
Evaluation of Game Engines for Simulated Clinical Training

Stefan Marks
∗

dev.stefan.marks@gmx.net
John Windsor

†

j.windsor@auckland.ac.nz
Burkhard Wünsche

‡

burkhard@cs.auckland.ac.nz

The University of Auckland
Private Bag 92019, Auckland Mail Centre

Auckland 1142, New Zealand

ABSTRACT
The increasing complexity and costs of clinical training and
the constant development of new procedures has made vir-
tual reality based training an essential tool in medical ed-
ucation. Unfortunately, commercial training tools are very
expensive and have a small support base. Game engines of-
fer unique advantages for the creation of highly interactive
and collaborative environments.

This paper examines the suitability of currently available
game engines for developing applications for clinical educa-
tion and training. We formally evaluate a list of available
game engines for stability, availability, the possibility of cus-
tom content creation and the interaction of multiple users
via a network. Based on these criteria, three of the highest
ranked engines are used for further case studies.

We found that in general it is possible to easily create scenar-
ios with custom medical models that can be cooperatively
viewed and interacted with, though limitations in physical
simulation capabilities make some engines less suitable for
fully interactive applications. We show that overall game en-
gines represent a good foundation for low cost clinical train-
ing applications and we discuss technologies which can be
used to further extend their physical simulation capabili-
ties.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Gaming ; J.3 [Life and Medical Sciences]: Medical in-
formation systems; K.3.1 [Computers and Education]:
Computer Uses in Education—Collaborative learning

∗Department of Computer Science, Division for Biomedical
Imaging and Visualization
†Faculty of Medical and Health Sciences, Department of
Surgery, Advanced Clinical Skills Center
‡Department of Computer Science, Division for Biomedical
Imaging and Visualization

Keywords
clinical simulation, game engine, physically-based anima-
tion, collaboration

1. INTRODUCTION
The rising complexity and costs of clinical training and the
development of new procedures has increased the impor-
tance of clinical simulators for education and training pur-
poses. Surgical simulators represent a major part of the
large variety of applications. Most commercially available
simulators cover the area of endoscopic respectively laparo-
scopic procedures (e.g. Procedius MIST [26], LapSim [31],
LAP Mentor [30], VEST System One [28], LapVR [22], En-
doTower [38]). This kind of procedure requires well devel-
oped skills of the surgeon with respect to coordination of the
camera and the surgical instruments that are not in direct
view and are represented only on a 2D screen, sometimes
with changed orientation due to camera rotation. The above
mentioned systems are all able to train basic procedures in
camera and instrument handling, before training the medi-
cal and surgical aspects.

Nevertheless, those technical skills are not the only necessity
for a surgeon. The AGCME Outcome project [1] lists six
general competencies which include other skills like patient
care, medical knowledge, the ability to continuously learn
and improve by practise, interpersonal and communication
skills, professionalism, and the awareness of the health care
system with its resources and demands as a whole.

Most of the mentioned simulator systems only train the tech-
nical and procedural skills of a surgical procedure, but lack
the other aspects of the above list. Few physical simula-
tors with mannequins (e.g. MedSim-Eagle [11]) enable small
groups of residents to practise the cooperative aspects (i.e.
interpersonal and communication skills) of medical or sur-
gical procedures, but are very cost-intensive and thus likely
to be unaffordable for most institutions.

One factor that is responsible for high costs of surgical sim-
ulators is the fact that certain parts of them are repeatedly
reinvented. All simulators need at least graphical output ca-
pable of displaying 3-dimensional models with a high level of
realism and user interfaces for operating and configuration of
the simulator, an underlying physical simulation model, and
event handling for input devices (see Figure 1). Some simu-
lators are capable of adding the audible aspect of a surgical
procedure and thus need a module for sound generation.

This paper was published in the proceedings of the New Zealand

Computer Science Research Student Conference 2008. Copyright is held
by the author/owner(s).

NZCSRSC 2008, April 2008, Christchurch, New Zealand.

Evaluation of Game Engines for Simulated Clinical Training 93

������
� �����������	
�
�����������	

�	��

��	
��
�
�
�������	
� ���	

�����
�
� �����������	
� �����	������	���	�
� ����������	
� �����	������

�����
� ��� ���!����	����

�����
	�������	���

�������
�
����������	

� �" 	����� ������

� �����	

� #�	�	

� $����	

� �	����������!�

Figure 1: Functional blocks of a surgical simulator.

