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Abstract 
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Abstract 

Modern high-performance digital signal processing (DSP) applications face constantly 

increasing performance requirements and are becoming increasingly challenging to 

develop and work with. In DSP paradigm, many researchers see potential in achieving 

algorithm speed-up by employing Field Programmable Gate Arrays (FPGAs) – 

reconfigurable hardware with parallelism feature. However, developing applications for 

FPGAs incur particular challenges on the development flow. 

This work proposes a scalable hybrid DSP system for performing high-

performance signal processing applications. The system employs a hybrid CPU+FPGA 

architecture of commercially available, off-the-shelf (COTS) FPGAs and central 

processing units (CPU) of personal computers. 

In this work an example implementation of a multi-channel cross-correlator is 

investigated and delivered using a new development paradigm. The correlator is 

implemented on the XD1000 development system using a high-level FPGA 

programming tool – Impulse CoDeveloper. Analysis of DSP application development in 

a hybrid CPU+FPGA system employing the high-level programming tool Impulse C is 

presented. Potential of the selected tool to deliver algorithm speed-ups is investigated 

using reference multi-channel correlator software. 

Particular attention is devoted to input/output (I/O) implementation, which is 

considered one of the most challenging problems in FPGA design development. This 

work delivers an I/O framework based on PCI Express interface for the proposed high-

performance scalable DSP system. Using Stratix II GX PCI Express Development 

Board from Altera Corporation, a scalable and flexible communication approach for the 

multi-channel correlator is delivered. This framework can be adapted to perform other 

high-performance streaming DSP applications. 

The outcomes of this work are a multi-channel correlator developed in a 

reconfigurable environment with new design methodology and I/O framework with 

software control application. The outcomes are used to demonstrate the potential of 

implementing DSP applications in a hybrid CPU+FPGA architecture and to discuss 

existing challenges and suggest possible solutions. 
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CHAPTER 1   

Introduction 

Necessity, who is the mother of invention. 

—Plato 

This chapter provides an overview of  a high-performance DSP applications field from 

its origins to its current state. Appropriate background of the area of investigation is 

introduced and respective research objectives are outlined. The chapter concludes with 

contributions and organisations of this thesis. 

1.1 Background 

High-performance digital signal processing is very challenging work in today’s 

engineering fields. Many applications face increasing performance demands and 

constant additional functional requirements. With digital signal processing becoming an 

integral part of everyday life, the demand for high-performance processing means has 

expanded rapidly in recent years. 

Originally, signals in devices were manipulated using analog techniques 

(continuous-time domain). However, nowadays most of them are implemented in digital 

form (discrete-time domain). The genesis of the digital signal processing techniques can 

be connected to the advances in mathematical fields: finite difference methods, 

numerical integration method and numerical interpolation methods dating back to the  

seventeenth century. Of course, one of the major developments of the DSP area started 

in the 1950s, as a part of the far broader and embryonic field of digital computers. From 

the late 1960s, digital signal processing moulded into a separate field by itself. Thus, in 

the late 1970s when LSI (large-scale integration) technology became developed enough 

the realisation of a single chip DSP became practical (Mlynek, 1999). In 1978 AMI 

announced a “Signal Processing Peripheral” and released S2811 (Nicholson, Blasco, & 

Reddy, 1978) – a co-processor for a host micro. It was followed by Intel’s 2920 in 1979 

(Hoff & Townsend, 1979). The unique feature of the latter device was the on-chip 

analog-to-digital and digital-to-analog converters (ADC and DAC respectively), though 
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it lacked a multiplier. The DSP industry continued to grow and progress and, in the 

early 1980s, the world saw a second generation of DSPs with realised features like 

concurrency, multiple buses and on-chip memory. These were added with on-chip 

floating point operations in the third generation of DSPs in the early 1990s. In the late 

1990s multi-processing features, image and video processors and low-power DSPs were 

introduced. 

Contemporary signal processors are able to demonstrate much greater 

performance in many aspects: wider data buses and throughputs, higher processing 

speeds of up to 24,000 of 16-bit million multiply accumulate operations (MMACs) 

(Texas Instruments Inc., 2008), compatibility with various modern interfaces and buses 

such as PCI, USB, Ethernet and many others. 

The means of performing signal processing are not, of course, limited to digital 

signal processors – the ever-growing field of signal processing invoked multiple 

solutions, architectures, technologies, tools and approaches: the major of which will be 

covered in the subsequent chapters of this work. 

Many large-scale, high-performance DSP applications in such fields as radio 

astronomy, telecommunication, high-energy physics, and others involve 

computationally-intensive and therefore often time-consuming correlation of wideband 

signals. Correlation relies on the two most common types of composed DSP operations 

– multiply and accumulate (MAC), and multiply and add (MULT-ADD) operations. 

These operations have been implemented in digital processing successfully and 

efficiently. However, the challenge lies in the number of these operations, i.e. the 

problem size – the running time and/or space requirements of an algorithm. Many DSP 

applications employing correlation operation in their algorithms require real-time or 

near real-time processing, eg antenna aperture synthesis, medical applications, cellular 

and telecommunications applications (see 2.1 for details on these applications). Along 

with necessity to perform computations “on-the-fly”, correlation involves considerable 

execution time or time complexity for wideband correlation. For example, a multi-

channel antenna array operating with 128 MHz bandwidth on each channel will yield a 

sampling rate of 256 MS/s with 8-bit sampling. For 8-channel correlation, this will 

produce 2 GB/s input data stream. Such correlation will generate 28 unique cross 

product outputs (the other 28 are just a mirror reflection of the first 28 (see 2.2.1)). An 

estimated number of operations required to perform a 32-lag correlation with these 

parameters is about 230 Giga-operations of real-time processing (Thompson, Moran, & 
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Swenson, 2001a). Being a classical DSP problem, correlation itself does not usually 

constitute a stand-alone, full and final application, rather it is an integral part of many 

DSP applications. 

Here and throughout this thesis channel and antenna are used interchangeably. 

While such notation is acceptable and coomon for engineering and DSP fields, it differs 

in radio-astronmy where a channel is understood as a quantum of radio frequency 

bandwidth. 

Although the processing capacity of DSP tools grew along with the requirements 

of the signal processing, the latter always outstands the former by considerable and 

everlasting margins. Almost as soon as the gap between ever-growing applications’ 

requirements and capabilities of the DSP tools started shaping up (in the mid 1980s – 

see Figure 1.1) the search for counter-measures to close this gap started. The most 

prevalent and widely-used approach is extensive approach – gradual and proactive 

increase of the processing power of the DSP tools by increasing the number of 

employed computational units and/or operational parameters (operating frequencies, 

response times, storage capacities, etc.). Such approach proved to be productively 

working for Central Processing Units (or commonly known as processors), Digital 

Signal Processors (DSPs) and other conventional processing means for several decades 

and then started depleting quickly. The cost of the extensive approach hit the inevitable 

limitations very soon: high power consumption, complexity of dealing with growing 

number of computational units maintenance cost, etc. 
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Figure 1.1. Performance Gap Between Traditional Processor Architectures and Growing 

Complexity of DSP Algorithms (Telikepalli & Fiset, 2006) 

No surprise, that the research vector began deviating towards technologies and 

methods which could offer intensive ways of dealing with the problem as opposed to 

almost exhausted extensive approaches. 

Currently an intensive approach is envisioned by many researchers in parallelism 

– simultaneous execution of several computational operations during one clock cycle. 

Moreover, parallelisation of applications is especially effective in the DSP field as long 

as many DSP algorithms possess intrinsic parallelism and therefore potentially sustain a 

large capacity for acceleration. 

Application-Specific Integrated Circuits (ASICs) possess parallelism features and 

reach prominent efficiency of silicon utilisation for a specific operation determined 

during the manufacturing stage. Thus, they can be configured to meet the requirements 

of the particular application avoiding unnecessary generality. Reasonably, the 

performance efficiency achieved by ASICs for the targeted application is balanced by 

the impossibility of future modifications. Many ASICS’ applications do not require any 

updates, modifications or alterations at all (eg integrated circuits of cell phones).  

ASICS’ counterparts – Field Programmable Gate Arrays also possess parallelism 

features. Along with this, FPGAs are reconfigurable devices, i.e. they can be 

reprogrammed in the field. Adding a bug fix, a new feature or even updating a 
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computational core of the application, significantly increases the flexibility of design. 

Due to this FPGAs have lower non-recurring engineering costs than ASICS. An FPGA 

is a semiconductor device consisting of programmable logic blocks and programmable 

interconnects. Along with parallelism, reconfigurability significantly expands the 

application scope of these devices. Armed with these two features over the years, 

FPGAs became one of the most promising technologies in digital electronics in general 

and in the DSP field in particular. 

The interest towards FPGAs has risen even more radically in recent years with the 

growth of the chip capacities and the number of supported interfaces, which include, but 

are not limited to: PCI family interfaces, Ethernet family interfaces, support for memory 

interfaces like DDR/DDR2/DDR3/QDRII, USB, HyperTransport, RapidIO, VMEbus 

and many others. Moreover, FPGAs are particularly suitable for DSP applications due 

to: inherited parallelism in many DSP algorithms; high bandwidths to on-chip and 

external memories, which support multiple access ports thus allowing further 

exploitation of algorithm’s parallelism; streaming to-be-processed data directly to 

computational core implemented in FPGAs via available high-speed interfaces. Hence, 

these FPGAs’ features make them a very attractive option for applications’ acceleration 

or even a competitive alternative for traditional DSP techniques, attracting more and 

more attention from the DSP industry. 

With widespread availability of commercially available FPGAs in the late 1980s, 

the term reconfigurable computing (RC) was introduced. A reconfigurable computing 

system is a system which is built from reconfigurable computing devices, eg FPGAs or 

FPGA-like devices. These systems have to be reprogrammable, permit orders of 

magnitude speed-ups versus traditional computational systems and support hardware-

like levels of performance (Guccione, 2008).  

However, developing DSP applications for RC systems contain many more 

challenges and complexities than implementing applications in traditional software 

programming domain of  DSPs, CPUs, etc. One of the main reasons is that FPGA 

design flow adheres to hardware development flow, which traditionally deals with low-

level hardware description languages and demands explicit configuration of available 

resources in FPGA. The following issues also impose substantial challenges when 

employing reconfigurable hardware in traditional DSP applications: hardware state 

ambiguity complicates design debugging; parallelism consideration and a “run-at-a-

clock” concept impose certain idiosyncrasies on algorithm implementation; explicit 
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memory structure puts constraints on storing of design variables. Moreover, 

conventional processing methods (DSPs, CPU and related) have been employed in the 

signal processing field considerably longer than FPGAs and therefore have more 

advanced and powerful developing and debugging tools. 

Therefore, employing FPGAs either as a computational accelerator or as a stand-

alone DSP application platform can be beneficial and challenging at the same time. 

Nowadays the traditional approach of increasing the processing capacity of 

computational means diverge from the traditional approach of raising the number of 

employed semiconductors (Moore’s law) and operating frequency to a multicore and 

parallel execution approach. Many DSP algorithms possess intrinsic parallelism. FPGAs 

are a very attractive and potentially beneficial option to be employed in DSP paradigms 

for processing acceleration. Compelling reported speed-ups of 10X to 100X (Gokhale & 

Graham, 2005) of equivalent software algorithms attract more and more attention from 

the DSP community. Another argument to employ FPGAs for DSP algorithms is that 

these devices follow the International Technology Roadmap for Semiconductors (ITRS) 

(http://www.itrs.net/) even more narrowly than modern microprocessors (eg in terms of 

contained SRAM memory or leading on the first fabrication lines). Many researchers 

agree on a high potential of simultaneous operation of conventional processing unit(s) 

such as a CPU of a PC and reconfigurable hardware such as FPGA (Andrews et al., 

2004; Milrod, 2006; Tahernia, 2005). This architecture invokes previously unavailable 

possibilities and options in signal processing but it also brings new challenges in 

development flow. 

In this thesis a new design methodology for developing applications in a hybrid 

CPU+FPGA environment is applied. Using a mixture of traditional hardware 

development tools and conventional software development tools, a multi-channel 

wideband cross-correlation for DSP application on a hybrid CPU+FPGA architecture 

will be implemented. The prime objective of this thesis is to investigate the capabilities 

and challenges of this reconfigurable, hybrid architecture in the DSP field. 

1.2 Research Objectives 

In this work, we will investigate the implementation of a classical DSP problem – 

wideband multi-channel cross-correlation in a hybrid environment of a commercial, off-

the-shelf CPU and FPGA. There are a number of contributions contained within this 

thesis. 
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First, the given work addresses the problem of computational deficiency in DSP 

field. By implementing a classical DSP problem in a hybrid CPU+FPGA architecture, 

its abilities of achieving speed-ups for applications from DSP fields are argued. 

The second contribution is the platform and the workflow for developing high-

performance DSP applications in a hybrid CPU+FPGA environment. The development 

workflow applied in this work is different from a traditional hardware design 

methodology. Rather than using low-level HDLs for hardware design implementation, 

the given work utilises high-level languages (HLLs) for hardware configuration. The 

potential of using HLLs for FPGA designs is evaluated and discussed. The given work 

delivers valuable outcomes for any DSP engineer developing applications in 

reconfigurable hardware with the aid of high-level programming (HLP) languages. 

