

Method and Implementation of Multi-Channel Correlation in

the Hybrid CPU+FPGA System

Maxim Leonov

A thesis submitted to

Auckland University of Technology

in partial fulfilment of the requirements for the degree of

Master of Engineering (ME)

2009

School of Engineering

Primary Supervisor: Dr. Slava Kitaev

Abstract

iii

Abstract

Modern high-performance digital signal processing (DSP) applications face constantly

increasing performance requirements and are becoming increasingly challenging to

develop and work with. In DSP paradigm, many researchers see potential in achieving

algorithm speed-up by employing Field Programmable Gate Arrays (FPGAs) –

reconfigurable hardware with parallelism feature. However, developing applications for

FPGAs incur particular challenges on the development flow.

This work proposes a scalable hybrid DSP system for performing high-

performance signal processing applications. The system employs a hybrid CPU+FPGA

architecture of commercially available, off-the-shelf (COTS) FPGAs and central

processing units (CPU) of personal computers.

In this work an example implementation of a multi-channel cross-correlator is

investigated and delivered using a new development paradigm. The correlator is

implemented on the XD1000 development system using a high-level FPGA

programming tool – Impulse CoDeveloper. Analysis of DSP application development in

a hybrid CPU+FPGA system employing the high-level programming tool Impulse C is

presented. Potential of the selected tool to deliver algorithm speed-ups is investigated

using reference multi-channel correlator software.

Particular attention is devoted to input/output (I/O) implementation, which is

considered one of the most challenging problems in FPGA design development. This

work delivers an I/O framework based on PCI Express interface for the proposed high-

performance scalable DSP system. Using Stratix II GX PCI Express Development

Board from Altera Corporation, a scalable and flexible communication approach for the

multi-channel correlator is delivered. This framework can be adapted to perform other

high-performance streaming DSP applications.

The outcomes of this work are a multi-channel correlator developed in a

reconfigurable environment with new design methodology and I/O framework with

software control application. The outcomes are used to demonstrate the potential of

implementing DSP applications in a hybrid CPU+FPGA architecture and to discuss

existing challenges and suggest possible solutions.

Acknowledgements

iv

Acknowledgements

I would like to acknowledge the support and guidance of my supervisor, Dr. Slava

Kitaev, whose patient advice and encouraging directions always came at the right time

and without whom I would never have completed this work. I would also like to thank

Dr. Hamid Gholam Hosseini for his valuable participation during the first part of the

project.

I would also like to express my gratitude to Altera Corporation for providing

discounts for hardware. Separately, I would like to thank an Altera support team

representative, Steven, for providing invaluable help and adviceduring my experience

with Altera hardware.

A separate gratitude is due to Impulse Accelerated Technologies for generously

providing extended evaluation licence for their product, which allowed me to complete

this project. Impulse C support team also deserves acknowledgment, without whose

participation very little, if any at all, progress would have been made.

I would also like to thank XtremeData, Inc. for supplying the hardware with

academic discount.

I thank Jungo Ltd. for providing evaluation licence for their software.

An appreciation goes also to Aidan Hotan from the University of Tasmania, who

helped with initial experiments of this project.

Finally, I would like to thank my parents and friends for their patience and

understanding during completion of this thesis.

Table of Contents

v

Table of Contents

Abstract...iii

Acknowledgements...iv

Table of Contents ..v

Attestation of Authorship..viii

List of Abbreviations ...ix

List of Tables ..xi

List of Figures..xii

List of Documents on CD-ROM ...xiv

Chapter 1. Introduction ..1

1.1 Background ...1

1.2 Research Objectives ..6

1.3 Thesis Layout..7

Chapter 2. Theory Background and Related Work...9

2.1 Typical High-Performance Signal Processing Applications.............................9

2.1.1 Radio Astronomy...10

2.1.2 RADAR Applications..11

2.1.3 Medical Applications...13

2.1.4 Telecommunication ...14

2.2 Correlation as a Typical DSP Application Problem15

2.2.1 Correlation Theory ..16

2.2.2 Digital Correlators ...17

2.2.3 Implementations of Correlators...18

2.3 DSP Technologies...20

2.3.1 The Performance Requirements of the DSP Applications20

2.3.2 Digital Signal Processors (DSPs) ..21

2.3.3 Application-Specific Integrated Circuits (ASICs)...................................22

2.3.4 High-Performance Computing ..24

2.3.5 FPGAs as a DSP Tool ...25

2.3.6 CPU+FPGA Hybrid Approach..27

2.4 Chapter Summary ...28

Chapter 3. Hybrid CPU+FPGA Architecture ..29

3.1 Hybrid CPU+FPGA Architecture ...29

Table of Contents

vi

3.1.1 FPGA Technology...30

3.1.2 Challenges in FPGA Programming...33

3.1.3 High-Level Programming for Hybrid Architectures34

3.1.4 Hybrid Systems ...37

3.2 Proposed High-Performance Hybrid DSP System..39

3.3 Chapter Summary ...41

Chapter 4. Methodology and Design Flow..43

4.1 Project Design Flow and Methodology ..43

4.2 Development Hardware Platform ...44

4.2.1 Nios II Development Kit Cyclone II Edition ..44

4.2.2 XD1000 Development System..45

4.2.3 PCI Express Development Kit Stratix II GX Edition..............................46

4.3 Development Software Tools..49

4.3.1 FPGA Development Tools ..49

4.3.2 New Hardware Design Methodology..51

4.3.3 Software Development Tools ..58

4.4 Chapter Summary ...59

Chapter 5. Implementation...60

5.1 Implementation Flow ..60

5.2 Defining Approaches ..62

5.2.1 Trial Hardware Correlator’s Design (Stage 1) ..62

5.2.2 Problem Positioning for Stages 2–5 ..64

5.3 Implementations for Stages 2–5..66

5.3.1 Reference Software N-Channel Correlation Program (Stage 2)66

5.3.2 Hardware Implementation of the Correlator in Impulse CoDeveloper

(Stage 3) ..68

5.4 I/O Framework (Stages 4 and 5) ..73

5.4.1 PCI Express to DDR2 SDRAM Reference Design from Altera

Corporation ...73

5.4.2 Developed I/O Framework (Stage 4) ..75

5.4.3 Software Control Application (Stage 5) ..77

5.5 Chapter Summary ...78

Chapter 6. Results ...80

6.1 Correlator Design (Stage 3) ..80

6.2 I/O Framework with Software Control Application (Stages 4 and 5)84

Table of Contents

vii

Chapter 7. Discussion..85

7.1 Discussions..85

7.1.1 Correlator Design ..85

7.1.2 I/O Framework ..89

7.2 Future Work ..90

7.3 Summary ...92

References ..96

Appendix A1. Components of the 32-lag Hardware Correlator Design.............102

Appendix A2. Simulink Test Model for 32-lag Hardware Correlator Design...105

Appendix A3. MATLAB Script to Generate Model Signals for Correlation106

Appendix A4. Reference Software N-Channel Correlation Program107

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project109

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM

Reference Design ...118

Appendix A7. The Switch ...142

Appendix A8. The Correlator’s DDR Controller Driver.....................................144

Appendix A9. Software Control Application ..160

Attestation of Authorship

viii

Attestation of Authorship

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person (except where explicitly defined in the acknowledgements), nor material which

to a substantial extent has been submitted for the award of any other degree or diploma

from a university or other institution of higher learning.

List of Abbreviations

ix

List of Abbreviations

ADC Analog-to-Digital Converter

ASIC Application-specific Integrated Circuits

CDMA Code Division Multiple Access

CLB Configurable Logic Block

COTS Commercial, Off-The-Shelf

CPLD Complex Programmable Logic Device

CPU Central Processing Units

DAC Digital-to-Analog Converter

DDR Double Data Rate

DMA Direct Memory Access

DSP Digital Signal Processing or Digital Signal Processor

ESL Electronic System Level

FPGA Field Programmable Gate Array

GPP General-Purpose Processor

HDL Hardware Description Language

HLL High-Level Language

HLP High-Level Programming

HMC High-speed Mezzanine Connectors

HPC High-Performance Computing

HSMC High-Speed Mezzanine Connectors

I/O Input/Output

JTAG Joint Test Action Group

LE Logic Element

MIPS Million Instructions Per Second

MMAC Million Multiply Accumulate Operations

List of Abbreviations

x

MPI Message Passing Interface

MRI Magnetic Resonance Imaging

PAL Programmable Array Logic

PC Personal Computer

PCI Peripheral Component Interconnect

PCIe Peripheral Component Interconnect Express

PCI-X Peripheral Component Interconnect Extended

PSP Platform Support Package

RADAR RAdio Detection And Ranging

RAM Random Access Memory

RC Reconfigurable Computing

RF Radio Frequency

RTL Register Transfer Level

SAR Synthetic Aperture Radar

SDRAM Synchronous Dynamic Random Access Memory

SFP Small Form-factor Pluggable

SOC System On Chip

USB Universal Serial Bus

UWB Ultra-Wideband

VLSI Very Large-Scale Integrated

List of Tables

xi

List of Tables

Table 5.1. Correlator Parameters Summary..66

Table 5.2. Memory Address Space in PCI Express to DDR2 SDRAM Reference Design

(Altera Corporation, 2006)..78

Table 6.1. Number of Output Cross-Products Depending on the Number of Input

Channels..81

Table 6.2. Performance Results Data of Software and Hardware Implementations.......83

Table 7.1. Achieved Simulation Speed-ups ..86

List of Figures

xii

List of Figures

Figure 1.1. Performance Gap Between Traditional Processor Architectures and Growing

Complexity of DSP Algorithms (Telikepalli & Fiset, 2006) ..4

Figure 2.1. Generic Digital Processing Scheme (Mitra, 2006) ...9

Figure 2.2. Basic RADAR Principle...12

Figure 2.3. The DSP Performance Gap in Communications Industry (Ganousis, 2004)21

Figure 2.4. Single Instruction, Multiple Data (SIMD) Model ..25

Figure 2.5. Moore's Law in the CPU and FPGA World (Chen Chang, 2005)................27

Figure 3.1. Classification of VLSI Circuits (Meyer-Baese, 2004a)................................30

Figure 3.2. A Generic FPGA Architecture (Gokhale & Graham, 2005)31

Figure 3.3. Low-level FPGA Design Flow (Gokhale & Graham, 2005)........................32

Figure 3.4 Hardware (a) and Software (b) Design Flows (Wain et al., 2006)34

Figure 3.5. FPGA Electronic System Level (ESL) Approach (Xilinx Inc.)35

Figure 3.6. Block Diagram of BEE2 Computer Module (C. Chang et al., 2005)...........39

Figure 3.7. Framework for High-Performance Hybrid DSP System..............................40

Figure 4.1. Top view of the Nios II Development Kit (Altera Corporation, 2007c)45

Figure 4.2. Block diagram of XD1000 Development System (XtremeData)46

Figure 4.3. Stratix II GX PCI Express Development Board (Altera Corporation, 2007d)

...47

Figure 4.4. Top View of the Stratix II GX PCIe Development Board (Altera

Corporation, 2007d) ..48

Figure 4.5. Design Flow in Quartus II Software (Altera Corporation, 2007e)50

Figure 4.6. Development Setup for PCI Express Development Kit Stratix II GX Edition

...51

Figure 4.7. New Top-Down Design Flow with Integrated System Level53

Figure 4.8. Impulse C programming Model..55

Figure 5.1. Implementation Flow..61

Figure 5.2. Autocorrelation Function of 5 kHz Sine Wave – Computed in the FPGA

(left) and Computed in MATLAB (right) ...63

Figure 5.3. JTAG Chain Connections in Stratix II GX PCI Express Development Board

(Altera Corporation, 2007d)..64

Figure 5.4. Two-Channel Correlation in C ...67

List of Figures

xiii

Figure 5.5. Simulation Model of Two-Channel Correlator Running in Impulse

CoDeveloper Application Monitor ...68

Figure 5.6. Introducing Splitting of the Arrays in Impulse C ...69

Figure 5.7. Using stageDelay Parameter in Impulse C ...70

Figure 5.8. Pipeline Graph with satgeDealy values for 6-Channel Correlator Design ...71

Figure 5.9. Top-Level Entity of the 6-Channel Correlator with Implemented

Demultiplexors..72

Figure 5.10. PCI Express to DDR2 SDRAM Reference Design Block Diagram (Altera

Corporation, 2006) ..74

Figure 5.11. I/O Framework Block Diagram..75

Figure 5.12. Example Calls of Write and Read Functions to Onboard SDRAM Memory

...77

Figure 6.1. Simulation of Hardware Implementation in Stage Master Debugger82

Figure 6.2. Performance Results of Software and Hardware Implementations..............83

Figure 6.3. Sample Run of Software Control Application..84

Figure 7.1. Application Implementation Techniques (Kitaev & Molteno, 2008)...........93

Figure 7.2. Data Flow for RC System with Algorithm Partition (Gokhale & Graham,

2005) ...94

List of Documents on CD-ROM

xiv

List of Documents on CD-ROM

Root folder

Thesis final (Maxim Leonov).doc – thesis file in word format

Thesis final (Maxim Leonov).pdf – thesis file in PDF format

Folder \Impulse_C \ – correlator designs developed in Impulse CoDeveloper

Subfolder \6channel_correlator\ – six-channel correlator

\6channel_correlator\Correlator_C_hw.c – hardware source file

\6channel_correlator\Correlator_C_sw.c – software source file

\6channel_correlator\Correlator_C.h – include file

\6channel_correlator\input_signals.txt – file with input samples

\6channel_correlator\correlator_out.txt – file storing correlator’s output

\6channel_correlator\Correlator_C.exe – generated file for desktop simulation

\6channel_correlator\Correlator_C.icProj – Impulse C project file

Subfolder \8channel_correlator\ – eight-channel correlator

\8channel_correlator\Correlator_C_hw.c – hardware source file

\8channel_correlator\Correlator_C_sw.c – software source file

\8channel_correlator\Correlator_C.h – include file

\8channel_correlator\input_signals.txt – file with input samples

\8channel_correlator\correlator_out.txt – file storing correlator’s output

\8channel_correlator\Correlator_C.exe – generated file for desktop simulation

\8channel_correlator\Correlator_C.icProj – Impulse C project file

Subfolder \10channel_correlator\ – ten-channel correlator

\10channel_correlator\Correlator_C_hw.c – hardware source file

List of Documents on CD-ROM

xv

\10channel_correlator\Correlator_C_sw.c – software source file

\10channel_correlator\Correlator_C.h – include file

\10channel_correlator\input_signals.txt – file with input samples

\10channel_correlator\correlator_out.txt – file storing correlator’s output

\10channel_correlator\Correlator_C.exe – generated file for desktop simulation

\10channel_correlator\Correlator_C.icProj – Impulse C project file

Subfolder \11channel_correlator\ – eleven-channel correlator

\11channel_correlator\Correlator_C_hw.c – hardware source file

\11channel_correlator\Correlator_C_sw.c – software source file

\11channel_correlator\Correlator_C.h – include file

\11channel_correlator\input_signals.txt – file with input samples

\11channel_correlator\correlator_out.txt – file storing correlator’s output

\11channel_correlator\Correlator_C.exe – generated file for desktop simulation

\11channel_correlator\Correlator_C.icProj – Impulse C project file

Subfolder \12channel_correlator\ – twelve-channel correlator

\12channel_correlator\Correlator_C_hw.c – hardware source file

\12channel_correlator\Correlator_C_sw.c – software source file

\12channel_correlator\Correlator_C.h – include file

\12channel_correlator\input_signals.txt – file with input samples

\12channel_correlator\correlator_out.txt – file storing correlator’s output

\12channel_correlator\Correlator_C.exe – generated file for desktop simulation

\12channel_correlator\Correlator_C.icProj – Impulse C project file

Subfolder \16channel_correlator\ – sixteen-channel correlator

\16channel_correlator\Correlator_C_hw.c – hardware source file

List of Documents on CD-ROM

xvi

\16channel_correlator\Correlator_C_sw.c – software source file

\16channel_correlator\Correlator_C.h – include file

\16channel_correlator\input_signals.txt – file with input samples

\16channel_correlator\correlator_out.txt – file storing correlator’s output

\16channel_correlator\Correlator_C.exe – generated file for desktop simulation

\16channel_correlator\Correlator_C.icProj – Impulse C project file

Folder \Correlation_reference_program\ – correlation reference program

\Correlation_reference_program\correlation.c – software correlation source code

\Correlation_reference_program\input_signals.txt – file with input samples

\Correlation_reference_program\results.txt – file storing correlator’s output

Folder \I_O_framework\ – I/O framework design with integrated six-channel

correlator developed in Impulse CoDeveloper

\I_O_framework\hw\ – folder with exported Impulse C correlation design

\I_O_framework\hw\lib\tx_ddr_resp.v – Tx DDR2 read response state machine (from

reference design)

\I_O_framework\rx_pcie.v – Rx PCIe Receiver block (from reference design)

\I_O_framework\switch_top.v – switch module

\I_O_framework\ddr_ctrl_driver.v – correlator’s DDR controller driver

\I_O_framework\pcie_ddr.stp – SignalTap Analyzer file

\I_O_framework\pcie_ddr.qpf – Quartus II project file

Folder \Sine_wave_generation\ – generation of model signals for correlation

\Sine_wave_generation\sine_generation.m – MATALAB script for signal generation

Folder \Software_Control_Application\ – software control operation for I/O

framework

List of Documents on CD-ROM

xvii

Software_Control_Application\altera_diag\altera\pci_dev_kit\diag\altera_diag.c –

source file of software control application

Folder \Trial_hardware_correlator_design\ – trial hardware correlator design

\Trial_hardware_correlator_design\Correlator.vhd – VHDL top-level correlator entity

\Trial_hardware_correlator_design\CorrelatorLag.bdf – schematics of correlator lag

\Trial_hardware_correlator_design\FF.vhd – latch megafunction

\Trial_hardware_correlator_design\Correlator.qpf – Quartus II project file

\Trial_hardware_correlator_design\Correlator_model.mdl – Simulink model

\Trial_hardware_correlator_design\signal.mat – MATLAB data file with input signals

Chapter 1. Introduction

1

CHAPTER 1

Introduction

Necessity, who is the mother of invention.

—Plato

This chapter provides an overview of a high-performance DSP applications field from

its origins to its current state. Appropriate background of the area of investigation is

introduced and respective research objectives are outlined. The chapter concludes with

contributions and organisations of this thesis.

1.1 Background

High-performance digital signal processing is very challenging work in today’s

engineering fields. Many applications face increasing performance demands and

constant additional functional requirements. With digital signal processing becoming an

integral part of everyday life, the demand for high-performance processing means has

expanded rapidly in recent years.

Originally, signals in devices were manipulated using analog techniques

(continuous-time domain). However, nowadays most of them are implemented in digital

form (discrete-time domain). The genesis of the digital signal processing techniques can

be connected to the advances in mathematical fields: finite difference methods,

numerical integration method and numerical interpolation methods dating back to the

seventeenth century. Of course, one of the major developments of the DSP area started

in the 1950s, as a part of the far broader and embryonic field of digital computers. From

the late 1960s, digital signal processing moulded into a separate field by itself. Thus, in

the late 1970s when LSI (large-scale integration) technology became developed enough

the realisation of a single chip DSP became practical (Mlynek, 1999). In 1978 AMI

announced a “Signal Processing Peripheral” and released S2811 (Nicholson, Blasco, &

Reddy, 1978) – a co-processor for a host micro. It was followed by Intel’s 2920 in 1979

(Hoff & Townsend, 1979). The unique feature of the latter device was the on-chip

analog-to-digital and digital-to-analog converters (ADC and DAC respectively), though

Chapter 1. Introduction

2

it lacked a multiplier. The DSP industry continued to grow and progress and, in the

early 1980s, the world saw a second generation of DSPs with realised features like

concurrency, multiple buses and on-chip memory. These were added with on-chip

floating point operations in the third generation of DSPs in the early 1990s. In the late

1990s multi-processing features, image and video processors and low-power DSPs were

introduced.

Contemporary signal processors are able to demonstrate much greater

performance in many aspects: wider data buses and throughputs, higher processing

speeds of up to 24,000 of 16-bit million multiply accumulate operations (MMACs)

(Texas Instruments Inc., 2008), compatibility with various modern interfaces and buses

such as PCI, USB, Ethernet and many others.

The means of performing signal processing are not, of course, limited to digital

signal processors – the ever-growing field of signal processing invoked multiple

solutions, architectures, technologies, tools and approaches: the major of which will be

covered in the subsequent chapters of this work.

Many large-scale, high-performance DSP applications in such fields as radio

astronomy, telecommunication, high-energy physics, and others involve

computationally-intensive and therefore often time-consuming correlation of wideband

signals. Correlation relies on the two most common types of composed DSP operations

– multiply and accumulate (MAC), and multiply and add (MULT-ADD) operations.

These operations have been implemented in digital processing successfully and

efficiently. However, the challenge lies in the number of these operations, i.e. the

problem size – the running time and/or space requirements of an algorithm. Many DSP

applications employing correlation operation in their algorithms require real-time or

near real-time processing, eg antenna aperture synthesis, medical applications, cellular

and telecommunications applications (see 2.1 for details on these applications). Along

with necessity to perform computations “on-the-fly”, correlation involves considerable

execution time or time complexity for wideband correlation. For example, a multi-

channel antenna array operating with 128 MHz bandwidth on each channel will yield a

sampling rate of 256 MS/s with 8-bit sampling. For 8-channel correlation, this will

produce 2 GB/s input data stream. Such correlation will generate 28 unique cross

product outputs (the other 28 are just a mirror reflection of the first 28 (see 2.2.1)). An

estimated number of operations required to perform a 32-lag correlation with these

parameters is about 230 Giga-operations of real-time processing (Thompson, Moran, &

Chapter 1. Introduction

3

Swenson, 2001a). Being a classical DSP problem, correlation itself does not usually

constitute a stand-alone, full and final application, rather it is an integral part of many

DSP applications.

Here and throughout this thesis channel and antenna are used interchangeably.

While such notation is acceptable and coomon for engineering and DSP fields, it differs

in radio-astronmy where a channel is understood as a quantum of radio frequency

bandwidth.

Although the processing capacity of DSP tools grew along with the requirements

of the signal processing, the latter always outstands the former by considerable and

everlasting margins. Almost as soon as the gap between ever-growing applications’

requirements and capabilities of the DSP tools started shaping up (in the mid 1980s –

see Figure 1.1) the search for counter-measures to close this gap started. The most

prevalent and widely-used approach is extensive approach – gradual and proactive

increase of the processing power of the DSP tools by increasing the number of

employed computational units and/or operational parameters (operating frequencies,

response times, storage capacities, etc.). Such approach proved to be productively

working for Central Processing Units (or commonly known as processors), Digital

Signal Processors (DSPs) and other conventional processing means for several decades

and then started depleting quickly. The cost of the extensive approach hit the inevitable

limitations very soon: high power consumption, complexity of dealing with growing

number of computational units maintenance cost, etc.

Chapter 1. Introduction

4

Figure 1.1. Performance Gap Between Traditional Processor Architectures and Growing

Complexity of DSP Algorithms (Telikepalli & Fiset, 2006)

No surprise, that the research vector began deviating towards technologies and

methods which could offer intensive ways of dealing with the problem as opposed to

almost exhausted extensive approaches.

Currently an intensive approach is envisioned by many researchers in parallelism

– simultaneous execution of several computational operations during one clock cycle.

Moreover, parallelisation of applications is especially effective in the DSP field as long

as many DSP algorithms possess intrinsic parallelism and therefore potentially sustain a

large capacity for acceleration.

Application-Specific Integrated Circuits (ASICs) possess parallelism features and

reach prominent efficiency of silicon utilisation for a specific operation determined

during the manufacturing stage. Thus, they can be configured to meet the requirements

of the particular application avoiding unnecessary generality. Reasonably, the

performance efficiency achieved by ASICs for the targeted application is balanced by

the impossibility of future modifications. Many ASICS’ applications do not require any

updates, modifications or alterations at all (eg integrated circuits of cell phones).

ASICS’ counterparts – Field Programmable Gate Arrays also possess parallelism

features. Along with this, FPGAs are reconfigurable devices, i.e. they can be

reprogrammed in the field. Adding a bug fix, a new feature or even updating a

Chapter 1. Introduction

5

computational core of the application, significantly increases the flexibility of design.

Due to this FPGAs have lower non-recurring engineering costs than ASICS. An FPGA

is a semiconductor device consisting of programmable logic blocks and programmable

interconnects. Along with parallelism, reconfigurability significantly expands the

application scope of these devices. Armed with these two features over the years,

FPGAs became one of the most promising technologies in digital electronics in general

and in the DSP field in particular.

The interest towards FPGAs has risen even more radically in recent years with the

growth of the chip capacities and the number of supported interfaces, which include, but

are not limited to: PCI family interfaces, Ethernet family interfaces, support for memory

interfaces like DDR/DDR2/DDR3/QDRII, USB, HyperTransport, RapidIO, VMEbus

and many others. Moreover, FPGAs are particularly suitable for DSP applications due

to: inherited parallelism in many DSP algorithms; high bandwidths to on-chip and

external memories, which support multiple access ports thus allowing further

exploitation of algorithm’s parallelism; streaming to-be-processed data directly to

computational core implemented in FPGAs via available high-speed interfaces. Hence,

these FPGAs’ features make them a very attractive option for applications’ acceleration

or even a competitive alternative for traditional DSP techniques, attracting more and

more attention from the DSP industry.

With widespread availability of commercially available FPGAs in the late 1980s,

the term reconfigurable computing (RC) was introduced. A reconfigurable computing

system is a system which is built from reconfigurable computing devices, eg FPGAs or

FPGA-like devices. These systems have to be reprogrammable, permit orders of

magnitude speed-ups versus traditional computational systems and support hardware-

like levels of performance (Guccione, 2008).

However, developing DSP applications for RC systems contain many more

challenges and complexities than implementing applications in traditional software

programming domain of DSPs, CPUs, etc. One of the main reasons is that FPGA

design flow adheres to hardware development flow, which traditionally deals with low-

level hardware description languages and demands explicit configuration of available

resources in FPGA. The following issues also impose substantial challenges when

employing reconfigurable hardware in traditional DSP applications: hardware state

ambiguity complicates design debugging; parallelism consideration and a “run-at-a-

clock” concept impose certain idiosyncrasies on algorithm implementation; explicit

Chapter 1. Introduction

6

memory structure puts constraints on storing of design variables. Moreover,

conventional processing methods (DSPs, CPU and related) have been employed in the

signal processing field considerably longer than FPGAs and therefore have more

advanced and powerful developing and debugging tools.

Therefore, employing FPGAs either as a computational accelerator or as a stand-

alone DSP application platform can be beneficial and challenging at the same time.

Nowadays the traditional approach of increasing the processing capacity of

computational means diverge from the traditional approach of raising the number of

employed semiconductors (Moore’s law) and operating frequency to a multicore and

parallel execution approach. Many DSP algorithms possess intrinsic parallelism. FPGAs

are a very attractive and potentially beneficial option to be employed in DSP paradigms

for processing acceleration. Compelling reported speed-ups of 10X to 100X (Gokhale &

Graham, 2005) of equivalent software algorithms attract more and more attention from

the DSP community. Another argument to employ FPGAs for DSP algorithms is that

these devices follow the International Technology Roadmap for Semiconductors (ITRS)

(http://www.itrs.net/) even more narrowly than modern microprocessors (eg in terms of

contained SRAM memory or leading on the first fabrication lines). Many researchers

agree on a high potential of simultaneous operation of conventional processing unit(s)

such as a CPU of a PC and reconfigurable hardware such as FPGA (Andrews et al.,

2004; Milrod, 2006; Tahernia, 2005). This architecture invokes previously unavailable

possibilities and options in signal processing but it also brings new challenges in

development flow.

In this thesis a new design methodology for developing applications in a hybrid

CPU+FPGA environment is applied. Using a mixture of traditional hardware

development tools and conventional software development tools, a multi-channel

wideband cross-correlation for DSP application on a hybrid CPU+FPGA architecture

will be implemented. The prime objective of this thesis is to investigate the capabilities

and challenges of this reconfigurable, hybrid architecture in the DSP field.

1.2 Research Objectives

In this work, we will investigate the implementation of a classical DSP problem –

wideband multi-channel cross-correlation in a hybrid environment of a commercial, off-

the-shelf CPU and FPGA. There are a number of contributions contained within this

thesis.

Chapter 1. Introduction

7

First, the given work addresses the problem of computational deficiency in DSP

field. By implementing a classical DSP problem in a hybrid CPU+FPGA architecture,

its abilities of achieving speed-ups for applications from DSP fields are argued.

The second contribution is the platform and the workflow for developing high-

performance DSP applications in a hybrid CPU+FPGA environment. The development

workflow applied in this work is different from a traditional hardware design

methodology. Rather than using low-level HDLs for hardware design implementation,

the given work utilises high-level languages (HLLs) for hardware configuration. The

potential of using HLLs for FPGA designs is evaluated and discussed. The given work

delivers valuable outcomes for any DSP engineer developing applications in

reconfigurable hardware with the aid of high-level programming (HLP) languages.

The third contribution is that this work tackles one of the most crucial issues of

DSP applications, which becomes especially challenging and difficult in the FPGA

domain – input/output interfaces. The I/O framework developed in this work features

original method of interfacing to FPGA via onboard SDRAM simultaneously with high-

speed communication with PC via PCIe interfaces. The developed method can be

beneficial to many applications requiring extensive data exchange. Particularly, it can

be useful for applications targeting Altera’s PCIe Development Kit Stratix II GX

Edition or to any Altera’s devices featuring PCIe and DDR/DDR2 SDRAM interfaces.

The given work also introduces the possible evolution of the proposed platform.

The number of available interfaces on the exploited FPGA board (PCIe, Ethernet, SFP,

HSMC, etc) and simple connectivity options of the conventional PC box provide a

considerable degree of architectural possibilities. A highly scalable platform for high-

performance signal processing is proposed as a potential future development of the

created design (section 3.2). In addition, one of the advantages of the suggested

platform is the affordable cost as compared to proprietary DSP solutions: the cost of the

prospective system is composed merely from FPGA board’s and PC box prices.

1.3 Thesis Layout

The thesis is organised into seven chapters. Chapter 2 briefly introduces the background

of the investigated problem. Computationally intensive DSP applications employing

cross-correlation of signals are discussed. Cross-correlation theory is discussed, which

is followed by a discussion on DSP implementation technologies.

Chapter 1. Introduction

8

In Chapter 3 the notion of a hybrid CPU+FPGA architecture is introduced.

Challenges existing in this architecture and high-level programming of reconfigurable

hardware are discussed. The chapter also proposes high-performance DSP hybrid

architecture.

Chapter 4 discusses methodology applied in this work and introduces five stages

of the full project design flow. These stages define the hardware and software

development tools used at every particular stage.

Chapter 5 presents implementation flow of the project. Implementation details of

the stages are defined in the previous chapter.

Results and outcomes of project implementations are presented in Chapter 6. They

are discussed in Chapter 7. Approaches and solutions to alleviate known shortcomings

and challenges of the developed project outputs, along with future developments are

suggested.

Chapter 2. Theory Background and Related Work

9

CHAPTER 2

Theory Background and Related Work

We live in a moment of history where change is so speeded up that we begin to see the

present only when it is already disappearing.

—R. D. Laing

This chapter will discuss the most common digital signal processing applications in a

high-performance domain. First, a brief outline of generic digital signal processing

algorithm will be given. Then, the next section will highlight the most common high-

performance DSP applications, which will be followed by the discussion on the cross-

correlation problem as integral and often one of the most computationally intensive

parts of these applications. The remaining section will present and consider

contemporary DSP implementation technologies.

The term digital signal processing implies converting an analog signal into a form

of numbers (digital form), the processing of the resultant sequences to either obtain

information or to synthesise signals with desirable properties and possibly convert the

output into analog form again. The overall scheme of the generic DSP algorithm is

shown in Figure 2.1:

Figure 2.1. Generic Digital Processing Scheme (Mitra, 2006)

The high-performance DSP applications feature a considerable amount of

computations in the “Digital processor” stage. Several typical high-performance DSP

applications are considered in the following section.

2.1 Typical High-Performance Signal Processing Applications

The number of signal processing applications in today’s life is truly enormous.

Nevertheless, not every DSP application is suitable for reconfigurable computing. A

number of studies exist which investigate efficiency criteria of an application to be

Chapter 2. Theory Background and Related Work

10

employed in FPGAs. The application’s performance implemented in FPGA depends on

(Hutchings & Nelson, 2008):

1. Data parallelism available in the application’s algorithm;

2. Data element size and arithmetic complexity;

3. Amenability to pipelining, and simple control requirements.

The following sections highlight several high-performance DSP applications,

which have one common and integral operation – cross-correlation of signals. The

potential of implementing these applications in or with the help of reconfigurable

hardware will be considered. The applications below will be considered in retrospect.

2.1.1 Radio Astronomy

Throughout human history, man has been always mysteriously attracted to the sky.

With the discovery and subsequent invasion of new technologies, traditional methods of

visual investigation of the sky, ie methods of optical astronomy, were joined by radio

astronomy techniques. Many astronomical bodies emit radio waves, which after certain

processing can tell valuable and previously inaccessible information about their origin.

Thus, in the last half of the 20th century the prominent advances in radio astronomy led

to a number of foremost discoveries like masers, pulsars, radio galaxies, the Cosmic

Microwave Background Radiation, etc.

With radio astronomy, scientists can study astronomical phenomena which are

invisible to the human eye. While in optical observation the useful information is

extracted from the spatial distribution of light across an object, ie image, radio

astronomy uses a different principle. RF waves emitted by a certain phenomenon can be

received and directly sampled in a time domain, thus the tools used for detecting and

measuring this interaction are considerably different from optical telescopes (Carroll &

Ostlie, 2007).

To produce a radio image of a celestial phenomenon a principle of interferometry

is used, which entails the superposition technique - interference (adding or overlaying)

of signals from two or more antennas. This technique is also known as antenna aperture

synthesis when multiple antennas are used to work as one using interferometry

principle.

The core idea of antenna aperture synthesis is again to superimpose the signal

waves from a number of radio telescopes and, while doing so, inphase waves will add

Chapter 2. Theory Background and Related Work

11

up, while antiphase waves will cancel each other out. This creates a combined telescope

with the size of the furthest observing telescopes apart. The image quality produced by

such a composed antenna depends on the number of the projected separations between

any two telescopes as seen from the radio source (number of baselines). With each radio

telescope producing a data stream the processing and computational task can be

extremely intensive. Besides, the processing is complicated by low signal-to-noise

ratios which are common for radio astronomical observations.

The backbone operation of antenna aperture synthesis is correlation or finding the

amount of similarity in the signal between two given antennas in an antenna array. The

term correlation and underlying theory will be discussed more deeply in 2.2.1. Even for

a medium-size antenna array, computation of correlation between all the elements of the

array can be a very challenging task due to the number of involved mathematical

calculations. The example considered in 1.1 with an 8-element antenna array requires

230×109 operations per second. An experienced reader will estimate that the problem

size of the given example as average to below average. Nevertheless, such a system

might require a performance power of not less than ~230 GFlops (depending on

implementation). In real-life, large-scale systems that correlate signal pairs of multi-

element arrays may contain millions of correlator circuits in order to accommodate all

the required antennas and spectral channels. Hence, with an increase of any of the above

parameters the computational complexity of aperture synthesis grows drastically. That

is why antenna aperture synthesis and radio astronomy have been established as one of

the most major and demanding consumers of DSP technologies.

2.1.2 RADAR Applications

RADAR or Synthetic Aperture Radar (SAR) applications are based on the principle of

the scattering of electromagnetic waves. Originally, RADAR meant RAdio Detection

And Ranging, however later the term became used as a standard word. The most

common RADAR system consists of a transmitter and a receiver – EM waves radiated

by the transmitter are reflected (scattered) by a target, which are then collected by the

receiver for further analysis. Any change in the dielectric constants of the target and a

media surrounding it will be conveyed in the scattered waves. The basic principle of

RADAR theory is illustrated in Figure 2.2.

Chapter 2. Theory Background and Related Work

12

Figure 2.2. Basic RADAR Principle

The gathered data can include the object’s position, movement or its particular

features and attributes. The range of the applications, where RADAR technique is used,

is wide: weather prediction, air traffic control, threat detection systems, military missile

guidance and reconnaissance radars, etc.

Antenna aperture technique as mentioned in 2.1.1 is also used in phased array

radars. In such arrays, comprised of a number of similar properly displaced antenna

elements, the scanning beam is controlled by operating a phase of the signal of each

individual transmitting antenna. Thus, the overall transmitted signal is maximised in a

desired direction and suppressed in undesired directions.

In modern RADAR applications DSP techniques are used extensively: generation

and forming of the transmission pulses, controlling the antenna beam’s pattern and

direction, filtering of clutter, and beamforming (S.Bhaktavatsala, 2002). Cross-

correlation is one of the central operations in RADAR applications: it is used to find the

relation or similarity between the original and reflected waves. When applied on a

largescale for multiple signals and performed in a real-time fashion, such correlation

becomes a challenging task.

Substantial utilisation of RADAR techniques in military area lays particular

requirements on the DSP technologies in RADAR applications, eg a common trend is

the need for smaller energy-efficient systems with high processing capabilities.

Furthermore, typical operational signals in RADAR are very weak and with the recent

tendency of radars being operated in a dense urban environment, the task of processing

such signals becomes a major challenge. This issue can be mitigated by “overlaying

data from multiple sensors and known terrain features”. In addition, newly-emerging

digital beam-forming technologies based on a high-speed digital systems work with an

ever-increasing number of scanning beams. The latter two issues increase RADAR

system processing requirements considerably (Kenny, 2007).

Original wave

Reflected wave

Target

Transmitter
and receiver

Chapter 2. Theory Background and Related Work

13

2.1.3 Medical Applications

Nonetheless, signal-processing technologies are not solely used for cognitive purposes.

Perceptive, non-intrusive analytical capabilities of radio imaging make it an excellent

option for diagnoses in medical areas. In the context of digital signal processing, the

most interesting category amongst all the categories comprising the medical imaging is

the ultra-wideband (UWB) imaging, which in turn is used primarily for early-stage

breast cancer detection.

One of the most crucial factors in successful breast-cancer treating is detecting it

at the earliest stage possible. Contemporary diagnosis methods like X-ray imaging,

Magnetic Resonance Imaging (MRI), and ultrasound are capable of reducing malignant

tissue. However, problems with a relatively high rate of false-negative diagnosis

(Huynh, Jarolimek, & Daye, 1998) along with many unnecessary biopsies due to the

low positive predictive rate (Elmore et al., 1998) make the use of X-ray mammography

difficult and ineffective. Other methods like MRI and ultrasound are somewhat more

effective in cancer lesions detection, yet do not always provide the necessary level of

sensitivity, can be too operator specific and are very expensive.

Many of the existing drawbacks in early-stage breast-cancer detection can be

alleviated with ultra-wideband imaging technology. The UWB imaging method

employs the radar technique which was described in 2.1.2. A transmitting antenna (or a

set of antennas) radiates a scanning burst of microwave energy. This electromagnetic

energy penetrates through the target under investigation, scatters on the target, and

further is collected by a receiving antenna or with an array of antennas. Then, the

processing takes place with the primary goal to identify the presence and location of the

considerable backscattered energy – an indication of the dielectric difference between

malignant and healthy tissue. Thus, the post-processing of the received signals has to be

very sensitive to filter out the necessary information from the antennas’ noise, clutter

due to heterogeneity in the breast tissue etc. Moreover, it has to be precise – image

resolution on the order of millimetres is desirable (Li, Bond, Veen, & Hagness, 2005).