There have been attempts to create extensible frameworks
for building surgical simulators upon (e.g. SPRING [27],
GiPSi [10], SOFA [3]). They all incorporate the above men-
tioned modules and a variety of mathematical models for the
physical simulation and interaction. But except for SPRING
(ironically the oldest project in the list) they all lack the
capability of networking with other simulators to build col-
laborative scenarios.

Teamwork is an overall important factor not only for sur-
geons but for all clinical personnel. Therefore, simulation
systems that neglect the collaboration and communication
of users can only deliver a part of the overall education.

This paper summarises the results of a first year doctoral re-
search programme in which the potential of gaming engines
is evaluated particularly in relation to the above mentioned
features and in their ability to support collaboration and
communication between multiple users.

2. GAME ENGINES
The use of games or game engines for medical education
has not been extensively explored with many aspects still
to be investigated. One reason for this might be the lack
of concordance between the seriousness of medicine and the
playful, sometimes violent nature of computer games. Nev-
ertheless, game engines offer a vast pool of useful concepts
and resources in both technical and educational aspects.

Projects like the “Serious Game Initiative” focus on offering
help to “organize and accelerate the adoption of computer
games for a variety of challenges facing the world today.” A
subproject founded by this initiative is “Games for Health”
[29], mainly focusing on games used in various health care
sectors.

Previous authors have so far concentrated on applications
where the game content was about learning facts, rather
than tasks, procedures and teamwork. For example, Wün-
sche et al. [41] have examined how game engines can be
used for visualising medical datasets, and Mackenzie et al.
[24] utilise a game engine for anatomical education.

“Pulse!!” [33] is a recently developed, major project of the
Texas A&M University utilising a game engine for teaching
single users the procedures and systems of a health-care fa-
cility. Even more recently, the simulation “3DiTeams” [32]
has extended this principle to include multiple users who
collaborate in an emergency room setting over a network.

2.1 Game Engine Design
A game engine is a complex software system necessary for
developing and playing games. Two different games with
the same underlying engine differ by the game content , i.e.
graphics, sounds, storyline. Game engines build a bridge
between this content and the underlying hardware. With
the help of an operating system abstraction layer, the same
game content can be run on many platforms (e.g. Windows,
Linux, XBox) without change.

Modern game engines consist of all or a subset of functional
blocks depicted in Figure 2.

The Graphics Engine loads, displays, manipulates and man-
ages all the data related to graphical content and visual
effects. 3D models of objects, landscapes, buildings, ob-
jects, animals, and players can be loaded, textured, lit, and
animated. Additional effects (e.g. blurring, lens distortion,
depth of field) can be added to enhance the visual realism.
Particle systems are utilised to simulate fire, smoke, bubbles,
blood, etc.

All audible content like sound effects, ambient noise, and
music is handled by the Audio Engine. In connection with
modern soundcards it is possible to simulate acoustic ob-
struction by objects, environments other than air, reverb,
Doppler effect and the spatial position of sound sources.

The total memory usage of game content is often higher
than the memory provided by the gaming platform. Be-
cause not all of this data is needed simultaneously, the Mem-

ory Management is responsible for purging unused content
from memory and in turn providing and managing requested
memory for new content. Modern engines parallelise tasks
like graphics, sound, physics, and AI. To balance the work-
load of all these tasks efficiently, especially on multiprocessor
platforms, the Process Management is utilised.

Another essential part is the Event handling . Input de-
vices, like joysticks, mice, keyboards, and gamepads gen-
erate events as well as network, timers, other components of
the gaming hardware, game scripts and many other sources.
These events are handled, filtered and distributed by one
central event loop.

Some media like music or video does not need to be loaded
into memory before being played back, but can instead be
streamed to save precious memory resources. The Stream-

ing mechanism is also capable of loading resources via the
network from other servers.