The third contribution is that this work tackles one of the most crucial issues of 

DSP applications, which becomes especially challenging and difficult in the FPGA 

domain – input/output interfaces. The I/O framework developed in this work features 

original method of interfacing to FPGA via onboard SDRAM simultaneously with high-

speed communication with PC via PCIe interfaces. The developed method can be 

beneficial to many applications requiring extensive data exchange. Particularly, it can 

be useful for applications targeting Altera’s PCIe Development Kit Stratix II GX 

Edition or to any Altera’s devices featuring PCIe and DDR/DDR2 SDRAM interfaces. 

The given work also introduces the possible evolution of the proposed platform. 

The number of available interfaces on the exploited FPGA board (PCIe, Ethernet, SFP, 

HSMC, etc) and simple connectivity options of the conventional PC box provide a 

considerable degree of architectural possibilities. A highly scalable platform for high-

performance signal processing is proposed as a potential future development of the 

created design (section 3.2). In addition, one of the advantages of the suggested 

platform is the affordable cost as compared to proprietary DSP solutions: the cost of the 

prospective system is composed merely from FPGA board’s and PC box prices. 

1.3 Thesis Layout 

The thesis is organised into seven chapters. Chapter 2 briefly introduces the background 

of the investigated problem. Computationally intensive DSP applications employing 

cross-correlation of signals are discussed. Cross-correlation theory is discussed, which 

is followed by a discussion on DSP implementation technologies. 
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In Chapter 3 the notion of a hybrid CPU+FPGA architecture is introduced. 

Challenges existing in this architecture and high-level programming of reconfigurable 

hardware are discussed. The chapter also proposes high-performance DSP hybrid 

architecture. 

Chapter 4 discusses methodology applied in this work and introduces five stages 

of the full project design flow. These stages define the hardware and software 

development tools used at every particular stage. 

Chapter 5 presents implementation flow of the project. Implementation details of 

the stages are defined in the previous chapter. 

Results and outcomes of project implementations are presented in Chapter 6. They 

are discussed in Chapter 7. Approaches and solutions to alleviate known shortcomings 

and challenges of the developed project outputs, along with future developments are 

suggested. 
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CHAPTER 2   

Theory Background and Related Work 

We live in a moment of history where change is so speeded up that we begin to see the 

present only when it is already disappearing. 

—R. D. Laing 

This chapter will discuss the most common digital signal processing applications in a 

high-performance domain. First, a brief outline of generic digital signal processing 

algorithm will be given. Then, the next section will highlight the most common high-

performance DSP applications, which will be followed by the discussion on the cross-

correlation problem as integral and often one of the most computationally intensive 

parts of these applications. The remaining section will present and consider 

contemporary DSP implementation technologies. 

The term digital signal processing implies converting an analog signal into a form 

of numbers (digital form), the processing of the resultant sequences to either obtain 

information or to synthesise signals with desirable properties and possibly convert the 

output into analog form again. The overall scheme of the generic DSP algorithm is 

shown in Figure 2.1: 

 

Figure 2.1. Generic Digital Processing Scheme (Mitra, 2006) 

The high-performance DSP applications feature a considerable amount of 

computations in the “Digital processor” stage. Several typical high-performance DSP 

applications are considered in the following section. 

2.1 Typical High-Performance Signal Processing Applications 

The number of signal processing applications in today’s life is truly enormous. 

Nevertheless, not every DSP application is suitable for reconfigurable computing. A 

number of studies exist which investigate efficiency criteria of an application to be 
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employed in FPGAs. The application’s performance implemented in FPGA depends on 

(Hutchings & Nelson, 2008):  

1. Data parallelism available in the application’s algorithm; 

2. Data element size and arithmetic complexity; 

3. Amenability to pipelining, and simple control requirements. 

The following sections highlight several high-performance DSP applications, 

which have one common and integral operation – cross-correlation of signals. The 

potential of implementing these applications in or with the help of reconfigurable 

hardware will be considered. The applications below will be considered in retrospect. 

2.1.1 Radio Astronomy 

Throughout human history, man has been always mysteriously attracted to the sky. 

With the discovery and subsequent invasion of new technologies, traditional methods of 

visual investigation of the sky, ie methods of optical astronomy, were joined by radio 

astronomy techniques. Many astronomical bodies emit radio waves, which after certain 

processing can tell valuable and previously inaccessible information about their origin. 

Thus, in the last half of the 20th century the prominent advances in radio astronomy led 

to a number of foremost discoveries like masers, pulsars, radio galaxies, the Cosmic 

Microwave Background Radiation, etc. 

With radio astronomy, scientists can study astronomical phenomena which are 

invisible to the human eye. While in optical observation the useful information is 

extracted from the spatial distribution of light across an object, ie image, radio 

astronomy uses a different principle. RF waves emitted by a certain phenomenon can be 

received and directly sampled in a time domain, thus the tools used for detecting and 

measuring this interaction are considerably different from optical telescopes (Carroll & 

Ostlie, 2007). 

To produce a radio image of a celestial phenomenon a principle of interferometry 

is used, which entails the superposition technique - interference (adding or overlaying) 

of signals from two or more antennas. This technique is also known as antenna aperture 

synthesis when multiple antennas are used to work as one using interferometry 

principle. 

The core idea of antenna aperture synthesis is again to superimpose the signal 

waves from a number of radio telescopes and, while doing so, inphase waves will add 
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up, while antiphase waves will cancel each other out. This creates a combined telescope 

with the size of the furthest observing telescopes apart. The image quality produced by 

such a composed antenna depends on the number of the projected separations between 

any two telescopes as seen from the radio source (number of baselines). With each radio 

telescope producing a data stream the processing and computational task can be 

extremely intensive. Besides, the processing is complicated by low signal-to-noise 

ratios which are common for radio astronomical observations. 

The backbone operation of antenna aperture synthesis is correlation or finding the 

amount of similarity in the signal between two given antennas in an antenna array. The 

term correlation and underlying theory will be discussed more deeply in 2.2.1. Even for 

a medium-size antenna array, computation of correlation between all the elements of the 

array can be a very challenging task due to the number of involved mathematical 

calculations. The example considered in 1.1 with an 8-element antenna array requires 

230×109 operations per second. An experienced reader will estimate that the problem 

size of the given example as average to below average. Nevertheless, such a system 

might require a performance power of not less than ~230 GFlops (depending on 

implementation). In real-life, large-scale systems that correlate signal pairs of multi-

element arrays may contain millions of correlator circuits in order to accommodate all 

the required antennas and spectral channels. Hence, with an increase of any of the above 

parameters the computational complexity of aperture synthesis grows drastically. That 

is why antenna aperture synthesis and radio astronomy have been established as one of 

the most major and demanding consumers of DSP technologies. 

2.1.2 RADAR Applications 

RADAR or Synthetic Aperture Radar (SAR) applications are based on the principle of 

the scattering of electromagnetic waves. Originally, RADAR meant RAdio Detection 

And Ranging, however later the term became used as a standard word. The most 

common RADAR system consists of a transmitter and a receiver – EM waves radiated 

by the transmitter are reflected (scattered) by a target, which are then collected by the 

receiver for further analysis. Any change in the dielectric constants of the target and a 

media surrounding it will be conveyed in the scattered waves. The basic principle of 

RADAR theory is illustrated in Figure 2.2. 
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Figure 2.2. Basic RADAR Principle 

The gathered data can include the object’s position, movement or its particular 

features and attributes. The range of the applications, where RADAR technique is used, 

is wide: weather prediction, air traffic control, threat detection systems, military missile 

guidance and reconnaissance radars, etc. 

Antenna aperture technique as mentioned in 2.1.1 is also used in phased array 

radars. In such arrays, comprised of a number of similar properly displaced antenna 

elements, the scanning beam is controlled by operating a phase of the signal of each 

individual transmitting antenna. Thus, the overall transmitted signal is maximised in a 

desired direction and suppressed in undesired directions. 

In modern RADAR applications DSP techniques are used extensively: generation 

and forming of the transmission pulses, controlling the antenna beam’s pattern and 

direction, filtering of clutter, and beamforming (S.Bhaktavatsala, 2002). Cross-

correlation is one of the central operations in RADAR applications: it is used to find the 

relation or similarity between the original and reflected waves. When applied on a 

largescale for multiple signals and performed in a real-time fashion, such correlation 

becomes a challenging task. 

Substantial utilisation of RADAR techniques in military area lays particular 

requirements on the DSP technologies in RADAR applications, eg a common trend is 

the need for smaller energy-efficient systems with high processing capabilities. 

Furthermore, typical operational signals in RADAR are very weak and with the recent 

tendency of radars being operated in a dense urban environment, the task of processing 

such signals becomes a major challenge. This issue can be mitigated by “overlaying 

data from multiple sensors and known terrain features”. In addition, newly-emerging 

digital beam-forming technologies based on a high-speed digital systems work with an 

ever-increasing number of scanning beams. The latter two issues increase RADAR 

system processing requirements considerably (Kenny, 2007). 

Original wave 

Reflected wave 

Target 

Transmitter 
and receiver 
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2.1.3 Medical Applications 

Nonetheless, signal-processing technologies are not solely used for cognitive purposes. 

Perceptive, non-intrusive analytical capabilities of radio imaging make it an excellent 

option for diagnoses in medical areas. In the context of digital signal processing, the 

most interesting category amongst all the categories comprising the medical imaging is 

the ultra-wideband (UWB) imaging, which in turn is used primarily for early-stage 

breast cancer detection. 

One of the most crucial factors in successful breast-cancer treating is detecting it 

at the earliest stage possible. Contemporary diagnosis methods like X-ray imaging, 

Magnetic Resonance Imaging (MRI), and ultrasound are capable of reducing malignant 

tissue. However, problems with a relatively high rate of false-negative diagnosis 

(Huynh, Jarolimek, & Daye, 1998) along with many unnecessary biopsies due to the 

low positive predictive rate (Elmore et al., 1998) make the use of X-ray mammography 

difficult and ineffective. Other methods like MRI and ultrasound are somewhat more 

effective in cancer lesions detection, yet do not always provide the necessary level of 

sensitivity, can be too operator specific and are very expensive. 

Many of the existing drawbacks in early-stage breast-cancer detection can be 

alleviated with ultra-wideband imaging technology. The UWB imaging method 

employs the radar technique which was described in 2.1.2. A transmitting antenna (or a 

set of antennas) radiates a scanning burst of microwave energy. This electromagnetic 

energy penetrates through the target under investigation, scatters on the target, and 

further is collected by a receiving antenna or with an array of antennas. Then, the 

processing takes place with the primary goal to identify the presence and location of the 

considerable backscattered energy – an indication of the dielectric difference between 

malignant and healthy tissue. Thus, the post-processing of the received signals has to be 

very sensitive to filter out the necessary information from the antennas’ noise, clutter 

due to heterogeneity in the breast tissue etc. Moreover, it has to be precise – image 

resolution on the order of millimetres is desirable (Li, Bond, Veen, & Hagness, 2005). 

Similar to RADAR applications, during the post-processing stage correlation is applied 

to find similarities or discrepancies in tissue readings provided by transmitted and 

reflected waves. Therefore, modern approaches of the existing radar application have to 

be adapted and improved, according to the requirements of UWB medical imaging. 

Now the medical diagnosis tools are still expect the DSP instruments to deliver an 

efficient and reliable method of breast-cancer testing. 
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2.1.4 Telecommunication 

Communication technologies are one of the most actively developing areas today. The 

emergence of new wireless services along with the high growth of data rates in existing 

services, indicates an ever-growing demand for telecommunication capacity. With 

worldwide deployment of 3G networks, releasing beyond-3G and 4G standards and 

specifications, the challenges for the DSP area keep accumulating: high data 

throughputs (up to 1 Gbps), multimedia communications, seamless global roaming, 

maintaining high user capacity, and supporting migration and the compatibility between 

existing previous-generation and upcoming next-generation networks, etc (Ibnkahla, 

2004). Consequently, the research community is focusing on different advanced signal 

processing issues to achieve substantial improvements in communication systems. 

To demonstrate the computation requirements that lay in the telecommunication 

area, an example of Code Division Multiple Access (CDMA) standards can be used. 

CDMA based standards (CDMA2000, W-CDMA, etc.) have become increasingly 

popular during the emergence of the third generation networks due to their objective to 

maintain the ever-growing data throughputs and efficient spectrum utilisation. In brief, 

the idea of CDMA implies that a number of users share the same bandwidth of 

frequencies and are distinguished by the individual code (pseudorandom code). Such an 

approach has a much higher data bandwidth than traditional Time and Frequency 

Division Multiple Accesses (TDMA and FDMA respectively). However, these benefits 

are balanced with certain difficulties. For instance, the choice and assignment of a 

pseudorandom code to user is not a very simple routine in highly populated large-scale 

mobile networks. This problem can be computationally-intensive so certain solutions 

were proposed to address this issue (B.-J. Chang, 2007). Similarly, an analogous 

problem arises on the receiving side – to decode signal from multiple users in the most 

efficient and fastest way. It has been indicated that this problem also has significant 

computational needs (Agarwal, B.V.R.Reddy, & K.K.Aggarwal, 2006).  