Similar to RADAR applications, during the post-processing stage correlation is applied

to find similarities or discrepancies in tissue readings provided by transmitted and

reflected waves. Therefore, modern approaches of the existing radar application have to

be adapted and improved, according to the requirements of UWB medical imaging.

Now the medical diagnosis tools are still expect the DSP instruments to deliver an

efficient and reliable method of breast-cancer testing.

Chapter 2. Theory Background and Related Work

14

2.1.4 Telecommunication

Communication technologies are one of the most actively developing areas today. The

emergence of new wireless services along with the high growth of data rates in existing

services, indicates an ever-growing demand for telecommunication capacity. With

worldwide deployment of 3G networks, releasing beyond-3G and 4G standards and

specifications, the challenges for the DSP area keep accumulating: high data

throughputs (up to 1 Gbps), multimedia communications, seamless global roaming,

maintaining high user capacity, and supporting migration and the compatibility between

existing previous-generation and upcoming next-generation networks, etc (Ibnkahla,

2004). Consequently, the research community is focusing on different advanced signal

processing issues to achieve substantial improvements in communication systems.

To demonstrate the computation requirements that lay in the telecommunication

area, an example of Code Division Multiple Access (CDMA) standards can be used.

CDMA based standards (CDMA2000, W-CDMA, etc.) have become increasingly

popular during the emergence of the third generation networks due to their objective to

maintain the ever-growing data throughputs and efficient spectrum utilisation. In brief,

the idea of CDMA implies that a number of users share the same bandwidth of

frequencies and are distinguished by the individual code (pseudorandom code). Such an

approach has a much higher data bandwidth than traditional Time and Frequency

Division Multiple Accesses (TDMA and FDMA respectively). However, these benefits

are balanced with certain difficulties. For instance, the choice and assignment of a

pseudorandom code to user is not a very simple routine in highly populated large-scale

mobile networks. This problem can be computationally-intensive so certain solutions

were proposed to address this issue (B.-J. Chang, 2007). Similarly, an analogous

problem arises on the receiving side – to decode signal from multiple users in the most

efficient and fastest way. It has been indicated that this problem also has significant

computational needs (Agarwal, B.V.R.Reddy, & K.K.Aggarwal, 2006).

Furthermore, the underlying complexity of the CDMA algorithm implies a

challenging and complicated processing mission itself: as long as in CDMA the users

share the same bandwidth the multiple access interference (MAI) has to be considered

and alleviated. Prevention of this interference is exacerbated by the intersymbol

interference (ISI) and multipath signal propagation which is natural to all urban mobile

networks. For this purpose sophisticated channel estimation algorithms are applied. The

computational complexity of such algorithms is considerable and furthermore they have

Chapter 2. Theory Background and Related Work

15

to be implemented in real-time fashion. Therefore, the research community has turned

to elaborate DSP techniques like real-time DSPs and FPGAs to respond to these

challenges (Ouameur & Massicotte, 2007).

Tackling the processing difficulties is not of course the feature of only the CDMA

standard. As it was mentioned above, with the rapidly-growing rates, throughputs,

capacities, etc. the industry is facing expanding requirements throughout its

applications. One example is 3G and 4G mobile standards. These standards offer high

data throughputs to the end-users – even comparable to office LANs’ in 4G networks.

To supply such high speeds, a number of advanced and complex techniques are

employed in these standards. One such technique is smart antennas. To maintain high

data rates in complex urban environments these antennas use adaptive beamforming and

direction-of-arrival (DOA) estimation algorithms. In turn, these algorithms employ

cross-correlation operation for estimation which signals arriving from which directions

to suppress and which to maximise. Such calculations have to be performed with

complex numbers and most importantly should be done in real-time. Thus, it is

evidently seen that the necessity for high-performance signal-processing utilities spans

across the whole communication industry, leaving researchers in unrelenting pursuit for

an adequate response.

2.2 Correlation as a Typical DSP Application Problem

In many of the aforementioned applications an integral and common part can be singled

out – all of them are dealing with combined sources of information providing a

synergistic combination of knowledge about the investigated object. In other words,

whenever a system is dealing with a number of input data streams collaboratively

reducing the entropy of a studied phenomenon, the term “multi-sensor data fusion” is

applied (Stergiopoulos, 2000). The integral part of this fusion is to express the joint

result of analysis of two or more originally different sources. For that reason a

correlation operation is applied, which in turn is regarded no less as a “backbone” of

the whole DSP area.

Thus, the prevailing number of high-end DSP applications such as antenna

aperture synthesis, radioimaging, RADAR, radio astronomy, high-energy physics and

many others, has a common and very computationally-intensive part – the multi-

channel wideband correlation of signals. Correlation or, more generally speaking,

finding a relation between a set of signals, is a computational core for the majority of

Chapter 2. Theory Background and Related Work

16

signal processing operations and is considerably critical for computation performance.

The result of the cross-correlation function is “a measure of similarity between a pair of

energy signals” (Mitra, 2006).

As it was noted before in 2.1.1, one of the applications where correlation is

applied is radio astronomy. For example, it is used in the radio-astronomical technique

known as Very Long Baseline Interferometry (VLBI). In turn, the antenna aperture

synthesis is used in VLBI. The latter technique implies that the correlated product of

signals from two radiotelescopes gives visibility frequencies of celestial object. The

frequency information is obtained by averaging additional multiplications by a lagged

signal and finally the data is transferred to the frequency domain by applying Fourier

transform (Thompson, Moran, & Swenson, 2001b).

2.2.1 Correlation Theory

A measure of similarity between a pair of signals, x[k] and y[k], is given by the cross-

correlation rxy[k] sequence:

where the lag index n ∈ [–N / 2, N / 2 – 1], k is the time index, N is a number of

lags and typically is a power of two. The lag term denotes the time-shift between the

pair of signals with negative (n < 0) and positive (n ≥ 0) lags being distinguished.

Basically, the number of lags defines how many points or output values the correlation

produces. In real life applications, where for example the correlation function is used

together with Fourier transform, the number of lags can be referred as the resolution of

correlation. A device which performs correlation of a set of signals is called a

correlator. The number of lags is an important characteristic of a correlator along with

the number of channels, ie number of supported input signals. When a signal is

correlated with itself, such an operation is called autocorrelation and is often used in

filtering and other processes.

One should note the incurred execution time or time complexity for wideband

correlation. For a wideband signal according to the Nyquist condition, the processing

involves computation of a greater amount of samples, hence the processing duration

increases. In addition, the results of correlation computation abide to the following law

(Thompson et al., 2001b):

[] [] []∑ −=
k

xy nkykxnr (2.1)

Chapter 2. Theory Background and Related Work

17

()
2

1−
= SS NN

N (2.2)

where N is the total number of the cross-products and NS is the total number of

antennas (sources) to be correlated. Hence, wideband multi-channel correlation

embraces a considerable amount of computations.

Strictly speaking, Equation (2.2) gives the number of unique correlation results or

half of the total correlation results – the remaining half can be obtained by simply

reversing the results from the first half. The latter issue is caused by the following

property of correlation: correlation of x[k] with y[k] is not the same as correlation of y[k]

and x[k]. So, putting down mathematical notation of correlation of y[k] with x[k]:

[] [] [] [] [] []nrlxnlynkykxnr xy

lk

yx −=+=−= ∑∑
∞

−∞=

∞

−∞=

(2.3)

Thus, ryx[n] is obtained by time-reversing sequence rxy[n].

2.2.2 Digital Correlators

As mentioned above, the number of lags is an important feature defining the resolution

capabilities of a correlator. The higher the number of lags, the better a correlator can

“tell” how similar two signals are to each other. In reality, the number of lags is set by

the application’s requirements and defines the number of multiply-and-accumulate and

multiply-and-add computations. The latter statement is true for digital correlators, ie

correlators that work with a stream of digitised samples x[n] from an analog output x(t).

Two general types of digital correlators are distinguished:

� Lag or XF Correlator

� FX Correlator

In the lag or XF correlator Fourier transform to the frequency domain is

performed after cross multiplication of signals. The number of channels in such

correlators is an integral power of two with the signals' bandwidths also divisible by two

to be compatible with digital computing techniques (Thompson et al., 2001a).

Whereas in the FX correlator Fourier transform is performed before cross

multiplication of signals. Therefore, the total number of operations on the FX correlator

is proportional to the number of antennas or more correctly signals coming from these

Chapter 2. Theory Background and Related Work

18

antennas, whereas in the XF correlator the amount of computation is proportional to the

number of antenna (signal) pairs. Hence, the FX correlators are more economical in

terms of hardware requirements especially for a considerable number of signals

(Thompson et al., 2001b).

2.2.3 Implementations of Correlators

Correlators can be implemented in hardware or software. Normally, hardware

correlators are designed and manufactured for a certain and specific application and are

implemented in Very Large-Scale Integrated (VLSI) circuits. The CABB Hardware

Correlator (Ferris, 2006) is an example of a hardware correlator. This correlator has a

complex and very large-scale architecture comprising a number of VLSIs, multiplexers,

accumulators, filter banks and other devices. It is utilized in Australia Telescope

Compact Array to process signals from six 22 m. antennas of Australia Telescope

Compact Array. In addition, FPGAs are used in this correlator as well – to produce

different configurations of filter banks.

As for software correlators, they are implemented as a set of libraries or computer

programs to perform the designated task: correlation of a given set of signals. Amongst

known and acknowledged software correlators the following need to be mentioned:

K5 Software Correlator (Imai, Koyama, & Kondo, 2005) is probably one of the

most famous correlators implemented in software. Currently the K5 correlator is

involved in the VERA project in Japan and furthermore in collaborative work of Korea

and Japan in the project “East Asian Correlator” in Seoul (Kawaguchi, Kobayashi, &

Oyama, 2006). K5 is an FX correlator.

Swinburne University of Technology has another software-based correlator.

Initially this correlator was XF-type (West, 2004) but it was considered slow and the

recently new FX correlator DiFX has been implemented and tested (A. В T. Deller,

Tingay, Bailes, & West, 2007). Both correlators have been implemented on the Linux

parallel high-performance parallel cluster utilizing the Message Passing Interface (MPI)

standard for process-to-process communications. There was a reported intention to

explore hybrid architecture (ie comprising FPGA and Swinburne cluster) within this FX

correlator (A. Deller, 2005).

The Jet Propulsion Laboratory of California Institute of Technology designed

Softc software correlator (Lowe, 2004). Launched as one of the many test programs to

replace an outdated hardware correlator Block I in the Delta-Differenced One-way

Chapter 2. Theory Background and Related Work

19

Range (DeltaDOR) spacecraft navigation system, Softc underwent a lot of changes and

finally was employed in Mars Odyssey, Mars Exploration Rover, Deep Space 1 and

other missions. It has significant processing accuracy (not less than 10-13); it can

correlate 1, 2, 4, and 8-bit sampled data, upper, lower, or double sideband data and data

using one of either two encoding schemes.

Software correlators are known for their flexibility and possible high spectral

resolution along with broad bandwidth (A. В T. Deller et al., 2007). This is achieved by

employing high-performance computer systems, eg clusters, massive-parallel

computing systems (MPCS or MPC), etc. A cluster is an interconnected group of

computers working together as a single computer. The backbone of the clusters is high

performance computing units, ie nodes. Contemporary clusters involved in high-end

digital signal processing applications are considerably complex and elaborate systems

with multiple-level architectures and high-speed interconnects. MPC systems are

computer systems that include multiple independent processing units running in

parallel. Examples of MPC computers include Blue Gene and Earth Simulator amongst

others.

The international TOP500 list encompasses the 500 fastest and most powerful

computing systems around the world (www.top500.org). As of November 2007, the top

supercomputer is the Department of Energy's IBM BlueGene/L system in USA with a

performance of nearly 500 TFlops. Another BlueGene/L computer located at the

University of Groningen performs correlation tasks in a Low Frequency ARay

(LOFAR) project. It consists of 12,288 700 MHz dual PowerPC 440 cores yielding 34.4

TFlop/s of correlation performance (Romein, Broekema, Meijeren, Schaaf, & Zwart,

2006a).

Nevertheless, such performance comes at a price – development time and

maintenance cost balance this substantial computational power. With BlueGene/L’s

power consumption of 27.6 kW per rack (IBM Corporation, 2006) the LOFAR’s six-

rack supercomputer consumes 165.6 kW per hour. Besides, the estimated development

time is one man-year (Romein, Broekema, Meijeren, Schaaf, & Zwart, 2006b). One of

the reported issues with the LOFAR’s correlators is the lack of the high bandwidth in

BlueGene crucial for streaming DSP applications and overall necessity of faster

intercommunication between the cores. Moreover, software correlators require

substantial debugging and testing of the code: “eliminating of processing errors and

inaccuracies” was one of the “greatest hurdles” in Softc correlator implementation

Chapter 2. Theory Background and Related Work

20

(Lowe, 2004). Developing, debugging and testing can be generalised as one of the

greatest hurdles for all high-performance DSP systems.

Along with the considerable complexity of developing high-performance DSP

systems go their relevant energy requirements. At the Ninth International Conference on

Parallel and Distributed Computing, Applications and Technologies (PDCAT'08), Pete

Beckman from Argonne National Laboratory in his keynote speech made a strong point

about the power consumption requirements of contemporary and future supercomputers

(Beckman, 2008). In particular, it was predicted that within years the power

consumption of a computational system would become the most determinative

characteristic. In time, increasing the processing capabilities by increasing the

operational frequency and adding additional transistors (Moore’s law), depleted itself

and gradually diverted to multi-core and parallel execution of the algorithms, where

currently most of the research and development work is carried out. In turn, the same is

envisioned for parallel operation – parallelisation of the applications and algorithms will

eventually exhaust with Flops per Watt ratio becoming the systems’ performance

measuring unit. Therefore, with power requirements becoming one of the most

significant factors additional constraints are laid upon the development of high-

performance DSP systems and, most importantly, on the technologies applied in these

systems.

2.3 DSP Technologies

2.3.1 The Performance Requirements of the DSP Applications

The number of mathematical calculations involved in the aforementioned high-end DSP

applications is extremely high. For instance, to perform only a 1,024-point FFT yields

10,240 complex multiplications and additions per operational cycle. Moreover, to

provide trustworthy data, a radio telescope observing a celestial phenomenon has to

employ FFT with even higher resolution as well as a number of other operations, eg

correlation of wideband radio-frequency signals, thus yielding even higher number of

computations. On top of that, any DSP application, whether it is an image processing

routine or telecommunication operation, demands these computations be executed in a

rapid manner.

Besides, relentlessly expanding requirements of today’s electronic systems keep

pushing the resources contemporary DSP instrumentation towards and over the verge of

Chapter 2. Theory Background and Related Work

21

depletion. Figure 2.3 illustrates the performance gap that has emerged in the

communication industry between increasing algorithm complexity originated from

recent “standards revolution” and existing processing architectures.

Figure 2.3. The DSP Performance Gap in Communications Industry (Ganousis, 2004)

So, how can one approach the ever-growing demands of the DSP field? The most

universal approach to meet the substantial and constantly growing requirements of high-

end DSP applications is to increase the processing power of computational units (CPUs,

DSPs, ASICs, etc).

 This has a number of limitations and drawbacks such as:

� High power consumption, which in turn leads to necessity of efficient power

dissipation;

� Complexity of accomodating a large number of transistors in a single chip,

which are growing with each year according to Moore’s Law;

� High market costs.

Hence, this is not always feasible to cover the requirements of a certain high-end

DSP application by simply involving more computational power (units) due to the

hardware constraints in contemporary tools. Therefore, the search focus has to be

shifted towards renovating or enhancing the existing apparatuses or creating new ones.

The next sections cover the most common tools available in the DSP field.

2.3.2 Digital Signal Processors (DSPs)

Currently there is a number of tools in the DSP area. One of the major tools for DSP

applications are Digital Signal Processors. DSPs were first created in the late 1970s –

S2811 (Nicholson et al., 1978) and Intel’s 2920 (Hoff & Townsend, 1979). Although

Chapter 2. Theory Background and Related Work

22

Intel’s device did not have a multiplier, it already had on-chip ADC and DAC – a

feature still present in the modern DSPs. The 1980s saw a second generation of DSPs

with supported concurrency, multiple buses and on-chip memory. These were added

with on-chip floating point operations in the third generation of DSPs in the early

1990s. In the late 1990s multi-processing features, image and video processors and low-

power DSPs were introduced.

Today DSPs are produced by semiconductor vendors such as Texas Instruments,

Analog Devices, Motorola and others. Contemporary top-level DSPs are capable of

achieving substantial speeds – for example the high-performance multi-core

TMS320C6474 from Texas Instruments can achieve up to 24,000 million instructions

per second (MIPS) or 24,000 16-bit MMACs per cycle (Texas Instruments Inc., 2008).

This DSP is also equipped with a 16/32-bit DDR2-667 Memory Controller, EDMA3

Controller, 1000 Mbps Ethernet MAC interface, two 1x Serial RapidIO Links and many

other peripheries.

In general, DSPs are a specialized form of microprocessor designed specifically

for digital signal processing. Nowadays DSPs have a well-developed tool set – typically

a high-level programming language as C++. DSPs perform real-time processing and

have fixed hardware architecture with certain set of resources. Hence, DSPs have

reconfigurability freedom only to the extent of the programming code running on them.

Furthermore, the performance requirements of today’s DSP applications have now

exceeded the capabilities of even such powerful DSPs as Texas Instruments’

TMS320C6474.

Another common platform for performing DSP applications – Application-

Specific Integrated Circuits (ASICs) possesses an alternative approach for performing

signal processing applications.

2.3.3 Application-Specific Integrated Circuits (ASICs)

The inception of Application-Specific Integrated Circuits or more commonly ASICs

started in 1980s when the now-defunct Ferranti Company released the first gate-array –

Uncommitted Logic Array (ULA). The first Uncommitted Logic Arrays contained only

a few thousand gate circuits (transistors, logic gates, and other active devices) and they

did not perform any specified function. A particular function of a ULA was configured

by adding a final layer of metal interconnects to the ULA thus connecting the elements

on the ULA in the desired, customised fashion. The later versions of these early

Chapter 2. Theory Background and Related Work

23

developments became more complicated with a greater number of gates and in some

cases included RAM elements.

Modern ASICs retain the same ideology – they perform only limited sets of tasks

laid in them during manufacturing stage. These devices are capable of performing their

limited sets of functions faster than general-purpose DSPs. Due to application-specific

circuitry ASICs are able to employ high-speed functions of the targeted algorithm in the

optimized hardware (Kuo & Lee, 2001). Most commonly ASICs are used for

implementing well-tested and well-defined algorithms, eg Reed-Solomon coders in

digital subscriber loop (xDSL) modems or stack functionalities of CDMA2000 standard

in cell phones.

Depending on the grade of flexibility, three levels of ASICs are distinguished:

� Gate Array is the least customisable. Transistors, gates and other devices

are predefined but unconnected – no metallization layers exist. A user

specifies interconnection between the elements thus defining the function

of the device. Today these devices are gradually replaced by structured

ASICs where many features are predefined by the manufacturer: IP cores,

power and clock sources, etc. This significantly reduces the design time, as

a user has to specify much fewer design technicalities.

� Standard cell methodology has a high degree of flexibility. It assumes that

the ASIC’s design is defined by a user from the cell libraries created by

the manufacturer and , therefore, has much less space for mistake than full

custom design.

� Full custom design is the most flexible and, therefore, the most expensive

and time-consuming approach. It assumes developing an ASIC from

transistor level.

Despite that ASICs can perform their specified application faster than general-

purpose DSPs, they do posses their own challenges and limitations. The most obvious

limitation of ASICs originates from their most prominent strength: hardware optimised

for performing dedicated applications means little or, most often, absolutely no degree

of algorithm flexibility.

Another challenge with ASICs is that they are configured with hardware

description languages (HDL) such as Verilog, VHDL and some other less popular

options. These languages are low-level programming languages and differ significantly

Chapter 2. Theory Background and Related Work

24

from high-level programming languages employed for programming conventional

general-purpose DSPs. The challenges of hardware description languages are more

broadly discussed in section 3.1.2.

Single DSP or ASIC can be employed as a platform for single or several signal-

processing applications. In the case of large-scale high-performance DSP applications,

they may be employed as building blocks in sizeable computational systems such as

supercomputers, computational clusters, grid computing, etc.

2.3.4 High-Performance Computing

For performing large-scale DSP applications, high-performance computing (HPC)

systems can be used. HPC systems (supercomputers or computer clusters) comprising

multiple computational processors communicate through versatile types of interconnect.

The types of DSP applications employed on HPC systems are exceedingly large-scale

and include but are not limited to: correlation of wideband RF signals involved in radio

observation of celestial objects (eg CABB (Ferris, 2006) or DiFX (A. В T. Deller et al.,

2007) Australian correlators), video-centric applications of new generation wireless

telecommunications standards, such as wireless videoconferencing, real-time video

streaming, etc. (Gentile & Wills, 2004) and many others.

Over the years, the HPC proved to be an effective and sophisticated tool for

performing DSP applications. Technologies and tools applied in HPC have significantly

developed over the past years – density of transistors on processors (Moore’s law),

communication speeds and throughputs, number of processors performing one task,

uniform memory access with few or no caches, etc. In addition, modern HPC systems

are practically linearly scalable.

Moreover, HPC systems have the potential to perform the assigned task in

parallel, ie the task is split into several parts, each of which is performed by a separate

computational unit in parallel (Wilkinson & Allen, 2004). This is achieved by either

using multiple computational processors within a single computer, ie a multiprocessor,

or by multiple computers working on a single problem. The possibility to perform tasks

in parallel becomes radically beneficial for DSP applications as most of them can be

easily parallelised. More precisely the majority of DSP applications fall under the

Single Instruction, Multiple Data streams (SIMD) category in taxonomy introduced by

Michael J. Flynn (Flynn, 1972). Figure 2.4 illustrates SIMD architecture.

Chapter 2. Theory Background and Related Work

25

Figure 2.4. Single Instruction, Multiple Data (SIMD) model

In the SIMD model the same set of operations from the Instruction Pool is applied

on different data streams Data A, Data B, etc from the Data Pool simultaneously and,

therefore, this processing can be naturally parallelised.

A certain application can benefit from SIMD implementation if it involves a large

number of the same repetitive operations applied on a large number of data bits. Many

DSP applications satisfy this condition. For example, the correlation described by the

Equation (2.1) consists of a number of simple mathematical operations, namely

multiplication and addition which are applied to the same data set – samples of input

signals. Hence, computation of a single sample of a correlation function involves a

precisely calculated number of calculation routines on a certain input sample. These

routines can be successfully parallelised thus attaining a speed-up in the performance

which consecutively leads to power conservation and increased throughput.

Real-life SIMD implementation examples include Intel’s MMX processors, their

AMDs counterparts – 3DNow! Processors, Graphics Processing Units of PC video

cards, and many others. The SIMD model is applied in large-scale supercomputers as

well.

2.3.5 FPGAs as a DSP Tool

Another prominent tool for parallelisation is a maturing field of FPGAs, which has

drawn massive attention in recent years from leading electronics developing vendors

and designers throughout the world. Recent profound advances in the Field

Programmable Gate Array area demonstrate that signal, image and video processing

applications which are typically implemented on FPGAs, comprise complicated

D
at
a
P
o
o
l

Instruction Pool

Data A

Data B

Data C

…

Chapter 2. Theory Background and Related Work

26

calculations over a large amount of streaming data. These applications can gain

substantial speed-up from available on-chip parallelism (Guo, Najjar, Vahid, & Vissers,

2004). The technological background of FPGAs is discussed in more details in 3.1.1.

An FPGA is a semiconductor device containing programmable logic blocks which

can be interconnected and configured to meet the desired functionality specified by a

certain application. Once an FPGA is programmed it operates as optimised hardware

developed for a particular task. Designs incorporating FPGAs have at least two

significant advantages in comparison with DSP devices and ASICs:

• Parallelism – the ability to perform several operations in parallel and therefore

performs faster;

• Reconfigurability or, in other words, the ability to be customised for a certain

application.

FPGAs’ parallelism feature allows them to perform more operations at a single

clock cycle than their conventional processing counterparts. Therefore, FPGAs operate

at much lower frequencies than their conventional processing counterparts while

achieving similar or even greater performance results. Lower operational frequencies

lead in turn to lower power consumption, which has become one of the most crucial

issues in recent years and is predicted to play an ever more dominant role in the

foreseeable future of high-performance computational systems (Beckman, 2008). In-

depth background of FPGAs is given in 3.1.1.

In the past years, the computational capabilities of commercially available FPGAs

even overcame some commercially available CPUs in terms of achievable performance

– see Figure 2.5.

Chapter 2. Theory Background and Related Work

27

Figure 2.5. Moore's Law in the CPU and FPGA World (Chen Chang, 2005)

Figure 2.5 demonstrates millions of floating point operations per second (MOPS)

achievable by the FPGA representative (Xilinx FPGA) and the CPU representative

(Intel Xeon CPU) throughout their release dates. FPGA field is already renowned as a

new computational paradigm (Ekas, 2007; Phillips, Littlefield, Dahlgren, & Ciufo,

2007) by the research community.

Nevertheless, along with prominent beneficial features FPGAs have certain

challenges and drawbacks. First of all FPGAs are configured with low-level hardware

programming languages which incur considerable programming and debugging efforts.

Furthermore, all of the interfaces and features present on FPGAs have to be explicitly

configured for each particular application/design. This and other challenges in FPGA

programming discussed in 3.1.2, complicate the utilisation of FPGAs for DSP

applications.

2.3.6 CPU+FPGA Hybrid Approach

Several approaches exist to overcome the challenges of FPGA programming. One is to

employ high-level software programming tools and languages for hardware

programming. This approach will be discussed in more detail in 3.1.3. Utilising

software high-level programming languages for FPGA designs development

intrinsically links to an approach which is sometimes called hybrid CPU+FPGA

architecture.

Chapter 2. Theory Background and Related Work

28

More and more researchers express their interest towards a mutual operation of

commodity computational means (eg CPUs, DSPs and even HPC servers) along with

reconfigurable hardware (FPGAs). Some regard it is as an “optimal solution” (Milrod,

2006) and others merely acknowledge its persuasive benefits along with intrinsic

challenges (Andrews et al., 2004; Tahernia, 2005). The CPU+FPGA approach may

ease the tedium of designing FPGA applications by bridging the gap between more

familiar software development tools and challenging hardware development tools of

FPGAs. Besides,in CPU+FPGA architecture a design can employ the benefits of both

conventional processing methods and optimised hardware implementation. A number of

DSP applications can effectively employ this hybrid and flexible architecture. The next

chapter introduces and discusses CPU+FPGA architecture in more detail.

2.4 Chapter Summary

This chapter introduces the background of the investigated problem. The following

typical computationally-intensive DSP applications employing cross-correlation of

signals are discussed: radio astronomy, RADAR applications, medical applications,

and telecommunication.

The theory of the targeted cross-correlation problem with the focus on digital

implementation of correlation is described. This is followed by a discussion on the

computational requirements of the modern DSP applications. Traditional technologies

(DSPs and ASICs) for performing DSP applications are considered along with methods

of implementation of large-scale DSP applications (HPC). Their features and existing

challenges are discussed.

Further, FPGAs as a potential tool to achieve performance acceleration for DSP

algorithms are discussed. The CPU+FPGA hybrid approach is introduced.

Chapter 3. Hybrid CPU+FPGA Architecture

29

CHAPTER 3

Hybrid CPU+FPGA Architecture

The future is always beginning now.

—Mark Strand

This chapter outlines the investigated CPU+FPGA architecture and highlights its

potential advantages and challenges. Employment of this architecture for high-

performance DSP applications is discussed along with the applicability of contemporary

hybrid reconfigurable computing systems for performing these applications.

There are a number of solutions on the market when FPGAs are deployed inside a

computer system, eg Cray XD1, SGI RASC, Nallatech H100 family blades for IBM

BladeCenters, XtremeData, and SRC Computers with their proprietary MAP

reconfigurable processor architecture. This option is of particular interest in this work

since such architecture has a computational power of a general-purpose processor

(GPP), along with an FPGA’s flexibility of reconfigurable hardware, and, therefore, the

possibility for performance acceleration of DSP applications through parallelisation.

3.1 Hybrid CPU+FPGA Architecture

The hybrid technology implies simultaneous work of an FPGA chip and a CPU of a

commodity PC in one system. It might be particularly advantageous for such DSP

applications such as antenna aperture synthesis, radio imaging, RADAR, radio

astronomy, high-energy physics etc. A common and very computationally-intensive part

in the above-mentioned applications is the multi-channel wideband correlation of

signals. Such correlation can be implemented in a parallelised manner in an FPGA.

Depending on the type of correlation (XF or FX) (Thompson et al., 2001b) both floating

and fixed point numbers can be successfully and efficiently targeted to work on this

architecture involving either a CPU or an FPGA as required.

In addition, reasonably decreasing prices of FPGA devices and the off-the-shelf

availability of hardware architecture, place the CPU+FPGA approach as a promising

alternative to the large-scale and high-cost correlators such as CABB Correlator (Ferris,

Chapter 3. Hybrid CPU+FPGA Architecture

30

2006) or various software correlators (A. В T. Deller et al., 2007; Kawaguchi et al.,

2006; West, 2004). If the interface between a CPU and an FPGA is established and has

low latency, architecture can offer a flexible and powerful platform (Andrews et al.,

2004; Milrod, 2006). CPU+FPGA architecture can also be more convenient as the CPU

can be utilised to work with un-parallelisable tasks (fetching and streaming data

samples into an FPGA, acquisition of correlated data, etc.) whereas an FPGA can be

utilised for actual correlations (multiplication and accumulation operations).

3.1.1 FPGA Technology

Inception of FPGAs dates back to 1960s when Gerald Estrin’s group at the University

of California at Los Angeles did one of the first works on reconfigurable computing

(Estrin, 1960, 2002). In 1984 Ross Freeman, co-founder of Xilinx Corporation invented

a new type of semiconductor device which is now known as the Field Programmable

Gate Array (Xilinx Inc., 1984).

FPGAs are historically connected to complex programmable logic devices

(CPLDs). Figure 3.1 demonstrates that they belong to the same group called field-

programmable logic (FPL):

Figure 3.1. Classification of VLSI Circuits (Meyer-Baese, 2004a)

Chapter 3. Hybrid CPU+FPGA Architecture

31

The structure of an FPGA is an evenly-spaced two-dimensional array tiled with

logic blocks – Configurable Logic Blocks (CLBs). Each CLB represents a simple

memory used as a lookup table and flip-flops for buffering. CLBs communicate with

other logic blocks via a programmable interconnection network – see Figure 3.2.

Figure 3.2. FPGA Internal Structure (Buell, El-Ghazawi, Gaj, & Kindratenko, 2007)

The peripheral blocks of an FPGA are I/O blocks (IOB in Figure 3.2) dedicated

for communication between internal logic blocks and the I/O pins. Modern FPGAs’

architecture features on-chip memory blocks as well as dedicated circuitry to perform

DSP operations - DSP blocks.

The difference between FPGAs and said CPLDs lies in the granularity of a

device, which designates the level of complexity of completing the routing between the

blocks. Thus, FPGAs fall in the medium granularity devices group while CPLDs in the

large granularity devices group. This distinction comes from the fact that CPLDs

comprise simple programmable logic devices (simple PLDs or SPLDs) with common

densities of several thousand to tens of thousands of logic gates, whereas FPGAs

normally contain tens of thousands to several millions of logic gates.

In order to define the behaviour of an FPGA it needs to be programmed with a

configuration bit stream first. These bit streams are generated from structural register

transfer level (RTL) specifications expressed by a user in the form of the HDL

descriptions – most commonly Verilog or VHDL. These HDL descriptions are created

Chapter 3. Hybrid CPU+FPGA Architecture

32

by hardware designers and follow the design flow demonstrated in Figure 3.3 before the

configuration stream is created.

Figure 3.3. Low-level FPGA Design Flow (Gokhale & Graham, 2005)

The “Logic Synthesis” stage translates design descriptions in Verilog or VHDL

into an optimised gate level representation. Along with Verilog and VHDL, hardware

design descriptions can be done in schematics (Betz, Rose, & Marquardt, 1999). FPGA

manufacturers supply their development tools with a number of predefined functions –

intellectual property (IP) cores to simplify the development of complex FPGA designs.

For example, Altera features such IP Cores (MegaCore functions) as PCI Express

Compiler to create PCIe interface on the boards featuring PCIe connector, FFT, DDR

Controller and others. During “Technology Mapping” stage, design primitives are

converted into the netlist of physical resources on a selected FPGA chip. “Logic

Placement” and “Signal Routing” stages are often combined in the literature and

referred to as the “Place-and-Route” phase. This stage calculates and performs the most

effective placement and interconnection of each mapped logic block on the specified

device. Then, the last stage generates programming bitstream, which will configure

various resources as required. Normally, the aforementioned stages are executed by the

Chapter 3. Hybrid CPU+FPGA Architecture

33

proprietary tools from FPGA vendors. The results of each stage can be verified by the

designer by means of timing analysis and simulation. A number of simulation tools are

available from various vendors, eg ModelSim from Mentor Graphics.

3.1.2 Challenges in FPGA Programming

Nevertheless, the very flexibility that makes FPGAs so universal and beneficial at the

same time imposes a considerable challenge on the whole RC design process (Andrews

et al., 2004; Tahernia, 2005; Wain et al., 2006). The following are the most prominent

of the challenges that need mentioning:

1. A priori unawareness of FPGA about its I/Os. This issue implies that an

FPGA initially knows nothing about how to communicate with external

world. Any interface featured on an FPGA board has to be instantiated and

configured in low-level specifications. To mitigate this FPGA vendors

provide IP cores for most common interfaces. Robust, high-speed and low-

latency I/O interfaces are a crucial component in the DSP paradigm

(Milrod, 2006).

2. Compilation process and compilation time. Unlike conventional software

programming where compilation normally takes seconds to minutes,

hardware compilation is a complex task (see Figure 3.3) and may take

hours to complete.

3. Storing variables in explicit memory hierarchy. In HDL each program

variable has to be stored in the chosen memory type: external memory, on-

chip memory, logic blocks configured as memory or registers. Changing

the type of the selected memory might cause changes throughout the

whole design (Gokhale & Graham, 2005).

4. Implicit hardware state in FPGA and complicated debugging. Debugging

of the hardware design has to be carried out at the granularity of

nanoseconds which is complicated by the lack of transparency of the

hardware’s state on FPGA (Gokhale & Graham, 2005)

5. Significant difference in hardware design flow and conventional software

design flow. This issue is discussed in more detail in the next section.

Chapter 3. Hybrid CPU+FPGA Architecture

34

3.1.3 High-Level Programming for Hybrid Architectures

The overall complexity of FPGA programming has been extensively studied in recent

years and a number of solutions have been developed. Hardware and software design

flows are considerably different. The general case of software and hardware design

flows is depicted in Figure 3.4.

(a) (b)

Figure 3.4 Hardware (a) and Software (b) Design Flows (Wain et al., 2006)

Chapter 3. Hybrid CPU+FPGA Architecture

35

A significant difference in the depicted flows is that software developers have a

certain level of abstraction from the developed product. For example, virtual memory,

hardware, cache, etc are determined by a processor’s architecture in software flow,

whereas in hardware flow these low-level design parameters have to be explicitly

configured in every design. Ultimately, the hybrid CPU+FPGA architecture should

envision transparent work with CPU and available FPGA resources as a seamless and

integral computational system (Andrews et al., 2004). The mentioned level of

abstraction is located on top of the RTL - see Figure 3.5.

Figure 3.5. FPGA Electronic System Level (ESL) Approach (Xilinx Inc.)

The ESL Design Ecosystem approach shown in Figure 3.5 was developed by an

international initiative launched by Xilinx Company, comprising a wide array of

Ecosystem members. The original intention of this initiative is to deliver accessible and

understandable tools for software designers, so they can develop hardware designs

using traditional programming techniques.

It should be noted that C-based languages were never actually designed to employ

parallelism in reconfigurable FPGA hardware. Therefore, each solution for high-level

FPGA programming using sequential languages has to be able to employ algroeithm's

parallelism and be aware of available resources of the targeted FPGA by means of

libraries, support packages, etc (Baran, Bodenner, & Hanson, 2004; Wain et al., 2006).

During several years of activity, the ESL Design Ecosystem Initiative has

developed a number of solutions: ImpulseC from Impulse Accelerated Technologies;

Mitrion SDK from Mitrionics™, Inc; Cascade from CriticalBlue and many others.

Many of the tools from and outside of the ESL Design Ecosystem Initiative were tested

Chapter 3. Hybrid CPU+FPGA Architecture

36

and appraised for this work. The following criteria were used to determine the most

applicable tool for this work:

1. Support of the selected hardware (see 4.2) or ability to generate HDL

projects for non-specific platforms.

2. The tool’s input must be high-level programming language (C, C++, C-

like languages, etc).

3. Applied approach to extract parallelism: automatic, pragmas, manual

adaptation of the input code, etc “Closeness” of implemented examples

and tutorials to the selected application of multi-channel wideband

correlation.

4. The tool has to produce synthesisable HDL code (Verilog or VHDL).

5. Evaluation option has to be present and the tool has to be affordable within

the available budget (academia licence or alternatives).

Many of the tools were eliminated from consideration because they work only

with a limited number of platforms, eg Mitron, Clarity from Mimosys, SystemCrafter

SC, Reconfigurable Computing Toolbox r2.0 by DSPlogic, CoreFire by Annapolis

Micro Systems etc. Some of the considered products like Sturbridge’s Viva are merely

graphical composition tools working with AND, OR, etc gates and logic operators,

which can produce generic HDL codes. These type of tools do not deliver the necessary

level of abstraction. Other tools were already near a defunct stage (Celxoica) or only at

a really maturing stage (CHiMPS by Xilinx Research Labs).

DIMEtalk from Nallatech proved to be an interesting option. Although this tool

primarily targets Nallatech’s and Xilinx’s boards, there is an option of generating HDL

designs for generic platforms. However, the C to HDL conversion feature of DIMEtalk,

which is positioned as additional and supplementary, was confirmed as insufficient for

this project during evaluation of DIMEtalk product: DIMEtalk’s approach of

developing algorithms in high-level graphical interface was deemed too obscure and

complex for selected application of multi-channel correlation.

Mitrion SDK (www.mitrionics.com) and DK Design Suite from Celoxica

(www.celoxica.com) from the aforementioned instruments use pseudo-C languages

such as Mitrion-C and Handel-C respectively. These languages explicitly express

parallelism available in input design unlike the above-mentioned compilers and

converters, which automatically seek for parallelism in the ingress code.

Chapter 3. Hybrid CPU+FPGA Architecture

37

Catapult from Mentor Graphics is also a very promising tool, which unfortunately

was not appraised since the manufacturer does not provide evaluation licences to

academia.

Outside of Xilinx's ESL initiative are free Open Source projects from Los Alamos

National Laboratory: Trident Compiler (Tripp, Peterson, Ahrens, Poznanovic, &

Gokhale, 2005) and sc2 (Gokhale, Frigo, Ahrens, Popkin-Paine, & Stone, 2004) which

both convert C or C++ code into synthesizable VHDL code and run under Linux

operating system.

