the metric measurements and their weights are considered by the fitness function 

when evaluating a solution. To examine the effectiveness of this approach, 

experiments have been conducted that assess whether the metric configuration is able 

to guide the search into areas of the search space that align with the metric 

configuration and hence the users preferences. 

In alignment with the research of Harman & Clark (2004) it has been shown that 

metrics are able to influence the clustering of software systems in an understandable 

and consistent way. During the evaluation it has been found that the multiple-metric 

approach is able to produce different cluster landscapes, which align with the metric 

configuration and the users preferences. This enables the stakeholder to guide the 

search into the intended areas of the search space. These intentions can exhibit 

different characteristics; examples would be to identify highly cohesive clusters within 
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the system or to isolate clusters that feature high name similarity of the included 

artefacts. It has also been demonstrated that the metric configuration can be aligned 

with the design strength of the analyzed software system. This simplifies the 

identification of feasible solutions for the cluster algorithms. For example, in some 

cluster analyses, the search can be guided to more feasible solutions if the fitness 

function focuses on the Correlation of Names metric. Other software systems feature a 

good modularity. In this case the system can be more effectively clustered by applying 

the CohesionBetweenObjects metric. A combination of metrics can also deliver an 

optimal solution, if the analyzed software system design reflects this combination. This 

optimal solution is balanced by the multi-metric approach so whilst the solution 

exhibits certain characteristics, these characteristics do not dominate the solution by 

taking them to extremes. 

It has also been shown that a multiple-metric approach is able to identify a cluster 

landscape that features components with high functional cohesion. This cluster 

landscape could be effective in enabling the user to improve their understanding of 

the software system. This system understanding, in association with the domain and 

system knowledge of the stakeholders, could provide a sound basis for an architecture 

definition. As such, this work is in agreement with the research of Mitchell (2002) in 

stating that a software clustering approach can contribute to an increase in system 

understanding and, as a consequence, deliver a basis for the derivation of an 

architecture definition. It is therefore not in agreement with the research of Anquetil & 

Lethbridge (1999b), which states that a software clustering approach is able to derive 

an architecture definition from a system, one that can then be used as an architecture 

pattern for the further development process. The reason for this is that even if a global 

optimum is identified during the search, this optimum may not necessarily align with 

the expected result of the stakeholder. This global optimum represents only the 

optimum according to the selected fitness function. It is doubtful whether a specific 

metric configuration and a selected fitness function respectively will be able to 

optimize the intended architecture of a system. Given the additional assumption that 

every software system features a certain degree of deterioration, it is even more likely 

that the global optimum will not represent the best solution for the stakeholder, as the 
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deterioration will guide the search into areas of the search space that do not align with 

the intended architecture design. Additionally, it has been evaluated that it is possible 

to identify clusters that feature a high occurrence of threshold violations. This enables 

the user to identify “code smells” on an abstract level. These “code smell” clusters can 

be considered for the planning of refactorings. 

In conclusion, it can be stated that a flexible multiple metric approach supports the 

adaptation of the search to the preferences of the stakeholders and to the design and 

characteristics of the analyzed software system within the implementation 

perspective. But the success of a metric configuration to gather the intended structure 

of the software system depends also on the quality of the design of the software 

system.  

6.1.3 User Directed Software Clustering 

This subsection discusses the findings regarding the main research question ‘Can a user 

directed and semi-automatic clustering approach contribute to the quality of software 

clustering?’. 

Within section 3.2 it has been emphasised that the term ‘quality of software clustering’ 

within this work focuses on the feasibility of the identified solution and the flexibility of 

the clustering process. The SBRE component features four mechanisms to enable the 

user to control the clustering process. 

The first is the adjustment of metric weights to guide the search into the intended 

areas of the search space. The applicability of this approach is discussed in the 

previous section. 

It has been shown in section 5.4.1, that the configuration of the metric configuration 

allows the clustering result to be aligned with the preferences and requirements of the 

stakeholders. This approach increases the feasibility of the solution in relation to the 

requirements of the stakeholder. This feasibility is based primarily on the minimization 

of subjectivity and the elimination of dependence on just one fixed measurement 

when identifying a cluster solution, and hence a more balanced solution can be 

determined. 
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The second user-directed mechanism is the capability for the user to adjust 

parameters of the TabuSearchStrategy algorithm, which enables the user to adapt the 

search process to the requirements of the search and the analyzed software system. 

Clearly not all software systems are similar, depending on their size and structure 

different parameters will guide the search to better results. It has been shown in 

section 5.4.1 that the configuration of the TabuSearchStrategy algorithm is able to find 

different clustering results, depending on the algorithm configuration. Regarding this, 

the opportunity to configure these parameters increases the flexibility of the clustering 

approach and affects the search. However, the necessity to configure the parameters 

of the TabuSearchStrategy algorithm increases the complexity of the clustering in 

comparison to the application of the GreedyBestNeighbour algorithm and forces the 

user to have a good understanding of the tabu search concepts. Additionally, the 

transparency and effect of the intensification and diversification triggering is not clear 

for the user, as the success of the triggering depends also on the analyzed software 

system and the configuration of the other tabu search parameters. 