Furthermore, the underlying complexity of the CDMA algorithm implies a 

challenging and complicated processing mission itself: as long as in CDMA the users 

share the same bandwidth the multiple access interference (MAI) has to be considered 

and alleviated. Prevention of this interference is exacerbated by the intersymbol 

interference (ISI) and multipath signal propagation which is natural to all urban mobile 

networks. For this purpose sophisticated channel estimation algorithms are applied. The 

computational complexity of such algorithms is considerable and furthermore they have 
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to be implemented in real-time fashion. Therefore, the research community has turned 

to elaborate DSP techniques like real-time DSPs and FPGAs to respond to these 

challenges (Ouameur & Massicotte, 2007). 

Tackling the processing difficulties is not of course the feature of only the CDMA 

standard. As it was mentioned above, with the rapidly-growing rates, throughputs, 

capacities, etc. the industry is facing expanding requirements throughout its 

applications. One example is 3G and 4G mobile standards. These standards offer high 

data throughputs to the end-users – even comparable to office LANs’ in 4G networks. 

To supply such high speeds, a number of advanced and complex techniques are 

employed in these standards. One such technique is smart antennas. To maintain high 

data rates in complex urban environments these antennas use adaptive beamforming and 

direction-of-arrival (DOA) estimation algorithms. In turn, these algorithms employ 

cross-correlation operation for estimation which signals arriving from which directions 

to suppress and which to maximise. Such calculations have to be performed with 

complex numbers and most importantly should be done in real-time. Thus, it is 

evidently seen that the necessity for high-performance signal-processing utilities spans 

across the whole communication industry, leaving researchers in unrelenting pursuit for 

an adequate response. 

2.2 Correlation as a Typical DSP Application Problem 

In many of the aforementioned applications an integral and common part can be singled 

out – all of them are dealing with combined sources of information providing a 

synergistic combination of knowledge about the investigated object. In other words, 

whenever a system is dealing with a number of input data streams collaboratively 

reducing the entropy of a studied phenomenon, the term “multi-sensor data fusion” is 

applied (Stergiopoulos, 2000). The integral part of this fusion is to express the joint 

result of analysis of two or more originally different sources. For that reason a 

correlation operation is applied, which in turn is regarded no less as a “backbone” of 

the whole DSP area. 

Thus, the prevailing number of high-end DSP applications such as antenna 

aperture synthesis, radioimaging, RADAR, radio astronomy, high-energy physics and 

many others, has a common and very computationally-intensive part – the multi-

channel wideband correlation of signals. Correlation or, more generally speaking, 

finding a relation between a set of signals, is a computational core for the majority of 
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signal processing operations and is considerably critical for computation performance. 

The result of the cross-correlation function is “a measure of similarity between a pair of 

energy signals” (Mitra, 2006).  

As it was noted before in 2.1.1, one of the applications where correlation is 

applied is radio astronomy. For example, it is used in the radio-astronomical technique 

known as Very Long Baseline Interferometry (VLBI). In turn, the antenna aperture 

synthesis is used in VLBI. The latter technique implies that the correlated product of 

signals from two radiotelescopes gives visibility frequencies of celestial object. The 

frequency information is obtained by averaging additional multiplications by a lagged 

signal and finally the data is transferred to the frequency domain by applying Fourier 

transform (Thompson, Moran, & Swenson, 2001b). 

2.2.1 Correlation Theory 

A measure of similarity between a pair of signals, x[k] and y[k], is given by the cross-

correlation rxy[k] sequence: 

where the lag index n ∈ [–N / 2, N / 2 – 1], k is the time index, N is a number of 

lags and typically is a power of two. The lag term denotes the time-shift between the 

pair of signals with negative (n < 0) and positive (n ≥ 0) lags being distinguished. 

Basically, the number of lags defines how many points or output values the correlation 

produces. In real life applications, where for example the correlation function is used 

together with Fourier transform, the number of lags can be referred as the resolution of 

correlation. A device which performs correlation of a set of signals is called a 

correlator. The number of lags is an important characteristic of a correlator along with 

the number of channels, ie number of supported input signals. When a signal is 

correlated with itself, such an operation is called autocorrelation and is often used in 

filtering and other processes. 

One should note the incurred execution time or time complexity for wideband 

correlation. For a wideband signal according to the Nyquist condition, the processing 

involves computation of a greater amount of samples, hence the processing duration 

increases. In addition, the results of correlation computation abide to the following law 

(Thompson et al., 2001b): 

[ ] [ ] [ ]∑ −=
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where N is the total number of the cross-products and NS is the total number of 

antennas (sources) to be correlated. Hence, wideband multi-channel correlation 

embraces a considerable amount of computations. 

Strictly speaking, Equation (2.2) gives the number of unique correlation results or 

half of the total correlation results – the remaining half can be obtained by simply 

reversing the results from the first half. The latter issue is caused by the following 

property of correlation: correlation of x[k] with y[k] is not the same as correlation of y[k] 

and x[k]. So, putting down mathematical notation of correlation of y[k] with x[k]: 
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Thus, ryx[n] is obtained by time-reversing sequence rxy[n]. 

2.2.2 Digital Correlators 

As mentioned above, the number of lags is an important feature defining the resolution 

capabilities of a correlator. The higher the number of lags, the better a correlator can 

“tell” how similar two signals are to each other. In reality, the number of lags is set by 

the application’s requirements and defines the number of multiply-and-accumulate and 

multiply-and-add computations. The latter statement is true for digital correlators, ie 

correlators that work with a stream of digitised samples x[n] from an analog output x(t). 

Two general types of digital correlators are distinguished: 

� Lag or XF Correlator 

� FX Correlator 

In the lag or XF correlator Fourier transform to the frequency domain is 

performed after cross multiplication of signals. The number of channels in such 

correlators is an integral power of two with the signals' bandwidths also divisible by two 

to be compatible with digital computing techniques (Thompson et al., 2001a). 

Whereas in the FX correlator Fourier transform is performed before cross 

multiplication of signals. Therefore, the total number of operations on the FX correlator 

is proportional to the number of antennas or more correctly signals coming from these 
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antennas, whereas in the XF correlator the amount of computation is proportional to the 

number of antenna (signal) pairs. Hence, the FX correlators are more economical in 

terms of hardware requirements especially for a considerable number of signals 

(Thompson et al., 2001b).  

2.2.3 Implementations of Correlators 

Correlators can be implemented in hardware or software. Normally, hardware 

correlators are designed and manufactured for a certain and specific application and are 

implemented in Very Large-Scale Integrated (VLSI) circuits. The CABB Hardware 

Correlator (Ferris, 2006) is an example of a hardware correlator. This correlator has a 

complex and very large-scale architecture comprising a number of VLSIs, multiplexers, 

accumulators, filter banks and other devices. It is utilized in Australia Telescope 

Compact Array to process signals from six 22 m. antennas of Australia Telescope 

Compact Array. In addition, FPGAs are used in this correlator as well – to produce 

different configurations of filter banks. 

As for software correlators, they are implemented as a set of libraries or computer 

programs to perform the designated task: correlation of a given set of signals. Amongst 

known and acknowledged software correlators the following need to be mentioned: 

K5 Software Correlator (Imai, Koyama, & Kondo, 2005) is probably one of the 

most famous correlators implemented in software.  Currently the K5 correlator is 

involved in the VERA project in Japan and furthermore in collaborative work of Korea 

and Japan in the project “East Asian Correlator” in Seoul (Kawaguchi, Kobayashi, & 

Oyama, 2006). K5 is an FX correlator. 

Swinburne University of Technology has another software-based correlator. 

Initially this correlator was XF-type (West, 2004) but it was considered slow and the 

recently new FX correlator DiFX has been implemented and tested (A. В T. Deller, 

Tingay, Bailes, & West, 2007). Both correlators have been implemented on the Linux 

parallel high-performance parallel cluster utilizing the Message Passing Interface (MPI) 

standard for process-to-process communications. There was a reported intention to 

explore hybrid architecture (ie comprising FPGA and Swinburne cluster) within this FX 

correlator (A. Deller, 2005). 

The Jet Propulsion Laboratory of California Institute of Technology designed 

Softc software correlator (Lowe, 2004). Launched as one of the many test programs to 

replace an outdated hardware correlator Block I in the Delta-Differenced One-way 
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Range (DeltaDOR) spacecraft navigation system, Softc underwent a lot of changes and 

finally was employed in Mars Odyssey, Mars Exploration Rover, Deep Space 1 and 

other missions. It has significant processing accuracy (not less than 10-13); it can 

correlate 1, 2, 4, and 8-bit sampled data, upper, lower, or double sideband data and data 

using one of either two encoding schemes. 

Software correlators are known for their flexibility and possible high spectral 

resolution along with broad bandwidth (A. В T. Deller et al., 2007). This is achieved by 

employing high-performance computer systems, eg clusters, massive-parallel 

computing systems (MPCS or MPC), etc. A cluster is an interconnected group of 

computers working together as a single computer. The backbone of the clusters is high 

performance computing units, ie nodes. Contemporary clusters involved in high-end 

digital signal processing applications are considerably complex and elaborate systems 

with multiple-level architectures and high-speed interconnects. MPC systems are 

computer systems that include multiple independent processing units running in 

parallel. Examples of MPC computers include Blue Gene and Earth Simulator amongst 

others. 

The international TOP500 list encompasses the 500 fastest and most powerful 

computing systems around the world (www.top500.org). As of November 2007, the top 

supercomputer is the Department of Energy's IBM BlueGene/L system in USA with a 

performance of nearly 500 TFlops. Another BlueGene/L computer located at the 

University of Groningen performs correlation tasks in a Low Frequency ARay 

(LOFAR) project. It consists of 12,288 700 MHz dual PowerPC 440 cores yielding 34.4 

TFlop/s of correlation performance (Romein, Broekema, Meijeren, Schaaf, & Zwart, 

2006a). 

Nevertheless, such performance comes at a price – development time and 

maintenance cost balance this substantial computational power. With BlueGene/L’s 

power consumption of 27.6 kW per rack (IBM Corporation, 2006) the LOFAR’s six-

rack supercomputer consumes 165.6 kW per hour. Besides, the estimated development 

time is one man-year (Romein, Broekema, Meijeren, Schaaf, & Zwart, 2006b). One of 

the reported issues with the LOFAR’s correlators is the lack of the high bandwidth in 

BlueGene crucial for streaming DSP applications and overall necessity of faster 

intercommunication between the cores. Moreover, software correlators require 

substantial debugging and testing of the code: “eliminating of processing errors and 

inaccuracies” was one of the “greatest hurdles” in Softc correlator implementation 
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(Lowe, 2004). Developing, debugging and testing can be generalised as one of the 

greatest hurdles for all high-performance DSP systems.  

Along with the considerable complexity of developing high-performance DSP 

systems go their relevant energy requirements. At the Ninth International Conference on 

Parallel and Distributed Computing, Applications and Technologies (PDCAT'08), Pete 

Beckman from Argonne National Laboratory in his keynote speech made a strong point 

about the power consumption requirements of contemporary and future supercomputers 

(Beckman, 2008). In particular, it was predicted that within years the power 

consumption of a computational system would become the most determinative 

characteristic. In time, increasing the processing capabilities by increasing the 

operational frequency and adding additional transistors (Moore’s law), depleted itself 

and gradually diverted to multi-core and parallel execution of the algorithms, where 

currently most of the research and development work is carried out. In turn, the same is 

envisioned for parallel operation – parallelisation of the applications and algorithms will 

eventually exhaust with Flops per Watt ratio becoming the systems’ performance 

measuring unit. Therefore, with power requirements becoming one of the most 

significant factors additional constraints are laid upon the development of high-

performance DSP systems and, most importantly, on the technologies applied in these 

systems. 

2.3 DSP Technologies 

2.3.1 The Performance Requirements of the DSP Applications 

The number of mathematical calculations involved in the aforementioned high-end DSP 

applications is extremely high. For instance, to perform only a 1,024-point FFT yields 

10,240 complex multiplications and additions per operational cycle. Moreover, to 

provide trustworthy data, a radio telescope observing a celestial phenomenon has to 

employ FFT with even higher resolution as well as a number of other operations, eg 

correlation of wideband radio-frequency signals, thus yielding even higher number of 

computations. On top of that, any DSP application, whether it is an image processing 

routine or telecommunication operation, demands these computations be executed in a 

rapid manner. 

Besides, relentlessly expanding requirements of today’s electronic systems keep 

pushing the resources contemporary DSP instrumentation towards and over the verge of 
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depletion. Figure 2.3 illustrates the performance gap that has emerged in the 

communication industry between increasing algorithm complexity originated from 

recent “standards revolution” and existing processing architectures. 

 

Figure 2.3. The DSP Performance Gap in Communications Industry (Ganousis, 2004) 

So, how can one approach the ever-growing demands of the DSP field? The most 

universal approach to meet the substantial and constantly growing requirements of high-

end DSP applications is to increase the processing power of computational units (CPUs, 

DSPs, ASICs, etc).  

 This has a number of limitations and drawbacks such as: 

� High power consumption, which in turn leads to necessity of efficient power 

dissipation; 

� Complexity of accomodating a large number of transistors in a single chip, 

which are growing with each year according to Moore’s Law; 

� High market costs. 