The XD1000 development system, which is used in this project, supports Impulse

CoDeveloper from Impulse Accelerated Technologies and therefore it was selected as

the main high-level FPGA programming tool. Selection of the XD1000 system and

Impulse CoDeveloper tool highlights are given in sections 4.2.2 and 4.3.2 respectively.

3.1.4 Hybrid Systems

As it was mentioned before, many manufacturers eye the reconfigurable hardware as an

integral part of the high-performance processing. Most of the top off-the-shelf

manufacturers of high-end computing systems utilise FPGAs from other vendors and

use them as small building blocks in their own solutions. The following solutions

employ hybrid CPU+FPGA architecture:

� MAP processors for SRC-6 and SRC-7 systems from SRC Computers,

Inc.

� XD development systems from XtremeData, Inc.

� Cray XR1 blade for XT5 system from Cray, Inc.

� SGI RC 100 blade (SGI RASC Technology) from Silicon Graphics, Inc.

� Nallatech H100 family blades for IBM BladeCenters from Nallatech, Inc.

A most interesting option in the context of this project is the XD family

developments system from XtremeData.

Another vendor successfully employing both GPPs and FPGAs is XtremeData

(www. xtremedatainc.com). At the very early stage, the company’s primary target was

creating a fully-integrated Analytics Appliance for the Decision Support Systems

applications. To sustain an intensive SQL query-processing characteristic for these

applications, XtremeData came up with their primary IP component – FPGA-based In-

Chapter 3. Hybrid CPU+FPGA Architecture

38

Socket Accelerators™. The efficiency of these accelerators was so compelling that the

company began producing stand-alone FPGA-based In-Socket Accelerators. All of the

XtremeData products (as of Autumn 2008) feature Altera-produced FPGAs – namely

Stratix II family devices. The first generation accelerator – XD1000™ features one

Stratix II EP2S180 device, whereas the second generation of accelerators – XD2000F™

and XD2000i™ devices (for AMD's Socket F architecture and for Intel FSB

respectively) have two and three Stratix II FPGAs respectively. Such architecture with

multiple FPGAs allows employing one of the chips as a communication bridge, while

the rest perform actual application processing.

Most importantly, the XD1000 development system features the XD1000

Platform Support Package (PSP) for Impulse CoDeveloper, which enables full

integration with Impulse C. This system will be used in this work and its exact role is

given in 4.1.

However, having rigid and well-established I/O interfaces is one of the key

aspects in DSP paradigm. Practically all of the aforementioned high-performance hybrid

systems (eg XD1000, Cray XR1 etc.) lack data acquisition interfaces, thus making all

their extensive computational powers and parallelisation capabilities unavailable for

real-time high-performance DSP applications where high-speed I/O data interfaces are

integral.

To overcome this shortcoming a prominent research group located at the

University of California, Berkeley has developed the Berkeley Emulation Engine 2 or

shortly BEE2 (C. Chang, Wawrzynek, & Brodersen, 2005). BEE2 is a high-end

reconfigurable computer (HERC) consisting of computer modules connected through a

global communication network. Figure 3.6 shows a block diagram of the BEE 2

computer module.

Chapter 3. Hybrid CPU+FPGA Architecture

39

Figure 3.6. Block Diagram of BEE2 Computer Module (C. Chang et al., 2005)

Each computer module has five Xilinx Virtex 2 Pro 70 FPGAs directly connected

to DRAM memory modules with a total capacity up to 4 GBytes per FPGA. The central

FPGA is programmed as a CPU and performs functions of control module. The rest of

the FPGAs are used for computation. According to experimental results, such

architecture can outperform DSP chips by a factor of 10 for the Correlator application.

However, the BEE2 is a proprietary CPU+FPGA solution with custom hardware,

I/O and memory interfaces. A hybrid system developed on a commodity CPU with off-

the-shelf available FPGAs would offer a much more flexible and affordable framework

for application development. The following section discusses the system built with

COTS components and yet targeting similar computational performance as the BEE2.

3.2 Proposed High-Performance Hybrid DSP System

As a building block for the high-performance hybrid DSP system, COTS personal

computer (PC) is one of the most applicable options. Modern PCs feature a wide variety

of high-speed communication interfaces for connecting external board with

Chapter 3. Hybrid CPU+FPGA Architecture

40

reconfigurable hardware and contemporary multi-core CPUs yield substantial

processing power. Most importantly, PCs are widely spread and easily accessible.

Vendors of reconfigurable hardware issue their products with many interfaces and

features:

• On-board memory of various sizes and data exchange rates (DDR

SDRAM and DDR2 SDRAM, QDR, SRAM, etc).

• A wide variety of available communications interfaces: SFP, HSMC, PCI

family, HyperTransport, Ethernet family etc.

• The hardware is supplied with different range of development tools, IP

cores, simulation and debugging software.

For the proposed high-performance hybrid DSP system, the reconfigurable

hardware can be plugged in a host PC via supported high-speed interfaces such as PCI

Express. Figure 3.7 shows an example of the proposed high-performance hybrid DSP

system.

EMI-shielded box

PC

PCIe board

FPGA

CPU

RAM

Transceivers

SFP

HDD

PC

PCIe board

FPGA

Transceivers

SFP

Low-latency

network

controller

DMAEMI-shielded box

ADC

ADC

multi-channel

multi-channel

Gigabit Ethernet

Network

switch

Gigabit Ethernet

Network

switch

MPI

or

TCP

PCIe

Software application:

•controlling

•additional processing and

computation

Main

processing

CPU

RAM HDD

Low-latency

network

controller

DMA

Software application:

•controlling

•additional processing and

computation

Main

processing
PCIe

Figure 3.7. Framework for High-Performance Hybrid DSP System

The example system in Figure 3.7 captures data coming from sources (antennas)

via two multi-channel ADCs. Further, the data is passed directly to FPGA processing

Chapter 3. Hybrid CPU+FPGA Architecture

41

cores via high-speed on-chip transceivers. The FPGA boards are plugged into the PCIe

interfaces of two PC boxes. One of the principal features of the proposed system is the

capability to process live data in a real-time fashion.

The diversity of the on-board interfaces in Figure 3.7 demonstrates how these

interfaces can be utilised for creating scaled and more efficient systems. If required,

communication between two PCIe FPGA boards can be established via either SFP

interfaces or Gigabit Ethernet. Similarly, communication can be organized between two

PC boxes using separate network controllers (eg by MPI), which allows to carry out

complex and distributed high-performance DSP applications. Ultimately, the proposed

system is highly scalable: PC and ADCs boxes in Figure 3.7 can be regarded as building

blocks for hypothetical DSP systems capable of performing various computationally

intensive tasks, eg aperture synthesis for large-scale antenna array. The number of

channels, resolution, and bandwidth can be scaled up by using multiple CPU+FPGA

boxes.

3.3 Chapter Summary

The above discussion outlines the benefits along with the challenges of the joint usage

of commodity processing means (ie CPUs) and reconfigurable hardware (ie FPGAs).

Albeit, the effectiveness of deploying FPGAs in high-end signal processing applications

also involves a considerable amount of complexity in developing designs in FPGAs as it

was described in section 3.1.2. Firstly, and most importantly, because of the fact that

hardware description languages (eg VHDL and Verilog HDL) are low-level languages

describing hardware behaviour, they are generally challenging to work with. Moreover,

unlike conventional software development, the process of hardware design requires

careful parallelism consideration, ie in FPGAs all state transitions occur simultaneously

according to a specified clock.

The initial intention of a software developer working with FPGAs is to use

“standard”, conventional, and typical programming design tools. In other words, a

certain degree of abstraction from hardware is desired, which ideally will allow a

developer to focus on a functional part of the design rather than the implementation

details (Andrews et al., 2004; Fingeroff, Gardner, & Hogan, 2007; Wain et al., 2006).

Currently several approaches exist, which allow utilizing conventional methods of

programming for hardware design.

Chapter 3. Hybrid CPU+FPGA Architecture

42

The next chapter outlines the methodology applied in his work, which addresses

these issues.

Chapter 4. Methodology and Design Flow

43

CHAPTER 4

Methodology and Design Flow

We can't solve problems by using the same kind of thinking we used when we created

them.

—Albert Einstein

This chapter outlines the overall project roadmap towards the proposed high-

performance hybrid DSP system. This is followed by a selection of the respective

hardware in support of the outlined project design flow. A selected development

hardware platform defines the development software required for each stage of the

project design flow.

4.1 Project Design Flow and Methodology

In order to evaluate and demonstrate the capabilities of the high-performance hybrid

DSP system proposed in 3.2 the following project roadmap was established:

Stage 1. Feasibility study of cross-correlation implementation using a traditional

hardware development environment. Create a simple correlator model in

HDL and evaluate development effort.

Stage 2. Implement software (in C code) multi-channel cross-correlation of a

model signal with added non-coherent noise. Define problem size

(correlator lags and number of channels). Measure performance of the

software correlator on conventional CPU.

Stage 3. Using integrated support of C-to-HDL tool on XD1000 development

system convert the correlation software program into synthesizable RTL

design. Then the hardware correlator processes the same simulated

signals and its performance is measured.

Stage 4. Using applicable PCI Express FPGA board develop I/O framework for

one PC module of the high-performance hybrid DSP system discussed in

3.2.

Chapter 4. Methodology and Design Flow

44

Stage 5. In order to supply the input data into hardware design and maintain

control and management functions, develop a relevant software control

application.

To implement the outline stages of this project design flow, appropriate

development hardware should be selected. A reasoning of the hardware equipment

choice is given in 4.2. That is followed by a discussion on selected development

software products in support of the development hardware.

4.2 Development Hardware Platform

The market of reconfigurable hardware is rapidly expanding with new devices coming

out regularly, each with more advanced capabilities and larger resources. Presently,

there are two main market leaders in FPGA area – Xilinx and Altera. Although, there

are other FPGA-chip manufacturers like Lattice Semiconductor, Actel, and Atmel, their

products are not as widely supported as Xilinx’s and Altera’s. Other FPGA

manufacturers merely employ the chips created by the aforementioned vendors. The

FPGA chips of both vendors drastically differ in terms of available logic elements,

available I/O pins, on-chip memory blocks, embedded DSP multipliers, PLLs, etc.

There is a history of using Altera’s products in Auckland University of

Technology. Existing licence agreements, established development environments, and

accessibility at the time of research of Altera’s devices, pre-determined the choice of the

hardware required to implement project design flow in 4.1

4.2.1 Nios II Development Kit Cyclone II Edition

To estimate traditional development process of the selected application of multi-channel

cross-correlation for reconfigurable hardware (Stage 1 in 4.1), an initial feasibility test

was undertaken. A trial hardware correlator’s design was implemented. A functional

block diagram of Nios II development kit is given in Figure 4.1.

Chapter 4. Methodology and Design Flow

45

Figure 4.1. Top view of the Nios II development kit (Altera Corporation, 2007c)

The trial hardware correlator’s design was implemented on Nios II Development

Kit Cyclone II Edition from Altera Corporation. This board has Cyclone

II EP2C35F672 FPGA, which is a low-cost device featuring 33,216 Logic Elements

(LEs), 483,840 total RAM bits and 35 embedded multipliers. The board also has MAX

configuration control logic, 2 MB SRAM, 16 MB DDR SDRAM, 10/100 Ethernet

connector, serial RS-232 interface and other features. Particularly, it targets developing

system-on-a-programmable-chip (SOPC) designs and supports Altera’s Nios II family

of embedded processors. This kit is an ideal environment for initial experiences with

FPGAs in general and for developing cost-sensitive embedded applications. Most

importantly, the whole development environment was already established and

accessible at the time of conducting this test. See the full details of this development in

5.2.1.

4.2.2 XD1000 Development System

To implement Stage 3 of the project design flow in 4.1 XtremeData's XD1000™

development system was used. This system employs CPU+FPGA architecture by

comprising one COTS AMD Opteron processor and one FPGA-based In-Socket

Accelerator™ – Stratix II EP2S180 device plugged into one of the processor sockets of

Linux-based PC tower. The FPGA uses available motherboard infrastructure creating a

Chapter 4. Methodology and Design Flow

46

full-featured CPU+FPGA architecture. Block diagram of XD1000 development system

is given in Figure 4.2.

Figure 4.2. Block diagram of XD1000 development system (XtremeData)

Communication between the EP2S180 and Opteron is maintained by two

HyperTransport links, 3.2 GB/s each. Such high-speed low-latency interface with a

high-bandwidth data flow is necessary for tightly coupled acceleration of an application.

The reconfigurable hardware is Stratix II EP2S180F150C3 chip with substantial

resources – 179,400 LEs, 9,383,040 of total RAM bits and 384 18×18-bit multipliers.

The FPGA can be programmed via a USB cable and up to four configurations can be

stored in XD1000 onboard memory. The system also supports a power-up self-

configuration scheme common for many FPGA devices. The development system

comes with traditional Altera’s development tools – Quartus II, SOPC Builder. A

reference design is also provided to aid the development efforts.

4.2.3 PCI Express Development Kit Stratix II GX Edition

For implementing Stage 4 of the project design flow in 4.1 PCI Express Development

Kit Stratix II GX edition from Altera Corporation (Altera Corporation, 2007d) was

considered the most applicable tool at the time when the choice was made (September –

Chapter 4. Methodology and Design Flow

47

November 2006). Figure 4.3 shows a functional block diagram of the Stratix II GX PCI

Express development board and introduces most of the board’s interfaces and features.

Figure 4.3. Stratix II GX PCI Express Development Board (Altera Corporation, 2007d)

This board possesses three crucial features for the targeted high-performance DSP

applications: the ability for data acquisition (eg through High-Speed Mezzanine

Connectors (HSMC or HMC) with six on-chip transceivers routed to them – J1 and J2

in Figure 4.4), PCI Express or PCIe interface for data exchange and is reasonably low

cost compared to the number of available interfaces. The board has PCIe ×8 interface,

which allows it to be plugged into the PCIe bus of a commodity PC and achieve a data

exchange rate of up to 250 MB/s in each lane in each direction or up to 2 GB/s in each

direction in total for the board. The PCIe interface surpasses the majority of the

communication interfaces mentioned above: thus, for example PCI-X 1.0 interface

achieves only 1,066 MB/s at 133 MHz (PCI Special Interest Group, 1999) or 1 GB per

second for the Gigabit Ethernet. Top view of the development board is given in Figure

4.4.

Chapter 4. Methodology and Design Flow

48

Figure 4.4. Top View of the Stratix II GX PCIe Development Board (Altera Corporation, 2007d)

The featured FPGA - Stratix II GX chip (U10 in Figure 4.4) is a very powerful

chip and the Stratix II family was considered a flagship of Altera’s devices at the time

of development. The chip used on the board has 90,960 LEs, 16 transceivers, more than

4 Mb of on-chip RAM and 48 DSP blocks. The latter ones can be configured into a

dedicated circuitry which can perform multiplication, multiply-accumulate (MAC) and

multiply-add functions with high efficiency. Such a feature is particularly beneficial for

DSP applications in general and for the proposed system in particular.

Another advantageous feature of this board is the high-speed Mezzanine

connectors, which are routed to the transceivers inside the Stratix II GX chip. This

option allows direct, intermediate data acquisition (eg from ADCs) and further

streaming of it into the chip for immediate processing. Hence, such workflow implies

the possibility of employing the FPGA chip in real-time processing. This aspect

significantly increases the capabilities range of this board in the DSP applications

domain. Although, real-time correlation is not targeted for implementation in this

particular project, it remains as one of the objectives for the future work (see 7.2).

In this work the PCI Express Development Kit Stratix II GX edition is used to

develop an I/O framework for the targeted high-performance hybrid DSP system. As a

jump-start and to ease the development efforts, the PCI Express to DDR2 SDRAM

Chapter 4. Methodology and Design Flow

49

Reference Design from Altera Corporation will be used as a foundation for the

framework (see 5.4.1). The developed framework on the PCI Express Development Kit

also serves as a building block for a scalable projected system for performing high-

performance DSP applications (see 3.2).

Stage 2 and 5 require traditional software development tools and have been

implemented on a conventional PC.

4.3 Development Software Tools

Once the hardware platforms for implementing the stages of the project design flow in

4.1 were selected, respective software development tools had to be selected. Stage 1 and

Stage 4 require traditional hardware development tools, which are discussed in 4.3.1.

Whereas Stage 3 employs new hardware design methodology, which is discussed in

4.3.2. Section 4.3.3 discusses software development tools required for Stage 2 and Stage

5.

4.3.1 FPGA Development tools

Presently, there are a number of tools which are capable to work with FPGAs. Firstly,

the development tools which are supplied by two main FPGAs’ vendors Xilinx and

Altera – ISE and Quartus II. For the selected Altera’s PCI Express Development Kit

Stratix II GX edition and XD1000 development system, the major development tool is

Quartus II software.

At the very early stage of the project development, Altium Designer (Altium

Limited, 2008) was considered as the primary instrument in design development.

However, at the inception of the project the most recent version 6.1 (early 2007) of

Altium Designer demonstrated a significant disadvantage for this project: there was no

support for Altera’s IP cores (MegaCore functions or Megafunctions in Altera terms)

through which the majority of the interfaces are implemented. Besides, Altium did not

offer any link to the MATLAB environment unlike Quartus II, which has the DSP

Builder. Therefore, a decision was taken to revert to Quartus II software.

Quartus II development software is a complete design environment for developing

hardware designs for Altera’s hardware products. It supports complete design flow:

Chapter 4. Methodology and Design Flow

50

Figure 4.5. Design Flow in Quartus II Software (Altera Corporation, 2007e)

Besides, Quartus II offers various design entry methods: from low-level hardware

description languages (Verilog, VHDL or AHDL - Altera Hardware Description

Language, propriety HDL language of Altera), to high-level visual means (schematics

and block diagrams). It comprises several unique design-aid features, eg Incremental

Compilation aimed for reducing compilations or SignalTap Logic Analyzer for on-chip

design debugging purposes. The latter utility captures internal data and service signals

based on preset triggers and stores them for the following analysis (Altera Corporation,

2007a). It was extensively used for debugging I/O framework design (5.4.2). The

majority of the work was done in Quartus II version 7.2 with compilations for the

XD1000 development system done in Quartus II version 8.0.

Apart from Quartus II, several other of Altera’s development products were also

employed: for Stage 1 of the project design flow in 4.1 the DSP Builder was used to test

the concept of correlator implementation in FPGA. This software operates as the

Translator in Figure 4.7. This is achieved by amalgamating the Simulink/MATLAB

environment with Quartus II projects using a specific DSP Builder Advanced Blockset

– a Simulink library developed by Altera. The precise role of the DSP Builder is

revealed in 5.2.1.

Chapter 4. Methodology and Design Flow

51

Quartus II development set-up follows Altera’s workflow recommendations and is

shown in Figure 4.6.

JTAG

Development computer

with Quartus II

(Computer #1)

Host computer with

development board

(Computer #2)

USB

Blaster

PCIe

Figure 4.6. Development Setup for PCI Express Development Kit Stratix II GX edition

PCI Express Development Kit is plugged into a host computer (Computer #2) via

the PCIe connector. The Stratix II GX FPGA is configured by means of JTAG. The

board also features MAX II CPLD (U4 in Figure 4.4) which is also used for FPGA

configuration from the pre-loaded on-board flash memory (U3 in Figure 4.4). The

development computer (Computer #1) carries development software and programs the

board. After the FPGA is programmed, Computer #2 requires a reboot to instantiate the

device in the operating system. It hosts software control applications developed with

WinDriver applications. In the case of the Nios II Development Kit, the development

computer acts as the host computer as well and the kit is connected via the USB blaster.

The ModelSim Altera edition from Mentor Graphics was also used during one of

the development stages in the project. This tool offers a comprehensive, functional and

behavioural simulation and debug environment for complex FPGA designs.

Particularly, for this project this tool will be used for testing and debugging of certain IP

cores from Altera. This is also discussed more broadly in Chapter 5.

4.3.2 New Hardware Design Methodology

To implement Stage 3 new design methodologies different from the traditional, has to

be applied. Traditional top-down design methodology can be divided into two separate

design domains: algorithm development and system implementation. The nature of both

domains is entirely different even to the point of contradiction. Algorithm or system

developers work in high-level programming environments such as MATLAB and

Simulink and rarely C-based languages. The primary goal of an algorithm developer is

algorithm accuracy and system functionality. A system development team outputs

Chapter 4. Methodology and Design Flow

52

system descriptions to a hardware development team. In turn, hardware design teams

implement the specifications created by the systems engineers and algorithm developers

in the targeted hardware: whether it is an FPGA, ASIC, SOC, DSP, microprocessor, etc.

Throughout all of the hardware design stages various design verification routines

(checks, simulations and analyses) are performed (Meyer-Baese, 2004b). These

verification routines are a part of an iterative, communication process between

algorithm developers and hardware engineers with the purpose of refining the

algorithms and system architecture until all the design requirements are met. Quite

often, this process takes many numbers of man-hours to track down a relatively simple

problem in the design, mainly due to inefficient interaction between the two domains.

This gap has been acknowledged and explored by many researchers (Andrews et

al., 2004; Ganousis, 2004; Hill, 2006; Leow, Ng, & Wong, 2006; Meyer-Baese, Vera,

Meyer-Baese, Pattichis, & Perry, 2006; Tahernia, 2005; Urbanek & May, 2004). Even

two leading FPGA vendors, Xilinx and Altera, acknowledged the missing link between

the two development fields and offered their own approaches in this direction: (Turney,

Dick, Parlour, & Hwang, 2000) and (Altera Corporation, 2002) respectively. It is

envisioned by the majority of the researchers that this can be achieved by establishing a

certain medium between the two domains, which will effectively analyze system

requirements, automatically create RTL models and so that the rest of the hardware

implementation cycle can be performed. This flow is illustrated in Figure 4.7.

Chapter 4. Methodology and Design Flow

53

Hardware Implementation

Design

Source Code
Compile Debug

HDL Source

Code

Compile

Functional

Simulation

Synthesize

Translate,

Map, Place &

Route

On-chip

design

debugging

Behavioural

Correctness

Optimizations for Timing,

Area, Power, Clock

Frequency

Translator

Algorithm Development

Create HDL (or

RTL) Models

Application

specifications

Figure 4.7. New Top-Down Design Flow with Integrated System Level

Chapter 4. Methodology and Design Flow

54

The crucial part of the new design flow is the “Translator” block. The

functionality of this block can be performed by a variety of tools (see 3.1.3). In this

work, Impulse CoDeveloper version 3.20.a.5 from Impulse Accelerated Technologies

will be used.

Impulse CoDeveloper allows application developing and debugging using C

standard development environments, which are then compiled to create outputs (VHDL,

Verilog or SOPC libraries) fully compatible with Altera’s Quartus II and SOPC Builder.

The tool can produce synthesisable HDL-code (VHDL or Verilog) from an input C-

code.

As mentioned in 3.1.3 before programming, FPGA is unaware of its input and

output capabilities. While porting of software applications into hardware domain, inputs

and outputs of the transferred application have to be explicitly conveyed to. and/or

expressed in, the selected transferring tool. In the case with Impulse C, a stream-

oriented programming model for data movement, processing, and synchronization is

used. Conceptually stream-oriented programming is similar to conventional, dataflow

programming. However, unlike dataflow, stream-oriented programming offers easier

process synchronization by means of buffering and message-passing such non-dataflow

concepts as shared memories (Impulse Accelerated Technologies, 2008d). In terms of

the programming model of Impulse C, streams communicate with processes, which

represent hardware implementation of the converted software application. Each

software application can consist of a number of processes, which synchronously and

concurrently operate with each other and/or with the external world as defined in the

original software operation. The idea of Impulse C programming model is illustrated in

Figure 4.8:

Chapter 4. Methodology and Design Flow

55

Figure 4.8. Impulse C programming model

Software and hardware processes shown in Figure 4.8 represent complete

application. Software process(es) is(are) used only for desktop simulation and is(are)

generally employed with inputting/outputing data to/from hardware processing and/or

is(are) occupied with non-computationally intensive tasks. The hardware process(es)

is(are) translated into HDL descriptions and also participate in desktop simulations. The

source file of a hardware process also contains a configuration function (co-initialize

and co_-architecture_created), which assembles the whole applications, interconnects

processes, specifies shared memory locations, etc. Software and hardware processes are

stored in software (*_sw.c) and hardware (*_hw.c) source files or modules respectively.

For supported systems with respective Platform Support Package, the software module

can also interact with the synthesized and programmed hardware module. For example,

in the XD1000 development system the software program is copied on the target

XD1000 server and can start working with the hardware or can be dynamically

modified as required.

Impulse CoDeveloper is based on Impulse C – a proprietary subset of C

programming language with a compatible function library, which allows compiling

directly into optimized logic ready for synthesis and programming of popular FPGAs.

However, CoDeveloper does not offer a “push button” solution for generating ready-to-

be-programmed hardware designs from complete C-projects. Rather the application’s

Chapter 4. Methodology and Design Flow

56

code has to be comprehensively adapted and re-worked to successfully map into

reconfigurable hardware and efficiently extract algorithm's parallelism.

Moreover, to increase application speed-up in hardware Impulse C supports

additional level of control over the generated hardware code via predefined pragmas..

The first pragma is #pragma CO PIPELINE. For loops invoked with this pragma,

CoDeveloper attempts to parallelize statements within the loop trying to reduce the

number of clock cycles required to process the entire pipeline (Impulse Accelerated

Technologies, 2008e). Another pragma – #pragma CO UNROLL unrolls a loop. Unrolling

a loop implies that the code within the loop is duplicated in hardware as many times as

there are iterations in the loop (Impulse Accelerated Technologies, 2008a). Unroll

pragma can be applied to loops where the number of iterations is known during the

compile time. Theoretically, it might significantly reduce the execution time if the

number of loop iterations is relatively small. Otherwise, applying this pragma might

increase logic utilisation drastically.

As mentioned in 3.1.3, high-level programming languages like C were never

designed to configure hardware logic. Contemporary high-level tools for FPGA

programming tackle this problem in different ways. Impulse C treats the input C-code in

the form of blocks. The blocks can be divided by either:

� loop body,

� a chain of control statements (co_stream_open, co_stream_close,

co_stream_read, etc.),

� switch,

� conditional statements.

For each determined block of C code, the Impulse C’s optimizer will estimate the

minimum number of instruction stages, ie groups of C statements which can be

executed in parallel. As long as each block can consist of multiple stages,several clock

cycles might be required to execute the given block.

Impulse CoDeveloper features several simulation tools for verification and

analysis of the generated HDL code. Stage Master Explorer tool illustrates how every

block and stage of software application was realised in hardware. Stage Master

Debugger can perform sequential execution of the generated application on a cycle-by-

cycle basis.

Chapter 4. Methodology and Design Flow

57

Although Impulse provides an estimation of the required logic resources in terms

of adders, multipliers, comparators, DSP blocks, etc, the precise resource utilisation is

determined only by the vendor’s compilation tool. Similarly, the maximum clock rate in

hardware is determined by the FPGA’s synthesis tool, where a sequence of

optimisations, reductions, and combinations are applied to the compiled logic.

What is more important within the confinements of the given work is support of

XD1000 by CoDeveloper. The XD1000 PSP for Impulse CoDeveloper extends the

capabilities of XD1000: it provides an automated process of generating software and

hardware modules that execute on AMD Opteron and XD1000 co-processor modules

respectively. The benefit of this integration enables creation of high-speed, accelerated

designs working across software and hardware domains from a standard ANSI C

development environment. Once a design is tested and verified in Impulse CoDeveloper

environment it is exported in a highly-automated process to a complete Quartus II

project ready for synthesis (according to the flow in Figure 4.7). Development set-up in

this case is the same as for the PCI Express Development Kit in Figure 4.6. The host

computer is an XD1000 system and connects to the development computer via an USB

blaster.

There are, however, certain limitations and reservations in the current XD1000

PSP version (Impulse Accelerated Technologies, 2008b):

� DDR SDRAM available on XD1000 module is not supported.

� The HT-core is limited to 8-bit (instead of available 16) and uses

approximately 400 MB/sec full duplex (800 MB/sec aggregate) versus an

available 3.2 GB/s per each link.

� One of the most serious limitations is that software-hardware

communication via streams is not Direct Memory Access (DMA) and

polls CPU for each request, which significantly reduces performance and

yields only 2 MB/sec of bandwidth in total.

� All user logic in hardware is constrained to 100 MHz.

� Only one concurrent software process on the target is supported.

� The maximum stream data width supported is 32 bits.

� The maximum shared memory data width supported is 64 bits.

Chapter 4. Methodology and Design Flow

58

Impulse Accelerated Technologies suggest alleviating the limited bandwidth of

streaming interfaces by employing supported shared memory communication. This

communication is much faster than a streaming approach and yields up to 800 MB/sec.

The precise effect of the above limitations is covered in 7.1 Discussions. The targeted

multi-channel correlation application will be developed with CoDeveloper, exported

and compiled in Quartus II and executed on XD1000.

4.3.3 Software Development Tools

Successful work with the PCIe FPGA board in Windows operating system environment

is supplied by a software control application developed with the Jungo WinDriver

PCI/PCI Express/PCMCIA development tool (Jungo Ltd., 2008). This product features

a simple process of creating a hardware driver for any device working via one of the

supported interfaces (PCI, PCI Express, PCMCIA, etc.). Using a GUI interface

WinDriver automatically detects hardware resources of the plugged device and

generates a respective driver code skeleton for a specified development platform (MS

Developer Studio, Borland C++ Builder, etc). The sample application can be modified

further to suit the specified requirements. WinDriver also provides many generated

example applications. One such application is a diagnostics application for accessing

Altera Stratix II GX PCI Express Development Board – altera_diag. This simple

application provides read and write operations to Altera memory and I/O registers. For

the given project, this application can be efficiently and easily adapted to provide

necessary input and output communication with the Stratix II GX PCI Express

Development Board via PCI Express interface. The code of the altera_diag

application was modified in Microsoft Visual Studio 2005.

The sampled model signal was created and recorded using MATLAB. The

respective MATLAB script generating the signals is given in Appendix A2. As was

already mentioned, Simulink was also used together with a DSP Builder utility for early

feasibility estimation of correlation in reconfigurable hardware.

The reference program of the 32-lag cross-correlation C-code (5.3.1) was

developed in the Microsoft Visual Studio 2005.

Chapter 4. Methodology and Design Flow

59

4.4 Chapter Summary

This chapter introduced project design flow, outputs of which are targeted to estimate

the capabilities of the proposed hybrid DSP architecture (3.2). The project roadmap is

composed of five stages:

Stage 1. Implement trial cross-correlator design with traditional hardware

development tools.

Stage 2. Develop the reference software multi-channel correlation program.

Stage 3. Convert the reference program using Impulse CoDeveloper into

accelerated hardware design to execute it on XD1000 development

system.

Stage 4. Develop I/O framework on one PC module of the proposed high-

performance hybrid DSP system (3.2).

Stage 5. Develop software control application with control and data

management functions for I/O framework.

These respective stages define the development hardware and the respective

software applied in each stage:

Stage 1. Nios II Development Kit Cyclone II Edition with standard Altera

development tools.

Stage 2. COTS development PC with Microsoft Visual Studio. MATLAB

software to generate model signals.

Stage 3. XD1000 development system with integrated Impulse

CoDeveloper support.

Stage 4. PCI Express Development Kit Stratix II GX edition with standard

Altera development tools.

Stage 5. COTS development PC with Jungo WinDriver PCI/PCI

Express/PCMCIA development software and Microsoft Visual

Studio.

Chapter 5. Implementation

60

CHAPTER 5

Implementation

The only place where success comes before work is in the dictionary.

—Donald Kendall

This chapter presents the implementation process of this work. First, the chapter

outlines the overall implementation flow of the project. The following section defines

the approaches of this work: the first initial stage, estimation design of hardware two-

channel correlator and positioning of correlation problems are presented. The remainder

of the chapter describes the rest of the implementation stages, which form two major

parts: correlator implementation part and I/O framework part.

5.1 Implementation Flow

The project’s design flow discussed in section 4.1 involves C-to-HDL tool – Impulse

CoDeveloper. Therefore, the project’s implementation employs new top-down design

flow considered in 4.3.2.

Figure 5.1 demonstrates the implementation flow for the given project,

highlighting the respective delivered outputs of the project (blocks coloured in grey).

These outcomes are more broadly covered in Chapter 6 and discussed in Chapter 7.

Chapter 5. Implementation

61

Figure 5.1. Implementation Flow

The flow demonstrated in Figure 5.1 also highlights all of the software products

used at particular stages of the design. Broader introduction of the software tools is

given in 4.3.

Chapter 5. Implementation

62

A common problem for any design employing an FPGA(s) for a DSP application

is the development of the necessary I/O interfaces. As discussed in 3.1.2, FPGAs have

no knowledge about their respective input and output interfaces, which is one of the

major problems in FPGA designs (Wain et al., 2006) and often requires as much

attention from a development team as the core problem itself (Romein et al., 2006a).

This project is also no exception. The workflow in Figure 5.1 delivers outcomes in two

domains:

1. Correlator design. First, using C programming language in Microsoft

Visual Studio and then transferring the very same design into RTL by

means of Impulse CoDeveloper considering necessary alterations.

2. I/O framework. Developing of the I/O interfaces necessary for DSP

applications. The I/O framework for this project will use Altera’s PCI

Express to DDR2 SDRAM Reference Design.

Implementation details of correlator and I/O framework are described in sections

5.3 and 5.4 respectively.

5.2 Defining Approaches

Before actual implementation, a trial correlator design in HDL was undertaken. This

design employed the existing simulation chain Quartus II – DSP Builder – MATLAB.

This design was used as a departure point for the actual correlator design of Stage 2. It

was also used as an estimation of the efforts and time required to develop a high-speed

multi-channel cross-correlator on an FPGA using traditional design methodology with

conventional hardware developing tools (HDL coding, schematics, etc).

5.2.1 Trial Hardware Correlator’s Design (Stage 1)

The trial correlator design is based on Altera’s parameterized multiply-accumulate

megafunction – altmult_accum. This MegaCore function is used as a foundation for the

correlator’s lags. This function consists of a single multiplier feeding an accumulator.

The whole correlator design was tested and verified in a DSP Builder environment –

an autocorrelation function of 5 kHz wave was computed. The code of the Correlator’s

top-level entity and the schematic of correlator lag are given in Appendix A1. An

example output of this simple correlator is given in Figure 5.2:

Chapter 5. Implementation

63

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

1.5
x 10

4

X: 11

Y: 4125

Correlation function

X: 22

Y: -9645

X: 33

Y: 1.425e+004

0 5 10 15 20 25 30 35
-1

-0.5

0

0.5

1

1.5
x 10

4

X: 10

Y: 4125

Autocorrelation calculated w. Matlab

X: 21

Y: -9645

X: 32

Y: 1.425e+004

Computed autocorrelation in the FPGA Computed autocorrelation in MATLAB

A
m
p
lit
u
d
e

A
m
p
lit
u
d
e

Lag index Lag index

 Figure 5.2. Autocorrelation Function of 5 kHz Sine Wave – computed in the FPGA (left) and

computed in MATLAB (right)

The 32-lag hardware correlator performed autocorrelation of 5 kHz sine signals

generated in a Simulink environment and fed directly into the hardware. Amplitude is

one unit and sampling rate is 20 kHz. The correlator’s output was captured as a

MATLAB variable and plotted (left) against a computer-simulated correlation function

(right) using plot function. For convenience, values at the peak points are presented on

data tabs.

The plot demonstrates only half of the output function since the autocorrelation

function is even. For the reason that this design was not intended to be a complete

application, some design flaws exist. For example, the current design ensures that the

output latch goes high only for one clock cycle – LastLatch, LastLastLatch and

SynchronousLatch (see Appendix A1). This might be redundant and and might

exaplain discrepancies in the initial values of the autocorrelation functions. The

Simulink model used for testing the developed correlator design is presented in

Appendix A2.

An attempt was made to replicate this design on a Stratix II GX board. This

design revealed a critical deficiency in simulation capabilities of the Stratix II GX PCI

Express Development Kit: the board features MAX II CPLD, which can be used for

power-up configuration of the main Stratix II GX chip. Thus, the two devices share the

same JTAG chain – see Figure 5.3.

Chapter 5. Implementation

64

Figure 5.3. JTAG Chain Connections in Stratix II GX PCI Express Development Board (Altera

Corporation, 2007d)

This disturbs the DSP Builder’s simulation data transfers through this chain.

Therefore, the whole DSP Builder simulation environment is inaccessible to any Stratix

II GX PCI Express Development Board, which might hamper some DSP developments

on these devices.

This correlator design is not intended as a final application in this project. Rather,

it is a reference point and trial attempt to help define design approaches and estimate

design efforts.

5.2.2 Problem Positioning for Stages 2 – 5

The cross-correlation considered in this work adheres to Equation (2.1). Hence, the

application implemented within the confinements of this project does not fall in the

exact definition of cross-correlation in terms of (for example) radio astronomy, where

mathematical computation of Equation (2.1) has to be coupled by FFT either before or

after defining the FX or XF correlation respectively as described in section 2.2.2.

Nevertheless, this project involves development of an actual digital correlator, therefore,

certain requirements and conventions have to be accepted before actual implementation.

The following paragraphs disclose parameters and requirements, which apply to the

correlator developed in this work.

The core processing application follows the mathematical definition of correlation

defined by Equation (2.1). In most applications the number of lags is even and to a

power of two. As long as the eventual goal of this work is not to develop a finalised

correlator for a given DSP application, but rather to investigate the implementation of a

classical DSP problem in a hybrid CPU+FPGA environment, there was no particular

reason to create a correlator with a significant number of lags. Besides, the trial design

Chapter 5. Implementation

65

(5.2.1) revealed that with manually created correlator logic, the Stratix II GX FPGA is

able to accommodate up to 1,024 lags in total, which is rather substantial. Therefore, a

correlator with 32 lags was considered a sufficient case for the targeted goals in this

work.

Moreover, the correlator has to support multi-channel correlation, ie to perform

correlation between each pair of the input channels (or signals). For correlation of

multiple signals only unique pairs of signals will be correlated (see 2.2.1 for details).

Hence, for example, correlation of signal x[k] with signal y[k] will be computed and

correlation of signal y[k] with signal x[k] will be not computed since it can be obtained

by simple reversing of the former resultant correlation function. In the given work a

correlator with six input channels will be implemented, which will produce 15 output

cross-products.

In real-life applications (e. radioastronomical applications), the correlator's output

is aggregated: while processing the output is accumulated and read after a specified

number of input (processed) samples. For example, a two-channel correlator processes

digitised, input sequences and outputs results after 10,000 input samples were

processed. After output is read, the aggregation of results starts over. By convention, the

number of aggregation input samples in this work was accepted to equal 4,194,304.

This number was considered practical and convenient for measuring performance

results for both software and hardware correlator implementations.

As for the input signals, the following assumptions were undertaken to adhere as

closely as possible to realistic correlation requirements. A typical bit width of the input

data is 6 to 8 bits: eg ADCs' outputs are typically 6 bit width (Maxim Integrated

Products, 2001). Hence, the correlator's inputs width was decided to be 8 bits, which is

also convenient for data manipulation in 32-bit Windows OS environment. As stated

previously, the correlator's output has to accommodate aggregated results. Therefore,

the width of the output of the correlator's cross products was selected to be 32 bits,

which is sufficient enough to accumulate 4,194,304 8-bit input samples.

