
Named Entity Recognition with Deep Learning

Haobin Yu

A thesis submitted to Auckland University of Technology

In partial fulfillment of the requirements for the degree of

Master of Computer and Information Sciences (MCIS)

2019

School of Engineering, Computer and Mathematical Sciences

I

Abstract

Named entity recognition is a significant subtask of natural language processing.

Traditional methods require large numbers of feature engineering and handcrafted

additional dictionaries to achieve high performance.

Nowadays, deep learning is widely applied for image and natural language processing

domains. Through the deep neural network, features are automatically extracted from the

training data, and this avoids most feature engineering. Some deep neural network based

methods are also used for the modelling sequence labelled problem. Throughout these

methods, the performance of named entity recognition can be improved.

In this thesis, we have mainly used the bidirectional LSTM model based on deep learning

as an architecture, word embedding and Convolutional Neural Network (CNN) as a word-

level and char-level feature extractor. The conditional random field (CRF) layer is used

to output the predicted labels. We used the CoNLL 2003 dataset and the Broad Twitter

Corpus dataset training and testing the Bi-LSTM-CNN-CRF model respectively and got

satisfactory results. In order to evaluate the Bi-LSTM-CNN-CRF model, we compared it

with three popular machine learning methods. The three popular machine learning

methods include the Support Vector Machine (SVM), the Hidden Markov Model (HMM),

and the Conditional Random Field (CRF). The results of the evaluation show that the Bi-

LSTM-CNN-CRF model with only given labelled text and pre-training word embedding

surpasses the three machine learning methods that employ handcrafted feature

engineering.

Keywords: Named Entity Recognition, Deep Learning, Deep Neural Network,

Convolutional Neural Network (CNN), Bi-LSTM, Support Vector Machine (SVM),

Hidden Markov Model (HMM), Conditional Random Field (CRF), Word Embedding.

II

Contents

Abstract ... I

List of Figures .. VI

List of Tables ... VII

Attestation of Authorship.. VIII

Acknowledgment ... IX

Chapter 1 Introduction .. 1

1.1 Background and Motivation .. 2

1.2 Research Question .. 3

1.3 Contributions .. 3

1.4 Objective of this Thesis ... 4

1.5 Section Introduction ... 4

Chapter 2 Literature Review .. 5

2.1 Introduction... 6

2.2 Overview of Natural Language Processing .. 7

2.3 Named Entity Recognition .. 8

2.3.1 Textual Category or Domain .. 9

2.3.2 Languages ... 11

2.3.3 Entity Type ... 11

III

2.3.4 Techniques and Algorithms to Solve the NER Problem ... 12

2.4 Hidden Markov Model (HMM) ... 18

2.5 Support Vector Machine (SVM) .. 20

2.6 Conditional Random Field (CRF) .. 21

2.7 Deep Learning ... 22

2.8 Deep Neural Network ... 25

2.9 Convolution Neural Network (CNN) ... 26

2.10 Recurrent Neural Network (RNN) ... 27

2.10.1 Long Short Term Memory (LSTM).. 29

2.11 Summary .. 30

Chapter 3 Methodology .. 31

3.1 Introduction.. 32

3.2 Research Design .. 33

3.3 SVM Model ... 34

3.4 HMM Model .. 36

3.5 CRF Model .. 38

3.6 Bi-LSTM-CNN-CRF Model .. 40

3.7 Summary .. 44

Chapter 4 Results and Analysis ... 45

IV

4.1 Introduction.. 46

4.2 Data Description .. 47

4.2.1 CoNLL 2003... 47

4.2.2 Broad Twitter Corpus .. 48

4.3 Pre-processing of Dataset ... 50

4.4 Experimental Environment ... 51

4.5 NER Results .. 52

4.5.1 Overall Results ... 52

4.5.2 CoNLL 2003 Results ... 54

4.5.3 BTC Results ... 57

4.4 Limitation of the Experiments .. 59

4.5 Summary .. 60

Chapter 5 Discussions ... 61

5.1 Introduction .. 62

5.2 Analysis of Bi-LSTM Model .. 63

5.2.1 Parameter Tuning ... 64

5.3 Discussing of Four Different Models ... 66

5.4 Summary .. 68

Chapter 6 Conclusion and Future Work ... 70

V

6.1 Conclusion ... 71

6.2 Future Works ... 71

Reference .. 72

VI

List of Figures

Figure 1: The structure of HMM .. 19

Figure 2: The structure of SVM .. 20

Figure 3: The structure of linear chains CRF model ... 22

Figure 4: Overall structure of RNN ... 28

Figure 5: Structure of RNN at time t .. 28

Figure 6: Structure of the memory cell unit .. 29

Figure 7: The steps of named entity recognition .. 33

Figure 8: The format of LIBSVM .. 34

Figure 9: Sample of LIBSVM input data .. 35

Figure 10: The relationship of elements in the HMM model 37

Figure 11: Architecture of the Bi-LSTM-CNN-CRF network .. 41

Figure 12: Sample of the CoNLL 2003 dataset .. 48

Figure 13: Sample of Broad Twitter Corpus .. 49

Figure 14: Sample of Broad Twitter Corpus after pre-processing 51

Figure 15: Confusion matrices of CoNLL 2003 result .. 54

Figure 16: The classification report of CoNLL 2003 result ... 55

Figure 17: The overall performance of CoNLL 2003 result .. 56

Figure 18: Confusion matrices of BTC result ... 57

Figure 19: The classification report of BTC result .. 58

Figure 20: The overall performance of BTC result... 59

Figure 21: Loss function of corpora ... 63

VII

List of Tables

Table 1: Table of named entity tags, part-of-speech tags, and chunk tags 35

Table 2: Number of articles, sentences and tokens in each data file of the English

data set .. 47

Table 3: Number of articles, sentences and tokens in each data file of the German

data set .. 47

Table 4: Number of named entities per data file of the English data set 48

Table 5: Number of named entities per data file of the German data set 48

Table 6: Sections of corpus A region of “stratified” indicates that data was taken

from six regions in the English-speaking world .. 50

Table 7: Number of named entities of dataset .. 50

Table 8: Software version of machine learning methods ... 51

Table 9: Software version of Bi-LSTM-CNN-CRF model ... 52

Table 10: Results of our experiment .. 52

Table 11: Performance of using pre-trained word vectors or not 64

Table 12: Performance of four OOV methods .. 65

Table 13: Performance of ten filter sizes .. 66

Table 14: Performance of six filter numbers ... 66

VIII

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person except that which appears in the citations and acknowledgements. Nor does it

contain material which to a substantial extent I have submitted for the qualification for

any other degree of another university or other institution of higher learning.

Signature: Date:09/07/2019

IX

Acknowledgment

From the beginning of this project to the end I have received much help from many

people. First of all, I would like to express my special thanks of gratitude to my

supervisor Parma Nand who gave me the golden opportunity to do this wonderful

project, which also helped me in doing a lot of research and I came to know about so

many new things. I am really thankful to him.

Finally, I would like to thank my classmates, parents, and friends who have been with

me for one and half years, thank you for all the helpful suggestions and opinions they

have given me, and thank them for helping me find the materials during the writing

process, so that I can successfully complete the thesis writing. Thanks for their support

and help in my life!

Haobin Yu

Auckland, New Zealand

8 July 2019

1

Chapter 1 Introduction

 This chapter is composed of five parts. The first part introduces the

background of named entity recognition briefly and the motivation for this

project. The second part presents the questions this thesis attempts to

explain. The results that are expected to be achieved will be introduced in

the fourth part. The structure of this thesis is introduced in the last part.

2

1.1 Background and Motivation

Nowadays, there are many sequence modelling methods that are applied to natural

language processing (NLP), information extraction, machine translation, speech

recognition, and so forth. A named entity generally refers to an entity with a specific

meaning or strong reference in the text, usually including the person's name, place name,

organization name, date and time, proper noun, and the like. The named entity recognition

(NER) system extracts the above entities from the unstructured input text and can identify

more of the categories of entities according to the business needs, such as, product name,

company name, price, and so on. Therefore, the concept of an entity can be very broad,

as long as it is a particular piece in the text that the business needs, it can be called an

entity. The NER is based on the task of NLP and it has been used for a wide range of

applications. Therefore, how to apply sequence modelling technology to improve the

accuracy of NER and then further improve the downstream NLP tasks is essential.

In the past, rule-based and dictionary-based methods are used to recognise the named

entities. They rely on handcraft rules for human’s language grammar and entity libraries.

The disadvantage of the rule or dictionary-based approach is that it is too costly, and there

are problems such as the long period of system construction, poor portability, and the

need to establish different domain knowledge to enhance system identification

capabilities (Nadkarni, Ohno-Machado & Chapman, 2019).

Recently, based on machine learning, people start through supervised learning building

statistical models to calculate the probability distribution to classify and recognise entity

tags. Researchers use generative models instead of discriminative models to improve the

performance of models in supervisor learning. Researchers also extend the models to

unsupervised learning to decrease handcraft feature extraction. We use one discriminative

model, the support vector machine (SVM), and two generative models, the Hidden

Markov Model (HMM) and the Conditional Random Field (CRF).

Deep learning has avoided manual feature extraction, through unsupervised learning or

semi-supervised learning it extracts and learns features to build the model. The

bidirectional long short-term memory network (Bi-LSTM) (Graves & Schmidhuber, 2005)

is widely applied for the sequence label problem with long term dependence. It can

improve the accuracy of the overall training. In this thesis, we use word embedding and

char-level embedding as the feature extractor, and combine it with external pre-training

vectors and feed them into the framework of Bi-LSTM-CRF model (Ma & Hovy, 2016).

In the process of NER, we first need to prepare the data for different models, because our

models require a different data format. Next, we need to spend time tuning the parameters

of the neural network. Our neural network uses different optimization methods. Parameter

tuning contributes to the performance of the model.

3

1.2 Research Question

The introduction summarises the basic knowledge of this thesis, which is about

classifying and identifying named entities. A few research questions have been set forth

to further understand the processing of NER. The research question is as follows:

Does Deep Learning improve the performance of Name Entity Recognition?

The following sub-question will help us better solve the major question.

What is Name Entity Recognition?

Which algorithms is the best one apply for Name Entity Recognition?

What is the process of Name Entity Recognition system?

The main research question is about NER, to achieve the goal we need to find the

algorithms and the related techniques that apply to our project and we need to understand

the specific processing of the NER system.

1.3 Contributions

The main argument of this thesis involves building four models for NER and comparing

their results. According to the procedure that is proposed in this thesis a NER experiment

is performed step by step. In this thesis, we introduced the following steps:

 Data collection and pre-processing,

 Build a support vector machine model,

 Build a Hidden Markov model,

 Build a Conditional random field model,

 Char-level feature extraction through Convolutional neural network,

 Building Bi-LSTM-CRF model,

 Named entity classification and recognition by four models,

 Results analysis and comparison.

The details of the methods in terms of the related algorithms that are used in our

experiment are introduced in Chapter 2. The particulars of the methods that are used in

our experiments are introduced in detail in Chapter 4.

The contribution of our research project is:

 NER based on machine learning,

 NER based on deep learning,

 How to use the CNN model as char-level word embedding,

4

 Comparison of different of four models,

 Parameter tuning of Bi-LSTM in details.

Our work is based on machine learning and deep learning. Our research can meet the

needs of NER.

1.4 Objective of this Thesis

Firstly, the processing of the NER system is divided into two parts: training model and

prediction. We will introduce this in this thesis in detail.

In order to recognise named entity in different articles, including informal tweets, we need

to consider further feature extraction from diverse corpus to build the models.

For this research project, we have used four methods to build the models and we have

compared these results to find the optimal methods and then we discuss the limitations of

the models. In addition, in the thesis, we will compare the four methods in detail together

with our experimental results.

1.5 Section Introduction

This thesis is comprised of five Chapters, and each section has the following content:

In Chapter 2, we will introduce the previous work in detail. We focus on the literature that

has studied NER and popular sequence models. The first part is the literature review of

the concept of NLP, and the important models and their applications. Then, we introduce

NER and methods implementation. Finally, we review the different models for feature

extraction, classification, and predictions based on machine learning and deep learning.

In Chapter 3, we introduce the particular methods that we use. We introduce four models

and their theories. We also present correlation algorithms for implementing a complete

NER system. In addition, we also discuss the basic workflow of the NER system.

In Chapter 4, we introduce the implementation of NER. We also include data collection

and pre-processing. The results of our experiments will show as diagrams in this Chapter.

In addition, we compared four methods under a different corpus. We describe the results

in detail, and we discuss the limitations of this project.

The comparison of the principle of four methods is introduced in Chapter 5. We also

introduce the parameter tuning of the Bi-LSTM model in detail.

Chapter 6 presents the conclusion and discusses future work.

5

Chapter 2 Literature Review

 In this chapter, we analyse the natural language processing and named

entity recognition via a review of the past research. Through the

literature review, we can understand the theoretical knowledge and the

application methods of named entity recognition. This chapter also

introduces the methods that mainly apply for named entity recognition.

6

2.1 Introduction

With the continuous advancement of the research and development of NLP, the neural

network instead of traditional machine learning has become the mainstream in term of

the research (LeCun, Bengio & Hinton, 2015). Based on several new optimization

methods the neural network and word representation methods improve the feature

selection and overall performance of many NLP tasks.

Through a review of the past research this paper can briefly understand the development

of NLP. It has helped us answer the sub-research questions and choose the methods to

implement the experiment. And then we introduced NER and the development of the

methods applied for NER.

The second part of this Chapter mainly introduces each method used in this project.

After a review of methods applied for NER, from machine learning based methods, we

selected the SVM, the HMM, and the CRF as our implementation methods. In addition,

we also chose to use the Bi-LSTM method as the other method for this project.

After reviewing the four methods that we chose for this project, we have the basic idea

for the implementation of the workflow for the whole project. The first step is to start

the data collection and pre-process the data. The next step is using the methods and

algorithms to build the models. In order to identify the named entity in the articles, we

need to select the features to support the model.

7

2.2 Overview of Natural Language Processing

Natural language processing (NLP) is a cross-cutting field of artificial intelligence,

computer science, and information engineering, involving knowledge of statistics,

linguistics, and so forth (Zagal, Tomuro, & Shepitsen, 2012). With respect to NLP, the

computer accepts the input of the user's natural language, and it simulates human

understanding of natural language through a series of human-defined algorithms to

process and calculate and then return the results of the user's expectations (Daelemans, &

Van den Bosch, 2005). The purpose of NLP is to use computers instead of a person or a

team of people to process large-scale natural language information.

NLP has lots of applications, such as, machine translation, sentiment analysis, chat robot,

and intelligent customer service. The basic technologies that are involved include word

segmentation, part-of-speech tagging, NER and named entity disambiguation, and so

forth.

Before 2000, the mainstream of NLP is statistical methods. Researchers focus on

extracting more features from articles to improve the performance of the model, such as,

the gazetteer, and so on.

In 2001, a feed-forward neural network (Bengio, Ducharme, Vincent & Jauvin, 2003)

combined neural networks and language models, the network used neural networks to

obtain word embedding matrices, which is the practical basis for all subsequent word

embedding techniques. The possibility of a neural network language model has also been

demonstrated.

The CRF has been proposed to handle labelling sequence data (Lafferty, McCallum &

Pereira, 2001). This method avoids the strong independence assumption of the Markov

chain and related model. It is even often added to the neural network model to correct the

output sequence.

In 2003, the latent Dirichlet allocation (Blei, Ng & Jordan, 2003) model was proposed so

that the probability map model, is widely applied for topic modelling. There are many

variants of the topic model, such as, the supervised Label LDA (Ramage, Hall, Nallapati,

& Manning, 2009), the PLDA (Wang, Bai, Stanton, Chen & Chang, 2009), and so forth.

Statistical methods focus on the distribution of the data itself. The main aspect of the

statistical method is involved with how to design more and better feature patterns from

the distribution of texts.

Mikolov et al. (Mikolov, Chen, Corrado & Dean, 2013), proposed word2vector which is

an important technology that has to do with the neural network.

With the development of computing power, the neural network can be deeper and deeper,

and the previously restricted neural network is no longer in the theoretical stage. After it

has been proved in the image domain, the deep neural network is applied for NLP.

8

Due to the increase in computing power the calculation of neural networks are no longer

limited. Although the neural network is a black box, it saves a lot of design features.

In 2014, sequence to sequence learning (Sutskever, Vinyals & Le, 2014) was proposed

which is a framework that can map one sequence to another sequence through the neural

network. Machine translation has gained huge improved performance by using this

framework. Google used the sequence to sequence framework with the attention model

to replace its monolithic phrase-based machine translation models (Wu et al., 2016).

Under the framework, the encoder and the decoder can be different models, thus this

framework is also applied for many other NLP tasks, such as, generating a caption based

on an image (Vinyals, Toshev, Bengio & Erhan, 2015), generating text through structured

data (Lebret, Grangier & Auli, 2016), and generating natural descriptions from source

code changes (Loyola, Marrese-Taylor& Matsuo, 2017).

Attention was proposed in 2015. It is the crucial function that causes neural machine

translation to be better than the classic phrase-based machine translation system

(Bahdanau, Cho & Bengio, 2014). In addition, attention is widely applicable, it is used

for any task that requests making decisions through input data potentially. It is not only

used for NLP field it is also applied for image captioning (Xu et al., 2015) Multiple layers

of self-attention are also used for the Transformer architecture (Vaswani et al., 2017).

Pre-training word embedding is context-agnostic, it is only used for the first layer

initialization, it can be used as features add into the neural network model (Ramachandran,

Liu & Le, 2016) (Peters et al., 2018). It was shown to be beneficial across a various range

of tasks, such as, it was fine-tuned on the target task data (Ramachandran, Liu & Le,

2016). At the end of 2018, BERT (Devlin, Chang, Lee & Toutanova, 2018) was proposed

to deal with 11 NLP missions. It created state-of-the-art models for a wide range of tasks.

Neural networks can automatically extract the features from the data, and in terms of

people it can separate their complex features, and focus more on the innovation of the

model algorithm itself and the breakthrough of the theory.

2.3 Named Entity Recognition

Named entity recognition (NER) is a subtask of NLP, the purpose is identifying named

entity mentioned in articles into pre-defined categories, such as, a person’s name,

organizations, locations, times, date, currency, and percentage. From the whole process

of text analysis, NER belongs to the field of unknown word recognition. It is an

indispensable component of various NLP tasks, such as information retrieval, machine

translation and so on. On the other hand, with the development of artificial intelligence

technology, more and more application scenarios based on NLP, such as, machine

translation, chat robot, and intelligent customer service will use this technique. This task

must first be overcome in most artificial intelligence research related to NLP. With the

9

rapid development of mobile Internet and information technology, the number of texts

generated by news, commentary and social media has exploded. Manually processing

large amounts of textual information becomes increasingly difficult. Therefore, based on

techniques of NLP, for example, information retrieval and intelligent customer service

will play a more significant role. However, compared with a huge amount of text data,

only a few amounts of data were available for supervised training, so it’s difficult to

generalise from these few samples of data. Thus, nowadays, carefully constructed

handcraft engineered features and specialized language knowledge resources are used to

solve named the entity recognition problem (Lample, Ballesteros, Subramanian,

Kawakami, & Dyer, 2016).