Realistic behaviour of game objects has become more and
more important in the recent years. The Physics Engine

implements advanced mathematical models for calculating
rigid body simulations of arbitrarily shaped and articu-
lated objects (e.g. vehicles, machines). With the devel-

94 S. Marks, J. Windsor, and B. Wünsche

�
�
�
��
��
�
	

�
�

��
�

��������

�����

��������	
��
���

��
��������

��������	

	�
�

��
���

�������

��	���
� ��
�
������
�
��
� ����
��
� �
�
��
� �
�
�
� �������
�
� �������
�

������
�
�����

����	�����

��������	
� ���

� ����

� ��������

��
��	���
� �
����
��
� �����
��
� �������������
� �
������

���
��

��	���
� �
�����
���
�
���
�
� �
�����
���
��
��

� �������
��
� �
����
� ���� ������
� �������
� !����� ��
"

� ��
��

�����
��	���
� ���� �
�
����
���
� ����������
� ��
������
� ����
���

#��
��
�

����
��	��� ����
��������
�

����
���
���

�������
� �
�
��

� �������
��

� ����

� �
����

� ��
�����

� �
��
�

� $���
��

� 	�
��#��
�%��

� �������

�
���

��	

�
�
��

#�����$
���
�

&
�'
�"

��� ��!��	
� ���
�� �
��
�
� ���������
�

Figure 2: Functional Blocks of a Game Engine.

opment of highly sophisticated physics engines like Havok
PhysicsTM[20] or PhysXTM[2], the simulation of soft bodies,
cloth, fluids, and smoke has become possible, accelerated ei-
ther by specialised hardware or the computational power of
the graphics hardware [19].

Artificial intelligence, provided by the AI Engine, is needed
for controlling Non-Player Characters (NPC), the computer
controlled antagonists in games. NPCs have to make deci-
sions about how to follow, avoid or attack the player, and
how to react to aggressive or defensive actions in a realistic
and effective manner. AI Engines incorporate Computer Sci-
ence topics like neural networks, state machines, A* search,
and much more.

The flexibility of game engines is their greatest strength in
creating manifold content. This is achieved by Scripting lan-
guages that allow an immediate access to the functions of
the game engine. By scripts, the game content gets its typi-
cal “fingerprint”, how a game is to be played and controlled,
how the story develops, and how interactive and immersive
the game environment appears.

The final important functional block of a game engine is
Networking . By sending the state, movement and other in-
formation of each player and NPC over the network, other
connected human players can collaborate in a game, because
they all see the identical state of the game world at the same
moment. The networking functions cope with network prob-
lems like packet loss or different runtimes of data packets
from clients to servers and vice versa.

2.2 Technical Advantages
Since the game market is incredible competitive and incor-
porates both large established and innovative new vendors,
game engines are constantly updated and utilise the latest
graphics hardware and graphics algorithms. In addition,
since most users are unable to constantly update their ma-
chines, game engines are designed for handling the same

game content on hardware with different speed, memory size
and features.

Playing computer games is no longer an action for indi-
viduals but has evolved into multiplayer gaming, bringing
together several thousand players at the same time. Con-
sequently, many game engines incorporate properly con-
structed and tested network support that serves well in
connecting multiple users for cooperatively accomplishing
tasks, even worldwide, unrestricted by location and physi-
cal boundaries. Built-in support for recording and playing
sound over the network enables the players to communicate
in a natural way to coordinate their actions. Textual input
of messages serves as an alternative way.

Due to the fact that games are marketed internationally,
game engines are able to deal with different languages. User
interfaces, sound support and input devices can be cus-
tomised accordingly.

After games have been introduced to the market, they are
constantly and intensively used by customers which results
in massive feedback about errors and flaws. After some
months and sometimes only weeks, patches are available to
fix these issues. During this time, a large number of devel-
opers will have built up, who have gathered experience in
modifying the game content. They form an international
support community, often willing to help others when prob-
lems arise in building custom content for a game engine.

2.3 Important Features
One major important aspect for medical simulation is vi-
sual realism. With game engines supporting the most mod-
ern graphics hardware, this issue can easily be addressed.
To enhance the realism in their hystheroscopy simulator,
Bachofen et al. introduces bump mapping, spotlights, shad-
ows, lens distortion, depth of field, bubbles, and floating
tissue [7]. This list is only a subset of effects used in modern
games, as the screenshots in Figure 3 illustrate.

Evaluation of Game Engines for Simulated Clinical Training 95

(a) Human skin (b) Human tissue

(c) Reflection (d) Distortion

(e) Spotlights (f) User interfaces

Figure 3: Graphical capabilities of modern game en-

gines. The screenshots are taken from the games

Doom 3, Half-Life 2 and Quake 4.