Hence, this is not always feasible to cover the requirements of a certain high-end 

DSP application by simply involving more computational power (units) due to the 

hardware constraints in contemporary tools. Therefore, the search focus has to be 

shifted towards renovating or enhancing the existing apparatuses or creating new ones. 

The next sections cover the most common tools available in the DSP field. 

2.3.2 Digital Signal Processors (DSPs) 

Currently there is a number of tools in the DSP area. One of the major tools for DSP 

applications are Digital Signal Processors. DSPs were first created in the late 1970s  –  

S2811 (Nicholson et al., 1978) and Intel’s 2920 (Hoff & Townsend, 1979). Although 
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Intel’s device did not have a multiplier, it already had on-chip ADC and DAC – a 

feature still present in the modern DSPs. The 1980s saw a second generation of DSPs 

with supported concurrency, multiple buses and on-chip memory. These were added 

with on-chip floating point operations in the third generation of DSPs in the early 

1990s. In the late 1990s multi-processing features, image and video processors and low-

power DSPs were introduced. 

Today DSPs are produced by semiconductor vendors such as Texas Instruments, 

Analog Devices, Motorola and others. Contemporary top-level DSPs are capable of 

achieving substantial speeds – for example the high-performance multi-core 

TMS320C6474 from Texas Instruments can achieve up to 24,000 million instructions 

per second (MIPS) or 24,000 16-bit MMACs per cycle (Texas Instruments Inc., 2008). 

This DSP is also equipped with a 16/32-bit DDR2-667 Memory Controller, EDMA3 

Controller, 1000 Mbps Ethernet MAC interface, two 1x Serial RapidIO Links and many 

other peripheries. 

In general, DSPs are a specialized form of microprocessor designed specifically 

for digital signal processing. Nowadays DSPs have a well-developed tool set – typically 

a high-level programming language as C++. DSPs perform real-time processing and 

have fixed hardware architecture with certain set of resources. Hence, DSPs have 

reconfigurability freedom only to the extent of the programming code running on them. 

Furthermore, the performance requirements of today’s DSP applications have now 

exceeded the capabilities of even such powerful DSPs as Texas Instruments’ 

TMS320C6474.  

Another common platform for performing DSP applications – Application-

Specific Integrated Circuits (ASICs) possesses an alternative approach for performing 

signal processing applications. 

2.3.3 Application-Specific Integrated Circuits (ASICs) 

The inception of Application-Specific Integrated Circuits or more commonly ASICs 

started in 1980s when the now-defunct Ferranti Company released the first gate-array –

Uncommitted Logic Array (ULA). The first Uncommitted Logic Arrays contained only 

a few thousand gate circuits (transistors, logic gates, and other active devices) and they 

did not perform any specified function. A particular function of a ULA was configured 

by adding a final layer of metal interconnects to the ULA thus connecting the elements 

on the ULA in the desired, customised fashion. The later versions of these early 
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developments became more complicated with a greater number of gates and in some 

cases included RAM elements. 

Modern ASICs retain the same ideology – they perform only limited sets of tasks 

laid in them during manufacturing stage. These devices are capable of performing their 

limited sets of functions faster than general-purpose DSPs. Due to application-specific 

circuitry ASICs are able to employ high-speed functions of the targeted algorithm in the 

optimized hardware (Kuo & Lee, 2001). Most commonly ASICs are used for 

implementing well-tested and well-defined algorithms, eg Reed-Solomon coders in 

digital subscriber loop (xDSL) modems or stack functionalities of CDMA2000 standard 

in cell phones. 

Depending on the grade of flexibility, three levels of ASICs are distinguished: 

� Gate Array is the least customisable. Transistors, gates and other devices 

are predefined but unconnected – no metallization layers exist. A user 

specifies interconnection between the elements thus defining the function 

of the device. Today these devices are gradually replaced by structured 

ASICs where many features are predefined by the manufacturer: IP cores, 

power and clock sources, etc. This significantly reduces the design time, as 

a user has to specify much fewer design technicalities. 

� Standard cell methodology has a high degree of flexibility. It assumes that 

the ASIC’s design is defined by a user from the cell libraries created by 

the manufacturer and , therefore, has much less space for mistake than full 

custom design. 

� Full custom design is the most flexible and, therefore, the most expensive 

and time-consuming approach. It assumes developing an ASIC from 

transistor level. 

Despite that ASICs can perform their specified application faster than general-

purpose DSPs, they do posses their own challenges and limitations. The most obvious 

limitation of ASICs originates from their most prominent strength:  hardware optimised 

for performing dedicated applications means little or, most often, absolutely no degree 

of algorithm flexibility. 

Another challenge with ASICs is that they are configured with hardware 

description languages (HDL) such as Verilog, VHDL and some other less popular 

options. These languages are low-level programming languages and differ significantly 
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from high-level programming languages employed for programming conventional 

general-purpose DSPs. The challenges of hardware description languages are more 

broadly discussed in section 3.1.2. 

Single DSP or ASIC can be employed as a platform for single or several signal-

processing applications. In the case of large-scale high-performance DSP applications, 

they may be employed as building blocks in sizeable computational systems such as 

supercomputers, computational clusters, grid computing, etc. 

2.3.4 High-Performance Computing 

For performing large-scale DSP applications, high-performance computing (HPC) 

systems can be used. HPC systems (supercomputers or computer clusters) comprising 

multiple computational processors communicate through versatile types of interconnect. 

The types of DSP applications employed on HPC systems are exceedingly large-scale 

and include but are not limited to: correlation of wideband RF signals involved in radio 

observation of celestial objects (eg CABB (Ferris, 2006) or DiFX (A. В T. Deller et al., 

2007) Australian correlators), video-centric applications of new generation wireless 

telecommunications standards, such as wireless videoconferencing, real-time video 

streaming, etc. (Gentile & Wills, 2004) and many others. 

Over the years, the HPC proved to be an effective and sophisticated tool for 

performing DSP applications. Technologies and tools applied in HPC have significantly 

developed over the past years – density of transistors on processors (Moore’s law), 

communication speeds and throughputs, number of processors performing one task, 

uniform memory access with few or no caches, etc. In addition, modern HPC systems 

are practically linearly scalable. 

Moreover, HPC systems have the potential to perform the assigned task in 

parallel, ie the task is split into several parts, each of which is performed by a separate 

computational unit in parallel (Wilkinson & Allen, 2004).  This is achieved by either 

using multiple computational processors within a single computer, ie a multiprocessor, 

or by multiple computers working on a single problem. The possibility to perform tasks 

in parallel becomes radically beneficial for DSP applications as most of them can be 

easily parallelised. More precisely the majority of DSP applications fall under the 

Single Instruction, Multiple Data streams (SIMD) category in taxonomy introduced by 

Michael J. Flynn (Flynn, 1972). Figure 2.4 illustrates SIMD architecture. 
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Figure 2.4. Single Instruction, Multiple Data (SIMD) model 

In the SIMD model the same set of operations from the Instruction Pool is applied 

on different data streams Data A, Data B, etc from the Data Pool simultaneously and, 

therefore, this processing can be naturally parallelised. 

A certain application can benefit from SIMD implementation if it involves a large 

number of the same repetitive operations applied on a large number of data bits. Many 

DSP applications satisfy this condition. For example, the correlation described by the 

Equation (2.1) consists of a number of simple mathematical operations, namely 

multiplication and addition which are applied to the same data set – samples of input 

signals. Hence, computation of a single sample of a correlation function involves a 

precisely calculated number of calculation routines on a certain input sample. These 

routines can be successfully parallelised thus attaining a speed-up in the performance 

which consecutively leads to power conservation and increased throughput. 

Real-life SIMD implementation examples include Intel’s MMX processors, their 

AMDs counterparts – 3DNow! Processors, Graphics Processing Units of PC video 

cards, and many others. The SIMD model is applied in large-scale supercomputers as 

well. 

2.3.5 FPGAs as a DSP Tool 

Another prominent tool for parallelisation is a maturing field of FPGAs, which has 

drawn massive attention in recent years from leading electronics developing vendors 

and designers throughout the world. Recent profound advances in the Field 

Programmable Gate Array area demonstrate that signal, image and video processing 

applications which are typically implemented on FPGAs, comprise complicated 
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calculations over a large amount of streaming data. These applications can gain 

substantial speed-up from available on-chip parallelism (Guo, Najjar, Vahid, & Vissers, 

2004). The technological background of  FPGAs is discussed in more details in 3.1.1. 

An FPGA is a semiconductor device containing programmable logic blocks which 

can be interconnected and configured to meet the desired functionality specified by a 

certain application. Once an FPGA is programmed it operates as optimised hardware 

developed for  a particular task. Designs incorporating FPGAs have at least two 

significant advantages in comparison with DSP devices and ASICs: 

• Parallelism – the ability to perform several operations in parallel and therefore  

performs faster; 

• Reconfigurability or, in other words, the ability to be customised for a certain 

application. 

FPGAs’ parallelism feature allows them to perform more operations at a single 

clock cycle than their conventional processing counterparts. Therefore, FPGAs operate 

at much lower frequencies than their conventional processing counterparts while 

achieving similar or even greater performance results. Lower operational frequencies 

lead in turn to lower power consumption, which has become one of the most crucial 

issues in recent years and is predicted to play an ever more dominant role in the 

foreseeable future of high-performance computational systems (Beckman, 2008). In-

depth background of FPGAs is given in 3.1.1. 

In the past years, the computational capabilities of commercially available FPGAs 

even overcame some commercially available CPUs in terms of achievable performance 

– see Figure 2.5. 
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Figure 2.5. Moore's Law in the CPU and FPGA World (Chen Chang, 2005) 

Figure 2.5 demonstrates millions of floating point operations per second (MOPS) 

achievable by the FPGA representative (Xilinx FPGA) and the CPU representative 

(Intel Xeon CPU) throughout their release dates. FPGA field is already renowned as a 

new computational paradigm (Ekas, 2007; Phillips, Littlefield, Dahlgren, & Ciufo, 

2007) by the research community. 

Nevertheless, along with prominent beneficial features FPGAs have certain 

challenges and drawbacks. First of all FPGAs are configured with low-level hardware 

programming languages which incur  considerable programming and debugging efforts. 

Furthermore, all of the interfaces and features present on FPGAs have to be explicitly 

configured for each particular application/design. This and other challenges in FPGA 

programming discussed in 3.1.2, complicate the utilisation of FPGAs for DSP 

applications. 

2.3.6 CPU+FPGA Hybrid Approach 

Several approaches exist to overcome the challenges of FPGA programming. One is to 

employ high-level software programming tools and languages for hardware 

programming. This approach will be discussed in more detail in 3.1.3. Utilising 

software high-level programming languages for FPGA designs development 

intrinsically links to an approach which is sometimes called hybrid CPU+FPGA 

architecture. 
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More and more researchers express their interest towards a mutual operation of 

commodity computational means (eg CPUs, DSPs and even HPC servers) along with 

reconfigurable hardware (FPGAs).  Some regard it is as an “optimal solution” (Milrod, 

2006) and others merely acknowledge its persuasive benefits along with intrinsic 

challenges (Andrews et al., 2004; Tahernia, 2005). The CPU+FPGA approach  may 

ease the tedium of designing FPGA applications by bridging the gap between more 

familiar software development tools and challenging hardware development tools of 

FPGAs.  Besides,in CPU+FPGA architecture  a design can employ the benefits of both 

conventional processing methods and optimised hardware implementation. A number of 

DSP applications can effectively employ this hybrid and flexible architecture. The next 

chapter introduces and discusses CPU+FPGA architecture in more detail. 

2.4 Chapter Summary 

This chapter introduces the background of the investigated problem. The following 

typical computationally-intensive DSP applications employing cross-correlation of 

signals are discussed:  radio astronomy, RADAR applications,  medical applications, 

and telecommunication. 

The theory of the targeted cross-correlation problem with the focus on digital 

implementation of correlation is described. This is followed by a discussion on the 

computational requirements of the modern DSP applications. Traditional technologies 

(DSPs and ASICs) for performing DSP applications are considered along with methods 

of implementation of large-scale DSP applications (HPC). Their features and existing 

challenges are discussed. 

Further, FPGAs as a potential tool to achieve performance acceleration for DSP 

algorithms are discussed. The CPU+FPGA hybrid approach is introduced. 
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CHAPTER 3   

Hybrid CPU+FPGA Architecture 

The future is always beginning now. 

—Mark Strand 

This chapter outlines the investigated CPU+FPGA architecture and highlights its 

potential advantages and challenges. Employment of this architecture for high-

performance DSP applications is discussed along with the applicability of contemporary 

hybrid reconfigurable computing systems for performing these applications. 

There are a number of solutions on the market when FPGAs are deployed inside a 

computer system, eg Cray XD1, SGI RASC, Nallatech H100 family blades for IBM 

BladeCenters, XtremeData, and SRC Computers with their proprietary MAP 

reconfigurable processor architecture. This option is of particular interest in this work 

since such architecture has a computational power of a general-purpose processor 

(GPP), along with an  FPGA’s flexibility of reconfigurable hardware, and, therefore, the 

possibility for performance acceleration of DSP applications through parallelisation. 

