
X R D S • F A L L 2 0 1 8 • V O L . 2 5 • N O . 156

feature

Computing is still a young discipline with new topics emerging
daily, spawning an extended family of disciplines, which makes
negotiating a curriculum an inherently fraught process that
will not meet everybody’s needs.

By Tony Clear
DOI: 10.1145/3265905

A ny academic discipline is by nature a rather arbitrary thing. It is shaped by key
leaders who define professional or curriculum boundaries that selectively address
the topics of the area. They prescribe what is in and what is out, and thereby serve to
exclude many topics and groups of people.

For instance the ACM/IEEE curriculum for computer science reflects a broad range of CS
topics, but only a very narrow view of computing [1]. Computing is still a young discipline
with new topics emerging daily. It could be better thought of as a family of disciplines,
which encompass not only the topics that are the focus of academics, but those that are the
focus of professionals in the field.

For me the idea of a “computing dis-
cipline family” is a more productive and
inclusive way of answering the ques-
tions “what is a computer scientist?”
and “what is the curriculum that should
be taught?” In an attempt to answer
those questions here, I will take you
through some of my own experiences
in education, in industry as a comput-
ing professional, and in academia as an
educator, researcher, and developer of
computing courses and curricula.

The term “impostor syndrome” is
given to the case where people don’t feel
they really belong in a role, or are not
as expert in their field as those around
them may think, and live in fear of be-

ing caught. Many of us in computing,
with its often overly critical mindset,
suffer from impostor syndrome. So if
you feel a bit excluded or ignorant at
times, don’t worry—the field is enor-
mous and ever changing. You will never
know everything. And those who are
insecure enough to have to boast about
their prowess and arrogantly put others
down, probably don’t really know that
much. It’s merely important to be open
to learning and be able to acknowledge
what you don’t yet know.

My own career in computing has
been atypical. I began with an under-
graduate arts degree in Latin and Eng-
lish language, I then went on to study

for my master’s degree. After a period
in high-school teaching, I went into in-
dustry in 1979, being trained through
a combination of block courses and in-
house training as a COBOL program-
mer and systems analyst. I then took
on progressively more senior roles in
software development. Besides COBOL,
we used languages such as TPS and
MPS (effectively assembly languages in
small Olivetti data-capture terminals,
octal machines with 1.5KB of program-
mable memory); then LIMO, the assem-
bly language for the Olivetti banking
terminals that had 24KB memory in
addition to the operating system rou-
tines, which you had to be careful not

The Arbitrary
Nature of
Computing Curricula

Im
ag

e
by

 R
ad

ac
hy

ns
ky

i S
er

hi
i

X R D S • F A L L 2 0 1 8 • V O L . 2 5 • N O . 1 57

P
ho

to
 C

re
di

t T
K

X R D S • F A L L 2 0 1 8 • V O L . 2 5 • N O . 158

feature

Professor John Hughes of UTS in Syd-
ney—a wonderful scholar, colleague,
Ph.D. supervisor, and friend—who was
for a time our Head of School, and wide-
ly versed in computing curricula from
his Australian and global experiences.
The process involved reviewing other
curriculum models; identifying trends
in the discipline and profession; relat-
ing those to our research and teaching
strengths; liaising with our industry
advisory committee to align our direc-
tions with pressing needs, and to see
what the demand for such graduates
would be; determining with colleagues
the desired graduate profiles for each
major; and charting a suitably challeng-
ing and tailored sequence of core and
major specific courses.

As a university of technology, our
courses tend to have a stronger prac-
tical dimension and closer industry
alignment than other universities may
choose. However, John and I were both
comfortable with that and sought to
have our university produce employable
and productive professional graduates
with the awareness, adaptability, and
insight to make a broader and ongoing
contribution to society. But our research
strengths were also drivers for curricu-
lum initiatives, with the computational
intelligence major later added, reflect-
ing the school’s strengths in knowledge
engineering,1 as well as various forms
of artificial intelligence and a software
engineering major added into the Bach-
elor of Engineering (Hons) degree.

Research interests have tended to
more strongly drive the postgraduate
curriculum though. The initial concep-
tion of our master’s degree (originally
a Master of Information Technology,
and now a Master of Computer and In-
formation Sciences) was to combine
technical up-skilling and professional
tracks, underpinned with a strong re-
search dimension. We aimed to cater
to students wishing to move up in their
professional careers into leadership
roles, or higher research studies. The
professional track therefore included
managerially focused courses such
as “Information Technology Strategy
and Policy” and “Service Relationship
Management.” Research methods was
a core initial course, where we aimed

1	 www.kedri.aut.ac.nz

cipline. But with the continual growth
in computing curricula and expansion
of the discipline (e.g. new curricula for
data science and cybersecurity), a new
version of the overview report is under-
way, due to come out in 2020.

