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Abstract

In 2003, Pomeroy et al. published a research study that described a gene expres-

sion based prediction of central nervous system embryonal tumour (CNS) outcome.

Over a half of decade, many models and approaches have been developed based on

experimental data consisting of 99 samples with 7,129 genes. The way, how mean-

ingful knowledge from these models can be extracted, and how this knowledge for

further research is still a hot topic. This thesis addresses this and has developed an

information method that includes modeling of interactive patterns, important genes

discovery and visualisation of the obtained knowledge. The major goal of this thesis

is to discover important genes responsible for CNS tumour and import these genes

into a well structured knowledge framework system, called Brain-Gene-Ontology.

In this thesis, we take the first step towards finding the most accurate model for

analysing the CNS tumour by offering a comparative study of global, local and

personalised modeling. Five traditional modeling approaches and a new personalised

method – WWKNN (weighted distance, weighted variables K-nearest neighbours) –

are investigated. To increase the classification accuracy, an one-vs.-all based signal-

to-noise ratio is also developed for pre-processing experimental data.

For the knowledge discovery, CNS-based ontology system is developed. Through

ontology analysis, 21 discriminant genes are found to be relevant for different CNS

tumour classes, medulloblastoma tumour subclass and medulloblastoma treatment

outcome. All the findings in this thesis contribute for expanding the information

space of the BGO framework.
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Chapter 1

Introduction

1.1 Research Background

The human brain controls the central nervous system (CNS), by way of the cranial

nerves and spinal cord, the peripheral nervous system (PNS) and regulates virtually

all human activity (Richard, 2000). The study of how brain functions can be ex-

tremely difficult. For example, the human brain contains roughly 100 billion neurons,

each links to as many as 10,000 other neurons. With advanced software program and

modeling algorithms, we could simulate some of brain function and gene regulatory

network (Serruya et al., 2002). Such systems could contribute in many research ar-

eas including artificial intelligence (AI) and brain-related disease diagnosis. However,

the rapid growing data and disparate data sources in the related area are bringing

out a new challenge to acquire, represent maintain and share knowledge from large

and widely distributed data resource.

In 2007, KEDRI research team published the first version of Brain Gene Ontol-

ogy (BGO) system (Kasabov et al., 2007, 2008). It focuses on the integration of

human brain information from different disciplinary domains such as neuroscience,

bioinformatics, genetics, computer and information science. BGO is completed as an

ontology-based knowledge framework system, which is usable by both computers and

users. Based on the ontology knowledge framework, users could trace the rich infor-

mation space of brain functions and related diseases, brain related genes and their

activities in certain parts of the brain and their relation to brain diseases (Kasabov
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et al., 2007, 2008). BGO is further discussed in Chapter 3. As part of brain gene

ontology development, this thesis focuses on knowledge discovery between the genes

and cancer diseases that occur in the central nervous system (CNS).

1.1.1 CNS Tumours

The CNS controls the five senses (smell, touch, taste, hearing and sight), movement,

as well as other basic functions of our body, including heartbeat, circulation, and

beathing (Anthea et al., 1993). The spinal cord consists of nerves that carry infor-

mation to transform between the body and the brain. CNS tumours are the most

feared cancers. Although cancers involving the CNS can cause pain, substantial dis-

ability and even death, they attack the body whereas CNS tumours cause seizures,

dementia, paralysis and aphasia that attack the self (Lisa et al., 2002).

Based on statistics of American Society of Clinical Oncology (ASCO), until 2008

approximately 3,200 central nervous system tumours are diagnosed each year in chil-

dren under the age of 20. About 800 of these are considered benign (non-cancerous)

tumours (Oncology, 2008). In America, central nervous system tumours are the

second most common childhood cancer, after leukemia.

For the diagnosis of CNS tumour (Oncology, 2008), doctor may suggests to use one

or more following tests:

• Computed tomography (CT or CAT) scan creates a three-dimensional

picture of the inside of the child’s body with an x-ray machine.

• Magnetic resonance imaging (MRI) uses magnetic fields, not x-rays, to

produce detailed images of the brain and spinal column.

• Biopsy is the removal of a small amount of tissue for examination under a

microscope.

The traditional treatments focus on surgery, radiation therapy, and chemotherapy.

Both of diagnosis and treatment may occur several side effects such as anaemia,

fatigue, alopecia, mucosities and nervous system disturbances (Oncology, 2008).



1.2. Motivation 3

All of cancer diseases arise with gene mutation that will result as DNA damages. If

we could model the these genes and define the cancer related ones, we are able to

find a way to cure these genes. It will not only reduce the side effects to patient from

the treatment, but also increase the opportunity of patient to survive.

1.1.2 Microarray Study on CNS Tumours

The microarray technology is a newer method of monitoring expression levels for

thousands of genes simultaneously. We could apply several computational algo-

rithms to model gene expression data. Currently, the microarray data has been

used in many research areas, such as genome annotation, gene expression analysis,

regulation anaylsis, protein expression anaylsis, analysis of mutations in cancer, pre-

diction of protein structure and modeling biological systems. It has been reported

to be able to produce highly accurate result in clinical decision making in complex

disease diagnosis such as (Petricion, Ardekani et al., 2002; Zhu, Wang et al., 2003).

Microarray technology is thus considered as a revolution for knowledge discovery in

human disease(Schena, 2002).

Pomeroy et al. (2002) firstly published the CNS related microarray study based on

the data, that contains 99 sample with 7,129 genes. Their results have shown that

the clinical outcome of children with medulloblastomas is highly predictable based

on gene expression profiles of their tumours. This thesis also uses the Pomeroy’s

data to conduct the anaylsis.

1.2 Motivation

Over last half decade, Pomeroy’s data has been so far extensively studied. And many

models have been developed using this data. All these models can be classified into

three major categories including global, local and personalised modeling. However,

many proposed models do not have the ability to provide reliable information of the

patients who require individual therapy schemes. In addition, most of researches

focused on the performance of modeling algorithms. This leaves us a open question

as to which genes are related to CNS tumours. These issues and question motivate

us to deliver two major contributions that are presented as following:
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1. It is reveal in empirical research that personalised modeling has been reported

efficient for clinical and medical applications of learning system. Because its

focus is not only on the model, but also on the individual sample. This thesis

is offering a comparative study of major modeling and approaches of CNS

cancer diagnosis. This study applies a newer personalised modeling method

- WWKNN and several major algorithms from global, local and personalised

modeling approaches.

2. In microarray based cancer diagnosis, one fundamental tasks is the performance

of computational algorithm. The other task is to find the reusable knowledge

from the experimental results. This thesis pays more attention on the reusable

knowledge discovery. All the discovered knowledge will be imported into the

large information space of BGO for the future researching and teaching.

1.3 Organisation of the Thesis

The organization of the thesis is as follows:

Chapter 2 reviews several widely-used computational algorithms, including multi-

layer perceptron (MLP), support vector machine (SVM), evolving classifier function

(ECF), k-nearest neighbours (kNN), weighted k-nearest neighbours (WKNN). We

then discuss a typical procedure of microarray data analysis which includes normal-

isation, gene selection, cross validation and microarray classification. Three case

studies on gene expression analysis of central nervous system tumours are reviewed

at the end of this chapter.

Chapter 3 provides a literature review of ontologies. Five main components of on-

tology presentation and Web-based ontology language (OWL) are discussed. Two

ontology systems are discussed as well.

Chapter 4 presents a detailed procedure of the proposed experiment. A newer per-

sonalised modeling algorithm, weighted-weighted K nearest neighbour is introduced.

However, I address the limitation of WWKNN on the multi-class problem. The two

approaches of multi-class classification are developed. One is the layered thresh-

old. The other one is One-vs.-All (OVA) sheme WWKNN. The OVA scheme is also
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applied on the gene selection method in this study. Finally prototype of the CNS

ontology framework is described.

Chapter 5 summarise the experimental results obtained from six proposed classifica-

tion methods (MLP, SVM, ECF, kNN, WKNN and WWKNN) on Pomeroy’s data.

The best results from each modeling approaches are compared as well. This chapter

also discusses different classification performance from two different approaches of

WWKNN.

Chapter 6 presents the discriminant genes discovery of using the CNS ontology sys-

tem and WWKNN modeling. Several statistical techniques have been applied for

analysis. All the discriminant genes are imported into both CNS ontology and Brain

Gene Ontology system.

Finally, Chapter 7 contains the conclusion of this thesis as well as the areas identified

for future research.



Chapter 2

Computational Modeling and

Gene Expression Studies: A

Literature Review

The knowledge discovery approaches to the area of data analysis and decision support

system can be divided into two main modules: ontology, knowledge-based module

and computational modeling module (Kasabov, 2006). Ontology module displays a

higher ability to structure and represent the relationship between objects. Modeling

module on the other hand uses the special skills to produce reliable and useful results.

Both modules evolve through continuous learning from new data. Produced outputs

of the modeling can be added to the ontology thus enriching its knowledge base

and facili-tating new discovery. This chapter gives an overview of modeling in the

field of data analysis. Firstly we discuss two reasoning approaches (e.g. induction

and transduction) as the main theory of modeling methods with the description

of global, local and personalised modeling approach. For each modeling approach,

we explain several representative algorithms. Since this research involves the study

of gene expression modeling, we will briefly reviews the microarracy gene expression

data analysis. We then conclude on previous studies on brain tumour gene discovery.
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2.1 Modeling

The word “modeling” comes from the Latin word modellus. It is well known that

by 2.000 BC man had a decent knowledge of mathematics and used mathematical

models to solve specific problems in their every-day life (Schichl, 2000). Currently,

the model is described as a pattern or representation that theoretically describes some

objects, with a set variables and number of relationships between these variables

and objects (William, 2001). Modeling is a process to construct a logical and a

formal framework that represents those relationships. The technique of modeling is

widely used throughout many natural and social sciences including psychology and

philosophy(Winsberg, 1999).

In the area of gene expression analysis, modeling aims to understand and extract

interaction patterns from the thousands of gene data (Sobral, 1999). Gene interaction

involves the dynamics of thousands of genes, proteins, and is influenced by many

environmental and developmental factors (D’Haeseleer et al. 2000).

2.1.1 Reasoning

Reasoning is mental action or process of seeking for reasons for beliefs, summaries

or feelings (Kirwin, 1995). In context of models, reasoning is determined by a set

of logical principles, although rarely is the reasoning used completely mathemati-

cal. The main division between forms of reasoning for the modeling is concluded

between transductive reasoning and inductive reasoning. In contemporary medical

and bioinformatics modelling study, both inductive and transductive reasoning are

widely used for different tasks.

Induction is reasoning from observed training cases to a global problem space,

which also represents on the test case (Quinlan, 1986). It is used to describe prop-

erties or relations to types based on an observation instance (i.e., on a number of

observations or experiences); or to formulate laws based on limited observations of

recurring phenomenal patterns. An inductive model proceeds from a study about col-

lected samples to a conclusion of about the global population. It is often represented

as global modeling approach. However, the accumulation of clinical and statistical
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data, many evidences pointed out that the patients are differently responding to

same medical treatment (Barton, 2008). This means predictions of treatment out-

come may be not achievable by the inductive modeling. Then researchers started to

pay more attention on the idea of transductive reasoning in area of bioinformatics.

Transductive inference was firstly introduced by Vladimir Vapnik in the 1990’s,

motivated by his view that transduction is preferable to induction since, according

to him, induction requires solving a more general problem before solving a more

specific problem:“When solving a problem of interest, do not solve a more general

problem as an intermediate step. Try to get the answer that you really need but

not a more general one (Vapnik, 1998).” This theory is very much connected to

current clinical and medical arguments that the patient treatment needs to focus on

individual conditions. Based on theory of transductive reasoning, this approach has

been implemented into two categories of modeling: local and personalised modellings.

2.1.2 Global Modeling

The theory of global modelling is inherited from the inductive reasoning which is a

single function that is created from the whole problem space in one task. The global

models have widely used linear and logistic regression methods for gene expression

modeling and for gene regulatory networks modellings. In this section we describe

two representive algorithms for global modeling. They are known as the multi-layer

perceptron (MLP) and support vector machine (SVM).

Multi-layer Perceptron

A name “artificial neural network” represents a mathematical model or computa-

tional model to discover complex relationships between inputs and outputs in the

given dataset. The perceptron is a type of artificial neural network firstly invented

in 1957 at the Cornell Aeronautical Laboratory by Frank Rosenblatt (Rosenblatt,

1958). In 1987, David Rumelhart, Geoffrey Hinton and Ronald Williams imple-

mented a multilayer perceptron with nonlinear but differentiable transfer functions.

The multi-layer perceptron has a feed-forward architecture as shown in Figure 2.1.
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Figure 2.1: Feedforward architecture of Multi-layer perceptron

Such networks have an input layer (on the left in Figure 2.1) , one or more hidden

layers and an output layer (on the right). All the layers of the network are fully

connected to each other which means every processing neuron in one particular layer

is connected to every neuron in the layer above and below. The connections carry

weights which influence the behaviour of the network and can be adjusted during

training (Kanellopoulos, 1997). This training operation consists of two stages: the

“forward pass” and the “back-propagation”. In the “forward pass” an input pattern

vector is presented to the network and each neuron in the network computes an

output according in the same of this inputs. For successive layers the input to each

node is then the sum of the scalar products of the incoming vector components with

their respective weights.

Input layer presents the variable values of input vector X. The input variable

values are represented as x1, x2, ..., xI .

Hidden layer receives the value from input layer. The value from each input

neuron is multiplied by a weight (vji), and the resulting weighted values are added

together producing a combined value netj as shown in Function 2.1. The weighted

sum (netj) is fed into a transfer function, which outputs a value yj as shown in

Function 2.2. The outputs from the hidden layer are distributed to the output

layer. .
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netj =
I∑

i=1

vjixi (2.1)

where vji is the weight connecting input node i to hidden node j and xi is the output

from input node i.

yj = f(netj) (2.2)

Output layer receives the value from hidden layer. The value from each hidden

neuron (yj) is multiplied by a weight (wkj), and the resulting weighted values are

added together producing a combined value netk as shown in Function 2.3. The

weighted sum (netk) is fed into a transfer function, which outputs a value ok as

Function 2.4. The ok values are the outputs of the network.

netk =

J∑
j=1

wkjyj (2.3)

where wkj is the weight connecting hidden node j to output node k and yj is the

output from hidden node i.

ok = f(netk) (2.4)

The multi-layer perceptron is trained by supervised learning method with a back-

propagation algorithm. Each input pattern of the network is required to adjust the

weights attached to the connections so that the difference between the network’s

output and the desired output for that input pattern is decreased. Based on this

difference error terms or δ terms for each node in the output layer is computed. The

terms of δ are presented as Equation 2.5 and 2.6(Rumelhart et al., 1988).

δok = (dk − ok)f
′
netk

(2.5)

where dk is the desired output for a node k.
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δyj = (
K∑

k=1

δokwkj)f
′
netk

(2.6)

The weights between the output layer and the hidden layer are then adjusted:

wkj = wkj + αδokyj (2.7)

where δokis the rate of change of error with respect to the input to node k, and is

given by Equation 2.5. α is a learning rate parameter.

The weights adjustment is then computed as:

vji = vji + αδyjxi (2.8)

Multilayer perceptrons are very useful to get approximate solutions for extremely

complex problems such as speech recognition, image recognition, and machine trans-

lation software. In general, the most popular use of MLP has been in the growing

field of artificial intelligence, where the multilayer perceptron is often used to simulate

biological neural networks in the human brain.

Support Vector Machine

Vapnik (1998) firstly introduced the support vector machine (SVM) that performs

classification by constructing an N-dimensional hyperplane that optimally separates

the data into two categories (Vapink, 1998). A SVM model consists of a set of

vectors described by a kernel function that compute a hyperplane to maximize the

margin between the training samples and class boundary (Huerta, Duval & Hao,

2006). In the parlance of SVM literature, the input variables are called attribute,

and a transformed attribute that is used to define the hyperplane is called a feature.

A set of features describes one vector. So the goal of SVM modeling is to find the

optimal hyperplane that separates clusters of vectors in such a way that vectors of

the same class are on one side of the plane and vectors of other class are on the other

size of the plane. The vectors near the hyperplane are the support vectors. The

Figure 2.2 below presents an overview of the SVM process.
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Figure 2.2: An overview of the SVM process.

Assume we have a 2-dimensional classification problem that vectors of the dataset

has a categorical target variable with two classes. The Figure 2.3 describes this

example. One class of the target vectors is represented by rectangles while the other

class is represented by ovals. In this Figure, the vectors with one class are located in

the left hand side and the vectors with the other class are in the right hand side; the

vector are completely separated. The SVM analysis attempts to find a 1-dimensional

hyperplane (i.e. a line) that separates the cases based on their desired class labels.

The possible hyperplane could be infinite number by using Equation 2.9. In the

Figure 2.3, we identified two candidate lines in both left hand side figure and right

hand side figure. The question now is which line is better, and how do we define the

optimal line.

w × x + b = 0 (2.9)

The Figure 2.3 describes the answer. The dashed lines drawn parallel to the sepa-

rating line mark the distance between the dividing line and the closest vectors to the

line. The left lower parallel is presented as Equation 2.10, and the right higher line
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Figure 2.3: Defination of optimal hyperplane.

is represented as equation 2.11. The distance between the dashed lines is called the

margin. The vectors that constrain the width of the margin are the support vectors.

The optimal hyperplane is oriented so that the margin between the support vectors

is maximized, which is shown in the right hand of Figure 2.3.

w × x + b = −1 (2.10)

w × x + b = 1 (2.11)

The margin is calculated as Equation 2.12.

Margin =
2

‖w‖2 (2.12)

If we are given a training dataset of form: {(x1, y1), (x2, y2)...(xn, yn)}. where

the y represents the desired class labels as known either 1 or 2, indicating the class

to which the point belongs. The completed classification function is described as

following Function 2.13
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f(x) =

⎧⎨
⎩1 if w × x + b = −1

2 if w × x + b = 1
(2.13)

SVM have been widely used in many research paper for classification and regression

(Shipp et al., 2002). And it has been described as very accurate classification model.

However, the knowledge extraction from the SVM is very limited (kasabov, 2006).

2.1.3 Local Modeling

Local modelling algorithms are created on data but representing on only a sub-space

of the problem space. They are often built on clustering techniques that a clus-

ter means subset of similar data. Such techniques include K-means (Hartigan and

Wong, 1976), Self-Organising Maps (Ultsch, 2007) and fuzzy clustering (Kasabov,

2007). In this section, we only present one algorithm that is called “evolving clas-

sifier function”(ECF) (Kasabov, 2002) which is an implementation of the evolving

connectionist system architecture.

Evolving Classifier Function

The many problem of neural network models are seen as “black box” which are not

useful discover new patterns from data. Kasabov (1998) introduced a new type of

neural network, called evolving connectionist system (ECOS). It allows for struc-

tural adaptation, fast incremental, on-line learning, and rule extraction and rule

adaptation (Kasabov, 2001, 2002). Figure 2.4 illustrates an evolving connectionist

systems that consists of five layers of neurons and four layers of connections. The

first layer (bottom layer) is input layer that receives the information. The second

layer calculates the fuzzy membership degrees (e.g. Small, Medium, or Large) to

which the input values belong to predefined fuzzy membership function. The third

layer represents the connections between the input and output variables. The fourth

layer calculates the fuzzy membership degrees to which the output belongs according

to predefined fuzzy membership functions. The last layer is the output layer which

performs defuzzification and calculates output values. The evolving classifier func-

tion (ECF) is an algorithm that is built on the ECOS architecture (Kasabov, 2001;
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Kasabov and Song,2003).
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Figure 2.4: ECOS architecture (Kasabov, 2001).

There are no fuzzy output nodes as each evolving node r1, r2,... represents a cluster

centre of input vectors that belong to the same output class using a defined maximum

cluster radius Rmax with the use of Euclidean distance (Kasabov 2007). ECF is a

typical supervised learning which involves training and testing. The learning process

is described as following steps.

1. Input the intended training vector from the dataset to the ECF model and

calculate the distances between this vector and inputted rule nodes by using

Euclidean distance.

2. Create a new rule node, if calculated distance is greater than Rmax.

3. If there is a rule node with a distance to the input vector less then or equal to

its radius and its class is different from this inputted vector, its influence field

should be reduced. Otherwise, nothing change and go to step 1 inputing new

vector.