Each correlator’s channel has been with a 32 MHz sinusoidal wave with added

white Gaussian noise. The signal-to-noise ratio (SNR) parameter of the MATLAB awgn

function is set to three to introduce a realistic noise for signals. The input sine wave

signals are digitised in 6-bit samples at 256 MHz sampling rate, which also defines the

operational bandwidth of the correlator – 128 MHz bandwidth common for many DSP

applications involving correlation. The samples have 6-bit width to simulate real-life

Chapter 5. Implementation

66

data coming from ADCs. These 6-bit samples are padded two bits and fed to 8-bit

correlator inputs. MATLAB was used to generate input signals and store them in form

of the text files (see Appendix A3 for MATLAB script used to generate the signals).

The values of sine waves are rounded to the nearest integer.

The following table summarizes established correlator’s parameters:

Table 5.1. Correlator Parameters Summary

Input signals
32 MHz sinusoidal waves with added

white Gaussian noise (SNR = 3)

Bandwidth 128 MHz

Input bit width 8 bits

Output bit width 32 bits

Number of lags 32

Read after (number of samples to
aggregate)

4,194,304

The following versions of multi-channel correlators will be implemented: 6-, 8-,

10-, 12-, and 16-channel. The parameters and restrictions discussed above apply to the

correlator design throughout this work in both, hardware and software domains and for

all correlator versions. The next section discloses the implementation details in both

domains and elaborates on the flow described in 4.1.

5.3 Implementations for Stages 2 – 5

According to Figure 5.1, both software and hardware implementations will require

model signals for processing. Parameters of the model signals are given in Table 5.1.

5.3.1 Reference Software N-Channel Correlation Program (Stage 2)

According to 4.1 the initial task in correlator implementation is to develop a software

program, which will perform a multi-channel correlation of model signals. There are

many example codes performing correlation, which are written in various programming

languages. Since the selected Impulse CoDeveloper tool supports a subset of C, the

code was developed in plain C language. The code was developed in Microsoft Visual

Studio 2005. The correlation algorithm implemented in this program is straightforward

Chapter 5. Implementation

67

and strictly follows Equation (2.1). Hence, the code reads all samples of the simulated

model signals (stored as text files) and performs correlation of the buffered values:

Figure 5.4. Two-Channel Correlation in C

The code given in Figure 5.4 computes two-channel cross-correlation of signals

x[i] and y[i] and stores the correlation function in result[lag]. Based on this two-

channel computational core a scalable version of the reference program was developed.

Each two-channel core produces one output cross-product of 32 calculated lag values.

Depending on the number of input channels, the correlator will produce a certain

number of unique cross-products (see Equation (2.2)). The code of the reference

program computes cross-correlation for a specified number of channels and a specified

number of aggregated samples (see 5.2.2) and is listed in Appendix A4.

The execution time will be measured for different versions of multi-channel

correlation computation: 6-, 8-, 10-, 12-, and 16-channels and results are presented in

6.1. Chapter 6. The time is measured using High Resolution Timer (to nanoseconds).

The code was developed by L. F. Johson at the Systems Design Engineering University

of Waterloo and is freely available from the Internet. It relies on Windows

QueryPerformanceCounter() function and is already included in the reference program

code – see Appendix A4.

It has to be mentioned that the code of the reference program was not developed

with the intention of performing cross-correlation with maximum efficiency for real-life

applications. It was developed rather to estimate the rationale of C-to-HDL tools on a

basic and common DSP algorithm.

for (lag = 0; lag < Nlag; lag++)

{

 for(i=length/2; i < length; i++)

 {

 result[lag] += x[i]*y[i-lag];

 }

}

Chapter 5. Implementation

68

The code of the reference program was used as a starting point for Impulse

CoDeveloper design. However, due to specific limitations inherited from FPGA

hardware synthesis, certain conventions had to be preserved. For example: there is no

recursion for FPGA hardware processes and limited support of function calls, pointers

must be resolvable at compile time to static references to specific memory locations and

others (Impulse Accelerated Technologies, 2008c). Although these constraints did not

hamper development of the software correlator significantly, they were taken into

account during conversion of the developed software application to synthesisable RTL.

5.3.2 Hardware Implementation of the Correlator in Impulse CoDeveloper (Stage

3)

Initially, as a start-up point for creating a full-scale hardware correlation application a

simple, two-channel correlator was implemented in Impulse CoDeveloper Application

Manager. A simulation model running in Application Manager is demonstrated in

Figure 5.5.

Figure 5.5. Simulation Model of Two-Channel Correlator Running in Impulse CoDeveloper

Application Monitor

The developed model features two input streams (“x” and “y”) and one respective

output (“r”). The main processing module, ie the hardware module with Impulse C code

Chapter 5. Implementation

69

converted from the software correlator, is called “correlation”. This particular module is

converted to synthesisable Verilog HDL via “Generate HDL” command.

Impulse CoDeveloper streaming model also requires two additional entities:

“Producer” and “Consumer”. The Producer process writes data into the actual,

functional application process (to “correlation” in this case), whereas the Consumer

accepts (reads) processed values from an output stream(s). Both processes are

implemented in software module of Impulse CoDeveloper (see 4.3.2).

For the targeted algorithm of cross-correlation (Figure 5.4) the following

manipulations with the code are required for Impulse C to generate efficient HDL. First

of all, as long as the code relies on operations with arrays, loop unrolling will not be

efficient in this case. According, to Impulse C support, the hardware can read at most

two elements at a time from memories where arrays are stored. A more effective way of

producing a parallelised HDL version of the algorithm is to introduce splitting of the

arrays as shown in Figure 5.6.

Figure 5.6. Introducing Splitting of the Arrays in Impulse C

nSample1Copy* and nSample2Copy* arrays are copies of arrays nSample1 and

nSample2 with input samples. This alteration forces Impulse C to generate additional

multipliers in the HDL and therefore increases the parallelisation of the algorithm.

Additional temporary variable tmp is introduced to reduce multiple access to nResult

array. For the example code in Figure 5.6, four copies of the input array are used,

therefore, this code will use four multipliers on FPGA and, therefore, it should run four

for (lag = 0; lag < Nlag; lag++)

{

tmp=nResult[lag];

for(j=length/2; j < length; j+=4)

{

#pragma CO PIPELINE

tmp+= nSample1[j]*nSample2[j-lag];

tmp+= nSample1Copy1[j+1]*nSample2Copy1[j+1-lag];

tmp+= nSample1Copy2[j+2]*nSample2Copy2[j+2-lag];

tmp+= nSample1Copy3[j+3]*nSample2Copy3[j+3-lag];

}

nResult[lag]=tmp;

}

Chapter 5. Implementation

70

times faster than the conventional code in Figure 5.4. Introducing additional copies of

input arrays will increase the parallelism of the algorithm implemented in hardware.

The next step is to maximise the clock frequency for the generated HDL. This is

achieved by manipulating with stageDelay parameter. The computations in an

Impulse C process are broken down into stages. Each stage consists of a set of

computations that can be performed in one cycle. Stage delay is defined by the

maximum number of combinational delays or levels of logic within a given stage.

Considerable stage delays may reduce the maximum operational frequency of the

overall hardware design. stageDelay pragma introduces additional register stages in

order to break down the longest propagation path in the hardware and, therefore,

increase the potential maximum frequency. Introducing this parameter results in more

pipeline stages but with increased overall throughput (Pellerin & Thibault, 2005). For

the code in Figure 5.6 stageDelay will be introduced to break down additions of tmp

variable into multiple stages:

Figure 5.7. Using stageDelay Parameter in Impulse C

tmp1 is introduced to aid with the breaking-down of additions into multiple

stages. The definition of a right value for a stageDelay is aided by Pipeline Graph

utility in Stage Master tool. This graphical tool plots values of stageDelay versus

resulting theoretical operational frequency of the pipelined block (Effective Rate in

Impulse C terms). Figure 5.8 shows an example Pipeline Graph plotted for 6-channel

correlated version.

#pragma CO PIPELINE

#pragma CO set stageDelay 32

tmp1+= nSample1[j]*nSample2[j-lag];

tmp1+= nSample1Copy1[j+1]*nSample2Copy1[j+1-lag];

tmp1+= nSample1Copy2[j+2]*nSample2Copy2[j+2-lag];

tmp1+= nSample1Copy3[j+3]*nSample2Copy3[j+3-lag];

tmp = tmp1;

Chapter 5. Implementation

71

Figure 5.8. Pipeline Graph with stageDelay values for 6-Channel Correlator Design

From Figure 5.8 it is seen that stageDelay of 32 projects the maximum

performance. It should be noted that the vendor’s synthesis and place and route tools

might introduce additional optimizations and path-breaking, thus affecting the final

maximum operational clock of the pipelined block.

Using the configuration function of Impulse C, the developed two-channel

correlator core was replicated the required number of times to facilitate the required

number of channels. It should be noted that these replicated cores are also operating in

parallel in hardware. 6-, 8-, 10-, 12-, and 16-channel versions of correlator were

generated. For multi-channel correlation, signals have to be re-utilised in computations.

For example, for 4-channel correlation of signals x1, x2, x3, and x4 the output cross

products will be: x1×x2, x1×x3, x1×x4, x2×x3, x2×x4, and x3×x4. In this example each

signal participates in computation three times (for three output cross-products). This

issue is important in Impulse C since data streams have one-to-one connectivity and

cannot be connected to multiple correlation cores.

To circumvent this problem a simple demultiplexor process was implemented in

Impulse C hardware module. The purpose of this process is merely to replicate an input

stream required a number of times, so that each of those copies of the input stream will

Chapter 5. Implementation

72

be connected to precisely one correlation core. An example of 6-channel correlator top-

level entity with implemented demultiplexors is given in Figure 5.9. Respective listings

of software and hardware modules and the include file for a 6-channel correlator are

given in Appendix A5. The idea of implementing cross-correlation algorithm in an

Impulse C environment might be derived from this design. Other versions of correlator

design (8-, 10-, 12-, and 16-channels) are, in fact, the same and are presented only on

the CD enclosed with this thesis. They differ only in the Impulse configuration function,

which instantiates and connects hardware and software processes in a specified manner.

Correlator top-level entity

Stream x1 Stream r12 channel correlator process 1Demux 1

Stream
Stream

Stream
Stream

Stream

Stream x2 Stream r22 channel correlator process 2Demux 2

Stream
Stream

Stream
Stream

Stream

Stream x5 Stream r142 channel correlator process 14Demux 5

Stream

Stream
Stream
Stream

Stream

Stream x6 Stream r152 channel correlator process 15

Stream

Stream
Stream
Stream

Stream

Demux 6

Figure 5.9. Top-Level Entity of the 6-Channel Correlator with Implemented Demultiplexors

The reported delay introduced by these demultiplexors is one clock cycle and,

therefore, its influence on the overall design’s performance can be negated.

As mentioned in 4.3.2, only one concurrent software process is supported in the

exported Impulse C software module on XD1000. This effectively means, that

providing data to a hardware process(es) from the software part of Impulse C design has

to be done in a sequential manner or some sort of synchronisation mechanism has to be

provided. However, available realisation of Impulse C software-to-hardware

Chapter 5. Implementation

73

synchronisation tools on XD1000 PSP has certain shortcomings. This issue is discussed

in more detail in 7.1.1.

To test Impulse C capabilities of generating accelerated HDL code from ANSI C

input, the execution time of correlator design will be measured. This time will be then

compared with execution software implementation of the correlator algorithm run on a

conventional PC. The time is measured from a software module with Linux

gettimeofday functions (bits of code measuring time are commented on in Appendix

A5 to maintain compatibility when simulated in a Windows environment). These

functions measure time with an accuracy of nanoseconds. Respective results are

presented in 6.1 and discussed in 7.1.1.

After the performance of an Impulse C project had been verified, it was exported

into ready-for-synthesis Quartus II project using the “Export Generated Hardware

(HDL)” feature. Software module of the Impulse C project is exported using “Export

Generated Software” feature. The Quartus II project is then compiled and the received

bit stream programs XD1000 target server. Exported software project is transferred to

XD1000 where it can be compiled by a standard GCC compiler and executed.

5.4 I/O Framework (Stage 4 and Stage 5)

As established in 3.1.2, implementation of I/O interfaces in FPGA-based design can be

a challenging and time-consuming problem. Hence, it is highly preferable to re-use

already available and working I/O designs for PCIe Stratix II GX board to reduce the

development time. In the given project, PCI Express to DDR2 SDRAM Reference

Design from Altera Corporation will be used as a foundation for the I/O framework.

5.4.1 PCI Express to DDR2 SDRAM Reference Design from Altera Corporation

The block diagram of PCI Express to DDR2 SDRAM Reference Design from Altera

Corporation reference design is given in Figure 5.10.

Chapter 5. Implementation

74

Figure 5.10. PCI Express to DDR2 SDRAM Reference Design Block Diagram (Altera Corporation,

2006)

This design uses the Stratix II GX PCI Express Development Kit as a hardware

platform and features Altera’s PCI Express MegaCore function core which instantiates

PCIe interface in the maximum available configuration for the board – ×8. The

Reference Design provides an example interface between the Altera PCIe

MegaCore function and the Altera’s DDR2 SDRAM Controller MegaCore function that

enables access to external 64-bit, 256 MB DDR2 SDRAM memory through the PCIe

bus. Hence, the design operates in two clock domains – clock domain of PCIe core and

clock domain of DDR2 Controller. Altera’s PCI Express to DDR2 SDRAM Reference

Design also demonstrates an example of a typical user application (GUI-based

Windows Application) that interfaces to the system side of the Altera PCIe MegaCore

function. The GUI application of the reference design performs read and write

operations to the onboard SDRAM vie ×8 PCIe interface. This application has only

demonstrational capabilities: the types of data for transfer are pre-defined (zeroes, ones,

random, etc), the maximum size of transfer is limited to 4,096 bytes, etc.

This reference design does employ actual DMA algorithm, although DMA logic is

present in the design files and demonstrational GUI software has “DMA Read” and

Chapter 5. Implementation

75

“DMA Write” options. When these options are used, common CPU-polling transactions

are performed.

Nevertheless, this design was used as a starting point for I/O framework

development.

5.4.2 Developed I/O Framework (Stage 4)

The framework design above is re-used in the given project with necessary amendments

and modifications. Figure 5.11 shows the full block diagram of the implemented I/O

framework.

PCIe

MegaCore

function

DDR2

Controller
Switch

Rx Top

Tx Top

Correlator

Clock Domain Boundary

Rx_pcie

DMA reg

Tx_ddr_resp

Correlator’s

DDR Controller

Driver

Figure 5.11. I/O Framework Block Diagram

Blocks in red represent logic introduced into the original reference design.

Coloured blocks tx_ddr_resp and rx_pcie in the original design logic (blocks in grey)

are the only blocks modified in the original design. Their full code listings are given in

Appendix A6 with introduced changes indicated by respective code comments.

The main idea of the implemented I/O framework is to preserve as much as

possible of the reference design’s logic while providing necessary interfacing of the

correlator to the onboard DDR2 SDRAM memory. All communications from the

system’s side of PCIe interface are preserved, which allows to perform read and write

Chapter 5. Implementation

76

operations from PC’s side. Furthermore, all of the reference design interface signals to

DDR2 Controller are connected via the switch block. The switch is also connected to

the Correlator’s DDR Controller Driver. Hence, the switch performs merely controlling

functions connecting either the original reference design or the correlator. The switch is

necessary as only one instance can operate with the DDR2 Controller at any one

moment in time.

The switch is controlled from the PC via the DMA Control register. Although the

reference design features DMA logic, the DMA mechanism is not supported – although

DMA-initiated transactions can be issued from a demonstrational GUI application, they

are implemented by means of constant polling of the CPU. Hence, the DMA Register is

used in this implementation entirely for control purposes: by asserting reserved 20th bit

in the DMA Register the switch connects the Correlator’s DDR Controller Driver to the

DDR2 Controller, thus allowing the correlator to work with the onboard memory. The

code of the switch module is given in Appendix A7.

The Correlator’s DDR Controller Driver reads the onboard memory and feeds the

correlator with unprocessed data. Once the correlator finishes processing, the driver

reads processed data from the correlator and writes it to the SDRAM. After this, the

switch connects the original design (grey block Rx Top and Tx Top in Figure 5.11) to

the DDR Controller, restoring the software application’s control over the SDRAM. To

test and debug the Correlator’s DDR Controller Driver the “Interfacing DDR2 SDRAM

with Stratix II, Stratix II GX, and Arria GX Devices” reference design was used (Altera

Corporation, 2007b). This design featured a demonstrational DDR driver, which was

modified to suit the desired functionality of the Correlator’s DDR Controller Driver.

Besides, this reference design features simulation ModelSim model for verification of

the design performance. ModelSim provides a comprehensive software simulation and

debug environment for Verilog and VHDL designs. Software simulation of ModelSim

exposes implicit hardware state in the FPGA (see challenges in FPGA programming in

3.1.2) and reduces hardware debugging efforts. The code of the Correlator’s DDR

Controller Driver is listed in Appendix A8.

Simultaneously with connecting the switch to the application interfaces, the

application (Correlator block in Figure 5.11) itself is enabled and starts acquiring data

from the DDR2 SDRAM and performs processing according to its algorithm. Once the

processing is finished and output data is recorded to the memory, the application returns

control to the original design (a switch connects the original design’s interfaces to

Chapter 5. Implementation

77

DDR2 SDRAM) and also asserts 25th bit in the DMA Register (also reserved bit), which

is checked by the Software Control Application and serves as a “processing complete”

flag.

5.4.3 Software Control Application (Stage 5)

The aforementioned software console application was developed in Jungo WinDriver

PCI/PCI Express/PCMCIA development tool, which comes with the board. The

application is based on the diagnostic application utility for Altera’s PCIe-featuring

boards – pci_dev_kit. The code of this application was generated by WinDriver Wizard

and the whole utility is supplied as an example of accessing Altera hardware by

provided WinDriver functions.

The current version of software control application supports writing and reading

data to and from the onboard SDRAM memory via instantiated PCIe ×8 link. There are

several supported write and read functions in pci_dev_kit diagnostic applications:

� ALTERA_WriteByte – writes 8 bits of data;

� ALTERA_WriteWord – writes 16 bits of data;

� ALTERA_WriteDword – writes 32 bits of data;

� ALTERA_ReadByte – reads 8 bits of data;

� ALTERA_ReadWord – reads 16 bits of data;

� ALTERA_ReadDword – reads 32 bits of data.

Figure 5.12 shows example calls of ALTERA_WriteWord and ALTERA_ReadDword

functions.

Figure 5.12. Example Calls of Write and Read Functions to Onboard SDRAM Memory

ALTERA_WriteWord function performs write of 8-bit value file1[i] to offset j

at memory address space ad_sp in device specified by handler hALTERA. Similarly,

ALTERA_ReadDword reads 32-bit value from offset 0xC in memory address space

ALTERA_AD_BAR2 and returns the read value to the data variable. The reference design,

ALTERA_WriteWord(hALTERA, ad_sp, j, (WORD)file1[i]);

data = ALTERA_ReadDword(hALTERA, ALTERA_AD_BAR2, 0xC);

Chapter 5. Implementation

78

which is used as a foundation for the developed I/O framework, supports the following

memory address spaces:

Table 5.2. Memory Address Space in PCI Express to DDR2 SDRAM Reference Design (Altera

Corporation, 2006)

Memory

Region
Block Size Memory Type Description

BAR0 & BAR1 16 MByte 64 bit, prefetchable 16 MByte DDR2 memory range
capable of supporting 24 bits of
address bus

BAR2 4 KBytes 32 bit, non-
prefetchable

Internal reference design DMA
configuration registers

Data exchange between the computer and onboard SDRAM memory is carried

out via BAR0 or BAR1. Control and configuration commands operate with BAR2. For

example, the switch module is controlled by asserting reserved 20th bit at offset 0xC of

BAR2 (the DMA Register) – see 5.4.2 for more details.

Although software control application supports DMA requests and the reference

design has implemented DMA mechanism (DMA registers, DMA control mechanisms,

etc), DMA read and write operations are not supported. Consequently, the developed

software control application inherits this limitation. The impact of this shortcoming is

discussed in 7.1.2.

The current version of the software control application was developed targeting

integrated Impulse C correlator design. Nevertheless, the I/O framework and software

control application as a part of this framework can be adapted and modified to

accommodate other desired applications.

The only file modified from original pci_dev_kit application is alt_pcidiasg.c. Its

listing is given in Appendix A9.

5.5 Chapter Summary

This chapter describes how the implementation process of this work was undertaken.

Visualisation of the project stages, development platforms and software tools applied at

these respective stages are presented in Figure 5.1. Initial trial correlator design setting

design approaches are presented, which are followed by conditions and reservations

accepted for the correlation implementation in this work.

Chapter 5. Implementation

79

The remainder of this chapter consists of two major parts: the correlator

implementation and the I/O framework. The correlation implementation part introduces

experiences of extracting parallelism and achieving accelerated HDL performance of

correlation algorithm in Impulse C. The I/O framework part describes how PCI Express

to DDR2 SDRAM Reference Design was used as a foundation for the framework and

also highlights the creation of software control application in the Jungo WinDriver

PCI/PCI Express/PCMCIA development tool.

The next chapter presents the results obtained from the implementations of this

chapter.

Chapter 6. Results

80

CHAPTER 6

Results

There's two possible outcomes: if the result confirms the hypothesis, then you've made a

discovery. If the result is contrary to the hypothesis, then you've made a discovery.

— Enrico Fermi

This chapter presents results obtained from the implementation stages of this work: the

correlator hardware design on XD1000 system from Stage 3 and the I/O framework for

the high-performance hybrid DSP system with software control application from Stage

4 and 5.

6.1 Correlator Design (Stage 3)

This section will present performance results obtained from the execution of the

reference program on a conventional PC (Stage 3), which is referred to as software

execution or “SW”, and from the execution of generated, synthesised and programmed

Impulse C correlator projects on the XD1000 development system (Stage 2), which is

referred to as hardware execution or “HW”. As established in 5.2.2, a correlator with

various numbers of channels (6, 8, 10, 12, and 16) has been designed and tested in both

software and hardware.

According to Equation (2.2), depending on the number of input channels, a

correlator produces a different number of unique outputs or cross-products. Table 6.1

gives the number of cross-products for the selected range of input channels.

Chapter 6. Results

81

Table 6.1. Number of Output Cross-Products Depending on the Number of Input Channels

of input channels # of output cross-products

6 30

8 56

10 90

11 110

12 132

16 240

The problem size demonstrated in Table 6.1 has an impact on the logic utilisation

of the EP2S180F150C3 chip. For 6-, 8-, 10-, and 11-channels the logic utilisation was

31, 51, 84 and 97% respectively (with eight copies of input arrays introduced for array

splitting – see 5.3.1). The 12-channel correlator design exhausted all the available logic

registers in XD1000’s EP2S180 device: it required 159,964 logic registers whereas the

FPGA contains only 143,520. Therefore, hardware implementations were limited to a

maximum 11-channels.

Hardware implementations were simulated using an Impulse C Stage Master

Debugger, which was discussed in 4.3.2. This simulation determined the precise number

of clock cycles required for pure processing only, ie how many cycles elapsed since the

first sample arrived in computational cores until the very last output sample is recorded.

Chapter 6. Results

82

Figure 6.1. Simulation of Hardware Implementation in Stage Master Debugger

The zoomed section in Figure 6.1 shows the number of elapsed clock cycles for

full processing. The generated computational cores are executed in parallel so the

number of elapsed clock cycles in simulation will be the same for any number of

channels. By dividing the number of elapsed clock cycles by the operating frequency of

the FPGA (see 4.2.2) an estimated theoretical execution time can obtained.

The reference program from Stage 3 was executed on a conventional PC with the

following configuration: Intel Pentium D 3.4 GHz, 1 GB of RAM, Windows XP

Professional with SP2.

For software and hardware implementations the design was run three time and an

averaged value of execution time was recorded. The actual measured execution time for

software and hardware implementations along with simulation execution time for

hardware are plotted in Figure 6.2.

Chapter 6. Results

83

0

10

20

30

40

50

60

70

80

4 6 8 10 12 14 16 18

Number of channels

E
x
e
c
u
ti
o
n
 t
im

e
,
s
e
c

SW

HW measured

HW simulation (100 MHz)

Figure 6.2. Performance Results of Software and Hardware Implementations

Table 6.2 presents data used to plot graph in Figure 6.2.

Table 6.2. Performance Results Data of Software and Hardware Implementations

Number of channels 6 8 10 11 12 16

Number of cross-products 30 56 90 110 132 240

SW 9.28 17.50 27.72 32.1 40.68 72.73

HW
measured

28.80 38.62 48.87 53.15

HW
simulation
(100 MHz)

0.80 0.80 0.80 0.80 0.80 0.80
Execution time,

sec

HW
simulation
(400 MHz)

0.20 0.20 0.20 0.20 0.20 0.20

Table 6.2 also features data for hardware simulation when the FPGA operational

frequency is 400 MHz (not plotted in Figure 6.2). The current version of XD1000 PSP

by default limits the FPGA frequency to 100 MHz. However, the employed Stratix II

device supports frequencies of up to 400 MHz and operational frequency can be

changed by editing PLL properties.

These results are discussed in 7.1.

Chapter 6. Results

84

6.2 I/O Framework with Software Control Application (Stage 4 and

Stage 5)

Another outcome of this work is the operational I/O framework for CPU+FPGA

architecture. As an estimation test of the developed framework a 6-channel correlator

generated from an Impulse CoDeveloper was programmed into the PCI Express

Development Kit Stratix II GX edition. Software control application was used to write

4,096 bytes of data into onboard SDRAM memory. Then the application triggered the

correlator design and read the processed values from the memory after the “processing

complete” flag (25th bit of the DMA Register) is asserted (see 5.4.2). A sample run of

the Software Control Program for the 6-channel correlator processing 4,096 8-bit

samples is shown in Figure 6.3:

Figure 6.3. Sample Run of Software Control Application

Chapter 7. Discussion

85

CHAPTER 7

Discussion

For everything you have missed, you have gained something else, and for everything

you gain, you lose something else.

— Ralph Waldo Emerson

The structure of this chapter is as follows: first, discussion of the obtained results is

given, which is followed by suggestions of alleviating known shortcomings and future

developments. The chapter concludes with an overall summary.

7.1 Discussions

This work delivers two main outcomes:

1. Multi-channel cross-correlator design working in a CPU+FPGA architecture and

developed with new top-down design methodology (Figure 4.7).

2. I/O framework for CPU+FPGA architecture with software control application.

All research objectives (see 1.2) are achieved, satisfied and are covered by

outcomes of this project. The following sections group the discussions for these

respective outcomes.

7.1.1 Correlator Design

As can be seen from Figure 6.2, hardware design simulation with operational frequency

100 MHz achieves speedups from ×10 to ×90 for a different number of channels over

software implementation. Table 7.1 summarises hardware speed-ups versus software for

100 MHz and 400 MHz operational frequencies.

Chapter 7. Discussion

86

Table 7.1. Achieved Simulation Speed-ups

Number of channels 6 8 10 11 12 16

Number of cross-products 30 56 90 110 132 240

Speed-ups (100 MHz) 11.63 21.92 34.72 40.20 50.96 91.11

Speed-ups (400 MHz) 46.52 87.68 138.88 160.79 203.85 364.44

These speed-ups in hardware implementation are “obscured” by the polling

streaming approach applied in XD1000 PSP. This issue will be discussed in more detail.

In limitations of XD1000 PSP listed in 4.2.2, it was stated that software-hardware

communication via streams is not DMA. Instead, input-output is CPU polling and yields

only 2 MB/sec of the supported 400 MB/sec for each link of the HyperTransport

interface (full HT, however, yields to 3.2 GB/sec). This is also supported by the fact that

when different parallelisation effort (different granularity of array splitting) is applied to

a correlator with a fixed number of input channels, the execution time remains the same.

Theoretically, different parallelisation of the same correlator design should produce

different performance results, which are not visible due to the slow I/O communication.

One option to alleviate this shortcoming of slow streaming interfaces in XD1000

implementation is to use shared memory communication. In this approach, input and

output data is transferred across SRAM (DDR2 SDRAM is not supported) memory

available on XD1000 co-processor module. The shared memory yields 800 MB/sec of

bandwidth and is likely to overcome the issue of slow communication for the correlator

design. However, the implemented streaming approach is more natural for DSP

applications and, therefore ,was preserved for future developments of the project.

Nevertheless, even shared memory approach with greater bandwidth has

challenges when it comes to actual implementation. Working with shared memory from

both software and hardware processes requires some sort of scheduling or

synchronisation mechanisms. Impulse C features semaphores (co_semaphore), which

serve precisely this purpose – to perform one-to-many process synchronisation.

Unfortunately, currently semaphores are supported only for hardware processes’

synchronisation and are not callable from software processes. This leaves only one

remaining option for synchronisation – Impulse C signals (co_signal). However, these

signals are one-to-one synchronisation and therefore are impractical to perform control

over shared memory access for applications featuring dozens of processes. Therefore,

even though shared memory communication offers higher bandwidth than streaming

Chapter 7. Discussion

87

communication, it is unfeasible for many applications including the targeted one in this

project.

In addition, as mentioned earlier, no concurrent software processes are currently

supported in XD1000 PSP. This implies that communication from the software process

to the inherently parallel hardware process implemented in an FPGA accelerator has to

be done in a sequential manner, which limits the parallelisation degree of the whole

system.

The overall efforts required to implement a scalable, multi-channel correlation

design using high-level FPGA programming in Stage 2 are significantly less than using

traditional FPGA development tools in Stage 1. Moreover, the correlator design of

Stage 1 required more development time but has less functionally than the correlator

developed in Stage 2, which is more flexible and scalable. The process of developing

the correlator in Impulse C in Stage 2 required little to no HDL design techniques: clock

and parallel execution had to be considered. However, no low-level debugging tools

(signal analyzers) were used whatsoever.

The fact that Impulse C can actually generate accelerated HDL from C input

demonstrates the potential of this tool. Admittedly, certain manipulations, uncommon

for conventional programming, had to be performed with the C code to produce

efficiently parallelised hardware design. For the targeted correlator design, these

manipulations included array splitting, pipelining, and introducing stage delays. In fact,

to generate HDL designs with reasonable speed-ups from high-level FPGA

programming tools, a knowledge and practical understanding of hardware operation are

still required. While there is yet no “green button” solution to generate final and

complete hardware designs from entirely software algorithm implementations,

consideration of hardware implementation execution and understanding of parallel and

clock concepts are required. This issue is discussed more in 7.3.

It should be also noted that, current implementation of input arrays splitting

requires replicated copies of the same input arrays, which results in increased logic

utilisation. A more practical way of introducing parallelism while avoiding FPGA fabric

waste, is copying input data into smaller sub-arrays each storing a separate portion of

input data samples. Such approach will require respective changes to cross-correlation

algorithm (Figure 5.4).

While the results demonstrate the advantage of using reconfigurable hardware for

performance enhancement of the DSP application, several key issues should be taken

Chapter 7. Discussion

88

into account. Firstly, the C-to-HDL conversion is not as sophisticated and efficient as

manually created ones yet. Logic utilisation of automatically generated designs is an

important issue, which should be taken in account when working with C-to-HDL tools.

As reported in 6.1, 12-channel correlator could not fit into capacious Stratix II

EP2S180F150C3 chip. Since little to no control tools over logic utilisation exist when

HLP is applied for FPGA programming, the issue of effective resource utilisation is one

of the major concerns when working with C-to-HDL compilers. The only option so far

to fit a large-scale Impulse C design into the targeted FPGA is to use a trial-end-error

approach and refine the input C-code: reduce number of used variables, limit buffers’

and arrays’ sizes, etc and then attempt to place and to route to see if the refined design

fits the targeted device.

Due to limitations of Impulse C parser, certain parts of configuration function

(4.3.2) had to be created manually or with the help of scripts, which generated

configuration function code. For example, the parser of configuration function cannot

handle manipulation of arrays in complex for-loops containing more than one index.

Such loops were utilised for interconnecting copies of input streams after

demultiplexors. Due to similar deficiencies of the parser, the exported module of the

correlator project is not generated correctly and, therefore, has to be modified manually

(providing correct names of the copied streams in the exported file co_init.c).

Another encountered limitation of Impulse C is that the hardware process can take

only up to 32 arguments, ie 32 interfaces in total. This limitation, however, did not

affect this implementation where a process with the most interfaces is Producer, which

arranges input channels and feeds the computational cores.

It has to be mentioned that the C source code of the reference correlation program

(Stage 3) is not aimed to calculate cross-correlation functions with maximum efficiency.

Rather it was created as a reference point and a foundation for Impulse C

implementations. The purpose of the reference program is to prototype a situation when

a working algorithm written in HLL is adapted to a hardware implementation by a C-to-

HDL compiler. Therefore, another option of increasing the processing performance is to

elaborate the implemented algorithm.

A similar concept applies to model signals. The selected signals are entirely test

signals introduced only to test and verify correlation algorithm. Nevertheless, they

belong to 128 MHz bandwidth, which is traditional for many DSP applications and are

sampled with 6-bits to prototype data coming from ADCs.

Chapter 7. Discussion

89

7.1.2 I/O Framework

The I/O framework presented in this work is feasible to accommodate both correlator

designs generated from Impulse CoDeveloper as well as manually developed ones. The

framework can accommodate other DSP applications with streaming and a memory-

buffered approach with few or no changes at all required.

The approach of re-using the original reference design was selected due to the two

primary reasons:

1. To fit into the development timeframe by re-using as much of the existing

and configured I/O communication as possible, thus addressing the

FPGA’s I/O interfaces challenge discussed in 3.1.2.

2. The possibility to implement demultiplexing approach in wideband

correlators. This approach is explained in the following paragraph.

The sampling bit rates of modern ADCs are an order of magnitude faster than

operational rates of VLSI integrated circuits (few hundreds Mbit/s) which are widely

used for large-scale correlators. For this purpose a demultiplexing approach is applied

for lag correlators – each sample output is divided into n streams with n contiguous

samples all going to a different stream. The result is obtained by cross-correlating each

stream of one signal with every stream of the other signal (Thompson et al., 2001a). For

example, the MMA correlator (Escoffier, 1997) features a workflow where

demultiplexed bit streams work with a large RAM. The output streams from a sampler

are recorded in n blocks each containing a contiguous data as sampled. The

corresponding blocks of data are then read out and cross-correlated by the correlator.

The output is recorded into the RAM as well.

Hence, the current implementation employs the same demultiplexing approach

where onboard SDRAM is used as an intermediate buffer where the demultiplexed

unprocessed data and output results are stored. The demultiplexing approach allows

processing of substantial amounts of data characteristic for wideband correlators and is

very practical for the selected framework. This demultiplexing approach should not be

confused with demultiplexors in Impulse CoDeveloper correlator design (5.3.2), which

had to be introduced to alleviate one-to-one connectivity of Impulse C streams.

Similar to the correlator design implementation on XD1000, the I/O framework

developed for the high-performance hybrid DSP system (3.2) lacks DMA interrupts.

The I/O framework inherited the polling mechanism for reading and writing data from

Chapter 7. Discussion

90

and to the board’s SDRAM from the PCI Express to DDR2 SDRAM Reference Design.

A more effective way to perform memory read/write is to use DMA, which does not

involve the CPU for the whole period of interaction as opposed to Programmed

Input/Output (PIO).

Presently the CPU’s involvement in the developed Software Control Application

comes down entirely to administrative and control functions: streaming data in the

actual processing system implemented in the FPGA, polling for and fetching processed

data back. Whereas, to highlight the actual benefits of CPU+FPGA architecture, the

CPU can be involved in a shared or selective computation, eg in completely un-

parallelisable computations which cannot be accelerated in reconfigurable hardware.

In addition, implementation of the data exchange interfaces (PCIe core, DDR2

SDRAM controller) on the FPGA was taken from the reference designs and might be

enhanced. For example, DDR2 core is clocked with a conservative clock of PCIe core

of 250 MHz, whereas the reference design features a clock domain boundary and,

therefore , the DDR2 controller can be theoretically clocked with a supported 333MHz.

These issues leave significant room for further sophistication and enhancement of the

targeted correlation applications.

To develop, test and debug the framework approximately ∼6 months of work were

spent. Traditional development tools were applied at this stage – HDL coding and the

SignalTap Analyzer monitoring tool for debugging. First, this indicates that traditional

hardware design methodology is challenging to work with and, therefore, time-

consuming. Second, it highlights that even if reconfigurable hardware features high-

speed interfaces beneficial for a certain application, to employ these interfaces

efficiently in a real-life implementation often comes down to a time-consuming task.

This predominantly happens due to the necessity to develop basic input-output

interfaces practically from scratch – see 7.3 for more details.

7.2 Future Work

As stated in 3.2, the full projected system is highly flexible. The number of available

interfaces on the PCI Express development board allows vast opportunities for

interconnection and makes the proposed system exceptionally scalable. The fact that the

proposed system uses a commodity PC as a platform implies even far bigger

perspectives, as the system can be scaled at the PC’s cost, the cost of the FPGA PCIe

Chapter 7. Discussion

91

board and the cost of the ADC kit, which even added up together still place the

proposed CPU+FPGA framework as an actual challenger to complex and expensive

high-profile DSP solutions (eg BEE2). The average cost of the proposed system consists

of the cost of the PCIe development board – $1,500 USD (academic price) and cost of

a commercially- available PC – $1,000-$2,500 USD. Whereas the indicated cost of the

BEE2 system is $3,000 to $5,000 USD without the cost of FPGAs. Moreover, the

proposed system (Figure 3.7) is not limited to cross-correlation only: it can also

accommodate a range of high-performance DSP applications.

In the current implementation of the I/O framework, the data is written to and read

back from the onboard memory for buffering, whereas potentially the board has all the

interfaces to perform real-time processing and implement an entirely streaming

approach. The board has high-speed Mezzanine connectors which are routed to the

transceivers inside Stratix II GX chip. This option allows direct, intermediate data

acquisition (eg from ADCs) and further streaming of it into the chip for immediate

processing. Furthermore, the output, processed data can be streamed via any of the

available interfaces: PCIe, Gigabit Ethernet or SFP. The next section gives an example

of how a high-performance DSP application performing real-time processing can be

implemented on the developed framework.

As stated earlier, the I/O framework does not support DMA, which for real-life

processing tasks can become a serious reason for performance degradation. The PCI

Express to DDR2 SDRAM Reference Design (5.4.1) has embedded DMA logic which,

however, is not used in the actual operation. As for the developed software control

application, it already supports DMA interrupts. Enabling DMA support in the reference

design is recommended in case of employing the framework in real-life high-speed

processing and, therefore, considered as one of the future development stages.

For the correlator design, the primary goal was to achieve a speed-up in the

computational core of the correlation algorithm on hardware platform. Therefore, in

case of the further development of the correlator design a speed-up might be searched

outside of the correlation computation loops – more careful clock cycle considerations

of input and output streaming interfaces, eliminating or merging variables manipulation

stages, etc.

Besides, as it was mentioned the implemented code of cross-correlation (Figure

5.4) was not developed with the intention of performing cross-correlation with

maximum efficiency. Therefore, the cross-correlation algorithm itself can be improved.

Chapter 7. Discussion

92

Additionally, in case the correlator design is applied for correlation calculation in

practical applications (eg for radio-astronomical applications), an FX type of correlation

might be considered. Due to the fact that in this correlation Fourier transform is applied

before calculating cross-products, it offers some advantage in the required number of

cross-products calculations, as opposed to XF correlators where Fourier transform is

applied after cross-products are calculated.