3.1 Hybrid CPU+FPGA Architecture 

The hybrid technology implies simultaneous work of an FPGA chip and a CPU of a 

commodity PC in one system. It might be particularly advantageous for such DSP 

applications such as antenna aperture synthesis, radio imaging, RADAR, radio 

astronomy, high-energy physics etc. A common and very computationally-intensive part 

in the above-mentioned applications is the multi-channel wideband correlation of 

signals. Such correlation can be implemented in a parallelised manner in an FPGA. 

Depending on the type of correlation (XF or FX) (Thompson et al., 2001b) both floating 

and fixed point numbers can be successfully and efficiently targeted to work on this 

architecture involving either a CPU or an FPGA as required. 

In addition, reasonably decreasing prices of FPGA devices and the off-the-shelf 

availability of hardware architecture, place the CPU+FPGA approach as a promising 

alternative to the large-scale and high-cost correlators such as CABB Correlator (Ferris, 
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2006) or  various software correlators (A. В T. Deller et al., 2007; Kawaguchi et al., 

2006; West, 2004). If the interface between a CPU and an FPGA is established and has 

low latency, architecture can offer a flexible and powerful platform (Andrews et al., 

2004; Milrod, 2006). CPU+FPGA architecture can also be more convenient as the CPU 

can be utilised to work with un-parallelisable tasks (fetching and streaming data 

samples into an FPGA, acquisition of correlated data, etc.) whereas an FPGA can be 

utilised for actual correlations (multiplication and accumulation operations).  

3.1.1 FPGA Technology 

Inception of FPGAs dates back to 1960s when Gerald Estrin’s group at the University 

of California at Los Angeles did one of the first works on reconfigurable computing 

(Estrin, 1960, 2002). In 1984 Ross Freeman, co-founder of Xilinx Corporation invented 

a new type of semiconductor device which is now known as the Field Programmable 

Gate Array (Xilinx Inc., 1984).  

FPGAs are historically connected to complex programmable logic devices 

(CPLDs). Figure 3.1 demonstrates that they belong to the same group called field-

programmable logic (FPL): 

 

Figure 3.1. Classification of VLSI Circuits (Meyer-Baese, 2004a) 
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The structure of an FPGA is an evenly-spaced two-dimensional array tiled with 

logic blocks – Configurable Logic Blocks (CLBs). Each CLB represents a simple 

memory used as a lookup table and flip-flops for buffering. CLBs communicate with 

other logic blocks via a programmable interconnection network – see Figure 3.2. 

 

Figure 3.2. FPGA Internal Structure (Buell, El-Ghazawi, Gaj, & Kindratenko, 2007) 

The peripheral blocks of an FPGA are I/O blocks (IOB in Figure 3.2) dedicated 

for communication between internal logic blocks and the I/O pins. Modern FPGAs’ 

architecture features on-chip memory blocks as well as dedicated circuitry to perform 

DSP operations - DSP blocks. 

The difference between FPGAs and said CPLDs lies in the granularity of a 

device, which designates the level of complexity of completing the routing between the 

blocks. Thus, FPGAs fall in the medium granularity devices group while CPLDs in the 

large granularity devices group. This distinction comes from the fact that CPLDs 

comprise simple programmable logic devices (simple PLDs or SPLDs) with common 

densities of several thousand to tens of thousands of logic gates, whereas FPGAs 

normally contain tens of thousands to several millions of logic gates. 

In order to define the behaviour of an FPGA it needs to be programmed with a 

configuration bit stream first. These bit streams are generated from structural register 

transfer level (RTL) specifications expressed by a user in the form of the HDL 

descriptions – most commonly Verilog or VHDL. These HDL descriptions are created 
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by hardware designers and follow the design flow demonstrated in Figure 3.3 before the 

configuration stream is created.  

 

Figure 3.3. Low-level FPGA Design Flow (Gokhale & Graham, 2005) 

The “Logic Synthesis” stage translates design descriptions in Verilog or VHDL 

into an optimised gate level representation. Along with Verilog and VHDL, hardware 

design descriptions can be done in schematics (Betz, Rose, & Marquardt, 1999). FPGA 

manufacturers supply their development tools with a number of predefined functions – 

intellectual property (IP) cores to simplify the development of complex FPGA designs. 

For example, Altera features such IP Cores (MegaCore functions) as PCI Express 

Compiler to create PCIe interface on the boards featuring PCIe connector, FFT, DDR 

Controller and others. During “Technology Mapping” stage, design primitives are 

converted into the netlist of physical resources on a selected FPGA chip. “Logic 

Placement” and “Signal Routing” stages are often combined in the literature and 

referred to as the “Place-and-Route” phase. This stage calculates and performs the most 

effective placement and interconnection of each mapped logic block on the specified 

device. Then, the last stage generates programming bitstream, which will configure 

various resources as required. Normally, the aforementioned stages are executed by the 
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proprietary tools from FPGA vendors. The results of each stage can be verified by the 

designer by means of timing analysis and simulation. A number of simulation tools are 

available from various vendors, eg ModelSim from Mentor Graphics.  

3.1.2 Challenges in FPGA Programming 

Nevertheless, the very flexibility that makes FPGAs so universal and beneficial at the 

same time imposes a considerable challenge on the whole RC design process (Andrews 

et al., 2004; Tahernia, 2005; Wain et al., 2006). The following are the most prominent 

of the challenges that need mentioning: 

1. A priori unawareness of FPGA about its I/Os. This issue implies that an 

FPGA initially knows nothing about how to communicate with external 

world. Any interface featured on an FPGA board has to be instantiated and 

configured in low-level specifications. To mitigate this FPGA vendors 

provide IP cores for most common interfaces. Robust, high-speed and low-

latency I/O interfaces are a crucial component in the DSP paradigm 

(Milrod, 2006). 

2. Compilation process and compilation time. Unlike conventional software 

programming where compilation normally takes seconds to minutes, 

hardware compilation is a complex task (see Figure 3.3) and may take 

hours to complete. 

3. Storing variables in explicit memory hierarchy. In HDL each program 

variable has to be stored in the chosen memory type: external memory, on-

chip memory, logic blocks configured as memory or registers. Changing 

the type of the selected memory might cause changes throughout the 

whole design (Gokhale & Graham, 2005). 

4. Implicit hardware state in FPGA and complicated debugging. Debugging 

of the hardware design has to be carried out at the granularity of 

nanoseconds which is complicated by the lack of transparency of the 

hardware’s state on FPGA (Gokhale & Graham, 2005) 

5. Significant difference in hardware design flow and conventional software 

design flow. This issue is discussed in more detail in the next section. 
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3.1.3 High-Level Programming for Hybrid Architectures 

The overall complexity of FPGA programming has been extensively studied in recent 

years and a number of solutions have been developed. Hardware and software design 

flows are considerably different. The general case of software and hardware design 

flows is depicted in Figure 3.4. 

 

 

(a) (b) 

Figure 3.4 Hardware (a) and Software (b) Design Flows (Wain et al., 2006) 
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A significant difference in the depicted flows is that software developers have a 

certain level of abstraction from the developed product. For example, virtual memory, 

hardware, cache, etc are determined by a processor’s architecture in software flow, 

whereas in hardware flow these low-level design parameters have to be explicitly 

configured in every design. Ultimately, the hybrid CPU+FPGA architecture should 

envision transparent work with CPU and available FPGA resources as a seamless and 

integral computational system (Andrews et al., 2004). The mentioned level of 

abstraction is located on top of the RTL - see Figure 3.5. 

 

Figure 3.5. FPGA Electronic System Level (ESL) Approach (Xilinx Inc.) 

The ESL Design Ecosystem approach shown in Figure 3.5 was developed by an 

international initiative launched by Xilinx Company, comprising a wide array of 

Ecosystem members. The original intention of this initiative is to deliver accessible and 

understandable tools for software designers, so they can develop hardware designs 

using traditional programming techniques.  

It should be noted that C-based languages were never actually designed to employ 

parallelism in reconfigurable FPGA hardware. Therefore, each solution for high-level 

FPGA programming using sequential languages has to be able to employ algroeithm's 

parallelism and be aware of  available resources of the targeted FPGA by means of 

libraries, support packages, etc (Baran, Bodenner, & Hanson, 2004; Wain et al., 2006). 

During several years of activity, the ESL Design Ecosystem Initiative has 

developed a number of solutions: ImpulseC from Impulse Accelerated Technologies; 

Mitrion SDK from Mitrionics™, Inc; Cascade from CriticalBlue and many others. 

Many of the tools from and outside of the ESL Design Ecosystem Initiative were tested 
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and appraised for this work. The following criteria were used to determine the most 

applicable tool for this work: 

1. Support of the selected hardware (see 4.2) or ability to generate HDL 

projects for non-specific platforms. 

2. The tool’s input must be high-level programming language (C, C++, C-

like languages, etc). 

3. Applied approach to extract parallelism: automatic, pragmas, manual 

adaptation of the input code, etc “Closeness” of implemented examples 

and tutorials to the selected application of multi-channel wideband 

correlation. 

4. The tool has to produce synthesisable HDL code (Verilog or VHDL).  

5. Evaluation option has to be present and the tool has to be affordable within 

the  available budget (academia licence or alternatives). 

Many of the tools were eliminated from consideration because they work only 

with a limited number of platforms, eg Mitron, Clarity from Mimosys, SystemCrafter 

SC, Reconfigurable Computing Toolbox r2.0 by DSPlogic, CoreFire by Annapolis 

Micro Systems etc. Some of the considered products like Sturbridge’s Viva are merely 

graphical composition tools working with AND, OR, etc gates and logic operators, 

which can produce generic HDL codes. These type of tools do not deliver the necessary 

level of abstraction. Other tools were already near a defunct stage (Celxoica) or only at 

a really maturing stage (CHiMPS by Xilinx Research Labs). 

DIMEtalk from Nallatech proved to be an interesting option. Although this tool 

primarily targets Nallatech’s and Xilinx’s boards, there is an option of generating HDL 

designs for generic platforms. However, the C to HDL conversion feature of DIMEtalk, 

which is positioned as additional and supplementary, was confirmed as insufficient for 

this project during evaluation of DIMEtalk product: DIMEtalk’s approach of 

developing algorithms in high-level graphical interface was deemed too obscure and 

complex for selected application of multi-channel correlation. 

Mitrion SDK (www.mitrionics.com) and DK Design Suite from Celoxica 

(www.celoxica.com) from the aforementioned instruments use pseudo-C languages 

such as Mitrion-C and Handel-C respectively. These languages explicitly express 

parallelism available in input design unlike the above-mentioned compilers and 

converters, which automatically seek for parallelism in the ingress code.  
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Catapult from Mentor Graphics is also a very promising tool, which unfortunately 

was not appraised since the manufacturer does not provide evaluation licences to 

academia. 

Outside of Xilinx's ESL initiative are free Open Source projects from Los Alamos 

National Laboratory: Trident Compiler (Tripp, Peterson, Ahrens, Poznanovic, & 

Gokhale, 2005) and sc2 (Gokhale, Frigo, Ahrens, Popkin-Paine, & Stone, 2004) which 

both convert C or C++ code into synthesizable VHDL code and run under Linux 

operating system. 

The XD1000 development system, which is used in this project, supports Impulse 

CoDeveloper from Impulse Accelerated Technologies and therefore it was selected as 

the main high-level FPGA programming tool. Selection of the XD1000 system and 

Impulse CoDeveloper tool highlights are given in sections 4.2.2 and 4.3.2 respectively. 

3.1.4 Hybrid Systems 

As it was mentioned before, many manufacturers eye the reconfigurable hardware as an 

integral part of the high-performance processing. Most of the top off-the-shelf 

manufacturers of high-end computing systems utilise FPGAs from other vendors and 

use them as small building blocks in their own solutions. The following solutions 

employ hybrid CPU+FPGA architecture: 

� MAP processors for SRC-6 and SRC-7 systems from SRC Computers, 

Inc. 

� XD development systems from XtremeData, Inc. 

� Cray XR1 blade for XT5 system from Cray, Inc. 

� SGI RC 100 blade (SGI RASC Technology) from Silicon Graphics, Inc. 

� Nallatech H100 family blades for IBM BladeCenters from Nallatech, Inc. 

A most interesting option in the context of this project is the XD family 

developments system from XtremeData. 

Another vendor successfully employing both GPPs and FPGAs is XtremeData 

(www. xtremedatainc.com). At the very early stage, the company’s primary target was 

creating a fully-integrated Analytics Appliance for the Decision Support Systems 

applications. To sustain an intensive SQL query-processing characteristic for these 

applications, XtremeData came up with their primary IP component – FPGA-based In-
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Socket Accelerators™. The efficiency of these accelerators was so compelling that the 

company began producing stand-alone FPGA-based In-Socket Accelerators. All of the 

XtremeData products (as of Autumn 2008) feature Altera-produced FPGAs – namely 

Stratix II family devices. The first generation accelerator  –  XD1000™ features one 

Stratix II EP2S180 device, whereas the second generation of accelerators – XD2000F™ 

and XD2000i™ devices (for AMD's Socket F architecture and for Intel FSB 

respectively) have two and three Stratix II FPGAs respectively. Such architecture with 

multiple FPGAs allows employing one of the chips as a communication bridge, while 

the rest perform actual application processing. 

Most importantly, the XD1000 development system features the XD1000 

Platform Support Package (PSP) for Impulse CoDeveloper, which enables full 

integration with Impulse C. This system will be used in this work and its exact role is 

given in 4.1. 