4. If one rule node with a distance to the input vector less then or equal to the

Rmax, and its class is same as the input vector, increase the influence field by

taking the distance as a new radius. Otherwise, repeat the step 2, and go to

step 1.
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ECF has been applied on many research area such as cancer diagnosis (Kasabov,

2006), robotic study (Huang et al., 2008) and image recognition (Li and Chua, 2003).

2.1.4 Personalised Modeling

A model that is created only for a single point (sample) of the problem space is

named personalised model (Kasabov, 2007, 2008). Usually, the class label of new

sample is defined by applying Euclidean distance and a voting scheme to the closed

sample in a same dataset (Mitchell et al., 1997). In mathematics, Euclidean distance

is the most common use of distance between two points that one would measure with

a ruler. It examines the root of square differences between coordinates of a pair of

objects (Black, 2004). In an Euclidean space, the Euclidean distance between points

X = (x1, x2, ..., xi) and Y = (y1, y2, ..., yi) is defined as:

d =

√√√√ n∑
i=1

(xi − yi)2 (2.14)

K-Nearest Neighbour

K-nearest neighbour is a typical method used in personalised modelling. It is a very

simple algorithm, which is based on minimum distance from the query vector to

the training samples to determine the neighbourhood of samples. The distance is

measured using a distance measurement approach, such as Euclidean distance as

shown in 2.14. After we gather K nearest neighbors, we take sample majority of

these K-nearest neighbors to be the prediction of the query vector.

Suppose we have been given a query vector (X)=(x1, x2). Our purpose is to classify

this vector based on the existed training dataset (Y 1, Y 2, ..., Y n). Notice that the

samples from training dataset have same dimensional as the query vector X. Based

on kNN learning process, we firstly determine the K as the number of nearest neigh-

bour. Suppose we determine K = 4. Then we calculate the distance between the

query vector and all the training samples individually. The distance is calculated

by using Euclidean distance. The next step is to find the K. In Figure 2.5, our

example is visually described, where the arrows point out the nearest neighbour to
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query vector in a two dimensional space. In this neighbourhood, three training sam-

ples belong to class A and one sample is class B. Therefore the predicted class label

of query vector is class A based on the sample majority of the class of four nearest

neighbours.

In many literatures, the K-nearest neighbors is suggested to use odd number. But

we still can use even number of K-nearest neighbours as our example. In this case,

if the number of different classes are equal in the neighbourhood, we can choose

arbitrary for one of the class labels.

Figure 2.5: Example of kNN classification (Scholarpedia, 2008).

Weighted K-Nearest Neighbours

Weighted K nearest neighbours (WKNN) is a classification algorithm, that may

also applys Euclidean distance to define the class label of query vector (Kozak and

Kozak, 2004). The difference from kNN is that WKNN predict the class of query

vector based on a weighted majority vote of the nearest neighbours. The weight is
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calculated based on the distance to the query vector as shown in Equation 2.15.

wj = [max (d) − (dj − min (d))] /max (d) (2.15)

where the distance d is calculated by using Euclidean distance as Equation 2.14.

The learning process of weight-kNN is quite similar to kNN. For a given query vector,

we firstly decide for a number K of nearest neighbours. Then the distance of training

vectors to query vector is calculated by using Euclidean distance. Additionally the

weight for each distance is calculated as Equation 2.15. The next step is to record the

K nearest neighbors based on the weighted distances. Notice that the predicted class

label of a query vector is based on a “personalised probability” (yi). It is calculated

as Equation 2.16.

yi =
k∑

j=1

wjyj/
k∑

j=1

wj (2.16)

where yj is the class label for the recorded nearest neighbours. K is representing the

number of the nearest neighbour.

In order to finally classify the query vector in WKNN, we have to select a probability

threshold (pthr). Such that yi is classified in class 2, if the output of this vector is

greater than pthr in a two classes problem. The threshold is normally setup at

beginning of the learning process with the range between 0 and 1.

2.2 Contemporary Gene Expression Data Analy-

sis on Cancer Studies

Above section presents three different modeling approaches. In a gene expression

study, completed DNA microarray experiment generally required two main parts of

process. The first part is the collection of microscopic DNA spots, which involved

sample, purification, reverse transcriptase, coupling, hybridisation and washes, scan-

ning (Chen, 2007). The aim of this part is to transform a state of the cell or a

tissue to a numerical raw data. The next part is to analyse the obtained raw data

by using several mathematical algorithms as described in previous sections of this

chapter. Before we apply algorithms, we need to prepare the dataset and set up an
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experiment. Four steps cannot be omitted in data analysis of a DNA microarray

experiment, which are shown in Figure 2.6. Following subsections describes these

four steps in detail.

N o r m a l i z e
r a w  d a t a

S e l e c t  i n f o r m a t i v e  g e n e s
a n d  r e m o v e  n o i s e s

C r o s s
V a l i d a t i o n

A p p l y  m o d e l i n g
f u n c t i o n

Figure 2.6: General workflow of gene expression data analysis

2.2.1 Normalisation

Normalisation is the first transformation applied to expression data. There are sev-

eral reasons to normalise the microarracy data, including unequal quantities of start-

ing RNA, difference between real biological variations of gene expression and varia-

tions of the measurement process, and systematic biases in the measured expression

levels (Quackenbush, 2002). The most popular normalisation method is linear nor-

malisation that transfers the value of vectors to between 0 and 1. This function is

denoted as follows:

normXi = Xi − min (X) / max(X) − min(X), X = (X1, X2, ..., Xi) (2.17)

where X is denoted as vectors in obtained raw dataset.

2.2.2 Gene Selections

With contemporary technologies, such as microarrays or microfluidics, we are allowed

to measure the level of expression of up to 30,000 genes in RNA sequence that is

generated by transcription from DNA, the information is already present in the cell’s

DNA (Gollub et al., 2003). A huge number of genes usually not only included many

noise genes causing a high generalisation error, but also increase the cost of cancer

diagnosis in terms of time and computation. The aim of gene selection is to explore

a small group of informative genes that can successfully classify any samples from a

randomly collected dataset into represented classes (Tang, Suganthan, et al., 2006).

Gene selection is operated as feature selection in terms of data mining, which it uses
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to data pre-processing. However, gene selection also distinguish feature selection in

field of machine learning, is to select features from a normally thousands genes set

and a small number of samples. Two popular methods of gene selection are identified

in the literature: T-test and signal-to-noise.

T-test is firstly published by Gosset in 1908 as a classical statistical theory (Gorsset,

1908). It is proposed to measure the different means between classes in a same

problem space. Theoretically, the T-test can perform well even if the sample size

is very small (Triola, 1998). Due to this reason, T-test has widely applied for gene

selection in microarray studies (Arfin, Long et al., 2000; Ding et al., 2003; Thomas,

Olson et al., 2001).

In the gene selection, the main idea of T-test algorithm is to judge the extent of each

gene in between of every sample. The extent is computed as:

Ti =
∣∣μclass1

i − μclass2
i

∣∣ /
√(

1

nclass1
i + nclass2

i

)
× σi (2.18)

where Ti denotes the output value of T-test for ith gene or variable in the problem

space. The μclass1
i and μclass2

i is the mean of ith gene or variable corresponding to

both class 1 and 2. nclass1 and nclass2 give the total amount of sample numbers in

each class. σi represents the standard deviation for the ith gene, which is calculated

as:

σi =
√

((nclass1 − 1) × σ2
class1 + (nclass2 − 1) × σ2

class2) /df (2.19)

where df is the degrees of freedom that is proposed to present the number of inde-

pendent pieces of information available to estimate another piece of information. In

this equation, we calculated our df by:

df = (nclass1 − nclass2 − 2) (2.20)

In Equation of σi calculation, σ2
class1 and σ2

class2 are variance of two classes respec-

tively. They are described as following equations:
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σ2
class1 =

nclass1∑
i=1

(xi − μclass1)
2 / (nclass1 − 1) (2.21)

σ2
class2 =

nclass2∑
i=1

(xi − μclass2)
2 / (nclass1 − 1) (2.22)

One of major benefit of T-test is the simplicity and robustness that leads to a faster

operating process for gene selection, but we must bear in mind that T-test is accurate

under assumptions of data normality and variance equality in classes (Doug, 2002).

The assumptions of T-test also become to the biggest weakness, since it could occur

the high false in gene expression analysis. When multiple tests are applied in the mi-

croarray data analysis, the differentially expressed genes cannot be discovered from

a dataset that have equal variances and independent genes. Empirical studies have

indicated that the selected genes by simple T-test are not reliable in patterns dis-

covery. This issue has led scientists to develop more specific gene selection approach

for microarray data study such as SNR.

Signal-to-noise-ratio (SNR) is another popular algorithm that is implemented

for gene selection. SNR is often adopted for evaluating the expression level of each

gene to conduct the search for an informative gene set. SNR normally starts with

the evaluation of a single informative gene iteratively defines the importance of every

gene in entire dataset (Veer, Dai et al., 2002). The gene which has higher value of

SNR will be chosen as a representative gene of the classes. The algorithm of SNR is

represented as follows:

Si =
∣∣μclass1

i − μclass2
i

∣∣ / (δclass1
i − δclass2

i

)
(2.23)

where μ and δ denote the mean (or median) and standard deviation for each class,

and i=1,2,...,n that n is the number of genes in the dataset.

Since the theory of SNR is to rank the importance of each gene, SNR is a perfect

algorithm to study the gene correlation coefficient to other genes such as the sutdy

of (Goh, Song et al., 2004). In their study, SNR is used to selected the set of high-

ranked genes that correspond to target classes. All genes were computed by Equation

2.23. Their results showed that SNR can remove many noise genes and improve the
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accuracy of classification.

SNR method is also conducted as variables weighted calculation approach to evaluate

the response of drugs in real clinical studies (Iwao-Koizumi et al., 2005). Iwao-

Koizumi et al. introduced a weighted-voting (WV) algorithm that is denoted as

follows:

vi = wi ×
∣∣∣∣xi − μclass1

i − μclass2
i

2

∣∣∣∣ (2.24)

where xi is the repression level of the ith gene of query sample. μclass1
i and μclass2

i

represent the means of gene expression in two classes samples. wi is the weight of

the ith gene that is calculated by SNR as Equation 2.23.

2.2.3 Cross Validation

In the analysis of microarray data, the experiments are often leaded to some bias

and unidentifiable errors. Therefore a sampling method must be employed in every

microarray study. It is used to decrease the biases in process of classification by

splitting the training and testing datasets. This section reviews a common sampling

technique, which is called cross-validation.

Cross-validation is a sampling technique that widely used in the field of microarray

data analysis. The main idea is to split parts of the original experimental dataset

into the training set and testing set; analysed the training set by using a learning

algorithm on, then apply the predicted model on the test set (Pang, Havukkala, et

al., 2006). The process will be repeated until the every sample has been assessed.

The main advantage of cross-validation is that every sample from the same dataset

can be used for both training and testing, and the testing set is totally independent

to the training set.

In general, there are many ways to perform Cross-validation. K-fold cross-validation

and leave-one-out cross-validation are more popular. K-fold represents that randomly

separate sample into K mutually exclusive subsets of approximately equal size. In

every validation process, one subset is used for testing, and the others are proposed

to train the model. The process will be rounded K times until every fold has been

tested. This approach has been suggested in analysis for larger sample size, such as

over 100 samples (Breiman and Spector, 1992).
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Leave-one-out cross validation (LOOCV) is a special kind of K-fold cross-validation

in which the number of K equals to the number of samples. In LOOCV, all the

samples will be separated to test the training. This approach has been widely applied

on small number of samples (Kohavi, 1995).

2.3 Case Studies: Gene Expression Analysis on

CNS Tumours

In 2003, Pomeroy et al. published a research study that described a gene expres-

sion based prediction of central nervous system embryonal tumour (CNS) outcome

(Pomeroy et al., 2003). Their study was based on a gene expression dataset that is

collected from 99 different patients. The researchers firstly identified three research

hypotheses:

1. Different embryonal CNS tumours can be distinguished from each other based

on the gene expression values.

2. Desmoplatic and classic medulloblastoma are separable by gene expression.

3. Clinical outcome of medulloblastomas is predictable on the basis of the gene

expression profiles.

The experiment of their research was organised as a supervised learning process

which we have described in the section 2.2 (see Figure 2.6). In their study, they

introduced a newer gene selection method that select the ‘marker’ genes with the

highest correlation with target class by using SNR (see Section 2.5). A personalised

modeling method, kNN was applied as a classification modeling. The high accuracy

strongly support their hypotheses. Their study also used modeling algorithm to

determine some debates of cancer related genes which have been mentioned in other

medical literature.

The results support their research hypotheses. But we noticed that their result is

quite unbalanced between two classes, when kNN was applied to distinguish the

clinical outcomes of medulloblastomas. This raised the question of which modeling
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algorithm should be applied to maximise the likelihood of getting a balanced pre-

dictions. Xiong Zhang and Chen (2007) have addressed this problem in their study.

They have compared the SVM and kNN classifiers on the Pomeroy’s dataset C (60

samples). Their experiment was carried out with the selected gene number respec-

tively set to 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800,

and 2000. During their experiment, they employed the SNR for their gene selection.

The highest accuracy was produced by kNN with 100 selected genes.

Niijima and Kuhara (2005) focused on the dataset A (multi CNS tumours classifica-

tion with 42 samples), a multi-class problem with 42 samples. They compared three

different classification algorithms on the Pomeroy’s dataset. Their applied algorithms

were SVM, kNN and kernel subspace. In the experiment, 100 genes were selected for

classification. The result suggested that the lowest errors rate was predicted by SVM,

a global modeling algorithm. The kNN performed the lowest accuracy, 78.57%. This

result was also lower than Pomeroy’s result.

Both of the studies compares the accuracies of SVM and kNN for Pomeroy’s datasets

classification. For the different problem, the performance of two algorithms are

quite different. However, the Pomeroy’s dataset have been studied by many other

researchers (Ayers et al., 2004; Howard et al., 2004 and Rhodes et al., 2005). The

most research goals of those studies are only to compare the classification accuracy,

a few of researches studies on pattern discovery. Due to this reason, Our focus of

this thesis is not only to offer a comparative study of global, local and personalised

modeling on CNS gene expression classification, but also to discover the interactive

patterns based on the highest accurate model.



Chapter 3

Ontology Systems: A Literature

Review

In the last chapter, we pointed out two modules (i.e modeling modules and ontology

modules) in knowledge discovery research. The aim of the modeling modules is to

find the theoretical construct for queried problems, and use numbers or mathemat-

ical equations to describe the problems and solutions. Then the aim of ontology is

to translate those numbers or equations to both human and machine readable pre-

sentation within an idealised structure. This chapter presents a review of literature

in related field of ontology. The Section 3.1 summaries the theory and important

components of ontology. The semantic web, the ontology based Web presentation is

discussed in Section 3.2. It is followed by two applications of ontology in Section 3.3.

3.1 Overview of Ontology Development Environ-

ment and Systems

The word “Ontology” has a long history in philosophy, in which it refers to the

subject of existence since year 1613 (Øhrstrøm et al., 2005). It is also often confused

with epistemology, which is about knowledge and knowing (Gruber, 1993). In 1987,

ontology was firstly introduced to the context of computer and information sciences

where an ontology is a form of knowledge representation about the world or some
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part of it (Gruber, 2008). An ontology formalises the semantics of the objects and

relations in a universe of discourse and provides a set of terms which can be used

to talk about these objects and relations. Contemporary ontologies are used in

several areas such as artificial intelligence, the semantic web, software engineering,

bioinformatics, and information architecture. It is used to share conceptualisations of

a domain, and they possibly include the representations of these conceptualisations.

Common components of ontologies include metadata, classes, individuals, attributes

and relationships (Chandrasekaran et al., 1999).

Metadata

Metadata or metainformation represents the structured data which describes the

characteristics of a resource in the context of an information science (Taylor, 2003).

Sometime metadata is also described as the ”information of data”. An alternative use

of the term holds that ”metadata” is information provided for direct processing by

computer, in opposition to ”data” which needs to be interpreted by human knowledge

(Warwick, 1997).

A metadata record consists of a number of pre-defined elements representing specific

attributes of a resource, and each element can have one or more values. Table 3.1

shows an example of a simple metadata record:

Element name Value
Title CNS row data
Creator Scott L. Pomeroy et al.
Publisher The Broad Institute
Identifier http://www.broad.mit.edu/mpr/CNS/
Format Text

Table 3.1: An example of a metadata record

Metadata and ontologies are very closely related. In the ontology based knowledge

representation, metadata records may be used for a variety of purposes: to identify

a resource to meet a particular information need; to evaluate the quality or fitness

for use of such a resource; to track the characteristics of a resource for subsequent

maintenance or usage over time; and so on.
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Individuals

An ontology is a hierarchical structure having different layers. Individuals or in-

stances are the basic, “ground layer” components of ontology. An individual may

include a concrete object such as a person, an animal, a table, and a planet. An

ontology does not need to include any individuals, but one of the general purposes of

an ontology is to describe an actual relationship between individuals and means of

classifying individuals, even if those individuals are not explicitly part of the ontology.

Classes

In the context of ontology, classes are the abstract groups, sets, or collections of

objects. A class may contains individuals, other classes, or a combination of both.

Each class has a unique class name or a identification that must be different to the

others in a same ontology. The class that contains other classes is called superclass.

A class subsumed by another is called a subclass. Figure 3.1 presents a simple

ontology for describing knowledge of animals. In this knowledge domain, the named

class “Animal” is the superclass that represents all animals. The classes of “Cat”

and “Dog” are the subclasses which only represent one kind of animal. The class

“White Cat” and “Black Cat” also two subclasses to subsume the class of “Cat”.

A n i m a l

C a t D o g

W h i t e  C a t B l a c k  C a t

Figure 3.1: Ontology example on animal category.

A class is also a cohesive package that consists of a particular kind of metadata to

the objects or individuals. It describes the rules by which objects behave. These

rules are presented as attributes in ontology.
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Attributes

An attribute is the information of a class within this ontology. Each attribute has

at least a name and a value, and is used to store information that is specific to the

class it is attached to. Suppose we have a class which is called “Car” as shown in

Figure 3.2. The attributes of this class could be makes, model and color as well as

specify the features of a car. Unlike to class name, an attribute of class does not

need to be a unique value.

C a r

+ M a k e s  

+ M o d e l

+ C o l o r

Figure 3.2: An ontology class example

Two types of attribute, objects attribute and datatype attribute would be defined

in ontology based knowledge representation. The objects attribute is an important

use of attributes that is to describe the ontology relations between objects. The

datatype attribute is used to describe the non-related value of individuals. It does

not need to connect with any other objects in the ontology.

Relations

A relation is still an attribute whose value is another object in the ontology. This

is the only way to connect a class to others. Many different ways can be used

to describe the relations such as “has-something”, “part-of” or “is-something ” as

well as clearly depicts the relations. However the most important type of relation

is the subsumption relation (is-superclass-of, the converse of is-a, is-subtype-of or

is-subclass-of). This defines which objects are members of classes of objects. For

example we have already seen that the “Car” class has three attributes: makes,

model and color as shown in Figure 3.2. If we connect those objects attribute to
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C a r

+ M a k e s

+ M o d e l

+ C o l o r

M a k e s M o d e l

C o l o r s

h a s  m a k e s

i s _ s u p e r c l a s s _ o f

h a s  _ c o l o r

Figure 3.3: An ontology class example

related classes by using relations, the ontology would be shown as Figure 3.3. In

this figure, “Car” class has two “has” relations which related to class “Makes” and

“Color”. The “is-superclass-of” relation is used to depict that class “Makes” is the

parent class of class “Model”. In the ontology, a subclass could connect other objects

and classes throughout its superclass, which explain how the “Model” attribute is

conducted to “Car” class in our example.

At its core, much of the power of ontologies comes from the ability to describe these

relations. Together, the set of relations describes the semantics of the domain.

3.2 Overview of the Semantic Web

The Semantic Web is an evolving extension of the World Wide Web in which in-

formation is given explicit meaning, making it easier for machines to automatically

process and use the web content. At its core, the Semantic Web is about two things.

It is about a common framework that allows data to be shared and reused across

application, enterprise, a variety of enabling technologies. It is also about language

for recording how the data relates to real world objects. That allows a person, or

a machine, to start off in one database, and then move through an unending set

of databases which are connected not by wires but by being about the same thing

(W3C, 2008).