The acoustic environment of a medical procedure is also an
important part of a simulation [39] and can also be easily
and accurately simulated with the features available in game
engines. It may provide audible feedback of instruments
used during medical procedures as well as reactions of the
simulated patient, like pain or relief.

The physical simulation of objects in games is a relatively
young area and thus does not yet cover the mathematically
demanding aspects of soft tissue simulation (e.g. [14, 12, 23])
or cutting (e.g. [16]). This drawback can be compensated for
either by playback of animations, skeletal animation, simple
mass-spring systems or, if possible, extension of the physics
engine. The manufacturers of physics engines are currently
working on introducing new features like fluids and soft body
simulation, so the features missing right now may be avail-
able in the near future.

Networking (multiplayer) capabilities of games offer a great
chance of building collaborative training scenarios. Play-

ers can see the position and state of their team members,
and can communicate with each other by microphones and
headphones or textual messages.

All of these features are useful for clinical simulations. Ad-
vanced graphics makes the simulation more realistic and
limited hardware requirements allow users in development
countries and smaller clinics to employ the software. The
network support and GUI customisation can bring together
multiple users for training of cooperative tasks, unrestricted
by classroom walls and country boundaries and, when de-
signed carefully, even independent of language barriers.

3. METHODOLOGY

3.1 Engine Selection
We started our selection of suitable game engines with an
evaluation of an internet game engine database [15]. At the
time of this evaluation (July 2007), this database contained
278 engines. We disregarded engines still in an early devel-
opment state or those that were not developed or maintained
any more. Engines without sound or other essential compo-
nents were also removed from the list. Of the remaining
engines, we selected those with in-built means of creating
new game environments (maps). This last criterion is an
important aspect for reducing the complexity of the editing
process as there is no need for purchasing, installing and
setting up external editors and necessary conversion tools,
assumed the latter exist at all.

After the reduction of the original list by this selection pro-
cess, we chose three inexpensive and in our opinion popular
game engines for further evaluation.

• Unreal Engine 2 [17]
• id Tech 4 [40]
• Source Engine [35]

3.2 Evaluation
All engines were tested for their suitability for collaborative
simulated surgical training applications by examining the
following aspects:

Editing: Is everything that is necessary for creating and
manipulating custom content included in the software?
How is the editing process for a map started? Are
the construction principles that are used during the
process of building a map intuitive?

Content: How easy is the process of including game con-
tent as well as external models into the map? Which
restrictions have to be considered when importing cus-
tom models?

Gameplay: How well can two or more users interact within
the map and with the custom model? Are there any
restrictions in the physical interaction?

Editing of models was performed with the 3D editor Blender
[8]. This software is free, in contrast to commercial and
expensive 3D editors such as 3D Studio Max [4] or Maya
[5], and has import and export filters for all important 3D
formats that were necessary for including custom models
into the maps created for each game engine.

96 S. Marks, J. Windsor, and B. Wünsche

(a) Unreal Engine 2 (b) id Tech 4 (c) Source Engine

Figure 4: Screenshots of our simulation scenarios implemented with different game engines.

4. RESULTS

4.1 Unreal Engine 2
The following results are based on the game “Unreal Tour-
nament 2004.”

Editing: The Unreal Engine 2 map editor “UnrealEd 3”
is started as a standalone program. It incorporates model
viewer, texture browser, script editor and other components
necessary for editing a map (see Figure 6(a)). In contrast
to the editors of the other two discussed engines, the edit-
ing process is of subtractive nature. Volumes where players
are supposed to move in have to be “carved out” from the
originally solid game world.

An editing concept common to all editors of the three evalu-
ated game engines is the “brush.” It is used for selecting, for
example, the areas that will be subtracted from the game
world. But it can also be used for adding walls, spheres,
stairs or other simple geometries.

Geometrically complex objects like shelves or engines are
selected from a list, added into the map, and can then
be moved, rotated, and changed in their behaviour or at-
tributes. The same principle applies for physical objects
like rigid bodies or joints.

Content: We constructed a room with a metal shelf (game
content) and a custom skeleton model on a table (custom
content). The skeleton1 was split into parts (torso, skull,
legs, and arms), which were then inserted as physical objects
and connected by ball joints (see Figure 5). The file format
for inserting custom models can be one of .LWO (Lightwave
Object File), or .ASE (ASCII Scene Exporter). We used the
latter due to having an .ASE export filter in Blender,

Gameplay: We started the map in multiplayer mode and
interacted with the static and dynamic objects.