2.3.1 Textual Category or Domain

In the early researches, the corpus usually collected from news stories, such as CoNLL

2003 shared task and so forth (Sang & De Meulder, 2003). Many other fields of text have

been ignored, such as, scientific articles or research studies, informal text, sports, business,

and so forth (Nadeau, 2007).

Recently, the rapid development of so many disciplines, numerous new publications

appear daily in academic journals researchers are challenged to stay on the cutting edge

of research. In order to advance many fields of research and avoid repetition researchers

gain latest research development by reading published information. Therefore, extracting

and searching for information from a huge number of databases has become very

important. In order to achieve this goal, the very fundamental pre-processing step is to

identify the named entity mentioned in the documents. After this step, the downstream

NLP tasks, such as, information search and information extraction can improve the

efficiency in terms of accessing the information (Hemati & Mehler, 2019). However, for

fields, such as, biological, chemical, and biomedical research, many chemical and drug

names are difficult to recognise.

The most difficulty in biological NER is the lack of standardization of the names. There

are several names and abbreviations for the same gene or protein. Some abbreviation of

biological terms is the same as the common English word. Resolving the ambiguity in

gene or protein names is a significant problem (Jensen, Saric, & Bork, 2006).

In 2002, a rules-based named entity recogniser was designed based on the characteristics

of biological data, which is used to identify six types of biological named entities by

Narayanaswamy et al., (Narayanaswamy, Ravikumar, & Vijay-Shanker, 2002). In 2004,

Kim et al., published bio-entity recognition shared task at JNLPBA based on GENIA

version 3 named entity corpus (Kim, Ohta, Tsuruoka, Tateisi, & Collier, 2004). This paper

introduces many machine learning methods. Chang et al., and Finkel et al., combined

machine learning methods and dictionary matching or rules-based system (Chang,

10

Schütze, & Altman, 2004) (Finkel et al., 2005). Si et al., Smith et al., and Zhu et al.,

proved that combining multiple machine learning algorithms can achieve a higher

performance of recognition (Si, Kanungo, & Huang, 2005) (Smith et al., 2008) (Zhu, &

Shen, 2012).

The same problem happens in clinical and public health research. In order to transform

massive health datasets to valuable knowledge, professional terminology from electronic

health records, clinical handover notes, discharge summaries, and the records of clinical

nursing handover need to be recognised. Patients and laypersons usually find that it is

quite difficult to understand discharge summaries, handover notes, and other eHealth

documents. Even researchers also have issues in understanding the jargon of other

professional groups (Luu, Phan, Davey, & Chetty, 2018).

Biomedical NER uses the same methods with biological NER system, such as, the CRFs

based BANNER system (Leaman, & Gonzalez, 2008), the two-phase model based on the

SVM (Lee, Hwang, Kim, & Rim, 2004), the HMM-based model (Zhang, Shen, Zhou, Su

& Tan, 2004) and so forth.

In 2015, Li et al., used an extended recurrent neural network for biomedical NER (Li, Jin,

Jiang, Song, & Huang, 2015). Then deep learning was used in this domain. The Bi-LSTM

and other neural network methods and neural network based word representation features

improve the biomedical NER (Wu, Xu, Jiang, Zhang, & Xu, 2015) (Jagannatha, & Yu,

2016) (Habibi, Weber, Neves, Wiegandt & Leser, 2017).

In addition to the standard NER tools that get bad performance in professional fields, the

performance of standard NER tools also has been seriously degraded in noisy, informal

and unstructured data (Ritter, Clark & Etzioni, 2011) (Derczynski et al., 2015). Twitter

data includes lots of misspellings, unreliable capitalizations, and grammatical errors.

Therefore, traditional methods do not work well in tweets (Li, et al., 2012). To solve this

problem, Alan Ritter et al., re-built the NLP pipeline, they focus on the performance

enhanced part of speech tagging and chunking in Twitter data and then used them to

improve the performance of NER (Ritter, Clark & Etzioni, 2011). In 2015, Baldwin et al.,

normalized the Twitter data and used the machine learning methods to identify the named

entities (Baldwin et al., 2015). Godin et al., used word embedding and feedforward neural

networks instead of traditional features selection and achieved higher performance

(Godin, Vandersmissen, De Neve, & Van de Walle, 2015). In 2016, Bidirectional LSTM

was used for Twitter NER (Limsopatham, & Collier, 2016). Through a combination of

multiple word representations methods as the word representation layer in a neural

network model have proven to be effective (Dugas, & Nichols, 2016) (Lin, Xu, Luo, &

Zhu, 2017).

11

2.3.2 Languages

While English probably is the most researched language in NER, there are many other

languages studied by NER (Nadeau, 2007). Since ConLL 2002 and ConLL 2003 shared

task (Sang & De Meulder, 2003), Spanish, Dutch, and German were researched in NER.

Japanese (Isozaki, 2001) and Chinese (Zhang, Yu, Xiong, & Liu, 2003) study also started

very early. Other European languages, such as, Italian (Bonadiman, Severyn, & Moschitti,

2015), French (Palmer, & Day, 1997), Greek (Petasis et al., 2001), Spanish (Cotik,

Rodríguez, & Vivaldi, 2018), and Turkish (Yeniterzi, Tür, & Oflazer, 2018) and so forth

have also been researched. Asian languages, for example, Thai (Aroonmanakun, Nupairoj,

Muangsin, & Choemprayong, 2018), Indonesian (Wibawa, & Purwarianti, 2016),

Vietnamese (Dong, & Nguyen, 2018), Malay (Salleh, Asmai, Basiron, & Ahmad, 2017),

and Korean (Choi, & Cha, 2016) and so on were researched by many researchers. Russian

(Mozharova & Loukachevitch, 2016) and Arabic (Zirikly & Diab, 2015) were studied by

many researchers as well.

2.3.3 Entity Type

The NER method relies heavily on training data, while early databases mostly came from

news articles, such as, the famous CoNLL 2003 corpus. CoNLL 2003 divides the data

into four major categories, people, locations, companies, and miscellaneous (Sang & De

Meulder, 2003). Current NER tools classify entities into seven types (person, location,

organization, amount, time, production, and function) (Galibert, Rosset, Grouin,

Zweigenbaum, & Quintard, 2012). However, the fine-grained categorization of entities is

necessary because these simple categories are no longer sufficient to meet the complex

demands (Liu & Birnbaum, 2007). It lacks annotations for fine-grained categories, such

as, for movie titles, singers, and so forth.

In 2001, Fleischman used machine learning methods to classify location types into fine-

grained categories and meet or exceed human standards (Fleischman, 2001). Then

Fleischman and Hovy designed a method to classify the person type into eight sub-fine-

grained categories through context, WordNet and topic signatures (Fleischman, & Hovy,

2002). In 2005, Lee et al., combined external linguistic resources and the bootstrapping

algorithm to develop the improved performance of the NER with fine-grained geographic

classes (Lee & Lee, 2005). Since Srihari combined the Maximum Entropy Model

(MaxEnt), the HMM and handcrafted grammatical rules to recognized three main types

and 21 sub-types (Srihari, 2000), after that, machine learning methods were widely used

in fine-grained NER. In 2006, Lee et al. (Lee et al., 2006), used the CRF to identify 147

subcategories in the question-answering system corpus. Ling et al., used the CRF model

12

to segment training data and then used the perceptron algorithm to deal with 112

categories (Ling & Weld, 2012). In 2015 Yogatama et al., researched the fine-grained

NER using word embedding as word representation (Yogatama, Gillick, & Lazic, 2015).

Mai et al., compared machine learning based methods and neural network-based methods

and found the neural network-based methods work well with fine-grained NER (Mai et

al., 2018).

2.3.4 Techniques and Algorithms to Solve the NER Problem

2.3.4.1 Rule-based and Dictionary-based Methods

Rule-based and dictionary-based methods are the earliest methods used in NER (Ji et al.,

2019). Simulating human language was the mainstream of NLP at this time, such as,

context-free grammar (CFG) was proposed by Chomsky (Nadkarni, Ohno-Machado, &

Chapman, 2011). They rely on handcrafted rules, use named entity libraries, and assign

weights to each rule. When a rule conflict is encountered, the rule with the highest weight

is selected to determine the type of the named entity. In general, the performance of rule-

based methods is better than statistical-based methods when extracted rules can more

accurately reflect linguistic phenomena. However, these rules often depend on the

specific language, domain, and text style (Ji et al., 2019). The portability of the system is

not satisfactory. Linguistic experts have to rewrite the rules apply for different languages

and domain. The compilation of rules into a dictionary is time-consuming. Another

problem of the rule-based method is difficult to cover all linguistic phenomena.

2.3.4.2 Machine Learning based Methods

NER is a sequence labelling problem. It is based on the input sequence. The data is

sequentially labelled. Nowadays, the main technical methods for NER include the

machine learning based method, the neural network method, and the mixed model.

The methods that are based on machine learning include the HMM, the SVM, and the

CRF, and so on. They all need a large annotated corpus that stores various features.

In 2002, according to Zhou and Su, they entered simple deterministic internal features of

the words, internal semantic features of important triggers, internal gazetteer features, and

external macro context features into their HMM model. They got high performance in

newswire based data (MUC-6 and MUC7) (Zhou & Su, 2002).

In 2004, in regard to the HMM-based model that is used in biomedical NER, Zhang et

al., used more features that were based on useful for biomedical entities, such as, head

noun triggers features and special verb triggers features (Zhang, Shen, Zhou, Su, & Tan,

13

2004).

In 2007, Ponomareva et al., focused on only through parts-of-speech tags to solve the

non-uniform distribution of biomedical entity categories and they achieved good results

(Ponomareva, Pla, Molina, & Rosso, 2007).

In 2004, Zhao researched unlabelled biomedical NER, he used the word similarity-based

smoothing algorithm and it improved the overall performance (Zhao, 2004).

In 2003, character-level models proved to be better than word-level models. Using the

same HMM model, 30% of the error reduction from the word model was achieved

compared to a character model (Klein, Smarr, Nguyen, & Manning, 2003).

In the NER task, chunking is very important in terms of pre-processing for data. BIO and

BILOU are two of the most popular text segment schemes. BIO represents the Beginning,

the Inside and the Outside of the named entity. BILOU can identify the Beginning, the

Inside and the Last tokens of multi-token chunks and Unit-length chunks. In 2009, the

BILOU scheme was proved that it outperformed the performance of the BIO scheme

(Ratinov, & Roth, 2009).

In 2003, Florian et al., proposed a framework which used combination classifier. They

used four classifiers: Robust Risk Minimization Classifier, Maximum Entropy Classifier,

Transformation-Based Learning Classifier, and HMM Classifier. Researchers set

different weights for each classifier and finally found that the combined classifier based

on the RRM algorithm is the optimal combination (Florian, Ittycheriah, Jing, & Zhang,

2003).

In several multi-class SVM building methods were proposed by Hsu and Lin (Hsu & Lin,

2002). Then, Yamada et al. (Yamada & Matsumoto, 2002), used the one-vs-rest method

built the first SVM-based NER system (Isozaki & Kazawa, 2002). Isozaki and Kazawa

use the quadratic kernel to deal with the NER task. They also made an XQK feature

selection method to remove the useless features to improve the performance of the SVM

based model (Isozaki & Kazawa, 2002). Kazama et al., chose the pairwise method

proposed by Krebel (Krebel, 1999) to build the SVM model and they introduced a new

class splitting technique based on part-of-speech. Shen et al., proposed the use of the

informativeness measure and similarity measure for named entity and proposed two

combined strategies (Shen, Zhang, Su, Zhou, & Tan, 2004). In terms of the characteristics

of the Biomedical NER, Lee et al., developed a two-phase model based on SVMs, it first

identified a word as part of an entity or not and then identify the particular type (Lee,

Hwang, Kim & Rim, 2004).

2.3.4.3 Neural network based methods

Deep learning is used in computing and modelling multiple levels of abstraction data

through multiple processing layers, and then output people expected results. It uses

14

backpropagation algorithms to adjust the parameters in the neural network to

continuously approximate the optimal model. Deep learning is widely used in computer

vision, artificial intelligence, genomics, and biomedical science, and other domains and

brought a breakthrough in image, video, audio and speech processing (LeCun, Bengio &

Hinton, 2015).

Using the unsupervised word representation as an extra word feature is a simple approach

to improve the performance of supervised NER (Turian, Ratinov, & Bengio, 2010).

Traditionally the supervised methods represent a word as one hot vector. The length of

the vector is the size of the vocabulary and is only based on one dimension. The one-hot

representation cannot deal with an unlabelled word. Also, every word is one dimension

that is independent with each other, and it cannot represent the relationship between the

words. In order to improve performance, new word representation techniques are used for

many NLP tasks (Tang, Cao, Wang, Chen, & Xu, 2014).

Word representation is divided into three categories, distributional representation,

clustering-based word representation, and distributed representation (Turian, Ratinov, &

Bengio, 2010). In 2014, Tang et al., used three word representation methods and applied

them into a CRF based biomedical NER. They found that word representation can

individually improve the biomedical NER system, they also found that different word

representation methods can work together and further enhance the performance of the

system (Tang, Cao, Wang, Chen, & Xu, 2014).

Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are based on the

theory of distribution hypothesis, using the statistical method to reduce the high

dimensionality co-occurrence matrix to the low dimensionality latent semantic matrix to

obtain the semantic representation of words. This is since the distribution hypothesis

considers that words with similar contexts have similar semantic information. Under this

representation, the semantic similarity of two words can be directly translated into the

spatial distance of two word representation vectors. In 2009, Guo et al., constructed a

Weakly Supervised Latent Dirichlet Allocation (WS-LDA) method used for NER in

query (NERQ). For the characteristic of NERQ, the WS-LDA method uses a probabilistic

approach to handle the ambiguity of named entities. It can make sure there is alignment

between the latent tags and the predefined tags (Guo, Xu, Cheng, & Li, 2009). In 2015,

Konkol et al., researched the effect of using Hyperspace Analogue to Language (HAL),

Random Indexing (RI), and Latent Dirichlet Allocation (LDA) as features in NER and

they also compared the semantics features with commonly used features (Konkol,

Brychcín, & Konopík, 2015).

Clustering-based word representation based on the similar semantic word has the same

or a close cluster. The representation approach induces unlabelled word as clusters, and

represents words as a cluster that a word belongs to. In 2011 Chrupala compared Brown

Clustering with the Clustering word representation feature and the LDA feature of NER

15

task. The result showed the Brown Clustering needed a large number of classes to avoid

ambiguous classes and a longer time was required to train the Clustering model (Chrupala,

2011).

In 2003, Bengio et al., proposed the first distributed representation method. Through the

feedforward Neural Network Language Model (NNLM) it trained the data, and

represented a word as a vector (Bengio, Ducharme, Vincent, & Jauvin, 2003). The model

contains four layers, the input layer, projection layer, hidden layer, and the output layer.

It learned word vector representation and statistical language modelled through a linear

projection layer and a non-linear hidden layer (Mikolov, Chen, Corrado, & Dean, 2013).

Distributed representation, also called word embedding (Turian, Ratinov, & Bengio,2010),

is similar to distributed representation methods, and it also based on the distribution

hypothesis. The core is a context based representation and the relationship between the

context and the target words. Compared with one-hot representation, each element of the

word embedding vector is changed from an integer to a float, and the range is in a real

number; the original sparsely high dimension space is compressed into the space of a

smaller dimension. Word embeddings are typically using for neural language models

(Turian, Ratinov, & Bengio, 2010).

In 2008, Collobert and Weston proposed the C&W model. The model is used to complete

multiple NLP tasks by one model (Collobert & Weston, 2008). The model not only applies

to word embedding it also uses the word embedding feature to feed it into the

convolutional network final that used the Viterbi algorithm to predict the word tags

(Collobert, 2011). In 2011, Collobert improved on the C&W model. He used Parse Tree

to represent the word and to separate the lower case word and the capitalization word as

two features (Collobert, 2011).

There is another language model that is called the hierarchical log-bilinear (HLBL) model.

It combines the log-bilinear model (Mnih & Hinton, 2007) and the hierarchical evaluation

technique (Mnih & Hinton, 2009). The method uses a hierarchical structure for the final

prediction. The last network layer is a tree structure, each non-leaf node is used to classify

the prediction vector. Finally, the leaf node can determine the tag of a word. The M&H

method uses the bootstrapping method to build the tree. Starting with a random tree, it

can continuously adjust and iterate based on the classification results. The final result is

a balanced binary tree. The HLBL can also be used for the word embedding task.

In 2010, Turian et al., compared the effects of the C&W word vector and the HLBL word

vector as auxiliary features. The result showed that at NER, the impact of C&W vectors

have a slight advantage (Turian, Ratinov, & Bengio, 2010).

In 2013, Mikolov et al., proposed the Continuous Bag-of-Words Model (CBOW) and the

Continuous Skip-gram Model. The tool is called Word2vec. The CBOW model uses one

hot representation of the context of the target word as input. Then the input vector is

respectively multiplied by the coefficient matrix to obtain the hidden layers. It is

16

necessary to calculate the average of hidden layers through the linear activate function

and then multiply it by another coefficient matrix to obtain the output layer. The vector

of the output layer needs to be compared with the one hot representation of the target

word to calculate the loss. Some of the impossible words are filtered out by the

Hierarchical Softmax method based on Huffman coding and then negative sampling is

used to remove some negative sample words. Thus, the time complexity of the CBOW

model will decrease. The Skip gram training process is similar, except the input and

output are opposite (Mikolov, Chen, Corrado, & Dean, 2013) (Mikolov, Sutskever, Chen,

Corrado, & Dean, 2013).

After this, the neural network method is widely proposed to deal with the NER. The

traditional NER method needs hand-designed features and then is fed to a classification

algorithm. Instead, Collobert et al., used word embedding layers to extract the features

from large quantities of unlabelled text and then they fed the features to the deep network

trained by backpropagation (Collobert et al., 2011).

However, there are two main limitations, the first is that their neural network still faced a

long-term dependencies problem, the simple feed- Forward neural network only limits

the context to a fixed sized window, and the long-distance relations between the words

are ignored. Second, the word embedding cannot extract the character level features (Chiu

& Nichols, 2016).

In order to gain word morphology and shape and capture intra-word features, in 2014,

Santos and Zadrozny added a convolutional layer to extract the character-level

representations and they combined it with word-level representations (Santos & Zadrozny,

2014). This neural network produces a higher quality of POS tag. In 2015, Santos and

Guimaraes popularized this neural network architecture to the NER, and it extended the

neural network proposed by Collobert et al., in their study (Santos & Guimaraes, 2015).

The Long short-term memory (LSTM) model can be effective in terms of managing the

processing with long-term dependencies problem. In 2015, Huang et al., applied the

bidirectional LSTM-CRF model to manage the sequence tagging problem. They also,

compared the LSTM model, the bidirectional LSTM model, the LSTM-CRF model, and

the bidirectional LSTM-CRF model. The result showed that the bidirectional LSTM-CRF

model got the highest performance of the four models. In the bidirectional LSTM-CRF

model, the CRF layer can efficiently predict the current tag through the past and future

information provided by the forward and backward algorithm of Bi-LSTM model (Huang,

Xu, & Yu, 2015). In 2016, Lample et al., compared the bidirectional LSTM with a

conditional random layer (Bi-LSTM-CRF) and LSTMs with states represented by a stack

(s-LSTM). Based on the above comparison, they also compared the char-level word

embedding and non-char-level word embedding models. The results showed that the char-

level word embedding Bi-LSTM-CRF model gained the best performance (Lample,

Ballesteros, Subramanian, Kawakami, & Dyer, 2016).