Two important technologies for developing the Semantic Web are already in place:

eXtensible Markup Language (XML) and the Resource Description Framework (RDF)

(Berners-Lee, Hendler et al., 2001). XML is to define customised tagging schemes,

which allows users to add arbitrary structure to their documents, but imposes no se-
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mantic constraints on the meaning of these documents. RDF provides a simple data

model for objects and relations between them, and associated serialisation in a XML

syntax. Figure 3.4 provides an overview of the Semantic Web layer infrastructure

on the Web. The first layer of this infrastructure (from the bottom of the figure),

Figure 3.4: The Semantic Web layer infrastructure (Jacco, Lynda et al., 2002).

Universal Resource Identifier (URI) and Unicode are used to define the “address”

of the web page or the database. The next layer is XML that give a tag to every

document. If we only consider the semantic parts of the Semantic Web, four layers

would be extracted from this infrastructure as shown in Figure 3.5.

Figure 3.5: The semantic part from Semantic Web infrastructure.

• “Data interchange: RDF” is believed to be the most popular metadata in
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the Semantic Web. The metadata at this layer contains just the concepts of

resource and properties (Lassila and Swick, 1999) in here. This layer is also

known as the metadata layer in (Berners-lee, 1998).

• RDF-S or RDF schema is considered as a candidate schema layer language,

since this layer is to define a hierarchical description of concepts (is-a hierarchy)

and properties in the Semantic Web.

• Ontology layer is combination of the layers above RDF-S in Figure 3.5. This

layer introduces the web ontology language that provides a richer set of mod-

eling primitives that can be mapped to the well-known expressive Description

Logics (Lassila and Swick, 1999). Currently, the most powerful web ontology

language is OWL. Unifying logic is a pattern in this layer to convert the human

knowledge or logic to a mahine readable terminology. Both Query and Rule in

this layer are used to transform the data to the next layer.

The next two layers in the infrastructure of the Semantic Web (see Figure 3.4) is

trust and proof. Recently only a few study are available about these layers. The

purpose of these layers is to determine whether or not a statement is true for the

users. These two layers are very important to the users. Recent applications on the

Semantic Web at the moment generally depend upon context. How to judge the

reliability of the Web context is still a issue.

However this research is only focus on the semantic part of the Semantic Web.

The most important layer in this part is the ontology language that can formally

describe the meaning of terminology used in Web documents for the Semantic Web.

If machines are expected to perform useful reasoning tasks on these documents, the

language must go beyond the basic semantics of RDF Schema (W3C, 2008). The

next subsection describes the Ontology Web Language (OWL).

3.2.1 OWL

OWL is a web-based ontology language that is designed for use by applications that

need to process the content of information instead of just presenting information to

humans. It is a revision of the DAML+OIL web ontology language. In infrastruc-

ture of the Semantic Web, OWL is built on top of RDF, and is written in XML.
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Comparing to RDF, OWL and RDF are much of the same thing, but OWL is a

stronger language with greater machine interpretability than RDF. OWL adds more

vocabulary for describing properties and classes: among others, relations between

classes, cardinality, equality, richer typing of properties, characteristics of properties,

and enumerated classes (W3C, 2008). The data described by an OWL ontology

is interpreted as a set of ”individuals” and a set of ”object relations” which relate

these individuals to each other. An OWL ontology also consists of a set of descrip-

tions which place constraints on the classes and the relations between them. These

descriptions provide semantics by allowing systems to infer additional information

based on the data explicitly provided.

OWL provides three increasingly expressive sublanguages designed for use by specific

communities of developers and users.

• OWL Lite supports those users primarily needing a classification hierarchy and

simple constraints. For example, while it supports cardinality constraints, it

only permits cardinality values of 0 or 1. It was hoped that it would be simpler

to provide tool support for OWL Lite than its more expressive relatives, allow-

ing quick migration path for systems utilizing thesauri and other taxonomies.

However Owl Lite also has a lower formal complexity than OWL DL.

• OWL DL was designed to support the maximum expressiveness while retaining

computational completeness (all conclusions are guaranteed to be computable),

and the availability of practical reasoning algorithms. OWL DL includes all

OWL language constructs, but they can be used only under certain restrictions

(for example, while a class may be a subclass of many classes, a class cannot be

an instance of another class). OWL DL is so named due to its correspondence

with description logics, a field of research that has studied the logics that form

the formal foundation of OWL.

• OWL Full is developed for users who want maximum expressiveness and the

syntactic freedom of RDF with no computational guarantees. It is based on

a different semantics from OWL Lite or OWL DL. For example, in OWL Full

a class can be treated simultaneously as a collection of individuals and as an

individual in its own right. OWL Full allows an ontology to augment the

meaning of the pre-defined (RDF or OWL) vocabulary. It is unlikely that any
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reasoning software will be able to support complete reasoning for every feature

of OWL Full.

3.3 Applications of Ontology-based System

In recent years, ontologies have been adopted in many businesses and scientific com-

munities as a way to share, reuse, and process domain knowledge. Due to complex

structure and most of undescribable relationship in context, the key role of ontologies

in biomedical and gene expression studies has been led to the rapid development,

such as medical ontology (Pisanelli, 2004), the Open Biomedical Ontologies (OBO),

and the Gene Ontology (GO) (Ashbrner et al., 2000). This section reviewed two

ontology-based developments, named Gene Ontology and Brain-Gene Ontology.

3.3.1 Gene Ontology

Gene Ontology (GO)is available online (http://www.geneontology.org/) and provides

a controlled vocabulary to describe gene and gene product attributes in any organism.

The knowledge structure of GO refers to a biological objective to which the gene or

gene product contributions. GO can be broadly split into two parts: ontology and

annotation.

The ontology of GO is actually composed of three ontologies: the molecular function,

biological processes, and cellular components. Molecular function, biological process

and cellular component are all attributes of genes and gene products. In the GO,

these three categories are also named as:

• Molecular Function ontology presents molecular functions of a gene prod-

uct are the jobs that it does or the “abilities” that it has.

• Biological Process ontology represents collections of processes as well as

terms that represent a specific, entire process. The processes generally are

represented as format of the relations in terms of ontology representations such

as ‘part of’.
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• Cellular component ontology describes locations, at the levels of subcellular

structures and macromolecular complexes.

Please notice that GO is not the Semantic Web. It is only a online database to

which an ontology presentation has been added. The ontology part is implemented

by three categorised ontologies. The database or document part is used annotation.

Annotation is the process of assigning GO terms to gene products. The annotation

data in the GO database is contributed by members of the GO Consortium, and the

Consortium is actively encouraging new groups to start contributing annotation.

3.3.2 The KEDRI’s Brain-Gene Ontology (BGO)

Brain-Gene Ontology (BGO) is an newly developed ontology based system by KEDRI

(Kasabov et al., 2007, 2008). It includes sonseptual and factual information about

the brain and gene functions and their relationships as shown in Figure 3.6. The

BGO describes the knowledge of brain functions and brain disease, and brain related

genes and their activities. BGO is implemented in the Protégé ontology-building en-

vironment that is developed by the Medical Informatics Department of the Stanford

University (http://protege.stanford.edu/index.html).

Figure 3.6: Brain-Gene ontology is constructed based on the complex relation-
ships between genes, their influence upon neurons and the brain (Kasabov et al.,
2007 & 2008).

Information structure of the BGO is comprised of three main parts: brain organiza-

tion and function, gene regulatory network, and a simulation model.

• Brain organization and function is focused to build knowledge structure of

neurons and inforamtion process of spike generation.
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• Gene regulatory network structures neurogenetic processing gene expression

regulation, protein synthesis. It also visually simulates the gene regulatory

network .

• Simulation model describes computational neurogenetic modeling (CNGM)

(Benuskova and Kasabov, 2007), evolutionary computation, evolving connec-

tionist systems (ECOS) (Kasabov 2003), spiking neural network (Kasabov and

Benuskova 2004) in a ontology-based presentation.

The information of BGO is based on Gene Ontology, Unified Medical Language

System (UMLS) and the most used biological data sources.

One of the advantage of the BGO to the other recent ontology system is that data

from the BGO can be used in simulation systems such as NeuCom, WEKA, and

others. The outputted results can be added back to the BGO to visualise relationship

information and further discoveries. The BGO allows users to navigate through the

information space of brain diseases, brain related genes and their activities. But the

discovery on interaction patterns between brain genes and brain diseases is still a gap

in the BGO. This motivates the study of this thesis. In the next chapter, we develope

an extension ontology framework for BGO system that is called “CNS Ontology”.



Chapter 4

A Methodology for Ontology-based

Gene Expression Analysis and

Personalised Modeling

In Chapter 2, I have reviewed the Pomeroy’s work on CNS gene expression data.

They have successfully developed a gene expression analysis based on CNS tumour

gene expression data. Over half a decade, many researchers have undertaken similar

experiment in order to develop more accurate modeling methods. But the inter-

actions between genes and CNS cancer are still an open question in this domain.

Our research addresses this issue and aims to develop an accurate model and a

knowledge-based ontology for visualising the predicted results, see Figure 4.1.

For the knowledge modeling research, I have developed an one-vs.-all scheme SNR

(OVA-SNR) method for gene selection as presented in Section 4.2. It is followed by

two case studies for preforming the classification accuracy with OVA-SNR gene selec-

tion. For the classification, six algorithms have been investigated, including: multi-

layer perceptron, support vector machine, evolving classifier function, K-nearest

neighbours, weighted K-nearest neighbours and weighted-weighted K-nearest neigh-

bours. Except the last one, all of these algorithms have been discussed in Chapter

2. We will summarise the concept of WWKNN in Section 4.3. Since the original

WWKNN is only suitable for two-class problem, I have discussed two approaches to

solve multi-class problems. Finally the development of CNS gene expression ontology
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Figure 4.1: General work flow of this research

is discussed in Section 4.4.

4.1 Modeling Experiment

The experiment of modeling is built based on a supervised learning classification.

The supervised learning is the method that involves training classifier to recognise

distinctions among the defined classes, and testing accuracy of the classifier (Kot-

siantis, 2007). The methodology can be summarised as follows:

• Define desired class labels based on morphology, tumour class or treatment

outcome information. The class label must be meaningful to both researchers

and computer softwares.

• Select the highest correlative genes with the target class.

• Build six classifier in leave one out cross-validation by removing one sample for

testing and then used the rest as a training set.
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• Several models are built with different parameters for each classifier and final

chosen model is the one that minimises the total error in cross validation.

• Compare the chosen results from each classifier.

In this process, there are two steps that we would like to discuss in this chapter. One

is the gene selection. The other one is classifier.

4.2 Gene Selection

In a gene expression analysis, the gene selection procedure is independent of the clas-

sification process, which is applied before the classifiers. It finds informative genes

and remove the noise. Currently, there are many different approaches of gene selec-

tion available. Chapter 2 has reviewed two of the most popular methods, including

T-test and SNR. However, I decided to use SNR as our main gene selection method

in this thesis. There are two reasons for employing SNR, especially in CNS cancer

diagnosis and treatment area. They are summarised as follows:

1. In the microarray data analysis, T-test can be only used under the assump-

tions that the experimental data is normally distributed, and the population

variances are equal in two classes. In real cases of cancer datasets, these as-

sumptions are difficult to be made. Genes are dynamic information that could

performs quite different on every person, especially with cancer disease. This

issue indicates that the selected genes by T-test are not reliable in terms of

cancer diagnosis.

2. In the content of gene selection, there is always a open question to determine

whether a selected gene is closely correlated with target class(Slonim et al.,

2000). If the selected genes are correlated with more than one class, that may

make a noise to the classifiers. The algorithm of SNR looks at the difference of

the means in each of the classes scaled by the sum of the standard deviations

as Equation 4.1. The algorithm of T-test is presented as Equation 4.2.

Si =
∣∣μclass1

i − μclass2
i

∣∣ / (σclass1
i − σclass2

i

)
(4.1)
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Ti =
∣∣μclass1

i − μclass2
i

∣∣ /
√(

1

nclass1
i + nclass2

i

)
× σi (4.2)

Both of algorithms are quite same except the denominator. However the(
σclass1

i − σclass2
i

)
of SNR is always great than

√(
1

nclass1
i +nclass2

i

)
× σi of T-test.

Thus, the Signal-to-Noise statistic penalises genes that have higher variance in

each class more than those genes that have a high variance in one class and

a low variance in another. This bias is perhaps useful for biological samples,

e.g. in a case of tumour versus normal where in one class, the gene is working

normally and regulated relatively strictly, and in the other class the gene is

broken and varying more widely (Ross, 2003).

From the above discussion, we can see the benefits of SNR in terms of cancer diagnosis

studies. However, the most gene selection methods are developed for the two-class

problems (Leung et al., 2006). This lead us to develop a new SNR based gene

selection method, since three multi-class problem are involved in this thesis. The

following subsection describes this method in details.

4.2.1 One-Vs.-All based SNR Gene Selection Method

The multi-classes problems normally have more noise than two-class in gene selec-

tion (Chai and Domeniconi, 2004). Pomeroy (2002) has introduced a class separation

based selection method, which separately selects genes based on the value for per-

mutation tests of marker genes on one class. In fact, this method requires intensive

computational power, and the final accuracy of classification is not so well. In this

thesis, we introduce an one-vs.-all(OVA) scheme that is built on top of SNR gene

selection method.

One-Vs.-All (OVA) is firstly introduced as a multi-class classification scheme. It

built on top of real-valued binary classifiers is to train N different binary classifiers,

each one trained to distinguish the examples in a single class from the examples in

all remaining classes (Rifkin and Aldebaro , 2004). Based on the OVA scheme a

complex multi-class problem is split to several simpler two-class problem. Generally

the training single class is called “target class” and all remaining classes are called
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“other class” in each training process. This scheme is also able to implement into

gene selection methods. Suppose we have a multi-class problem with 6 classes. Under

the OVA scheme, we take one class as “target” class, the “other” class will contain

the remaining samples from other five classes. Representative genes of the “target”

class with respect to the others are selected by applying a two-class gene selection

method. This process is performed 6 rounds (same as number of classes). Each

round will select the same number of genes to represent one of the six classes. For

example, we select 6 genes in each round. A total of 36 genes are selected for further

experiment.

In our thesis, we develop our SNR gene selection method based on OVA scheme.

Generally, the gene selection of each dataset can be summarised as following steps:

1. Split the classes into 2 groups

2. Select same numbers of genes that up-regulate each target class samples.

3. Check the repeated feature genes between different classes, and delete the re-

peating ones.

4. Combine those selected genes as one selected gene subset.

This OVA scheme SNR is developed not only for the multi-class problem but also for

two-class problem. In the two-class problem, the gene selection process is performed

2 times and each time we select the same number of genes to represent one class.

The following case studies present how to apply OVA-SNR on both multi-class and

two-class problem. It also presents the classification accuracy of the models that are

built on the OVA-SNR selected genes.

4.2.2 Case Studies on Gene Selection

Two cases studies are discussed in this subsection. Pomeroy’s dataset A (multi-class

problem) is used in case one. Case two is based on Pomeroy’s dataset B (two-class

problem). The OVA scheme is programed in MATLAB. The SNR gene selection is

provided by NeuCom (www.kedri.info). It applies the same algorithm as presented

in Equation 4.1.
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In order to determine whether OVA-SNR gene selection method is efficacious for

microarray experiment, we build two models (SVM and kNN) based on the selected

genes to present classification accuracies. Both of classification models are oper-

ated under leave one out cross validation with the linear normalised datasets. In

case studies, we also use bio-clustering technique to identify correlationship between

samples and genes.

Multi-class Gene Selection

Dataset A consists of 42 samples with 7,129 genes. This dataset is split into five

classes. In this case, 50 genes (10 genes for each class) are selected using OVA-SNR.

The correlation between genes and samples is shown in Figure 4.2. The dashed

lines between columns are used to split different classes. The squares represent the

correlarionship between genes and samples. The squares with darker color indicate a

higher correlationship between the samples. The squares with lighter color indicate

a lower correlationship between gene and sample. A gene has higher correlation with

its “target” class, that is described as a signal in terms of “signal to noise ratio”.

A gene has higher correlation with “other” class, that is presented as a noise to

classification.

From this figure, we can see that the samples have high correlated genes (darker

color squares) of each single class are generally gathered together, and most of them

are also indicated as lower correlation (lighter color) in other classes. This implies

the corresponding genes of individual class can be clearly selected by OVA-SNR.

However the

We built several models on 50 selected genes by using SVM and kNN. Each model

is built with different parameter. Table 4.1 summarises the best results of SVM

and kNN. Performance accuracy is calculated by the number of correctly classified

samples over the total number of samples in the dataset.

50 selected genes
SVM (linear) 92.86%
kNN (K=4) 90.48%

Table 4.1: Performance accuracy of SVM and kNN that is built on dataset A
with the 50 OVA-SNR ranked genes.
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Figure 4.2: The correlation between the genes and samples. Genes 1-10 are
correlative genes to class 1. Genes 11-20 are correlative genes to class 2. Genes
21-30 are high correlative genes to class 3. Genes 31-40 are high correlated genes
to class 4. Genes 41-50 are high correlated genes to class 5.

This table indicates that both models achieve the quite high accuracy. This suggests

that the 50 OVA-SNR selected genes are closely correlated with their target classes.

The OVA-SNR gene selection method is efficacious for this multi-class problem.

Two-class Gene Selection

In this case study, our interest is not only the performance of OVA-SNR on two-class

problem, but also the different performance between the OVA-SNR and original

SNR. The dataset of this case is Pomeroy’s dataset B which includes 34 samples

with 7139 genes. In this case, we separately capture 50 genes by using two gene

selection methods, including OVA-SNR and original SNR. For OVA-SNR, 25 genes

are selected for each class. Figure 4.3 shows the different performance on correlations

between OVA-SNR and original SNR. The subfigure (a) presents the 50 OVA-SNR

selected genes. The subfigure (b) presents the 50 original SNR selected genes. By

contrast the subfigure (a) and (b), the difference between the OVA-SNR selected



4.2. Gene Selection 43

genes and original SNR selected gene is very clear. The genes that are selected

by original SNR are evenly separated in the both class 1 and class 2. There is no

any clear signals in subfigure (b). On the contrary, OVA-SNR selected genes perform

more signals rather than noises. The correlative genes (genes 1-25) of class 1 preform

lower correlative value in class 2. On the other hand, the correlative genes (genes 26-

50) of class 2 preform lower correlative value in class 1. To compare the classification

accuracy with different methods selected genes, we also apply SVM and kNN.
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Figure 4.3: Comparison of OVA SNR and Normal SNR on dataset B. In the
subfigure (a), genes 1-25 represent the correlative genes of class 1, and gene 26-50
represent the correlative genes of class 2. The signals of dataset B to each class
are clearly presented in subfigure (a).

Table 4.2 summarises the best results of SVM and kNN models on dataset B. The

classification accuracies that obtains from the OVA-SNR are higher than original

SNR selected genes. This result supports our OVA-SNR is better gene selection

method in the two-class problem.

OVA-SNR Original SNR
SVM (linear) 94.12% 88.24%
kNN (K=5) 91.18% 88.24%

Table 4.2: Performance accuracy of SVM and kNN that is built on dataset B
with the 50 OVA-SNR ranked genes.
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4.2.3 Summary of OVA-SNR Gene Selection

The results of case studies suggest that OVA-SNR method is very efficacious in terms

of correlated genes selection. This performs on the highly accurate models in both

multi-class and two-class problems. Unlike to the original SNR, the OVA-SNR select

the genes in different rounds, each round targets only one target class. This scheme

ensures that each selected gene could highly correlate with only one target class.

After gene selection, the next step of experiment is the classifier. The next section

will discuss a newer personalised modeling algorithm, weighted-weighted k nearest

neighbour.

4.3 Classifiers

Gene expression analysis has been proved efficacious in cancer diagnosis. A sub-

stantial number of methods and models have been implemented in which impressive

results have been reported in different experiments. However, many evidences also

suggest that the problem of patients to therapy is the highly variable response for in-

dividuals. Personalised modeling has been reported efficient for solving this problem,

since it models the proposed problem based on the individual sample. This section

describes weighted-weighted k nearest neighbours, a newly developed personalised

modeling method that not only explores the appropriate solution of queried sample,

but also ranks the important genes based on the queried patient.