However, having rigid and well-established I/O interfaces is one of the key 

aspects in DSP paradigm. Practically all of the aforementioned high-performance hybrid 

systems (eg XD1000, Cray XR1 etc.) lack data acquisition interfaces, thus making all 

their extensive computational powers and parallelisation capabilities unavailable for 

real-time high-performance DSP applications where high-speed I/O data interfaces are 

integral. 

To overcome this shortcoming a prominent research group located at the 

University of California, Berkeley has developed the Berkeley Emulation Engine 2 or 

shortly BEE2 (C. Chang, Wawrzynek, & Brodersen, 2005). BEE2 is a high-end 

reconfigurable computer (HERC) consisting of computer  modules connected through a 

global communication network. Figure 3.6 shows a block diagram of the BEE 2 

computer module. 
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Figure 3.6. Block Diagram of BEE2 Computer Module (C. Chang et al., 2005) 

Each computer module has five Xilinx Virtex 2 Pro 70 FPGAs directly connected 

to DRAM memory modules with a total capacity up to 4 GBytes per FPGA. The central 

FPGA is programmed as a CPU and performs functions of control module. The rest of 

the FPGAs are used for computation. According to experimental results, such 

architecture can outperform DSP chips by a factor of 10 for the Correlator application. 

However, the BEE2 is a proprietary CPU+FPGA solution with custom hardware, 

I/O and memory interfaces. A hybrid system developed on a commodity CPU with off-

the-shelf available FPGAs would offer a much more flexible and affordable framework 

for application development. The following section discusses the system built with 

COTS components and yet targeting similar computational performance as the BEE2. 

3.2 Proposed High-Performance Hybrid DSP System 

As a building block for the high-performance hybrid DSP system, COTS personal 

computer (PC) is one of the most applicable options. Modern PCs feature a wide variety 

of high-speed communication interfaces for connecting external board with 
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reconfigurable hardware and contemporary multi-core CPUs yield substantial 

processing power. Most importantly, PCs are widely spread and easily accessible. 

Vendors of reconfigurable hardware issue their products with many interfaces and 

features: 

• On-board memory of various sizes and data exchange rates (DDR 

SDRAM and DDR2 SDRAM, QDR, SRAM, etc). 

• A wide variety of available communications interfaces: SFP, HSMC, PCI 

family, HyperTransport, Ethernet family etc. 

• The hardware is supplied with different range of development tools, IP 

cores, simulation and debugging software. 

For the proposed high-performance hybrid DSP system, the reconfigurable 

hardware can be plugged in a host PC via supported high-speed interfaces such as PCI 

Express. Figure 3.7 shows an example of the proposed high-performance hybrid DSP 

system. 
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Figure 3.7. Framework for High-Performance Hybrid DSP System 

The example system in Figure 3.7 captures data coming from sources (antennas) 

via two multi-channel ADCs. Further, the data is passed directly to FPGA processing 
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cores via high-speed on-chip transceivers. The FPGA boards are plugged into the PCIe 

interfaces of two PC boxes. One of the principal features of the proposed system is the 

capability to process live data in a real-time fashion. 

The diversity of the on-board interfaces in Figure 3.7 demonstrates how these 

interfaces can be utilised for creating scaled and more efficient systems. If required, 

communication between two PCIe FPGA boards can be established via either SFP 

interfaces or Gigabit Ethernet. Similarly, communication can be organized between two 

PC boxes using separate network controllers (eg by MPI), which allows to carry out 

complex and distributed high-performance DSP applications. Ultimately, the proposed 

system is highly scalable: PC and ADCs boxes in Figure 3.7 can be regarded as building 

blocks for hypothetical DSP systems capable of performing various computationally 

intensive tasks, eg aperture synthesis for large-scale antenna array. The number of 

channels, resolution, and bandwidth can be scaled up by using multiple CPU+FPGA 

boxes. 

3.3 Chapter Summary 

The above discussion outlines the benefits along with the challenges of the joint usage 

of commodity processing means (ie CPUs) and reconfigurable hardware (ie FPGAs). 

Albeit, the effectiveness of deploying FPGAs in high-end signal processing applications  

also involves a considerable amount of complexity in developing designs in FPGAs as it 

was described in section 3.1.2. Firstly, and most importantly, because of the fact that 

hardware description languages (eg VHDL and Verilog HDL) are low-level languages 

describing hardware behaviour, they are generally challenging to work with. Moreover, 

unlike conventional software development, the process of hardware design requires 

careful parallelism consideration, ie in FPGAs all state transitions occur simultaneously 

according to a specified clock. 

The initial intention of a software developer working with FPGAs is to use 

“standard”, conventional, and typical programming design tools. In other words, a 

certain degree of abstraction from hardware is desired, which ideally will allow a 

developer to focus on a functional part of the design rather than the implementation 

details (Andrews et al., 2004; Fingeroff, Gardner, & Hogan, 2007; Wain et al., 2006). 

Currently several approaches exist, which allow utilizing conventional methods of 

programming for hardware design. 



Chapter 3. Hybrid CPU+FPGA Architecture  

42 

The next chapter outlines the methodology applied in his work, which addresses 

these issues. 
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CHAPTER 4   

Methodology and Design Flow 

We can't solve problems by using the same kind of thinking we used when we created 

them. 

—Albert Einstein 

This chapter outlines the overall project roadmap towards the proposed high-

performance hybrid DSP system. This is followed by a selection of the respective 

hardware in support of the outlined project design flow. A selected development 

hardware platform defines the development software required for each stage of the 

project design flow. 

4.1 Project Design Flow and Methodology 

In order to evaluate and demonstrate the capabilities of the high-performance hybrid 

DSP system proposed in 3.2 the following project roadmap was established: 

Stage 1. Feasibility study of cross-correlation implementation using a traditional 

hardware development environment. Create a simple correlator model in 

HDL and evaluate development effort. 

Stage 2. Implement software (in C code) multi-channel cross-correlation of a 

model signal with added non-coherent noise. Define problem size 

(correlator lags and number of channels). Measure performance of the 

software correlator on conventional CPU. 

Stage 3. Using integrated support of C-to-HDL tool on XD1000 development 

system convert the correlation software program into synthesizable RTL 

design. Then the hardware correlator processes the same simulated 

signals and its performance is measured. 

Stage 4. Using applicable PCI Express FPGA board develop I/O framework for 

one PC module of the high-performance hybrid DSP system discussed in 

3.2.  
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Stage 5. In order to supply the input data into hardware design and maintain 

control and management functions, develop a relevant software control 

application.  

To implement the outline stages of this project design flow, appropriate 

development hardware should be selected. A reasoning of the hardware equipment 

choice is given in 4.2. That is followed by a discussion on selected development 

software products in support of the development hardware. 

4.2 Development Hardware Platform 

The market of reconfigurable hardware is rapidly expanding with new devices coming 

out regularly, each with more advanced capabilities and larger resources. Presently, 

there are two main market leaders in FPGA area – Xilinx and Altera. Although, there 

are other FPGA-chip manufacturers like Lattice Semiconductor, Actel, and Atmel, their 

products are not as widely supported as Xilinx’s and Altera’s. Other FPGA 

manufacturers merely employ the chips created by the aforementioned vendors. The 

FPGA chips of both vendors drastically differ in terms of available logic elements, 

available I/O pins, on-chip memory blocks, embedded DSP multipliers, PLLs, etc.  

There is a history of using Altera’s products in Auckland University of 

Technology. Existing licence agreements, established development environments, and 

accessibility at the time of research of Altera’s devices, pre-determined the choice of the 

hardware required to implement project design flow in 4.1 

4.2.1 Nios II Development Kit Cyclone II Edition 

To estimate traditional development process of the selected application of multi-channel 

cross-correlation for  reconfigurable hardware (Stage 1 in 4.1), an initial feasibility test 

was undertaken. A trial hardware correlator’s design was implemented. A functional 

block diagram of Nios II development kit is given in Figure 4.1. 
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Figure 4.1. Top view of the Nios II development kit (Altera Corporation, 2007c) 

The trial hardware correlator’s design was implemented on Nios II Development 

Kit Cyclone II Edition from Altera Corporation. This board has Cyclone 

II EP2C35F672 FPGA, which is a low-cost device featuring 33,216 Logic Elements 

(LEs), 483,840 total RAM bits and 35 embedded multipliers. The board also has MAX 

configuration control logic, 2 MB SRAM, 16 MB DDR SDRAM, 10/100 Ethernet 

connector, serial RS-232 interface and other features. Particularly, it targets developing 

system-on-a-programmable-chip (SOPC) designs and supports Altera’s Nios II family 

of embedded processors. This kit is an ideal environment for initial experiences with 

FPGAs in general and for developing cost-sensitive embedded applications. Most 

importantly, the whole development environment was already established and 

accessible at the time of conducting this test. See the full details of this development in 

5.2.1. 

4.2.2 XD1000 Development System 

To implement Stage 3 of the project design flow in 4.1 XtremeData's XD1000™ 

development system was used. This system employs CPU+FPGA architecture by 

comprising one COTS AMD Opteron processor and one FPGA-based In-Socket 

Accelerator™ – Stratix II EP2S180 device plugged into one of the processor sockets of 

Linux-based PC tower. The FPGA uses available motherboard infrastructure creating a 
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full-featured CPU+FPGA architecture. Block diagram of XD1000 development system 

is given in Figure 4.2. 

 

Figure 4.2. Block diagram of XD1000 development system (XtremeData) 

Communication between the EP2S180 and Opteron is maintained by two 

HyperTransport links, 3.2 GB/s each. Such high-speed low-latency interface with a 

high-bandwidth data flow is necessary for tightly coupled acceleration of an application. 

The reconfigurable hardware is Stratix II EP2S180F150C3 chip with substantial 

resources – 179,400 LEs, 9,383,040 of total RAM bits and 384 18×18-bit multipliers. 

The FPGA can be programmed via a USB cable and up to four configurations can be 

stored in XD1000 onboard memory. The system also supports a power-up self-

configuration scheme common for many FPGA devices. The development system 

comes with traditional Altera’s development tools – Quartus II, SOPC Builder. A 

reference design is also provided to aid the development efforts. 

4.2.3 PCI Express Development Kit Stratix II GX Edition 

For implementing Stage 4 of the project design flow in 4.1 PCI Express Development 

Kit Stratix II GX edition from Altera Corporation (Altera Corporation, 2007d) was 

considered the most applicable tool at the time when the choice was made (September – 
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November 2006). Figure 4.3 shows a functional block diagram of the Stratix II GX PCI 

Express development board and introduces most of the board’s interfaces and features. 

 

Figure 4.3. Stratix II GX PCI Express Development Board (Altera Corporation, 2007d)  

This board possesses three crucial features for the targeted high-performance DSP 

applications: the ability for data acquisition (eg through High-Speed Mezzanine 

Connectors (HSMC or HMC) with six on-chip transceivers routed to them – J1 and J2 

in Figure 4.4), PCI Express or PCIe interface for data exchange and is reasonably low 

cost compared to the number of available interfaces. The board has PCIe ×8 interface, 

which allows it to be plugged into the PCIe bus of a commodity PC and achieve a data 

exchange rate of up to 250 MB/s in each lane in each direction or up to 2 GB/s in each 

direction in total for the board. The PCIe interface surpasses the majority of the 

communication interfaces mentioned above: thus, for example PCI-X 1.0 interface 

achieves only 1,066 MB/s at 133 MHz (PCI Special Interest Group, 1999) or 1 GB per 

second for the Gigabit Ethernet. Top view of the development board is given in Figure 

4.4. 
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Figure 4.4. Top View of the Stratix II GX PCIe Development Board (Altera Corporation, 2007d) 

The featured FPGA - Stratix II GX chip (U10 in Figure 4.4) is a very powerful 

chip and the Stratix II family was considered a flagship of Altera’s devices at the time 

of development. The chip used on the board has 90,960 LEs, 16 transceivers, more than 

4 Mb of on-chip RAM and 48 DSP blocks. The latter ones can be configured into a 

dedicated circuitry which can perform multiplication, multiply-accumulate (MAC) and 

multiply-add functions with high efficiency. Such a feature is particularly beneficial for 

DSP applications in general and for the proposed system in particular. 

Another advantageous feature of this board is the high-speed Mezzanine 

connectors, which are routed to the transceivers inside the Stratix II GX chip. This 

option allows direct, intermediate data acquisition (eg from ADCs) and further 

streaming of it into the chip for immediate processing. Hence, such workflow implies 

the possibility of employing the FPGA chip in real-time processing. This aspect 

significantly increases the capabilities range of this board in the DSP applications 

domain. Although, real-time correlation is not targeted for implementation in this 

particular project, it remains as one of the objectives for the future work (see 7.2). 

In this work the PCI Express Development Kit Stratix II GX edition is used to 

develop an I/O framework for the targeted high-performance hybrid DSP system. As a 

jump-start and to ease the development efforts, the PCI Express to DDR2 SDRAM 
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Reference Design from Altera Corporation will be used as a foundation for the 

framework (see 5.4.1). The developed framework on the PCI Express Development Kit 

also serves as a building block for a scalable projected system for performing high-

performance DSP applications (see 3.2). 

Stage 2 and 5 require traditional software development tools and have been 

implemented on a conventional PC. 