Non-physical actions and states are well synchronised be-
tween the server and the client. Player positions, orienta-
tions and states and also optical effects like decals (e.g. for
scorchmarks) appear equally on both sides.

1Skeleton model source: http://artist-3d.com/free_3d_models/
dnm/model_disp.php?uid=637

Figure 5: Asynchronous state of the skeleton on the
server (left) and the client (right).

The articulated skeleton can be moved by applying forces.
This works well in single player mode and on the server side
in multiplayer mode. However, the multiplayer client shows
unexpected behaviour. When force is applied, the graphical
representation of the skeleton stays in place, whereas its
physical representation moves (see Figure 5).

This asynchronism of the physics engine is not considered
an error, as at 2003, the time of the release of the game,
the physical simulation of game objects was not yet an im-
portant aspect of gameplay. Nevertheless, users wanted to
create multiplayer maps with synchronised physical objects
and thus developed a modification of the physics engine [42].
Due to the age of the Unreal Engine 2, this project has un-
dergone no further improvement since 2005 and is now no
longer available on servers.

4.2 id Tech 4
The following results are based on the game“Quake 4.” This
game uses a more recent version of the id Tech 4 engine than
the game “Doom 3”.

Editing: The id Tech 4 engine incorporates a set of editors
necessary for building maps and inserting custom content
(see Figure 6(b)). All of them can be started separately to
edit, for example, maps, articulated figures, effects, materi-
als, and scripts.

The map editor“Radiant”has a simple user interface, includ-
ing a world view and a texture and model browser. Like the
editors of the other two discussed engines, it also uses the
brush concept for adding simple geometries and a selection

Evaluation of Game Engines for Simulated Clinical Training 97

(a) “UnrealEd 3” (Unreal Engine 2)

(b) “Radiant” (id Tech 4)

(c) “Hammer” (Source Engine)

Figure 6: Screenshots of the map editors of the three

evaluated game engines.

list for more complex objects. In contrast to the other two
editors which use four windows for the top, front, side, and
3D view of the scene, this editor is restricted to a single win-
dow with the top view in conjunction with a simplified tall
window for adjusting the height of placed objects.

Content: With the map editor we created a simple room
with two tables, on which we placed a game content model of
a dissected body and a static custom content skeleton model,
imported from an .ASE file (see Figure 4(b)). We placed
additional objects (fire extinguisher, book, gas bottle) in
the scene to evaluate collaborative interactions with physical
objects.

When we tried to articulate the skeleton by connecting the
limbs and skull to the torso, we discovered that the physical
support is limited to simple rigid bodies. This limitation
was unexpected, due to the fact that we also worked with
the id Tech 4 engine based game “Doom 3.” In this game, a
moveable crane with heavy, swinging load appears at least in
one map. Its movements can be controlled by the user and
the animation of the load is handled by the physics engine.
Further investigation revealed that the physics engine used
in the game “Doom 3” is part of the game content, but not
of the basic id Tech 4 engine [21].

Gameplay: The map was loaded in multiplayer mode and
entered by two users. Player positions, orientations and
states as well as optical effects are synchronised well between
server and client.

Physical objects can be manipulated by both, although the
refresh rate of the position and orientation of physical ob-
jects on the client is slow and results in a jerking move-
ment. This problem could not be solved by manipulations
of the server settings. Additionally, some physical items also
showed the asynchronous behaviour of their graphical and
physical representations as for the Unreal Engine 2. It is yet
unknown for which kind of objects this applies and if there
are possible countermeasures.

4.3 Source Engine
The SDK of the Source Engine includes editors and helper
programs and thus enables the construction of new maps
and even modification of the source code of the engine. Per-
mission to download it is obtained by purchasing a game of
the “Half-Life 2” series.

Editing: Maps are created and modified with the map edi-
tor“Hammer” (see Figure 6(c)). The producer of the engine,
Valve, also refers to the free XSI ModTool from Softimage
[6], which, in conjunction with a special plugin that is avail-
able on the website of Valve, can be used for creating static
and animated models.

The editor can be switched into different modes, like con-
structing solid objects, placing complex objects, moving ob-
jects, and texturing them. Complex objects (entities) are
not only geometrically complex models, but also physical
objects, physical constraints, light sources, etc.

