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Elastic plate floating on water



Elastic plate floating on water

Modelling regimes

Zero-thickness VS Lateral forcing

Need the velocity potential along the draft: vertical distance
between the waterline and the bottom of the plate.



Mathematical Model: Motion of water

Incompressible inviscid fluid

I Time harmonic solution: exp(iωt) dependence
I 2D Linear system
I Laplace’s equation for velocity potential

∇2φ(x , z) = 0

I Boundary condition at the flat solid surface is φz(−h) = 0
I Boundary condition at the free surface is φz(0) = ω2φ

I For the volume of finite depth h, the solution has discrete modes

cosh kn(z + h), is the roots of k tanh kh = ω2



Mathematical Model: Motion of an elastic plate

Floating thin elastic plate

I Time harmonic solution: exp(iωt) dependence
I 1D Linear system
I Floating elastic plate equation for vertical deflection ξ(x) with reference

to the draught d

φ = Dξ′′′′ + (1− ω2σd)ξ, ∂zφ = ω2σξ, at z = −d

I The solution has discrete modes cosh kn(z + h), which are the roots of

(k4 + (1− ω2σd))k tanh kh = ω2



Method of solution: Boundary integral method

Wave maker
Incident wave ei kt

Water ∇2φ = 0

Floe Dξ′′′′ + (1− ω2σd)ξ = φ

eration due to gravity, ! is a prescribed angular momen-
tum and " is a (reduced) potential that must be calculated.
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Figure 1: A schematic of the geometry.

The potential " satisfies Laplace’s equation through-
out the fluid domain, that is ∇2" = 0 for (#, $) ∈ Ω.
On the floor of the tank, $ = −ℎ, the no-flow condi-
tion ∂$" = 0 is imposed. At the linearized free-surface,
$ = 0, the condition ∂$" = (" holds, where ( = !2/*
is a frequency parameter. Waves are generated through
a prescribed horizontal velocity at the linearized position
of the wall # = 0. In this study, forcing is provided by
an incident plane wave, so that ∂%" = ∂%"# at # = 0,
where the incident wave is "# = "#(#, $) = +ei&0% with
amplitude + and wavenumber ,0 (to be defined shortly).
The potential must also describe outgoing waves in the
far field # →∞.
A thin-elastic plate occupies the interval - < # < /,

where 0 < - < / and /− - ≡ 0 is the length of the plate.
In equilibrium the lower surface of the plate is located at
$ = −1 = −2'3/2(, where 3 is the thickness of the
plate, 2' = is its density, and 2( = is the fluid density.
The linearized fluid domain in the presence of the plate is
therefore Ω( ≡ Ω∖{#, $ : - < # < /,−1 < $ < 0}.
Fluid motion causes the plate to oscillate, and the po-

sition of its lower surface at time 4 is denoted $ = −1 +
ℜe{5(#)e−i)*}. The displacement function 5 is related to
the potential " through the linearized equations

" = 65′′′′ + (1− (1)5, ∂$" = (5, (1a)

where 6 = 60/(2(*), and 60 ∝ 33 is the flexural rigid-
ity of the plate.
The plate is also permitted to surge to and fro, although

these motions are restrained by a mooring system. The
horizontal position of the plate, ℜe{7e−i)*} say, is cou-
pled to the potential " by the linearized equation of mo-

tion

(8−(9− i:)7 = 2(

∫ 0

−"
{"(/, $)−"(-, $)} d$, (1b)

where9 = 2'30 is the mass of the plate, 8 in the spring
constant, and : = !:0/*, in which :0 is the damping
constant. The amplitude 7 and the potential " are also
coupled by the kinematic conditions

∂%"(-, $) = ∂%"(/, $) = (7 (−1 < $ < 0). (1c)

Solution Method
Consider the Green’s function < = <(#0, $0∣#, $),

which is defined as the solution to the above problem in
the absence of the plate and wave maker, and for which
wave motion is forced at the source point (#0, $0). That
is, it satisfies

∇2< = =(#− #0)=($ − $0) (#, $) ∈ Ω,

∂$< = 0 on $ = −ℎ, ∂$< = (< on $ = 0, ∂%< = 0 on
# = 0, and < represents outgoing waves as # →∞. The
function may be calculated in a straightforward manner
to be