Defining the discipline of comput-
ing (not to mention gaining agreement
on any definition) is very difficult. In his
2014 book, The Science of Computing:
Shaping a Discipline, Matti Tedre noted
the tripartite origins of computer sci-
ence drawing simultaneously from sci-
ence, mathematics, and engineering [3].
But it can be more widely viewed too. In
a 1997 report on historical perspectives
on the computer science curriculum,
we talked of computing from a multi-
plicity of perspectives [4]. These further
included: computing as literature and
computing as an artistic endeavour,
computing as a social science, anthro-
pology and computing, computing as
politics, and computing as interdisci-
plinary. These may seem a very broad
collection, but as we see the scope and
range of computing related disciplines
grow, deciding what is core computing
becomes harder.

At my own institution, Auckland Uni-
versity of Technology in New Zealand
(which follows the U.K. three-year bach-
elor’s degree model, and a four-year
Bachelor of Engineering with Honours
degree) we have a broad undergraduate
degree in computer and information sci-
ence. That includes majors in computer
science, software development, compu-
tational intelligence, networks and se-
curity, IT service science, and analytics.
I was involved in creating the curricu-
lum for most of these majors starting in
2001. Initially we worked with the late

to overwrite when you wrote your code;
and then CREDIT (a combination of a
COBOL and assembler type language)
for a later Philips version of the termi-
nal controllers. We used ICL machines
with a version of the IBM 360 assembler,
Fujitsu and IBM mainframes, CICS-
COBOL, as well as various file types,
databases, networks, and protocols. I
managed software developers writing
code supporting packaged software
and system programmers support-
ing operating systems. I also became
embroiled in a major project failure
aiming to replace our banking system,
which gave me prematurely grey hair
and a great understanding of runaway
projects, including how to rescue some
dignity from the ashes. After the nth re-
structure and change of ownership at
the bank I then worked for, I decided I
was not a banker and joined academia,
where my industry skills and manage-
ment experience were valued. But even
so, I had to start from scratch and study
for a further master’s and then Ph.D. in
computer and information sciences to
become credentialed as an academic.
In today’s academy, I would probably
not be hired!

So my views on computing curricula
originate from a hybrid practitioner and
pragmatic perspective, and tend not
to see the hard line that academia has
historically drawn between computer
science and information systems dis-
ciplines, largely based on their origins
in engineering and business schools
respectively.

The ACM curriculum overview re-
port in 2005 did a nice job in depicting a
continuum of engineering and comput-
ing disciplines from those closer to the
hardware and the machine (electrical
engineering and computer engineer-
ing), those in the middle (computer sci-
ence and software engineering), and
those closer to the organization and
the people (information technology
and information systems) [2]. Howev-
er, I tend to disagree with the report’s
depiction of information technology,
as a bit muddled (given the nature of
networking for instance as close to the
machine), and presenting a very U.S.-
centric perspective. In Australia and
New Zealand for instance, information
technology is more of an umbrella term
for the industry, not a subset of a dis-

We need to be aware
of the considerable
power that lies in the
hands of a computer
scientist or software
engineer, and the
need to responsibly
wield that trust.

X R D S • F A L L 2 0 1 8 • V O L . 2 5 • N O . 1 59

els of hugely powerful tech companies
like Google, Facebook, and Amazon.
New technologies are raising increas-
ingly thorny ethical and privacy issues,
which will constrain what they may
do and even challenge their right to
exist. One could, for instance, argue
their huge data repositories should be
handed over to a neutral third party to
curate. Data access could be allowed by
data guardians only on a permissions-
based model, where the users have the
right to decide how to share the sensi-
tive data that carries traces of their ev-
eryday lives. Such sharing could also
come with a micro-payment option, for
each fragment of personal data shared
with a tech behemoth, so the value de-
rived is shared more equally.

A computing curriculum that still
develops the needed technical capa-
bilities, but with a much stronger focus
on philosophical, ethical, cultural and
human concerns may well be what is
needed to produce tomorrow’s soci-
etally acceptable computer scientist (of
whatever flavor).

References

[1]	 Joint Task Force on Computing Curricula, ACM and
IEEE Computer Society. Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. 2013.

[2]	 ACM/IEEE-CS Joint Task Force for Computer
Curricula. Computing Curricula 2005: The Overview
Report. 2005.

[3]	 Tedre, M. The Science of Computing: Shaping a
discipline. CRC Press, Boca Raton, FL, 2014.