The XD1000 implementation of the correlator can be enhanced by employing

shared memory interfaces between software and hardware processes. This will allow to

overcome the shortcoming of the slow streaming communication of the XD1000 PSP.

However, as stated in 7.1.1, to implement the shared memory approach a

synchronisation mechanism is required between the communicating processes.

Currently, such a synchronisation utility is not feasible to implement with the supported

tools. Support of such synchronisation tools will theoretically increase communication

throughput between processes and, therefore, the overall XD1000 performance.

7.3 Summary

Some parts of the work presented in this thesis have been published in several sources:

(Leonov & Kitaev, 2007) and most recently, (Leonov & Kitaev, 2008).

The proposed approach of simultaneous involvement of the CPU and the FPGA

for correlation in this thesis can be expanded to other DSP applications, such as image-

processing, telecommunication, cryptography, provided that the data input-output

interfaces are fast, well-tested and reliable. As stated before, FPGA has no knowledge

about any I/O interfaces before it is configured, whereas for any DSP application input-

output throughput is one of the critical questions in achieving top performance. Thus,

although CPU+FPGA-based computing can deliver a significant increase in

performance for a number of applications, the current state of FPGA development

requires a substantial amount of expertise and design efforts to achieve the respective

speed-up.

The new top-down design flow (Figure 4.7) applied in this work has demonstrated

its viability for developing DSP applications in hybrid CPU+FPGA architecture.

Applying HLL for FPGA programming enables production of high-speed applications

working in a reconfigurable computing environment with development time

conservation in comparison with traditional hardware development workflow. However,

certain challenges still exist in the field of C-to-HDL compilers. Apart from employing

Chapter 7. Discussion

93

naturally sequential languages for parallel programming, implementation of I/O

interfaces (particularly for such I/O-sensitive applications as DSP applications) remains

one of the most considerable challenges for the compilers. Figure 7.1 outlines

application implementation techniques for reconfigurable computing.

Figure 7.1. Application Implementation Techniques (Kitaev & Molteno, 2008)

According to Figure 7.1, for currently existing high-level FPGA programming

tools speed-ups of ×20 to ×50 are achievable: similar speed-ups were achieved in this

work with an Impulse CoDeveloper (see 6.1). It has to be acknowledged that C-coded

hardware designs are not as efficient in terms of achieving performance acceleration as

HDL-coded ones. However, there is a way to bridge the gap between them. It is

envisioned that current nonexistent hybrid tools with “software-like” approach of

implementing algorithmical steps and “hardware-like” techniques of determining I/O

interfaces and parallelism will be capable of creating designs achieving speed-ups

comparable to manually-created ones. The experiences of this work comply with this

hypothesis – cross-correlation algorithm implementation with Impulse C means took the

small portion of overall time and efforts, whilst parallelism extraction and I/O

framework development required the most attention and multiple stages. Therefore, the

output of this thesis conforms to the idea that such hybrid tools are necessary and

require attention from the DSP research community.

Another interesting research direction is to have an entity, which will

automatically decide which part of a DSP algorithm is optimal to execute in hardware

Chapter 7. Discussion

94

and which part in software (Galanis, Milidonis, Theodoridis, Soudris, & Goutis, 2007).

The data flow of this idea is given in Figure 7.2.

Hardware Implementation

Source Code

Compile

Debug

HDL Source

Code

Compile

Functional

Simulation

Synthesize

Translate,

Map, Place &

Route

On-chip

design

debugging

Behavioural

Correctness

Optimizations for Timing,

Area, Power, Clock

Frequency

Algorithm Development

Application

specifications

Partition

Software

Hardware

Figure 7.2. Data Flow for RC System with Algorithm Partition (Gokhale & Graham, 2005)

Such systems performing algorithm partitioning on-the-fly can be considered as a

next step evolution of today’s C-to-HDL compilers. One example is the Garp C

compiler (Callahan, Hauser, & Wawrzynek, 2000). During compilation it evaluates

candidates for execution in the reconfigurable hardware. Then it removes operations

unsupported on FPGAs, which will be executed on a CPU. The compiler than trims the

paths so that they fit into the FPGA and breaks down the long ones to increase

Chapter 7. Discussion

95

performance (automatic introducing of stage delays as in 5.3.2). Finally, Garp estimates

hardware versus software execution of the candidate loop and decides on its

implementation: reconfigurable hardware or CPU.

Many reference designs for contemporary FPGA-featured boards have entirely

demonstrational capabilities with fixed functionality. Such designs have little or no

service for the actual end-users who might benefit from using the boards. As

demonstrated, the Stratix II GX PCI Express Development Kit and similar products

equipped with high-speed communicational interfaces featuring reconfigurable

hardware, can be efficiently employed in CPU+FPGA architecture and perform

computationally-intensive applications of the DSP field. In reality, a DSP system

developer first has to modify and debug existing communicational design(s) or

whatever I/O framework is available to her or him. Often, this wastes a significant

amount of development time and ends up in creating the required I/O interfaces

completely from scratch. Instead, the DSP research community can start contributing to

the shared pool of resources – an open-source repository of modified, re-worked and

amended designs along with contributing entirely new implementations of various

functionalities (I/O interfaces, memory controllers and drivers, etc). Such a repository or

library might help the research community to avoid wastage of development time on re-

developing the same functionalities all over again and elaborate on the actual designs’

algorithms, rather than be obstructed with implementation technicalities and difficulties

of I/O interfaces, memory operations, etc. In the case of this project, the contribution for

the Stratix II GX PCI Express Development Kit for this library can offer a clear-text

HDL design supporting DMA with well-established, tested and verified data exchange

via PCIe link. The developed I/O framework can be a contribution to this repository if it

is ever established.

References

96

References

Agarwal, R., B.V.R.Reddy, & K.K.Aggarwal. (2006). A Switching Mechanism
Detection to Reduce Complexity in Multiuser Detection for DS-CDMA
Systems. Journal of Mathematics and Statistics, 2(2), 368-372.

Altera Corporation (2002). FPGAs Provide Reconfigurable DSP Solutions. Retrieved
from http://www.altera.com/literature/wp/wp_dsp_fpga.pdf

Altera Corporation. (2006). PCI Express to DDR2 SDRAM Reference Design. Retrieved
from http://www.altera.com/literature/an/an431.pdf

Altera Corporation. (2007a). Design Debugging Using the SignalTap II Embedded
Logic Analyzer. In Quartus II Version 7.2 Handbook.

Altera Corporation. (2007b). Interfacing DDR2 SDRAM with Stratix II, Stratix II GX,
and Arria GX Devices (ver. 4.0). Retrieved from
http://www.altera.com/literature/an/an328.pdf

Altera Corporation. (2007c). Nios Development Board Cyclone II Edition Reference
Manual. Retrieved June 9, 2008, from
http://www.altera.com/literature/manual/mnl-s2gx-pci-express-devkit.pdf

Altera Corporation. (2007d). Stratix II GX PCI Express Development Board Reference
Manual. Retrieved June 9, 2008, from
http://www.altera.com/literature/manual/mnl-s2gx-pci-express-devkit.pdf

Altera Corporation. (2007e). Welcome to the Quartus II Software. In Quartus II Help
Version 7.2.

Altium Limited. (2008). Altium Designer. Retrieved August 13, 2008, from
http://www.altium.com/products/altiumdesigner/

Andrews, D., Niehaus, D., Jidin, R., Finley, M., Peck, W., Frisbie, M., et al. (2004).
Programming models for hybrid FPGA-CPU computational components: a
missing link. IEEE Micro, 24(4), 42-53.

Baran, P., Bodenner, R., & Hanson, J. (2004). Reduce Build Costs by Offloading DSP
Functions to an FPGA. FPGA and Structured ASIC.

Beckman, P. (2008). Looking toward Exascale Computing. On The Ninth International
Conference on Parallel and Distributed Computing, Applications and

Technologies (PDCAT'08) [Keynote Speaker]. Dunedin: University of Otago.

Betz, V., Rose, J., & Marquardt, A. (1999). Architecture and CAD for Deep-Submicron
FPGAs. Norwell: Kluwer Academic Publishers.

Buell, D., El-Ghazawi, T., Gaj, K., & Kindratenko, V. (2007). Guest Editors'
Introduction: High-Performance Reconfigurable Computing. Computer, 40(3),
23-27.

Callahan, T. J., Hauser, J. R., & Wawrzynek, J. (2000). The Garp architecture and C
compiler. Computer, 33(4), 62-69.

Carroll, B. W., & Ostlie, D. A. (2007). 6.3 Radio Telescopes. In An introduction to
modern astrophysics (2nd ed.). San Francisco: Pearson Addison-Wesley.

References

97

Chang, B.-J. (2007). Markov Decision Process Based Multiple Codes Assignment in
UMTS WCDMA Mobile Networks. Wireless Personal Communications, 41(3),
325-344.

Chang, C. (2005). Design and Applications of a Reconfigurable Computing System for
High Performance Digital Signal Processing. Unpublished PhD thesis,
University of California, Berkeley. Retrieved from
http://bwrc.eecs.berkeley.edu/Publications/2005/THESES/c.chang/ChenChang_
PhD_thesis.pdf

Chang, C., Wawrzynek, J., & Brodersen, R. W. (2005). BEE2: a high-end
reconfigurable computing system. Design & Test of Computers, IEEE, 22(2),
114-125.

Deller, A. (2005). An FX software correlator for VLBI. Retrieved March 28, 2008, from
http://www.atnf.csiro.au/vlbi/evlbi2005/presentations/evlbi_Workshop2/Deller-
eVLBI.ppt

Deller, A. В T., Tingay, S. В J., Bailes, M., & West, C. (2007). DiFX: A Software
Correlator for Very Long Baseline Interferometry Using Multiprocessor
Computing Environments. Publications of the Astronomical Society of the
Pacific, 119(853), 318-336.

Ekas, P. (2007). FPGAs rapidly replacing high-performance DSP capability. DSP-
FPGA.com. Retrieved from http://www.dsp-fpga.com/articles/ekas/

Elmore, J. G., Barton, M. B., Moceri, V. M., Polk, S., Arena, P. J., & Fletcher, S. W.
(1998). Ten-Year Risk of False Positive Screening Mammograms and Clinical
Breast Examinations. N Engl J Med, 338(16), 1089-1096.

Escoffier, R. (1997). The MMA Correlator. Soccoro, New Mexico: National Radio
Astronomy Observatory. Retrieved from
http://www.alma.nrao.edu/memos/html-memos/abstracts/abs166.html

Estrin, G. (1960). Organization of Computer Systems - The Fixed Plus Variable
Structure Computer. Paper presented at the Western Joint Computer Conference,
New York. from doi:10.1145/321105.321110

Estrin, G. (2002, October-December). Reconfigurable Computer Origins: The UCLA
Fixed-Plus-Variable (F+V) Structure Computer. IEEE Annals of the History of
Computing, 24, 3-9.

Ferris, D. (2006). The CABB Correlator. Paper presented at the Next Generation
Correlators for Radio Astronomy and Geodesy. Retrieved 25 May, 2008, from
http://www.radionet.eu/rda/archive/NA4-EN-SU-009-022_Ferris2.ppt

Fingeroff, M., Gardner, D., & Hogan, M. (2007). Top-down DSP design for FPGAs.
Programmable Logic DesignLine.

Flynn, M. J. (1972). Some computer organizations and their effectiveness. IEEE
Transactions on Computers, 21(9).

Galanis, M. D., Milidonis, A., Theodoridis, G., Soudris, D., & Goutis, C. E. (2007).
Automated framework for partitioning DSP applications in hybrid
reconfigurable platforms. Microprocessors and Microsystems, 31(1), 1-14.

Ganousis, D. (2004). Top-Down DSP Design Flow to Silicon Implementation. FPGA
and Structured ASIC Journal. Retrieved from
http://www.fpgajournal.com/articles/accelchip_topdown.htm

References

98

Gentile, A., & Wills, D. S. (2004). Portable video supercomputing. Computers, IEEE
Transactions on, 53(8), 960-973.

Gokhale, M., Frigo, J., Ahrens, C., Popkin-Paine, M., & Stone, J. M. (2004). Streams-C;
Sc2 C-to-FPGA compiler. STAR, 42(5).

Gokhale, M., & Graham, P. S. (2005). Reconfigurable Computing: Accelerating
Computation with Field-Programmable Gate Arrays: Springer.

Guccione, S. A. (2008). Recongigurable Computing Systems. In S. Hauck & A. DeHon
(Eds.), Reconfigurable computing: the theory and practice of FPGA-based
computation (pp. 908). Amsterdam ; Boston: Morgan Kaufmann.

Guo, Z., Najjar, W., Vahid, F., & Vissers, K. (2004, 22-24 February). A quantitative
analysis of the speedup factors of FPGAs over processors. Paper presented at
the ACM/SIGDA International Symposium on Field Programmable Gate Arrays
- FPGA, Monterey, CA. from
http://www.scopus.com/scopus/inward/record.url?eid=2-s2.0-
2442575888&partner=40&rel=R5.0.4

Hoff, M., Jr., & Townsend, M. (1979). An analog input/output microprocessor for
signal processing. Solid-State Circuits Conference. Digest of Technical Papers.
1979 IEEE International, XXII, 220-221.

Hutchings, B. L., & Nelson, B. E. (2008). Implememnting Applications with FPGAs. In
S. Hauck & A. DeHon (Eds.), Reconfigurable computing: the theory and
practice of FPGA-based computation (pp. 908). Amsterdam ; Boston: Morgan
Kaufmann.

Huynh, P. T., Jarolimek, A. M., & Daye, S. (1998). The false-negative mammogram.
Radiographics, 18(5), 1137-1154.

IBM Corporation. (2006). Blue Gene specification sheet, 2006). Retrieved from
http://www-
03.ibm.com/systems/resources/systems_deepcomputing_pdf_bluegene_spec_sh
eet.pdf

Ibnkahla, M. (2004). Signal Processing for Mobile Communications Handbook: CRC
Press.

Imai, H., Koyama, Y., & Kondo, T. (2005). K5 software correlator user manual
(revised version). from
http://www2.nict.go.jp/w/w114/stsi/K5/VSSP/K5corr_users_manual.pdf

Impulse Accelerated Technologies. (2008a). CoBuilder C Pragmas. In CoDeveloper
User Guide.

Impulse Accelerated Technologies. (2008b). CoDeveloper from Impulse Accelerated
Technologies. XtremeData XD1000 Platform Support Package, 2008b).

Impulse Accelerated Technologies. (2008c). Constraints for Hardware Processes. In
CoDeveloper User Guide.

Impulse Accelerated Technologies. (2008d). The Programming Model. In CoDeveloper
User Guide.

Impulse Accelerated Technologies. (2008e). Understanding Loop Pipelining. In
CoDeveloper User Guide.

References

99

Jungo Ltd. (2008). Driver Development for USB/PCI: WinDriver. Retrieved May 27,
2008, from http://www.jungo.com/st/windriver.html

Kawaguchi, N., Kobayashi, H., & Oyama, T. (2006). New Correlator Developments in
Japan. Retrieved May 25, 2008, from http://www.radionet.eu/rda/archive/NA4-
EN-SU-009-016_New%20Correlator%20Developments%20in%20Japan.pdf

Kenny, R. (2007, December). FPGA signal processing for radar/sonar applications. RF
Design. Retrieved from
http://rfdesign.com/military_defense_electronics/712DEF2.pdf

Kitaev, S., & Molteno, T. (2008). How to Compute Faster and Cheaper: Reconfigurable
HPC. PDCAT'08.

Kuo, S. M., & Lee, B. H. (2001). Real-Time Digital Signal Processing:
Implementations, Applications, and Experiments with the Tms320c55x: John
Wiley & Sons, Ltd.

Leonov, M., & Kitaev, V. (2007). Multi-Channel Correlation of Wideband RF Signals
In Hybrid CPU+FPGA System. Paper presented at the The 14th Electronics
New Zealand Conference (ENZCon), Wellington, New Zealand. from

Leonov, M., & Kitaev, V. (2008). Feasibility Study of Implementing Multi-Channel
Correlation for DSP applications on Reconfigurable CPU+FPGA Platform.
Paper presented at the Ninth International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT'08), Dunedin,
New Zealand. from

Li, X., Bond, E. J., Veen, B. D. V., & Hagness, S. C. (2005). An overview of ultra-
wideband microwave imaging via space-time beamforming for early-stage
breast-cancer detection. Antennas and Propagation Magazine, IEEE, 47(1), 19-
34.

Lowe, S. T. (2004). Softc: an Operational Software Correlator. Paper presented at the
IVS 2004 General Meeting Proceedings, Ottawa, Canada. from
http://ivs.nict.go.jp/mirror/publications/gm2004/

Maxim Integrated Products, Dallas Semiconductor. (2001). MAX105EVKIT Evaluation
Kit for the MAX105, MAX107. Retrieved May 28, 2008, from
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3119

Meyer-Baese, U. (2004a). Digital signal processing with field programmable gate
arrays (Second ed.): Springer Berlin Heidelberg.

Meyer-Baese, U. (2004b). Introduction. In Digital signal processing with field
programmable gate arrays (Second ed.): Springer Berlin Heidelberg.

Milrod, J. (2006). The future of high-performance COTS signal processing Hybrid
FPGA/DSP architecture: the optimal solution. DSP-FPGA.com Resource Guide.

Mitra, S. K. (2006). Digital Signal Processing: A Computer-Based Approach (3rd ed.).
New York: McGraw-Hill.

Mlynek, D. (1999). Design of VLSI Systems. Chapter 12 - Digital Signal Processing
Architectures. History. Retrieved May 25, 2008, from
http://lsiwww.epfl.ch/LSI2001/teaching/webcourse/ch12/DSParch.htm#12.2

Nicholson, W. E., Blasco, R. W., & Reddy, K. R. (1978). S2811 Signal Processing
Peripheral Wescon Technical Papers, 22, 12.

References

100

PCI Special Interest Group. (1999). PCI-X 1.0 Protocol Specification.

Pellerin, D., & Thibault, S. (2005). 6.6. Hardware Generation Notes. In Practical FPGA
Programming in C (pp. 464): Prentice Hall Press.

Phillips, S., Littlefield, M., Dahlgren, K., & Ciufo, C. (2007, October 25, 2007). FPGAs
and Reconfigurable Computing replace DSPs. from
https://event.on24.com/eventRegistration/EventLobbyServlet?target=registration
.jsp&eventid=95580

Romein, J. W., Broekema, P. C., Meijeren, E. v., Schaaf, K. v. d., & Zwart, W. H.
(2006a). Astronomical real-time streaming signal processing on a Blue Gene/L
supercomputer. Paper presented at the Proceedings of the eighteenth annual
ACM symposium on Parallelism in algorithms and architectures, Cambridge,
Massachusetts, USA. from doi:http://doi.acm.org/10.1145/1148109.1148118

Romein, J. W., Broekema, P. C., Meijeren, E. v., Schaaf, K. v. d., & Zwart, W. H.
(2006b, June 27-29). The LOFAR Blue Gene/L Correlator. Paper presented at
the Next Generation Correlators for Radio Astronomy and Geodesy, Groningen,
The Netherlands. from www.radionet-eu.org/rda/archive/NA4-EN-SU-009-
033_Romein.ppt

S.Bhaktavatsala. (2002). DSP applications in radar. Bombay: Indian Institute of
Technology.

Stergiopoulos, S. (2000). Advanced signal processing handbook [electronic resource] :
theory and implementation for radar, sonar, and medical imaging real time

systems (Vol. 0849336910).

Tahernia, O. (2005). Reconfigurable DSPs: they're fast and flexible, but are they
accessible? DSP-FPGA.com Product Resource Guide.

Telikepalli, A., & Fiset, E. (2006). Platform FPGA design for high-performance DSPs.
embedded.com. Retrieved from
http://www.embedded.com/columns/showArticle.jhtml?articleID=185302501

Texas Instruments Inc. (2008). TMS320C6474 Multicore Digital Signal Processor.

Thompson, A. R., Moran, J. M., & Swenson, G. W. (2001a). 8.7 Digital Correlators. In
Interferometry and Synthesis in Radio Astronomy (2nd ed., pp. 283-298). Berlin:
Wiley-VCH.

Thompson, A. R., Moran, J. M., & Swenson, G. W. (2001b). Interferometry and
Synthesis in Radio Astronomy (2nd ed.). Berlin: Wiley-VCH.

Tripp, J. L., Peterson, K. D., Ahrens, C., Poznanovic, J. D., & Gokhale, M. B. (2005).
Trident: an FPGA compiler framework for floating-point algorithms. Paper
presented at the International Conference on Field Programmable Logic and
Applications. from doi:10.1109/FPL.2005.1515741

Turney, R. D., Dick, C., Parlour, D. B., & Hwang, J. (2000). Modelling and
implementation of DSP FPGA solutions. Retrieved from
http://www.xilinx.com/products/logicore/dsp/matlab_final.pdf

Wain, R., Bush, I., Guest, M., Deegan, M., Kozin, I., & Kitchen, C. (2006). An overview
of FPGAs and FPGA programming; Initial experiences at Daresbury.
Daresbury, Warrington, Cheshire, WA4 4AD, UK: Computational Science and
Engineering Department, CCLRC Daresbury Laboratory.

References

101

West, C. J. (2004). Development of disk-based baseband recorders and software
correlators for radio astronomy. Swinburne University Of Technology,
Swinburne.

Wilkinson, B., & Allen, M. (2004). Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers (2nd ed.).
New Jersey: Prentice Hall.

www.top500.org. Retrieved March 03, 2008, from http://www.top500.org/

Xilinx Inc. Electronic System Level Design Ecosystem. Retrieved February 21, 2008,
from http://www.xilinx.com/products/design_tools/logic_design/advanced/esl/

Xilinx Inc. (1984). Our History. Retrieved May 29, 2008, from
http://www.xilinx.com/company/history.htm#begin

XtremeData, Inc. XD1000™ Development System. XD1000™ FPGA Coprocessor
Module. User PC Setup Procedure. Retrieved March 03, 2008, from
http://www.xtremedatainc.com/

Appendix A1. Components of the 32-lag Hardware Correlator Design

102

Appendix A1. Components of the 32-lag Hardware
Correlator Design

Correlator.vhd (top-level entity).

--Code was created by Maxim Leonov
--Copyright 2007 Auckland University of Technology
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity Correlator is
 generic(LAGS : integer := 32);
 port (
 clk : in std_logic;
 A : in std_logic_vector(5 downto 0);
 B : in std_logic_vector(5 downto 0);

Ncycles : in unsigned (31 downto 0);
 adr : in unsigned(15 downto 0);
 adr_out : out unsigned(15 downto 0);
 counter_out : out unsigned(31 downto 0);
 data_out : out std_logic_vector(31 downto 0)
);
end entity;

architecture C_logic of Correlator is
 component CorrelatorLag is
 port (
 clock : IN std_logic;
 latch : IN std_logic;
 dataa : IN std_logic_vector(5 downto 0);
 datab : IN std_logic_vector(5 downto 0);
 clear : IN std_logic;
 overflow : OUT std_logic;
 LatchedOutput : OUT std_logic_vector(31 downto 0);
 shiftouta : OUT std_logic_vector(5 downto 0);
 shiftoutb : OUT std_logic_vector(5 downto 0)
);
 end component;

type INTERCONNECT is array (0 to LAGS) of std_logic_vector(5 downto 0);
 signal Intercon : INTERCONNECT;

type RESULTS is array (0 to LAGS - 1) of std_logic_vector(31 downto 0);
 signal LatchedResults : RESULTS;

 type CLRACCUMS is array (0 to LAGS - 1) of std_logic;

signal ClearAccums : CLRACCUMS;
 signal latch : std_logic;
 signal LastLatch : std_logic;
 signal LastLastLatch : std_logic;
 signal OverflowLatch : std_logic;
 signal SynchronousLatch : std_logic;
 signal counter : unsigned (31 downto 0);

begin

 -- Generate all the lag elements and interconnect
 ELEMENTS:for LAG in 0 to LAGS-1 generate
 lagelement: CorrelatorLag port map(clk, --
clock

Appendix A1. Components of the 32-lag Hardware Correlator Design

103

 SynchronousLatch, --latch

 Intercon(LAG), --dataa

 B, --datab

 ClearAccums(LAG), --clear

 OverflowLatch, --overflow

 LatchedResults(LAG),--LatchedOutput

 Intercon(LAG+1) --shiftoutA

);
 end generate ELEMENTS;

 -- Pass the "A" data to the first lag
 Intercon(0) <= A;

 process (clk, adr, counter)
 begin

 if (rising_edge(clk)) then

 if (counter = Ncycles) then
 latch <= '1';
 ClearAccums(TO_INTEGER(adr)) <= '1';
 counter <= "00000000000000000000000000000000";

 else latch <= '0';
 counter <= counter + 1; -- counting clock cycles
 ClearAccums(TO_INTEGER(adr)) <= '0';
 end if;

 -- drive data to output port according to address requested
 LastLatch <= latch;
 LastLastLatch <= LastLatch;
 SynchronousLatch <= LastLatch and not LastLastLatch;

-- SynchronousLatch goes high for one clock cycle
 data_out <= LatchedResults(TO_INTEGER(adr));

 end if;
 counter_out <= counter;
 adr_out <= adr;

end process;

end architecture;

A
p
p
en
d
ix
 A
1
. C

o
m
p
o
n
en
ts o

f th
e 3

2
-lag

 H
ard

w
are C

o
rrelato

r D
esig

n

1
0
4

VCC
clock INPUT

VCC
dataa[5..0] INPUT

VCC
datab[5..0] INPUT

VCC
clear INPUT

GND
latch INPUT

shif touta[5..0]OUTPUT

LatchedOutput[31..0]OUTPUT

shif toutb[5..0]OUTPUT

DFF

data[31..0]

clock

enable
q[31..0]

FF

inst2

dataa: Signed
datab: Signed

MULT0

c0

a0

c0

a0

c0

a0

c0

a0

dataa[5..0]

datab[5..0]

clock0

a
c
lr
0

result[31..0]

shif touta[5..0]

shif toutb[5..0]

lag

inst

CorrelatorLag schematics

Appendix A2. Simulink Test Model for 32-lag Hardware Correlator Design

105

Appendix A2. Simulink Test Model for 32-lag Hardware
Correlator Design

Appendix A3. MATLAB Script to Generate Model Signals for Correlation

106

Appendix A3. MATLAB Script to Generate Model Signals
for Correlation

sine_generation.m

%%Code was created by Maxim Leonov
%%Copyright 2007 Auckland University of Technology
N = 4194304;
A = 9;
F = 32*10^6;
Fs = 256*10^6;
t = 0:1/Fs:N/Fs;
x = round(awgn(A*cos(2*pi*t*F), 3, 'measured', [1]))';
fid = fopen('input_signals.txt', 'w+');
fprintf(fid, '%i\n', x);
fclose(fid);

Appendix A4. Reference Software N-Channel Correlation Program

107

Appendix A4. Reference Software N-Channel Correlation
Program

correlation.c

//Code was created by Maxim Leonov
//Copyright 2008 Auckland University of Technology
#include <stdlib.h>
#include <stdio.h>
#include <time.h>
#include <windows.h>
#include <winbase.h>
#define length 64
#define Nlag 32 //number of correlator's lags
#define Ns 6 //number of signals or CHANNELS
#define INPUT_FILE_A "input_signals.txt"
#define sequences_length 4194304//input sequence length 4096

main()
{
 int i,j,k,p,lag;
 int count_x = 0;
 int end_x = 0;
 int out_count;
 char c;
 float signals[Ns][length];
 float results[(Ns*(Ns-1))/2][Nlag];
 float *file1 = (float*)malloc(sequences_length * sizeof *file1);
 LARGE_INTEGER ticksPerSecond;
 LARGE_INTEGER tick; // A point in time
 LARGE_INTEGER start_ticks, end_ticks, cputime;

 FILE *result_file;
 FILE *f1;

 result_file = fopen("results.txt","w");

 for (i = 0; i < (Ns*(Ns-1))/2; i++)
 {
 for(j = 0; j < Nlag; j++)
 {
 results[i][j]=0;
 }
 }

 f1 = fopen(INPUT_FILE_A, "r");
 if (f1 == NULL) {

fprintf(stderr, "Error opening input file %s\n",
INPUT_FILE_A);

 c = getc(stdin);
 exit(-1);
 }

 for(i=0; i<sequences_length; i++)
 {
 fscanf(f1, "%f", &file1[i]);
 }

/*** start time measurement */
printf ("Value of CLOCKS_PER_SEC is : %i ticks/sec\n",CLOCKS_PER_SEC);
// get the high resolution counter's accuracy
if (!QueryPerformanceFrequency(&ticksPerSecond))
 printf("\tno go QueryPerformance not present");
printf ("\tfreq test: %I64Ld ticks/sec\n",ticksPerSecond);

Appendix A4. Reference Software N-Channel Correlation Program

108

// what time is it?
if (!QueryPerformanceCounter(&tick))

printf("no go counter not installed");
printf ("QueryPerformanceCounter testpoint : %I64Ld ticks\n",tick);
QueryPerformanceCounter(&start_ticks);

 /*Start of Correlation*/
do
{

for (i = count_x, j = 0; i < count_x+length; i++, j++) //acquiring
length samples from input sequence
{

if (i >= sequences_length)
{

end_x = 1;
break;

}
for(p = 0; p < Ns; p++)
signals[p][j] = file1[i];

}
if (end_x == 0)//processed the whole input sequence?
{

out_count = 0;
for(p = 0; p < Ns-1; p++)//selecting first signal
{

for(k = p+1; k < Ns; k++) //selecting second signal
{

for (lag = 0; lag < Nlag; lag++) //running through
lags
{

//running through signal values
for(j=length/2; j < length; j++)
{

results[out_count][lag] += signals[k][j]*signals[p][j-lag];
}

}
out_count++;

}
}
//moving across input sequence using length window
count_x = count_x + length;

}
} while(end_x == 0);
 /*End of Correlation*/

QueryPerformanceCounter(&end_ticks);
cputime.QuadPart = end_ticks.QuadPart- start_ticks.QuadPart;

printf ("\tElapsed CPU time test: %.9f sec ticks %d\n",
 ((float)cputime.QuadPart/(float)ticksPerSecond.QuadPart),

cputime.QuadPart);

/*** end time measurement */

//print results into file
 for (i = 0; i < (Ns*(Ns-1))/2; i++)
 {
 fprintf(result_file,"%i: ", i);
 for(j = 0; j < Nlag; j++)
 {
 fprintf(result_file,"%f\n", results[i][j]);
 }
 fprintf(result_file,"\n\n");
 }

 fclose(result_file);
}

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

109

Appendix A5. 6-Channel Correlator Impulse CoDeveloper
project

Correlator_C_sw.c

//
/
//
// Generated by Impulse CoDeveloper
// Impulse C is Copyright(c) 2003-2007 Impulse Accelerated Technologies, Inc.
//
// Correlator_C_sw.c: includes the software test bench processes and
// main() function.
// Code was modified by Maxim Leonov
// Copyright 2008 Auckland University of Technology
//

#include <stdio.h>
#include "co.h"
#include "cosim_log.h"
#include "Correlator_C.h"
// #include <sys/time.h>
// #include <time.h>
// #include <unistd.h>
#include <malloc.h>

INTYPE *filebuffer;
const char * FileName = OUTPUT_FILE;
FILE * outFile;

extern co_architecture co_initialize(void *);

void Producer(co_stream x1, co_stream x2, co_stream x3, co_stream x4,
co_stream x5, co_stream x6)
{

 int j, i;
 //struct timeval t1;
 //struct tm *pt1;
 char t1_str[40];

 IF_SIM(cosim_logwindow log = cosim_logwindow_create("Producer");)

 co_stream_open(x1, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(x2, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(x3, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(x4, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(x5, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(x6, O_WRONLY, INT_TYPE(INSTREAMWIDTH));

 IF_SIM(cosim_logwindow_write(log, "Sending test data...\n");)

// gettimeofday(&t1, NULL);
// pt1 = localtime(&t1.tv_sec);
// strftime(t1_str, sizeof(t1_str), "%Y-%m-%d %H:%M:%S", pt1);
// printf("Start: %s.%ld (%ld microseconds) \n", t1_str, t1.tv_usec/1000,
t1.tv_usec);

 for(i=0; i<SEQUENCES_LENGTH;i++) {
 co_stream_write(x1, &filebuffer[i], sizeof(INTYPE));
 co_stream_write(x2, &filebuffer[i], sizeof(INTYPE));
 co_stream_write(x3, &filebuffer[i], sizeof(INTYPE));
 co_stream_write(x4, &filebuffer[i], sizeof(INTYPE));
 co_stream_write(x5, &filebuffer[i], sizeof(INTYPE));

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

110

 co_stream_write(x6, &filebuffer[i], sizeof(INTYPE));
 IF_SIM(cosim_logwindow_fwrite(log, "i=%d Value: 0x%x\n", i,
filebuffer[i]);)
 }

 IF_SIM(cosim_logwindow_write(log, "Finished writing test data.\n");)
 co_stream_close(x1);
 co_stream_close(x2);
 co_stream_close(x3);
 co_stream_close(x4);
 co_stream_close(x5);
 co_stream_close(x6);

}

void Consumer(co_stream outstr)
{

 OUTTYPE testValue;
 unsigned int count = 0;

 OUTTYPE k;
 OUTTYPE buffer[NLAG];
 //struct timeval t1;
 //struct tm *pt1;
 char t1_str[40];
 int i = 0;

IF_SIM(cosim_logwindow log = cosim_logwindow_create("Consumer");)

co_stream_open(outstr, O_RDONLY, INT_TYPE(OUTSTREAMWIDTH));

IF_SIM(cosim_logwindow_write(log, "Consumer reading data...\n");)

for(i=0; i<NLAG; i++)
{
 co_stream_read(outstr, &buffer[i], sizeof(OUTTYPE));
 IF_SIM(cosim_logwindow_fwrite(log, "Value: 0x%08x\n",

buffer[i]);)
}

// gettimeofday(&t1, NULL);
// pt1 = localtime(&t1.tv_sec);
// strftime(t1_str, sizeof(t1_str), "%Y-%m-%d %H:%M:%S", pt1);
// printf("Finish: %s.%ld (%ld microseconds) \n", t1_str,

t1.tv_usec/1000, t1.tv_usec);

for(i=0; i<NLAG; i++)
{
 printf("Filtered value %d: %d\n", i, buffer[i]);
 fprintf(outFile, "%d\n", buffer[i]);

//IF_SIM(cosim_logwindow_fwrite(log, "Value: 0x%08x\n", buffer[i]);)

 count++;
}

 //printf("\n\n");
 fprintf(outFile, "\n\n");

 IF_SIM(cosim_logwindow_fwrite(log,

"Consumer read %d filtered data values\n", count);)
 co_stream_close(outstr);

}

int main(int argc, char *argv[])
{
 co_architecture my_arch;
 void *param = NULL;
 int c, i;

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

111

 struct timeval t1, t2;
 struct tm *pt1, *pt2;
 long sec;
 long usec;
 const char * InputFile = INPUT_FILE;
 FILE * inFile;

// double f;
// char t1_str[40], t2_str[40];

// cosim_logwindow_init();
// cosim_logwindow_create(str);

printf("Impulse C is Copyright(c) 2003-2007 Impulse Accelerated
Technologies, Inc.\n");

 filebuffer = (INTYPE*)malloc(sizeof(INTYPE)*SEQUENCES_LENGTH);
 inFile = fopen(InputFile, "r");

 if (inFile == NULL) {
 fprintf(stderr, "Error opening input file %s\n",

InputFile);
 c = getc(stdin);
 exit(-1);
 }
 // Now read and write the data...

 for(i=0; i<SEQUENCES_LENGTH;i++)
 {
 fscanf(inFile, "%d", &filebuffer[i]);
 }
 fclose(inFile);

 outFile = fopen(FileName, "w");
 if (outFile == NULL) {
 fprintf(stderr, "Error opening file %s for writing\n",

FileName);
 exit(-1);
 }

/*** start time mesurement */
// gettimeofday(&t1, NULL);

 my_arch = co_initialize(param);
 co_execute(my_arch);

// gettimeofday(&t2, NULL);
/*** end time mesurement */

// pt1 = localtime(&t1.tv_sec);
// pt2 = localtime(&t2.tv_sec);
 fclose(outFile);
/* strftime(t1_str, sizeof(t1_str), "%Y-%m-%d %H:%M:%S", pt1);
 strftime(t2_str, sizeof(t2_str), "%Y-%m-%d %H:%M:%S", pt2);
 printf("\n\n %s %ld \n", t1_str, t1.tv_usec/1000);
 printf("\n\n %s %ld \n", t2_str, t2.tv_usec/1000);*/

// sec = t2.tv_sec - t1.tv_sec;
// usec = t2.tv_usec - t1.tv_usec;
// f = usec/1000;
// printf("\n\n Elapsed time: %ld microseconds\n", usec);

printf("\n\nApplication complete. Press the Enter key to
continue.\n");

 c = getc(stdin);

 return(0);

}

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

112

Correlator_C_hw.c

//
/
//
// Generated by Impulse CoDeveloper
// Impulse C is Copyright(c) 2003-2007 Impulse Accelerated Technologies, Inc.
//
// Correlator_C_hw.c: includes the hardware process and configuration
// function.
//
// See additional comments in Correlator_C.h.
// Code was modified by Maxim Leonov
// Copyright 2008 Auckland University of Technology
//

#include "co.h"
#include "cosim_log.h"
#include "Correlator_C.h"

// Software process declarations (see Correlator_C_sw.c)
// extern void Producer(co_stream instr);
extern void Consumer(co_stream outstr);
extern void Producer(co_stream x1, co_stream x2, co_stream x3, co_stream x4,
co_stream x5, co_stream x6);

//
// This is the hardware process.
//
void demux(co_stream in,
 co_stream out1, co_stream out2, co_stream out3, co_stream
out4, co_stream out5)
{
 INTYPE data;

 IF_SIM(cosim_logwindow log;)
 IF_SIM(log = cosim_logwindow_create("demux");)

 while (1) {
 co_stream_open(in, O_RDONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(out1, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(out2, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(out3, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(out4, O_WRONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(out5, O_WRONLY, INT_TYPE(INSTREAMWIDTH));

 while (co_stream_read(in, &data, sizeof(INTYPE)) == co_err_none)
 {
 co_stream_write(out1, &data, sizeof(INTYPE));
 co_stream_write(out2, &data, sizeof(INTYPE));
 co_stream_write(out3, &data, sizeof(INTYPE));
 co_stream_write(out4, &data, sizeof(INTYPE));
 co_stream_write(out5, &data, sizeof(INTYPE));
 }

 co_stream_close(in);
 co_stream_close(out1);
 co_stream_close(out2);
 co_stream_close(out3);
 co_stream_close(out4);
 co_stream_close(out5);
 IF_SIM(break;) // Only run once for desktop simulation
 }
}

void correlation(co_stream x1, co_stream y1, co_stream r1)
{
 int i, j, lag;
 co_int8 count;
 INTYPE nSample1[LENGTH];

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

113

 INTYPE nSample2[LENGTH];
 INTYPE Sample1, Sample2;
 OUTTYPE Result_temp[NLAG];
 INTYPE nSample1Copy1[LENGTH], nSample1Copy2[LENGTH],

nSample1Copy3[LENGTH], nSample1Copy4[LENGTH],
nSample1Copy5[LENGTH], nSample1Copy6[LENGTH],

 nSample1Copy7[LENGTH];
 INTYPE nSample2Copy1[LENGTH], nSample2Copy2[LENGTH],

nSample2Copy3[LENGTH], nSample2Copy4[LENGTH],
nSample2Copy5[LENGTH], nSample2Copy6[LENGTH],

 nSample2Copy7[LENGTH];
 OUTTYPE nResult[NLAG], tmp, tmp1;
 OUTTYPE k;