4.3.1 Weighted-Weighted K Nearest Neighbours

Weighted-weighted K nearest neighbour (WWKNN) is a newly developed person-

alised model by KEDRI (Kasabov, 2006). The main idea behind WWKNN algo-

rithm is: the K nearest neighbour vectors are weighted based on their distance to

the new vector, and also the contribution of each variable is weighted according to

their importance within the local area where the new vector belongs to (Song and

Kasabov, 2006). It is assumed that the different variables have different importance

to classify samples into different classes when the variables are ranks in terms of their

discriminative power of class samples over the whole V -dimensional space. There-
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fore, the variables probably have different ranking scores of the discriminative power

of the same variables is measured for a local space of the problem space.

In WWKNN algorithm, the Euclidean distance dj between a query vector xi and a

neighbour xj is calculated as follows:

dj =

√√√√ V∑
i=1

ci,l (xi,l − xj,l)
2 (4.3)

where ci,l is the coefficient weight of variable xl for the nearest neighbours xj , and k

is the number of the nearest neighbors. The coefficient weight is calculated by SNR

as equation 4.1 that ranks each variable across all vectors in the local area:

ci = (ci,1, ci,2, ..., ci,V ) (4.4)

ci,l =

(
1 − Sl/

V∑
l=1

Sl

)
, (l = 1, 2, ..., V ) , where (4.5)

where μclass1
l and δclass1

l represent the mean and standard deviation xl for all vectors

in neighbourhood set Di that belong to class 1.

The final output yi of xi is calculated by using the Equation 4.6. In order to fi-

nally classify the queried vector xi into one of classes, there has to be a probability

threshold Pthr selected (Kasabov, 2007). In a two-class problem, there is only one

probability that is normally denoted as Pthr. If output yi is greater than Pthr, then

the sample xi is classified in class 2.

yi =
K∑
1

((1 − dj) × yj) /
K∑
1

(1 − dj) (4.6)

Comparing to other variants of classical kNN method, the new feature of WWKNN

is the new distance: all variables are weighted according to their importance as

discriminating factors in the neighbourhood area.
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4.4 Multi-classes Classifications in WWKNN

In the beginning of WWKNN development, the algorithm was only considered to

solve two-class problems. In other words, WWKNN was able to identify a sample

either class 1 or class 2 only. But, Pomeroy’s datasets involves three mulit-class and

two two-class problems. This leads us to investigate the WWKNN in the multi-class

problems. There are two approaches of WWKNN are developed. One uses multilayer

threshold. The other approach is built on the One-Vs.-All (OVA) scheme.

4.4.1 Multilayered Threshold Approach

WWKNN is used to solve a classification problem. The calculated output yi for

a queried vector xi is a “personalised probability”. Then we need to compare the

yi with the probability threshold Pthr. Generally speaking, the Pthr in the two-class

problem is a line that splits the samples into two classes. The samples that are under

this line of Pthr (less than Pthr) is classified into class 1. Samples that is above the

line of Pthr (greater than Pthr) is classified into class 2.

In two-class problem, we split the samples into two layers by using one threshold

line. For the multi-class problem, the samples will be split into multi-layers that

will need multi threshold lines to present layers. Based on this theory we develop a

simple approach that calculates the probability threshold (P j
thr) for different layers

as follows:

P j
thr = (cj − 1) + Pthr, j = 1 : J (4.7)

where cj is the desired class label that is presented between 1 to J. The Pthr is chosen

between 0 and 1. The bottom layer is under P 1
thr. The top layer is above P J

thr

An output yi that is greater than P j
thr and less than P j+1

thr is classified into class cj .

If output yi is less than P 1
thr or greater than P J

thr, then the queried vector xi would

be classified into class c1 or cJ . The approach can be generated into the following

steps:

1. Normalise input data and select a threshold that is between 0 to 1.
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2. Identify total numbers of classes based on the original data.

3. Calculate layers of threshold by Equation 4.7.

4. Select the method of cross validation and the number of the nearest neighbour.

5. Input a new sample into the problem space.

6. Apply WWKNN function.

7. Calculate the output yi by Equation 4.6.

8. Compare the output yi with the layered thresholds P j
thr.

9. Classify the output yi into one of classes based on P j
thr.

4.4.2 OVA Approach

The second approach of multi-class WWKNN is based on the OVA scheme. The simi-

lar technique is also used in linear SVM to solve the multi-classes problem (Joachims,

2006). We have described the OVA theory in Section 4.2. In the problem of classifi-

cation, OVA approach is proposed to split a multi-class problem to several two-class

problems.

Suppose we have been given a CNS dataset with 5 classes. These classes are named

medulloblastomas, malignant gliomas, primitive neuroectodermal tumours (PNETs),

atypical teratoid/rhabdoid tumours and normal human cerebellum. First, we split

the multi-class problem into a series of 5 problems, and each split problem is proposed

by one specific class classification (e.g. Medulloblastoma vs. other classes those are

not Medulloblastoma). This process is described in Figure 4.4.

In this approach of classification, each new vector is presented sequentially to these 5

separated problems, each sequence will identify whether or not that sample belongs

to the target class. The whole processes of classification can be simply summarised

into the following steps:

1. Normalise input data and select a threshold that is between 0 to 1.

2. Identify the total number of classes based on the original data.
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Figure 4.4: OVA WWKNN

3. Select the method of cross validation and the input number of the nearest

neighbour that is going to be used.

4. Separate the original data into series of datasets that have the same number

of classes. Each separated dataset has two classes: the target class and a class

of the others.

5. Input a new sample into the problem space.

6. Apply WWKNN function to classify between the target class and a class of the

others.

7. Sequentially repeat steps 5 and 6 for until all the separated datasets are used.

8. Compare their Euclidean distance with the thresholds.

In this approach, we do not need to calculate the different threshold layers, because

we actually classify queried vector into two classes. In each round of OVA classifica-

tion, we only record the accuracy of target class. The final accuracy of classification

is based on the collection of target class accuracies. By contrast both approaches,

here is a open question, which approach is more accurate? We provide the answer

at the end of Chapter 5.
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4.5 Knowledge Representation with Ontology

4.5.1 CNS Ontology

For the knowledge presentation and discovery, we construct an ontology-based frame-

work to represent the knowledge based patterns in thr domain of CNS tumour. This

ontology is called CNS ontology. In this thesis, all the information and knowledge

discovery from Pomeroy’s data are stored in this ontology based framework. CNS

ontology is proposed to be an extension of Brain Gene Ontology (BGO) system,

therefore it is built based on the knowledge content of BGO. Some of knowledge

is acquired from the external ontology system (e.g. Gene Ontology) or from lit-

erature database such as National Center for Bio-technology Information (NCBI).

The relationship between CNS ontology, BGO, GO and Pomeroy’s data is shown in

Figure 4.5.

B r a i n  G e n e  O n t o l o g y

G e n e  O n t o l o g y

C N S  O n t o l o g yP o m e r o y  
d a t a s e t

Figure 4.5: Relationship between Pomeroy’s data, BGO, GO and CNS ontology.
The literature of Pomeroy provides a basic knowledge to structure the patterns in
CNS knowledge domain. The structured knowledge of CNS can be exchange with
the BGO. The GO provides the external knowledge to the CNS ontology

CNS ontology is implemented by Protégé that-a free, open-source ontology-building

environment that provides users to construct domain models and knowledge-based

applications(http://protege.stanford.edu/). At its core, Protégé implements a rich

set of knowledge-modeling structures and actions that support the creation, visuali-

sation, and manipulation of ontology systems in various representation formats. The

Protégé supports two main formats of ontology:

• The Protégé-Frames editor enables users to build and populate ontologies that

are frame-based, in accordance with the Open Knowledge Base Connectivity
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protocol (OKBC). In this model, an ontology consists of a set of classes organ-

ised in a subsumption hierarchy to represent a domain’s salient concepts, a set

of slots associated to classes to describe their properties and relationships, and

a set of instances of those classes - individual exemplars of the concepts that

hold specific values for their properties.

• The Protégé-OWL editor enables users to build ontology for the Semantic

Web, in particular in the W3C’s Web Ontology Language (OWL). “An OWL

ontology may include descriptions of classes, properties and their instances.

Given such an ontology, the OWL formal semantics specifies how to derive its

logical consequences, i.e. facts not literally present in the ontology, but entailed

by the semantics. These entailment may be based on a single document or

multiple distributed documents that have been combined using defined OWL

mechanisms”.

CNS ontology is constructed using Protégé-OWL editor, since OWL provides more

wide range of external knowledge exchange throughout Internet. For internal knowl-

edge exchange, we convert the frame-based BGO ontology to OWL format by using

an ontology format conversion tool box in Protégé.

4.5.2 The Factors of CNS Ontology

Chapter 3 has reviewed the factors of ontology-based knowledge framework. This

subsection describes three important factors of CNS ontology that are classes, rela-

tions and individuals.

Classes

Based on the content of Pomeroy’s data, CNS ontology consists of three superclasses.

These are called “Samples”, “Gene bank” and “Clinical attributes”. These classes

are in the top level of the hierarchical ontology structure as shown in Figure 4.6

The class “Clinical attributes” has three subclasses that are called “Common information of sampl

“Treatment information” and “Types of CNS”. Each one of them is subsumed by

other subclasses. “Common information of samples” class contains by “Gender”,
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Figure 4.6: Snapshot of CNS ontology showing hierarchical structure in CNS
knowledge domain.

“Age ranges”, “Current status” and “Chang stage”. “Treatment information” has

a subclass “Chemotherapy”. “Types of CNS” also has one subclass “Subtype”.

Relations

As presented in Chapter 3, two types of relations can be defined in ontology includ-

ing parent-ship relations and object relations. The parent-ship relations have already

been described in above paragraph. In CNS ontology, the “Samples” class and “Com-

mon information of samples” class are connected through an object relation that is

described as the word “has”. Since the class “Common information of samples” has

six subclasses, its subclasses are inherited the “has” relation to connect with Samples

as shown in Figure 4.7

S a m p l e s

C h a n g _ s t a g e

G e n e s

C u r r e n t _ s t a t u s

G e n d e rC h e m o t h e r a p y

T y p e s  o f  C N S

h a s

h a s h a s

h a s

h a s h a s

Figure 4.7: The objects relations between the Samples class and subclass of the
Common information of samples class.
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Individuals

The individual presents an instance of each class. In CNS ontology, the individuals

are defined from the related literature and supplement information of Pomeory’s

study (2002). Figure 4.3 shows the list of individuals in CNS ontology

Classes Individuals
Genes The discriminative genes

that are discovered by modeling methods
Samples 99 samples
Current status Alive, Dead
Gender Male, Female
Chang stage M0, M1, M2, M3, M4, T1, T2, T3, T3b, T4
Chemotherapy Carboplatin, CCNU, Cisplatin, Cytoxan

Etoposide, Methotrexate, Procarbazine
Thiotepa, Vincristine

Types of CNS AT/RT, Malignant Glioma, Medulloblastoma
Normal cerebellum, PNET

Subtypes Classic, Desmoplastic

Table 4.3: List of individual in CNS ontology.

The individuals of class Genes are identified by using their gene accession numbers.

These gene accession number are also meaningful to online gene banks such as Entrez

and PubGene.

4.5.3 The Connection between the CNS Ontology and BGO

One purpose of using ontology is to support the sharing and reuse of knowledge

by making it possible for ontology to import another ontology. To achieve this

purpose, we need to build knowledge pathways from one ontology to others. When

the ontology systems are connected, all of the classes, relations and individuals of

imported ontology are available to define and use in the importing ontology. As

mentioned in the Chapter 2, OWL-based ontology systems are identified as URIs by

using metadatas, such as http://www.owl-ontology.com/the CNS ontology.owl.

In order to connect CNS ontology and BGO system, we firstly import the CNS

document into BGO as shown in Figure 4.8. OWL imports statement is presented as
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the form of ( owl:imports rdf:resource=“http://www.owl-ontology.com/brain gene

ontology”), where resource is the URIs (metadata) of BGO system.

C N S
O n t o l o g y

B r a i n  G e n e
O n t o l o g y

o w l : i m p o r t s

h t t p : / / w w w . o w l - o n t o l o g y . c o m / t h e _ C N S _ o n t o l o g y . o w l

h t t p : / / w w w . o w l - o n t o l o g y . c o m / b r a i n _ g e n e _ o n t o l o g y . o w l

Figure 4.8: The connection between CNS ontology and BGO.

Above operations describe that CNS ontology and BGO are under same knowledge

domain. After CNS ontology is imported to BGO, we need to build a relation

between CNS ontology and BGO. This relation is the main pathway for the knowl-

edge exchange between CNS ontology and BGO. We created an object relation,

“has BGO document” that connects from the “Gene bank” class of CNS ontology to

the “Genes” class in BGO. The ontology representation in this relation is “Gene bank

→ has BGO document → Genes”. This relation can also be reversed back as “Genes

→ has BGO document → Gene Bank”. Throughout this knowledge pathway, the

instance genes from CNS ontology can be fund related gene document in BGO, or

follows the object relation that is between Gene class and other classes to find other

level relations such as interactive proteins. The gene from BGO can also be defined

the related CNS disease in CNS ontology.
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CNS ontology is also able to be self-learned and consequently extracts certain hidden

information and knowledge from the existed information in the knowledge structure.

However, before we operate CNS ontology for research. We have to model those

thousands of genes first, and transfer these accurate models and into an ontology

presentation. The next chapter is focused on the gene expression experiment that

would contribute to the discriminant genes discovery.



Chapter 5

Experimental Results on the CNS

Case Study Problem

5.1 Datasets

The proposed experiment in this thesis is designed on a well-known benchmark CNS

cancer micorarray data (available at http://www-genome.wi.mit.eud/mpr/CNS/)

(Pomeroy et al., 2002). This data contains the expression levels of 7,129 genes across

99 samples that consists of 67 children with medulloblastomas, 10 young adults

with malignant gliomas, 5 children with AT/RT, 5 with renal/extrarenal rhabdiod

tumours, 8 children with supratentorial PNETs and 4 normal cerebellum samples.

This data were organised into five datasets. Table 5.1 summarises these five datasets

used for classification in the experiment.

Dataset name Type of problem Training Samples Ref.
Dataset A Multi-class problem 42 1
Dataset A1 Multi-class problem 40 2
Dataset A2 Multi-class problem 90 3
Dataset B Two-class problem 34 4
Dataset C Two-class problem 60 5

Table 5.1: Summary of microarray datasets used for experiment

1. Dataset A has 42 samples in CNS tumour patients, that consists of 10 medul-

loblastomas (class 1), 10 malignant gliomas (class 2), 10 atypical teratoid/
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rhabdoid tumours (class 3), 4 normal cerebellum (class 4), and 8 PNETs (class

5).

2. Dataset A1 contains 40 samples across 5 classes of CNS tumours. This dataset

is removed two pineoblastoma samples from the dataset A. Dataset A1 consists

of 10 medulloblastomas (class 1), 10 malignant gliomas (class 2), 10 atypical

teratoid/ rhabdoid tumours (class 3), 4 normal cerebella (class 4), and 6 PNETs

(class 5).

3. Dataset A2 contains 90 samples which consist of 60 medulloblastomas (class

1), 10 malignant gliomas (class 2), 10 atypical teratoid/ rhabdoid tumours

(class 3), 4 normal cerebella (class 4), and 8 PNETs (class 5).

4. Dataset B contains 34 samples, 25 classic medulloblastomas (class 1) vs. 9

desmoplastic medulloblastomas (class 2).

5. Dataset C contains 60 samples in medulloblastoma patients. Among them 21

samples are failures (class 1) while 39 samples are survivors (class 2). Survivors

represents the patients who are alive after the treatment. Failures are those

who succumb to the central nervous system cancer.

5.2 Experimental Purposes

This CNS dataset has been so far extensively studied, and many models and ap-

proaches have been developed for its classification task. However, most papers are

focused on the computational accuracy of the performance. In this experiment we

are more interested in what knowledge can be discovered from these models and

whether the knowledge can be reused for cancer diagnosis.

As suggested in literature (Pomeroy et al., 2003), each dataset in CNS cancer mi-

croarray data was collected with a particular research purpose as following:

• Dataset A, A1 and A2 were used to determine whether the CNS multi tumour

classes are separable based on gene expression.

• Dataset B was used to describe the classifications of classic and desmoplastic

in medulloblastoma morphology.
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• Dataset C was proposed to present medulloblastoma treatment outcome by

using gene expression.

Our experiment will carry two more purposes for this study. The first purpose

is to make a comparison of global, local and personalised modeling methods for

CNS cancer diagnosis and prognosis. A variety of methods based on global, local

and personalised modeling, including Multilayer perceptron (MLP), Support Vector

Machine (SVM), Evolving Classifier Function (ECF), k-Nearest Neighbours (kNN),

Weighted K-Nearest Neighbours (WKNN) and Weighted-Weighted K-Nearest Neigh-

bours (WWKNN) are investigated. The second purpose of our experiment is to dis-

cover a reusable knowledge pattern for cancer diagnosis and prognosis in terms of

gene expression. The output of this purpose is discovered based on the achievement

of the first research purpose. The following sections describes the experiment process

of this research.

5.3 Experiment Setup

Hardware and Software

The experiments are implemented under a MATLAB Development Environment on

a computer with 3.2 GHZ Pentium 4 and 1024 Mb RAM. Relevant software and

implements used for classification and modeling in the experiments are summarised

in Table 5.2.

Software/Algorithm Note Availability
NeuCom Nero-computing decision support system www.kedri.info
PCA Principal component analysis NeuCom
SNR Algorithm For gene selection NeuCom
MLP Algorithm For microarray dataset classification NeuCom
SVM Algorithm For microarray dataset classification NeuCom
ECF Algorithm For microarray dataset classification NeuCom
KNN Algorithm For microarray dataset classification NeuCom
WKNN Algorithm For microarray dataset classification MATLAB code
WWKNN Algorithm For microarray dataset classification MATLAB code

Table 5.2: Relevant software used for experiment
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5.3.1 Principal Component Analysis (PCA)

Datasets of large dimensionality are in general difficult to visualise due to the intrinsic

difficulty of reducing and projecting the dataset to a small number of dimensions

where standard visualisation techniques are applicable. Principal component analysis

(PCA) is a commonly used technique to reduce multidimensional data sets to lower

dimensions for analysis. This module is designed to capture the variables (principle

components) which could explain all of the variance in the original dataset (Jolliffe,

2002).

In this thesis, we employ PCA analysis to visualise the experimental datasets with

selected genes. The datasets are plotted based on top 2 principal components, which

demonstrate the classification of different classes from the most important parts of

the dataset.

5.3.2 Microarray Diagnosis Setup

The first step of the experiment is to normalise the data, which is completed by using

linear normalised approach. Each of the models used in our experiment is validated

through leave-one-out cross validation (LOOCV) that is described in Chapter 2.

5.3.3 Parameters Setup for Relevant Algorithms

The parameters setting for the proposed gene selection algorithm and six classifiers

are summarised as follows:

1. SNR gene selection algorithm:

An OVA scheme is built on top of SNR.

2. MLP classifier:

N (Number of hidden neurons): 4-6.

Number of training cycles: 500.

3. SVM classifier:

Type of kernel: Linear kernel.



5.3. Experiment Setup 59

4. ECF classifier:

Number of epochs: 4.

5. kNN classifier:

K(K-the number of nearest neighbours): 3-8.

6. WKNN classifier:

K(K-the number of nearest neighbours): 3-8.

θ (Threshold): 0.5.

7. Two-class WWKNN classifier:

K(K-the number of nearest neighbours): 5-15.

θ (Threshold): 0.5.

8. Layered threshold WWKNN classifier (multi-class):

K(K-the number of nearest neighbours): 2-7.

θ (Threshold): 0.2-0.8.

9. OVA classifier (multi-class):

K(K-the number of nearest neighbours): 2-7.

θ (Threshold): 0.5.

5.3.4 Selected Genes

Our aim is to use different computational models to analyse the datasets and dis-

cover the CNS cancer related knowledge. Selecting fewer genes may limited the

discovered knowledge, and often make the operation unreliable, whereas selecting

too many genes is usually involve too much noise that may confuse inductive algo-

rithms. Previous studies indicate that a few dozen to a few hundred top-ranked genes

can efficiently classify the different disease patterns in most microarray experiments

(Li and Yang, 2002). The following words of this subsection describe the process of

the selected genes from each dataset.