Content: We created a test room with some game content
objects (e.g. locker, lamps) and a table with the custom
content skeleton. In contrast to the Unreal Engine 2 and the
id Tech 4 engine, a model imported into the Source Engine
may only consist of a maximum of 32768 vertices. This
also limits the number of triangles to a maximum of about
11000. These limits are coded into the engine and may not
be changed. For performance reasons, Valve suggests to
reduce the complexity of models to below 10000 triangles
[36]. We discovered that this limitation can be overcome
by splitting the model into parts that are assembled into
one object when converting the model data into the game
engine’s internal format.

The conversion programs for models and textures are purely
command line based. To convert a single model into the en-
gine format, one has to drag the compilation file onto the
converter in the explorer view, or start the process by enter-
ing a command line instruction. These command line based
programs could be utilised easily to automate a complex
process of creating maps and models from medical datasets.

Gameplay: Compared to the other two engines, the Source
Engine performed best. The position, orientation and state
of the users character as well as the physical simulation syn-
chronised well and fluently on server and client (see Figures 7
and 4(c)).

98 S. Marks, J. Windsor, and B. Wünsche

Figure 7: Screenshots of an interactive simulation

scenario implemented with the Half-Life 2 engine.

The user can interactively bend the vessels of the

heart model with a tool.

5. CONCLUSION

Modern game engines contain many features that would be
necessary for building a clinical training application. Graph-
ics, audio and network capabilities are highly developed and
allow the creator of applications to focus on content rather
than details of the implementation. The underlying hard-
ware is optimally used. Multiuser interaction is possible by
multiplayer scenarios and allows the training of teamwork
and cooperation.

In contrast, highly mathematical physics models for simula-
tion of soft tissue are (not yet) possible with game engines.
Basic soft tissue interaction can therefore either be simulated
by the use of simple mass-spring models [25] or by the exten-
sion of the physics of a game engine to mathematically more
sophisticated models, if the engine allows for these changes
(e.g. Source Engine).

Predefined file formats can pose difficulties when converting
medical images and models. These formats may be limited
in their number of vertices or faces and thus would need
preprocessing to reduce the amount of information without
loss of optical detail. Another possibility for overcoming
these limits is to split complex objects into parts that are
kept together (e.g. by constraints [41]). On the positive side,
the necessary file formats for the examined three engines are
well documented (.ASE: [34], .SMD: [37]).

An interesting aspect of the Source Engine is the fact that
not only the material and model compilation files are text
based, but also the file format for maps. In conjunction
with the command line based tools, this could lead to the
development of a fully automated tool that reads patient
related medical data and constructs a map including the
custom patient models for interaction and training.

6. DISCUSSION AND FUTURE WORK

Game engines allow for a relatively quick creation of interac-
tive scenarios for simulated clinical training. Nevertheless,
there are still restrictions in the physical modelling of soft
tissue, which prevent their use for training surgeons in the
area of technical skills, e.g. laparoscopic procedures. The
true strength of game engines lies in their networking capa-
bilities. The ability to interactively bring together several
users in a simulation scenario is ideal for the training and as-
sessment of teamwork , which is an aspect of healthcare that
has often been overlooked, but is now beginning to receive
due attention [9].

Our future work will emphasise the development of training
frameworks, scenarios and assessment methods that are ap-
propriate for the evaulations and training of teams in clin-
ical settings. The existent physical simulation capabilities
of game engines could be utilised to enhance the realism of
these training scenarios, e.g moving instrument trays, cables
connected to the patient. Tools for automatically convert-
ing real patient data to game engine specific files (e.g. based
on the Source Engine command line tools) could be used
to create a variety of training scenarios which are based on
real-life cases.

We will also contine to monitor the latest development of
new game engines, e.g. CryEngine 2 [13] and Unreal En-
gine 3 [18]. Among their features are enhanced graphics
and physical modelling techniques. With these it is possible
to blend animations while maintaining a set of constraints.
Geometric models can be deformed arbitrarily by displace-
ment textures. Physically correct simulation of smoke and
liquids can also be used. These features will allow even more
realistic simulations and will be subject to further analysis.

7. REFERENCES
[1] ACGME. ACGME Outcome Project – General

Competencies [online]. Sept. 1999 [cited 17.08.2007].
Available from:
http://www.acgme.org/outcome/comp/compMin.asp.