17

In 2016, Chiu and Nichols used a convolutional neural network as a character level

features extractor and combined it with the Bi-LSTM network model (Chiu & Nichols,

2016). The model used a convolution and max layer to extract the feature from pre-

training vectors. In their best model, they used the additional features capitalization

feature, lexicons, and a four-dimensional vector representing four character types.

Previous systems generally use a neural network to enhance the distributed

representations rather than completely replace it. If the model entirely depends on neural

embeddings without any handcraft features, the performance of the systems decreased

rapidly. In order to solve this problem, Ma and Hovy designed a real end-to-end system

(Ma & Hovy, 2016). The system operates without any feature engineering and data pre-

processing. They use CNN computed character representation combined with word

embedding and then feed it into the Bi-LSTM network, and finally they use the CRF layer

to predict the tags.

Recently, pre-trained word vectors have become an essential part of the neural network

structure (Peters, Ammar, Bhagavatula, & Power, 2017). The pre-trained word

embedding learning from the unlabelled data, is then generally added into the neural

network as additional features. If it is combined with the word embedding of the training

data as input, it can increase the performance of the sequence tagging model. Peters et al.,

proposed using the bidirectional language models to train the pre-train word vectors and

proved the pre-train word vectors can improve the mainstream neural network model

(Peters, Ammar, Bhagavatula, & Power, 2017).

In 2018, Peters et al., proposed a new language model called ELMo (Peters et al., 2018).

It uses two independently trained multilayer Bidirectional LSTM structures, the word

level and the character level embedding vectors as input, and. the output embedding

vector related to the contexts. The model is not only used for NER it is also used for many

downstream tasks (Devlin, Chang, Lee & Toutanova, 2018).

In 2016, Rei et al., used the attention mechanism and added it into the neural sequence

labelling models (Rei, Crichton, & Pyysalo, 2016). The model can dynamically choose

how to combine the features from word embedding and from the character-level

component through the attention mechanism. The attention mechanism based feature

selection architecture can align two word representations and gain extra benefit from both

the word-level and the character-level embedding. Bharadwaj et al., added the attention

model to the Bi-LSTM-CRF model. They used the International Phonetic Alphabet (IPA)

and word embedding as features. Their paper proved that the attention model and the IPA

improves the statistical efficiency of the model (Bharadwaj, Mortensen, Dyer, &

Carbonell, 2016).

Pre-training vectors that generally come from the text are unrelated to the current task.

Through the pre-training vectors, models learn generally effective representations rather

than representations of the current task and this is a key problem of the Pre-training model

18

(Clark, Luong, Manning, & Le, 2018). Thus, Clark et al., proposed a Semi-Supervised

learning method called Cross-View Training. The method uses different approaches to

train the labelled data and the unlabelled data. The method trains the labelled data as

standard for the supervised learning processing; for the unlabelled data, the method uses

a primary prediction module plus multiple auxiliary prediction modules. The output of

the auxiliary prediction modules is fitted to the output of the primary prediction module

while training on the unlabelled data, and the encoder portion is shared. The input to each

prediction module is different, the primary prediction module is the complete input, and

the input to the auxiliary prediction module is a subset of the complete input. CVT can

improve the "representation" of the model. The Auxiliary Prediction Module can learn

from the predictions of the primary prediction module because the primary prediction

module has better input with an unrestricted perspective. Although the input of the

auxiliary module is a restricted input sample, they are still learning something from the

primary prediction module, thus the quality of the "representation" is improving. This

improves the entire model because they share the encoder (Clark, Luong, Manning, & Le,

2018).

In 2018, Google AI Language proposed the BERT model. It is a new language

representation model. The BERT model can be used for eleven downstream tasks. In the

model, the input is combined with token embeddings, the segmentation embeddings, and

the position embeddings. The input part is a linear sequence. Token embeddings represent

the word vector, the start word is "CLS", which can be used for the classification tasks;

the special character [SEP] is a symbol that is used to split two sentences. The Segment

embeddings are used to distinguish between the sentences. Position embeddings indicate

location information. The NER task belongs to the token level, and it classifies the

corresponding position of every word in the last transformer layer (Clark, Luong,

Manning, & Le, 2018). The BERT model achieved the state-of-the-art result of the NER.

2.4 Hidden Markov Model (HMM)

The HMM is a statistical model that is used to describe a Markov process with hidden

unknown parameters. It determines the hidden parameters of the process through the

sequence of observations and it then uses these parameters for further analysis (Rabiner,

1989).

Figure 1 below shows the structure of HMM, 𝑋 is a hidden variable that observer cannot

know. 𝑥(𝑡) represents a state at time 𝑡. Each observation variable y only depends on

𝑥(𝑡), 𝑥(𝑡) is related to the previous state 𝑥(𝑡 − 1).

19

Figure 1: The structure of HMM

If the hidden states have 𝑁 values, then at time 𝑡 the hidden state can be one of the 𝑁

values. Thus, at time 𝑡 + 1, there are also 𝑁 possible values for the hidden states. This

means that there is a total of 𝑁2 probabilities from a hidden state transit to the next

hidden state. For observation variable y it has 𝑀 possible values, each value of hidden

state have probabilities that emit to every observation variable. Therefore, if the

observed sequence is represented as 𝑌, the hidden state sequence is represented as 𝑋,

and the 𝑋 and 𝑌 could be represented as the following equations:

𝑌 = (𝑦(0), 𝑦(1),⋯ , 𝑦(𝑛))

𝑋 = (𝑥(0), 𝑥(1),⋯ , 𝑥(𝑛))

The probability of the observed sequence Y through HMM could be represented as the

following equation:

P(Y) =∑𝑃(𝑌|𝑋)𝑃(𝑋)

𝑋

For the unlabelled data, because of the existence of the hidden variables, the analytical

solution of the parameters cannot be obtained directly. The Expectation Maximization

(EM) algorithm is used to iterate until convergence to obtain the model parameters. The

EM algorithm is divided into two parts: the E step and the M step. In the E step, it uses

the known parameters to obtain the posterior distribution of the hidden

variable 𝑃(𝑇|𝑆, 𝜃𝑜𝑙𝑑) ; in step M, it calculates the expected maximum of the log-

likelihood under this posterior distribution. The expectation is a function of parameter 𝜃,

and it maximizes the expectation function 𝑄 = (𝜃, 𝜃𝑜𝑙𝑑), so it can get the solution of 𝜃,

and then it uses this solution as the new 𝜃𝑜𝑙𝑑 to bring it into the E step, and then it iterates

until the final convergence (Moon, 1996) (Zhang, Brady & Smith, 2001).

20

After training, using the HMM model it can predict new sentence sequence. If it is given

a set of observation sequences, it will find the most likely hidden sequence that

corresponds by using the Viterbi algorithm. (Ghahramani, 2001)

The HMM model is a very common statistical method, and it has been used to solve many

NLP problems, such as, speech recognition, machine translation, POS tagging, NER, and

so forth (Ponomareva, Pla, Molina, & Rosso, 2007).

2.5 Support Vector Machine (SVM)

The SVM is a popular machine learning method for dealing with classification, regression,

and distribution estimation problems (Chang & Lin, 2011). It was proposed by Cortes and

Vapnik in 1995. The purpose of the SVM model is to find a hyperplane to segment the

sample. The principle of segmentation is to maximize the interval. The model finally

transforms it into a quadratic programming problem (Suykens & & Vandewalle, 1999).

The SVM model is to find hard margin maximization to determine the optimal splitting

plane to split the two kinds of data if the data is linearly separable. The Hard margin

means the distance from the support vector to the split plane. The support vector is the

closest hyperplane to the split plane, which is also half the distance between the two

categories of data (Burges, 1998). The diagram is shown below.

Figure 2: The structure of SVM

Although there are countless lines (planes) that can separate the samples, the SVM finds

the line (plane) that keeps the interval maximized.

If the data is not linearly separable, the splitting plane cannot completely divide all of the

data, whereas the linear splitting method can ensure that most of the data is correctly

classified. Thus, SVM needs to achieve Soft Margin maximization. The Soft Margin is if

the SVM is not linearly separable, and the support vector is not the closest vector to the

split plane. The SVM cannot keep the margin maximization at this time, it needs to make

21

the transition band wide enough.

In actual data, usually the data is linearly inseparable, and using a straight line cannot

separate the two types of samples, however by using a nonlinear model it can separate

them. Therefore, nonlinear transformation can be used to transform nonlinear problems

into linear problems (Smola & Schölkopf, 2004).

For this problem, the training samples can be mapped from the original space to a higher-

dimensional space by kernel function, so the samples are linearly separable in higher-

dimensional space (Ju, Wang, & Zhu, 2011). If the number of attributes is finite, then the

original spatial dimension is finite so there must be one hyperplane that makes the sample

separate in a high dimensional feature space. The training sample can be translated to

(𝑥𝑖, 𝑦𝑖), 𝑖 = 1,⋯ , 𝑛, 𝑥 ∈ 𝑅𝑑, 𝑦 ∈ {+1,−1} (Isozaki & Kazawa, 2002). The hyperplane

can be expressed as: 𝑓(𝑥) = 𝑤𝑇𝜑(𝑥) + 𝑏, 𝜑(𝑥) is feature vector after mapping 𝑥.

2.6 Conditional Random Field (CRF)

The CRF is a sequence modelling framework similar to HMM. It has all of the advantages

of HMM and avoids the label bias problem of MEMM (McCallum, Freitag & Pereira,

2000). The goal of the model is to learn the mapping function 𝑥𝑠 → 𝑦𝑠 allows the correct

output label maximization. However, each output 𝑦𝑠 is not independent. The CRF model

is able to predict an output vector y = 𝑦0, 𝑦1, ⋯ , 𝑦𝑡 through calculating the conditional

probabilities of the random variables given an observed feature vector 𝑥 =

𝑥0, 𝑥1, ⋯ , 𝑥𝑡 (Sutton & McCallum, 2012). The CRF combines discriminative

classification and graphical modelling. So, it has the abilities of compactly modelling and

it uses a huge number of input features for the prediction (Sutton & McCallum, 2012).

The CRF model is widely applied to many fields. In computer science, the CRF model

has been applied to text and speech processing, such as, part-of-speech (POS) tagging

(Ghosh, Ghosh & Das, 2016), NER (Seker & Eryiğit, 2017), information extraction

(Ebersbach, Herms, Lohr & Eibl, 2016), and syntactic disambiguation (Junaida, Jayan &

Sherly, 2017). In bioinformatics, the application includes protein alignment (Morales-

Cordovilla, Sanchez & Ratajczak, 2018), and RNA secondary structure prediction

(Johansen, Sønderby, Sønderby & Winther, 2017). In computer vision, the application

includes object extraction (Li, Femiani, Xu, Zhang & Wonka, 2015), and image

segmentation (Liu, Lin & Shen, 2015).

For the CRF model, 𝐺 = (𝑉, 𝐸) is a graph. 𝑉 represents the node set, 𝐸 represents the

line set which is a connection between the two nodes. Each node 𝑣 assigns random

variables 𝑌v so 𝑌 = (𝑌v) 𝑣 ∈ 𝑉, every 𝑌v follows the Markov property so the grapy

can be translated to the equation (Lafferty, McCallum & Pereira, 2001):

𝑃(𝑌v|𝑋, 𝑌w, 𝑤 ≠ 𝑣) = 𝑃(𝑌v|𝑋, 𝑌w, 𝑤~𝑣)

𝑤~𝑣 means 𝑤 and 𝑣 are connected in 𝐺.

22

However, in this graph 𝐺, there is no direction between the two nodes. Thus, in the NLP

domain, researchers used linear chains CRF (Varma, Krishnamoorthy & Pisipati, 2016)

(Taskar, Abbeel & Koller, 2002).

For NER, the linear chains is a popular method for CRF. The structure is shown below:

Figure 3: The structure of linear chains CRF model

Nodes are composed of a linear chains structure, the nodes chains correspond with

sequence 𝑌 . If a random variable sequence 𝑋 = 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 and 𝑌 = 𝑌1, 𝑌2, ⋯ , 𝑌𝑛

with a linear chain structure and the conditional probability distribution of the random

variable sequence 𝑌 is 𝑃(𝑌|𝑋) it obeys the Markov property. The equation is:

𝑃(𝑌𝑖|𝑋, 𝑌1, 𝑌2, ⋯ , 𝑌𝑛) = 𝑃(𝑌𝑖|𝑋, 𝑌𝑖−1, 𝑌𝑖+1)

Then by giving it the observation sequence 𝑋, we can use the conditional probability

distribution 𝑃(𝑌|𝑋) of the random variable sequence 𝑌 to predict the 𝑌 sequence

(Wallach, 2004).

2.7 Deep Learning

Deep learning is used to learn multiple levels of abstraction data through a model that has

multiple processing layers, and output results that people expect. It uses backpropagation

algorithms to adjust the parameters in the neural network to continuously approximate

the required model. Deep learning is used in computer vision, artificial intelligence,

genomics, and biomedical science, and so forth, and in other domains and has brought a

breakthrough in many tasks (LeCun, Bengio & Hinton, 2015). Deep learning has gained

significant success in supervised learning, unsupervised learning, and semi-supervised

learning (LeCun, Bengio & Hinton, 2015).

In 2006, the problem of gradient vanishing in deep learning has been investigated. Hinton

et al., proposed a solution for the gradient disappearance problem in deep network training:

by using unsupervised pre-training it initializes the weights and then fine-tunes the

23

parameters through supervised training. The main idea is to learn the structure of the

training data through the self-learning method, and then refines it through supervised

training (Hinton & Salakhutdinov, 2006).

The deep neural network is not necessarily applicable for training because the input of

each layer will change during the training. It makes it challenging to gain the saturating

nonlinearities model (Schmidhuber, 2015). In general, the input data is randomly divided

into several data chunks from the entire input data. Feeding the chunked data into the

neural network can make the model more generalized. In 2015, Ioffe and Szegedy

proposed that normalizing each batch of data can improve the neural network. During the

training model, the weights are changed after every gradient descent. Thus normalizing

the batch data can ensure the next processing layer will gain similar data compared with

the previous distribution (Ioffe & Szegedy, 2015).

Stochastic Gradient Descent (SGD) and its variants are probably the most widely used

optimization algorithm in general deep learning (Goodfellow, Bengio & Courville, 2016).

It is necessary to find the minimum loss in the neural network, because the predicted value

is closer to the actual tag value if the loss value is smaller. Actually, the SGD algorithm

involves Mini-batch gradient descent. It repeats the training from the same batch size of

random samples from the training set until it finds the optimal point. The Mini-batch

gradient descent can significantly reduce the number of iterations that are required of

convergence, and this saves training time (LeCun, Bengio & Hinton, 2015). However,

gradient descent has two problems. The first one is the parameter tuning that will be very

slow if the value is close to the minimum or plateau area. The second problem is the value

cannot converge to the global minimum, it can only converge to the local minimum. On

the other hand, the Multi-layer neural networks are not convex functions, so theoretically

there are multiple local minima, and as the number of layers increase, the local minimum

will increase. In order to accelerate the SGD algorithm, momentum is added into SGD

(Ruder, 2016). Once the gradient falls to a local minimum, it is possible to use the

momentum to cross the local minimum. In 2013, Sutskever et al. (Sutskever, Martens,

Dahl & Hinton, 2013), proposed the Nesterov accelerated gradient (NAG). Before the

gradient direction change, the NAG can get information in advance, thus reducing useless

iterations (Ioffe & Szegedy, 2015). Dean et al., used the Adagrad algorithm for training

large-scale neural networks (Dean et al., 2012). Different parameters require a different

learning rate. The Adagrad algorithm can give different weights to the learning rates. Thus,

the learning rate can adapt to parameters that have been found (Duchi, Hazan & Singer,

2011). In 2015, Kingma et al., proposed the self-adapting learning rate for each parameter

(Kingma & Ba, 2014). The self-adapting learning rate can make the gradient jump out of

a local minimum. Dozat proposed a variant of Adam in 2016, this variant method added

NAG into Adam (Dozat, 2016).

In 2012, Krizhevsky et al., proposed AlexNet, which is a deep convolutional neural

24

network (Krizhevsky, Sutskever, & Hinton, 2012). It is a breakthrough in deep learning,

and the model detonated a wave of neural network applications and won the 2012 image

recognition contest, making CNN the core algorithm model for image classification

(Minar & Naher, 2018). AlexNet contains convolutional layers and three fully connected

layers. It uses Graphics Processing Units (GPU) to accelerate the operation. It also uses

the Rectified Linear Unit (Relu) as the activation function. The Relu method allows

outputs of some neurons that are zero, which cause the sparseness of the network, and it

dramatically increases the speed of calculation. In deep neural network models, if a model

increases the N layers, theoretically the activation rate of ReLU neurons will decrease 2𝑛.

Also, according to Jarrett et al., the Relu method can reduce the interdependence of

parameters, and this alleviates the occurrence of the over-fitting problem (Jarrett,

Kavukcuoglu & LeCun, 2009).

The initialization of the network is very important for deep neural networks. In 2010,

Glorot and Bengio proposed the normalized initialization method (Glorot & Bengio,

2010). He et al., proposed an initialization method, which is more suitable for neural

networks using ReLU. Also, compared with the initialization method that Glorot and

Bengio proposed, the method He et al., proposed can rectify extremely deep neural

networks (He, Zhang, Ren & Sun, 2015).

In 2012, Hinton et al. (Hinton, Srivastava, Krizhevsky, Sutskever & Salakhutdinov, 2012),

proposed the dropout method. If a complex feedforward neural network is trained in a

small data set, it is easy to cause overfitting. If it randomly drops neurons and their

connection during training processing it can prevent overfitting. During testing, in order

to compensate for the different numbers of neurons between the testing and the training,

the network needs to rescale the weights (Srivastava, Hinton, Krizhevsky, Sutskever &

Salakhutdinov, 2014). In 2012, Krizhevsky et al., used the Dropout algorithm in AlexNet

to prevent overfitting (Krizhevsky, Sutskever, & Hinton, 2012).

After this, many researchers proposed different CNN architectures. In 2016, Redmon et

al. proposed YOLO (You Only Look Once) which is a CNN architecture use for unified

and real-time object detection (Redmon, Divvala, Girshick & Farhadi, 2016). Max-

Pooling Convolutional Neural Networks (MPCNN) (Krizhevsky, Sutskever & Hinton,

2012) was proposed in 2012, it is used for processing image or object detection. Region-

based Convolutional Neural Network (R-CNN) (Girshick, Donahue, Darrell & Malik,

2014), Fast Region-based Convolutional Network (Fast R-CNN) (Girshick, 2015), Faster

Region-based Convolutional Neural Networks (Faster RCNN) (Ren, He, Girshick & Sun,

2015), Mask Region-based Convolutional Network (Mask R-CNN) (He, Gkioxari,

Dollár & Girshick, 2017), Multi-Expert Region-based Convolutional Neural Networks

(ME R-CNN) (Lee, Eum & Kwon, 2017) are proposed successively. Deep learning is

widely used in the field of image processing and object detection.

In 2003, a neural network language model based on the feed-forward neural network had

25

been proposed, which could be used for learning a distributed representation for words.