Dataset A

To compare performances of different classifiers on dataset A, the number of selected

gene by OVA-SNR is set as 35. 7 top-ranked genes are selected for each class. The
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ranks of top genes are based on their SNR values as shown in Table 5.3

Class Name Each class SNR values Max SNR values
Class 1 7 � 0.85 0.97
Class 2 7 � 1.15 1.30
Class 3 7 � 1.27 1.55
Class 4 7 � 3.30 4.29
Class 5 7 � 0.70 0.83

Table 5.3: The number of top-ranked genes to be selected in dataset A

The highest SNR values is produced from class 4 (normal cerebella). This suggests

a clearly separable difference of gene expression between cancer patients and normal

samples. The lowest SNR threshold is calculated from class 5 (PNETs). PNET

stands for a group of tumours since the cells of these tumours look similar under a

microscope. Based on this table, we expect a high classification accuracy on class 4,

but a lower accuracy on class 5. The list of selected genes are presented in Appendix

B.

Dataset A1 and A2

The same selected genes from dataset A are used to do classification over dataset A1

and A2 to compare the different results between three different datasets which are

in the same category.

Dataset B

For the experiment of dataset B, 18 genes are selected for each class. The SNR values

of selected genes are shown in Table 5.4. The list of selected genes are presented in

Appendix B.

Class Name Each class SNR values Max SNR values
Class 1 18 � 0.70 0.99
Class 2 18 � 0.72 0.99

Table 5.4: The number of top-ranked genes to be selected in dataset B
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Dataset C

Regarding to the genes selected from dataset, their SNR values are quite low in either

class 1 or class 2. This implies that the samples of class 1 and samples of class 2 have

similiar variance on gene expressions. Due to this issue, the selected genes may easily

involve noise variables, which can impact our experimental accuracy. Therefore we

selected different 4 sets of top-ranked genes for experimental classification. Then the

knowledge discovery is based on the most accurate result. The number of selected

gene sets are 30, 40, 50 and 60. The number of genes on each class and their SNR

values are shown in Table 5.5.

Number of Class Name Each class SNR values
selected genes

30 Class 1 15 � 0.36
Class 2 15 � 0.44

40 Class 1 20 � 0.35
Class 2 20 � 0.42

50 Class 1 25 � 0.34
Class 2 25 � 0.40

60 Class 1 30 � 0.33
Class 2 30 � 0.39

Table 5.5: The number of top-ranked genes to be selected in dataset C

5.4 Experimental Results

5.4.1 Dataset A

The top 7 ranked genes per class are selected as described in the above section.

Figure 5.1 indicates the dataset A with 35 top-ranked genes in PCA. It shows that

samples of normal cerebellum are well separated from the four types of CNS samples.

All of malignant gliomas samples (class 2) are clearly separable in the figure. This is

not surprising because the malignant gliomas reflect the derivation of gliomas from

cells of non-neuronal origin, which is a significant difference to other types of CNS

tumour (Avgeropoulos and Batchelor, 1999). The other three classes are presented

quite close to each other.
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Figure 5.1: PCA using 35 selected genes that are associated with each tumour
type in dataset A.

In the clinical diagnosis of CNS, medulloblastomas, AT/RTs and PNETs are quite

difficult distinguished from each other, since they all occur in the area of cerebellum

(Rorke et al., 1995). However, most of samples from these three CNS tumour classes

are still separable from each other in PCA figure. This implies that classifiers are

able to separate the classes with a low rate of error.

Table 5.6 presents the best experimental results on dataset A, which obtained from

each model with a particular parameter. The best classification accuracy (97.62%)

achieved on Pomeroy’s data is from OVA-WWKNN – 41 out of 42 samples are suc-

cessfully classified. SVM, kNN and WKNN performs better accuracy than layered-

WWKNN, MLP and ECF, which produced 95.24% accuracy. The lowest accuracy

is produced by MLP and ECF, that is 88.1%.

From these results, we can see that the accuracy of classification between class 1,

class 2, class 3 and class 4 are very balanced across all the classifiers. Because of

the close relationship between medulloblastomas and PNETs, six different classifiers

excluding OVA-WWKNN produce more errors in class 5. In Pomeroy’s work, the

best accuracy they achieved is 83.33% through a kNN algorithm with 50 features,

which is lower than the result from our experiment.
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MLP SVM ECF kNN WKNN Layered OVA
WWKNN WWKNN

N:4 linear E:4 K:5 K:2, θ:0.5 K:2, θ:0.8 K:8, θ:0.7
Class 1 90% 100% 100% 100% 90% 90% 100%
Class 2 90% 90% 90% 90% 90% 90% 90%
Class 3 90% 100% 100% 100% 100% 100% 100%
Class 4 75% 100% 100% 100% 100% 100% 100%
Class 5 87.5% 87.5% 50% 87.5% 75% 75% 100%
Total 88.1% 95.24% 88.1% 95.24% 95.24% 90.48% 97.62%

Table 5.6: The best classification result of every applied modeling method on
dataset A.

5.4.2 Dataset A1

PNETs of the CNS are grossly divided into supratentorial PNET and infratentorial

PNET. The infratentorial PNET includes medulloblastoma, which occurs in the

cerebellum. The supratentorial PNET includes pineoblastoma, which occurs in the

pineal region. Dataset A1 is an additional variant of dataset A in Pomeroy’s data.

The dataset A1 repeats the dataset A excluding 2 pineoblastomas (Sample 41 and

42) from the class 5 (PNETs). Figure 5.2 presents PCA analysis on dataset A1 with

35 selected top-ranked genes. Comparing the results of dataset A and A1, we can

not define the differences between two datasets excluding that two PNET samples

are missed in the dataset A1.

For the classification of dataset A1, we repeated our algorithms with the same pa-

rameter on dataset A1. The results of each classifier on dataset A1 is presented in

Table 5.7. This table indicates that OVA-WWKNN achieved the best classification

accuracy (97.5%). SVM and kNN produced the better accuracy (95%) than layered-

WWKNN (90%), WKNN (85.71%) and MLP (82.5%). The lowest accuracy (80%)is

produced by ECF. Overall, the results of dataset A1 are very similar as before. This

implies that pineoblastoma is indepentend to infratentorial. The models will not be

impacted without them.
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Figure 5.2: PCA using selected 35 genes to describe the dataset A1.

MLP SVM ECF kNN WKNN Layered OVA
WWKNN WWKNN

N:4 linear E:4 K:5 K:2, θ:0.5 K:2, θ:0.8 K:8, θ:0.7
Class 1 70% 100% 100% 100% 90% 90% 100%
Class 2 90% 90% 80% 90% 90% 90% 90%
Class 3 90% 100% 90% 100% 100% 100% 100%
Class 4 100% 100% 75% 100% 100% 100% 100%
Class 5 66.67% 83.33% 33.3% 83.3% 66.67% 66.67% 100%
Total 82.5% 95% 80% 95% 85.71% 90% 97.5%

Table 5.7: The best classification result of every applied modeling method on
dataset A1
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5.4.3 Dataset A2

Dataset A2 is another additional variant of dataset A in Pomeroy’s data. It was

proposed to test whether inclusion of a larger number of medulloblastomas (class 1)

might lessen the destinations noted in dataset A, other 50 medulloblastoma samples

were added. From PCA analysis as shown in Figure 5.3, we can see that a big set of

medulloblastomas samples overlap the area of PNETs. This implies that classifiers

are likely to produce a high probability of error on class 5.
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Figure 5.3: PCA using selected 35 genes to describe the dataset A2.

For the classification, we apply same classifiers with similar parameters as before.

Table 5.8 shows the classification accuracy in % from seven different classifiers. Again

the best accuracy (92.22%) is achieved by OVA-WWKNN. The second high accuracy

(90%) is produced by the personalised modeling method (kNN), and followed by the

accuracy of SVM (88.89%).

Many class 1 samples overlap class 5 samples in the problem space as shown in

Figure 5.3. This causes that all algorithms performed extremely poor in the classi-

fication experiment of class 5 samples, but all performed well in the classification of

class 1. This finding suggests a close relationship between the medulloblastomas and
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MLP SVM ECF kNN WKNN Layered OVA
WWKNN WWKNN

N:7 linear E:4 K:2 K:2, θ:0.5 K:2, θ:0.8 K:6, θ:0.5
Class 1 96.66% 97% 90% 86.67% 88.33% 90% 98.33%
Class 2 80% 90% 90% 90% 90% 90% 90%
Class 3 70% 100% 100% 90% 90% 100% 90%
Class 4 75% 75% 100% 75% 75% 75% 100%
Class 5 16.67% 0% 0% 0% 0% 16.67% 33.33%
Total 85.56% 88.89% 85.56% 90% 82.22% 85.56% 92.22%

Table 5.8: The best classification result of every applied modeling method on
dataset A2

PNETs. Inclusion of a larger the number of medulloblastomas lessens the classifica-

tion accuracy in both medulloblastomas (class 1) and PNETs (class 5)

5.4.4 Dataset B

Figure 5.4 shows that classic and desmoplastic classes are well separated. Based on

this PCA figure, we expect higher accurate results from the classification of every

applied algorithms. The next paragraph summarised the accuracies of classification

experiment on dataset B.

Table 5.9 presents the experimental result obtained by applied classifiers on CNS

dataset B. The best classification accuracy (97.05%) achieved is from WWKNN

model – 33 out of 34 samples are successfully classified. The personalised models

(kNN and WKNN), a local model (ECF) and a global model (SVM) outperform the

global model – (MLP). In the Pomeroy’s work, the best accuracy they achieved is

97.05% using kNN with 400 selected genes based on cross-validation testing, which

is the same result from our WWKNN model.

MLP SVM ECF kNN WKNN WWKNN
Parameter N:5 linear E:4 K:3 K:3, θ:0.5 K:5, θ:0.5
Class 1 92% 96% 96% 96% 96% 100%
Class 2 88.89% 88.89% 88.89% 88.89% 88.89% 88.89%
Total 91.18% 94.12% 94.12% 94.12% 94.12% 97.05%

Table 5.9: The best classification result of every applied modeling method on
dataset B
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Figure 5.4: PCA using selected 36 genes to describe the dataset B. The most
samples of class 1 and class 2 can be linearly separated.

From the error sample list, No.33 sample has been predicted as error vector in every

classifiers. Sample No.33 of class 2 is located very close to class 1 as shown in

Figure 5.4. It is easy to be confused with the samples of class 1 in the classification.

5.4.5 Dataset C

30 Top-ranked Gene Set

The experiment of dataset C is started with the 30 selected genes. Figure 5.5 shows

the PCA analysis of dataset C with 30 selected genes. We can see that the samples

of class 2 evenly separate in PCA visualisation, which covers a large area in this

figure. But the samples of class 1 cluster on left hand side of Figure 5.5. Some of

the samples of class 1 are also overlapped by the samples of class 2.

Table 5.10 summarises the best classification accuracies achieved by each applied

algorithm with 30 selected gene. It shows that MLP and ECF perform the best

accuracy (85%) on 30 selected genes. The lowest accuracy of performance is produced
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Figure 5.5: PCA using selected 30 genes to describe the dataset C.

by WKNN and SVM. However, WWKNN and kNN achieved the accuracy of 81.67%

with a balanced classification. The difference between class 1 and class 2 is only

1.1%. This result is also acceptable in terms of clinical problem of disease diagnosis.

MLP SVM ECF kNN WKNN WWKNN
Parameter N:6 linear E:4 K:5 K:3, θ:0.5 K:9, θ:0.5
Class 1 95.24% 71.43% 71.43% 80.95% 95.24% 80.95%
Class 2 79.49% 83.05% 92.31% 82.05% 69.23% 82.05%
Difference 15.75% 11.62% 20.88% 1.1% 26.01% 1.1%
Total 85% 78.33% 85% 81.67% 78.33% 81.67%

Table 5.10: The best classification result of every applied modeling method on
dataset C with 30 top-ranked genes

40 Top-ranked Gene Set

Figure 5.6 presents the PCA analysis of dataset C with 40 selected genes. The result

is very similar to using 30 selected genes, which has a big overlapped area between
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class 1 and class 2. Samples of class 2 cover a larger space in Figure 5.6.
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Figure 5.6: PCA using selected 40 genes to describe the dataset C.

Table 5.11 records the best accuracy of each algorithm on 40 selected gene. Both

of SVM and WWKNN can achieve the best accuracy (86.67%). WWKNN condusts

us a more balanced result with 5.86% difference between the accuracy of class 1 and

class 2. WKNN performs the lowest accuracy with 40 top-ranked gene. Overall the

MLP SVM ECF kNN WKNN WWKNN
Parameter N:6 linear E:4 K:5 K:3, θ:0.5 K:5, θ:0.5
Class 1 95.24% 76.19% 80.95% 95.24% 95.24% 90.48%
Class 2 79.49% 84.62% 89.74% 74.36% 71.79% 84.62%
Difference 15.75% 8.43% 8.79% 20.88% 23.45% 5.86%
Total 85% 81.67% 86.67% 81.67% 80% 86.67%

Table 5.11: The best classification result of every applied modeling method on
dataset C with 40 top-ranked genes

classifiers with 40 genes provide more accurate model than 30 genes.
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50 Top-ranked Gene Set

Figure 5.7 presents the PCA analysis of dataset C with 50 selected genes. This figure

clearly shows that class 1 is more separable from the class 2 than the classifications

with the 30 and 40 selected genes. It indicates a more accurate classification that

could be produced with 50 selected genes.
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Figure 5.7: PCA using selected 50 genes to describe the dataset C.

Table 5.12 presents classification result of every applied modeling method on dataset

C with 50 top-ranked genes. The best accuracy is manifested by WWKNN. Its

prognostic accuracy is 88.33%. The lowest accuracy again is produced by WKNN.

The most balanced result is from MLP with only 1.1% difference between class 1

and class 2. The models that built on 50 top-ranked genes have provided the best

accuracy so far.

60 Top-ranked Gene Set

Figure 5.8 presents the PCA analysis of dataset C with 60 selected genes. The

classification of PCA is actually the worst in this experiment. The samples of class 1

and the samples of class 2 overlap a bigger area than 30, 40 and 50 selected genes.
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MLP SVM ECF kNN WKNN WWKNN
Parameter N:6 linear E:4 K:3 K:3, θ:0.5 K:9, θ:0.5
Class 1 80.95% 76.19% 71.43% 95.24% 71.43% 95.24%
Class 2 82.05% 87.74% 92.31% 79.49% 84.62% 84.62%
Difference 1.1% 11.55% 20.44% 15.75% 13.19% 10.62%
Total 81.67% 85% 85% 85% 80% 88.33%

Table 5.12: The best classification result of every applied modeling method on
dataset C with 50 top-ranked genes

It indicates that many noise genes are involved in the selected genes, which would

reduce our classification accuracy.
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Figure 5.8: PCA using selected 60 genes to describe the dataset C.

Table 5.13 shows the classification results of applied modeling methods on 60 selected

genes. As show in table, the best classification accuracy (83.33%) is manifested by

MLP with 4 hidden neurons. WWKNN performs better result (80%) than other

models (SVM, ECF, KNN and WKNN). The most balanced accuracy is produced

by ECF with 10.16% difference.
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MLP SVM ECF kNN WKNN WWKNN
Parameter N:4 linear E:4 K:3 K:3, θ:0.5 K:9, θ:0.5
Class 1 95.24% 71.43% 66.67% 95.24% 90.49% 95.24%
Class 2 76.92% 82.05% 76.92% 69.23% 71.09% 71.79%
Difference 18.32% 10.62% 10.16% 26.01% 19.40% 23.45%
Total 83.33% 78.33% 73.33% 78.33% 78.33% 80%

Table 5.13: The best classification result of every applied modeling method on
dataset C with 60 top-ranked genes

Summary on Classification of Dataset C

Above results have elucidated that the most accurate result is produced with 50 top-

ranked genes using WWKNN (88.33%) in terms of classification on medulloblastoma

treatment outcome. The lowest accurate results is produced using 60 top-ranked

genes. Comparing the Pomeroy’s work (78.33%) using a kNN algorithm with 8

genes, our classification accuracy obtained by WWKNN (88.33%) is much better.

The models that built on 50 top-ranked genes will be considered in the knowledge

discovery. The knowledge discovery of this dataset will be described in next chapter.

5.5 Comparison of Two Approaches of WWKNN

on Multi-class Classification

We have applied two approaches of WWKNN to solve multi-class problem on Pomeroy’s

data. One is multilayered threshold (layered-WWKNN), the other one is the “one-

vs.-all” (OVA-WWKNN). Interestingly, OVA-WWKNN outperforms in every clas-

sification problem (i.e. dataset A, A1 and A2). In this section, we compare both

layered-WWKNN and the OVA-WWKNN with different parameter on three multi-

class problems.

K denotes the selected nearest neighbour in personalised models. (see Chapter 3).

We now define K as an integral number between 2 and 11. To evaluate each solution,

we have set up an invariable threshold 0.5 for both approaches.

100 top ranked genes are used for this classification. The result obtained for dataset

A, A1 and A2 are recorded in Table 5.14.
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Dataset A K:2 K:3 K:4 K:5 K:6 K:7 K:8
Layered 90.48% 76.19% 71.43% 73.81% 69.05% 54.76% 52.38%
OVA 90.48% 90.48% 92.86% 92.86% 97.62% 95.42% 97.62%

K:9 K:10 K:11
Layered 40.48% 35.71% 28.57%
OVA 97.62% 97.62% 97.62%
Dataset A1 K:2 K:3 K:4 K:5 K:6 K:7 K:8
Layered 90.00% 77.50% 67.50% 67.50% 67.50% 57.50% 52.50%
OVA 90.00% 90.00% 90.00% 92.50% 97.50% 95.00% 95.00%

K:9 K:10 K:11
Layered 42.50% 37.50% 32.50%
OVA 97.50% 97.50% 97.50%
Dataset A2 K:2 K:3 K:4 K:5 K:6 K:7 K:8
Layered 85.56% 81.11% 75.56% 74.44% 70.00% 68.89% 68.89%
OVA 85.56% 90.00% 91.11% 92.22% 92.22% 91.11% 91.11%

K:9 K:10 K:11
Layered 72.22% 75.56% 72.22%
OVA 91.11% 92.22% 92.22%

Table 5.14: Results comparison of two approaches

Based on these results, we find that layered-WWKNN usually achieve better accuracy

with small number of neighbours (K). OVA-WWKNN obtains evenly high accuracy

across every neighbour. For a better visualisation, we demonstrate accuracy changes

in 2D linear diagrams as shown in Figure 6.3.

Notice that both approaches are applied WWKNN as the main classification function.

Only difference between two approaches is that OVA firstly transformed a multi-

class problem to several two-class problems. In WWKNN approach, the output is

calculated by Equation 5.1. In order to finally classify the queried vector xi into one

of classes, there has to be a probability threshold Pthr selected (Kasabov, 2007). The

predicted output of query vector is based on the comparison between the output and

probability threshold.

yi =
∑

((1 − dj) × yj) /
∑

(1 − dj) (5.1)

where yi denotes the output of class label for new vector, dj is the measured distance

from the inputted vector to nearest neighbours. The yj is representing the class
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(c) Dataset A2

Figure 5.9: Two multi-class classification of WWKNN on dataset A, A1 and A2

labels of measured nearest neighbours.

Unlike to machine learning algorithms (Alpaydim, 2004), WWKNN is not able to

learn the difference between the classes from existed data. WWKNN is a statistic

analysing algorithm, which classifies the samples by calculating the numbers. To

solve two-class problem, yj is only represent two numbers: 1 or 2, which is quite sim-

ple for the classification since there are only two options. In multi-class classification,

the problem is much more complex. More different classes are involved in training

data that would increase the errors of classification. In Pomeroy’s data, three classes

of CNS tumour (class 1, class 2 and class 3) are quite close to each other, which

actually increase more error probability.
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Overall, the layered-WWKNN has a significant weakness in multi-class classification.

The algorithm could be easily confused by more than two class labels. However the

OVA approach simplifies the multi-class problem to several two-class problems with

class label 1 and 2, which overcomes this problem.

5.6 Summary of Modeling Experiment

This experiment shows that the personalised modeling method outperforms other

global and local modeling methods in terms of classification accuracy on Pomeroy’s

data. WWKNN is the best algorithm to implement the modeling in every datasets.

For the multi-class problems, we have developed two approaches of WWKNN classi-

fication (multilayered threshold and OVA). With multilayered threshold WWKNN,

the better classification accuracy only occurs with a small number of K such as 2.

This leads to a weakness of layered-WWKNN. But the OVA approach overcomes

this weakness in the classification.