4.3 Development Software Tools 

Once the hardware platforms for implementing the stages of the project design flow in 

4.1 were selected, respective software development tools had to be selected. Stage 1 and 

Stage 4 require traditional hardware development tools, which are discussed in 4.3.1. 

Whereas Stage 3 employs new hardware design methodology, which is discussed in 

4.3.2. Section 4.3.3 discusses software development tools required for Stage 2 and Stage 

5. 

4.3.1 FPGA Development tools 

Presently, there are a number of tools which are capable to work with FPGAs. Firstly, 

the development tools which are supplied by two main FPGAs’ vendors Xilinx and 

Altera – ISE and Quartus II. For the selected Altera’s PCI Express Development Kit 

Stratix II GX edition and XD1000 development system, the major development tool is 

Quartus II software. 

At the very early stage of the project development, Altium Designer (Altium 

Limited, 2008) was considered as the primary instrument in design development. 

However, at the inception of the project the most recent version 6.1 (early 2007) of 

Altium Designer demonstrated a significant disadvantage for this project: there was no 

support for Altera’s IP cores (MegaCore functions or Megafunctions in Altera terms) 

through which the majority of the interfaces are implemented. Besides, Altium did not 

offer any link to the MATLAB environment unlike Quartus II, which has the DSP 

Builder. Therefore, a decision was taken to revert to Quartus II software.  

Quartus II development software is a complete design environment for developing 

hardware designs for Altera’s hardware products. It supports complete design flow: 
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Figure 4.5. Design Flow in Quartus II Software (Altera Corporation, 2007e) 

Besides, Quartus II offers various design entry methods: from low-level hardware 

description languages (Verilog, VHDL or AHDL - Altera Hardware Description 

Language, propriety HDL language of Altera), to high-level visual means (schematics 

and block diagrams). It comprises several unique design-aid features, eg Incremental 

Compilation aimed for reducing compilations or SignalTap Logic Analyzer for on-chip 

design debugging purposes. The latter utility captures internal data and service signals 

based on preset triggers and stores them for the following analysis (Altera Corporation, 

2007a). It was extensively used for debugging I/O framework design (5.4.2). The 

majority of the work was done in Quartus II version 7.2 with compilations for the 

XD1000 development system done in Quartus II version 8.0. 

Apart from Quartus II, several other of Altera’s development products were also 

employed: for Stage 1 of the project design flow in 4.1 the DSP Builder was used to test 

the concept of correlator implementation in FPGA. This software operates as the 

Translator in  Figure 4.7. This is achieved by amalgamating the Simulink/MATLAB 

environment with Quartus II projects using a specific DSP Builder Advanced Blockset 

– a Simulink library developed by Altera. The precise role of the DSP Builder is 

revealed in 5.2.1. 
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Quartus II development set-up follows Altera’s workflow recommendations and is 

shown in Figure 4.6. 
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Figure 4.6. Development Setup for PCI Express Development Kit Stratix II GX edition 

PCI Express Development Kit is plugged into a host computer (Computer #2) via 

the PCIe connector. The Stratix II GX FPGA is configured by means of JTAG. The 

board also features MAX II CPLD (U4 in Figure 4.4) which is also used for FPGA 

configuration from the pre-loaded on-board flash memory (U3 in Figure 4.4). The 

development computer (Computer #1) carries development software and programs the 

board. After the FPGA is programmed, Computer #2 requires a reboot to instantiate the 

device in the operating system. It hosts software control applications developed with 

WinDriver applications. In the case of the Nios II Development Kit, the development 

computer acts as the host computer as well and the kit is connected via the USB blaster.  

The ModelSim Altera edition from Mentor Graphics was also used during one of 

the development stages in the project. This tool offers a comprehensive, functional and 

behavioural simulation and debug environment for complex FPGA designs. 

Particularly, for this project this tool will be used for testing and debugging of certain IP 

cores from Altera. This is also discussed more broadly in Chapter 5. 

4.3.2 New Hardware Design Methodology 

To implement Stage 3 new design methodologies different from the traditional, has to 

be applied. Traditional top-down design methodology can be divided into two separate 

design domains: algorithm development and system implementation. The nature of both 

domains is entirely different even to the point of contradiction. Algorithm or system 

developers work in high-level programming environments such as MATLAB and 

Simulink and rarely C-based languages. The primary goal of an algorithm developer is 

algorithm accuracy and system functionality. A system development team outputs 
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system descriptions to a hardware development team. In turn, hardware design teams 

implement the specifications created by the systems engineers and algorithm developers 

in the targeted hardware: whether it is an FPGA, ASIC, SOC, DSP, microprocessor, etc. 

Throughout all of the hardware design stages various design verification routines 

(checks, simulations and analyses) are performed (Meyer-Baese, 2004b). These 

verification routines are a part of an iterative, communication process between 

algorithm developers and hardware engineers with the purpose of refining the 

algorithms and system architecture until all the design requirements are met. Quite 

often, this process takes many numbers of man-hours to track down a relatively simple 

problem in the design, mainly due to inefficient interaction between the two domains. 

This gap has been acknowledged and explored by many researchers (Andrews et 

al., 2004; Ganousis, 2004; Hill, 2006; Leow, Ng, & Wong, 2006; Meyer-Baese, Vera, 

Meyer-Baese, Pattichis, & Perry, 2006; Tahernia, 2005; Urbanek & May, 2004). Even 

two leading FPGA vendors, Xilinx and Altera, acknowledged the missing link between 

the two development fields and offered their own approaches in this direction: (Turney, 

Dick, Parlour, & Hwang, 2000) and (Altera Corporation, 2002) respectively. It is 

envisioned by the majority of the researchers that this can be achieved by establishing a 

certain medium between the two domains, which will effectively analyze system 

requirements, automatically create RTL models and so that the rest of the hardware 

implementation cycle can be performed. This flow is illustrated in Figure 4.7. 
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Figure 4.7. New Top-Down Design Flow with Integrated System Level 
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The crucial part of the new design flow is the “Translator” block. The 

functionality of this block can be performed by a variety of tools (see 3.1.3). In this 

work, Impulse CoDeveloper version 3.20.a.5 from Impulse Accelerated Technologies 

will be used.  

Impulse CoDeveloper allows application developing and debugging using C 

standard development environments, which are then compiled to create outputs (VHDL, 

Verilog or SOPC libraries) fully compatible with Altera’s Quartus II and SOPC Builder. 

The tool can produce synthesisable HDL-code (VHDL or Verilog) from an input C-

code.  

As mentioned in 3.1.3 before programming, FPGA is unaware of its input and 

output capabilities. While porting of software applications into hardware domain, inputs 

and outputs of the transferred application have to be explicitly conveyed to. and/or 

expressed in, the selected transferring tool. In the case with Impulse C, a stream-

oriented programming model for data movement, processing, and synchronization is 

used. Conceptually stream-oriented programming is similar to conventional, dataflow 

programming. However, unlike dataflow, stream-oriented programming offers easier 

process synchronization by means of buffering and message-passing such non-dataflow 

concepts as shared memories (Impulse Accelerated Technologies, 2008d).  In terms of 

the programming model of Impulse C, streams communicate with processes, which 

represent hardware implementation of the converted software application. Each 

software application can consist of a number of processes, which synchronously and 

concurrently operate with each other and/or with the external world as defined in the 

original software operation. The idea of Impulse C programming model is illustrated in 

Figure 4.8: 
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Figure 4.8. Impulse C programming model 

Software and hardware processes shown in Figure 4.8 represent complete 

application. Software process(es) is(are) used only for desktop simulation and is(are) 

generally employed with inputting/outputing data to/from hardware processing and/or 

is(are) occupied with non-computationally intensive tasks. The hardware process(es) 

is(are) translated into HDL descriptions and also participate in desktop simulations. The 

source file of a hardware process also contains a configuration function (co-initialize 

and co_-architecture_created), which assembles the whole applications, interconnects 

processes, specifies shared memory locations, etc. Software and hardware processes are 

stored in software (*_sw.c) and hardware (*_hw.c) source files or modules respectively. 

For supported systems with respective Platform Support Package, the software module 

can also interact with the synthesized and programmed hardware module. For example, 

in the XD1000 development system the software program is copied on the target 

XD1000 server and can start working with the hardware or can be dynamically 

modified as required. 

Impulse CoDeveloper is based on Impulse C – a proprietary subset of C 

programming language with a compatible function library, which allows compiling 

directly into optimized logic ready for synthesis and programming of popular FPGAs. 

However, CoDeveloper does not offer  a “push button” solution for generating ready-to-

be-programmed hardware designs from complete C-projects. Rather the application’s 
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code has to be comprehensively adapted and re-worked to successfully map into 

reconfigurable hardware and efficiently extract algorithm's parallelism. 

Moreover, to increase application speed-up in hardware Impulse C supports 

additional level of control over the generated hardware code via predefined pragmas.. 

The first pragma is #pragma CO PIPELINE. For loops invoked with this pragma, 

CoDeveloper attempts to parallelize statements within the loop trying to reduce the 

number of clock cycles required to process the entire pipeline (Impulse Accelerated 

Technologies, 2008e). Another pragma – #pragma CO UNROLL unrolls a loop. Unrolling 

a loop implies that the code within the loop is duplicated in hardware as many times as 

there are iterations in the loop (Impulse Accelerated Technologies, 2008a). Unroll 

pragma can be applied to loops where the number of iterations is known during the 

compile time. Theoretically, it might significantly reduce the execution time if the 

number of loop iterations is relatively small. Otherwise, applying this pragma might 

increase logic utilisation drastically. 

As mentioned in 3.1.3, high-level programming languages like C were never 

designed to configure hardware logic. Contemporary high-level tools for FPGA 

programming tackle this problem in different ways. Impulse C treats the input C-code in 

the form of blocks. The blocks can be divided by either: 

� loop body,  

� a chain of control statements (co_stream_open, co_stream_close, 

co_stream_read, etc.), 

� switch, 

� conditional statements. 

For each determined block of  C code, the Impulse C’s optimizer will estimate the 

minimum number of instruction stages, ie groups of C statements which can be 

executed in parallel. As long as each block can consist of multiple stages,several clock 

cycles might be required to execute the given block. 

Impulse CoDeveloper features several simulation tools for verification and 

analysis of the generated HDL code. Stage Master Explorer tool illustrates how every 

block and stage of software application was realised in hardware. Stage Master 

Debugger can perform sequential execution of the generated application on a cycle-by-

cycle basis. 



Chapter 4. Methodology and Design Flow  

57 

Although Impulse provides an estimation of the required logic resources in terms 

of adders, multipliers, comparators, DSP blocks, etc, the precise resource utilisation is 

determined only by the vendor’s compilation tool. Similarly, the maximum clock rate in 

hardware is determined by the FPGA’s synthesis tool, where a sequence of 

optimisations, reductions, and combinations are applied to the compiled logic. 

What is more important within the confinements of the given work is support of 

XD1000 by CoDeveloper. The XD1000 PSP for Impulse CoDeveloper extends the 

capabilities of XD1000: it provides an automated process of generating software and 

hardware modules that execute on AMD Opteron and XD1000 co-processor modules 

respectively. The benefit of this integration enables creation of high-speed, accelerated 

designs working across software and hardware domains from a standard ANSI C 

development environment. Once a design is tested and verified in Impulse CoDeveloper 

environment it is exported in a highly-automated process to a complete Quartus II 

project ready for synthesis (according to the flow in Figure 4.7). Development set-up in 

this case is the same as for the PCI Express Development Kit in Figure 4.6. The host 

computer is an XD1000 system and connects to the development computer via an USB 

blaster. 

There are, however, certain limitations and reservations in the current XD1000 

PSP version (Impulse Accelerated Technologies, 2008b): 

� DDR SDRAM available on XD1000 module is not supported. 

� The HT-core is limited to 8-bit (instead of available 16) and uses 

approximately 400 MB/sec full duplex (800 MB/sec aggregate) versus an 

available 3.2 GB/s per each link. 

� One of the most serious limitations is that software-hardware 

communication via streams is not Direct Memory Access (DMA) and 

polls CPU for each request, which significantly reduces performance and 

yields only 2 MB/sec of bandwidth in total. 

� All user logic in hardware is constrained to 100 MHz. 

� Only one concurrent software process on the target is supported. 

� The maximum stream data width supported is 32 bits. 

� The maximum shared memory data width supported is 64 bits. 
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Impulse Accelerated Technologies suggest alleviating the limited bandwidth of 

streaming interfaces by employing supported shared memory communication. This 

communication is much faster than a streaming approach and yields up to 800 MB/sec. 

The precise effect of the above limitations is covered in 7.1 Discussions. The targeted 

multi-channel correlation application will be developed with CoDeveloper, exported 

and compiled in Quartus II and executed on XD1000. 