 IF_SIM(int samplesread; int sampleswritten;)

 IF_SIM(cosim_logwindow log;)
 IF_SIM(log = cosim_logwindow_create("correlation");)

 for(i=0; i< NLAG; i++)
 nResult[i]=0;

 k=0;
 i=0;
 count=0;

 do { // Hardware processes run forever
 IF_SIM(samplesread=0; sampleswritten=0;)

 co_stream_open(x1, O_RDONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(y1, O_RDONLY, INT_TYPE(INSTREAMWIDTH));
 co_stream_open(r1, O_WRONLY, INT_TYPE(OUTSTREAMWIDTH));

 while ((co_stream_read(x1, &Sample1, sizeof(INTYPE)) ==

co_err_none) &&
(co_stream_read(y1, &Sample2, sizeof(INTYPE)) ==
co_err_none))

 {
 nSample1[count] = Sample1;
 nSample2[count] = Sample2;
 nSample1Copy1[count] = Sample1;
 nSample2Copy1[count] = Sample2;
 nSample1Copy2[count] = Sample1;
 nSample2Copy2[count] = Sample2;
 nSample1Copy3[count] = Sample1;
 nSample2Copy3[count] = Sample2;
 nSample1Copy4[count] = Sample1;
 nSample2Copy4[count] = Sample2;
 nSample1Copy5[count] = Sample1;
 nSample2Copy5[count] = Sample2;
 nSample1Copy6[count] = Sample1;
 nSample2Copy6[count] = Sample2;
 nSample1Copy7[count] = Sample1;
 nSample2Copy7[count] = Sample2;
 IF_SIM(samplesread++;)
IF_SIM(cosim_logwindow_fwrite(log, "nSample1[%d]: %d\n", count,

nSample1[count]);)
IF_SIM(cosim_logwindow_fwrite(log, "nSample2[%d]: %d\n", count,

nSample2[count]);)
 k++;
 count++;
 if(count == LENGTH)
 {

for (lag = 0; lag < NLAG; lag++)
{
 tmp=nResult[lag];
 tmp1 = tmp;
 for(j = LENGTH/2; j < LENGTH-7; j+=8)
 {

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

114

#pragma CO PIPELINE
#pragma CO set stageDelay 32
tmp1= nSample1[j]*nSample2[j-lag];
tmp1+= nSample1Copy1[j+1]*nSample2Copy1[j+1-lag];
tmp1+= nSample1Copy2[j+2]*nSample2Copy2[j+2-lag];
tmp1+= nSample1Copy3[j+3]*nSample2Copy3[j+3-lag];
tmp1+= nSample1Copy4[j+4]*nSample2Copy4[j+4-lag];
tmp1+= nSample1Copy5[j+5]*nSample2Copy5[j+5-lag];
tmp1+= nSample1Copy6[j+6]*nSample2Copy6[j+6-lag];
tmp1+= nSample1Copy7[j+7]*nSample2Copy7[j+7-lag];
tmp += tmp1;

 }
 nResult[lag]=tmp;
}
count=0;

 }

 if(k == SEQUENCES_LENGTH)
 {

for(i=0; i< NLAG; i++)
{
 co_stream_write(r1, &nResult[i], sizeof(OUTTYPE));
 IF_SIM(sampleswritten++;)
 IF_SIM(cosim_logwindow_fwrite(log, "nResult[%d]: %d\n", i,
nResult[i]);)
}
k=0;
for(i=0; i< NLAG; i++)
 nResult[i]=0;
break;
}

}

co_stream_close(x1);
co_stream_close(y1);
co_stream_close(r1);
IF_SIM(cosim_logwindow_fwrite(log,
"Closing filter process, samples read: %d, samples written: %d\n",
 samplesread, sampleswritten);)

IF_SIM(break;) // Only run once for desktop simulation
} while(1);
}

//
// Impulse C configuration function
//

void config_Correlator_C(void *arg)
{
 int i,j,l,n,t;
 int p;
 int k;
 co_stream instream[NINST];
 co_stream interstream[NINTERST];
 co_stream outstream[NOUTST];
 co_process demux_proc[NINST];
 co_process correlation_proc[NOUTST];
 co_process producer_process;
 co_process consumer_process[NOUTST];

 char *xname[] = { "instream1",
 "instream2",
 "instream3",
 "instream4",
 "instream5",
 "instream6"};
 char *iname[] = {"interstream1", "interstream2", "interstream3",

"interstream4", "interstream5", "interstream6",
 "interstream7", "interstream8", "interstream9",

"interstream10", "interstream11", "interstream12",

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

115

 "interstream13", "interstream14", "interstream15",
"interstream16", "interstream17", "interstream18",
"interstream19", "interstream20", "interstream21",
"interstream22", "interstream23", "interstream24",
"interstream25", "interstream26", "interstream27",
"interstream28", "interstream29", "interstream30"};

 char *dname[] = { "demux1",
 "demux2",
 "demux3",
 "demux4",
 "demux5",
 "demux6"};
 char *rname[] = { "outstream1",
 "outstream2",
 "outstream3",
 "outstream4",
 "outstream5",
 "outstream6",
 "outstream7",
 "outstream8",
 "outstream9",
 "outstream10",
 "outstream11",
 "outstream12",
 "outstream13",
 "outstream14",
 "outstream15"};
 char *producername[] = { "Producer1",
 "Producer2",
 "Producer3",
 "Producer4",
 "Producer5",
 "Producer6"};
 char *correlationname[] = { "correlation1",
 "correlation2",
 "correlation3",
 "correlation4",
 "correlation5",
 "correlation6",
 "correlation7",
 "correlation8",
 "correlation9",
 "correlation10",
 "correlation11",
 "correlation12",
 "correlation13",
 "correlation14",
 "correlation15"};
 char *Consumername[] = { "Consumer1",
 "Consumer2",
 "Consumer3",
 "Consumer4",
 "Consumer5",
 "Consumer6",
 "Consumer7",
 "Consumer8",
 "Consumer9",
 "Consumer10",
 "Consumer11",
 "Consumer12",
 "Consumer13",
 "Consumer14",
 "Consumer15"};

 IF_SIM(cosim_logwindow_init();)

 for (i=0; i<NINST; i++) {
 instream[i]=co_stream_create(xname[i],INT_TYPE(INSTREAMWIDTH),

INSTREAMDEPTH); //input streams

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

116

 }

 for (i=0; i<NINTERST; i++) {
//intermediate streams between input and correlator (avoiding unidirectional
connectivity property of streams)
 interstream[i]=co_stream_create(iname[i],INT_TYPE(INSTREAMWIDTH)

,INTERSTREAMDEPTH);
 }

 for (i=0; i<NOUTST; i++) {
 outstream[i]=co_stream_create(rname[i],INT_TYPE(OUTSTREAMWIDTH),

OUTSTREAMDEPTH);
 }

 producer_process = co_process_create("Producer",
 (co_function)Producer, 6, instream[0], instream[1], instream[2],

instream[3], instream[4], instream[5]);

 for (i=0; i<NOUTST; i++) {
consumer_process[i] =
 co_process_create(Consumername[i],(co_function)Consumer, 1,

outstream[i]);
 }

 for (i=0; i<NINST; i++) {
 demux_proc[i]=co_process_create(dname[i],

(co_function)demux, 6,
instream[i], interstream[i],
interstream[i+6], interstream[i+12],
interstream[i+18], interstream[i+24]);

 }

correlation_proc[0]=
co_process_create(correlationname[0],(co_function)correlation,3,
 interstream[0],interstream[1],outstream[0]);
correlation_proc[1]=
co_process_create(correlationname[1],(co_function)correlation,3,
 interstream[6],interstream[2],outstream[1]);
correlation_proc[2]=
co_process_create(correlationname[2],(co_function)correlation,3,
 interstream[12],interstream[3],outstream[2]);
correlation_proc[3]=
co_process_create(correlationname[3],(co_function)correlation,3,
 interstream[18],interstream[4],outstream[3]);
correlation_proc[4]=
co_process_create(correlationname[4],(co_function)correlation,3,
 interstream[24],interstream[5],outstream[4]);
correlation_proc[5]=
co_process_create(correlationname[5],(co_function)correlation,3,
 interstream[7],interstream[8],outstream[5]);
correlation_proc[6]=
co_process_create(correlationname[6],(co_function)correlation,3,
 interstream[13],interstream[9],outstream[6]);
correlation_proc[7]=
co_process_create(correlationname[7],(co_function)correlation,3,
 interstream[19],interstream[10],outstream[7]);
correlation_proc[8]=
co_process_create(correlationname[8],(co_function)correlation,3,

interstream[25],interstream[11],outstream[8]);
correlation_proc[9]=
co_process_create(correlationname[9],(co_function)correlation,3,

interstream[14],interstream[15],outstream[9]);
correlation_proc[10]=
co_process_create(correlationname[10],(co_function)correlation,3,

interstream[20],interstream[16],outstream[10]);
correlation_proc[11]=
co_process_create(correlationname[11],(co_function)correlation,3,

interstream[26],interstream[17],outstream[11]);
correlation_proc[12]=
co_process_create(correlationname[12],(co_function)correlation,3,

interstream[21],interstream[22],outstream[12]);

Appendix A5. 6-Channel Correlator Impulse CoDeveloper project

117

correlation_proc[13]=
co_process_create(correlationname[13],(co_function)correlation,3,

interstream[27],interstream[23],outstream[13]);
correlation_proc[14]=
co_process_create(correlationname[14],(co_function)correlation,3,

interstream[28],interstream[29],outstream[14]);

 for (i=0; i<NINST; i++)
 co_process_config(demux_proc[i],co_loc,"PE0");
 for (i=0; i<NOUTST; i++)
 co_process_config(correlation_proc[i],co_loc,"PE0");
}

co_architecture co_initialize(int param)
{
 return(co_architecture_create("Correlator_C_arch",

"Generic",config_Correlator_C,(void *)param));
}

Correlator_C.h

//
/
//
// Generated by Impulse CoDeveloper
// Impulse C is Copyright(c) 2003-2006 Impulse Accelerated Technologies, Inc.
// Code was modified by Maxim Leonov
// Copyright 2008 Auckland University of Technology
//

#define INSTREAMDEPTH 128 /* INPUT buffer size for FIFO in hardware */
#define OUTSTREAMDEPTH 64 /* OUTPUT buffer size for FIFO in hardware */
#define INSTREAMWIDTH 8 /* INPUT buffer width for FIFO in hardware */
#define OUTSTREAMWIDTH 32 /* OUTPUT buffer width for FIFO in hardware */
#define INTERSTREAMDEPTH 128 /* INTERMEDIATE buffer size for FIFO in
hardware */
#define INPUT_FILE "input_signals.txt"
#define OUTPUT_FILE "correlator_out.txt"
#define LENGTH 64
#define NLAG 32
#define SEQUENCES_LENGTH 4194304//4096 40960

typedef int8 INTYPE;
typedef int OUTTYPE;

#define NINST 6
#define NOUTST 15
#define NINTERST 30

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

118

Appendix A6. Files Modified from the Original PCI Express
to DDR2 SDRAM Reference Design

tx_ddr_resp.v

//--
-
// Title : tx_ddr_resp
// Project : PCIe-to-DDR2 SDRAM Reference Design
//--
-
// File : tx_ddr_resp.v
// Author : Altera Corporation
//--
-
// Functional Description:
// This module is part of the TX application layer interfacing with the DDR2
// controller
//--

//
// Copyright 2003 Altera Corporation. All rights reserved. Altera products
are
// protected under numerous U.S. and foreign patents, maskwork rights,
copyrights and
// other intellectual property laws.
// This reference design file, and your use thereof, is subject to and
governed by
// the terms and conditions of the applicable Altera Reference Design License
Agreement.
// By using this reference design file, you indicate your acceptance of such
terms and
// conditions between you and Altera Corporation. In the event that you do
not agree with
// such terms and conditions, you may not use the reference design file.
Please promptly
// destroy any copies you have made.
//
// This reference design file being provided on an "as-is" basis and as an
accommodation
// and therefore all warranties, representations or guarantees of any kind
// (whether express, implied or statutory) including, without limitation,
warranties of
// merchantability, non-infringement, or fitness for a particular purpose, are
// specifically disclaimed. By making this reference design file available,
Altera
// expressly does not recommend, suggest or require that this reference design
file be
// used in combination with any other product not provided by Altera
// Code was modified by Maxim Leonov
// Copyright 2008 Auckland University of Technology

// turn off bogus verilog processor warnings
// altera message_off 10034 10035 10036 10037 10230

// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on

module tx_ddr_resp

(input Clk_i, // Avalon clock
 input Rstn_i, // Avalon reset

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

119

 // interface to the Rx pending read FIFO
 input RxPndgRdFifoEmpty_i,
 input [49:0] RxPndgRdFifoDato_i,
 output RxPndgRdFifoRdReq_o,

 // interface to the Avalon bus
 input TxReadDataValid_i,
 input [63:0] TxReadData_i,
 output [63:0] TxReadData_o,

 // Interface to the Command Fifo
 output [127:0] CmdFifoDatin_o,
 output CmdFifoWrReq_o,

 // Interface to the Avalon Tx Control Module
 output CmdFifoBusy_o,

 // Interface to DMA Engine
 input [63:0] DmaDstAdr_i,
 input DmaBusy_i,
 input
DmaReg_app_finished_i,

 // cfg signals
 input [31:0] DevCsr_i,
 input [12:0] BusDev_i
);

wire sm_rd_fifo;
wire sm_start_resp;
wire sm_wait_data1;
wire sm_wait_data2;
wire sm_send_first;
wire sm_send_last;
reg sm_send_last_reg;
wire sm_send_max;
wire sm_send_to_4k;
wire [7:0] bytes_to_RCB;
wire over_rd_2dw;
wire over_rd_1dw;
wire [7:0] cpl_tag;
wire [15:0] requester_id;
wire [6:0] rd_addr;
wire [10:0] rd_dwlen;
wire [3:0] fbe;
wire [12:0] remain_bytes;
wire [15:0] completer_id;
wire dma_req;
wire [9:0] wr_dw_len;

reg [7:0] txresp_state;
reg [7:0] txresp_nxt_state;
reg first_cpl_sreg;
reg [7:0] bytes_to_RCB_reg;
reg [13:0] bytes_to_RCB_add_reg;
reg [12:0] curr_bcnt_reg;
reg [13:0] curr_bcnt_add_reg;
reg [12:0] curr_bcnt_reg_int;
reg [12:0] max_payload;
reg [12:0] max_payload_reg;
reg [13:0] max_payload_add_reg;
reg [13:0] payload_cntr;
reg [13:0] nxt_payload_cntr;
reg [13:0] payload_cntr_stg;
reg [3:0] over_rd_bytes;
reg [3:0] over_rd_bytes_reg;
reg [13:0] over_rd_bytes_add_reg;
reg [12:0] bytes_sent;
reg [12:0] pkt_size;
reg [12:0] pkt_size_reg;

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

120

reg [12:0] pkt_size_reg_mod;
reg [3:0] coming_send_state;
reg [3:0] coming_send_state_reg;
reg [6:0] lower_addr;
reg [6:0] lower_addr_reg;
reg [63:0] wr_addr_reg;
reg PCIeAddrSpace_i;

wire [1:0] attr;
wire [12:0] bytes_to_4KB;
reg [12:0] bytes_to_4KB_reg;
reg [13:0] bytes_to_4KB_add_reg;
wire [127:0] cpl_header;
wire [127:0] wr_header;
wire [127:0] mem_wr64_header;
wire [127:0] mem_wr32_header;
wire dma_reg_rd;
wire c1;
wire c2;
wire c3;
wire c4;
wire c5;
wire c6;
reg c1_reg;
reg c2_reg;
reg c3_reg;
reg c4_reg;
reg c5_reg;
reg c6_reg;

reg TxReadData_reg1;

localparam TXRESP_RD_FIFO = 8'h01;
localparam TXRESP_START_RESP = 8'h02;
localparam TXRESP_WAIT_DATA1 = 8'h04;
localparam TXRESP_WAIT_DATA2 = 8'h08;
localparam TXRESP_SEND_FIRST = 8'h10;
localparam TXRESP_SEND_MAX = 8'h20;
localparam TXRESP_SEND_TO_4K = 8'h40;
localparam TXRESP_SEND_LAST = 8'h80;

 /// state machine output assignments

 assign sm_rd_fifo = txresp_state[0];
 assign sm_start_resp = txresp_state[1];
 assign sm_wait_data1 = txresp_state[2];
 assign sm_wait_data2 = txresp_state[3];
 assign sm_send_first = txresp_state[4];
 assign sm_send_max = txresp_state[5];
 assign sm_send_to_4k = txresp_state[6];
 assign sm_send_last = txresp_state[7];

always @(posedge Clk_i or negedge Rstn_i) // state machine registers
 begin
 if(~Rstn_i)
 txresp_state <= TXRESP_RD_FIFO;
 else
 txresp_state <= txresp_nxt_state;
 end

// state machine next state gen

always @(*)
 begin
 case(txresp_state)
 TXRESP_RD_FIFO :
 if(~RxPndgRdFifoEmpty_i)
 txresp_nxt_state = TXRESP_START_RESP;
 else
 txresp_nxt_state = TXRESP_RD_FIFO;

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

121

 TXRESP_START_RESP: // load byte count reg and calc the first byte 7 bit
of addr
 txresp_nxt_state = TXRESP_WAIT_DATA1;

 TXRESP_WAIT_DATA1:
 txresp_nxt_state = TXRESP_WAIT_DATA2;

 TXRESP_WAIT_DATA2:
 if (payload_cntr >= pkt_size_reg) begin
 case(coming_send_state_reg)
 4'b1000: txresp_nxt_state = TXRESP_SEND_FIRST;
 4'b0100: txresp_nxt_state = TXRESP_SEND_MAX;
 4'b0010: txresp_nxt_state = TXRESP_SEND_TO_4K;
 4'b0001: txresp_nxt_state = TXRESP_SEND_LAST;
 default: txresp_nxt_state = TXRESP_WAIT_DATA2;
 endcase
 end
 else
 txresp_nxt_state = TXRESP_WAIT_DATA2;

 TXRESP_SEND_FIRST:
 txresp_nxt_state = TXRESP_WAIT_DATA1;

 TXRESP_SEND_MAX:
 txresp_nxt_state = TXRESP_WAIT_DATA1;

 TXRESP_SEND_TO_4K:
 txresp_nxt_state = TXRESP_WAIT_DATA1;

 TXRESP_SEND_LAST:
 txresp_nxt_state = TXRESP_RD_FIFO;

 default:
 txresp_nxt_state = TXRESP_RD_FIFO;

 endcase
 end

// decode the max payload size
// constant signal from beginning
always @(DevCsr_i)
 begin
 case(DevCsr_i[14:12])
 3'b000 : max_payload= 128;
 3'b001 : max_payload= 256;
 3'b010 : max_payload= 512;
 3'b011 : max_payload= 1024;
 3'b100 : max_payload= 2048;
 default : max_payload = 2048;
 endcase
 end

always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 max_payload_reg <= 13'h0000;
 else
 max_payload_reg <= max_payload;
 end

// This signal will only be asserted when sm_rd_fifo
assign RxPndgRdFifoRdReq_o = sm_rd_fifo & ~RxPndgRdFifoEmpty_i;

// These will be available from sm_start_resp till sm_send_last
// mainly constant
assign cpl_tag = RxPndgRdFifoDato_i[7:0];
assign rd_addr = RxPndgRdFifoDato_i[14:8];
assign dma_reg_rd = RxPndgRdFifoDato_i[15];
assign requester_id = RxPndgRdFifoDato_i[31:16];
assign rd_dwlen = RxPndgRdFifoDato_i[42:32];

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

122

assign fbe = RxPndgRdFifoDato_i[46:43];
assign dma_req = RxPndgRdFifoDato_i[47];
assign attr = RxPndgRdFifoDato_i[49:48];

//assign TxReadData_o = dma_reg_rd ?
{DmaBusy_i,31'h00000000,DmaBusy_i,31'h00000000}
// : TxReadData_i;
assign TxReadData_o = dma_reg_rd ?
{DmaBusy_i,{11{1'b0}},DmaReg_app_finished_i,{19{1'b0}},DmaBusy_i,{11{1'b0}},Dm
aReg_app_finished_i,{19{1'b0}}}
 : TxReadData_i;

// Modification
//***********************
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 TxReadData_reg1 <= 64'h0000_0000;
 else
 if (dma_reg_rd)
 TxReadData_reg1 <=
{{12{1'b0}},DmaReg_app_finished_i,{19{1'b0}},{12{1'b0}},DmaReg_app_finished_i,
{19{1'b0}}} ;
 else
 TxReadData_reg1 <= TxReadData_i ;
 //else ;
 end
//***********************

// calculate the bytes to RCB that could be 64 or 128Bytes (6 or 7 zeros in
address)
// Available from sm_start_resp
assign bytes_to_RCB = 8'h80 - rd_addr[6:0];

// bytes to 4KB boundary
// Updates in different stages

// pipeline for fmax
always @(posedge Clk_i or negedge Rstn_i) begin
 if(~Rstn_i) begin
 bytes_to_RCB_reg <= 0;
 bytes_to_RCB_add_reg <= 14'h0000;
 max_payload_add_reg <= 14'h0000;
 bytes_to_4KB_add_reg <= 14'h0000;
 curr_bcnt_add_reg <= 14'h0000;
 over_rd_bytes_add_reg <= 14'h0000;
 end
 else begin
 bytes_to_RCB_reg <= bytes_to_RCB;
 bytes_to_RCB_add_reg <= ~{6'h00,bytes_to_RCB_reg[7:0]} + 14'h0001 +
14'h0008;
 max_payload_add_reg <= ~{1'b0,max_payload[12:0]} + 14'h0001 + 14'h0008;
 bytes_to_4KB_add_reg <= ~{1'b0,bytes_to_4KB_reg[12:0]} + 14'h0001 +
14'h0008;
 curr_bcnt_add_reg <= ~{1'b0,curr_bcnt_reg[12:0]} + 14'h0001 +
14'h0008;
 over_rd_bytes_add_reg <= ~{10'h000,over_rd_bytes_reg[3:0]} + 14'h0001 +
14'h0008;
 end
end

// SR reg to indicate the first completion of a read
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 first_cpl_sreg <= 1'b0;
 else if(sm_start_resp)
 first_cpl_sreg <= 1'b1;
 else if(sm_send_first | sm_send_to_4k | sm_send_max | sm_send_last)
 first_cpl_sreg <= 1'b0;

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

123

 end

// special signal for pipelining the calculation of payload_cntr after
// the sm_send_last state
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 sm_send_last_reg <= 1'b0;
 else
 sm_send_last_reg <= sm_send_last;
 end

assign c1 = dma_req;
assign c2 = first_cpl_sreg;
assign c3 = (curr_bcnt_reg > bytes_to_RCB_reg);
assign c4 = (curr_bcnt_reg > max_payload_reg);
assign c5 = (curr_bcnt_reg > bytes_to_4KB_reg);
assign c6 = (max_payload_reg > bytes_to_4KB_reg);

/// completion payload counter to keep track of the data byte returned from
avalon
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i) begin
 c1_reg <= 0;
 c2_reg <= 0;
 c3_reg <= 0;
 c4_reg <= 0;
 c5_reg <= 0;
 c6_reg <= 0;
 end
 else begin // Rstn_i
 c1_reg <= c1;
 c2_reg <= c2;
 c3_reg <= c3;
 c4_reg <= c4;
 c5_reg <= c5;
 c6_reg <= c6;
 end
 end

always @(c1, c2, c3, c4, c5, c6, bytes_to_RCB_reg, curr_bcnt_reg,
max_payload_reg,
 bytes_to_4KB_reg)
 begin
 if ((~c1 && c2 && ~c3) || (~c1 && ~c2 && ~c4) || (c1 && ~c4 && ~c5)) begin
 pkt_size = curr_bcnt_reg;
 coming_send_state = 4'b0001;
 end
 else if ((~c1 && ~c2 && c4) || (c1 && c4 && ~c6)) begin
 pkt_size = max_payload_reg;
 coming_send_state = 4'b0100;
 end
 else if (~c1 && c2 && c3) begin
 pkt_size = bytes_to_RCB_reg;
 coming_send_state = 4'b1000;
 end
 else if (c1 && c5 && c6) begin
 pkt_size = bytes_to_4KB_reg;
 coming_send_state = 4'b0010;
 end
 else begin
 pkt_size = 13'h0000;
 coming_send_state = 4'b0000;
 end
 end

/// completion payload counter to keep track of the data byte returned from
avalon
always @(posedge Clk_i or negedge Rstn_i)
 begin

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

124

 if(~Rstn_i) begin
 pkt_size_reg <= 0;
 coming_send_state_reg <= 0;
 end
 else if (sm_wait_data1) begin // Rstn_i
 pkt_size_reg <= pkt_size;
 coming_send_state_reg <= coming_send_state;
 end
 end

/// completion payload counter to keep track of the data byte returned from
avalon
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 pkt_size_reg_mod <= 0;
 else if (sm_wait_data2) // Rstn_i
 // pkt_size_reg_mod <= ~{1'b0,pkt_size_reg[11:0]} + 13'h1002;
 pkt_size_reg_mod <= 13'h1000 - pkt_size_reg[11:0];
 end

// Find out how many bytes are sent in each PCIe packet
always @(sm_send_to_4k, sm_send_first, sm_send_max, sm_send_last,
curr_bcnt_reg,
 max_payload_reg, bytes_to_RCB_reg, bytes_to_4KB_reg)
 begin
 case({sm_send_to_4k, sm_send_first, sm_send_max, sm_send_last})
 4'b0001 : bytes_sent = curr_bcnt_reg;
 4'b0010 : bytes_sent = max_payload_reg;
 4'b0100 : bytes_sent = bytes_to_RCB_reg;
 4'b1000 : bytes_sent = bytes_to_4KB_reg;
 default : bytes_sent = 0;
 endcase
 end

// recode the whole payload_cntr block to solve the timing problem
always @(sm_send_first, sm_send_max, sm_send_to_4k, sm_send_last,
sm_send_last_reg,
 bytes_to_RCB_reg, max_payload_reg, bytes_to_4KB_reg, curr_bcnt_reg,
 over_rd_bytes_reg, TxReadDataValid_i, payload_cntr,
bytes_to_RCB_add_reg,
 max_payload_add_reg, bytes_to_4KB_add_reg, curr_bcnt_add_reg,
 over_rd_bytes_add_reg)
 begin
 case({sm_send_first, sm_send_max, sm_send_to_4k, sm_send_last,
sm_send_last_reg,
 TxReadDataValid_i})
 6'b000001 : nxt_payload_cntr[13:2] = payload_cntr[13:2] + 12'h002;
 6'b100001 : nxt_payload_cntr[13:2] = payload_cntr[13:2] +
bytes_to_RCB_add_reg[13:2];
 6'b010001 : nxt_payload_cntr[13:2] = payload_cntr[13:2] +
max_payload_add_reg[13:2];
 6'b001001 : nxt_payload_cntr[13:2] = payload_cntr[13:2] +
bytes_to_4KB_add_reg[13:2];
 6'b000101 : nxt_payload_cntr[13:2] = payload_cntr[13:2] +
curr_bcnt_add_reg[13:2];
 6'b000011 : nxt_payload_cntr[13:2] = payload_cntr[13:2] +
over_rd_bytes_add_reg[13:2];
 6'b100000 : nxt_payload_cntr[13:2] = payload_cntr[13:2] -
{6'h00,bytes_to_RCB_reg[7:2]};
 6'b010000 : nxt_payload_cntr[13:2] = payload_cntr[13:2] -
{1'b0,max_payload_reg[12:2]};
 6'b001000 : nxt_payload_cntr[13:2] = payload_cntr[13:2] -
{1'b0,bytes_to_4KB_reg[12:2]};
 6'b000100 : nxt_payload_cntr[13:2] = payload_cntr[13:2] -
{1'b0,curr_bcnt_reg[12:2]};
 6'b000010 : nxt_payload_cntr[13:2] = payload_cntr[13:2] -
{10'h000,over_rd_bytes_reg[3:2]};
 default : nxt_payload_cntr[13:2] = payload_cntr[13:2];
 endcase
 end

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

125

// assign nxt_payload_cntr[1:0] = 2'b00;

/// completion payload counter to keep track of the data byte returned from
avalon
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 payload_cntr[13:0] <= 0;
 else // Rstn_i
 payload_cntr[13:0] <= {nxt_payload_cntr[13:2],2'b00};
 end

/// over read bytes caculation due to more data being read from the
// avalon to compensate for the alignment 32/64
// signals ready from start_resp onwards, mainly constant
assign over_rd_2dw = rd_addr[2] & ~rd_dwlen[0];
assign over_rd_1dw = rd_dwlen[0];

always @(over_rd_2dw, over_rd_1dw)
 begin
 case({over_rd_2dw, over_rd_1dw})
 2'b01 : over_rd_bytes = 4;
 2'b10 : over_rd_bytes = 8;
 default: over_rd_bytes = 0;
 endcase
 end

always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 over_rd_bytes_reg <= 0;
 else
 over_rd_bytes_reg <= over_rd_bytes;
 end

// the current byte count register that still need to be sent for PCIe resp
// the remaining byte count after a DMA write header is written into the
Command FIFO
always @(posedge Clk_i or negedge Rstn_i) begin
 if(~Rstn_i)
 curr_bcnt_reg <= 13'h0;
 else if(sm_start_resp)
 curr_bcnt_reg <= {rd_dwlen, 2'b00};
 else if(sm_send_first | sm_send_max | sm_send_to_4k)
 curr_bcnt_reg <= curr_bcnt_reg - pkt_size_reg;
 else if(sm_send_last)
 curr_bcnt_reg <= 0;
 else
 curr_bcnt_reg <= curr_bcnt_reg;
end

// the current byte count register that still need to be sent for PCIe resp
// the remaining byte count after a DMA write header is written into the
Command FIFO
always @(posedge Clk_i or negedge Rstn_i) begin
 if(~Rstn_i)
 curr_bcnt_reg_int <= 13'h0;
 else if(sm_start_resp)
 curr_bcnt_reg_int <= {rd_dwlen, 2'b00} + over_rd_bytes;
 else if(sm_send_first | sm_send_max | sm_send_to_4k)
 curr_bcnt_reg_int <= curr_bcnt_reg_int - pkt_size_reg;
 else if(sm_send_last)
 curr_bcnt_reg_int <= 0;
 else
 curr_bcnt_reg_int <= curr_bcnt_reg_int;
end

/// the remaining bcnt (for the header)
assign remain_bytes = curr_bcnt_reg;

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

126

// read address reg increments byte the amount of byte in each read header
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 wr_addr_reg <= 0;
 else if(sm_start_resp & dma_req & (cpl_tag == 8'h00))
 wr_addr_reg <= DmaDstAdr_i;
 else if(dma_req & (sm_send_max | sm_send_to_4k | sm_send_last))
 wr_addr_reg[15:0] <= wr_addr_reg[15:0] + pkt_size_reg;
 else
 wr_addr_reg[15:0] <= wr_addr_reg[15:0];
 end

// assign bytes_to_4KB = 13'h1000 - wr_addr_reg[11:0];
// read address reg increments byte the amount of byte in each read header
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 bytes_to_4KB_reg <= 0;
 else if(sm_start_resp & dma_req & (cpl_tag == 8'h00))
 bytes_to_4KB_reg <= 13'h1000 - DmaDstAdr_i[11:0];
 else if(dma_req & (sm_send_max | sm_send_to_4k | sm_send_last))
 // bytes_to_4KB_reg <= ~{1'b0,wr_addr_reg[11:0]} +
~{1'b0,pkt_size_reg[11:0]} + 13'h1002;
 // bytes_to_4KB_reg <= ~{1'b0,wr_addr_reg[11:0]} +
pkt_size_reg_mod[12:0];
 bytes_to_4KB_reg <= pkt_size_reg_mod[12:0] - wr_addr_reg[11:0];
 else
 bytes_to_4KB_reg <= bytes_to_4KB_reg;
 end

// ==
// Gather the info to generate the PCIe Cpl header for PCIe response
// ==

// calculate the 7 bit lower address of the first enable byte
// based on the first byte enable
always @(fbe,rd_addr)
 begin
 casex(fbe)
 4'bxxx1 : lower_addr = {rd_addr[6:2], 2'b00};
 4'bxx10 : lower_addr = {rd_addr[6:2], 2'b01};
 4'bx100 : lower_addr = {rd_addr[6:2], 2'b10};
 4'b1000 : lower_addr = {rd_addr[6:2], 2'b11};
 default: lower_addr = 7'b0000000;
 endcase
end

always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 lower_addr_reg <= 0;
 else if(sm_start_resp)
 lower_addr_reg <= lower_addr;
 else if(sm_send_first | sm_send_to_4k | sm_send_max | sm_send_last)
 lower_addr_reg <= 0;
 end

///// Assemble the completion headers
assign completer_id = {BusDev_i, 3'b000};

// write header format
// assign requester_id = {BusDev_i, 3'b000};

assign cpl_header = {8'h4A, 8'h00, 2'h0, attr, 2'h0, pkt_size_reg[11:2],
 completer_id, 3'b000, 1'b0, remain_bytes[11:0],
 requester_id, cpl_tag, 1'b0, lower_addr_reg,
32'h00000000};

// ==

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

127

// Gather the info to generate the PCIe Write header for DMA Wr
// ==

// In 64-bit mode, calculate the correct space
always @(DmaDstAdr_i) begin
 if (|DmaDstAdr_i[63:32] == 1'b1)
 PCIeAddrSpace_i = 1'b1; // 64-bit Memory Address
 else
 PCIeAddrSpace_i = 1'b0; // 32-bit Memory Address
end

// calculate the write dw_len
assign wr_dw_len[9:0] = pkt_size_reg[11:2];

// 64-bit addressing mem write
assign mem_wr64_header = {8'h60, 8'h00, 6'h0, (wr_dw_len[9:0]),
 completer_id, cpl_tag, 4'hF, fbe,
 wr_addr_reg[63:32],
 // wr_addr_reg[31:3], addr_bit2, 2'b00};
 wr_addr_reg[31:2], 2'b00};

// 32-bit addressing write
assign mem_wr32_header = {8'h40, 8'h00, 6'h0, (wr_dw_len[9:0]),
 completer_id, cpl_tag, 4'hF, fbe,
 // wr_addr_reg[31:3], addr_bit2, 2'b00, 32'h00000000};
 wr_addr_reg[31:2], 2'b00, 32'h00000000};

// muxing the header based on the address decoding space
assign wr_header = PCIeAddrSpace_i ? mem_wr64_header : mem_wr32_header;

// ==
// command fifo interface
// ==

assign CmdFifoWrReq_o = sm_send_first | sm_send_last | sm_send_max |
sm_send_to_4k;

// indicate busy one clock before accessing it
assign CmdFifoBusy_o = sm_send_to_4k | sm_send_first | sm_send_max |
sm_send_last;

assign CmdFifoDatin_o = dma_req ? wr_header : cpl_header;

endmodule

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

128

rx_pcie.v

//--
-
// Title : rx_pcie
// Project : PCIe-to-DDR2 SDRAM Reference Design
//--
-
// File : rx_pcie.v
// Author : Altera Corporation
//--
-
// Functional Description:
// This module is part of the RX application layer interfacing with the PCIe
// controller
//--

//
// Copyright 2003 Altera Corporation. All rights reserved. Altera products
are
// protected under numerous U.S. and foreign patents, maskwork rights,
copyrights and
// other intellectual property laws.
// This reference design file, and your use thereof, is subject to and
governed by
// the terms and conditions of the applicable Altera Reference Design License
Agreement.
// By using this reference design file, you indicate your acceptance of such
terms and
// conditions between you and Altera Corporation. In the event that you do
not agree with
// such terms and conditions, you may not use the reference design file.
Please promptly
// destroy any copies you have made.
//
// This reference design file being provided on an "as-is" basis and as an
accommodation
// and therefore all warranties, representations or guarantees of any kind
// (whether express, implied or statutory) including, without limitation,
warranties of
// merchantability, non-infringement, or fitness for a particular purpose, are
// specifically disclaimed. By making this reference design file available,
Altera
// expressly does not recommend, suggest or require that this reference design
file be
// used in combination with any other product not provided by Altera
// Code was modified by Maxim Leonov
// Copyright 2008 Auckland University of Technology

// turn off bogus verilog processor warnings
// altera message_off 10034 10035 10036 10037 10230

// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on

module rx_pcie

 (input Clk_i,
 input Rstn_i,

 // Rx port interface to PCI Exp core
 input [135:0] RxDesc_i,
 input RxReq_i,
 input RxDv_i,
 input RxDfr_i,
 input [63:0] RxData_i,
 input [7:0] RxBe_i,

 output RxAck_o,

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

129

 output RxRetry_o,
 output RxMask_o,
 output RxWs_o,
 output RxAbort_o,

 // Fifo interface
 // *FifoUsedW* signal has 1 extra bit to tell full/empty condition
 input [5:0] CmdFifoUsedW_i, // 32 entries
 output reg CmdFifoWrReq_o,
 output reg [71:0] CmdFifoDat_o,

 input [7:0] DatFifoUsedW_i, // 128 entries
 output reg DatFifoWrReq_o,
 output reg [71:0] DatFifoDat_o,

 input [5:0] PndngRdFifoUsedW_i,
 output PndgRdFifoWrReq_o,
 output [49:0] PndgRdHeader_o,

 // DMA interface
 input DmaBusy_i,
 output DmaRead_o,
 output DmaWrite_o,
 output [63:0] DmaSrcAdr_o,
 output [63:0] DmaDstAdr_o,
 output [12:0] DmaByteCnt_o,
 output DmaStart_o,
 output Dma_wr_busy_o,
 //*******
 output DmaReg_app_enable_o,
 input DmaReg_app_finished_i,
 output DmaReg_app_finished_o,

 input [7:0] TxDaFifo_rdusedw_i,
 // Tx Completion interface
 input TxCpl_i,
 // this is modified len (+1, +2, or unchanged) (qw)
 input [9:0] TxCplLen_i,

 // cfg signals
 input [31:0] DevCsr_i,
 input [12:0] BusDev_i
);

 //state machine encoding
 localparam RX_IDLE = 10'h000;
 localparam RX_WR_ACK = 10'h003;
 localparam RX_WR_DATA = 10'h005;
 localparam RX_WR_WAIT = 10'h009;
 localparam RX_RD_ACK = 10'h011;
 localparam RX_RD_RETRY = 10'h021;
 localparam RX_DMA_RD1 = 10'h041;
 localparam RX_DMA_RD2 = 10'h081;
 localparam RX_DMA_OUT = 10'h101;
 localparam RX_ERR = 10'h201;

 wire is_wr_cpl;
 wire is_rd;
 wire [10:0] rx_dwlen;
 wire [31:0] rx_addr;
 wire [7:0] dma_tag;
 wire [7:0] cpl_tag;
 wire [11:0] cpl_bytecount;
 wire [7:0] rdreq_tag;
 wire [15:0] requestor_id;
 wire [3:0] rx_fbe;
 wire [3:0] rx_lbe;
 wire len_plus_2;
 wire len_plus_1;
 wire dma_len_plus_2;