However, this chapter only presents one of our experimental purpose. The next

chapter will focus on knowledge discovery and ontology representation to do further

investigation.



Chapter 6

Ontology-based Modeling and

Knowledge Discovery Illustrated

on the Case Study Problem

The last chapter has offered a comparative study of major global, local and person-

alised models, including MLP, SVM, ECF, kNN, WKNN and WWKNN on bench-

marked Pomeroy’s CNS cancer data. The personalised model, WWKNN performs

the best classification accuracy. This result implies the potential of personalised

diagnostics and treatment for clinical decision-making.

As mentioned in Chapter 5, we have two experimental purposes. One is the compar-

ative study of global, local and personalised modeling. This chapter focuses on the

second purpose that is to discover the reusable knowledge for cancer diagnosis and

prognosis based on the WWKNN results. The ontology based knowledge system will

be used for analysis in this chapter. Section 6.1 describes how we use WWKNN and

the CNS ontology to discover the important cancer related information. In Section

6.2, we implement the knowledge discovery process on dataset A (multi-class CNS

tumours). We then present the knowledge discovery on two subclasses of medul-

loblastomas in Section 6.3. Section 6.4 presents the knowledge discovery in terms of

medulloblastoma treatment outcome, and gene reaction after treatment.



6.1. Knowledge Discovery Method 77

6.1 Knowledge Discovery Method

In this thesis, our interest is to discover the discriminant genes that are able to rep-

resent one category of samples in the entire problem space. We design our knowledge

discovery process as following:

1. Capture and record the personalised important genes for each sample.

2. Import these recorded genes into related ontology class.

3. Create ontology based relations between the individual samples and their per-

sonalised important genes.

4. Apply the ontology query tool to define the most discriminative genes in one

experimental class.

5. Use statistical analysis approach to evaluate the discriminant genes.

This knowledge discovery process will be contributed by two implementations in-

cluding WWKNN and CNS ontology. The WWKNN modeling method is used to

rank the importance of experimental genes for each single sample. CNS ontology is

applied to extract the discriminant genes for each experimental class. Notice that we

also apply several different data analysis approaches to evaluate the captured genes

in this thesis. The following subsections separately describe the details of WWKNN

and CNS ontology in knowledge discovery.

6.1.1 Knowledge Discovery with WWKNN Modeling

We have described the weighted-weighted K nearest neighbour (WWKNN) model

(Kasabov, 2007). In the our experiment, WWKNN achieved the best classification

accuracy on each dataset of Pomeroy’s data. In order to explore the important

knowledge, WWKNN is also capable of discovering certain important information

and knowledge specialised for the individual query sample. An example for person-

alised data sample from dataset B analysis is demonstrated in Table 6.1.
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Sample: 1 Sample: 27
Gene ID Importance Gene ID Importance
G6815 1.00 G4941 1.00
G5275 0.82 G6815 0.90
G4247 0.75 G4423 0.88
G4423 0.70 G5275 0.67
G226 0.61 G5328 0.65
G5957 0.54 G4463 0.60

Table 6.1: An example for personalised data sample analysis using WWKNN on
Pomeroy’s dataset B with 6 genes.

Table 6.1 shows that the importance of each gene for cancer data sample 1 and 27

of CNS dataset B is significantly different. The top-ranked gene of sample 1, G6815

is the second important gene for sample 27 in terms of classification performance.

In this thesis, we record top ten ranked genes for each sample based on their person-

alised gene ranking. Then we import these recorded genes into class “Gene bank”

of the CNS ontology. Notice that all genes are recorded as their accession number.

In the ontology knowledge environment, every individual instance must be unique.

For these genes that have more than one related sample, the CNS ontology only

record them once, but each gene has multi ontology-based relations with its different

related samples. The next subsection explains how we use CNS ontology to extract

and export the discriminant genes based on the individual samples.

6.1.2 Knowledge Discovery with the CNS Ontology

The developed CNS ontology provides conceptual links between samples, CNS dis-

eases and personalised information. All the information of each sample in the CNS

ontology are traceable through an ontology-based query tool. Once the personalised

important genes on each sample are imported into CNS ontology, we create a new re-

lation that is called “has important gene of” between the class “Samples” and class

“Gene banks”. This relation is proposed to connect personalised important genes

and each particular sample in this ontology. When the sample and important genes

are completely connected, CNS ontology will allow us to easily identify and export

the most discriminative genes for each experimental class in one problem space (a

knowledge domain), see Figure 6.1.
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Figure 6.1: Snapshot of CNS ontology detail showing query research system look-
ing for medulloblastoma samples that closely correlate to gene D20124 (gene ac-
cession No.) as an example.

The following sections of this chapter describe the process of knowledge discovery by

the combination of WWKNN and the CNS ontology, and the detailed information

of the discovered discriminant genes. Based on the problem categories of experi-

mental datasets, the discriminant genes discovery focuses on three main knowledge

domains including multiple CNS tumour class, medulloblastoma morphology and

medulloblastoma treatment outcomes.

6.2 Knowledge Discovery in Multi-class Problem

We firstly focus on the discriminant genes discovery for different CNS tumour class.

This knowledge discovery is based on the original dataset A that has five different

classes. Class 1, class 2, class 3 and class 5 represents embryonal CNS tumours medul-

loblastomas, malignant gliomas, primitive neuroectodermal tumours, and atypical

teratoid / rhabdoid tumours with sample size 10, 10,10 and 8. Class 4 represents

4 samples that have normal human cerebella. In the classification experiment, we

have selected 35 top ranked genes by using OVA SNR. Normal brain is easily classi-

fied with the 100% accuracy (see chapter 5), since gene expression values of normal

human cerebella are extremely difference to tumour classes. In this thesis, we are in-
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terested in the discovery of discriminant genes on four different CNS tumour classes,

since a mistake on the difference cancer diagnosis will increase the risk of patients.

Based on the personalised gene ranking analysis of WWKNN, every sample has per-

sonalised ranks on 35 experimental genes. To capture the common knowledge across

the samples in same class, we firstly select 10 top ranked genes from each sample

to import into CNS ontology. Then based on CNS ontology knowledge framework,

we extract three genes for each CNS tumour class. These genes are described in the

following related subsections.

To evaluate each discriminant gene, we have applied the statistical analysis approach

boxplot. The statistics toolbox of MATLAB is used to carry out the analysis. For

some cases that are not able be evaluated by boxplot, we have employed a Two-

Sample t-test. For further explanation of t-test see (Wild and Seber, 2000). The two

dimensional and three dimensional diagrams are used for visualising of discriminant

genes.

6.2.1 Analysis on Medulloblastomas

The experimental result on dataset A indicates that the samples of medulloblas-

tomas can be clearly separated from other tumour samples. Based on the discovered

personalised important genes, we obtain three top ranked genes from samples of

medulloblastoma. These genes are recorded as their accession numbers: M93119,

X06617 and U05012 s in the CNS ontology. Table 6.2 presents the details of these

three genes.

Gene No. Accession No. Description
G2365 M93119 INSM1 Insulinoma-associated

1 (symbol provisional)
G4092 X06617 RPS11 Ribosomal protein S11
G6435 U05012 s NTRK3 Neurotrophic tyrosine

kinase, receptor, type 3 (TrkC)

Table 6.2: Three defined discriminant genes of Medulloblastomas.

Figure 6.2 presents expression value variances of three discriminant genes cross 42

experimental samples. Notice that sample no. 1-10 represents the samples of medul-

loblastoma. In this figure, the gene M93119 and X06617 present more variable gene
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expression value on medulloblastoma samples. But the samples perform very small

variance on gene U05012 s. To evaluate these discriminant genes, we apply the

boxplot.
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Figure 6.2: Visualising medulloblastomas with 3 discriminant genes in 2D. Sam-
ple no. 1-10 represents the samples who has medulloblastoma. M93119 indicates
the most variant values in samples of class 1.
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The boxplots of genes M93119, X06617 and U05012 s for each class are shown in

Figure 6.3. It gives a better visualisation of medulloblastomas related discriminant

genes in gene expression values. In this figure, the boxplots on the right hand side

represent the samples of medulloblastomas, and each of subfigure represents one

discriminant gene. We can see that the median line (median) of the medulloblas-

toma boxes are higher than other three boxes (other classes of CNS tumours) in

each discriminant gene. The longer boxplot on gene M93119 suggests that samples

of medulloblastoma have wider expression value distribution. We also identify that

the medulloblastomas can be clearly discriminated in the boxplot of gene U05012 s.

These distinctive difference between the medulloblastomas and other CNS samples

in the three discriminant genes suggests a strong evidence that most of medulloblas-

tomas could be separated based on these three discriminant genes.
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Figure 6.3: Boxplots of three discriminant genes in Medulloblastomas

Figure 6.4 shows a 3D visualisation of multi CNS class samples with three medul-

loblastoma based on discriminant genes. In this figure, the samples of medulloblas-
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Visualizing the dataset A with 3 discriminant genes of Medulloblastomas 

Samples of Medulloblastomas

Figure 6.4: Visualising medulloblastomas with 3 discriminant genes.

toma is indicated highly separable that 9 out 10 samples can be visually separated.

6.2.2 Analysis on Malignant Gliomas

Malignant gliomas are relatively common primary brain tumours, deriving from cells

of non-neuronal origin, which is clearly separable from other three neuronal tumour

classes in CNS (Gromeier and Wimmer, 2001). The accurate classification from our

experiment also supports that malignant gliomas is highly separable tumour class

in the CNS. Based on the personalised importance of genes produced by WWKNN,

CNS ontology extracts gene X86693, U45955 and Z31560 s as the discriminant genes

for malignant gliomas. Table 6.3 presents the details of these three genes.

Gene No. Accession No. Description
G4741 X86693 High endothelial venule
G3239 U45955 Neuronal membrane glycoprotein

M6b mRNA, partial cds
G6035 Z31560 s SOX2 SRY

(sex determining region Y)-box 2

Table 6.3: Three defined discriminant genes of malignant gliomas.
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Figure 6.5 presents gene expression values of these genes across the 42 samples in

dataset A. In this figure, sample no.11-20 represents the samples that are in malig-

nant glioma class. The samples of malignant glioma present significantly high gene

expression value on these three discriminant genes. They are also evaluated by using

the boxplots as shown in Figure 6.6.
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Figure 6.5: Visualising malignant gliomas with 3 discriminant genes in 2D

In the figure, the left second box of each subfigure represents the samples of malignant

gliomas. The median lines of malignant gliomas are much higher than other classes.

In gene X86693 and U45955, the malignant glioma boxes have longer interquartile

range (the distance between the top and bottom of the box) that implies a widely

separated gene expression value distribution on analysed discriminant genes. The

findings from boxplots suggest that samples of malignant glioma have significant high

and more variable gene expression value on gene X86693, U45955 and Z31560 s.

Figure 6.7 shows a 3D visualisation of multi CNS class samples with three malignant

gliomas related discriminant genes. The samples of malignant gliomas are repre-

sented as red circles, which can be visually separated from other tumours. The most

of samples from other classes cluster together in this space. This implies that the
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Figure 6.6: Boxplots of three discriminant genes in Malignant gliomas. Gene
X86693 and U45955, the malignant glioma boxes have longer interquartile range
(the distance between the top and bottom of the box) that implies a widely separated
value distribution of gene expression on analysed discriminant genes.

samples of other CNS classes presents similar expression values on gene X86693,

U45955 and Z31560 s.
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Figure 6.7: Visualising malignant gliomas with 3 discriminant genes in 3D

6.2.3 Analysis on Atypical Teratoid/Rhabdoid Tumours (AT/RTs)

We next analyse the AT/RT tumours. It is one of the most common childhood solid

tumours (Lefkowitz et al., 1988). An atypical tertoid rhaboid tumour can be mis-

taken for a medullonlastoma and primitive neuroectodermal tumour, since the cur-

rent prognosis is significantly poor in clinical knowledge. However our experimental

results suggest that AT/RTs are clearly separable. All global local and personalised

models perform very accurate classification on AT/RTs.

Based on the personalised gene ranking scores in CNS ontology, we also define three

most discriminative genes in AT/RTs. These genes are recorded as their accession

numbers: D83735, L38969 and D83174 s. Table 6.4 presents the details of these

three genes.

Gene No. Accession No. Description
G618 D83735 Adult heart mRNA for neutral calponin
G1553 L38969 Thrombospondin 3 (THBS3) gene
G6724 D83174 s CBP1 Collagen-binding protein 1

Table 6.4: Three defined discriminant genes of AT/RTs.

Figure 6.8 presents gene expression value variance of these discriminant genes across
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the samples of dataset A. The samples of AT/RTs are presented in between sample

21 and 30 in the figure. The gene expression values of D83174 s and D83735 have

significantly variable values on the AT/RT patients in the Pomeroy’s dataset A. Com-

paring these two discriminant genes, variance of L38969 is not very discriminative

on samples of AT/RT.
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Figure 6.8: Visualising atypical teratoid/rhabdoid tumours with 3 discriminant
genes in 2D

For the statistical analysis, we use boxplot as shown in Figure 6.9. The third box

(from the left hand side) in each subfigure present the gene expression values of

AT/RTs on each discriminant gene. In general, the AT/RTs appear higher median

lines and separable value distribution on gene expressions. This suggests a close

relationship between three discriminant genes and AT/RT tumour class. Three dis-

criminant genes are able to represent the main gene mutations in terms of AT/RT

tumour.
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Figure 6.9: Boxplots of three discriminant genes in Atypical teratoid/rhabdoid
tumoursthe. AT/RTs appear higher median line and separable distribution of gene
expression values.

The 3D visualisation of samples from dataset A is shown in Figure 6.10. All ten

samples of AT/RTs are indicated visually separable in this space.
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Figure 6.10: Visualising atypical teratoid/rhabdoid tumours with 3 discriminant
genes in 3D

6.2.4 Analysis on Primitive Neuroectodermal Tumours

Primitive neuroectodermal tumour (PNET) is a rare tumour, which is now known

as ewing family tumours including medulloblastomas. In the experimental dataset

A, PNET tumour class has 8 samples, including 6 infratentorial PNET and 2 supra-

tentorial PNET. Both PNETs are brain tumour occurs in different area of brain (see

Chapter 5). Considering the difference between two PNETs, this thesis also anal-

ysed dataset A1 that excludes these 2 pineoblastomas. However, the classification

result indicates that these 2 pineoblastomas do not impact accuracy of classification

on infratentortial PNET. Since both two types of PNET arise in CNS, we still use

dataset A to extract the discriminant genes for PNETs. CNS ontology conducted us

to obtain three discriminant genes of PNETs. Table 6.5 presents the details of these

three genes.

Figure 6.11 shows 2D visualisation of these three genes across the samples in dataset

A. The samples of PNETs are represented as samples no. 35-42 in Figure 6.11. The
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Gene No. Accession No. Description
G6368 M80397 s at POLD1 Polymerase (DNA directed),

delta 1, catalytic subunit (125kD)
G982 HG4178-HT4448 at Af-17
G4152 X14830 at CHRNB1 Cholinergic receptor,

nicotinic, beta polypeptide 1 (muscle)

Table 6.5: Three defined discriminant genes of PNET.

figure indicates that the variable value of discriminant genes is only focused on few

samples of PNETs. We can see that gene HG4178-HT4448 just has two samples with

significant high gene expression. This is also appeared in gene X14830. The other

samples of PNETs are not clearly separable in this figure. For better visualisation

and analysis, we also apply a boxplot technique.
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Figure 6.11: Visualising Primitive neuroectodermal tumours with 3 discriminant
genes in 2D

Figure 6.12 describes these three discriminant genes in boxplot. Notice that the

fourth boxes of subfigures represents the samples of PNET, and each of subfigure

represent one of the selected discriminant gene. In the figure, gene M80397 s indicates
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higher median line with wider gene expression value distribution. HG4178-HT4448

indicates that the PNETs and malignant glimas have very similar median of boxplots.

The gene expression value distribution of PNET samples and AT/RT samples are

performed similar on gene X14830. These findings suggest a further analyse on the

gene HG4178-HT4448 and X14830. To further analyse these two genes we conduct a

Two sample t-test. The null hypothesis is that the data in two classes is independent
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Figure 6.12: Boxplots of three discriminant genes in Primitive neuroectoder-
mal tumours. Means of class PNETs and means of class malignant glimas with
gene HG4178-HT4448. The samples of PNETs and samples of AT/RTs has a
significant overlapped gene expression values with gene X14830.

random samples from normal distributions with equal means but unknown variances,

against the alternative that the means are not equal. This analysis is carried out

by using statistical toolbox from MATLAB. The p-value for each comparison of two

sample t-test are listed in Table 6.6.

Two Sample t-test is conducted the small p-values (e.g. less than 0.05) of every test.
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Gene Accession No. P-value
X14830 at PNET - MD 0.0096

PNET - MGlio 0.0171
PNET - AT/RT 5.16E-05

HG4178-HT4448 PNET - MD 5.20E-04
PNET - MGlio 0.0474
PNET - AT/RT 8.26E-05

Table 6.6: Results of two samples t-test from MATLAB
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Figure 6.13: Visualising Primitive neuroectodermal tumours with 3 discriminant
genes in 3D

This suggests a strong evidence that PNETs and the other classes have different

means and value distributions. Based on this result, we could prove that PNETs

have higher means than samples of other CNS classes in this dataset. But these

results has no evidence to support the samples of PNETs are clearly separable from

others in gene X14830. In this thesis, we cannot solve this problem, since sample size

of experimental data is too small. However, the clear separation on gene M80397

and wide distribution of gene expression value on gene HG4178-HT4448 are different

enough to discriminate the samples of PNET in this dataset. Figure 6.13 indicates a

3D visualisation of multi CNS class samples with PNETs based discriminant genes.

7 of 8 PNETs are visually separable.
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6.3 Knowledge on Principal Histological Subclass

of Medulloblastomas

Pomeroy et al. (2002) have defined that two subtypes of medulloblastoma (desmo-

plastic and classic) are clearly distinguishable by gene expression. They also sug-

gested that SHH dysregulation and PTCH (Versteege, 1998) highly correlated to the

pathogenesis of medulloblastoma. For further information please see (Pomeroy et al,

2002). In our experiment, samples were classified with high accuracy (above 90%)

by using every applied algorithm. The best classification accuracy (97.3%) achieved

on dataset B is from personalised WWKNN model, which is the same result as

Pomeroy’s work.

To discover new knowledge, we use the same method as we have used in multi

tumour problems. Firstly we import the personalised top 10 important genes into

CNS ontology. These genes are ranked by WWKNN. Then we use ontology-based

query tool to extract the discriminant genes for each experimental class. Three

different genes are extracted for each experimental class based on their personalised

importance in terms of medulloblastoma subclasses.

To evaluate our finding, we compare of means and standard deviation of two samples

with different discriminant genes. The statistic toolbox of MATLAB is used to

carry out the calculation and comparison. We cannot use boxplot or other similar

statistical methods to compare and analyse the expression values of discriminant

genes, since the samples size of these two classes (25 vs. 9) is distinctive difference.

6.3.1 Discriminant Gene Discovery on Classic Medulloblas-

tomas

The discriminant genes of classic medulloblastoma are recorded as their accession

number: HG1980-HT2023, U63842 and X67951. Table 6.7 presents the detail of

these genes.

Figure 6.14 indicates the variance of three discriminant genes across the 34 samples

in dataset B. The dashed line is used to separate the samples of classic and desm-

plastic of medulloblastomas. We can see that gene expression value variance of the
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Gene No. Accession No. Descriptions
G6818 HG1980-HT2023 Tubulin, Beta 2
G3541 U63842 Neurogenic basic-helix-loop-helix

protein (neuroD3) gene
G4466 X67951 PAGA Proliferation-associated gene A

Table 6.7: Discriminant genes for subclass of medulloblastomas

discriminant genes perform quite different in two different classes. Gene HG1980-

HT2023, U63842 and X67951 perform more variable across the samples of classic

medulloblastomas. This figure suggests the classic medulloblastoma related gene

mutation occur on gene HG1980-HT2023, U63842 and X67951. This can be also

proved in statistical analysis.

Table 6.8 and 6.9 present the means and standard deviations of two medulloblastoma

subclasses on gene HG1980-HT2023, U63842 and X67951. These two tables clearly

indicate that samples of classic medulloblastomas have higher means and standard

deviation on gene HG1980-HT2023, U63842 and X67951 than samples of desmoplas-

tic. This strongly suggests that gene mutations of HG1980-HT2023, U63842 and

X67951 occur differently in classic and desmoplastic medulloblastomas, and higher

variance of gene expression values discriminant classic medulloblastomas from desmo-

plastic medulloblastomas.