Nowadays, this distributed representation for words is called word embedding. These

word embedding vectors as a feature can feed into hidden layers (Bengio, Ducharme,

Vincent & Jauvin, 2003). The new deep learning technique pushes up the character-level

and word-level based model moving forward even modelling a single syllable of Unicode

characters (Sutskever, Martens & Hinton, 2011). Recurrent neural networks (RNNs)

(Mikolov, Karafiát, Burget, Černocký & Khudanpur, 2010) and long short-term memory

networks (LSTMs) can solve long term dependency problem. In NLP, feed-forward

neural networks have been replaced with RNNs and LSTMs. However, the RNNs is

difficult to train due to the gradient vanishing and exploding problem (LeCun, Bengio &

Hinton, 2015).

Through sharing parameters between models and weights of different layers, a neural

network can train on multiple tasks in one model. Multi-task learning has been used in

many fields, such as, computer vision (Girshick, 2015), NLP (Collobert & Weston, 2008),

biomedical drug discovery (Ramsundar et al., 2015) and so forth. In 2008 Collobert and

Weston applied the multi-task neural network for the NLP domain (Collobert & Weston,

2008). Their model shared word embedding matrices between the two models and trained

different tasks.

In 2013, word2vec was proposed (Mikolov, Chen, Corrado, & Dean, 2013) (Mikolov,

Sutskever, Chen, Corrado, & Dean, 2013). It was developed specifically to manage word

embedding. It used Continuous bag-of-words and skip-gram architectures training on a

very large corpus.

In 2014, Sutskever et al., proposed the sequence-to-sequence framework (Sutskever,

Vinyals & Le, 2014), it maps one sequence to another one using neural networks. In the

framework, the neural network encoder processes the input data and compresses it into a

vector representation; then the neural network decoder predicts the output symbol by

symbol, based on the encoded state. This framework is very powerful, not only for natural

language generation task it also can deal with any conditions on a sequence. Vinyals et al.

through the sequence-to-sequence framework built an image-caption generator (Vinyals,

Toshev, Bengio & Erhan, 2015).

Attention (Bahdanau, Cho & Bengio, 2014) proposed by Bahdanau et al., is widely

applicable and potentially useful for any task that requires making decisions based on

input. The input does not have to be a sequence, the input can consist of any other

representations, such as, an image (Xu et al., 2015).

2.8 Deep Neural Network

The Deep neural network (DNN) consists of an input layer, several hidden layers and an

output layer, which enables it to extract features from the input layer, process various

26

functions in hidden layers and output the expected results (Minar & Naher, 2018). Each

layer is composed of many layers that are connected by simple processor units. These

units are called neurons. Through assigning the weight between each neuron and each

layer it makes the network display the desired behaviours (Schmidhuber, 2015). DNN

shows not only good performance in supervised learning it is also very successful in

supervised learning, semi-supervised learning, and reinforcement learning (LeCun,

Bengio & Hinton, 2015).

Typically, supervised learning is applied for a large labelled data set (Nadeau, 2007).

Supervised learning based on DNN is widely used in many domains, such as, speech

recognition (Hinton et al., 2012), image classification (Krizhevsky, Sutskever & Hinton,

2012), medical research (Esteva et al., 2017) and so forth.

Unsupervised learning learns features from unlabelled data through feature selection

layers. Typically, unsupervised learning is applied for data without handcrafted features

and data with limited labels. This learning method is useful for object detection (LeCun,

Bengio & Hinton, 2015). The features extracted through the unsupervised learning

network are widely used for image processing and for the NLP domain.

Semi-supervised learning combines supervised learning and unsupervised learning, and

it uses the combination of the label data and the unlabelled data to train models. It is very

useful if the labelled data is very expensive or if it is not available (Zhu, 2005). It can also,

generalize from the small labelled data to that large unlabelled data (Kingma, Mohamed,

Rezende & Welling, 2014). In 2014, Kingma et al., proposed a framework semi-

supervised learning method through the use of deep neural networks and probabilistic

modelling (Kingma, Mohamed, Rezende & Welling, 2014). In 2016, the deep neural

network based semi-supervised learning was used in the image processing domain (Kipf

& Welling, 2016).

2.9 Convolution Neural Network (CNN)

Back Propagation (BP) was proposed by Rumelhart and Hinton et al., (Rumelhart,

Hinton& Williams, 1988). LeCun et al., used the BP algorithm to train the multi-layer

neural network to identify handwritten zip codes (LeCun et al., 1989). After that, LeCun

proposed the LeNet5 in 1998 (LeCun, Bottou, Bengio & Haffner, 1998). It contains the

basic modules of deep learning, the convolutional layer, the pooled layer, and the fully

connected layer. The model includes the basic concepts of the CNN model. It uses

convolution layers to extract spatial features, it uses the Tanh or Sigmoid algorithm as a

nonlinear optimizer, it chooses the Multilayer Perceptron (MLP) as the final classifier and

it avoids large computational costs by the sparse connection matrix between the layers.

In 2012, Alex et al. (Krizhevsky, Sutskever, & Hinton, 2012), proposed AlexNet. It shows

that CNN can learn more complex object levels if it works on a larger dataset. The model

27

uses ReLU as an activation function and it uses Local Response Normalization (LRN) to

increase generalization. The AlexNet uses the largest pooling to avoid the average pooling

blurring. The data augmentation and dropout method are also used in AlexNet. It

randomly extracts the 224 × 224 size image from the 256 × 256 original images,

which is equivalent to an increase of 2048 times of the original dataset. The AlexNet uses

the dropout method in the next three fully connected layers, randomly ignoring part of

the neurons to avoid over-fitting. It can also accelerate the network training through GPU.

In 2013, Sermanet et al. (Sermanet et al., 2013), improved AlexNet and proposed the

learning bounding box. They used a 3 × 3 filter and a 2 × 2 maximum pooling filter

continuously deepening the network structure to improve performance. Using the stacked

small filter is better than using the large filter because the multiple layers of a nonlinear

layer can increase the depth of the network to ensure that more complex modes are learned.

The model also requires fewer parameters. In 2015, He et al., proposed the ResNet (He,

Zhang, Ren& Sun, 2016). As the network deepens, the accuracy of the training set

decreases and the error rate increases. Because the model is too complicated, the

optimization becomes more difficult. The model cannot achieve good learning results.

The ResNet use a shortcut connection to skip one or more layers. If the layers of the model

are deepened, this structure can solve the degradation problem. It increases the training

speed of the model, and this improves the training effect.

2.10 Recurrent Neural Network (RNN)

Since the Convolutional neural network developed, many researchers found it difficult to

model the changes of time sequence. In the traditional neural network model, the layers

are fully connected, the neurons between each layer are disconnected, the signals of the

neurons can only be propagated to the upper layer, and the processing of samples is

independent at each moment. Therefore, this neural network is powerless for many

problems. For example, predicting named entity category of a word generally requires

preceding words, because the word is not independent of the previous words and the later

words in a sentence. The current output of a Recurrent Neural Network (RNN) (Goller &

Kuchler, 1996) is related to the previous output. The network stores the previous

information in the internal network and applies it to the calculation of the current output.

Thus, the nodes between the hidden layers are connected, and the current input of the

hidden layer contains not only the output of the input layer at the current moment it also

contains the output of the hidden layers at the previous moment. In theory, a recurrent

neural network can process the sequence data of any length, yet, in order to reduce

complexity, it often assumed that the current state is only related to the one previous state.

Nowadays, RNN is widely used in the NLP domain, such as, language modelling

(Mikolov, Karafiát, Burget, Černocký & Khudanpur, 2010), generating Text (Sutskever,

28

Martens & Hinton, 2011), and in machine translation (Liu, Yang, Li & Zhou, 2014). It is

also used to generate image descriptions (Karpathy & Fei-Fei, 2015).

Figure 4: Overall structure of RNN

Typical RNN consists of input layers, hidden layers, and output layers, as Figure 4 shows

above. For time t, the hidden layer follows the structure shown below.

Figure 5: Structure of RNN at time t

For the left of Figure 5, 𝑥, 𝑠, and 𝑜 represent the input layer, the hidden layer, and the

output layer. 𝑈 is the weight matrix for the input of the hidden status. 𝑉 is the weight

matrix for the hidden status to output. 𝑊 is the weight matrix for the hidden status to the

next hidden status.

See the equations below for the output of the Hidden layer and the output of the output

layer at time 𝑡. The activation function is function 𝑓, for example, sigmoid, ReLU, or

Tanh, and so on. Function 𝑔 is Softmax function (Mikolov, Karafiát, Burget, Černocký

& Khudanpur, 2010).

ℎ𝑡 = 𝑥𝑡 +𝑊𝑠𝑡−1

𝑠𝑡 = 𝑓(ℎ𝑡)

𝑜t = 𝑔(𝑉𝑠𝑡)

29

ℎ𝑡 is an input value that transforms through weight matrix 𝑈 and 𝑊.

In order to use future contexts in the sequence label tasks, the Bi-directional Recurrent

Neural Network combines the forward and the backward hidden layer.

2.10.1 Long Short Term Memory (LSTM)

Although RNN works well for time sequence tasks, it faces gradient vanishing and

exploding problems (Bengio, Simard & Frasconi, 1994). In 1997, the long short-term

memory (LSTM) was proposed by Hochreiter and Schmidhuber Hochreiter and

Schmidhuber, 1997). It is very suitable for sequence modelling (Tang, Qin & Liu, 2015).

LSTM is a variant of RNN (Pascanu, Mikolov & Bengio, 2013) which uses the enhance

module instead of the recurrence unit of RNN (Pham & Le-Hong, 2017). Thus, LSTM

can access more contextual information than RNN. Gers & Schmidhuber (Gers &

Schmidhuber, 2000) proposed the Peephole structure to increase the performance of

LSTM. It lets the gate layers accept the input of the cell state. Another variant with a more

significant change is the Gated Recurrent Unit (GRU), which Cho et al., proposed (Cho,

Van Merriënboer, Bahdanau & Bengio, 2014). It places the forget gate and the input gate

so they are combined into a single update gate.

Figure 6: Structure of the memory cell unit

30

The memory cell unit module consists of the input gate, the forget gate, and the output

gate. The cell state and hidden state are mixed. The structure of the memory cell unit is

shown above.

The first step of the LSTM is deciding whether to discard information or not through the

forget gate. The input of the forget gate includes the previous hidden states and the

present input information. Then the output is a value between 0 to 1. The value

transmits to the state of the memory cell. 0 represents a complete discard, and 1

represents a complete hold. Then the input gate determines the information update, and

a new candidate vector will hold it into the memory cell. The next step is the update

state of the cell, it throws the information that the forget gate determined, and it adds the

candidate vector. In the end, the output is determined by the cell state and the output

gate.

In order to use the future contextual information, it is necessary to consider the contexts

from two directions. The Bidirectional LSTM (Bi-LSTM) consists of two LSTMs which

uses two hidden states layers to gain the past and future information through a forward

and backward sequence. The output is determined by the state of the hidden layers of

the two LSTMs (Graves, Mohamed & Hinton, 2013).

2.11 Summary

This Chapter mainly describes the NLP and NER. In terms of NER, we researched it from

the aspect of word representation, and we looked at the sequence label problem, the long

term dependence, the deep learning, the machine learning, and we also studied the

training methods that we used. The analytical methods and learning experiences we found

from the literature review will help our project. In the next Chapter, we will introduce the

methods and the algorithm that apply to this project and we will discuss them in detail.

31

Chapter 3 Methodology

 This chapter introduces the four methods that we conceptualised in our

research project. We first present an overview of each of the methods and

then describe each of the methods step by step.

32

3.1 Introduction

Through the literature review, we have basic knowledge of NER. In the Chapter, we have

mainly introduced the four methods in particular. First, we have introduced our research

design. Then, we introduced the algorithm of the SVM model, the HMM model, the CRF

model, and the Bi-LSTM model, respectively. We have listed the mathematical formula

that we used for each step and we explain how the formulas work with NER examples

specifically.

For the SVM model, we explain the data input and the concept of the SVM model and

how it works, and how to classify the multi-category data via the SVM model. In

relation to the HMM model, we introduce the basic idea of the HMM model, and how

to find the optimal parameters of the HMM model through the given data. We also

introduce the Viterbi algorithm and how to use it to find the prediction results. In regard

to the CRF model, we introduce the algorithms that are used for training the CRF model

and decode the method to predict the word. In terms of the Bi-LSTM model, above all,

we especially describe the algorithm, and the reason to use this algorithm for each of the

layers.

33

3.2 Research Design

Our main research content is about NER. Before the project starts, the first step is

designing the research project design, and then there is the data collection, preparing the

training dataset, starting the experiment, and finally getting the results of the experiment.

The basic ideas of each step are necessary before the project starts.

Figure 7: The steps of NER

The flow chart shown above is a summary of the particular steps involved in the research

process. Regarding the research questions, the data collection is the basic step of NER.

We need to find the same format database or create two databases which is the same

format through the pre-processing step. After the data pre-processing, we feed data into

three traditional machine learning methods and one deep learning method for NER. In the

34

end, we get the results and analyse the results.

3.3 SVM Model

In our project, we use LIBSVM (Chang & Lin, 2011) to train the model. The LIBSVM

tool requires the following format as input data:

Figure 8: The format of LIBSVM

The label represents a category of the named entity, the index represents the feature

index, and the value represents the data of a feature. We assigned 1 or 0 to every one of

the named entity tags, part-of-speech tags, and to the chunk tags. We assigned "1" if the

word belongs to a class or has a feature otherwise we set "0". The named entity tags,

part-of-speech tags, and chunk tags are shown below in Table 1.

Named entity tags part-of-speech tags chunk tags

B-LOC NN B-NP

I-LOC NNP I-NP

B-PER VB B-VP

I-PER IN I-VP

B-ORG DT B-PP

I-ORG NNPS I-PP

B-MISC CD B-SBAR

I-MISC VBD I-SBAR

O PRP B-ADJP

 JJ I-ADJP

 VBP B-ADVP

 CC I-ADVP

 VBG B-PRT

 TO I-PRT

 NNS B-CONJP

 JJS I-CONJP

 WRB B-INTJ

 RB I-INTJ

 WDT B-LST

 VBN I-LST

 POS O

35

RP

VBZ

JJR

WP

MD

LS

SYM

FW

RBS

EX

RBR

PDT

UH

WP$

PRP$

O

Table 1: Table of named entity tags, part-of-speech tags, and chunk tags

According to the table above, we get 58 feature values. If a word meets any of rules, we

set value “1” otherwise set “0”. If a value is “0”, we ignore the feature index and value.

Figure shows a sample data translated to LIBSVM data format:

Figure 9: Sample of LIBSVM input data

The training of the SVM can formulate as an optimization problem (Kazama, Makino,

Ohta, & Tsujii, 2002). The optimization problem can be translated to find the minimum

value with a constrained condition. The optimization function is expressed as the equation.

𝑚𝑖𝑛
1

2
‖𝑤‖2, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡. 𝑡𝑜. 𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 0, 𝑖 = 1,⋯ , 𝐿

𝑖 is the total number of simple. For linear function 𝑔(𝑥) = 𝑤𝑥 + 𝑏, we need to find two

parameters, 𝑤 (n dimension vector) and 𝑏 . If we know 𝑤 , we can calculate 𝑏 by

bringing some sample points into the equation.

36

Our data is not linearly separable in a two-dimensional space, thus we use the kernel

function mapping data to a higher dimensional space. Therefore, the problem is expressed

as the following equation:

𝑓(𝑥) =∑𝑤i𝐾(𝑥, zi)

𝑚

𝑖=1

+ 𝑏

𝐾(𝑥, 𝑧𝑖) is kernel function (Ekbal & Bandyopadhyay, 2008). In practical applications,

people usually choose from some commonly used kernel functions, such as, linear kernel

(Leslie, Eskin, & Noble, 2002), Gaussian kernel (Keerthi & Lin, 2003), polynomial kernel

(Smits & Jordaan, 2002), Laplace kernel (Gómez-Chova, Camps-Valls, Munoz-Mari, &

Calpe, 2008), sigmoid kernel (Lin & Lin, 2003), and so forth.

In this project, we have chosen the linear kernel as our kernel function.

For our project, we add a slack variable 𝜉i ≥ 0 to enable the model soft margin

maximization. At the same time, each slack variable cost a penalty function C. Thus, the

above equation is changed to the following:

𝑚𝑖𝑛
1

2
‖𝑤‖2 + 𝐶∑𝜉i

𝐿

𝑖=𝑙

, 𝑠ubject. 𝑡o. 𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉i, 𝑖 = 1,⋯ , 𝐿, 𝜉i ≥ 0

Our data has multiple classifications. We have applied the one-versus-one method (Chang

& Lin, 2011) to model the models. The one-versus-one method designs an SVM model

between any two types of samples. If the data has K in number of the classifications, it

needs to design 𝑘(𝑘 − 1) 2⁄ of SVMs. If classifying an unknown sample, the method

will count the results of all of the SVM models. If a category gets the most votes, the

unknown sample belongs to this category. Thus, for the CoNLL 2003 dataset, we built 36

models, and for the BTC dataset, we built 21 models.

3.4 HMM Model

There are five important elements for an HMM model.

1. Q, is a collection of all of the possible states Q = {𝑞1, 𝑞2, ⋯ , 𝑞𝑛}

2. V, is a discrete set of the possible observations V = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚}

3. A is the matrix of probability of state transition. A = {𝑎𝑖𝑗}𝑁×𝑁
, 𝑎𝑖𝑗 =

P(𝑞𝑗 𝑎𝑡 𝑡 + 1|𝑞𝑖 𝑎𝑡 𝑡) represents the probability of the translation of 𝑞𝑖 to 𝑞𝑗

when time t to t+1.

4. B is the observation probability distribution in state j. B = {𝑏𝑗(𝑘)}𝑁×𝑀 , 𝑏𝑗(𝑘) =

P(𝑣𝑘 𝑎𝑡 𝑡|𝑞𝑗 𝑎𝑡 𝑡). represents the observed value and is the probability of 𝑣𝑘 when

37

time is t and the state is 𝑞𝑗. N is the number of possible states, M is the number of

possible observations.

5. Π represents the initial state distribution. π = (𝜋𝑖) , 𝜋𝑖 = P(𝑞𝑖 𝑎𝑡 𝑡 = 1) The

hidden state of the first hidden state node is the probability of each of Q, and then π

is its probability distribution (Rabiner & Juang, 1986).

The relationship is as shown below:

Figure 10: The relationship of elements in the HMM model

The HMM model represents the following equation (Morwal, Jahan, & Chopra, 2012)

λ = (𝐴, 𝐵, 𝜋)

For our project, 𝑆 represents words and is observable. 𝑇 represents labels, we can

translate it to maths representation, set a sentence as a sequence of observations, so for

each word of the sentence:

S1
n = s1, s2⋯sn

The tag of each word can be regarded as corresponding to the state sequence:

𝑇1
𝑛 = 𝑡1, 𝑡2⋯𝑡𝑛

For training data, translate to a maths representation is for a given observable state

sequences 𝑇:

𝑇 = {(𝑠1, 𝑡1), (𝑠2, 𝑡2),⋯ (𝑠𝑛, 𝑡𝑛)}

Find the optimal parameter 𝜆 of an HMM, and let 𝑃(𝑇|𝜆) maximum. We use the

maximum likelihood algorithm to find the optimal parameters of an HMM. Even though

the algorithm creates an initial estimation of the parameters of an HMM, this is probably

an incorrect guess. Evaluating the validity of these parameters is by the given data and

reducing the deviations they cause. It is necessary to keep updating the HMM model until

the optimal parameters are found (Rabiner & Juang, 1986). The goal is to find a set of

parameters (𝐴 and 𝐵) such that under this set of parameters, the probability of the

observed data is the largest.