[2] Ageia Technologies. Ageia [online]. 2007 [cited
21.06.2007]. Available from: http://www.ageia.com/.

[3] J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan,
F. Poyer, C. Duriez, H. Delingette, and L. Grisoni.
SOFA – an Open Source Framework for Medical
Simulation. Medicine Meets Virtual Reality (MMVR
15), 125:13–18, February 2007.

[4] Autodesk. Autodesk 3ds Max [online]. 2007 [cited
16.08.2007]. Available from:
http://www.autodesk.com/3dsmax.

[5] Autodesk. Autodesk Maya [online]. 2007 [cited
16.08.2007]. Available from:
http://www.autodesk.com/maya.

[6] Avid Technology. Welcome to Softimage – 3D
Software Solutions for Games, Films, and Television
Artists [online]. 2007 [cited 17.08.2007]. Available
from: http://www.softimage.com/.

[7] D. Bachofen, J. Zátonyi, M. Harders, G. Székely,
P. Früh, and M. Thaler. Enhancing the Visual
Realism of Hysteroscopy Simulation. Studies in Health
Technology and Informatics, 119:31–36, Jan. 2005.

[8] Blender Foundation. Blender [online]. 2007 [cited
17.08.2007]. Available from:
http://www.blender.org/.

[9] C. S. Borrill, J. Carletta, A. J. Carter, J. F. Dawson,
S. Garrod, A. Rees, A. Richards, D. Shapiro, and
M. A. West. The Effectiveness of Health Care Teams
in the National Health Service. Technical report,
Department of Health, 2001. Available from:
http://homepages.inf.ed.ac.uk/jeanc/

DOH-final-report.pdf [cited 18.02.2008].

[10] M. C. Çavuşoğlu, T. G. Göktekin, and F. Tendick.
GiPSi: A Framework for Open Source/Open
Architecture Software Development for Organ Level
Surgical Simulation. IEEE Transactions on

Evaluation of Game Engines for Simulated Clinical Training 99

Information Technology in Biomedicine,
10(2):312–322, Apr. 2006.

[11] CISL. The MedSim-Eagle Patient Simulator [online].
2007 [cited 17.08.2007]. Available from: http:

//med.stanford.edu/VAsimulator/medsim.html.

[12] S. Cotin, H. Delingette, and N. Ayache. Real-Time
Elastic Deformations of Soft Tissues for Surgery
Simulation. IEEE Transactions on Visualization and

Computer Graphics, 5(1):62–73, Mar. 1999.

[13] Crytek. CryEngine 2 Specifications [online]. 2002
[cited 17.08.2007]. Available from: http:

//www.crytek.com/technology/index.php?sx=eng2.

[14] H. Delingette. Toward Realistic Soft-Tissue Modeling
in Medical Simulation. Proceedings of the IEEE,
86(3):512–523, Mar. 1998.

[15] DevMaster.net. 3D Game Engines Database [online].
2007 [cited 17.08.2007]. Available from:
http://www.devmaster.net/engines/.

[16] J. Dworzak and L. Gu. Combining progressive and
non-progressive cutting for soft tissue surgery
simulations. International Journal of Computer

Assisted Radiology and Surgery, 2(Suppl
1):S163–S165, June 2007.

[17] Epic Games. Unreal Engine 2 [online]. 2004 [cited
17.08.2007]. Available from: http://www.

unrealtechnology.com/html/technology/ue2.shtml.

[18] Epic Games. Unreal Engine 3 [online]. 2006 [cited
17.08.2007]. Available from:
http://www.unrealtechnology.com/html/

technology/ue30.shtml.

[19] D. Geer. Vendors Upgrade Their Physics Processing to
Improve Gaming. Computer, 39(8):22–24, Aug. 2006.

[20] Havok. Havok [online]. 2007 [cited 17.08.2007].
Available from: http://www.havok.com/.

[21] id Software. id.sdk [The Code] [online]. 2007 [cited
17.08.2007]. Available from:
http://www.iddevnet.com/doom3/code.php.

[22] Immersion Corporation. Immersion Medical [online].
2007 [cited 17.08.2007]. Available from:
http://www.immersion.com/medical/.

[23] Y.-J. Lim and S. De. Real time simulation of
nonlinear tissue response in virtual surgery using the
point collocation-based method of finite spheres.
Computer Methods in Applied Mechanics and

Engineering, 196(31-32):3011–3024, June 2007.