The third mechanism is the facility to include user constraints. This mechanism enables 

the user to include domain knowledge into the clustering process. It has been shown in 

section 5.4.3 that user constraints are applicable to force the metaheuristic algorithms 

into certain areas of the search space. One could say that already the fulfilment of this 

technical requirement increases the quality of the clustering result as the result 

features the user constraint. However, it has also been shown that the inclusion of 

user constraints influences the clustering of the remaining artefacts. These side effects 

increase the complexity imposed on the user in terms of their understanding of the 

new clustering result and destroy the recognition value from the previous solution. 

Finally, the last user directed approach examined the clustering on different 

abstraction levels. Except from the illustration of the clustering on class level in section 

5.4.4 and the identification of deteriorated subsystems in section 5.4.2, every 

experiment is conducted on package level. The experiment in section 5.4.4 shows that 

the clustering of the SBRE system on class level features a high degree of complexity. 

Hence it is hard to identify system structures. The clustering on package level within 
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bigger systems contributes to the understandability of the cluster landscape and 

simplifies the derivation of a structure. The novelty of this approach is the contribution 

of the multi-metric approach to the clustering on different abstraction levels. The 

metric values are compressed from the class into the package level depending on the 

metric type. Regarding this, the approach does not only reduce the amount of 

artefacts, it also incorporates the measured metric values and therefore also enables 

the clustering on package level with the inclusion of a multi metric approach. 

The clustering of smaller software systems on class level could be beneficial, even if it 

is questionable if the need exists to cluster small software systems. Furthermore, for 

the derivation of deteriorated subsystems, the clustering on class level is beneficial. 

Here the number of artefacts to be clustered is reduced by the inclusion of thresholds.  

In light of the results presented in this research, no firm conclusion about whether  a 

user directed approach increases the quality of software clustering can be made. Each 

aspect used in the clustering process can only be evaluated individually in terms of 

how it influences the end result. Additionally, the developed mechanisms are only 

examples for the possibilities of user directed approaches. Certainly, further user 

directed approaches are imaginable to give the user more control over the clustering 

process.  

But it can be stated that the application of certain user directed clustering approaches 

has the potential to increase the quality of the clustering results in comparison to 

other zero- or single-measurement-based approaches. Further work is necessary to 

quantify this improvement across a broader range of experiments. However, it should 

be noted that the flexibility gain is accompanied by an associated increase in the 

complexity of the clustering configuration. The user requires a good knowledge about 

the domain and architecture of the software to effectively use the described 

functionality to guide the search process.  

Additionally, to effectively manage the application of specialised algorithms, e.g. the 

TabuSearchStrategy algorithm, a high level of understanding of the method of 

operation is required. Furthermore, it remains the position of this research that the 
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variety of solutions and requirements within the area of software clustering are so 

complex that a fully automated approach would lead to unsatisfactory results and 

cannot fulfil all user requirements. In contrast, a manual approach requires many 

decisions to be taken, which increases the complexity of the clustering. Hence, it can 

be stated that the flexible combination of semi-automated or user-directed clustering 

and the capacity for user adjustment represents the most promising approach. It 

enables the user to decide if a quick solution is preferred, without the necessity of user 

configuration, or if a more specialized solution is needed, which requires the inclusion 

of domain-knowledge and the alignment of the available metrics. 

6.2 Limitations 

This section describes the limitations of the research that has been conducted. This 

research project is applied in an experimental environment. The evaluation of the 

developed approach is only conducted with a small set of test data, which was mainly 

the SBRE system itself. This has shown the applicability of a user directed SBRE based 

approach in the area of reverse engineering, but does not feature sufficient scale or 

variety to allow a general statement to confirm if this approach is also feasible for 

other software systems, which exhibit a different structure and size. Furthermore, the 

SBRE system is restricted to the analysis of Java systems. This restriction is based on 

the application of the Eclipse environment and the application of software metrics 

which are only able to analyze Java code. 

As described in section 4.2, the SBRE component applies the CDA component to 

extract the dependency graph of the analyzed software system. A substantial part of 

current software frameworks(e.g. EJB (3.0+), Spring, PicoContainer  for Java systems or 

Spring.Net) feature a concept called dependency injection. Dependency Injection is a 

design pattern, which allows reducing the dependencies between components and 

objects in object oriented systems. Dependency Injection is an application of the 

Inversion of Control (IoC) principle and can be understood as a generalization of the 

factory method approach. Dependency Injection assigns the responsibility for the 

creation and the linkage from objects to an external framework. Through this 

assignment the source code is removed from its environment and from the specific 
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implementation of the classes. The CDA component does not consider dependencies 

which are injected by inversion of control frameworks. Regarding this the SBRE 

component cannot analyze software systems that feature dependency injection. 

6.3 Future Directions 

This section describes some suggestions for the extension of this research project and 

opportunities for future research directions are indicated. 