So, the parameters 𝐴, 𝐵 and 𝜋 follow equations:

A = [𝑎𝑖𝑗] =
𝐴𝑖𝑗

∑ 𝐴𝑖𝑠
𝑁
𝑠=1

38

B = [𝑏𝑗(𝑘)] =
𝐵𝑗𝑘

∑ 𝐵𝑗𝑠
𝑀
𝑠=1

𝜋 = 𝜋(𝑖) =
𝐶(𝑖)

∑ 𝐶(𝑠)𝑁
𝑠=1

𝐴𝑖𝑗 is frequency statistics of state 𝑡𝑖 𝑡𝑜 𝑡𝑗; 𝐵𝑗𝑘 is frequency statistics of when state is 𝑡𝑗

and observation is 𝑡𝑘; 𝐶(𝑖) is frequency statistics of initial state is 𝑡𝑖.

After training, we apply the Viterbi algorithm to predict classification of word. It can be

considered as a given model λ and observable sequence 𝑂 = o1, o2⋯on, to find the

corresponding most possible state sequence I = i1, i2⋯in under the given observation

sequence 𝑂. Thus, we use the Viterbi algorithm to find 𝑃(𝐼|𝑂).

First, we initialize two states:

δ1(𝑖) = 𝜋𝑖𝑏𝑖(𝑜1), i = 1,2⋯𝑁

ψ
1
(𝑖) = 0, i = 1,2⋯𝑁

δ1(𝑖) is a probability of all possible state transition paths in hidden state 𝑖 at time 1.

ψ
1
(𝑖) is an initialization hidden state of the 𝑡 − 1th node in the most probable transition

path among all of the single state transition paths whose state 𝑖𝑡 is hidden at time 𝑡.

Second, estimating the local state at time 𝑡 = 2,3,⋯𝑇

δ𝑡(𝑖) = max
1≤𝑗≤𝑁

[𝛿𝑡−1(𝑗)𝑎𝑗𝑖]𝑏𝑖(𝑂𝑡), 𝑖 = 1,2⋯𝑁

ψ
𝑡
(𝑖) = arg max

1≤𝑗≤𝑁
[𝛿𝑡−1(𝑗)𝑎𝑗𝑖], 𝑖 = 1,2⋯𝑁

Third, calculate the maximum δ𝑇(𝑖) of the time 𝑇, which is the probability wherein the

most likely hidden state sequence appears. Calculate the maximum ψ
𝑇
(𝑖) at time 𝑇,

which is the most likely hidden state of time 𝑇:

P = max
1≤𝑗≤𝑁

δ𝑇(𝑖)

𝑖𝑇 = 𝑎𝑟𝑔 max
1≤𝑗≤𝑁

[δ𝑇(𝑖)]

The last step is to use the local state ψ(𝑖) to backtracking, for 𝑡 = 𝑇 − 1, 𝑇 − 2,⋯ ,1

𝑖𝑡 = ψ
𝑡+1

(𝑖𝑡+1)

Finally, get the most possible hidden state 𝐼 = 𝑖1, 𝑖2⋯𝑖n. The output 𝐼 is the predict

named entity sequence.

3.5 CRF Model

In our project, we assume the inputs and outputs are linear chains and 𝑃(𝑌|𝑋) obey the

39

Markov property. We need to find the parameters to build the model, so by given input

word sequence 𝑋 = 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 and label sequence 𝑌 = 𝑌1, 𝑌2, ⋯ , 𝑌𝑛 . The

corresponding equation for 𝑃(𝑌|𝑋) is:

P(𝑌|𝑋) =
1

𝑍(𝑋)
𝑒𝑥𝑝(∑ λ𝑘

𝑖,𝑘

𝑡𝑘(𝑌𝑖−1, 𝑌𝑖 , 𝑋, 𝑖) +∑𝜇𝑙𝑠𝑙
𝑖,𝑙

(𝑌𝑖, 𝑋, 𝑖))

Z(X) =∑𝑒𝑥𝑝(∑ λ𝑘
𝑖,𝑘

𝑡𝑘(𝑌𝑖−1, 𝑌𝑖, 𝑋, 𝑖) +∑𝜇𝑙𝑠𝑙
𝑖,𝑙

(𝑌𝑖, 𝑋, 𝑖))

𝑌

𝑡𝑘(𝑌𝑖−1, 𝑌𝑖, 𝑋, 𝑖) represents where given sequence 𝑋, the probability of value translation

of sequence 𝑌 at position 𝑖 -1 to 𝑖. 𝑠𝑙(𝑌𝑖, 𝑋, 𝑖) represents where given sequence 𝑋,

the probability of corresponding value of sequence 𝑌 at position 𝑖 . λ𝑘 and 𝜇𝑙 is

weights of two functions.

𝑡𝑘(𝑌𝑖−1, 𝑌𝑖, 𝑋, 𝑖) and 𝑠𝑙(𝑌𝑖, 𝑋, 𝑖) are feature functions, if we let 𝑠𝑙(𝑌𝑖, 𝑋, 𝑖) =

𝑠𝑙(𝑌𝑖−1, 𝑌𝑖, 𝑋, 𝑖) we can set them by following equation:

𝐹𝑖 = {
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑌𝑖−1, 𝑌𝑖

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Thus for a given sentence (words) 𝑋 we can give a score to label sequence 𝑌 , the

equation is:

score(𝑌|𝑋) =∑∑ λ𝑗𝐹𝑗(𝑌
′
𝑖−1, 𝑌

′
𝑖, 𝑋, 𝑖)

𝑛

𝑖=1

𝑚

𝑗=1

then we can find the probability of the score:

p(𝑌|𝑋) =
𝑒𝑥𝑝[score(𝑌|𝑋)]

∑ 𝑒𝑥𝑝[score(𝑌′|𝑋)]𝑌′

We used the log-likelihood algorithm as an estimation function to estimate the weights of

CRF. The equation is:

𝐿(λ) =∑∑ λ𝑗𝐹𝑗(𝑌
′
𝑖−1, 𝑌

′
𝑖, 𝑋, 𝑖)

𝑛

𝑖=1

𝑚

𝑗=1

−∑ log𝑍λ(𝑋𝑛)
𝑚

𝑗=1

Then we use an improved iterative scaling (IIS) algorithm to find vector increment δ by

following equations:

𝐸𝑝′[𝑡𝑘] = ∑𝑃′(𝑥, 𝑦)∑ 𝑡𝑘(𝑌𝑖−1, 𝑌𝑖, 𝑋, 𝑖)

𝑛+1

𝑖=1𝑥,𝑦

𝐸𝑝′[𝑠𝑙] =∑𝑃′(𝑥, 𝑦)∑ 𝑠𝑙(𝑌𝑖, 𝑋, 𝑖)

𝑛+1

𝑖=1𝑥,𝑦

And then use δ to update current parameter 𝜆 = 𝜆 + 𝛿. If not all 𝜆 is convergence, repeat

it.

We know feature vectors and weight vectors and observed sequences, then we use the

Viterbi algorithm to predict the classification of a word. The first step is initialization by

40

the equation:

δ1(𝑗) = 𝑤𝐹1(𝑦0 = 𝑠𝑡𝑎𝑟𝑡, 𝑦1 = 𝑗, 𝑥), 𝑗 = 1,2⋯𝑚

Then find maximum of probability of each label l at position i

δ𝑡(𝑙) = max
1≤𝑗≤𝑚

[𝛿𝑖−1(𝑗) + 𝑤𝐹1(𝑦𝑖−1 = 𝑗, 𝑦𝑖 = 𝑙, 𝑥)], 𝑙 = 1,2⋯𝑚

Record the paths.

ψ
𝑡
(𝑙) = 𝑎𝑟𝑔 max

1≤𝑗≤𝑚
[𝛿𝑖−1(𝑗) + 𝑤𝐹1(𝑦𝑖−1 = 𝑗, 𝑦𝑖 = 𝑙, 𝑥)], 𝑙 = 1,2⋯𝑚

Stop at 𝑖 = 𝑛, at this position, the maximum probability is:

max
𝑦
(𝑤𝐹(𝑦, 𝑥)) = max

1≤𝑗≤𝑚
𝛿𝑛(𝑗)

End of the optimal path:

𝑦′
𝑛
= 𝑎𝑟𝑔 max

1≤𝑗≤𝑚
𝛿𝑛(𝑗)

From the optimal path go back:

𝑦′
𝑖
= ψ

𝑡+1
(𝑦′

𝑖+1
), i = n − 1, n − 2,⋯ ,1

In the end, we get optimal path 𝑦′ = (𝑦′
1
, 𝑦′

2
, ⋯ , 𝑦′

𝑛
)
𝑇

. The output path 𝑦′ is the

predict named entity sequence.

3.6 Bi-LSTM-CNN-CRF Model

We chose Bi-LSTM-CNN-CRF to be the deep learning method for NER. Bi-LSTM-

CNN-CRF is a typical deep learning method. The features will be extracted through the

embedding layer, then fed into the LSTM network, the last step is to classify through the

CRF layer. As shown in Figure 11, the diagram is the basic architecture of the Bi-LSTM-

CNN-CRF network.

41

Figure 11: Architecture of the Bi-LSTM-CNN-CRF network

 Embedding layer

The first layer is the embedding layers, which contains two sublayers, word-level

embedding and char-level embedding. For word-level embedding, we used GloVe Twitter

vectors set as pre-trained word vectors. There are 37.17% of Out of vocabulary (OOV).

For char-level embedding, we used CNN to extract the character-level representation of

the words. Many previous research studies proved that extracting the features from the

characters of a word through CNN is an effective method (Santos & Zadrozny, 2014)

(Chiu & Nichols, 2016).

 Dropout layer

In order to reduce the overfitting of the embedding network, we used the dropout strategy.

It randomly disables some of nodes. According to Ma and Hovy (Ma & Hovy, 2016), we

add dropout on char embedding before feeding into CNN. Also, the dropout layer is used

to regularise the input and output vectors of the Bi-LSTM model. During the model

forward propagation, let the activation value of some neuron stop working with a certain

probability 𝑃, which makes the model more generalized because it does not depend too

much on some local features. The dropout function followed Equations:

𝑟𝑗
(𝑙)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

𝛾́(𝑙) = 𝛾(𝑙) × 𝑟(𝑙)

42

𝑟𝑗
(𝑙)

 It is a vector consisting of 0 and 1. Each value of 𝑟 is chosen from a Bernoulli

distribution by probability 𝑃. 𝛾(𝑙) is the output value of activation function. Thus, a

node stop work means its output value of activation function multiply by 0 in the vector

𝑟𝑗
(𝑙)

. The probability of a node stop work is 𝑃.

When model testing each node needs to be multiplied by 𝑃.

𝜔(𝑙) = 𝑝𝑊(𝑙)

In our model, we set 𝑃 is 0.5, which means every node has half of a probability to stop

working.

 Bi-LSTM

The input of Bi-LSTM network involves combining the word-level embedding vectors

and char-level embedding vectors as features together. Thus, we use each combination

embedding sequence (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) as each time step input of the Bi-LSTM network.

Through processing and calculation, gain hidden states sequence. Each layer computes

the following functions (Graves, 2013):

𝑖𝑡 = σ(𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖 + 𝑈𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖)

𝑓𝑡 = σ(𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓 + 𝑈𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓)

𝑔𝑡 = tanh(𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔 + 𝑈𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔)

𝑜𝑡 = σ(𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜 + 𝑈𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜)

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡)

Where 𝑥𝑡 is the input at time 𝑡. 𝑖𝑡 , 𝑓𝑡 , 𝑔𝑡 and 𝑜𝑡 represent input, forget, cell and

output gates. ℎ𝑡 is the hidden layer at time 𝑡, c𝑡 is cell state at time 𝑡, ℎ𝑡−1 is the

hidden state of the layer at time 𝑡 − 𝑏1 or initial hidden state at time 0. 𝑈ii, 𝑈if, 𝑈io and

𝑈ig are weight for input to hidden state of input gate, forget gate, output gate and cell

state. 𝑊hf, 𝑊hi, 𝑊hg and 𝑊ho are weight for hidden state of forget gate, input gate,

cell state, output gate to hidden layer. 𝑏if, 𝑏ii, 𝑏ig and 𝑏io are input-hidden bias. 𝑏hi,

𝑏hf, 𝑏hg and 𝑏ho are hidden-hidden bias. σ represents sigmoid function and ∗ is the

Hadamard product. All weights and biases are initialized from range 𝜇(−√𝑘, √𝑘) where:

𝑘 =
1

ℎ

ℎ is the number of features in the hidden state.

In the input gate, the forget gate and the output gate, we use the Sigmoid algorithm as the

activation function for gates, which could be represented as the equation:

43

S(t) =
1

1 + 𝑒−𝑡

To reduce overfitting, we add the dropout function to the Bi-LSTM and use

TanHyperbolic (tanh) to activate the hidden layer of Bi-LSTM. It follows the equation:

tanh 𝑥 =
sinh 𝑥

cosh 𝑥
=
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

After this, combine the forward LSTM output (
ℎ1
→,

ℎ2
→,⋯ ,

ℎ𝑛
→) and the backward LSTM

output (
ℎ1
←,

ℎ2
←,⋯ ,

ℎ𝑛
←) in correspond position ℎ𝑡 = [

ℎ𝑡
→,

ℎ𝑡
←]. The hidden state sequence

belongs to integer set:

(ℎ1, ℎ2, ⋯ , ℎ𝑛) ∈ 𝑅
𝑛×𝑚

 Linear layer

Before putting hidden states sequence into CRF layer, we need to transform from 𝑚

dimension to 𝑘 dimension of hidden states sequence. 𝐾 is total number of

classifications.

It gets extracted features from a sentence as a matrix 𝑃𝑖 ∈ 𝑅
𝑘. Each 𝑝𝑖𝑗 from 𝑃𝑖 can

be regarded as a score that 𝑥𝑖 is classified to 𝑗-th classification.

 CRF layer

The CRF layer performs sentence-level sequence labelling. The parameter of the CRF

layer is a (𝑘 + 2) × (𝑘 + 2) matrix 𝐴 . 𝐴𝑖𝑗 represents a score from label 𝑖 to

transform to label 𝑗. The reason for plus 2 is because adding two extra states into label

sequence. A starting state represents the beginning of a sentence and a termination state

represents the end of a sentence.

For a label sequence 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛), the score that giving by CRF layer is:

score(𝑥, 𝑦) =∑𝑃𝑖,𝑦𝑖

𝑛

𝑖=1

+∑𝐴𝑦𝑖−1𝑦𝑖

𝑛+1

𝑖=1

So, the scoring of the entire sequence is equal to the sum of the scores of the respective

positions. The scoring of each position is obtained by two parts, one part is determined

by the 𝑃𝑖 of the output of Bi-LSTM layer, and the other part is determined by the transfer

matrix A of the CRF.

Then get the probability after normalized through Softmax:

𝑃(𝑦|𝑥) =
𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦))

∑ 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦′))𝑦′

Max log likelihood is generally used as a loss function. The model classification loss

function is the following equation:

44

log 𝑃(𝑦|𝑥) = 𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦) − log(∑𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(𝑥, 𝑦′))

𝑦′

)

3.7 Summary

This section introduces how to process the data for the different models. Training the

SVM model, the HMM model, the CRF model, and the Bi-LSTM-CNN-CRF model is

part of our main contribution. Through this Chapter, we clearly understand the methods

and algorithms. In the next Chapter, we will show the results of our experiment.

45

Chapter 4 Results and Analysis

In this chapter, we display our implementation of named entity

recognition and the methods and the results that we got. Firstly, we

introduced two corpora and data pre-processing. Then we showed the

hardware and the software experimental environments. In the end, we

evaluated the results of the four methods.

46

4.1 Introduction

We got the results from the four methods that we used respectively, for NER through the

experiments. This Chapter focuses on the outcomes that we collected from the four

methods. We use the confusion matrix and the classification report to evaluate each

method. At first, the two corpora used in this project will be introduced in detail. From

the aspect of word representation, we need to carry out the pre-processing of the data

that apply for the different models. This is to ensure that the models can extract enough

features from the word representation. Then, we introduced our experimental

environment for this project. In this part, we describe each software and library in detail.

We also give the hardware information that we use to accelerate the training. Then we

display the results of each method. Each method trains two models through two

different corpora. We present a detailed analysis of the performance of each method in

two databases with visual charts. We list and analyse the result from every class of each

model and then compare the performance of the four methods that work on each corpus.

At the end, we discuss the limitations of our experiment.

47

4.2 Data Description

In this project, we used two datasets, the first one from the CoNLL 2003 shared task, the

second from the Broad Twitter Corpus.

4.2.1 CoNLL 2003

CoNLL 2003 shared task is a very famous NER database. It includes two languages,

English and German. The English data was collected from newswire articles by Reuters

Corpus, and by people from the University of Antwerp who did the annotation for the

data. The data used Reuters news stories from August 1996 to August 1997. It consists of

three files, training set, development set, and test set. The data of the training set and the

development set started from the end of August 1996. The data of the test set began in

December 1996. The pre-processing data also included some data from September 1996.

The German data was collected from the ECI Multilingual Text Corpus3. The data in

CoNLL 2003 shared task was collected from the German newspaper Frankfurter

Rundschau. All three datasets were extracted from articles written during one week in

August 1992. The original data started between September to December in 1992.

English data Articles Sentences Tokens

Training set 946 14987 203621

Development set 216 3466 51362

Test set 231 3684 46435

Table 2: Number of articles, sentences and tokens in each data file of the English data set

German data Articles Sentences Tokens

Training set 553 12705 206931

Development set 201 3068 51444

Test set 155 3160 51943

Table 3: Number of articles, sentences and tokens in each data file of the German data

set

Table 2 and 3 shown above contain the size of each file of two datasets.

All of the data followed the same format. Each sentence was segmented into words,

punctuation and so on and set each word to a separate line. The empty line represented

the sentence boundaries. Each line contains a word, part-of-speech, chunk tag and tag of

the named entity, each field was split by space. An example is shown below.

48

Figure 12: Sample of the CoNLL 2003 dataset

The data contains four types of named entities, there is the person represented as PER,

organizations are represented as ORG, locations are represented as LOC, and

miscellaneous names are represented as MISC. We also used the Ramshaw and Marcus

proposed IOB tagging scheme to represent the boundary of the named entities. Tag O

represents the outside of the named entities, I mains the inside of the named entities, B

represents the beginning word of the second named entity, which is immediately near to

the first named entity. Table 4 and 5 shown below contain the specific numbers of the

named entities in each file of the two datasets.

English data LOC MISC ORG PER

Training set 7140 3438 6321 6600

Development

set

1837 922 1341 1842

Test set 1668 702 1661 1617

Table 4: Number of named entities per data file of the English data set

German data LOC MISC ORG PER

Training set 4363 2288 2427 2773

Development

set

1181 1010 1241 1401

Test set 1035 670 773 1195

Table 5: Number of named entities per data file of the German data set

4.2.2 Broad Twitter Corpus

Broad Twitter Corpus is the full open NER dataset. It was collected from Twitter posts

over six years, including the reaction of news stories, non-professional content, and

tweets from Twitter. In order to represent the maximum diversity, the data has been

extracted from different periods, such as, different months of the year, different days of

the month, and different times of the day. In addition, the data came from different

English-speaking countries and regions. In order to reflect the diversity and used different

annotation approach, the corpus was organized into six segments. The corpus was

49

annotated by eight NLP experts and 747 crowds of workers. The data used the PLO entity

schema and IOB tagging scheme, PLO as represents the named entity types of person,

location, and organization. The final corpus contains 12K named entities, 5271 of person

entities, 3114 location entities, and 3732 of organization entities in total. The Broad

Twitter Corpus did not label part-of-speech and chunk tag. An example is shown above.