Gene accession No. Classic Desmplastic
HG1980-HT2023 4747.4 1665.7
U63842 1523.7 90.44
X67951 2813.4 903.22

Table 6.8: The means of gene expression values on gene HG1980-HT2023,
U63842 and X67951 across samples of dataset B

Gene accession No. Classic Desmplastic
HG1980-HT2023 2180.6 923.63
U63842 1417 266.05
X67951 1876.7 355.47

Table 6.9: The standard deviation of gene expression values on gene HG1980-
HT2023, U63842 and X67951 across samples of dataset B
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Visualizing HG1980−HT2023 in Dataset B

(a) HG1980-HT2023
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Visualizing U63842 in Dataset B

(b) U63842
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Visualizing X67951 in Dataset B

(c) X67951

Figure 6.14: Three discriminant genes of classic Medulloblastomas

6.3.2 Discriminant Gene Discovery on Desmoplastic Medul-

loblastomas

The discriminant genes of desmoplastic medulloblastoma are recorded as their ac-

cession number: HG3543-HT3739, X53331 and X65724 as shown in Table 6.10.

Figure 6.15 indicates the variable gene expression values of HG3543-HT3739, X53331

and X65724 across the 34 samples. In the subfigures, the dashed line is used to

separate the samples of classic and desomplastic of medulloblastomas. The figure

indicates that gene HG3543-HT3739, X53331 and X65724 perform higher variance in

the class of desmoplastic medulloblastomas. We also applied the statistical analysis

tool to test this finding. Table 6.8 and 6.9 present the means and standard devia-
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Gene No. Accession No. Descriptions
G5278 HG3543-HT3739 Insulin-Like Growth Factor 2
G4250 X53331 MGP Matrix protein gla
G4426 X65724 NDP Norrie disease (pseudoglioma) protein

Table 6.10: Discriminant genes for desmoplastic medulloblastomas

tions of gene expression values on gene HG3543-HT3739, X53331 and X65724 across

samples of dataset B.

Samples of desmoplastic present higher means and standard deviations with gene

HG3543-HT3739, X53331 and X65724. This finding suggests desmoplastic medul-

loblastoma is more likely to occur gene mutation on gene HG3543-HT3739, X53331

and X65724, and these three genes are discriminant genes of desmoplastic medul-

loblastomas.

Gene accession No. Classic Desmplastic
HG3543-HT3739 822.96 5138.6
X53331 1345.2 4605.6
X65724 70.96 371.55

Table 6.11: Means of gene expression values on gene HG3543-HT3739, X53331
and X65724 across samples of dataset B

Gene accession No. Classic Desmplastic
HG3543-HT3739 798.70 3551.6
X53331 1018.6 2319.9
X65724 117.39 195.03

Table 6.12: Standard deviation of gene expression values on gene HG3543-
HT3739, X53331 and X65724 across samples of dataset B

The finding from the comparison of means and standard deviation supports six dis-

criminant genes in terms of principal histological subclass of medulloblastomas. No-

tice that the prediction of six discriminant genes is not a substitute for traditional

diagnostics, since some of cancer cases still depend on individual patient. We only

try to find out knowledge that would help to make decision for clinical diagnostics.
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Visualizing HG3543−HT3739 in Dataset B

(a) HG3543-HT3739
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Visualizing X53331 in Dataset B

(b) X53331
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Visualizing X65724 in Dataset B

(c) X65724

Figure 6.15: Three discriminant genes of desmoplastic medulloblastomas

6.4 Analysis on Clinical Outcome of Medulloblas-

tomas

6.4.1 Discriminant Gene Discovery for Clinical Outcome Pre-

diction of Medulloblastomas

A clinical challenge concerning medulloblastoma is the highly variable response of

patients to therapy. This issue is also indicated in our experiment of dataset C that

includes 60 samples (39 medulloblastoma survivors and 21 treatment failures) with

7,129 genes. In the experiment, we have defined that the SNR values of gene selection
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are very low (less than 0.5) for both of classes. This implies the variance between

the classes may be quite similar, which is much more difficult to extract the common

discriminant genes between the samples. In Section 6.2, we have discovered three

genes that are able to discriminate the medulloblastomas from other samples. For

the knowledge discovery on clinical outcome of medulloblastomas, we want to find

out how these genes discriminate different classes. We firstly compared the mean

and standard deviation of survivors and failures. Table 6.13 presents the mean of

three defined medulloblastoma discriminant genes. Table 6.14 indicates the standard

deviation of these genes in two classes of treatment outcomes of medulloblastomas.

Gene accession No. Class 1 Class 2
M93119 2024.66 2620.97
X06617 14693.5 14410.8
U05012 s -15.0476 113.378

Table 6.13: Mean of gene expression values on gene M93119, X06617 and
U05012 s across samples of dataset C.

Gene accession No. Class 1 Class 2
M93119 at 2414.17 2460.18
X06617 at 4372.01 3807.16
U05012 s at 297.507 421.784

Table 6.14: Standard deviation of gene expression values on gene M93119,
X06617 and U05012 s across samples of dataset C.

Table shows that failures and survivors of medulloblastomas have the most signif-

icant difference on Gene U05012 s. TrkC is one of the gene symbols for U05012 s,

which is suggested as a molecular basis for the variability of medulloblastoma out-

come in several related researches (John et al., 1999 and Grotzer et al., 2000). In

literature, the low expression value of TrkC has been suggested as unfavourable to

medulloblastoma patients, but it does not appear in this study. Figure 6.16 shows

the gene expression values of TrkC across the samples of dataset C.

In this figure, TrkC performs more variable value in the class of survivors. Some of

survivors even presents lower expression values than failures. The most of failures

perform in a short value distribution. All these findings suggest that survivors of

medulloblastoma have very diverse presentation on TrkC, against the failures have
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quite similar variance. Overall the significant difference on TrkC implies that TrkC

is favourable to discriminate medulloblastoma outcome.
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Figure 6.16: Gene expression values of TrkC across the samples of dataset C.

6.4.2 Knowledge Discovery on Interaction between Genes

and Drugs

In this research, we are more interested in the relationship between the chemotherapy

and patient responses (alive or dead). This could be presented in the gene expression

value. In the Pomeroy’s data, nine chemotherapy drugs have been recorded includ-

ing carboplatin, CCNU, cisplatin, cytoxan, etoposide, methotrexate, thiotepa and

vincristine. All the drugs are antineoplastic medicationmt that interferes with the

growth of cancer cells and slows their growth and spread in the body. For the further

information see http://www.drugs .com/. Due to the interaction between the drugs

and limited sample size, we only analyse the samples that have only been treated by

“cisplation”, “cytoxan” and “vincristine” during in their treatment period.
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We use ontology-based query tool to capture the 36 samples that have been treated

by “cisplation”, “cytoxan” and “vincristine” from dataset C. 9 samples are selected

from failures (class 1). 27 samples are selected from survivors (class 2). Based on

their personalised top-ranked genes, we generate three discriminant genes for both

class 1 and class 2 by using CNS ontology. Table 6.15 describes the details of these

three genes.

Gene No. Accession No. Descriptions
G3185 L17131 rna1 High mobility group protein

(HMG-I(Y)) gene exons 1-8
G2996 M96739 NSCL-1 mRNA sequence
G844 D14686 AMT Glycine cleavage system

Table 6.15: Discriminant genes for outcomes of medulloblastomas

To test our findings, we applied WWKNN to analyse these 36 samples with three

discovered discriminant genes. Table 6.16 presents the WWKNN classification re-

sults. The result indicates 35 out of 36 samples can be successfully classified. This

implies these three genes have a very close relationship with drug of “cisplation”,

“cytoxan” and “vincristine”.

Number of K Class 1 Class 2 Total
2 100.00% 96.30% 97.22%
3 100.00% 96.30% 97.22%
4 100.00% 96.30% 97.22%
5 100.00% 96.30% 97.22%

Table 6.16: WWKNN results on drugs

Figure 6.17 indicates the these 36 samples in a 3D space based on the three discrim-

inant genes. We can see that samples of two classes are clearly separable.
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Figure 6.17: Visualising 3 discriminant genes in 3D

6.5 Upgrading BGO with the newly Discovered

Knowledge

As part of BGO system development, the discovered discriminant genes from this

thesis will be imported into information space of BGO. We have explained how to

import the discovered knowledge from CNS ontology to BGO in Chapter 4. CNS

ontology is an extension of BGO system. However, they still have slightly difference

in terms of ontology based framework. In CNS ontology, we identify each gene by

using the gene accession number. But genes are presented as their official symbols in

BGO. To import knowledge of CNS ontology into BGO system, we have to define the

official symbols for these discriminant genes. Table 6.17 describes the official symbols

for these discriminant genes. The detailed information of these gene is explored from

online biological data source, Gene ontology and NCBI. The upgraded version of

BGO could be download from KEDRI’s website.
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Gene No. CNS ontology ID BGO ID
G2365 M93119 INSM1
G4092 X06617 RPS11
G6435 U05012 s NTRK3
G4741 X86693 SPARCL1
G3239 U45955 GPM6B
G6035 Z31560 s SOX2
G618 D83735 CNN2
G1553 L38969 THBS3
G6724 D83174 s CBP1
G6368 M80397 s POLD1
G982 HG4178-HT4448 Af-17
G4152 X14830 CHRNB1
G6818 HG1980-HT2023 Undefined symbol
G3541 U63842 NEUROG1
G4466 X67951 PRDX1
G5278 HG3543-HT3739 IGFBP2
G4250 X53331 MGP
G4426 X65724 NDP
G1352 L17131 HMGA1
G2404 M96739 NHLH1
G237 D14686 AMT

Table 6.17: The official symbols for these discriminant genes

6.6 Conclusion

For knowledge discovery, each personalised data presents a single case of cancer

diagnosis. From a collection of individual cases, we could extract a few genes that

have the most common connections with the particular disease. In this thesis we call

these genes are discriminant genes. These discriminant genes cannot represent gene

mutation for entire patients, But the knowledge of these genes could provide a very

important adjunct for the future cancer diagnosis.

Above analysis presents the idea of using both modeling method and ontology

method for knowledge discovery in the field of cancer diagnosis. Based on the above

results, we can conclude that the different classes of CNS tumour could be separated

by a few discriminant genes. For the every experimental problem, we have identi-

fied three discriminant genes for each tumour class. All of discovered discriminant
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genes have been evaluated by a statistical approach. There are strong evidences

that discriminant genes are able to represent each class. We also develop an analysis

that is proposed to discover gene reactions after use treatment drug. This anaylsis

predict three genes that have significant reaction with “cisplation”, “cytoxan” and

“vincristine”. This result is tested by using WWKNN.

The CNS system as an extension of BGO presents the relationship between CNS

cancer disease and discriminant genes. All of genes that are recorded as discrim-

inant genes in CNS ontology have been imported into BGO with more detailed

informations. BGO system presents the detailed information of these genes and the

connection between these genes and different brain functions.



Chapter 7

Conclusion

7.1 Summary

We have presented an ontology-based knowledge discovery in CNS tumour diagnosis

using gene expression data in this thesis. The general idea behind this research is

to use both modeling approaches and ontology systems to define the discriminant

genes for CNS diagnosis. The models and ontology-based knowledge framework are

built based on the analysis of benchmark Pomeroy’s data. It contains 99 samples

with 7,129 genes. This thesis is also proposed as a part of the brain gene ontology

(BGO) system development. All of discovered knowledge from this thesis have been

imported into BGO with particular structure.

To achieve the goal of finding the discriminant genes for cancer diagnosis, we have

designed a two-stage research procedure. The first stage is computational modeling

experiment. It includes four steps that are data normalisation, gene selection, cross

validation and applying classifiers. Chapter 2 reviewed the major techniques for

each step and five common classifiers in microarray studies. The second stage is the

discriminant genes discovery. In this stage, we have imported the modelled genes into

ontology. Based on the certain knowledge framework, we extracts the discriminant

genes. Every discovered discriminant gene has been analysed and evaluated by using

statistical techniques. All results have supported our findings in terms of discriminant

genes for cancer diagnosis.

In the computational modeling experiment, the first challenge is the gene selection. It
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would impacts the final classificational accuracy. Two major gene selection methods

(T-test and Signal-to-Noise Ratio) have been described in Chapter 2. In Chapter 4,

we compared these two methods. The solution suggested that Signal-to-Noise Ratio

(SNR) is more suitable to this study. However, the traditional SNR algorithm is

only created for two-class problems. In our experiment, three multi-class problems

are involved. Due to this issue, we developed an One-Vs.-All (OVA) scheme. It is

used to simplify a multi-class problem to several two-class problems. We then built

the OVA scheme on top of SNR. To determine whether the OVA-SNR is efficacious

in this study, we applied two case studies including a multi-class problem and a two-

class problem. Two classifiers have been applied to evaluate the selected genes. The

results suggested that OVA-SNR is highly efficacious not only in multi-class problem,

but also in two-class problem.

In Chapter 4, we have introduced the weighted-weighted k nearest neighbour (WWKNN).

It is personalised modeling algorithm that is also capable of discovering the important

information for each individual experimental sample. However, the previous version

of WWKNN only can be applied on the two-class problem. Due to this limitation,

we have developed two approaches of WWKNN to solve multi-class problem. One is

called multilayer threshold WWKNN, which is to multiply the probability threshold

for the final classification of WWKNN. The other approach is called OVA-WWKNN.

This approach uses similar strategy in OVA-SNR, that simplify a multi-class problem

to several two-class problems. At end of this chapter, we described the prototype of

the CNS ontology system.

Chapter 5 described the computational experiment setup and experimental result.

Six discussed classifiers have been applied. We recorded the best results of every clas-

sifier on each problem. In terms of the classification accuracy, WWKNN significantly

outperforms other five classifiers. Its accuracy is also much better than Pomeroy’s

work. In the multi-class classification, both developed WWKNN approaches have

been used. Interestingly the OVA-WWKNN produced more accurate result than

multilayer threshold WWKNN. We investigate this finding by comparing the per-

formance of two approaches in multi-class classification. The outcomes suggest the

downside of multilayer threshold WWKNN that produces more classificational errors

with more nearest neighbours.

The knowledge discovery is considered in Chapter 6. Both WWKNN and CNS ontol-
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ogy have been applied to extract the discriminant genes. Based on the personalised

ranks of each gene, we have extracted three discriminant genes for four types of

discussed CNS tumours and two subclasses of medulloblastomas. For the clinical

outcomes of medulloblastomas, this method is probably impractical since individ-

ual patient has different response on treatments. In this problem, our focus is to

discover the gene response after treatment. Since the interaction between different

drugs, only 36 samples have been analysed,which have been treated with same three

drugs. The CNS ontology conducts us to find the three genes with significant impor-

tance to every sample. To test this finding, we have built a WWKNN model on these

36 samples with three important genes. WWKNN achieved a nearly 100% accuracy.

This outcome strongly supported that performance of these three genes are capable

to discriminate samples from survivors and failures.

In general, we could conclude that this thesis has achieved the general purpose of

our study. There are three major contributions that have been delivered.

1. This thesis offered a comparative study of major modeling to the area of CNS

tumour data analysis. This comparison involves six classifiers from global,

local and personalised modeling approaches. The final result indicates that

personalised modeling is more efficient for this particular problem.

2. Several discriminant genes have been discovered. These genes cannot repre-

sent gene mutation for entire patients, But these genes could provide a very

important adjunct for the future cancer diagnosis.

3. All of discriminant genes have been imported to both CNS ontology and BGO

system. The reusable knowledge from BGO and CNS ontology will contribute

more related researches in the future.

7.2 Future Work

If time allowed there are numerous developments we would like to attempt. The

most immediate of there are listed below:

• In this study, we have defined several genes that relate to CNS cancer disease.

Due to the limited sample size we cannot prove our findings on other real
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samples. In the future work, we could experiment with larger sample size

datasets to test our findings.

• The approaches used to extract discriminant genes for Pomeroy’s data could

be implemented and tested on other brain related microarray datasets.

• For ontology knowledge construction, our focus is to build the knowledge bridge

between CNS ontology and BGO system. In the future work, we intend to

connect more online available ontology systems in the area of microarray study.

This will involve not only brain related ontology, but also some other biological

ontology.

• A journal publication regarding the findings of this thesis is in progress.



Appendix A

MATLAB code of One-Vs.-All

scheme and WWKNN

MATLAB code of One-VS.-All scheme

% ============================================

% OVA --- One-vs.-All scheme for WWKNN

% Author: Yuepeng Wang, Nov, 2007

% ============================================

function outputRes = crossOVA(infile, thr0)

clc;

%load files

eval(sprintf(’load %s.txt; dat1=%s; clear %s’, infile, infile, infile));

[num, dim] = size(dat1);

% Parameter Setting

thr= double (1:2);

for i= 1:2

thr(i)= thr(i)+thr0; % the threshold for determining the classlabel

end

% --- choose validation mode ---

ansCross = questdlg(’Select Validation Mode’,’Mode Selection’, ’K-Fold Cross-validation’, ...

’Leave-one-out Cross-validation’, ’Leave-one-out Cross-validation’);

if strcmp(ansCross, ’K-Fold Cross-validation’)

ans1 = questdlg(’How many folds you want to use?’,’K-fold selection’, ’3’,’5’,’10’,’5’);

numFold = str2num(ans1);

disp(sprintf(’\n --- fold %d--- \n’, numFold));

elseif strcmp(ansCross, ’Leave-one-out Cross-validation’)

numFold = num;

disp(sprintf(’\n --- Leave-one-out Cross Validation --- \n’));

end
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% ---------- Model parameter setting -------------

% --- WWKNN model parameters ---

prompt={’Enter the number of K’, ’Enter the number of features ’};

name=’Input parameters for WWKNN model’;

numlines=1;

ansPara = inputdlg(prompt, name, numlines, defaultanswer);

nbr = str2num(ansPara{1});

nfeat = str2num(ansPara{2});

if nfeat > (dim-1)

nfeat = dim-1;

end

datNorm1=dat1;

clsLbl = unique(datNorm1(:, end));

dimLbl = length (clsLbl);

overallAcc = [];

clsnum=zeros(1,dimLbl);

allAcc=zeros(1,dimLbl);

clsAcc=zeros(1,dimLbl);

%--------OVA Scheme---------

record=zeros(nfeat,numFold);

for set=1:dimLbl % split a multi-class problem to several two-class

datNorm=zeros(num,dim);

i=0;

for j=1:num

if datNorm1(j,dim)==set

i=i+1;

for m=1:dim-1

datNorm(i,m)=datNorm1(j,m);

datNorm(i,dim)=1; % set the target class as 1

end

else

i=i+1;

for m=1:dim-1

datNorm(i,m)=datNorm1(j,m);

datNorm(i,dim)=2; % set other class as 2

end

end

end

for m=1:num

if datNorm(m,dim)==1;

clsnum(set)=clsnum(set)+1;

end

end

r1 = fix(num/numFold);
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for k = 1:numFold

if k < numFold

tstD = datNorm((k-1)*r1+1:k*r1, :);

if k == 1

trnD = datNorm(k*r1+1:end, :);

else

trnD = [datNorm(1:(k-1)*r1, :); datNorm(k*r1+1:end, :)];

end

else

tstD = datNorm((k-1)*r1+1:end, :);

trnD = datNorm(1:(k-1)*r1, :);

end

tstClasslabel = tstD(:, end);

% --------- Call WWKNN model ------------

res = wwknn(trnD, tstD, nbr, nfeat);

for j=1:dimLbl

if res.Output <= thr(1)

res.Output=1;

else

res.Output=2;

end

end

if strcmp(ansCross, ’Leave-one-out Cross-validation’)

if tstClasslabel == 1

for i=1:nfeat

record(i,k)=res.featureID(i);

end

if res.Output == tstClasslabel

allAcc(set)=allAcc(set)+1;

end

end

clsAcc(set)=(allAcc(set)/clsnum(set))*100;

end

if (datNorm(:,end)==1)