[4]	 Goldweber, M. et al. Historical perspectives on the
computing curriculum - Report of the ITiCSE’97
working group on historical perspectives in
computing education. In The Supplemental
Proceedings of the Conference on Integrating
Technology into Computer Science Education:
Working group reports and supplemental
proceedings (ITiCSE-WGR ’97). ACM, New York, 1997,
94-111.

[5]	 DeMarco, T. and Lister, T. Peopleware: Productive
projects and teams. Addison-Wesley, Boston, 2013.

Biography

Tony Clear is an associate professor within the School
of Engineering, Computer and Mathematical Sciences
at Auckland University of Technology. His research
interests are in computer science education, global
software engineering, collaborative computing, and global
virtual teams. He holds positions as an associate editor
for ACM Transactions on Computing Education (TOCE),
Computer Science Education and ACM Inroads (for which
he is also a regular columnist). He is active in research
within the software engineering and computer science
education communities. Tony has chaired or served on
the programme committee for conferences such as
ICGSE, EASE, ITiCSE, ICER, ACE, FIE, LaTiCE, CITRENZ,
APRES, ECIS, and SIESC, and reviewed for journals such
as TSE, IST, JSEP, IJEE, and CLEIej. He supervises and
has examined doctoral students in global software
engineering and CS education topics, and has chaired or
participated in several doctoral consortia.

© 2018 Copyright ACM 1528-4972/18/09 $15.00

to enable our students to read and un-
derstand the literature, the research
process, and the wide range of different
approaches to undertaking research in
the computing field. Many courses had
a “CS-plus-x” flavor reflecting the do-
mains in which our professors conduct-
ed their research: geo-informatics, bio-
informatics, neuro-informatics, health
informatics, artificial intelligence and
robotics, nature inspired computing, IT
security, data warehousing, data min-
ing, requirements engineering, and
user-centred design. In my own case,
I developed a course in collaborative
computing.

Many of these courses significantly
expand on a narrow vision of computer
science, address the needs of profes-
sionals in the field, and reflect the
wider and expanding family of sub-
disciplines. We have since created ad-
ditional and more specialized master’s
degrees in digital forensics, service
oriented computing, and health in-
formatics. But I can see this being an
ongoing debate, whether specialized
or more general postgraduate degrees
have more merit. Of course there is an
accompanying debate over whether
more broadly educated or specifically
trained graduates have greater merit.
There is much talk now of T-shaped
individuals, i.e. those with a depth of
expertise in one area (e.g. software de-
sign) complemented by a breath of per-
spective across many areas (e.g. user
experience design, requirements en-
gineering, negotiation, ethical aware-
ness, technical writing, test driven de-
velopment, product strategy, domain
knowledge, release planning, estimat-
ing, costing, and business case devel-
opment). In a way, this echoes current
political debates over the merits of in-
creasing the number of science, tech-
nology, engineering, and mathematics
(STEM) discipline graduates, over and
above those from the humanities.

On this topic, based on my own edu-
cation, I clearly favor a hybrid approach,
but I grew up in an era when I had the
luxury of being able to make such a
choice. University education in New
Zealand’s egalitarian society was then
largely free to those with the ability to
study, and only some 5 percent of the
population went to university. While
attending this year’s International

Conference on Software Engineering
(ICSE), it was especially gratifying to
hear Margaret Hamilton—a pioneer-
ing software engineer who wrote the
safety critical code for NASA’s early
space missions—recall that among the
varied people NASA employed were sev-
eral philosophers and artists who made
wonderfully creative programmers.2

In concluding these reflections, I
turn to the debate at the recent Interna-
tional Conference on Global Software
Engineering (GSE): Is there a continu-
ing need for a specialized conference on
GSE? The arguments revolved around
whether GSE was now the new normal
for all software engineering. But one
theme that came through strongly was
the need to consider the people aspects
in computing in a global context, and
to what extent the wider software en-
gineering discipline had fully grasped
that point. Tom De Marco’s 1987 book
(now in its third edition) addressed this
issue in software engineering directly,
coining the term “peopleware,” so the
notion that people are important in
software is far from new [5]. To think
about it simply, we develop software
with people in teams, and we develop
software to serve the needs of people.
A wholly technically defined science of
computing that omitted this critical re-
ality would be a dismal one indeed and
would carry its own dangers. We need
to be aware of the considerable power
that lies in the hands of a computer
scientist or software engineer and the
need to responsibly wield that trust.

Already we are seeing challenges to
the technically defined business mod-

2	 http://bit.ly/2Ml1B4A

As we see the
scope and range of
computing related
disciplines grow,
deciding what is
core computing
becomes harder.