Figure 13: Sample of Broad Twitter Corpus

Segment A contains the data collected from UK tweets near the New Year. It is annotated

by different NLP experts.

Segment B same like Segment A, it contains more non-directed tweets. It is annotated by

different NLP experts.

Segment E contains tweets that are commentary from different places related to the flight

crash of Malaysia Airlines flight MH17. It contains some comments that come from non-

native speakers, usually from Ukrainian, Dutch or Malaysian speakers. It is annotated by

different NLP experts and crowd.

Segment F contains popular personal content from Twitterati. These authors come from

six English-speaking regions, and the commentary is related to celebrity, music, politics,

sports and news. It is annotated by different NLP experts and crowds.

Segment G comprises tweets from mainstream news in six English-speaking regions.

Segment H excludes tweets from the UK to balance the UK bias of Segment B. It is also

collected from different periods. It is annotated by different NLP experts and crowds.

Table 6 shows the difference of the six segments.

Section Region Collection

period

description annotators Tweets

A UK 2012.01 General

collection

Expert 1000

B UK 2012.01-02 Non-

directed

tweets

Expert 2000

E Global 2014.07 Related to Expert & 200

50

MH17

disaster

Crowd

F Stratified 2009-2014 Twitterati Expert &

Crowd

2000

G Stratified 2011-2014 Mainstream

News

Expert &

Crowd

2351

H Non-UK 2014 General

collection

Expert &

Crowd

2000

Table 6: Sections of corpus A region of “stratified” indicates that data was taken from

six regions in the English-speaking world

4.3 Pre-processing of Dataset

After the data collection, the CoNLL 2003 data do not require pre-processing, it is already

tagged and chunked by the memory-based MBT tagger and labelled by the University of

Antwerp.

For the BTC dataset, I randomly chose 80% of the sentences from section A, B, E, F, and

G as the training set and the rest of those as the development set. Section H is the testing

set. The reason is because section H removes the tweets from the UK origin, it avoids the

bias of the UK, so it the most suitable dataset for a test. Also, the sentence order of the

training data is randomly taken from section A, B, E, F, G. Table 7 below contains the

particular numbers of the named entities of the three datasets.

English data PER ORG LOC

Training set 2160 1162 859

Development set 816 603 501

Test set 1372 537 297

Total 4348 2302 1657

Table 7: Number of named entities of dataset

The BTC dataset only labelled the entity tag of the data, for the SVM, the HMM, and the

CRF method, part-of-speech tags and chunk tags are necessary features. Therefore, I used

spaCy tool to add part-of-speech tags and chunk tags to BTC dataset. SpaCy is free open-

source library. It is able to add part-of-speech tags and chunk tags through the pre-training

model. I chose the en_core_web_lg model from the spaCy provided models, which is a

statistical model with the highest performance. The model is a multi-task CNN based

model. It trained on OntoNotes 5 corpus with GloVe vectors. It comprises 685k keys and

685k unique vectors and 300 dimensions per vector. The accuracy of POS is 96.98%.

After adding part-of-speech tags, I added chunk tags to the BTC database. The spaCy

51

only provides the noun chunks function that merges the noun chunks into a single token.

Thus, I wrote the rest of the part of speech chunk tags function that adds the chunk tags

with the IOB tagging scheme. The Verb tags function, Adjective tags function, Adverb

tags function and Proposition tags function are based on part-of-speech tags, add VP, ADJ,

ADV, and PP tags to the corresponding word with IOB tagging scheme. Conjunction,

number, website, and hashtag, and so on are classified as others which are represented as

O. After pre-processing, an example of the BTC database is shown below.

Figure 14: Sample of Broad Twitter Corpus after pre-processing

4.4 Experimental Environment

 Hardware experimental environment:

The experiment is run on a desktop with 4 core i5 CPU 3.0GHZ and NVIDIA GeForce

GTX 1060 6GB GPU. We used GUP to accelerate the neural network training and

testing.

 Software experimental environment:

We used Python as the programming language for the training and testing of the models.

Python 2.7 is used for modelling machine learning based methods. For the SVM model

we used the LIBSVM library (Chang & Lin, 2011);

The particular software version we used is shown below:

Software name and version Function

Python 2.7 HMM modelling, CRF modelling

spaCy 2.1.3 Data pre-processing

LIBSVM 3.23 SVM modelling

Table 8: Software version of machine learning methods

For the Bi-LSTM-CNN-CRF (Ma & Hovy, 2016) model we built it through the PyTorch

platform, and we used the GUP to accelerate the model training and testing. We used

52

Matplotlib and Sklearn as our analysis and visualization library.

Table 9 shows the software version we used for the Bi-LSTM-CNN-CRF model.

Software name and version Function

Python 3.6 Modelling environment

PyTorch 1.0.1 Bi-LSTM-CNN-CRF modelling

CUDA 9.1 GPU acceleration

cuDNN 7.1.3 GPU-accelerated library

Table 9: Software version of Bi-LSTM-CNN-CRF model

4.5 NER Results

4.5.1 Overall Results

Four methods are introduced in Chapter 3. We used four methods to model the two

corpora separately. The results of the testing set are shown in Table 10 below.

CoNLL2003 BTC

Precision Recall F1 Precision Recall F1

SVM 72.53% 54.32% 62.12% 56.71% 44.57% 49.91%

HMM 85.04% 67.75% 74.57% 65.68% 49.42% 56.40%

CRF 83.72% 79.03% 80.94% 70.14% 54.86% 61.57%

Bi-LSTM 89.73% 90.21% 89.97% 76.57% 70.14% 73.22%

Table 10: Results of our experiment

We used precision, recall, and F1 value to evaluate the performance of the four methods.

For the CoNLL2003 corpus, the Bi-LSTM is the best of the four models. The F1 value of

Bi-LSTM is 89.97% from the testing set. For the BTC corpus, the Bi-LSTM model still

got the best performance in the four models. The SVM method got the worst performance

of the four methods. Comparing the overall results, the performance of the four methods

in the CoNLL2003 corpus are better than their performances in the BTC corpus. This

shows that the performance of the informal data that used the same method still needs to

be improved. The noisy, informal, and unstructured data has a significant impact on the

performance of the existing methods.

In order to further analyse and compare the four models, we used the visual confusion

matrix and the classification report to display the predicted results of the models. The

visual confusion matrix uses different coloured squares to represent the number, and it

can see where the prediction error is clearly because all of the correct predictions are on

the diagonal and the prediction error is outside the diagonal. The classification report

lists the precision, recall, and F1 score of each class, also calculates the overall Micro

53

average, Macro average, and Weighted average of the precision, recall, and F1. The

three average values will help us better measure the performance of the models. The

macro average gives each class the same weight, whereas the micro-average provides

each sample with the same weight. Most of the classes of the corpus are none entity.

Taking into account the sample skew, the Macro average is the best value to measure the

models (Özgür, Özgür & Güngör, 2005). The macro average is the arithmetic mean of

the precision, recall, and F1 value for all categories. The Macro-precision, Macro- recall

and Macro- F1 score are expressed as shown below (Sokolova & Lapalme, 2009):

𝑃𝑚𝑎𝑐𝑟𝑜 =
1

𝑛
∑𝑃𝑖

𝑛

𝑖=1

𝑅𝑚𝑎𝑐𝑟𝑜 =
1

𝑛
∑𝑅𝑖

𝑛

𝑖=1

𝐹𝑚𝑎𝑐𝑟𝑜 =
2 × 𝑃𝑚𝑎𝑐𝑟𝑜 × 𝑅𝑚𝑎𝑐𝑟𝑜

𝑃𝑚𝑎𝑐𝑟𝑜 × 𝑅𝑚𝑎𝑐𝑟𝑜

54

4.5.2 CoNLL 2003 Results

Figure 15: Confusion matrices of CoNLL 2003 result

 From Figure 15, we can see the confusion matrix of the four models. The left top of

Figure 4.1 is the confusion matrix of the HMM model. In this confusion matrix, we

can see that the right side of the figure is not light blue which means the prediction

of the entity categories are incorrectly assigned to the non-entity categories. The

prediction between the entities is quite good, there are not many entity classes that

are incorrectly assigned to another entity class except for the B-ORG class. For the

B-ORG class, some are predicted as the B-LOC class.

 The right top of Figure 15 is the confusion matrix for the CRF model. The entity

classes are predicted as non-entity and this is the main problem of the B-BER, B-

LOC, B-ORG and the B-MISC classes. For the B-ORG class, some are predicted as

B-LOC class. Compared with the HMM model, the recognition of the person’s name

55

has been significantly improved, and the I-PER class that is predicted to be non-entity

is decreased. The prediction of B-PER is also improved. The identification of the

location name has not progressed much, the number of B-LOC class that has been

predicted to be non-entities has decreased. The name of the organization has also

improved significantly. The number of I-ORG class that has been predicted to be

correct has increased significantly. The MISC class has not changed much.

 The left bottom of Figure 15 is the confusion matrix for the SVM model. Some B-

LOC, B-MISC, I-PER, I-ORG are identified as non-entity. The B-ORG class is

predicted as the B-LOC class and the O class. The I-MISC got the worst performance.

Compared with the HMM model and the CRF model, and the SVM model has a

critical defect in the identification of the personal name. There are a large number of

PER categories that are predicted to be non-entity categories, even exceeding the

correct number of predictions.

 From the right bottom of Figure 15, we can see that confusion matrix for Bi-LSTM

model. All categories showed clearly on the diagonal. The wrong predictions of Bi-

LSTM model are fewer than 100. Thus, the model gets the best performance in terms

of the improved predictive performance of all of the categories compared to the other

three models.

Figure 16: The classification report of CoNLL 2003 result

Figure 16 shows the classification report of the four models, it lists the precision, recall

and F1 score for each class. The classification report of the HMM model showed the F1

score of the B-PER class is the lowest in all of the classes. The HMM model has problems

with the identification of name of the person. Since the O class accounts for the majority

of the data set, the micro-average does not evaluate the overall model very well. Macro

averaging is the main indicator of our evaluation model.

In the report of the CRF model, we can see that almost of the classes get over 70% of the

F1 score, excluding the I-MISC. The overall F1 of the CRF model is the highest in the

machine learning models. In the SVM model, the F1 of the I-MISC and the I-PER less

56

than 40%, the overall performance is lower than the HMM model and the CRF model.

The recall of B-PER and I-PER are lower than 40 percent. Thus, the SVM model cannot

be applied to person name recognition.

We can see that all of the values of F1 are greater than 70% in the Bi-LSTM model.

Excluding the MISC class, the other classes got over 85% of F1. The overall

performance is better than the machine learning methods.

Figure 17: The overall performance of CoNLL 2003 result

Figure 17 shows the overall performance of the four models. The precision of the HMM

model, the CRF model, and the Bi-LSTM model are over 80 percent. However, the

recall of the HMM model is lower than the CRF model and the Bi-LSTM model. For

the HMM model, only 68% of the examples are identified correctly. It is lower than the

CRF model and the Bi-LSTM model. For the SVM model, many of the named entities

are not detected, and many of the detected entities are incorrectly classified.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HMM model CRF model SVM model Bi-LSTM model

CoNLL 2003

Precision Recall F1-score

57

4.5.3 BTC Results

Figure 18: Confusion matrices of BTC result

 Figure 18 shows the confusion matrix of the testing set of BTC corpus. The confusion

matrix of the HMM model is shown in the subfigure at the top left of Figure 4.6. The

B-LOC, B-ORG, I-LOC, and I-ORG classes are not well identified. The testing set

has small quantities of I-LOC and I-ORG categories. Thus, these two categories are

not represented in the confusion matrix. From the model it is hard to distinguish the

B-PER and the B-ORG.

 The subfigure at the top right corner of Figure 18 shows the confusion matrix of the

CRF model. Compared with the HMM model, the CRF model got a better

performance with respect to predicting the B-PER class. However, the B-LOC and

the B-ORG classes still face the problem which is predicted as non-entity. One-third

of the B-ORG class is predicted as the B-PER class. I-LOC and I-ORG classes cannot

58

be displayed in the confusion matrix because the number of I-LOC and I-ORG

classes is too small.

 The confusion matrix of the SVM model is shown in the subfigure at the bottom left

of Figure 18. Compared with the HMM model and the CRF model, the informal

corpus has the most significant impact on the SVM model. The I-PER, I-LOC, and

I-ORG cannot be displayed in the confusion matrix. The performance of B-PER, B-

LOC, and B-ORG are also further reduced.

 The subfigure at the bottom right of the corner of Figure 18 is the confusion matrix

of the Bi-LSTM model. The overall performance has been improved. The I-PER is

clearly displayed on the confusion matrix. Compared with the other three models, the

prediction of B-PER, B-LOC and B-ORG classes have improved significantly.

Figure 19: The classification report of BTC result

Figure 19 shows the classification report of the BTC corpus. In the HMM model, the

recall of B-ORG and I-ORG classes is very low. The correct rate of organization names

that this model predicted is extremely low. The overall recall of this model is only 49%

and the overall precision of this model is only 66 percent. Thus, the informal data has a

huge effect on the HMM model.

Compared with the HMM model, the overall performance of the CRF model has

increased slightly. However, organization name and location name still cannot be

identified very well. The recognition of person name has been greatly improved. The

overall performance is still not satisfactory.

The overall performance of the SVM model is the lowest model in the three machine

learning methods. It almost completely fails to correctly identify all of the inside of the

named entities categories.

The overall performance of the BI-LSTM model is the best model in our project. It is

much higher compared to the others. However, compared with the news stories dataset,

the informal dataset still has an effect on the performance of the neural model.

59

Figure 20: The overall performance of BTC result

Figure 20 shows the overall precision, recall and F1 score of the four models. The overall

recall of the HMM model, the CRF model, and SVM model is lower than 55 percent.

Therefore, nearly half of the three models identified entities that are incorrect, especially

in the data sets where the entity class is a minority. The Bi-LSTM model is much higher

than the other three models. The overall performance of the Bi-LSTM model is

satisfactory.

4.4 Limitation of the Experiments

For this project, we used the SVM model, the HMM model, the CRF model, and the

mixed model. The mixed model is the Bi-LSTM-CNN-CRF model. The CNN as the char-

level feature extractor, the Bi-LSTM as the basic model of the overall framework, the

CRF focuses on the sequence label prediction. Machine learning based methods and

mixed model have their limitations. The limitations will have effects on the results of

NER.

1) The BTC corpus is much smaller than the CoNLL2003. It may not fully train the

mixed model. We need to find a large twitter corpus.

2) Regarding the BTC corpus, it does not include part-of-speech and chunk tags. These

tags are very important features for machine learning methods. Thus, we used the

spaCy library to add these features. This is because there could be mistakes in the

part-of-speech and chunk tags. This is because the spaCy library cannot guarantee a

100% correct rate.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

HMM model CRF model SVM model Bi-LSTM model

BTC

Precision Recall F1-score

60

4.5 Summary

In this Chapter, we showed the results of our models. We used four methods to build

models for the two corpora separately. In order to select the optimal model, each model

is evaluated by precision, recall, and F1. Through the confusion matrices and

classification reports, we analysed each classification for the models. We not only

compared the differences between the four methods we also compared the differences

between the same method used in the different corpora. In the next Chapter, we will keep

analysing the results of our models, and discuss the advantages and the disadvantages of

each of the models.

61

Chapter 5 Discussions

The results of the four methods are analysed and discussed in this Chapter.

There is a special focus on the Bi-LSTM model, we analysed the influence

of the different parameters on the model. We also compared the four models,

and we discussed the advantages and disadvantages of the models.

62

5.1 Introduction

In this Chapter, we discuss the Bi-LSTM in detail, we focus on parameter tuning, and we

give the performance evidence of the different values of the parameters. We discuss the

fully trained aspect in the neural network model and avoid overfitting. We compare the

different methods of dealing with out of vocabulary. The different initialization

assignments are also discussed, showing the particular initialization assignments of our

CNN network and Bi-LSTM network. We display the processing of the select optimal

hyperparameters. In addition, we discuss the characteristics, the advantages, and the

disadvantages of the four methods.

63

5.2 Analysis of Bi-LSTM Model

From Figure 21, the results show that the data has been fully trained through the Bi-LSTM

model. We set total epoch at 1000, each epoch includes 14 batches. In order to save

training time, we stopped the training early at the time the precision value of the

development set was stopped and once it had increased over 30 epochs. As Figure 21

shows, the models training stops at epoch 150th and epoch 100th. The Dropout layer will

reduce the occurrence of overfitting. From the loss function, we can see that overfitting

of CoNLL 2003 has been successfully avoided. For the BTC corpus, the model is not

completely fully trained. Because the corpus is small, the data cannot support the model

to keep improving the performance. After parameter tuning, we tested the uniform and

the average to deal with the out of vocabularies (OOV), and the SGD algorithm as the

optimization algorithm.

Figure 21: Loss function of corpora

64

5.2.1 Parameter Tuning

5.2.1.1 Out of Vocabulary (OOV)

GloVe Wikipedia 2014 & Gigaword 5 as pre-trained word vectors are used for training

the CoNLL2003 model. GloVe Twitter vectors as pre-trained word vectors are used for

the BTC corpus model. For the CoNLL2003 model, we chose 100d vectors, it includes

400000 vocabulary vectors. And 8.85% of the vocabulary in the CoNLL2003 database is

Out of Vocabulary (OOV). For the BTC model, we used 100d GloVe Twitter vectors

which contains 12K vocabulary vectors. And 37.17% of vocabulary in BTC database is

OOV.

There is a huge performance difference between using pre-trained word vectors and

without pre-trained word vectors. As table 11 shows, nearly 10% of the F1 difference is

related to the use of pre-training vectors or not.

precision recall F1

CoNLL2003 with

pre-trained word

vectors

90.69% 90.62% 90.66%

CoNLL2003

without pre-trained

word vectors

79.43% 79.64% 79.53

BTC with pre-

trained word

vectors

77.12% 66.31% 71.31%

BTC without pre-

trained word

vectors

76.61% 51.81% 61.82%

Table 11: Performance of using pre-trained word vectors or not

Regarding OOV, with the exception of using our own embedding method to train the

vectors, there are three other methods that we used. We compared these methods and

found the best one for our project. We used the BTC database to test the four methods

because it contains more OOV than the CoNLL2003 database. The first method is

averaging the existing word vectors. The second method is random initialization for

each OOV word. The randomly initialized values are between (-0.25, 0.25) or (-0.1,

0.1). The third method is to assign zero for the OOV words.

The results are shown below in Table 12

precision recall F1

average 77.56% 64.23% 70.27%

Initialized (-0.25, 75.31% 65.63% 70.14%

65

0.25)

Initialized (-0.1,

0.1)

75.08% 65.69% 70.07%

Zero 78.75% 63.15% 70.09%

Embedding 75.99% 69.55% 72.63%

Table 12: Performance of four OOV methods

5.2.1.2 Parameter Initialization

Initializing the different layers and their weights is very important. Unsuccessful

initialization may slow down convergence and affect the final result.