% --------- Output actual and predicted -----------------

if tstClasslabel == res.Output

disp(sprintf(’ %d %d

%d’, k, tstClasslabel, res.Output));

else

disp(sprintf(’ %d %d

%d *’, k, tstClasslabel, res.Output));

end

end

end

end

save record_c.txt record -ASCII -tabs
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% -----------Output Overall Accuracy ------------------

for set=1:dimLbl

if strcmp(ansCross, ’K-Fold Cross-validation’)

disp(’*******************************************************\n’);

disp(sprintf(’*** Class 1 Overall Accuracy of %d folds Crossvalidation:

%f%% ***’, numFold, mean(overallClass1)));

disp(sprintf(’*** Class 2 Overall Accuracy of %d folds

Crossvalidation: %f%% ***’, numFold, mean(overallClass2)));

elseif strcmp(ansCross, ’Leave-one-out Cross-validation’)

disp(sprintf(’ Class %d Overall Accuracy of LOO

Crossvalidation: %4.2f%% ’, set, clsAcc(set)));

end

end

overallAcc = (sum(allAcc))/num*100;

disp(sprintf(’*** Overall Accuracy of LOO Crossvalidation: %4.2f%% ***’, overallAcc));

MATLAB code of weighted-weighted k nearest neighbours

% ============================================

% WWKNN --- Weighted distance weighted variables K-nearest neighbours

% parameter: Train: Training dataset

% test: test dataset

% nbr: Number of neighbours

% nfeat: Number of features

% Output: res

% Note: This WKNN model is used in unbiased model

% last modified: Raphael, Oct, 2007

% ============================================

function res = wwknn(train, test, nbr, nfeat)

[ntr, mtr] = size(train);

[nte] = size(test, 1);

% unbiased FEATURE Selection on the training set

[fid, snrout] = snrV2(train,mtr-1,1);

% Feature selection on the training set.

fid = fid(1:nfeat);

%snrout: snrvalues for each variable

%fid: feature id ranked by snr-values

clear dataout;

clear snrout;

rcoef = zeros(1,nfeat);

rifid = zeros(1,nfeat);

for t = 1:nte

distance = ndist(train(:,fid), test(t,fid), ’euclidean distance’);

strain = [distance train];

strain = sortrows(strain, 1);

strain = strain(1:nbr, 2:end); % nbr neighbours

try
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% === Weighted VARIABLE(selected features) based on SNR ranking ===

[ifid, snrout] = snrV2(strain, size(strain, 2) -1, 1);

% calculate the SNR value for nfeature genes(Weighted Variable)

snrout(find(isnan(snrout))) = 0;

% set nan snr value to 0 since it means the column value’s std = 0;

coef = (snrout - min(snrout))/(max(snrout) - min(snrout));

catch

ifid = fid;

snrout = ones(size(ifid,1),1);

snrout(find(isnan(snrout))) = 0;

% set nan snr value to 0 since it means the column value’s std = 0;

coef = snrout;

end

clear dataout;

for i = 1:nbr

d(i) = sqrt(sum( ((test(t, ifid)-strain(i, ifid)).*coef’).^2)) /

length(ifid);

end

d = d/max(d);

output(t) = sum((1-d)’ .* strain(:,end))/sum(1-d);

rcoef = coef’;

rifid = ifid’;

end

res.featureID = rifid;

res.Coef = [fid coef];

% the coef matrix of weighted feature (selected genes) with gene IDs

res.Output = output;

% ===============================================

% dataout: the reduced set of data set with descending SNR

% geneout: the list of gene corresponding to the ranked SNR

% Author: Liang Goh (7/01/03) - coded amidst Monet, Bach and Dvorak!

% ===============================================

function [geneout, snrout] = snrV2(datain,rankno,TestType)

if nargin<3

TestType=1

end

data = datain;

[row, col] = size(datain);

% sort the matrix in ascending order based on last column (i.e. classes)

datain = sortrows(datain,col);

% exclude the feature haveing same value in both class1 and class2

remFeat = find(var(datain(:, 1:end-1)) == 0);

% count the number in each classes

% classmat = countclass(datain(:,col));

% [classrow,classcol] = size(classmat);

% split the data into the classes

geneout = [];

snrout = [];
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allsnrmat = [];

classrow=length(unique(datain(:,col)));

if (classrow <= 2)

LoopCounter=1;

else

LoopCounter=classrow;

end

for j=1:LoopCounter

t1=find(datain(:,col)==j);

t2=find(datain(:,col)~=j);

mat1 = datain(t1,:);

mat2 = datain(t2,:);

% Calculate the snr for each gene within each class

snrmat = calsnr(mat1,mat2, remFeat, TestType);

% rank snr in ascending order

[snr1, gene1] = sort(snrmat, 2);

% merge results

snrout = [snrout; snr1(:,col-rankno:col-1)];

geneout = [geneout; gene1(:,col-rankno:col-1)];

allsnrmat = [allsnrmat; snrmat];

end

%change to descending order ranking

snrout = flipud(snrout’);

geneout = flipud(geneout’);

% when output classes > 2, there will be a gene list for each class, so

% need to merge the genes for each class into one.

if (classrow > 2)

% Take top half of genes identified for each class. Need to ensure

% that there is no overlap of genes.

[geneout,snrout] = mergegene(geneout,snrout);

dataout = datain(:,geneout(:,1));

else

% 2 or less output classes

geneout = geneout(:,1);

dataout = datain(:,geneout(:,1));

end

% dataout = [dataout,datain(:,col)];

dataout=[data(:,geneout), data(:,end)];

function [snrmat] = calsnr(mat1, mat2,remFeat, TestType)

% Calcuate snr for each column based on both matrices mat1 and mat2

% Note last column is output classes, so is not calculated.

% Author: Liang Goh (16/01/03)

[row, col] =size(mat1);
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snrmat = [];

gmean=mean(mat1(:,1:col-1));

omean=mean(mat2(:,1:col-1));

gstd = std(mat1(:,1:col-1));

ostd = std(mat2(:,1:col-1));

onevectorind=find(gstd==0 & ostd==0);

otherind=find(gstd | ostd);

if TestType==1 %testing for any difference in genes between classes

if ~isempty(onevectorind)

snrmat(onevectorind)=abs(gmean(onevectorind) -

omean(onevectorind))./(gmean(onevectorind)

+omean(onevectorind));

if ~isempty(remFeat)

snrmat(remFeat) = 0;

end

end

if ~isempty(otherind)

snrmat(otherind) = abs(gmean(otherind) -

omean(otherind))./(gstd(otherind)

+ ostd(otherind));

end

elseif TestType==2

%testing to see if class 1 is upregulated with respect to class 2

if ~isempty(onevectorind)

snrmat(onevectorind)=(gmean(onevectorind) -

omean(onevectorind))./(gmean(onevectorind)

+omean(onevectorind));

end

if ~isempty(otherind)

snrmat(otherind) = (gmean(otherind) - omean(otherind))

./(gstd(otherind)

+ ostd(otherind));

end

elseif TestType==3

%testing to see if class 2 is upregulated with respect to class 1

if ~isempty(onevectorind)

snrmat(onevectorind)= -(gmean(onevectorind)-

omean(onevectorind))./(gmean(onevectorind)

+omean(onevectorind));

end

if ~isempty(otherind)

snrmat(otherind) = -(gmean(otherind) - omean(otherind))

./(gstd(otherind)+ostd(otherind));

end

end

%====================================================

% Merge the selected genes into one gene list

% geneout: the merged gene list

% genein: the mutliple columns of gene list

% Author: Liang Goh (03/02/03) - with the accompaniment of Enya!
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% ====================================================

function [geneout,snrout] = mergegene(genein, snrin)

[row,col]=size(genein);

geneout=genein(:,1);

snrout=snrin(:,1);

for i=2:col

testmat = genein(:,i);

snrmat = snrin(:,i);

result = checkdata(geneout,testmat);

[r,c]=size(result);

% common genes found, so should grab those that are not common, so set

% common ones to empty matrix.

testmat(result(:,2),:)=[];

snrmat(result(:,2),:)=[];

geneout=[geneout; testmat];

snrout=[snrout;snrmat];

end

return;

% ====================================

% checkdata: check if data is repeated in both data sets

% ====================================

function [result] = checkdata(gdata, rdata)

[r1, c1] = size(gdata);

[r2, c2] = size(rdata);

cmin = min(c1,c2);

result = [];

for i=1:r1

for j=1:r2

if gdata(i,1:cmin) == rdata(j,1:cmin)

result = [result; i, j];

end

end

end

% ===================================

% ndist:

% thedata: training data

% sample : testing data

% =================================

function distance = ndist(thedata, sample, type)

if nargin < 3

type = ’Euclidean Distance’

end

switch lower(type)

case ’euclidean distance’
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distance = euc(sample, thedata)’;

case ’manhattan distance’

distance = sum(abs(ones(size(thedata,1), 1)*sample - thedata)’)’;

end

return

% ====================================

% euc: ensure the 2 input matrices can be calculated by dist

% ====================================

function d = euc(a, b)

if size(a,2) ~= size(b,2)

error(’A and B should have the same number of features’);

end

if size(a, 1) == 1 & size(b, 1) ~= 1; % if a is a 1 dimenstion vector

a = ones(size(b, 1), 1)*a;

d = dist(a’, b’);

d = d(1, :);

elseif size(b, 1) == 1 & size(a, 1) ~= 1;

b = ones(size(a,1),1)*b;

d = dist(a’,b’);

d = d(:,1);

elseif size(a) == size(b)

d = dist(a’, b’);

else

error(’A and B should have the same number of samples or have a single

sample in A and many samples in B’);

end

% =================================

% dist: calculate the Euclidean distance

% =================================

function d = dist(a,b)

% DISTANCE - computes Euclidean distance matrix

% E = distance(A,B)

% A - (DxM) matrix

% B - (DxN) matrix

% Returns:

% E - (MxN) Euclidean distances between vectors in A and B

% Description :

% This fully vectorized (VERY FAST!) m-file computes the

% Euclidean distance between two vectors by:

% ||A-B|| = sqrt ( ||A||^2 + ||B||^2 - 2*A.B )

% Example :

% A = rand(400,100); B = rand(400,200);

% d = distance(A,B);

% Author : Roland Bunschoten

% University of Amsterdam

% Intelligent Autonomous Systems (IAS) group

% Kruislaan 403 1098 SJ Amsterdam

% tel.(+31)20-5257524

% bunschot@wins.uva.nl
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% Last Rev : Oct 29 16:35:48 MET DST 1999

% Tested : PC Matlab v5.2 and Solaris Matlab v5.3

% Thanx : Nikos Vlassis

% Copyright notice: You are free to modify, extend and distribute

% this code granted that the author of the original code is

% mentioned as the original author of the code.

if (nargin ~= 2)

error(’Not enough input arguments’);

end

if (size(a,1) ~= size(b,1))

error(’A and B should be of same dimensionality’);

end

aa=sum(a.*a,1); bb=sum(b.*b,1); ab=a’*b; % sum the data alogn the colomn

d=sqrt(abs(repmat(aa’,[1 size(bb,2)]) + repmat(bb,[size(aa,2) 1]) - 2*ab));



Appendix B

Selected genes

Dataset A, A1 and A2

Gene No. Accession No. Description

G3311 U49837 LIM protein MLP mRNA

G5589 X91653 s DNA for exon encoding for

N-acetylglucosaminyltransferase V (340 bp)

G1221 L06419 PLOD Lysyl hydroxylase

G3718 U77718 Desmosome associated protein pinin mRNA

G3595 U67191 Multiple exostosis-like protein (EXTL) mRNA

G2683 U08015 NF-ATc mRNA

G4510 X71428 RNA-BINDING PROTEIN FUS/TLS

G6476 U72935 cds3 s ATRX gene (putative DNA dependent

ATPase and helicase) extracted

from Human putative DNA

dependent ATPase and helicase (ATRX) gene

G4529 X73608 Testican

G4709 X84003 TAFII18 mRNA for transcription factor TFIID

G5653 Z75190 s Apolipoprotein E receptor 2

G842 HG2415-HT2511 Transcription Factor E2f-2

G6964 L35594 Autotaxin mRNA

Continued on Next Page. . .



119

Table B.1 – Continued

Gene No. Accession No. Description

G4578 X76383 HE3(alpha)

G2306 M86699 TTK TTK protein kinase

G744 D87684 KIAA0242 gene, partial cds

G3880 U85992 Clone IMAGE:35527 unknown protein

mRNA, partial cds

G3928 U90426 Nuclear RNA helicase

G2129 M63391 rna1 Desmin gene

G732 D87462 KIAA0272 gene, partial cds

G2184 M69023 Globin gene

G1764 M17754 BN51T BN51 (BHK21) temperature

sensitivity complementing

G2033 M55621 MGAT1 N-acetylglucosaminyltransferase I

G6893 U24685 Anti-B cell autoantibody IgM heavy chain

variable V-D-J region (VH4) gene, clone E11,

VH4-63 non-productive rearrangement

G2267 M81933 CDC25A Cell division cycle 25A

G370 D31884 KIAA0063 gene

G2070 M59979 PTGS1 Prostaglandin-endoperoxide synthase 1

(prostaglandin G/H synthase and cyclooxygenase)

G873 HG2755-HT2862 T-Plastin

G2267 M81933 CDC25A Cell division cycle 25A

G2309 M86752 TRANSFORMATION-SENSITIVE

PROTEIN IEF SSP 3521

G3382 U52969 BRAIN SPECIFIC POLYPEPTIDE PEP-19

G3404 U55209 Myosin VIIa transcript 2 mRNA

G4779 X90857 -14 gene, containing globin regulatory element

G1532 L37936 MITOCHONDRIAL ELONGATION

FACTOR TS PRECURSOR

G648 D85527 LIM domain, partial cds



120

Dataset B

Gene No. Accession No. Description

G6815 HG1980-HT2023 Tubulin, Beta 2

G4463 X67951 PAGA Proliferation-associated gene

A (natural killer-enhancing factor A)

G3538 U63842 Neurogenic basic-helix-loop-helix

protein (neuroD3) gene

G4406 X64330 ATP-citrate lyase

G5957 J03241 s TGFB3 Transforming growth factor, beta 3

G3234 U44839 Putative ubiquitin C-terminal

hydrolase (UHX1) mRNA

G5103 Z27113 DNA-DIRECTED RNA POLYMERASE II 14.4

KD POLYPEPTIDE

G4116 X12447 ALDOA Aldolase A

G4158 X15183 60S RIBOSOMAL PROTEIN L13

G3678 U73328 DLX7 Distal-less homeobox 7

G3500 U61263 Acetolactate synthase homolog mRNA

G3168 U40391 rna1 Serotonin N-acetyltransferase gene

G3072 U33839 No description available for U33839

G4667 X81817 6C6-Ag mRNA

G3470 U59913 SMAD5 (Smad5) mRNA

G4218 X51804 PUTATIVE RECEPTOR PROTEIN

G4306 X57398 NME1 Non-metastatic cells 1, protein

(NM23A) expressed in

G4028 X02152 LDHA Lactate dehydrogenase A

G5275 HG3543-HT3739 Insulin-Like Growth Factor 2

G4247 X53331 MGP Matrix protein gla

G4423 X65724 NDP Norrie disease (pseudoglioma) protein

G226 D14530 40S RIBOSOMAL PROTEIN S23

G2953 U25789 Ribosomal protein L21 mRNA

Continued on Next Page. . .
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Table B.2 – Continued

Gene No. Accession No. Description

G4941 Y00757 SGNE1 Secretory granule, neuroendocrine

protein 1 (7B2 protein)

G4701 X83543 APXL Apical protein (Xenopus laevis-like)

G1443 L27560 Insulin-like growth factor binding

protein 5 (IGFBP5) mRNA

G4246 X52966 RPL35A Ribosomal protein L35a

G5552 L06797 s PROBABLE G PROTEIN-COUPLED

RECEPTOR LCR1 HOMOLOG

G1591 L41066 NF-AT3 mRNA

G5843 HG3431-HT3616 s Decorin, Alt. Splice 1

G568 D79205 Ribosomal protein L39

G5328 M14745 BCL2 B cell lymphoma protein 2

G6343 X53595 s APOH Apolipoprotein H

G603 D82345 NB thymosin beta

G2117 M62843 PARANEOPLASTIC ENCEPHALOMYELITIS

ANTIGEN HUD

G1783 M19720 rna2 L-myc gene (L-myc protein)

extracted from Human L-myc protein gene

Dataset C

Gene No. Accession No. Description

G2695 X69150 Ribosomal protein S18

G1352 M36072 RPL7A Ribosomal protein L7a

G1771 X13293 MYBL2 V-myb avian myeloblastosis

viral oncogene homolog-like 2

Continued on Next Page. . .
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Table B.3 – Continued

Gene No. Accession No. Description

G6531 U14972 Ribosomal protein S10 mRNA

G6064 K03189 f Chorionic gonadotropin (hcg) beta subunit mRNA

G3185 L17131 rna1 High mobility group protein (HMG-I(Y))

gene exons 1-8

G3028 X13482 U2 SMALL NUCLEAR RIBONUCLEOPROTEIN

G18 L12711 s TKT Transketolase (Wernicke-Korsakoff syndrome)

G8 L19711 Dystroglycan (DAG1) mRNA

G4130 X04741 UBIQUITIN CARBOXYL-TERMINAL

HYDROLASE ISOZYME L1

G5508 U12404 HSPB1 Heat shock 27kD protein 1

G4546 U15008 SnRNP core protein Sm D2 mRNA

G4951 U81375 Placental equilibrative nucleoside transporter 1

(hENT1) mRNA

G3420 X13794 rna1 Lactate dehydrogenase B gene exon 1 and 2

(EC 1.1.1.27) (and joined CDS)

G572 Z49148 s Enhancer of rudimentary homolog mRNA

G2671 U39318 AF-4 mRNA

G3834 X67247 rna1 RpS8 gene for ribosomal protein S8

G3746 U14968 Ribosomal protein L27a mRNA

G5528 HG613-HT613 Ribosomal Protein S12

G4509 D63880 KIAA0159 gene

G1159 Y07604 Nucleoside-diphosphate kinase

G1806 J04823 rna1 Cytochrome c oxidase subunit

VIII (COX8) mRNA

G5433 M13934 cds2 RPS14 gene (ribosomal protein S14)

extracted from Human ribosomal protein S14 gene

G752 U30872 CENP-F kinetochore protein mRNA

G4338 M81757 40S RIBOSOMAL PROTEIN S19

G1320 L06419 PLOD Lysyl hydroxylase

G2496 J02611 APOD Apolipoprotein D

Continued on Next Page. . .
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Table B.3 – Continued

Gene No. Accession No. Description

G348 D86974 KIAA0220 gene, partial cds

G327 U37673 Neuron-specific vesicle coat protein and cerebellar

degeneration antigen (beta-NAP) mRNA

G2196 U28963 Gps2 (GPS2) mRNA

G3320 X69636 mRNA sequence (15q11-13)

G5812 U18018 ETV4 Ets variant gene 4 (E1A enhancer-binding

protein, E1AF)

G2032 M97287 SATB1 Special AT-rich sequence binding protein 1

(binds to nuclear matrix/scaffold-associating)

G1478 U78180 Sodium channel 2 (hBNaC2) mRNA

alternatively spliced

G1054 S76475 NTRK3 Neurotrophic tyrosine kinase, receptor,

type 3 (TrkC)

G3531 D28124 Unknown product

G4173 U70867 Prostaglandin transporter hPGT mRNA

G4484 M17733 Thymosin beta-4 mRNA

G3645 L10333 s Neuroendocrine-specific protein A (NSP) mRNA

G844 D14686 AMT Glycine cleavage system protein T

(aminomethyltransferase)

G6252 S66541 s B-50=neural phosphoprotein [human, Genomic,

778 nt, segment 3 of 3]

G6810 AC002045 xpt2 A-589H1.2 from Homo sapiens Chromosome

16 BAC clone CIT987-SKA complete genomic

sequence, complete sequence.

G2996 M96739 NSCL-1 mRNA sequence

G851 D86963 PTB Ribosomal protein L26

G588 U40271 s PTK7 Protein-tyrosine kinase 7

G5458 L09229 s FACL1 Long chain fatty acid acyl-coA ligase

G237 D78012 CRMP1 Collapsin response mediator protein 1

G3485 M74715 s IDUA Iduronidase, alpha-L-

Continued on Next Page. . .
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Table B.3 – Continued

Gene No. Accession No. Description

G654 HG2525-HT2621 Helix-Loop-Helix Protein Delta Max, Alt. Splice 1

G3731 L32164 Zinc finger protein mRNA, 3’ end
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