< =
1
2i

∞∑

+=0

ei&!(%+%0) + ei&!∣%−%0∣

,+>+
?+($)?+($0),

where ,+ (@ ∈ ℕ) are the roots , of the dispersion re-
lation , tanh(,ℎ) = (, the vertical functions ?+($) =
cosh{,+($ + ℎ)}, and the constants >+ = ∣∣?+∣∣2.
Applying Green’s theorem in the plane to " and< over

Ω' produces the integral expression

A" = "# −
∫

Γ
{(∂+0<)"0 −<(∂+0"0)} dB0, (2)

where a subscript 0 indicates that a function is evaluated
at (#0, $0) rather than (#, $). The integral is around the
wetted surface of the plate Γ, with tangential coordinate
B and (outward) normal @. The quantity A is defined as
Â/2C, where Â is the angle around the point (#, $) in Ω(.
A system of BIEs are formed from (2) by allowing the

field point (#, $) tend to the three continuous components
of Γ, in turn. For what follows, these components will be
denoted Γ, (-) = {#, $ : # = - (/),−1 < $ < 0} and
Γ" = {#, $ : - < # < /, $ = −1}.

Singularities and Corners
It is well established that a Green’s function in a two-

dimensional plane contains a logarithmic singularity at

Green’s function

∇2G(x , z|x0, z0) = δ(x − x0)δ(z − z0)

∂zG = ω2G on the surface

∂nG = 0 on other boundaries.

G =
1
2 i

∞X
n=0

ei kn(x+x0) + ei kn|x−x0|

kncn
wn(z)wn(z0)

wn(z) = cosh kn(z + h) are eigenfunctions.



Surge motion

The boundary integral equation

εφ = φIncident −
Z

boundary
{(∂n0 G)φ−G(∂n0φ)} ds0,

ε = θ/2π, where θ is the angle of the corner.

Amplitude of the surge

u ∝
Z 0

−d
(φ(b, z)− φ(a, z)) dz



Green’s function and its singularity

Log-like singularity of the Green’s function

G ∼ log (|x − x0|+ |z − z0|) as x → x0, z → z0, for (x0, z0) on the corner.

The log-part comes from the series

∞X
n=0

ei kn|x−x0|

kncn
wn(z)wn(z0)

Replace the singular part with a known singular series

∞X
n=1

e−nγ|x−x0|

n
cosh

i nπ
h

(z + h) cosh
i nπ
h

(z0 + h)

This sum has the closed form

−1
4

(logL+(x , z) + logL−(x , z))



Separating of singular part

Separating the Green’s function

G = eG + logReG is bounded

The integrals involving logR can be evaluated analytically.



Modes of the motion

Expansion of the surface deflection

ξ(x) =
MX

m=0

ξmXm(x)

where Xm are the eigenfunctions of

X
′′′′
− κ4

mX = 0, for edges X ′′ = 0,X ′′′ = 0

Xm ∝ {cosκmx , coshκmx , sinκmx , sinhκmx}

Heave and pitch

I ξ0 represents heave motion
I ξ1 represents pitch motion



Computation method

Expansion of the potential along the submerged edges of the plate

φ(a, z) =
NX

n=1

αnC2n(ẑ), φ(b, z) =
NX

n=1

βnC2n(ẑ)

where C2n(ẑ) is the Gegenbauer polynomial of the normalized variable

ẑ =

r
1−

“ z
d

”2

Gegenbauer polynomials
Orthogonal polynomials with the desired order of singularity at the corner.



Solving the BIE

Solving the BIE

1. Formulate a system of equations with Xn and C2n

2. Solve for the system of equations for {ξn} and {αn, βn}
3. Impose the continuity conditions at the corners (a,−d) and (b,−d)

φ(a,−d) =
MX

m=0

κmξmXm(a), φ(b,−d) =
MX

m=0

κmξmXm(b)

4. Wave maker con be out in by the forcing term

∞X
n=0

vn

i kn
ei knx wn(z), vn =

Z 0

−h
v(z)wn(z) dz



Surge motion
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Surge motion
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Surge motion
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Summary

I Complete description of the hydro-elastic motions of a finite floe.
I Include the draft of the plate and compute the surge motion.
I Analytical treatment of the singularities at the corners of the plate.
I Reduction of computation using the orthogonal polynomials and

eigenfunctions.
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