For the CNN layer, we used uniform distribution to initialize the weights of the CNN

layer. And then we used the method that is described by Glorot and Bengio (Glorot &

Bengio, 2010), the initialization value sample from Ν(0, std) where

std = gain × √
2

𝑓𝑎𝑛𝑖𝑛 + 𝑓𝑎𝑛𝑜𝑢𝑡

Glorot’s initialization is used for the CNN layer. The uniform distribution is used for the

Bi-LSTM layer and their weights. The initialization of the fully connected layer used

the uniform distribution. The weight of the fully connected layer is calculated through

the Glorot initialization method.

5.2.1.3 Hyperparameter

The larger filter size will make character-level word embedding better for the longer

sentences. Every dataset has its optimal filter size, usually the filter size is set in range

one to ten (Zhang & Wallace, 2015). We test 10 values of filter size and found 2 is the

best size of the filter for our data. The filter number is the size of the feature of each

convolution window. After we tested six values, from 100 to 600, we chose 100.

precision recall F1

1 73.52% 68.86% 71.11%

2 75.99% 69.55% 72.63%

3 74.04% 69.72% 71.81%

4 77.09% 67.94% 72,23%

5 75.35% 62.92% 68.57%

6 75.80% 65.05% 70.02%

7 74.86% 62.51% 68.13%

8 75.79% 62.11% 68.27%

66

9 75.73% 63.90% 69.31%

10 75.12% 61.89% 68.02%

Table 13: Performance of ten filter sizes

 precision recall F1

100 75.99% 69.55% 72.63%

200 75.54% 66.78% 70.89%

300 75.23% 66.02% 70.53%

400 73.49% 62.83% 68.76%

500 72.64% 60.85% 67.63%

600 70.39% 59.56% 65.87%

Table 14: Performance of six filter numbers

Another crucial problem of the neural network is the learning rate (Wei, Xia, Huang, Ni,

Dong, Zhao & Yan, 2014). In order to ensure the gradient descent method would

perform better, we need to set the value of the learning rate within the appropriate range.

If the learning rate is too large, it makes unstable learning for the models, and if it is set

at too small a value, the training time will take much too long. The appropriate learning

rate can achieve high efficiency under stable training, which can reduce the training

time. Learning rate is expressed as the equation.

λ = min(λ) + [max(λ) − min(λ)] × 𝑒
−𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑑𝑒𝑐𝑎𝑦−𝑠𝑝𝑒𝑒𝑑

We use classic for SGD method and Adam. For SGD optimizer, we set the learning rate

at 0.001, add momentum as 0.9, the weight decay is 5e-4. For Adam optimizer, we set

the learning rate at 0.001.

5.3 Discussing of Four Different Models

This research project used machine learning based methods and the deep neural network

based method to deal with the NER task. We can understand the NER task deep through

a comparison of these methods.

We know that named the entity recognition task is a sequence labelling problem. Each

optimal label of the element depends on the nearby elements. In machine learning,

specific algorithms are used to select the globally optimal label sequence for the input

sequence. The machine learning methods that we used can be divided into three

categories. The HMM model and the CRF model are used to find the probabilities of all

of the corresponding categories of the target word and then classifies the word to a class

with the highest probability. The HMM model is one of the generative models. It learns

joint probability distribution P(x, y) = P(x|y)P(y) through input sequence x and

67

label sequence y, and then calculates the posterior probability of the samples that belong

to each class P(y|x) = P(x, y)/P(x) as the prediction model. It classifies the sample

into the class with the highest probability. It combines the two probabilities, we get the

equation for prediction:

p(y|x) =
P(x|y)P(y)

𝑝(𝑥)

The HMM model focuses on the generative relationship of the given input x and produces

y.

The CRF model is a discriminative model, it models the conditional probability

distribution of the label sequence y, and uses it as a prediction model. This model

focuses on outputting a label sequence y when the input sequence x is given.

The disadvantages of the conditional random field are slow convergence and long

training time. The training speed of the HMM is faster than the conditional random field

method. The main reason is that the CRF method requires a lot of time to obtain

features based on feature templates.

The SVM model does not build a probability model, it finds the clear decision

boundary. The predicted equation of SVM is:

sgn(∑𝛼𝑖

𝑙

𝑖=𝑙

𝑦𝑖K(𝑥𝑖
𝑇x)) + b

The model follows geometric division, dividing the space into multiple parts. It finds and

classifies the hyperplanes, and calculates the mapping function of the hyperplanes. Thus,

for our NER, it focuses on the single word, through the part-of-speech and chunk features

to determine which categories the word belongs to. In the NER task, the context

information contains many useful features. The SVM model does not use context

information at all. Thus, the SVM model got the lowest performance in the experiment.

The combination model combines multiple models and algorithms, and it uses the output

data of the previous layer model as the training data to train the next model. Our Bi-

LSTM-CNN-CRF model is a combination model. It uses a CNN model to extract the char

level features and combines it with a word embedding and pre-trained vectors as input

vectors, then feeds it into two bidirectional LSTM units. Through a fully connected layer,

the input vectors are mapped as output vectors such that the dimensions of the output

vectors are the number of output labels. Then use the Softmax method normalizes the

output as the probability of each label. It then uses the probabilities of the output of BI-

LSTM as the state feature vectors add into the CRF layer.

The neural network model can use the powerful nonlinear fitting ability. At training time,

it models the complex high- dimensional spatial data through a nonlinear transformation.

Then, it uses the model to predict the label sequence of each sentence. However, there is

a disadvantage to using the Bi-LSTM model alone. Without the conditional constraint of

state transition, the model may output a completely incorrect label sequence. Such as, in

68

the BIO scheme, in the same chunk entity, the ‘B’ tag must be followed by an ‘I’ tag, it

cannot be a ‘B’ tag. The ‘O’ tag must not appear between two ‘I’ tags. Thus, we use the

CRF layer to solve this problem. At the same time, using the output of the Bi-LSTM layer

as the input of the CRF layer also can avoid the problem of CRF. The biggest problem of

the CRF model is the premise of the CRF method. The premise of the CRF method is the

current output label is only related to the label of the previous output and the current input.

In fact, while we are looking for a named entity in a sentence, it is related to the context.

And with the exception of the information of the previous words of the target word, the

words behind the target word can also provide a lot of information. Under the above

assumption, we lose a lot of context information, which makes the model unable to find

the named entity accurately. Also, CRF can learn various features from the given

observation sequence, these features are the relationships between the different words. So,

the CRF generally learns a rule: B tag followed by I tag, will not appear B tag. This rule

will cause the prediction result of CRF so that it will not encounter the error of the above

example. Thus, combining the Bi-LSTM and CRF can get the advantages of both models.

Due to the project, the most significant difference between machine learning and deep

neural network is the feature selection method. Machine learning has high requirements

of data, such as, the need for the part of speech or chunk tags. It is necessary to add

some handcrafted features to the original data. These features will affect the NLP tasks.

According to the differences and characteristics of the data sources, machine learning

methods need to consider selecting a feature that can adequately affect the entity. Thus,

through pre-processing some features are added to the original data. These features are

extracted from the training corpus through the statistical analysis and the linguistic

information. The relevant features can be divided into word-level features, char-level

features, context features, part-of-speech features, chunking features, gazetteers, prefix

and suffix features, semantic features and so on. Without these additional features,

machine learning methods get a lower performance. However, compared with the

machine learning based method, the neural network based methods are able to get a

higher performance without additional features. It can learn the features from the

original data through the embedding layer. Thus, the biggest advantage of the neural

network based method is to save data pre-processing time, it only needs the original

data and the entity label.

5.4 Summary

This Chapter is split into two parts. The first part of the analysis discusses the

parameters that may affect the performance of the Bi-LSTM model. The OOV dealing

methods, the parameter initialization, and the hyperparameter are introduced in this part.

We used precision, recall, and F1 to evaluate the effect of the parameters. The second

69

part discusses the characteristics of the models. It includes an analysis of the advantages

and disadvantages of the four models.

70

Chapter 6 Conclusion and Future Work

 We compared the four models and found the optimal method through the

final results of named entity recognition. In addition, we also, answered

the research question that we proposed in chapter 1. In this chapter, we

will summarize this thesis and introduce the work we will continue doing

in the future.

71

6.1 Conclusion

NER is a necessary task for some downstream NLP tasks. It has a huge effect on these

NLP tasks. The purpose of this project is to carry out NER. In fact, it can be translated

into a sequence labelling problem. In this project, we trained and tested four different

methods and found the best one. These models are based on the statistical methods and

deep neural network. After the analysis of results, we summarized the main contribution

of this project.

We used the SVM, the HMM, the CRF and the Bi-LSTM-CNN-CRF methods to model

and predict the named entities. In order to compare the performance of the models in

formal data and noisy, informal data, we select the CoNLL2003 and the BTC corpus to

use as our training and testing material. The final results show, the SVM model got 62.12%

of F1 for the CoNLL2003 database and 29.82% of F1 for the BTC database. The HMM

model got 74.57% of F1 for the CoNLL2003 database and 29.82% of F1 for the BTC

database. The CRF model got 80.94% of F1 for CoNLL2003 database and 29.82% of F1

for the BTC database. The Bi-LSTM model got 89.97% of F1 for the CoNLL2003

database and 71.31% of F1 for the BTC database. Through parameter tuning, the Bi-

LSTM model got the best results in both corpora. Also, for the informal content corpus,

the performance of the four models are lower than their performance in the formal content

corpus.

This project through the experiment built four models that compared the deep learning

model and the machine learning models in NER. In our experiment, the deep learning

model is better than the statistical-based model. We also analysed the models, and

discussed the advantages and disadvantages of the models.

6.2 Future Works

Our future work will involve the following:

 Use focal loss to deal with extremely unbalanced data, such as, BTC corpus

 Research the relationship between the number of embedding dimensions and the

number of hidden layers in the LSTM layer

 Research the impact of the different initialization distribution on the Bi-LSTM

 Research the impact of the different window sizes on the CNN layer

 Research the most suitable unsupervised learning method for NER

72

Reference
Aroonmanakun, W., Nupairoj, N., Muangsin, V., & Choemprayong, S. (2018). Thai Monitor

Corpus: Challenges and Contribution to Thai NLP. Vacana, 6(2), 1-14.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align

and translate. arXiv preprint arXiv:1409.0473.

Baldwin, T., de Marneffe, M. C., Han, B., Kim, Y. B., Ritter, A., & Xu, W. (2015). Shared tasks of

the 2015 workshop on noisy user-generated text: Twitter lexical normalization and named entity

recognition. In Proceedings of the Workshop on Noisy User-generated Text (pp. 126-135).

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic language

model. Journal of machine learning research, 3(Feb), 1137-1155.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient

descent is difficult. IEEE transactions on neural networks, 5(2), 157-166.

Bharadwaj, A., Mortensen, D., Dyer, C., & Carbonell, J. (2016). Phonologically aware neural

model for named entity recognition in low resource transfer settings. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing (pp. 1462-1472).

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine

Learning research, 3(Jan), 993-1022.

Bonadiman, D., Severyn, A., & Moschitti, A. (2015). Deep neural networks for named entity

recognition in Italian. CLiC it, 51.

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data mining

and knowledge discovery, 2(2), 121-167.

Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM

transactions on intelligent systems and technology (TIST), 2(3), 27.

Chang, J. T., Schütze, H., & Altman, R. B. (2004). GAPSCORE: finding gene and protein names

one word at a time. Bioinformatics, 20(2), 216-225.

Chiu, J. P., & Nichols, E. (2016). Named entity recognition with bidirectional LSTM-

CNNs. Transactions of the Association for Computational Linguistics, 4, 357-370.

Cho, K., Van Merriënboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural

machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

Choi, Y., & Cha, J. (2016). Korean Named Entity Recognition and Classification using Word

Embedding Features. Journal of KIISE, 43(6), 678-685.

73

Chrupala, G. (2011). Efficient induction of probabilistic word classes with LDA. In Proceedings of

5th International Joint Conference on Natural Language Processing (pp. 363-372).

Clark, K., Luong, M. T., Manning, C. D., & Le, Q. V. (2018). Semi-supervised sequence modeling

with cross-view training. arXiv preprint arXiv:1809.08370.

Collobert, R. (2011). Deep learning for efficient discriminative parsing. In Proceedings of the

fourteenth international conference on artificial intelligence and statistics(pp. 224-232).

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep

neural networks with multitask learning. In Proceedings of the 25th international conference on

Machine learning (pp. 160-167). ACM.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural

language processing (almost) from scratch. Journal of machine learning research, 12(Aug), 2493-

2537.

Cotik, V., Rodríguez, H., & Vivaldi, J. (2018). Spanish named entity recognition in the biomedical

domain. In Annual International Symposium on Information Management and Big Data (pp. 233-

248). Springer, Cham.

Daelemans, W., & Van den Bosch, A. (2005). Memory-based language processing. Cambridge

University Press.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., ... & Ng, A. Y. (2012). Large scale

distributed deep networks. In Advances in neural information processing systems (pp. 1223-

1231).

Derczynski, L., Maynard, D., Rizzo, G., Van Erp, M., Gorrell, G., Troncy, R., ... & Bontcheva, K.

(2015). Analysis of named entity recognition and linking for tweets. Information Processing &

Management, 51(2), 32-49.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dong, N., & Nguyen, K. A. (2018). Attentive Neural Network for Named Entity Recognition in

Vietnamese. arXiv preprint arXiv:1810.13097.

Dozat, T. (2016). Incorporating nesterov momentum into adam.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121-2159.

Dugas, F., & Nichols, E. (2016). DeepNNNER: Applying BLSTM-CNNs and Extended Lexicons

74

to Named Entity Recognition in Tweets. In Proceedings of the 2nd Workshop on Noisy User-

generated Text (WNUT) (pp. 178-187).

Ebersbach, M., Herms, R., Lohr, C., & Eibl, M. (2016). Wrappers for Feature Subset Selection in

CRF-based Clinical Information Extraction. In CLEF (Working Notes) (pp. 69-80).

Ekbal, A., & Bandyopadhyay, S. (2008). Bengali named entity recognition using support vector

machine. In Proceedings of the IJCNLP-08 Workshop on Named Entity Recognition for South

and South East Asian Languages.

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017).

Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639),

115.

Finkel, J., Dingare, S., Manning, C. D., Nissim, M., Alex, B., & Grover, C. (2005). Exploring the

boundaries: gene and protein identification in biomedical text. BMC bioinformatics, 6(1), S5

Fleischman, M. (2001). Automated subcategorization of named entities. In ACL (Companion

Volume) (pp. 25-30).

Fleischman, M., & Hovy, E. (2002). Fine grained classification of named entities. In Proceedings

of the 19th international conference on Computational linguistics-Volume 1 (pp. 1-7). Association

for Computational Linguistics.

Florian, R., Ittycheriah, A., Jing, H., & Zhang, T. (2003). Named entity recognition through

classifier combination. In Proceedings of the seventh conference on Natural language learning at

HLT-NAACL 2003-Volume 4 (pp. 168-171). Association for Computational Linguistics.

Galibert, O., Rosset, S., Grouin, C., Zweigenbaum, P., & Quintard, L. (2012). Extended named

entity annotation on ocred documents: From corpus constitution to evaluation campaign.

In Proceedings of the Eighth conference on International Language Resources and Evaluation

(LREC’12), Istanbul, Turkey, may.

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. In Proceedings of the

IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural

Computing: New Challenges and Perspectives for the New Millennium (Vol. 3, pp. 189-194). IEEE.

Ghahramani, Z. (2001). An introduction to hidden Markov models and Bayesian networks.

In Hidden Markov models: applications in computer vision (pp. 9-41).

Ghosh, S., Ghosh, S., & Das, D. (2016). Part-of-speech tagging of code-mixed social media text.

In Proceedings of the Second Workshop on Computational Approaches to Code Switching (pp.

90-97).

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer

vision (pp. 1440-1448).

75

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate

object detection and semantic segmentation. In Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 580-587).

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural

networks. In Proceedings of the thirteenth international conference on artificial intelligence and

statistics (pp. 249-256).

Godin, F., Vandersmissen, B., De Neve, W., & Van de Walle, R. (2015). Multimedia Lab $@ $ ACL

WNUT NER Shared Task: Named Entity Recognition for Twitter Microposts using Distributed

Word Representations. In Proceedings of the Workshop on Noisy User-generated Text (pp. 146-

153).

Goller, C., & Kuchler, A. (1996). Learning task-dependent distributed representations by

backpropagation through structure. In Proceedings of International Conference on Neural

Networks (ICNN'96) (Vol. 1, pp. 347-352). IEEE.

Gómez-Chova, L., Camps-Valls, G., Munoz-Mari, J., & Calpe, J. (2008). Semisupervised image

classification with Laplacian support vector machines. IEEE Geoscience and Remote Sensing

Letters, 5(3), 336-340.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT press.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint

arXiv:1308.0850.

Graves, A., & Schmidhuber, J. (2005). Framewise phoneme classification with bidirectional LSTM

and other neural network architectures. Neural Networks, 18(5-6), 602-610.

Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural

networks. In 2013 IEEE international conference on acoustics, speech and signal processing (pp.

6645-6649). IEEE.

Guo, J., Xu, G., Cheng, X., & Li, H. (2009). Named entity recognition in query. In Proceedings of

the 32nd international ACM SIGIR conference on Research and development in information

retrieval (pp. 267-274). ACM.

Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., & Leser, U. (2017). Deep learning with word

embeddings improves biomedical named entity recognition. Bioinformatics, 33(14), i37-i48.

He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the IEEE

international conference on computer vision (pp. 2961-2969).

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level

76

performance on imagenet classification. In Proceedings of the IEEE international conference on

computer vision (pp. 1026-1034).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

Hemati, W., & Mehler, A. (2019). LSTMVoter: chemical named entity recognition using a

conglomerate of sequence labeling tools. Journal of cheminformatics, 11(1), 3.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural

networks. science, 313(5786), 504-507.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012).

Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint

arXiv:1207.0580.

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A. R., Jaitly, N., ... & Sainath, T. (2012). Deep

neural networks for acoustic modeling in speech recognition. IEEE Signal processing

magazine, 29.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8),

1735-1780.

Hsu, C. W., & Lin, C. J. (2002). A comparison of methods for multiclass support vector

machines. IEEE transactions on Neural Networks, 13(2), 415-425.

Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv

preprint arXiv:1508.01991.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by

reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

Isozaki, H. (2001). Japanese named entity recognition based on a simple rule generator and

decision tree learning. In Proceedings of the 39th Annual Meeting on Association for

Computational Linguistics (pp. 314-321). Association for Computational Linguistics.

Isozaki, H., & Kazawa, H. (2002). Efficient support vector classifiers for named entity recognition.

In Proceedings of the 19th international conference on Computational linguistics-Volume 1 (pp.

1-7). Association for Computational Linguistics.

Jagannatha, A. N., & Yu, H. (2016). Bidirectional RNN for medical event detection in electronic

health records. In Proceedings of the conference. Association for Computational Linguistics.

North American Chapter. Meeting (Vol. 2016, p. 473). NIH Public Access.

Jarrett, K., Kavukcuoglu, K., & LeCun, Y. (2009). What is the best multi-stage architecture for

77

object recognition?. In 2009 IEEE 12th international conference on computer vision (pp. 2146-

2153). IEEE.