This work illustrated the applicability of the tabu search algorithm in the area of 

software clustering. It has been examined that the tabu search concepts and 

parameters are influencing the solution finding process within the area of software 

clustering. The main tabu search concepts (e.g. tabu list concepts, intensification and 

diversification) have been implemented in a very basic manner. The results of the 

intensification and diversification approach were poor within the conducted 

experiments. It would be a point of further research to examine if these approaches 

are feasible or if better concepts are imaginable. Furthermore, it would be interesting 

if a correlation exist between an optimal tabu search parameter configuration and the 

characteristic of the analyzed software system.  

It could also be considered to apply statistical and random approaches, which would 

break the deterministic character of this research, but also have the potential to 

discover better solutions.  

It has been shown within this research that it is possible to create different 

implementation perspectives for a software system by applying software metrics. The 

chosen metrics represent only a very small compendium of the available metrics. 

Especially, the approach to include metrics that measure attributes of the artefact 

itself opens a variety of possibilities for the application of other metrics. It would be 

interesting to further investigate the capability and benefits of the identification of 

abstract refactoring units. However, it should be recognised that including additional 

metrics does increase the complexity of choosing how each metric should be applied. 

As shown within the present research the developed fitness function features some 

limitations, which does not allow exploiting the full capacity of a user directed 
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clustering approach. The aim within this research was to implement a fitness function 

which selects feasible solutions and supports the examination of the research 

objective. As described, the fitness function does not consider the similarity of 

artefacts which do not exhibit a dependency between each other. This anticipates the 

clustering of artefacts which do not feature an interrelation between each other. It 

would be interesting to investigate if the clustering of non-dependant artefacts allows 

deriving clustering landscapes which provide meaningful cluster information for the 

stakeholders. Another qualification of the fitness function is the penalization of small 

and big clusters. During the design and implementation phase the fitness function 

selected solutions which exhibit a high degree of homogeneity. These solutions were 

hard to understand and infeasible for the analyses of software systems. Based on this, 

a penalizing strategy was introduced to create more homogeneous solutions. This 

approach improved the solution finding process and created solutions, which were 

easier to understand. But especially, if the design of the analyzed software system 

does not align with the aim of the metric configuration, this penalizing strategy forces 

the search into areas of the search space which do not reflect the aim of the metric 

configuration. It would be interesting to examine if a more flexible configuration of the 

fitness function would allow better adaptation of the search to the requirements of 

the stakeholders. Finally, the evaluation has been applied in a very small scope. The 

next step would be to apply the SBRE approach within larger environments and 

conduct software cluster analysis outside of these experimental conditions. 
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6.4 Conclusion 

At the beginning of this research has been stated that within the past forty years no 

approach has arisen to confine the software crisis. Therefore the problem still exists as 

to how to control and maintain non trivial software systems. Certainly, the presented 

approach is not the only possible solution to confine the software crisis, or indeed 

solve the software crisis in its entirety. But it has been shown that the proposed 

approach has the potential to help development stakeholders to create abstract 

perspectives of the system structure. This is the key contribution of this work to the 

body of knowledge in this field. The SBSE based clustering approach can help these 

stakeholders to gather information about the software system, which can be utilized 

for the further development, design and maintenance of the system. This increase of 

understanding of software systems can contribute to the confinement of software 

deterioration and therefore potentially enhance the efficiency of the software 

development and maintenance processes. 

The novelty of the presented approach is the focus on the user directed clustering. This 

approach allows the alignment of the clustering with the requirements of the 

stakeholders and the design of the software system. A variety of user directed 

measures have been introduced and evaluated within this research to enable the 

stakeholder to influence the clustering process without being occupied with trivial 

clustering tasks.  It has been found that user directed clustering approaches have the 

potential to contribute to the quality of software clustering in comparison with other 

non-interactive and non-user directed approaches. As shown during the present 

research this increases the application area of the clustering approach and removes 

subjectivity of the clustering process. Finally, it can be stated that this research 

illustrated the feasibility of a user directed and interactive SBSE based clustering 

approach and reported on the benefits for development stakeholders. The next step 

would be the enlargement of the conducted research to evaluate the applicability 

outside of an experimental environment. 
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Appendix A: CD – Enclosure 

The enclosed CD embodies the following content: 

The Eclipse framework including the SBRE plug-in 

The folder ‘eclipse’ contains an Eclipse Ganymede V. 3.4.2 that includes the SBRE plug-

in. The Eclipse version can be copied on a computer that operates with the Windows 

Vista or the Windows XP operating system. After starting the Eclipse IDE, by executing 

the eclipse.exe executable and selecting an Eclipse workspace, the SBRE plug-in can be 

started by pressing the ‘Search Based Reverse Engineering’ label in the top menu.   

The Evaluation Workspace 

The folder ‘sbre_workspace’ contains the workspace, which was used for the 

evaluation of the SBRE component. It contains the source code of the SBRE 

component.  

Evaluation Results 

The folder ‘evaluation_data’ contains the results of the experiments, which have been 

conducted during the present research. 