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

130

 wire dma_len_plus_1;
 wire dma_plus_1;
 wire cmd_fifo_ok;
 wire dat_fifo_ok;
 wire pndgrd_fifo_ok;
 wire rd_cpl_buff_ok;
 wire dma_cpl_buff_ok;
 wire rx_wrack;
 wire rx_wrdata;
 wire rx_wrwait;
 wire rx_rdack;
 reg rx_rdack_reg;
 reg TxCpl_i_reg;
 wire rx_rdretry;
 wire rx_dmard1;
 wire rx_dmard2;
 wire rx_dmaout;
 reg rx_dmard1_reg;
 reg rx_dmard2_reg;
 reg rx_dmaout_reg;
 wire rxidle;
 wire rx_err;
 wire [71:0] wr_header;
 wire [71:0] cpl_header;
 wire [71:0] rd_header;
 wire [71:0] dma_header;
 wire wr_header_sel;
 wire cpl_header_sel;
 wire rd_header_sel;
 wire dma_header_sel;
 wire [3:0] header_sel;
 wire is_wr;
 wire is_cpl_wd;
 wire is_cpl_wod;
 wire last_cpl;
 wire [2:0] cpl_stat;
 wire [6:0] bar_hit;
 wire [10:0] txcpl_dw;
 wire lowbe_mask_sel;
 wire lowbe_fbe_sel;
 wire lowbe_lbe_sel;
 wire highbe_mask_sel;
 wire highbe_fbe_sel;
 wire highbe_lbe_sel;
 wire cpl_success;
 wire dma_reg_rd;
 wire [1:0] attr;

 reg [71:0] rx_header;
 reg [10:0] rx_modlen; // actual length requested on avalon
 wire [9:0] dma_qwlen; // actual length requested on avalon
 reg [10:0] rx_wrdat_cntr;
 reg [11:0] txcpl_buffer_size;
 reg [11:0] txcpl_buffer_size_stg;
 reg [11:0] txdabuf_inc_cnt;
 reg [9:0] rx_state;
 reg [9:0] rx_nxt_state;
 reg [3:0] rx_lowbe;
 reg [3:0] rx_highbe;
 reg rxaddr_bit2_reg;
 reg rxdwlen0_reg;
 reg [10:0] rx_modlen_reg;
 reg [9:0] dma_qwlen_reg;
 reg [3:0] rx_fbe_reg;
 reg [3:0] rx_lbe_reg;

 wire [10:0] dma_dwlen;
 reg [10:0] dma_dwlen_reg;
 wire bar2_hit;
 wire dma_reg_wr;
 reg [4:0] dma_reg_sel;

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

131

 wire DmaPloAdr_wen;
 wire DmaPhiAdr_wen;
 wire DmaDdrAdr_wen;
 wire DmaBcnt_wen;
 wire DmaCtrl_wen;
 reg DmaPloAdr_wen_reg;
 reg DmaPhiAdr_wen_reg;
 reg DmaDdrAdr_wen_reg;
 reg DmaBcnt_wen_reg;
 reg DmaCtrl_wen_reg;
 reg [31:0] DmaPloAdr_reg;
 reg [31:0] DmaPhiAdr_reg;
 reg [31:0] DmaDdrAdr_reg;
 reg [31:0] DmaBcnt_reg;
 reg [31:0] DmaCtrl_reg;
 reg DmaStart_reg;

wire last_rd_segment_1;
wire last_rd_segment_2;
wire [12:0] bytes_to_4KB;
wire to_4KB_sel;
wire remain_bytes_sel;
wire [9:0] rd_dw_len;
reg [63:0] dma_adr;
reg [63:0] dma_adr_reg;
reg [63:0] ddr_dma_adr_reg;
wire [12:0] rd_size;
reg [12:0] rd_size_reg;
wire [12:0] remain_bcnt;
reg [12:0] remain_bcnt_reg;
reg [12:0] remain_rdbytecnt;
reg [12:0] remain_rdbytecnt_reg;
reg [12:0] byte_size_reg_1;
reg [12:0] byte_size_reg_2;
reg [12:0] max_rd_size;
reg [12:0] max_rd_size_reg;
reg [11:0] max_payload_size;
reg [1:0] rdsize_sel_reg;
reg [12:0] bytes_to_4KB_reg;
reg [7:0] dma_tag_cntr;
wire DmaStart_int;
wire rd_cnt;

 // decoding the rx_desc bus

 assign is_rd
= ~RxDesc_i[126] & (RxDesc_i[124:122]== 3'b000) & ~RxDesc_i[120];
 assign is_wr
= RxDesc_i[126] & (RxDesc_i[124:120]==5'b00000);
 assign is_cpl_wd
= RxDesc_i[126] & (RxDesc_i[124:120]==5'b01010);
 assign is_cpl_wod
= ~RxDesc_i[126] & (RxDesc_i[124:120]==5'b01010);
 assign rx_dwlen
= (RxDesc_i[105:96]==0)? 11'h400 : RxDesc_i[105:96];
 assign rx_addr
= RxDesc_i[125]? RxDesc_i[31:0] : RxDesc_i[63:32];
 assign cpl_tag = RxDesc_i[47:40];
 assign cpl_bytecount = RxDesc_i[75:64];
 assign rdreq_tag = RxDesc_i[79:72];
 assign requestor_id = RxDesc_i[95:80];
 assign rx_fbe = is_cpl_wd ? 4'hf : RxDesc_i[67:64];
 assign rx_lbe = is_cpl_wd ? 4'hf : RxDesc_i[71:68];
 assign last_cpl = (cpl_bytecount[11:2] == rx_dwlen);
 assign cpl_stat = RxDesc_i[79:77];
 assign cpl_success = (cpl_stat == 3'b000);
 assign bar_hit = RxDesc_i[134:128];
 assign bar2_hit = RxDesc_i[130];
 assign dma_tag = 8'b11111111;
 assign attr = RxDesc_i[109:108];

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

132

//****Modification: send enable signal to application****
 assign DmaReg_app_enable_o = DmaCtrl_reg[10];
 assign DmaReg_app_finished_o = DmaCtrl_reg[11];

// decode the max read size

always @(DevCsr_i)
 begin
 case(DevCsr_i[7:5])
 3'b000 : max_rd_size = 128;
 3'b001 : max_rd_size = 256;
 3'b010 : max_rd_size = 512;
 3'b011 : max_rd_size = 1024;
 3'b100 : max_rd_size = 2048;
 default : max_rd_size = 2048;
 endcase
 end

// Need to flop this to fix a timing violation
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i) begin
 max_rd_size_reg <= 13'h0000;
 bytes_to_4KB_reg <= 13'h0000;
 end
 else begin
 max_rd_size_reg <= max_rd_size;
 bytes_to_4KB_reg <= bytes_to_4KB;
 end
 end

// bytes to 4KB boundary
// assign bytes_to_4KB = 13'h1000 - dma_adr_reg[11:0];
assign bytes_to_4KB = 13'h1000 - DmaSrcAdr_o[11:0];

// Divide up the whole dma request to 2 parts if it hits the 4KB boundary
// First set the 1st_byte_size_reg to either the 4KB boundary or
// DmaByteCnt_i
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 byte_size_reg_1 <= 0;
 else if(rxidle & (DmaByteCnt_o > bytes_to_4KB_reg))
 byte_size_reg_1 <= bytes_to_4KB_reg;
 else if(rxidle & (DmaByteCnt_o <= bytes_to_4KB_reg))
 byte_size_reg_1 <= DmaByteCnt_o;
 else if(rx_dmaout & rx_dmard1_reg)
 byte_size_reg_1 <= byte_size_reg_1 - rd_size_reg;
 end

// Divide up the whole dma request to 2 parts if it hits the 4KB boundary
// First set the 2nd_byte_size_reg to either DmaByteCnt_i - bytes_to_4KB
// or 0
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 byte_size_reg_2 <= 0;
 else if(rxidle & (DmaByteCnt_o > bytes_to_4KB_reg))
 byte_size_reg_2 <= (DmaByteCnt_o - bytes_to_4KB_reg);
 else if(rxidle & (DmaByteCnt_o <= bytes_to_4KB_reg))
 byte_size_reg_2 <= 13'h0000;
 else if(rx_dmaout & rx_dmard2_reg)
 byte_size_reg_2 <= byte_size_reg_2 - rd_size_reg;
 end

// read address reg increments byte the amount of byte in each read header
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 ddr_dma_adr_reg <= 0;
 else if(DmaStart_int & rxidle)

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

133

 ddr_dma_adr_reg <= DmaSrcAdr_o;
 else if(rx_dmaout_reg)
 ddr_dma_adr_reg[15:0] <= ddr_dma_adr_reg[15:0] + dma_qwlen_reg;
 end

// read address reg increments byte the amount of byte in each read header
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 dma_adr_reg <= 0;
 else if(DmaStart_int & rxidle)
 dma_adr_reg <= {DmaSrcAdr_o[60:0],3'b000};
 else if(rx_dmaout_reg)
 dma_adr_reg[15:0] <= dma_adr_reg[15:0] + {dma_qwlen_reg,3'b000};
 end

assign remain_bcnt = (byte_size_reg_1 > 13'h0000) ? byte_size_reg_1 :
 byte_size_reg_2;

assign rd_size = (remain_bcnt >= max_rd_size_reg) ? max_rd_size_reg :
 remain_bcnt;

// flop this for timing reason, for fmax of 250MHz
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 remain_bcnt_reg <= 0;
 else if (rx_dmard1 | rx_dmard2)
 remain_bcnt_reg <= remain_bcnt;
 end

// flop this for timing reason, for fmax of 250MHz
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 rd_size_reg <= 0;
 else if (rx_dmard1 | rx_dmard2)
 rd_size_reg <= rd_size;
 end

assign last_rd_segment_1 = rx_dmard1_reg & (rd_size_reg == remain_bcnt_reg);
assign last_rd_segment_2 = rx_dmard2_reg & (rd_size_reg == remain_bcnt_reg);

 // modified length from dw to qword length to match the internal 64-bit
datapath
 // to compensate for the misaligned qwords
 //
 // In order to meet timing of 250MHz, some assumptions were made
 // 1. DMA starting address should be qword aligned
 // 2. DMA size should be multiples of 8
 // Because of that, the above logic can be eliminated to improve timing
 // The below is the optimized RTL
 assign dma_dwlen = rd_size_reg[12:2];
 assign dma_qwlen = rd_size_reg[12:3];

 // modified length from dw to qword length to match the internal 64-bit
datapath
 // to compensate for the misaligned qwords
 assign len_plus_2 = rx_addr[2] & ~rx_dwlen[0];
 assign len_plus_1 = rx_dwlen[0];

 always @(len_plus_2, len_plus_1, rx_dwlen)
 begin
 case({len_plus_2,len_plus_1})
 2'b01 : rx_modlen = rx_dwlen + 11'h001;
 2'b10 : rx_modlen = rx_dwlen + 11'h002;
 default : rx_modlen = rx_dwlen;
 endcase
 end

 // counter to track the available buffer size (tx completion) before

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

134

 // accepting a read request packet
 // TxCplLen_i is the modified length to compensate for the misaligned qwords

 // special pipeline signal to solve a timing issue
 always @(posedge Clk_i or negedge Rstn_i) // state machine registers
 begin
 if(~Rstn_i) begin
 TxCpl_i_reg <= 1'b0;
 rx_rdack_reg <= 1'b0;
 rx_dmard1_reg <= 1'b0;
 rx_dmard2_reg <= 1'b0;
 rx_dmaout_reg <= 1'b0;
 dma_qwlen_reg <= 0;
 dma_dwlen_reg <= 0;
 end
 else begin
 TxCpl_i_reg <= TxCpl_i;
 rx_rdack_reg <= rx_rdack;
 rx_dmard1_reg <= rx_dmard1;
 rx_dmard2_reg <= rx_dmard2;
 rx_dmaout_reg <= rx_dmaout;
 dma_qwlen_reg <= dma_qwlen;
 dma_dwlen_reg <= dma_dwlen;
 end
 end

 // assign txcpl_dw = {TxCplLen_i, 1'b0};
 assign rd_cnt = ~rx_rdack & ~rx_dmaout;

 always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 txdabuf_inc_cnt <= 12'h000;
 else if(TxCpl_i & ~rd_cnt)
 txdabuf_inc_cnt <= txdabuf_inc_cnt + TxCplLen_i;
 else if(~TxCpl_i & rd_cnt)
 txdabuf_inc_cnt <= 12'h000;
 else if(TxCpl_i & rd_cnt)
 txdabuf_inc_cnt <= TxCplLen_i;
 else
 txdabuf_inc_cnt <= txdabuf_inc_cnt;
 end

 always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 txcpl_buffer_size <= 12'h060; // 128 QW available
 else if(~rx_rdack & ~rx_dmaout)
 txcpl_buffer_size <= txcpl_buffer_size + txdabuf_inc_cnt;
 else if(rx_rdack & ~rx_dmaout)
 txcpl_buffer_size <= txcpl_buffer_size - rx_modlen_reg[10:1];
 else if(~rx_rdack & rx_dmaout)
 txcpl_buffer_size <= txcpl_buffer_size - dma_qwlen;
 else
 txcpl_buffer_size <= txcpl_buffer_size;
 end

 // check buffer space
 assign cmd_fifo_ok = (CmdFifoUsedW_i <= 31);
 assign dat_fifo_ok = (DatFifoUsedW_i <= 125);
 assign pndgrd_fifo_ok = (PndngRdFifoUsedW_i <= 31);
 // The correct variable to use should be rx_modlen.
 // But to fix a timing violation at 250MHz, rx_dwlen is used
 // In any case, the difference between rx_dwlen and rx_modlen can only be
 // 1 entry worth of data space in the cpl_buff and so it should not cause
 // any functional bug because sufficient buffer is provided in cpl_buff.
 // assign rd_cpl_buff_ok = (txcpl_buffer_size >= {2'b00,rx_modlen[10:1]});
 assign rd_cpl_buff_ok = (txcpl_buffer_size >= {2'b00,rx_dwlen[10:1]});
 assign dma_cpl_buff_ok = (txcpl_buffer_size >= {2'b00,dma_qwlen});

 // Rx control state machine

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

135

 always @(posedge Clk_i or negedge Rstn_i) // state machine registers
 begin
 if(~Rstn_i)
 rx_state <= RX_IDLE;
 else
 rx_state <= rx_nxt_state;
 end

 // state machine next state gen
 // treating completion the same as write

always @(*)
 begin
 case(rx_state)
 RX_IDLE :
 if(RxReq_i & (is_wr | is_cpl_wd | is_cpl_wod) & cmd_fifo_ok)
 rx_nxt_state <= RX_WR_ACK;
 else if(RxReq_i & is_rd & cmd_fifo_ok & rd_cpl_buff_ok &
pndgrd_fifo_ok)
 rx_nxt_state <= RX_RD_ACK;
 else if(RxReq_i & is_rd & cmd_fifo_ok & ~pndgrd_fifo_ok)
 rx_nxt_state <= RX_RD_RETRY;
 else if (DmaStart_int & DmaWrite_o & ~DmaBusy_i)
 rx_nxt_state <= RX_DMA_RD1;
 else if (~RxReq_i)
 rx_nxt_state <= RX_IDLE;
 else
 rx_nxt_state <= RX_ERR;

 RX_WR_ACK :
 if(is_cpl_wd | is_wr)
 rx_nxt_state <= RX_WR_DATA;
 else
 rx_nxt_state <= RX_IDLE;
 RX_WR_DATA :
 if(~RxDfr_i & RxDv_i)
 rx_nxt_state <= RX_IDLE;
 else if(~dat_fifo_ok)
 rx_nxt_state <= RX_WR_WAIT;
 else
 rx_nxt_state <= RX_WR_DATA;

 RX_WR_WAIT :
 if(dat_fifo_ok)
 rx_nxt_state <= RX_WR_DATA;
 else
 rx_nxt_state <= RX_WR_WAIT;

 RX_RD_ACK :
 rx_nxt_state <= RX_IDLE;

 RX_RD_RETRY :
 rx_nxt_state <= RX_IDLE;

 RX_DMA_RD1:
 if (cmd_fifo_ok & dma_cpl_buff_ok & pndgrd_fifo_ok)
 rx_nxt_state <= RX_DMA_OUT;
 else
 rx_nxt_state <= RX_DMA_RD1;

 RX_DMA_RD2:
 if (cmd_fifo_ok & dma_cpl_buff_ok & pndgrd_fifo_ok)
 rx_nxt_state <= RX_DMA_OUT;
 else
 rx_nxt_state <= RX_DMA_RD2;

 RX_DMA_OUT:
 if (~last_rd_segment_1 & rx_dmard1_reg)
 rx_nxt_state <= RX_DMA_RD1;
 else if((last_rd_segment_1 & (byte_size_reg_2 == 13'h0000)) ||

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

136

 (last_rd_segment_2))
 rx_nxt_state <= RX_IDLE;
 else if ((last_rd_segment_1 & (byte_size_reg_2 > 13'h0000)) ||
 (~last_rd_segment_2 & rx_dmard2_reg))
 rx_nxt_state <= RX_DMA_RD2;
 else
 rx_nxt_state <= RX_DMA_OUT;

 RX_ERR:
 if (~RxDfr_i)
 rx_nxt_state <= RX_IDLE;
 else
 rx_nxt_state <= RX_ERR;

 default:
 rx_nxt_state <= RX_IDLE;

 endcase
 end

// state machine output assignments

assign rxidle = ~rx_state[0];
assign rx_wrack = rx_state[1];
assign rx_wrdata = rx_state[2];
assign rx_wrwait = rx_state[3];
assign rx_rdack = rx_state[4];
assign rx_rdretry = rx_state[5];
assign rx_dmard1 = rx_state[6];
assign rx_dmard2 = rx_state[7];
assign rx_dmaout = rx_state[8];
assign rx_err = rx_state[9];

/// PCI Express core control interface
// assign RxAck_o = rx_wrack | rx_rdack | rx_err;
assign RxAck_o = rx_wrack | rx_rdack | (rx_err & RxReq_i);
assign RxRetry_o = rx_rdretry;
assign RxMask_o = rx_rdretry;
assign RxWs_o = rx_wrwait | rxidle | rx_wrack ;

// Command and data fifo interface
// the command/data fifo is used to store the selected header information
// and the write/completion data from rx port
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 CmdFifoWrReq_o <= 1'b0;
 else
 CmdFifoWrReq_o <= (rx_wrack & ~dma_reg_wr) | rx_rdack | rx_dmaout;
 end

always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DatFifoWrReq_o <= 1'b0;
 else
 DatFifoWrReq_o <= (RxDv_i & rx_wrdata & ~dma_reg_wr);
 end

// tag generation counter
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 dma_tag_cntr <= 8'h00;
 else if(rxidle)
 dma_tag_cntr <= 8'h00;
 else if(rx_dmaout)
 dma_tag_cntr <= dma_tag_cntr + 1;
 end

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

137

// assemble the various headers
// [4:0] : Completion tag
// [14:5] : length in real QW
// [15] : last completion
// [16] : completion successful
// [23:17] : BAR hit
// [31:24] : reserved
// [63:32] : Target address
// [64] : write request packet
// [65] : read request packet
// [66] : completion with data
// [67] : completion without data
// [71:68] : reserved

assign wr_header = {4'h0, 4'h1, rx_addr, 8'h00, bar_hit[6:0] ,1'b0, 1'b0,
rx_modlen[10:1], 5'h00};
assign rd_header = {4'h0, 4'h2, rx_addr, 8'h00,bar_hit[6:0], 1'b0, 1'b0,
rx_modlen[10:1], 5'h00};
assign cpl_header = {4'h0, is_cpl_wod, is_cpl_wd, 2'b00, 32'h00000000, 8'h00,
bar_hit[6:0], cpl_success, last_cpl, rx_modlen[10:1], cpl_tag[4:0]};
assign dma_header = {4'h0, 4'h2, ddr_dma_adr_reg[31:0], 8'h00,bar_hit[6:0],
1'b0, 1'b0, dma_qwlen, dma_tag_cntr[4:0]};

//muxing the header before writting it to the CD buffer
assign wr_header_sel = is_wr & rx_wrack;
assign cpl_header_sel = (is_cpl_wd | is_cpl_wod) & rx_wrack;
assign rd_header_sel = rx_rdack;
assign dma_header_sel = rx_dmaout;

assign header_sel = {dma_header_sel, rd_header_sel, cpl_header_sel,
wr_header_sel};

always @(header_sel, rd_header_sel, cpl_header_sel, wr_header, cpl_header,
rd_header,
 dma_header, dma_header_sel)
 begin
 case(header_sel)
 4'b0001 : rx_header = wr_header;
 4'b0010 : rx_header = cpl_header;
 4'b0100 : rx_header = rd_header;
 4'b1000 : rx_header = dma_header;
 default: rx_header = 72'h0000000000000000;
 endcase
 end

// figuring out the ben

// the rx write data counter
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 rx_wrdat_cntr <= 0;
 else if(rx_wrack)
 rx_wrdat_cntr <= rx_modlen;
 else if((RxDv_i & rx_wrdata))
 rx_wrdat_cntr <= rx_wrdat_cntr - 11'h002;
 end

// registers to hold the needed RxDesc_i fields (that be gone after ack)
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 begin
 rx_fbe_reg <= 0;
 rx_lbe_reg <= 0;
 rxaddr_bit2_reg <= 0;
 rxdwlen0_reg <= 0;
 end

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

138

 else if(rx_wrack)
 begin
 rx_fbe_reg <= rx_fbe;
 rx_lbe_reg <= rx_lbe;
 rxaddr_bit2_reg <= rx_addr[2];
 rxdwlen0_reg <= rx_dwlen[0];
 end
 end

// registers to hold the needed RxDesc_i fields (that be gone after ack)
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 rx_modlen_reg <= 0;
 else
 rx_modlen_reg <= rx_modlen;
 end

/// the low be [3:0]
// the source can be : 1. masking, 2. first_be, 3. last_be

assign lowbe_mask_sel = rxaddr_bit2_reg & (rx_wrdat_cntr == rx_modlen_reg);
// the first 64-bit data of the odd address
assign lowbe_fbe_sel = ~rxaddr_bit2_reg & (rx_wrdat_cntr == rx_modlen_reg);
// first 64-bit data and even address
assign lowbe_lbe_sel = (rxdwlen0_reg ^ rxaddr_bit2_reg) & (rx_wrdat_cntr ==
2); // at the last data

// muxing the sources
always @(lowbe_lbe_sel, lowbe_fbe_sel, lowbe_mask_sel, rx_fbe_reg, rx_lbe_reg)
 begin
 case({lowbe_lbe_sel, lowbe_fbe_sel, lowbe_mask_sel})
 3'b001 : rx_lowbe = 4'h0;
 3'b010 : rx_lowbe = rx_fbe_reg;
 3'b100 : rx_lowbe = rx_lbe_reg;
 default : rx_lowbe = 4'hF;
 endcase
 end

/// the high be [7:4]

assign highbe_mask_sel = (rxdwlen0_reg ^ rxaddr_bit2_reg) & (rx_wrdat_cntr ==
2);
assign highbe_fbe_sel = rxaddr_bit2_reg & (rx_wrdat_cntr == rx_modlen_reg);
assign highbe_lbe_sel = ~rxdwlen0_reg & ~rxaddr_bit2_reg & (rx_wrdat_cntr
== 2);

// muxing the sources
always @(highbe_lbe_sel, highbe_fbe_sel, highbe_mask_sel, rx_fbe, rx_lbe)
 begin
 case({highbe_lbe_sel, highbe_fbe_sel, highbe_mask_sel})
 3'b001 : rx_highbe = 4'h0;
 3'b010 : rx_highbe = rx_fbe;
 3'b100 : rx_highbe = rx_lbe;
 default : rx_highbe = 4'hF;
 endcase
 end

/// muxing between the data/ben and the header before writting into the CD
buffer
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 CmdFifoDat_o <= 0;
 else
 CmdFifoDat_o <= rx_header;
 end

always @(posedge Clk_i or negedge Rstn_i)
 begin

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

139

 if(~Rstn_i)
 DatFifoDat_o <= 0;
 else
 DatFifoDat_o <= ({rx_highbe, rx_lowbe, RxData_i});
 end

//// Rx pending read request
// when a read request is accepted and sent to the avalon, some of the header
// info needs to be saved and later used to reconstruct the completion packet

// [7:0] tag
// [14:8] 7-bit lower address
// [15] DMA register read
// [31:16] Requestor ID
// [42:32] Requested length
// [46:43] First Ben
// [47] DMA request
// [49:48] attr

assign PndgRdHeader_o = rx_rdack ?
 {attr, 1'b0, rx_fbe, rx_dwlen, requestor_id, dma_reg_rd, rx_addr[6:0],
rdreq_tag} :
 {attr, 1'b1, 4'b1111, dma_dwlen, requestor_id, 1'b0, dma_adr_reg[6:0],
dma_tag_cntr};
assign PndgRdFifoWrReq_o = rx_rdack | rx_dmaout;

// if bar2_hit and a wr_req
// decode the lower bits of the address
// find out which dma register it is accessing
// write the data to the dma register
// when the dma start register is written
// output the dma request

assign dma_reg_wr = is_wr & bar2_hit;
assign dma_reg_rd = is_rd & bar2_hit;

always @(rx_addr)
 begin
 case(rx_addr[7:0])
 8'b00000000 : dma_reg_sel = 5'b00001; // addr[31:0] of PCIe Addr
 8'b00000100 : dma_reg_sel = 5'b00010; // addr[63:32] of PCIe Addr
 8'b00001000 : dma_reg_sel = 5'b00100; // DmaByteCnt
 8'b00001100 : dma_reg_sel = 5'b01000; // DmaCtrl
 8'b00010100 : dma_reg_sel = 5'b10000; // addr[31:0] of DDR2 Addr
 default : dma_reg_sel = 5'b00000;
 endcase
 end

assign DmaPloAdr_wen = dma_reg_wr & dma_reg_sel[0];
assign DmaPhiAdr_wen = dma_reg_wr & dma_reg_sel[1];
assign DmaBcnt_wen = dma_reg_wr & dma_reg_sel[2];
assign DmaCtrl_wen = dma_reg_wr & dma_reg_sel[3];
assign DmaDdrAdr_wen = dma_reg_wr & dma_reg_sel[4];

always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 begin
 DmaPloAdr_wen_reg <= 0;
 DmaPhiAdr_wen_reg <= 0;
 DmaDdrAdr_wen_reg <= 0;
 DmaBcnt_wen_reg <= 0;
 DmaCtrl_wen_reg <= 0;
 end
 else if(rx_wrack)
 begin
 DmaPloAdr_wen_reg <= DmaPloAdr_wen;
 DmaPhiAdr_wen_reg <= DmaPhiAdr_wen;
 DmaDdrAdr_wen_reg <= DmaDdrAdr_wen;
 DmaBcnt_wen_reg <= DmaBcnt_wen;

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

140

 DmaCtrl_wen_reg <= DmaCtrl_wen;
 end
 end

// DmaPloAdr - Dma PCIe address lower half, i.e. [31:0]
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaPloAdr_reg <= 0;
 else if(rx_wrdata & DmaPloAdr_wen_reg)
 DmaPloAdr_reg <= RxData_i[31:0];
 end

// DmaPhiAdr - Dma PCIe address upper half, i.e. [63:32]
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaPhiAdr_reg <= 0;
 else if(rx_wrdata & DmaPhiAdr_wen_reg)
 DmaPhiAdr_reg <= RxData_i[31:0];
 end

// DmaDdrAdr
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaDdrAdr_reg <= 0;
 else if(rx_wrdata & DmaDdrAdr_wen_reg)
 DmaDdrAdr_reg <= RxData_i[31:0];
 end

// Dma Byte Cnt[12:0]. Only [12:0] is used
// The rest is ignored.
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaBcnt_reg <= 0;
 else if(rx_wrdata & DmaBcnt_wen_reg)
 DmaBcnt_reg <= RxData_i[31:0];
 end

// DmaWr when DmaBcnt_reg[6:5] = 10b (3DW) or 11b (4DW)
// DmaRd when DmaBcnt_reg[6:5] = 00b (3DW) or 01b (4DW)
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaCtrl_reg[6:5] <= 0;
 else if(rx_wrdata & DmaCtrl_wen_reg)
 DmaCtrl_reg[6:5] <= RxData_i[6:5];
 end

//**** Modification made to check ***************

always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaCtrl_reg[10] <= 1'b0;
 else if(rx_wrdata & DmaCtrl_wen_reg)
 DmaCtrl_reg[10] <= RxData_i[10];
end

always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaCtrl_reg[11] <= 1'b0;
 else if(DmaReg_app_finished_i)
 DmaCtrl_reg[11] <= DmaReg_app_finished_i;
 end
//**

// DmaStart bit can only set by user at DmaCtrl_reg[0]

Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design

141

// DmaDone bit can only set by hardware at DmaCtrl_reg[8]
// When DmaStart bit is written, Dma will start if DmaBusy is not asserted
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaCtrl_reg[7] <= 1'b0;
 else if(DmaStart_reg)
 DmaCtrl_reg[7] <= 1'b0;
 else if(rx_wrdata & DmaCtrl_wen_reg)
 DmaCtrl_reg[7] <= RxData_i[7];
 end

always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaStart_reg <= 0;
 else
 DmaStart_reg <= DmaCtrl_reg[7];
 end

assign DmaRead_o = ~DmaCtrl_reg[6];
assign DmaWrite_o = DmaCtrl_reg[6];
assign DmaSrcAdr_o = DmaWrite_o ? {32'h00000000,DmaDdrAdr_reg}
 : {DmaPhiAdr_reg,DmaPloAdr_reg};
assign DmaDstAdr_o = DmaWrite_o ? {DmaPhiAdr_reg,DmaPloAdr_reg}
 : {32'h00000000,DmaDdrAdr_reg};
assign DmaByteCnt_o = DmaBcnt_reg[12:0];
assign DmaStart_o = DmaCtrl_reg[7];
assign DmaStart_int = DmaCtrl_reg[7] & ~DmaStart_reg;
assign Dma_wr_busy_o = rx_dmard1 | rx_dmard2 | rx_dmaout;

// assign DmaCtrl_reg[31] = 1 when DmaBusy from top level
// assign DmaCtrl_reg[31] = 0 when DmaDone from top level
always @(posedge Clk_i or negedge Rstn_i)
 begin
 if(~Rstn_i)
 DmaCtrl_reg[31] <= 1'b0;
 else
 DmaCtrl_reg[31] <= DmaBusy_i;
 end

endmodule

Appendix A7. The Switch

142

Appendix A7. The Switch

switch_top.v

// Code was created by Maxim Leonov
// Copyright 2008 Auckland University of Technology
module switch_top

 (
 input Clk_i,
 input Rstn_i,

 input switch_select_i,
 output switch_select_o,

 //rx_top interfaces
 input rx_top_read_i,
 input rx_top_write_i,
 input [31:0] rx_top_address_i,
 input [63:0] rx_top_write_data_i,
 input [7:0] rx_top_byte_enable_i,
 input [1:0] rx_top_burst_count_i,

 output rx_top_ready_o,
 output rx_top_wrdata_req_o,

 //tx_top interfaces
 output tx_top_rd_data_valid_o,
 output [63:0] tx_top_read_data_o,

 //driver interfaces
 input driver_read_i,
 input driver_write_i,
 input [1:0] driver_bank_address_i,
 input [9:0] driver_col_address_i,
 input [12:0] driver_row_address_i,
 input [63:0] driver_write_data_i,
 input [7:0] driver_byte_enable_i,
 input [1:0] driver_burst_count_i,

 output driver_ready_o,
 output driver_wrdata_req_o,
 output [63:0] driver_read_data_o,
 output driver_rdata_valid_o,

 //ddr_ctrlr interfaces
 input DdrReady_i,//1
 input DdrWrDataReq_i,//2
 input [63:0] DdrReadData_i,//3
 input DddReadDataValid_i,

 output DdrRead_o,//5
 output DdrWrite_o,//6
 output [31:0] DdrAddress_o,//7
 output [63:0] DdrWriteData_o,//8
 output [7:0] DdrByteEnable_o,//9
 output [1:0] DdrBurstCount_o //10

);

wire driver_read;
wire driver_write;
wire [31:0] driver_address;
wire [63:0] driver_write_data;

Appendix A7. The Switch

143

wire [7:0] driver_byte_enable;
wire [1:0] driver_burst_count;
wire driver_ddr_ready;
wire driver_wrdata_req;

wire rx_top_read;
wire rx_top_write;
wire [31:0] rx_top_address;
wire [63:0] rx_top_write_data;
wire [7:0] rx_top_byte_enable;
wire [1:0] rx_top_burst_count;
wire rx_top_ready;
wire rx_top_wrdata_req;

assign switch_select_o = switch_select_i;

//connect up the address bits
assign driver_address[8 : 0] = driver_col_address_i[9 : 1];
assign driver_address[21: 9] = driver_row_address_i;
assign driver_address[23:22] = driver_bank_address_i;
assign driver_address[31:24] = 8'h00;

assign DdrRead_o = switch_select_i? driver_read_i : rx_top_read_i;
assign DdrWrite_o = switch_select_i ? driver_write_i : rx_top_write_i;
assign DdrAddress_o = switch_select_i ? driver_address : rx_top_address_i;
assign DdrWriteData_o = switch_select_i ? driver_write_data_i:
rx_top_write_data_i;
assign DdrByteEnable_o = switch_select_i ? driver_byte_enable_i :
rx_top_byte_enable_i;
assign DdrBurstCount_o = switch_select_i ? driver_burst_count_i :
rx_top_burst_count_i;

assign driver_ready_o = switch_select_i ? DdrReady_i : 1'b0;
assign rx_top_ready_o = ~switch_select_i ? DdrReady_i : 1'b0;

assign driver_wrdata_req_o = switch_select_i ? DdrWrDataReq_i : 1'b0;
assign rx_top_wrdata_req_o = ~switch_select_i ? DdrWrDataReq_i : 1'b0;

assign driver_read_data_o = switch_select_i ? DdrReadData_i : {64{1'b0}};
assign tx_top_read_data_o = ~switch_select_i ? DdrReadData_i : {64{1'b0}};

assign driver_rdata_valid_o = switch_select_i ? DddReadDataValid_i : 1'b0;
assign tx_top_rd_data_valid_o = ~switch_select_i ? DddReadDataValid_i : 1'b0;

endmodule

Appendix A8. The Correlator’s DDR Controller Driver

144

Appendix A8. The Correlator’s DDR Controller Driver

ddr_ctrl_driver.v

// Code was created by Maxim Leonov
// Copyright 2008 Auckland University of Technology

// synthesis translate_off
`timescale 1ns / 1ps
// synthesis translate_on

module ddr_ctrl_driver (
 // inputs:
 clk,
 local_rdata,
 local_rdata_valid,
 local_ready,
 local_wdata_req,
 reset_n,

 enable,
 data_r1,
 data_r2,
 data_r3,
 data_r4,
 data_r5,
 data_r6,
 data_r7,
 data_r8,
 data_r9,
 data_r10,
 data_r11,
 data_r12,
 data_r13,
 data_r14,
 data_r15,

 in_stream_x1_ready,
 in_stream_x2_ready,
 in_stream_x3_ready,
 in_stream_x4_ready,
 in_stream_x5_ready,
 in_stream_x6_ready,
 out_stream_r1_ready,
 out_stream_r2_ready,
 out_stream_r3_ready,
 out_stream_r4_ready,
 out_stream_r5_ready,
 out_stream_r6_ready,
 out_stream_r7_ready,
 out_stream_r8_ready,
 out_stream_r9_ready,
 out_stream_r10_ready,
 out_stream_r11_ready,
 out_stream_r12_ready,
 out_stream_r13_ready,
 out_stream_r14_ready,
 out_stream_r15_ready,
 out_stream_r1_closed,
 out_stream_r2_closed,
 out_stream_r3_closed,
 out_stream_r4_closed,
 out_stream_r5_closed,
 out_stream_r6_closed,
 out_stream_r7_closed,

Appendix A8. The Correlator’s DDR Controller Driver

145

 out_stream_r8_closed,
 out_stream_r9_closed,
 out_stream_r10_closed,
 out_stream_r11_closed,
 out_stream_r12_closed,
 out_stream_r13_closed,
 out_stream_r14_closed,
 out_stream_r15_closed,

 // outputs:
 data_to_corr_o,
 corr_x1_rd_data_valid_o,
 corr_x2_rd_data_valid_o,
 corr_x3_rd_data_valid_o,
 corr_x4_rd_data_valid_o,
 corr_x5_rd_data_valid_o,
 corr_x6_rd_data_valid_o,
 corr_wrdata_req_o_r1,
 corr_wrdata_req_o_r2,
 corr_wrdata_req_o_r3,
 corr_wrdata_req_o_r4,
 corr_wrdata_req_o_r5,
 corr_wrdata_req_o_r6,
 corr_wrdata_req_o_r7,
 corr_wrdata_req_o_r8,
 corr_wrdata_req_o_r9,
 corr_wrdata_req_o_r10,
 corr_wrdata_req_o_r11,
 corr_wrdata_req_o_r12,
 corr_wrdata_req_o_r13,
 corr_wrdata_req_o_r14,
 corr_wrdata_req_o_r15,
 read_count_o,

 burst_begin,
 local_bank_addr,
 local_be,
 local_col_addr,
 local_cs_addr,
 local_read_req,
 local_row_addr,
 local_size,
 local_wdata,
 local_write_req,
 pnf_per_byte,
 pnf_persist,
 test_complete
);

 output burst_begin;
 output [1: 0] local_bank_addr;
 output [7: 0] local_be;
 output [9: 0] local_col_addr;
 output local_cs_addr;
 output local_read_req;
 output [12: 0] local_row_addr;
 output [1: 0] local_size;
 output [63: 0] local_wdata;
 output local_write_req;
 output [7: 0] pnf_per_byte;
 output pnf_persist;
 output test_complete;
 output [63: 0] data_to_corr_o;
 output corr_x1_rd_data_valid_o;
 output corr_x2_rd_data_valid_o;
 output corr_x3_rd_data_valid_o;
 output corr_x4_rd_data_valid_o;
 output corr_x5_rd_data_valid_o;
 output corr_x6_rd_data_valid_o;
 output corr_wrdata_req_o_r1;