Jensen, L. J., Saric, J., & Bork, P. (2006). Literature mining for the biologist: from information

retrieval to biological discovery. Nature reviews genetics, 7(2), 119.

Ji, Y., Tong, C., Liang, J., Yang, X., Zhao, Z., & Wang, X. (2019). A deep learning method for

named entity recognition in bidding document. In Journal of Physics: Conference Series (Vol.

1168, No. 3, p. 032076). IOP Publishing.

Johansen, A. R., Sønderby, C. K., Sønderby, S. K., & Winther, O. (2017). Deep recurrent

conditional random field network for protein secondary prediction. In Proceedings of the 8th ACM

International Conference on Bioinformatics, Computational Biology, and Health Informatics (pp.

73-78). ACM.

Ju, Z., Wang, J., & Zhu, F. (2011). Named entity recognition from biomedical text using SVM.

In 2011 5th international conference on bioinformatics and biomedical engineering (pp. 1-4). IEEE.

Junaida, M. K., Jayan, J. P., & Sherly, E. (2017). Word Sense Disambiguation for Malayalam in a

Conditional Random Field Framework. In Proceedings of the 14th International Conference on

Natural Language Processing (ICON-2017) (pp. 495-502).

Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image

descriptions. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 3128-3137).

Kazama, J. I., Makino, T., Ohta, Y., & Tsujii, J. I. (2002). Tuning support vector machines for

biomedical named entity recognition. In Proceedings of the ACL-02 workshop on Natural

language processing in the biomedical domain-Volume 3 (pp. 1-8). Association for Computational

Linguistics.

Keerthi, S. S., & Lin, C. J. (2003). Asymptotic behaviors of support vector machines with Gaussian

kernel. Neural computation, 15(7), 1667-1689.

Kim, J. D., Ohta, T., Tsuruoka, Y., Tateisi, Y., & Collier, N. (2004). Introduction to the bio-entity

recognition task at JNLPBA. In Proceedings of the international joint workshop on natural

language processing in biomedicine and its applications (pp. 70-75). Association for

Computational Linguistics.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980.

Kingma, D. P., Mohamed, S., Rezende, D. J., & Welling, M. (2014). Semi-supervised learning with

deep generative models. In Advances in neural information processing systems (pp. 3581-3589).

78

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional

networks. arXiv preprint arXiv:1609.02907.

Klein, D., Smarr, J., Nguyen, H., & Manning, C. D. (2003). Named entity recognition with

character-level models. In Proceedings of the seventh conference on Natural language learning

at HLT-NAACL 2003-Volume 4 (pp. 180-183). Association for Computational Linguistics.

Konkol, M., Brychcín, T., & Konopík, M. (2015). Latent semantics in named entity

recognition. Expert Systems with Applications, 42(7), 3470-3479.

Krebel, U. G. (1999). Pairwise classification and support vector machines. Advances in kernel

methods: support vector learning, 255-268.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems (pp. 1097-

1105).

Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models

for segmenting and labeling sequence data.

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, C. (2016). Neural

architectures for named entity recognition. arXiv preprint arXiv:1603.01360.

Leaman, R., & Gonzalez, G. (2008). BANNER: an executable survey of advances in biomedical

named entity recognition. In Biocomputing 2008 (pp. 652-663).

Lebret, R., Grangier, D., & Auli, M. (2016). Generating text from structured data with application

to the biography domain. ArXiv e-prints, March.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

Lee, C., Hwang, Y. G., Oh, H. J., Lim, S., Heo, J., Lee, C. H., ... & Jang, M. G. (2006). Fine-

grained named entity recognition using conditional random fields for question answering. In Asia

Information Retrieval Symposium (pp. 581-587). Springer, Berlin, Heidelberg.

Lee, H., Eum, S., & Kwon, H. (2017). ME R-CNN: Multi-Expert R-CNN for Object Detection. arXiv

preprint arXiv:1704.01069.

Lee, K. J., Hwang, Y. S., Kim, S., & Rim, H. C. (2004). Biomedical named entity recognition using

two-phase model based on SVMs. Journal of Biomedical Informatics, 37(6), 436-447.

Lee, S., & Lee, G. G. (2005). Heuristic methods for reducing errors of geographic named entities

learned by bootstrapping. In International Conference on Natural Language Processing (pp. 658-

79

669). Springer, Berlin, Heidelberg.

Leslie, C., Eskin, E., & Noble, W. S. (2001). The spectrum kernel: A string kernel for SVM protein

classification. In Biocomputing 2002 (pp. 564-575).

Li, C., Weng, J., He, Q., Yao, Y., Datta, A., Sun, A., & Lee, B. S. (2012). Twiner: named entity

recognition in targeted twitter stream. In Proceedings of the 35th international ACM SIGIR

conference on Research and development in information retrieval (pp. 721-730). ACM.

Li, E., Femiani, J., Xu, S., Zhang, X., & Wonka, P. (2015). Robust rooftop extraction from visible

band images using higher order CRF. IEEE Transactions on Geoscience and Remote

Sensing, 53(8), 4483-4495.

Li, L., Jin, L., Jiang, Z., Song, D., & Huang, D. (2015). Biomedical named entity recognition based

on extended recurrent neural networks. In 2015 IEEE International Conference on bioinformatics

and biomedicine (BIBM) (pp. 649-652). IEEE.

Limsopatham, N., & Collier, N. H. (2016). Bidirectional LSTM for named entity recognition in

Twitter messages.

Lin, B. Y., Xu, F., Luo, Z., & Zhu, K. (2017). Multi-channel bilstm-crf model for emerging named

entity recognition in social media. In Proceedings of the 3rd Workshop on Noisy User-generated

Text (pp. 160-165).

Lin, H. T., & Lin, C. J. (2003). A study on sigmoid kernels for SVM and the training of non-PSD

kernels by SMO-type methods. submitted to Neural Computation, 3, 1-32.

Ling, X., & Weld, D. S. (2012). Fine-grained entity recognition. In Twenty-Sixth AAAI Conference

on Artificial Intelligence.

Liu, F., Lin, G., & Shen, C. (2015). CRF learning with CNN features for image

segmentation. Pattern Recognition, 48(10), 2983-2992.

Liu, J., & Birnbaum, L. (2007). Measuring semantic similarity between named entities by

searching the web directory. In Proceedings of the IEEE/WIC/ACM international Conference on

Web intelligence (pp. 461-465). IEEE Computer Society.

Liu, S., Yang, N., Li, M., & Zhou, M. (2014). A recursive recurrent neural network for statistical

machine translation. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers) (Vol. 1, pp. 1491-1500).

Loyola, P., Marrese-Taylor, E., & Matsuo, Y. (2017). A neural architecture for generating natural

language descriptions from source code changes. arXiv preprint arXiv:1704.04856.

Luu, T. M., Phan, R., Davey, R., & Chetty, G. (2018). Clinical Name Entity Recognition Based on

80

Recurrent Neural Networks. In 2018 18th International Conference on Computational Science

and Applications (ICCSA) (pp. 1-9). IEEE.

Ma, X., & Hovy, E. (2016). End-to-end sequence labeling via bi-directional lstm-cnns-crf. arXiv

preprint arXiv:1603.01354.

Mai, K., Pham, T. H., Nguyen, M. T., Duc, N. T., Bollegala, D., Sasano, R., & Sekine, S. (2018).

An empirical study on fine-grained named entity recognition. In Proceedings of the 27th

International Conference on Computational Linguistics (pp. 711-722).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations

in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural

network based language model. In Eleventh annual conference of the international speech

communication association.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations

of words and phrases and their compositionality. In Advances in neural information processing

systems (pp. 3111-3119).

Minar, M. R., & Naher, J. (2018). Recent Advances in Deep Learning: An Overview. arXiv preprint

arXiv:1807.08169.

Mnih, A., & Hinton, G. (2007). Three new graphical models for statistical language modelling.

In Proceedings of the 24th international conference on Machine learning (pp. 641-648). ACM.

Mnih, A., & Hinton, G. E. (2009). A scalable hierarchical distributed language model. In Advances

in neural information processing systems (pp. 1081-1088).

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal processing

magazine, 13(6), 47-60.

Morales-Cordovilla, J. A., Sanchez, V., & Ratajczak, M. (2018). Protein alignment based on higher

order conditional random fields for template-based modeling. PloS one, 13(6), e0197912.

Morwal, S., Jahan, N., & Chopra, D. (2012). Named entity recognition using hidden Markov model

(HMM). International Journal on Natural Language Computing (IJNLC), 1(4), 15-23.

Mozharova, V., & Loukachevitch, N. (2016). Two-stage approach in Russian named entity

recognition. In 2016 International FRUCT Conference on Intelligence, Social Media and Web

(ISMW FRUCT) (pp. 1-6). IEEE.

Nadeau, D. (2007). Semi-supervised named entity recognition: learning to recognize 100 entity

types with little supervision.

81

Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language processing: an

introduction. Journal of the American Medical Informatics Association, 18(5), 544-551

Narayanaswamy, M., Ravikumar, K. E., & Vijay-Shanker, K. (2002). A biological named entity

recognizer. In Biocomputing 2003 (pp. 427-438).

Özgür, A., Özgür, L., & Güngör, T. (2005). Text categorization with class-based and corpus-based

keyword selection. In International Symposium on Computer and Information Sciences (pp. 606-

615). Springer, Berlin, Heidelberg.

Palmer, D. D., & Day, D. S. (1997). A statistical profile of the named entity task. In Fifth Conference

on Applied Natural Language Processing.

Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks.

In International conference on machine learning (pp. 1310-1318).

Petasis, G., Vichot, F., Wolinski, F., Paliouras, G., Karkaletsis, V., & Spyropoulos, C. D. (2001).

Using machine learning to maintain rule-based named-entity recognition and classification

systems. In Proceedings of the 39th Annual Meeting on Association for Computational

Linguistics (pp. 426-433). Association for Computational Linguistics.

Peters, M. E., Ammar, W., Bhagavatula, C., & Power, R. (2017). Semi-supervised sequence

tagging with bidirectional language models. arXiv preprint arXiv:1705.00108.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018).

Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Pham, T. H., & Le-Hong, P. (2017). End-to-end recurrent neural network models for vietnamese

named entity recognition: Word-level vs. character-level. In International Conference of the

Pacific Association for Computational Linguistics (pp. 219-232). Springer, Singapore.

Ponomareva, N., Pla, F., Molina, A., & Rosso, P. (2007). Biomedical named entity recognition: a

poor knowledge HMM-based approach. In International Conference on Application of Natural

Language to Information Systems (pp. 382-387). Springer, Berlin, Heidelberg.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2), 257-286.

Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. ieee assp

magazine, 3(1), 4-16.

Ramachandran, P., Liu, P. J., & Le, Q. V. (2016). Unsupervised pretraining for sequence to

sequence learning. arXiv preprint arXiv:1611.02683.

82

Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled LDA: A supervised topic

model for credit attribution in multi-labeled corpora. In Proceedings of the 2009 Conference on

Empirical Methods in Natural Language Processing: Volume 1-Volume 1 (pp. 248-256).

Association for Computational Linguistics.

Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., & Pande, V. (2015). Massively

multitask networks for drug discovery. arXiv preprint arXiv:1502.02072.

Ratinov, L., & Roth, D. (2009). Design challenges and misconceptions in named entity recognition.

In Proceedings of the thirteenth conference on computational natural language learning (pp. 147-

155). Association for Computational Linguistics.

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time

object detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 779-788).

Rei, M., Crichton, G. K., & Pyysalo, S. (2016). Attending to characters in neural sequence labeling

models. arXiv preprint arXiv:1611.04361.

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection

with region proposal networks. In Advances in neural information processing systems (pp. 91-99).

Ritter, A., Clark, S., & Etzioni, O. (2011). Named entity recognition in tweets: an experimental

study. In Proceedings of the conference on empirical methods in natural language processing (pp.

1524-1534). Association for Computational Linguistics.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning representations by back-

propagating errors. Cognitive modeling, 5(3), 1.

Salleh, M. S., Asmai, S. A., Basiron, H., & Ahmad, S. (2017). A Malay Named Entity Recognition

using conditional random fields. In 2017 5th International Conference on Information and

Communication Technology (ICoIC7) (pp. 1-6). IEEE.

Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003 shared task: Language-

independent named entity recognition. arXiv preprint cs/0306050.

Santos, C. D., & Zadrozny, B. (2014). Learning character-level representations for part-of-speech

tagging. In Proceedings of the 31st International Conference on Machine Learning (ICML-14) (pp.

1818-1826).

Santos, C. D., & Zadrozny, B. (2014). Learning character-level representations for part-of-speech

tagging. In Proceedings of the 31st International Conference on Machine Learning (ICML-14) (pp.

83

1818-1826).

Santos, C. N. D., & Guimaraes, V. (2015). Boosting named entity recognition with neural character

embeddings. arXiv preprint arXiv:1505.05008.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-

117.

Şeker, G. A., & Eryiğit, G. (2017). Extending a CRF-based named entity recognition model for

Turkish well formed text and user generated content 1. Semantic Web, 8(5), 625-642.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y. (2013). Overfeat:

Integrated recognition, localization and detection using convolutional networks. arXiv preprint

arXiv:1312.6229.

Shen, D., Zhang, J., Su, J., Zhou, G., & Tan, C. L. (2004). Multi-criteria-based active learning for

named entity recognition. In Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics (p. 589). Association for Computational Linguistics.

Si, L., Kanungo, T., & Huang, X. (2005). Boosting performance of bio-entity recognition by

combining results from multiple systems. In Proceedings of the 5th international workshop on

Bioinformatics (pp. 76-83). ACM.

Smith, L., Tanabe, L. K., nee Ando, R. J., Kuo, C. J., Chung, I. F., Hsu, C. N., ... & Torii, M. (2008).

Overview of BioCreative II gene mention recognition. Genome biology, 9(2), S2.

Smits, G. F., & Jordaan, E. M. (2002). Improved SVM regression using mixtures of kernels.

In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat.

No. 02CH37290) (Vol. 3, pp. 2785-2790). IEEE.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and

computing, 14(3), 199-222.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for

classification tasks. Information Processing & Management, 45(4), 427-437.

Srihari, R. (2000). A hybrid approach for named entity and sub-type tagging. In Sixth Applied

Natural Language Processing Conference.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research, 15(1), 1929-1958.

Sutskever, I., Martens, J., & Hinton, G. E. (2011). Generating text with recurrent neural networks.

In Proceedings of the 28th International Conference on Machine Learning (ICML-11) (pp. 1017-

84

1024).

Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and

momentum in deep learning. In International conference on machine learning (pp. 1139-1147).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks.

In Advances in neural information processing systems (pp. 3104-3112).

Sutton, C., & McCallum, A. (2012). An introduction to conditional random fields. Foundations and

Trends® in Machine Learning, 4(4), 267-373.

Suykens, J. A., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural

processing letters, 9(3), 293-300.

Tang, B., Cao, H., Wang, X., Chen, Q., & Xu, H. (2014). Evaluating word representation features

in biomedical named entity recognition tasks. BioMed research international, 2014.

Tang, D., Qin, B., & Liu, T. (2015). Document modeling with gated recurrent neural network for

sentiment classification. In Proceedings of the 2015 conference on empirical methods in natural

language processing (pp. 1422-1432).

Taskar, B., Abbeel, P., & Koller, D. (2002). Discriminative probabilistic models for relational data.

In Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence (pp. 485-492).

Morgan Kaufmann Publishers Inc..

Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: a simple and general method

for semi-supervised learning. In Proceedings of the 48th annual meeting of the association for

computational linguistics (pp. 384-394). Association for Computational Linguistics.

Varma, K. I., Krishnamoorthy, S., & Pisipati, R. K. (2016). U.S. Patent No. 9,280,535. Washington,

DC: U.S. Patent and Trademark Office.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.

(2017). Attention is all you need. In Advances in neural information processing systems(pp. 5998-

6008).

Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption

generator. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.

3156-3164).

Wallach, H. M. (2004). Conditional random fields: An introduction. Technical Reports (CIS), 22.

Wang, Y., Bai, H., Stanton, M., Chen, W. Y., & Chang, E. Y. (2009). Plda: Parallel latent dirichlet

allocation for large-scale applications. In International Conference on Algorithmic Applications in

Management (pp. 301-314). Springer, Berlin, Heidelberg.

85

Wei, Y., Xia, W., Huang, J., Ni, B., Dong, J., Zhao, Y., & Yan, S. (2014). Cnn: Single-label to multi-

label. arXiv preprint arXiv:1406.5726.

Wibawa, A. S., & Purwarianti, A. (2016). Indonesian named-entity recognition for 15 classes using

ensemble supervised learning. Procedia Computer Science, 81, 221-228.

Wu, Y., Xu, J., Jiang, M., Zhang, Y., & Xu, H. (2015). A study of neural word embeddings for

named entity recognition in clinical text. In AMIA Annual Symposium Proceedings (Vol. 2015, p.

1326). American Medical Informatics Association.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., ... & Bengio, Y. (2015). Show,

attend and tell: Neural image caption generation with visual attention. In International conference

on machine learning (pp. 2048-2057).

Yamada, H., & Matsumoto, Y. (2001). Applying support vector machine to multi-class classification

problems. IPSJ SIG Notes NL-146, 6.

Yeniterzi, R., Tür, G., & Oflazer, K. (2018). Turkish Named-Entity Recognition. In Turkish Natural

Language Processing(pp. 115-132). Springer, Cham.

Yogatama, D., Gillick, D., & Lazic, N. (2015). Embedding methods for fine grained entity type

classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume

2: Short Papers) (Vol. 2, pp. 291-296).

Zagal, J. P., Tomuro, N., & Shepitsen, A. (2012). Natural language processing in game studies

research: An overview. Simulation & Gaming, 43(3), 356-373.

Zhang, H. P., Yu, H. K., Xiong, D. Y., & Liu, Q. (2003). HHMM-based Chinese lexical analyzer

ICTCLAS. In Proceedings of the second SIGHAN workshop on Chinese language processing-

Volume 17 (pp. 184-187). Association for Computational Linguistics.

Zhang, J., Shen, D., Zhou, G., Su, J., & Tan, C. L. (2004). Enhancing HMM-based biomedical

named entity recognition by studying special phenomena. Journal of biomedical

informatics, 37(6), 411-422.

Zhang, Y., & Wallace, B. (2015). A sensitivity analysis of (and practitioners' guide to) convolutional

neural networks for sentence classification. arXiv preprint arXiv:1510.03820.

Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden

Markov random field model and the expectation-maximization algorithm. IEEE transactions on

medical imaging, 20(1), 45-57.

Zhou, G., & Su, J. (2002). Named entity recognition using an HMM-based chunk tagger.

86

In proceedings of the 40th Annual Meeting on Association for Computational Linguistics(pp. 473-

480). Association for Computational Linguistics.

Zhu, F., & Shen, B. (2012). Combined SVM-CRFs for biological named entity recognition with

maximal bidirectional squeezing. PloS one, 7(6), e39230.

Zhu, X. J. (2005). Semi-supervised learning literature survey. University of Wisconsin-Madison

Department of Computer Sciences.

Zirikly, A., & Diab, M. (2015). Named entity recognition for arabic social media. In Proceedings of

the 1st Workshop on Vector Space Modeling for Natural Language Processing (pp. 176-185).