[24] J. Mackenzie, G. Baily, M. Nitsche, and J. Rashbass.
Gaming Technologies for Anatomy Education. Online,
May 2003. Available from: http:

//www.virtools.com/news/pdf/2004/CARET.pdf

[cited 17.08.2007].

[25] S. Marks, J. Windsor, and B. Wünsche. Collaborative
Soft Object Manipulation for Game Engine-Based
Virtual Reality Surgery Simulators. In M. J. Cree,
editor, Proceedings of Image and Vision Computing

New Zealand, page 205–210, Hamilton, New Zealand,
Dec. 2007.

[26] Mentice. Mentice [online]. 2007 [cited 17.08.2007].
Available from: http://www.mentice.com/.

[27] K. Montgomery, C. Bruyns, J. Brown, S. Sorkin,
F. Mazzella, G. Thonier, A. Tellier, B. Lerman, and
A. Menon. Spring: A General Framework for

Collaborative, Real-time Surgical Simulation. Studies

in Health Technology and Informatics, 85:296–303,
2002.

[28] select IT VEST Systems AG. Select-IT VEST Systems
AG – medical science at your fingertips [online]. 2007
[cited 17.08.2007]. Available from:
http://www.select-it.de/.

[29] Serious Games Initiative. Games For Health [online].
2007 [cited 17.08.2007]. Available from:
http://www.gamesforhealth.org.

[30] Simbionix. Simbionix, medical training simulators and
clinical devices for MIS (minimally invasive surgery)
[online]. 2007 [cited 17.08.2007]. Available from:
http://www.simbionix.com/.

[31] Surgical Science. Surgical Science - Safer surgeons
faster [online]. 2007 [cited 17.08.2007]. Available from:
http://www.surgical-science.com/.

[32] J. Taekman, N. Segall, E. Hobbs, and M. Wright.
3DiTeams – Healthcare Team Training in a Virtual
Environment. Anesthesiology, 107(A2145), Oct. 2007.

[33] Texas A&M University Corpus Christi. Pulse!! – The
Virtual Clinical Learning Lab [online]. 2007 [cited
05.10.2007]. Available from:
http://www.sp.tamucc.edu/pulse/home.asp.

[34] UnrealWiki. UnrealWiki: ASE File Format [online].
2007 [cited 17.08.2007]. Available from:
http://www.unrealwiki.com/wiki/ASE_File_Format.

[35] Valve Corporation. Valve Source Engine Features
[online]. 2004 [cited 17.08.2007]. Available from:
http://www.valvesoftware.com/sourcelicense/

enginefeatures.htm.

[36] Valve Developer Community. Compiling Models
[online]. 2007 [cited 17.08.2007]. Available from:
http://developer.valvesoftware.com/wiki/

Compiling_Models_Basics.

[37] Valve Developer Community. SMD file format [online].
2007 [cited 17.08.2007]. Available from:
http://developer.valvesoftware.com/wiki/SMD_

file_format.

[38] Verefi Technologies. Verefi Technologies, Inc. [online].
2007 [cited 17.08.2007]. Available from:
http://www.verefi.com/.

[39] J. D. Westwood, R. S. Haluck, H. M. Hoffman, G. T.
Mogel, R. Phillips, R. A. Robb, and K. G. Vosburgh.
Highly-Realistic, Immersive Training Environment for
Hysteroscopy. Studies in Health Technology and

Informatics, 119:176–181, Jan. 2005.

[40] Wikipedia. id Tech 4 — Wikipedia, The Free
Encyclopedia [online]. 2007 [cited 17.08.2007].
Available from:
http://en.wikipedia.org/wiki/Doom_3_engine.

[41] B. C. Wünsche, B. Kot, A. Gits, R. Amor, J. Hosking,
and J. Grundy. A Framework for Game Engine Based
Visualisations. In Proceedings of Image and Vision

Computing New Zealand 2005, Nov. 2005. Available
from: http://www.cs.auckland.ac.nz/~burkhard/
Publications/IVCNZ05_WuenscheKotEtAl.pdf.

[42] J. Zepp. GoodKarma Physics Mod Beta 4 [online].
2005 [cited 16.08.2007]. Available from:
http://www.ataricommunity.com/forums/

showthread.php?t=440477.