Appendix A8. The Correlator’s DDR Controller Driver

146

 output corr_wrdata_req_o_r2;
 output corr_wrdata_req_o_r3;
 output corr_wrdata_req_o_r4;
 output corr_wrdata_req_o_r5;
 output corr_wrdata_req_o_r6;
 output corr_wrdata_req_o_r7;
 output corr_wrdata_req_o_r8;
 output corr_wrdata_req_o_r9;
 output corr_wrdata_req_o_r10;
 output corr_wrdata_req_o_r11;
 output corr_wrdata_req_o_r12;
 output corr_wrdata_req_o_r13;
 output corr_wrdata_req_o_r14;
 output corr_wrdata_req_o_r15;
 output [15: 0] read_count_o;

 input clk;
input enable;
input in_stream_x1_ready;
input in_stream_x2_ready;
input in_stream_x3_ready;
input in_stream_x4_ready;
input in_stream_x5_ready;
input in_stream_x6_ready;
input out_stream_r1_ready;
input out_stream_r2_ready;
input out_stream_r3_ready;
input out_stream_r4_ready;
input out_stream_r5_ready;
input out_stream_r6_ready;
input out_stream_r7_ready;
input out_stream_r8_ready;
input out_stream_r9_ready;
input out_stream_r10_ready;
input out_stream_r11_ready;
input out_stream_r12_ready;
input out_stream_r13_ready;
input out_stream_r14_ready;
input out_stream_r15_ready;
input out_stream_r1_closed;
input out_stream_r2_closed;
input out_stream_r3_closed;
input out_stream_r4_closed;
input out_stream_r5_closed;
input out_stream_r6_closed;
input out_stream_r7_closed;
input out_stream_r8_closed;
input out_stream_r9_closed;
input out_stream_r10_closed;
input out_stream_r11_closed;
input out_stream_r12_closed;
input out_stream_r13_closed;
input out_stream_r14_closed;
input out_stream_r15_closed;
input [63: 0] local_rdata;
input local_rdata_valid;
input local_ready;
input local_wdata_req;
input reset_n;
input [63: 0] data_r1;
input [63: 0] data_r2;
input [63: 0] data_r3;
input [63: 0] data_r4;
input [63: 0] data_r5;
input [63: 0] data_r6;
input [63: 0] data_r7;
input [63: 0] data_r8;
input [63: 0] data_r9;
input [63: 0] data_r10;
input [63: 0] data_r11;

Appendix A8. The Correlator’s DDR Controller Driver

147

input [63: 0] data_r12;
input [63: 0] data_r13;
input [63: 0] data_r14;
input [63: 0] data_r15;

 wire [1: 0] LOCAL_BURST_LEN_s;
 wire [1: 0] MAX_BANK;
 wire MAX_CHIPSEL;
 wire [9: 0] MAX_COL;
 wire [12: 0] MAX_ROW;
 wire MIN_CHIPSEL;
 wire [1: 0] DATA_BANK;
 wire [9: 0] DATA_COL;
 wire [12: 0] DATA_ROW;
 wire DATA_CHIPSEL;
 wire [1: 0] DATA_OUT_BANK;
 wire [9: 0] DATA_OUT_COL;
 wire [12: 0] DATA_OUT_ROW;
 wire DATA_OUT_CHIPSEL;
 wire avalon_burst_mode;
 wire avalon_read_burst_max_address;
 reg [1: 0] bank_addr;
// wire [17: 0] be;
 wire [7: 0] be;
 reg [2: 0] burst_beat_count;
 reg burst_begin;
 reg [9: 0] col_addr;
 wire [7: 0] compare;
 reg [7: 0] compare_reg;
 reg [7: 0] compare_valid;
 reg [7: 0] compare_valid_reg;
 reg cs_addr;
 wire [63: 0] dgen_data;
 reg dgen_enable;
 reg [63: 0] dgen_ldata;
 reg dgen_load;
 wire dgen_pause;
 reg last_rdata_valid;
 reg last_wdata_req;
 wire [1: 0] local_bank_addr;
// wire [17: 0] local_be;
 wire [7: 0] local_be;
 wire [9: 0] local_col_addr;
 wire local_cs_addr;
 wire local_read_req;
 wire [12: 0] local_row_addr;
 wire [1: 0] local_size;
// wire [143: 0] local_wdata;
 wire [63: 0] local_wdata;
 wire local_write_req;
 wire [17: 0] pnf_per_byte;
 reg pnf_persist;
 reg pnf_persist1;
 wire reached_data_address;
 reg reached_data_count;
 wire reached_data_out_address;
 reg reached_data_out_count;
 wire reached_max_address;
 reg reached_max_count;
 reg read_req;
 reg [7: 0] reads_remaining;
 reg reset_address;
 reg [12: 0] row_addr;
 wire [1: 0] size;
 reg [3: 0] state;
 reg test_complete;
 reg wait_first_write_data;
// wire [143: 0] wdata;
 wire [63: 0] wdata;

Appendix A8. The Correlator’s DDR Controller Driver

148

 wire wdata_req;
 reg write_req;
 reg [7: 0] writes_remaining;

wire enable;
wire in_streams_ready;

reg out_stream_ready;
reg out_stream_closed;

reg [15: 0] read_count;

reg [3: 0] read_state;
reg [3: 0] write_state;

reg read_done;

reg stream_x1_wr_enable_reg;
reg stream_x2_wr_enable_reg;
reg stream_x3_wr_enable_reg;
reg stream_x4_wr_enable_reg;
reg stream_x5_wr_enable_reg;
reg stream_x6_wr_enable_reg;

reg corr_wrdata_req_r0_reg;
reg corr_wrdata_req_r1_reg;
reg corr_wrdata_req_r2_reg;
reg corr_wrdata_req_r3_reg;
reg corr_wrdata_req_r4_reg;
reg corr_wrdata_req_r5_reg;
reg corr_wrdata_req_r6_reg;
reg corr_wrdata_req_r7_reg;
reg corr_wrdata_req_r8_reg;
reg corr_wrdata_req_r9_reg;
reg corr_wrdata_req_r10_reg;
reg corr_wrdata_req_r11_reg;
reg corr_wrdata_req_r12_reg;
reg corr_wrdata_req_r13_reg;
reg corr_wrdata_req_r14_reg;

assign corr_x1_rd_data_valid_o = stream_x1_wr_enable_reg;
assign corr_x2_rd_data_valid_o = stream_x2_wr_enable_reg;
assign corr_x3_rd_data_valid_o = stream_x3_wr_enable_reg;
assign corr_x4_rd_data_valid_o = stream_x4_wr_enable_reg;
assign corr_x5_rd_data_valid_o = stream_x5_wr_enable_reg;
assign corr_x6_rd_data_valid_o = stream_x6_wr_enable_reg;

assign corr_wrdata_req_o_r1 = corr_wrdata_req_r0_reg;
assign corr_wrdata_req_o_r2 = corr_wrdata_req_r1_reg;
assign corr_wrdata_req_o_r3 = corr_wrdata_req_r2_reg;
assign corr_wrdata_req_o_r4 = corr_wrdata_req_r3_reg;
assign corr_wrdata_req_o_r5 = corr_wrdata_req_r4_reg;
assign corr_wrdata_req_o_r6 = corr_wrdata_req_r5_reg;
assign corr_wrdata_req_o_r7 = corr_wrdata_req_r6_reg;
assign corr_wrdata_req_o_r8 = corr_wrdata_req_r7_reg;
assign corr_wrdata_req_o_r9 = corr_wrdata_req_r8_reg;
assign corr_wrdata_req_o_r10 = corr_wrdata_req_r9_reg;
assign corr_wrdata_req_o_r11 = corr_wrdata_req_r10_reg;
assign corr_wrdata_req_o_r12 = corr_wrdata_req_r11_reg;
assign corr_wrdata_req_o_r13 = corr_wrdata_req_r12_reg;
assign corr_wrdata_req_o_r14 = corr_wrdata_req_r13_reg;
assign corr_wrdata_req_o_r15 = corr_wrdata_req_r14_reg;

 assign avalon_burst_mode = 0;
 assign MIN_CHIPSEL = 0;
 assign MAX_CHIPSEL = 0;
 assign MAX_ROW = 8;//0;
 assign MAX_BANK = 0;//0;
// assign MAX_COL = 16;//96;
 //
// assign MAX_ROW = 1<<(13-1);

Appendix A8. The Correlator’s DDR Controller Driver

149

 assign MAX_COL = 1<<(10-1);

 assign DATA_CHIPSEL = 0;
 assign DATA_BANK = 0;
// assign DATA_ROW = 1<<(4-1);
 assign DATA_COL = 1<<(10-1);
// assign DATA_ROW = 72;
 assign DATA_ROW = 200;

 assign DATA_OUT_CHIPSEL = 0;
 assign DATA_OUT_BANK = 0;
// assign DATA_OUT_ROW = 4;
 assign DATA_OUT_ROW = 0;
 assign DATA_OUT_COL = 132;//32 output samples

// assign DATA_OUT_COL = 512;

 assign local_cs_addr = cs_addr;

 assign local_row_addr = row_addr;
 assign local_bank_addr = bank_addr;
 assign local_col_addr = col_addr;
 assign local_write_req = write_req;
 assign local_read_req = read_req;
 assign local_wdata = wdata;

assign data_to_corr_o = local_rdata;
//assign corr_rd_data_valid_o = local_rdata_valid;
//assign wdata = data_from_corr_i;

assign read_count_o = read_count;
 //The LOCAL_BURST_LEN_s is a signal used insted of the parameter
LOCAL_BURST_LEN
 assign LOCAL_BURST_LEN_s = 1;
 //LOCAL INTERFACE (NON-AVALON)
 assign wdata_req = local_wdata_req;
//assign corr_wrdata_req_o = local_wdata_req;

 assign local_be = be;

 assign be = -1;
 assign pnf_per_byte = compare_valid_reg;
 assign local_size = size;
 //FIX
 assign size = LOCAL_BURST_LEN_s[1 : 0];
 assign reached_data_address = (col_addr >= (DATA_COL - (2 * 2))) &&
(row_addr == DATA_ROW) && (bank_addr == DATA_BANK) && (cs_addr ==
DATA_CHIPSEL);
 assign reached_data_out_address = (col_addr >= (DATA_OUT_COL - (2 * 2))) &&
(row_addr == DATA_OUT_ROW) && (bank_addr == DATA_OUT_BANK) && (cs_addr ==
DATA_OUT_CHIPSEL);
 assign reached_max_address = (col_addr >= (MAX_COL - (2 * 2))) && (row_addr
== MAX_ROW) && (bank_addr == MAX_BANK) && (cs_addr == MAX_CHIPSEL);
 assign avalon_read_burst_max_address = (col_addr >= (MAX_COL - (2 * 4))) &&
(row_addr == MAX_ROW) && (bank_addr == MAX_BANK) && (cs_addr == MAX_CHIPSEL);

one_bit_mux out_ready_mux (
 .data0 (out_stream_r1_ready),
 .data1 (out_stream_r2_ready),
 .data10 (out_stream_r11_ready),
 .data11 (out_stream_r12_ready),
 .data12 (out_stream_r13_ready),
 .data13 (out_stream_r14_ready),
 .data14 (out_stream_r15_ready),
 .data2 (out_stream_r3_ready),
 .data3 (out_stream_r4_ready),
 .data4 (out_stream_r5_ready),
 .data5 (out_stream_r6_ready),
 .data6 (out_stream_r7_ready),
 .data7 (out_stream_r8_ready),

Appendix A8. The Correlator’s DDR Controller Driver

150

 .data8 (out_stream_r9_ready),
 .data9 (out_stream_r10_ready),
 .sel (write_state),
 .result (out_stream_ready)
);

one_bit_mux out_closed_mux (
 .data0 (out_stream_r1_closed),
 .data1 (out_stream_r2_closed),
 .data10 (out_stream_r11_closed),
 .data11 (out_stream_r12_closed),
 .data12 (out_stream_r13_closed),
 .data13 (out_stream_r14_closed),
 .data14 (out_stream_r15_closed),
 .data2 (out_stream_r3_closed),
 .data3 (out_stream_r4_closed),
 .data4 (out_stream_r5_closed),
 .data5 (out_stream_r6_closed),
 .data6 (out_stream_r7_closed),
 .data7 (out_stream_r8_closed),
 .data8 (out_stream_r9_closed),
 .data9 (out_stream_r10_closed),
 .sel (write_state),
 .result (out_stream_closed)
);

mux_64bits out_data_mux (
 .data0x (data_r1),
 .data1x (data_r2),
 .data10x (data_r11),
 .data11x (data_r12),
 .data12x (data_r13),
 .data13x (data_r14),
 .data14x (data_r15),
 .data2x (data_r3),
 .data3x (data_r4),
 .data4x (data_r5),
 .data5x (data_r6),
 .data6x (data_r7),
 .data7x (data_r8),
 .data8x (data_r9),
 .data9x (data_r10),
 .sel (write_state),
 .result (wdata)
);

 //
 //---
 //Main clocked process
 //---
 //Read / Write control state machine & address counter
 //---
 always @(posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 begin
 //Reset - asynchronously force all register outputs LOW
 state <= 4'b0000;
 read_state <= 4'b0000;
 write_state <= 4'b0000;
 read_done <= 1'b0;

 write_req <= 1'b0;
 read_req <= 1'b0;
 burst_begin <= 0;
 burst_beat_count <= 0;
 cs_addr <= 0;
 row_addr <= 0;
 bank_addr <= 0;
 col_addr <= 0;
 dgen_enable <= 1'b0;

Appendix A8. The Correlator’s DDR Controller Driver

151

 dgen_load <= 1'b0;
 wait_first_write_data <= 1'b0;
 reached_data_count <= 1'b0;
 reached_data_out_count <= 1'b0;
 reached_max_count <= 1'b0;
 test_complete <= 1'b0;
 writes_remaining <= 0;
 reads_remaining <= 0;
 reset_address <= 1'b0;
 read_count <= 0;
 stream_x1_wr_enable_reg <= 1'b0;
 stream_x2_wr_enable_reg <= 1'b0;
 stream_x3_wr_enable_reg <= 1'b0;
 stream_x4_wr_enable_reg <= 1'b0;
 stream_x5_wr_enable_reg <= 1'b0;
 stream_x6_wr_enable_reg <= 1'b0;
 corr_wrdata_req_r0_reg <= 1'b0;
 corr_wrdata_req_r1_reg <= 1'b0;
 corr_wrdata_req_r2_reg <= 1'b0;
 corr_wrdata_req_r3_reg <= 1'b0;
 corr_wrdata_req_r4_reg <= 1'b0;
 corr_wrdata_req_r5_reg <= 1'b0;
 corr_wrdata_req_r6_reg <= 1'b0;
 corr_wrdata_req_r7_reg <= 1'b0;
 corr_wrdata_req_r8_reg <= 1'b0;
 corr_wrdata_req_r9_reg <= 1'b0;
 corr_wrdata_req_r10_reg <= 1'b0;
 corr_wrdata_req_r11_reg <= 1'b0;
 corr_wrdata_req_r12_reg <= 1'b0;
 corr_wrdata_req_r13_reg <= 1'b0;
 corr_wrdata_req_r14_reg <= 1'b0;

// out_stream_ready <= 1'b0;
// out_stream_closed <= 1'b0;
 end
 else if(enable)
 begin
 reset_address <= 1'b0;
 reached_max_count <= reached_max_address;
 reached_data_count <= reached_data_address;
 reached_data_out_count <= reached_data_out_address;
 read_req <= 1'b0;
 write_req <= 1'b0;
 dgen_load <= 1'b0;
 stream_x1_wr_enable_reg <= 1'b0;
 stream_x2_wr_enable_reg <= 1'b0;
 stream_x3_wr_enable_reg <= 1'b0;
 stream_x4_wr_enable_reg <= 1'b0;
 stream_x5_wr_enable_reg <= 1'b0;
 stream_x6_wr_enable_reg <= 1'b0;
 corr_wrdata_req_r0_reg <= 1'b0;
 corr_wrdata_req_r1_reg <= 1'b0;
 corr_wrdata_req_r2_reg <= 1'b0;
 corr_wrdata_req_r3_reg <= 1'b0;
 corr_wrdata_req_r4_reg <= 1'b0;
 corr_wrdata_req_r5_reg <= 1'b0;
 corr_wrdata_req_r6_reg <= 1'b0;
 corr_wrdata_req_r7_reg <= 1'b0;
 corr_wrdata_req_r8_reg <= 1'b0;
 corr_wrdata_req_r9_reg <= 1'b0;
 corr_wrdata_req_r10_reg <= 1'b0;
 corr_wrdata_req_r11_reg <= 1'b0;
 corr_wrdata_req_r12_reg <= 1'b0;
 corr_wrdata_req_r13_reg <= 1'b0;
 corr_wrdata_req_r14_reg <= 1'b0;
// read_done <= 1'b0;
// read_count <= 0;
// test_complete <= 1'b0;
 if (last_wdata_req)
 wait_first_write_data <= 0;
 if (write_req && local_ready)

Appendix A8. The Correlator’s DDR Controller Driver

152

 begin
 if (wdata_req)
 writes_remaining <= writes_remaining + (size - 1);
 else
 writes_remaining <= writes_remaining + size;
 end
 else if ((wdata_req) && (writes_remaining > 0))
 //size
 writes_remaining <= writes_remaining - 1'b1;
 else
 writes_remaining <= writes_remaining;
 if (read_req && local_ready)
 begin
 if (local_rdata_valid)
 reads_remaining <= reads_remaining + (size - 1);
 else
 reads_remaining <= reads_remaining + size;
 end
 else if ((local_rdata_valid) && (reads_remaining > 0))
 reads_remaining <= reads_remaining - 1'b1;
 else
 reads_remaining <= reads_remaining;
 case (state)

 4'd0: begin
 reached_max_count <= 0;
 reached_data_count <= 0;
 reached_data_out_count <= 1'b0;
 if (avalon_burst_mode == 0)
 begin
 if (1 == 0)
 state <= 5;
 else
 state <= 1;
 end
 else
 begin
 burst_begin <= 1;
 write_req <= 1'b1;
 state <= 10;
 end

 //Reset just in case!
 writes_remaining <= 0;

 reads_remaining <= 0;
 end // 4'd0

 4'd3: begin
 case (write_state)
 4'd0: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 1;
 reset_address <= 1'b1;
 corr_wrdata_req_r0_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r0_reg <= local_wdata_req;
 end
 end //write_state 4'd0
 4'd1: begin
if (reached_data_out_count)

Appendix A8. The Correlator’s DDR Controller Driver

153

 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 2;
 reset_address <= 1'b1;
 corr_wrdata_req_r1_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r1_reg <= local_wdata_req;
 end
 end //write_state 4'd1
 4'd2: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 3;
 reset_address <= 1'b1;
 corr_wrdata_req_r2_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r2_reg <= local_wdata_req;
 end
 end //write_state 4'd2
 4'd3: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 4;
 reset_address <= 1'b1;
 corr_wrdata_req_r3_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r3_reg <= local_wdata_req;
 end
 end //write_state 4'd3
 4'd4: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 5;
 reset_address <= 1'b1;
 corr_wrdata_req_r4_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;

Appendix A8. The Correlator’s DDR Controller Driver

154

corr_wrdata_req_r4_reg <= local_wdata_req;
 end
 end //write_state 4'd4
 4'd5: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 6;
 reset_address <= 1'b1;
 corr_wrdata_req_r5_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r5_reg <= local_wdata_req;
 end
 end //write_state 4'd5
 4'd6: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 7;
 reset_address <= 1'b1;
 corr_wrdata_req_r6_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r6_reg <= local_wdata_req;
 end
 end //write_state 4'd6
 4'd7: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 8;
 reset_address <= 1'b1;
 corr_wrdata_req_r7_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r7_reg <= local_wdata_req;
 end
 end //write_state 4'd7
 4'd8: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 9;
 reset_address <= 1'b1;
 corr_wrdata_req_r8_reg <= 1'b0;
end

Appendix A8. The Correlator’s DDR Controller Driver

155

 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r8_reg <= local_wdata_req;
 end
 end //write_state 4'd8
 4'd9: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 10;
 reset_address <= 1'b1;
 corr_wrdata_req_r9_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r9_reg <= local_wdata_req;
 end
 end //write_state 4'd9
 4'd10: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 11;
 reset_address <= 1'b1;
 corr_wrdata_req_r10_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r10_reg <= local_wdata_req;
 end
 end //write_state 4'd10
 4'd11: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 12;
 reset_address <= 1'b1;
 corr_wrdata_req_r11_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r11_reg <= local_wdata_req;
 end
 end //write_state 4'd11
 4'd12: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin

Appendix A8. The Correlator’s DDR Controller Driver

156

 reached_data_out_count <= 1'b0;
 write_state <= 13;
 reset_address <= 1'b1;
 corr_wrdata_req_r12_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r12_reg <= local_wdata_req;
 end
 end //write_state 4'd12
 4'd13: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 reached_data_out_count <= 1'b0;
 write_state <= 14;
 reset_address <= 1'b1;
 corr_wrdata_req_r13_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r13_reg <= local_wdata_req;
 end
 end //write_state 4'd13
 4'd14: begin
if (reached_data_out_count)
 begin
 write_req <= 1'b0;
 if (writes_remaining == 0)
begin
 state <= 4;
 reset_address <= 1'b1;
 corr_wrdata_req_r14_reg <= 1'b0;
end
 end
else if(out_stream_ready & ~out_stream_closed)
 begin
if (local_ready)
write_req <= 1'b1;
corr_wrdata_req_r14_reg <= local_wdata_req;
 end
 end //write_state 4'd14
endcase
 end // 4'd1

 4'd4: begin
 if (writes_remaining == 0)
 begin
// state <= 0;
 test_complete <= 1'b1;
 end
 end // 4'd2

 4'd1: begin
case (read_state)
 4'd0: begin
read_state <= 1;
 end
 4'd1: begin
if(in_stream_x1_ready && in_stream_x2_ready && in_stream_x3_ready &&
in_stream_x4_ready && in_stream_x5_ready && in_stream_x6_ready) begin
 if (local_ready && ~read_done) begin
read_req <= 1'b1;

Appendix A8. The Correlator’s DDR Controller Driver

157

read_done <= 1'b1;
read_state <= 1;
stream_x1_wr_enable_reg <= 1'b0;
stream_x2_wr_enable_reg <= 1'b0;
stream_x3_wr_enable_reg <= 1'b0;
stream_x4_wr_enable_reg <= 1'b0;
stream_x5_wr_enable_reg <= 1'b0;
stream_x6_wr_enable_reg <= 1'b0;
 end
 if(local_rdata_valid && read_done) begin
stream_x1_wr_enable_reg <= 1'b1;
stream_x2_wr_enable_reg <= 1'b1;
stream_x3_wr_enable_reg <= 1'b1;
stream_x4_wr_enable_reg <= 1'b1;
stream_x5_wr_enable_reg <= 1'b1;
stream_x6_wr_enable_reg <= 1'b1;
read_req <= 1'b0;
read_done <= 1'b0;
read_state <= 1;
 end
end
 end //read_state 4'd1
 4'd3: begin
read_req <= 1'b0;//just in case
reset_address <= 1'b1;
 end //read_state 4'd3
endcase
if (reached_data_count) begin
 read_state <= 7;
 state <= 3;
 read_req <= 1'b0;
 reset_address <= 1'b1;
end
 end // 4'd3
 endcase // state

 if (reset_address)
 begin
 //(others => '0')
 cs_addr <= MIN_CHIPSEL;

 row_addr <= 0;
 bank_addr <= 0;
 col_addr <= 0;
 end
 else if ((local_ready && read_req) && (state == 1))
 begin
 read_count <= read_count + 1'b1;
 if (col_addr >= DATA_COL)
 begin
 col_addr <= 0;
 if (row_addr == DATA_ROW)
 begin
 row_addr <= 0;
 if (bank_addr == DATA_BANK)
 begin
 bank_addr <= 0;
 if (cs_addr == DATA_CHIPSEL)
 //reached_max_count <= TRUE
 //(others => '0')
 cs_addr <= MIN_CHIPSEL;

 else
 cs_addr <= cs_addr + 1'b1;
 end
 else
 bank_addr <= bank_addr + 1'b1;
 end
 else
 row_addr <= row_addr + 1'b1;
 end

Appendix A8. The Correlator’s DDR Controller Driver

158

 else
 col_addr <= col_addr + (2 * 2);
 end
 else if ((local_ready && write_req) && (state == 3))
 if (col_addr >= DATA_OUT_COL)
 begin
 col_addr <= 0;
 if (row_addr == DATA_OUT_ROW)
 begin
 row_addr <= 0;
 if (bank_addr == DATA_OUT_BANK)
 begin
 bank_addr <= 0;
 if (cs_addr == DATA_OUT_CHIPSEL)
 //reached_max_count <= TRUE
 //(others => '0')
 cs_addr <= MIN_CHIPSEL;

 else
 cs_addr <= cs_addr + 1'b1;
 end
 else
 bank_addr <= bank_addr + 1'b1;
 end
 else
 row_addr <= row_addr + 1'b1;
 end
 else
 col_addr <= col_addr + (2 * 2);
 end
 end

 //--
 //LFSR re-load data storage
 //Comparator masking and test pass signal generation
 //--
 always @(posedge clk or negedge reset_n)
 begin
 if (reset_n == 0)
 begin
 dgen_ldata <= 0;
 last_wdata_req <= 1'b0;
 //all ones
 compare_valid <= -1;

 //all ones
 compare_valid_reg <= -1;

 pnf_persist <= 1'b1;
 pnf_persist1 <= 1'b1;
 //all ones
 compare_reg <= -1;

 last_rdata_valid <= 1'b0;
 end
 else
 begin
 last_wdata_req <= wdata_req;
 last_rdata_valid <= local_rdata_valid;
 compare_reg <= compare;
 if (wdata_req)
 //Store the data from the first write in a burst
 //Used to reload the lfsr for the first read in a burst in WRITE

1, READ 1 mode

 if (wait_first_write_data)
 dgen_ldata <= dgen_data;
 //Enable the comparator result when read data is valid
 if (last_rdata_valid)

Appendix A8. The Correlator’s DDR Controller Driver

159

 compare_valid <= compare_reg;
 //Create the overall persistent passnotfail output
 if (~&compare_valid)
 pnf_persist1 <= 1'b0;
 //Extra register stage to help Tco / Fmax on comparator output pins
 compare_valid_reg <= compare_valid;

 pnf_persist <= pnf_persist1;
 end
 end

endmodule

Appendix A9. Software Control Application

160

Appendix A9. Software Control Application

altera_diag.c

// Code was created by Maxim Leonov
// Copyright 2008 Auckland University of Technology

#include "../lib/altera_lib.h"
#include "samples/shared/pci_diag_lib.h"
#include <stdio.h>

#include <time.h>
#include <stdlib.h>
#include <windows.h>
#include <winbase.h>

// input of command from user
static char line[256];

char *ALTERA_GetAddrSpaceName(ALTERA_ADDR addrSpace)
{
 return
 addrSpace==ALTERA_AD_BAR0 ? "Addr Space BAR0" :
 addrSpace==ALTERA_AD_BAR1 ? "Addr Space BAR1" :
 addrSpace==ALTERA_AD_BAR2 ? "Addr Space BAR2" :
 addrSpace==ALTERA_AD_BAR3 ? "Addr Space BAR3" :
 addrSpace==ALTERA_AD_BAR4 ? "Addr Space BAR4" :
 addrSpace==ALTERA_AD_BAR5 ? "Addr Space BAR5" :
 "Invalid";
}

void ALTERA_AccessRanges(ALTERA_HANDLE hALTERA)
{
 int cmd, cmd2;
 int i;
 UINT32 addr, data;
 ALTERA_ADDR ad_sp = ALTERA_AD_BAR0;
 ALTERA_MODE ad_mode = ALTERA_MODE_DWORD;

 for (i = ALTERA_AD_BAR0;
 i<ALTERA_ITEMS && !ALTERA_IsAddrSpaceActive(hALTERA, (ALTERA_ADDR)i);

i++)
 {}
 ad_sp = (ALTERA_ADDR)i;
 if (ad_sp==ALTERA_ITEMS)
 {
 printf ("No active memory or IO ranges on board!\n");
 return;
 }

 do
 {
 printf ("Access the board's memory and IO ranges\n");
 printf ("---------------------------------------\n");
 printf ("1. Change active memory space:

%s\n",ALTERA_GetAddrSpaceName(ad_sp));
 printf ("2. Toggle active mode: %s\n",
 ad_mode==ALTERA_MODE_BYTE ? "BYTE (8 bit)" :
 ad_mode==ALTERA_MODE_WORD ? "WORD (16 bit)" : "DWORD (32 bit)");
 printf ("3. Read from board\n");
 printf ("4. Write to board\n");
 printf ("99. Back to main menu\n");
 printf ("\n");
 printf ("Enter option: ");
 cmd = 0;

Appendix A9. Software Control Application

161

 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d",&cmd);
 switch (cmd)
 {
 case 1:
 printf ("Choose memory or IO space:\n");
 printf ("--------------------------\n");
 for (i=ALTERA_AD_BAR0; i<ALTERA_ITEMS; i++)
 {
 printf ("%d. %s", i+1,

ALTERA_GetAddrSpaceName((ALTERA_ADDR)i));
 if (!ALTERA_IsAddrSpaceActive(hALTERA, (ALTERA_ADDR)i))
 printf (" - space not active");
 printf("\n");
 }
 printf ("Enter option: ");
 cmd2 = 99;
 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d",&cmd2);
 if (cmd2>=1 && cmd2<ALTERA_ITEMS+1)
 {
 ad_sp = (ALTERA_ADDR)(cmd2-1);
 if (!ALTERA_IsAddrSpaceActive(hALTERA, ad_sp))
 printf ("Chosen space not active!\n");
 }
 break;
 case 2:
 ad_mode = (ALTERA_MODE)((ad_mode + 1) % 3);
 break;
 case 3:
 printf ("Enter offset to read from: ");
 fgets(line, sizeof(line), stdin);
 sscanf (line, "%x", &addr);
 switch (ad_mode)
 {
 case ALTERA_MODE_BYTE:
 data = ALTERA_ReadByte(hALTERA, ad_sp, addr);
 break;
 case ALTERA_MODE_WORD:
 data = ALTERA_ReadWord(hALTERA, ad_sp, addr);
 break;
 case ALTERA_MODE_DWORD:
 data = ALTERA_ReadDword(hALTERA, ad_sp, addr);
 break;
 }
 printf ("Value read: %x\n", data);
 break;
 case 4:
 printf ("Enter offset to write to: ");
 fgets(line, sizeof(line), stdin);
 sscanf (line,"%x", &addr);
 printf ("Enter data to write %s: ",
 ad_mode==ALTERA_MODE_BYTE ? "BYTE (8 bit)" :
 ad_mode==ALTERA_MODE_WORD ? "WORD (16 bit)" : "DWORD (32

bit)");
 fgets(line, sizeof(line), stdin);
 sscanf (line, "%x",&data);
 switch (ad_mode)
 {
 case ALTERA_MODE_BYTE:
 ALTERA_WriteByte(hALTERA, ad_sp, addr, (BYTE) data);
 break;
 case ALTERA_MODE_WORD:
 ALTERA_WriteWord(hALTERA, ad_sp, addr, (WORD) data);
 break;
 case ALTERA_MODE_DWORD:
 ALTERA_WriteDword(hALTERA, ad_sp, addr, data);
 break;
 }
 break;
 }

Appendix A9. Software Control Application

162

 } while (cmd!=99);
}

void DLLCALLCONV ALTERA_IntHandlerRoutine(ALTERA_HANDLE hALTERA,
ALTERA_INT_RESULT *intResult)
{
 printf ("Got Int number %ld\n", intResult->dwCounter);
}

void ALTERA_EnableDisableInterrupts(ALTERA_HANDLE hALTERA)
{
 int cmd;

 printf ("WARNING!!!\n");
 printf ("----------\n");
 printf ("Your hardware has level sensitive interrupts.\n");
 printf ("You must modify the source code of ALTERA_IntEnable(), in the

file altera_lib.c,\n");
 printf ("to acknowledge the interrupt before enabling interrupts.\n");
 printf ("Without this modification, your PC will HANG upon interrupt!\n");
 printf ("\n");

 do
 {
 printf ("Enable / Disable interrupts\n");
 printf ("---------------------------\n");
 printf ("1. %s Int\n", ALTERA_IntIsEnabled(hALTERA) ? "Disable" :

"Enable");
 printf ("99. Back to main menu\n");
 printf ("\n");
 printf ("Enter option: ");
 cmd = 0;
 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d",&cmd);
 switch (cmd)
 {
 case 1:
 if (ALTERA_IntIsEnabled(hALTERA))
 {
 printf ("Disabling interrupt Int\n");
 ALTERA_IntDisable(hALTERA);
 }
 else
 {
 printf ("Enabling interrupt Int\n");
 if (!ALTERA_IntEnable(hALTERA, ALTERA_IntHandlerRoutine))
 printf ("failed enabling interrupt Int\n");
 }
 break;
 }
 } while (cmd!=99);
}

ALTERA_HANDLE ALTERA_LocateAndOpenBoard (DWORD dwVendorID, DWORD dwDeviceID)
{
 DWORD cards, my_card;
 ALTERA_HANDLE hALTERA = NULL;

 if (dwVendorID==0)
 {
 printf("Enter VendorID: ");
 fgets(line, sizeof(line), stdin);
 sscanf(line, "%lx", &dwVendorID);

 printf("Enter DeviceID: ");
 fgets(line, sizeof(line), stdin);
 sscanf(line, "%lx", &dwDeviceID);
 }
 cards = ALTERA_CountCards (dwVendorID, dwDeviceID);
 if (cards==0)
 {

Appendix A9. Software Control Application

163

 printf("%s", ALTERA_ErrorString);
 return NULL;
 }
 else if (cards==1) my_card = 1;
 else
 {
 DWORD i;

 printf("Found %ld matching PCI cards\n", cards);
 printf("Select card (1-%ld): ", cards);
 i = 0;
 fgets(line, sizeof(line), stdin);
 sscanf (line, "%ld",&i);
 if (i>=1 && i <=cards) my_card = i;
 else
 {
 printf ("Choice out of range\n");
 return NULL;
 }
 }
 if (ALTERA_Open (&hALTERA, dwVendorID, dwDeviceID, my_card - 1))
 printf ("ALTERA PCI card found!\n");
 else printf ("%s", ALTERA_ErrorString);
 return hALTERA;
}

int main()
{
 int cmd, j, i;
 int fileValue1, fileValue2;
 char c;
 UINT32 data, k;
 ALTERA_HANDLE hALTERA = NULL;
 HANDLE hWD;
 ALTERA_ADDR ad_sp = ALTERA_AD_BAR0;
 ALTERA_MODE ad_mode = ALTERA_MODE_DWORD;
 INT32 file1[sequences_length];
 INT32 file2[sequences_length];
 FILE *f1;
 FILE *f2;
 FILE *res;
 LARGE_INTEGER ticksPerSecond;
 LARGE_INTEGER tick; // A point in time
 LARGE_INTEGER start_ticks, end_ticks, cputime;

 printf ("Software Control Application.\n");
 printf ("Application accesses hardware using " WD_PROD_NAME ".\n");

 // make sure WinDriver is loaded
 if (!PCI_Get_WD_handle(&hWD)) return 0;
 WD_Close (hWD);

 if (ALTERA_DEFAULT_VENDOR_ID)
 hALTERA = ALTERA_LocateAndOpenBoard(ALTERA_DEFAULT_VENDOR_ID,
ALTERA_DEFAULT_DEVICE_ID);

 do
 {
 printf ("\n");
 printf ("CORRELATOR main menu\n");
 printf ("-------------------\n");
 printf ("1. Scan PCI bus\n");
 printf ("2. Locate/Choose ALTERA board\n");
 if (hALTERA)
 {
 printf ("3. PCI configuration registers\n");
 printf ("4. Access ALTERA memory and IO ranges\n");
 printf ("5. Enable / Disable interrupts\n");
 printf ("6. Write data for correlator\n");

Appendix A9. Software Control Application

164

 }
 printf ("99. Exit\n");
 printf ("Enter option: ");
 cmd = 0;
 fgets(line, sizeof(line), stdin);
 sscanf(line, "%d",&cmd);
 switch (cmd)
 {
 case 1: // Scan PCI bus
 PCI_Print_all_cards_info();
 break;
 case 2: // Locate ALTERA board
 if (hALTERA) ALTERA_Close(hALTERA);
 hALTERA = ALTERA_LocateAndOpenBoard(0, 0);
 if (!hALTERA) printf ("ALTERA card open failed!\n");
 break;
 case 3: // PCI configuration registers
 if (hALTERA)
 {
 WD_PCI_SLOT pciSlot;
 ALTERA_GetPciSlot(hALTERA, &pciSlot);
 PCI_EditConfigReg(pciSlot);
 break;
 }
 case 4: // Access ALTERA memory and IO ranges
 if (hALTERA) ALTERA_AccessRanges(hALTERA);
 break;
 case 5: // Enable / Disable interrupts
 if (hALTERA)
 ALTERA_EnableDisableInterrupts(hALTERA);
 break;
 case 6:
 f1 = fopen("signalA_in.dat", "r");
 if (f1 == NULL) {
 fprintf(stderr, "Error opening input file %s\n",
"signalA_in.dat");
 }

 f2 = fopen("signalB_in.dat", "r");
 if (f2 == NULL) {
 fprintf(stderr, "Error opening input file %s\n",
"signalB_in.dat");
 }
 res = fopen("results.txt", "w");

 i = 0;
 while (fscanf(f1,"%d",&fileValue1) != EOF) {
 file1[i] = fileValue1;
 i++;
 }
 i = 0;
 while (fscanf(f2,"%d",&fileValue2) != EOF) {
 file2[i] = fileValue2;
 i++;
 }

 printf ("\tValue of CLOCKS_PER_SEC is : %i
ticks/sec\n",CLOCKS_PER_SEC);
 // get the high resolution counter's accuracy
 if (!QueryPerformanceFrequency(&ticksPerSecond))
 printf("\tno go QueryPerformance not present");
 printf ("\tfreq test: %I64Ld ticks/sec\n",ticksPerSecond
);
 // what time is it?
 if (!QueryPerformanceCounter(&tick)) printf("no go
counter not installed");
 printf ("\tQueryPerformanceCounter testpoint :
%I64Ld ticks\n",tick);
 QueryPerformanceCounter(&start_ticks);
 /* start foo() */
 printf ("\t\t\tWriting data for correlator...\n");

Appendix A9. Software Control Application

165

 for(i = 0, j = 0; i <= sequences_length; i++, j = j+ 4)
//writing with raw data
 {
 ALTERA_WriteWord(hALTERA, ad_sp, j, (WORD)file1[i]);
 ALTERA_WriteWord(hALTERA, ad_sp, j+2,

(WORD)file2[i]);
 /* ALTERA_WriteWord(hALTERA, ad_sp, j, (WORD)0);
 ALTERA_WriteWord(hALTERA, ad_sp, j+2, (WORD)1);*/
 }
 printf ("\t\t\tFinished writing data for correlator.\n");
 printf ("\t\tEnabling correlator design.\n");
 ALTERA_WriteDword(hALTERA, ALTERA_AD_BAR2, 0xC, 0x400);

//triggering correlator
 printf ("\t\t\tWaiting for completion...\n");
 do
 {
 data = ALTERA_ReadDword(hALTERA, ALTERA_AD_BAR2,

0xC);
 //printf("%h", data);

 }while(data == 0x80000);
 printf("\t\tReading of processed data completed.\n");

 /* end foo() */
 QueryPerformanceCounter(&end_ticks);
 cputime.QuadPart = end_ticks.QuadPart-

start_ticks.QuadPart;
 printf ("\tElapsed CPU time test: %.9f sec ticks

%d\n",
 ((float)cputime.QuadPart/(float)ticksPerSecond.QuadPart),

cputime.QuadPart);

 printf("\t\tProcessing completed.\n");
 printf ("\t\t\tReading processed data back...\n");
 for(k = 0; k <= 64; k = k + 4) //reading processed data

back
 {
 data = ALTERA_ReadDword(hALTERA, ad_sp, k);
 fprintf(res, "%i %i\n", k, data);
 //printf ("Value read: %x\n", data);
 }
 fclose(f1);
 fclose(f2);
 fclose(res);
 break;

 }
 } while (cmd!=99);

 if (hALTERA) ALTERA_Close(hALTERA);

 return 0;
}