4.3.3 Software Development Tools 

Successful work with the PCIe FPGA board in Windows operating system environment 

is supplied by a software control application developed with the Jungo WinDriver 

PCI/PCI Express/PCMCIA development tool (Jungo Ltd., 2008). This product features 

a simple process of creating a hardware driver for any device working via one of the 

supported interfaces (PCI, PCI Express, PCMCIA, etc.). Using a GUI interface 

WinDriver automatically detects hardware resources of the plugged device and 

generates a respective driver code skeleton for a specified development platform (MS 

Developer Studio, Borland C++ Builder, etc). The sample application can be modified 

further to suit the specified requirements. WinDriver also provides many generated 

example applications. One such application is a diagnostics application for accessing 

Altera Stratix II GX PCI Express Development Board – altera_diag. This simple 

application provides read and write operations to Altera memory and I/O registers. For 

the given project, this application can be efficiently and easily adapted to provide 

necessary input and output communication with the Stratix II GX PCI Express 

Development Board via PCI Express interface. The code of the altera_diag 

application was modified in Microsoft Visual Studio 2005. 

The sampled model signal was created and recorded using MATLAB. The 

respective MATLAB script generating the signals is given in Appendix A2. As was 

already mentioned, Simulink was also used together with a DSP Builder utility for early 

feasibility estimation of correlation in reconfigurable hardware. 

The reference program of the 32-lag cross-correlation C-code (5.3.1) was 

developed in the Microsoft Visual Studio 2005. 
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4.4 Chapter Summary 

This chapter introduced project design flow, outputs of which are targeted to estimate 

the capabilities of the proposed hybrid DSP architecture (3.2). The project roadmap is 

composed of five stages:  

Stage 1. Implement trial cross-correlator design with traditional hardware 

development tools. 

Stage 2. Develop the reference software multi-channel correlation program. 

Stage 3. Convert the reference program using Impulse CoDeveloper into 

accelerated hardware design to execute it on XD1000 development 

system. 

Stage 4. Develop I/O framework on one PC module of the proposed high-

performance hybrid DSP system (3.2). 

Stage 5. Develop software control application with control and data 

management functions for I/O framework. 

These respective stages define the development hardware and the respective 

software applied in each stage: 

Stage 1. Nios II Development Kit Cyclone II Edition with standard Altera 

development tools. 

Stage 2. COTS development PC with Microsoft Visual Studio. MATLAB 

software to generate model signals. 

Stage 3. XD1000 development system with integrated Impulse 

CoDeveloper support. 

Stage 4. PCI Express Development Kit Stratix II GX edition with standard 

Altera development tools. 

Stage 5. COTS development PC with Jungo WinDriver PCI/PCI 

Express/PCMCIA development software and Microsoft Visual 

Studio. 
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CHAPTER 5   

Implementation 

The only place where success comes before work is in the dictionary. 

—Donald Kendall 

This chapter presents the implementation process of this work. First, the chapter 

outlines the overall implementation flow of the project. The following section defines 

the approaches of this work: the first initial stage, estimation design of hardware two-

channel correlator and positioning of correlation problems are presented. The remainder 

of the chapter describes the rest of the implementation stages, which form two major 

parts: correlator implementation part and I/O framework part. 

5.1 Implementation Flow 

The project’s design flow discussed in section 4.1 involves C-to-HDL tool – Impulse 

CoDeveloper. Therefore, the project’s implementation employs new top-down design 

flow considered in 4.3.2. 

Figure 5.1 demonstrates the implementation flow for the given project, 

highlighting the respective delivered outputs of the project (blocks coloured in grey). 

These outcomes are more broadly covered in Chapter 6 and discussed in Chapter 7. 
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Figure 5.1. Implementation Flow 

The flow demonstrated in Figure 5.1 also highlights all of the software products 

used at particular stages of the design. Broader introduction of the software tools is 

given in 4.3. 
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A common problem for any design employing an FPGA(s) for a DSP application 

is the development of the necessary I/O interfaces. As  discussed in 3.1.2, FPGAs have 

no knowledge about their respective input and output interfaces, which is one of the 

major problems in FPGA designs (Wain et al., 2006) and often requires as much 

attention from a development team as the core problem itself (Romein et al., 2006a). 

This project is also no exception. The workflow in Figure 5.1 delivers outcomes in two 

domains: 

1. Correlator design. First, using C programming language in Microsoft 

Visual Studio and then transferring the very same design into RTL by 

means of Impulse CoDeveloper considering necessary alterations. 

2. I/O framework. Developing of the I/O interfaces necessary for DSP 

applications. The I/O framework for this project will use Altera’s PCI 

Express to DDR2 SDRAM Reference Design. 

Implementation details of correlator and I/O framework are described in sections 

5.3 and 5.4 respectively.  

5.2 Defining Approaches 

Before actual implementation, a trial correlator design in HDL was undertaken. This 

design employed the existing simulation chain Quartus II – DSP Builder – MATLAB. 

This design was used as a departure point for the actual correlator design of Stage 2. It 

was also used as an estimation of the efforts and time required to develop a high-speed 

multi-channel cross-correlator on an FPGA using traditional design methodology with 

conventional hardware developing tools (HDL coding, schematics, etc). 

5.2.1 Trial Hardware Correlator’s Design (Stage 1) 

The trial correlator design is based on Altera’s parameterized multiply-accumulate 

megafunction – altmult_accum. This MegaCore function is used as a foundation for the 

correlator’s lags. This function consists of a single multiplier feeding an accumulator. 

The whole correlator design was tested and verified in a DSP Builder environment  –  

an autocorrelation function of 5 kHz wave was computed. The code of the Correlator’s 

top-level entity and the schematic of correlator lag are given in Appendix A1. An 

example output of this simple correlator is given in Figure 5.2: 
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 Figure 5.2. Autocorrelation Function of 5 kHz Sine Wave – computed in the FPGA (left) and 

computed in MATLAB (right) 

The 32-lag hardware correlator performed autocorrelation of 5 kHz sine signals 

generated in a Simulink environment and fed directly into the hardware. Amplitude is 

one unit and sampling rate is 20 kHz. The correlator’s output was captured as a 

MATLAB variable and plotted (left) against a computer-simulated correlation function 

(right) using plot function. For convenience, values at the peak points are presented on 

data tabs. 

The plot demonstrates only half of the output function since the autocorrelation 

function is even. For the reason that this design was not intended to be a complete 

application, some design flaws exist. For example, the current design ensures that the 

output latch goes high only for one clock cycle – LastLatch, LastLastLatch and 

SynchronousLatch (see Appendix A1). This might be redundant and and might 

exaplain discrepancies in the initial values of the autocorrelation functions. The 

Simulink model used for testing the developed correlator design is presented in 

Appendix A2. 

An attempt was made to replicate this design on a Stratix II GX board. This 

design revealed a critical deficiency in simulation capabilities of the Stratix II GX PCI 

Express Development Kit: the board features MAX II CPLD, which can be used for 

power-up configuration of the main Stratix II GX chip. Thus, the two devices share the 

same JTAG chain – see Figure 5.3. 
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Figure 5.3. JTAG Chain Connections in Stratix II GX PCI Express Development Board (Altera 

Corporation, 2007d) 

This disturbs the DSP Builder’s simulation data transfers through this chain. 

Therefore, the whole DSP Builder simulation environment is inaccessible to any Stratix 

II GX PCI Express Development Board, which might hamper some DSP developments 

on these devices. 

This correlator design is not intended as a final application in this project. Rather, 

it is a reference point and trial attempt to help define design approaches and estimate 

design efforts.  

5.2.2 Problem Positioning for Stages 2 – 5 

The cross-correlation considered in this work adheres to Equation (2.1). Hence, the 

application implemented within the confinements of this project does not fall in the 

exact definition of cross-correlation in terms of (for example) radio astronomy, where 

mathematical computation of Equation (2.1) has to be coupled by FFT either before or 

after defining the FX or XF correlation respectively as described in section 2.2.2. 

Nevertheless, this project involves development of an actual digital correlator, therefore, 

certain requirements and conventions have to be accepted before actual implementation. 

The following paragraphs disclose parameters and requirements, which apply to the 

correlator developed in this work. 

The core processing application follows the mathematical definition of correlation 

defined by Equation (2.1). In most applications the number of lags is even and to a 

power of two. As long as the eventual goal of this work is not to develop a finalised 

correlator for a given DSP application, but rather to investigate the implementation of a 

classical DSP problem in a hybrid CPU+FPGA environment, there was no particular 

reason to create a correlator with a significant number of lags. Besides, the trial design 
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(5.2.1) revealed that with manually created correlator logic, the Stratix II GX FPGA is 

able to accommodate up to 1,024 lags in total, which is rather substantial. Therefore, a 

correlator with 32 lags was considered a sufficient case for the targeted goals in this 

work. 

Moreover, the correlator has to support multi-channel correlation, ie to perform 

correlation between each pair of the input channels (or signals). For correlation of 

multiple signals only unique pairs of signals will be correlated (see 2.2.1 for details). 

Hence, for example, correlation of signal x[k] with signal y[k] will be computed and 

correlation of signal y[k] with signal x[k] will be not computed since it can be obtained 

by simple reversing of the former resultant correlation function. In the given work a 

correlator with six input channels will be implemented, which will produce 15 output 

cross-products. 

In real-life applications (e. radioastronomical applications), the correlator's output 

is aggregated: while processing the output is accumulated and read after a specified 

number of input (processed) samples. For example, a two-channel correlator processes 

digitised, input sequences and outputs results after 10,000 input samples were 

processed. After output is read, the aggregation of results starts over. By convention, the 

number of aggregation input samples in this work was accepted to equal 4,194,304. 

This number was considered practical and convenient for measuring performance 

results for both software and hardware correlator implementations. 

As for the input signals, the following assumptions were undertaken to adhere as 

closely as possible to realistic correlation requirements. A typical bit width of the input 

data is 6 to 8 bits: eg ADCs' outputs are typically 6 bit width (Maxim Integrated 

Products, 2001). Hence, the correlator's inputs width was decided to be 8 bits, which is 

also convenient for data manipulation in 32-bit Windows OS environment. As  stated 

previously, the correlator's output has to accommodate aggregated results. Therefore, 

the width of the output of the correlator's cross products was selected to be 32 bits, 

which is sufficient enough to accumulate 4,194,304 8-bit input samples. 

Each correlator’s channel has been with a 32 MHz sinusoidal wave with added 

white Gaussian noise. The signal-to-noise ratio (SNR) parameter of the MATLAB awgn 

function is set to three to introduce a realistic noise for signals. The input sine wave 

signals are digitised in 6-bit samples at 256 MHz sampling rate, which also defines the 

operational bandwidth of the correlator – 128 MHz bandwidth common for many DSP 

applications involving correlation. The samples have 6-bit width to simulate real-life 
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data coming from ADCs. These 6-bit samples are padded two bits and fed to 8-bit 

correlator inputs. MATLAB was used to generate input signals and store them in form 

of the text files (see Appendix A3 for MATLAB script used to generate the signals). 

The values of sine waves are rounded to the nearest integer.  

The following table summarizes established correlator’s parameters: 

Table 5.1. Correlator Parameters Summary 

Input signals 
32 MHz sinusoidal waves with added 

white Gaussian noise (SNR = 3) 

Bandwidth 128 MHz 

Input bit width 8 bits 

Output bit width 32 bits 

Number of lags 32 

Read after (number of samples to 
aggregate) 

4,194,304 

The following versions of multi-channel correlators will be implemented: 6-, 8-, 

10-, 12-, and 16-channel. The parameters and restrictions discussed above apply to the 

correlator design throughout this work in both, hardware and software domains and for 

all correlator versions. The next section discloses the implementation details in both 

domains and elaborates on the flow described in 4.1. 

5.3 Implementations for Stages 2 – 5 

According to Figure 5.1, both software and hardware implementations will require 

model signals for processing. Parameters of the model signals are given in Table 5.1. 

5.3.1 Reference Software N-Channel Correlation Program (Stage 2)  

According to 4.1 the initial task in correlator implementation is to develop a software 

program, which will perform a multi-channel correlation of model signals. There are 

many example codes performing correlation, which are written in various programming 

languages. Since the selected Impulse CoDeveloper tool supports a subset of C, the 

code was developed in plain C language. The code was developed in Microsoft Visual 

Studio 2005. The correlation algorithm implemented in this program is straightforward 
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and strictly follows Equation (2.1). Hence, the code reads all samples of the simulated 

model signals (stored as text files) and performs correlation of the buffered values: 

 

Figure 5.4. Two-Channel Correlation in C 

The code given in Figure 5.4 computes two-channel cross-correlation of signals 

x[i] and y[i] and stores the correlation function in result[lag]. Based on this two-

channel computational core a scalable version of the reference program was developed. 

Each two-channel core produces one output cross-product of 32 calculated lag values. 

Depending on the number of input channels, the correlator will produce a certain 

number of unique cross-products (see Equation (2.2)). The code of the reference 

program computes cross-correlation for a specified number of channels and a specified 

number of aggregated samples (see 5.2.2) and is listed in Appendix A4. 

The execution time will be measured for different versions of multi-channel 

correlation computation: 6-, 8-, 10-, 12-, and 16-channels and results are presented in 

6.1. Chapter 6.  The time is measured using High Resolution Timer (to nanoseconds). 

The code was developed by L. F. Johson at the Systems Design Engineering University 

of Waterloo and is freely available from the Internet. It relies on Windows 

QueryPerformanceCounter() function and is already included in the reference program 

code – see Appendix A4. 

It has to be mentioned that the code of the reference program was not developed 

with the intention of performing cross-correlation with maximum efficiency for real-life 

applications. It was developed rather to estimate the rationale of C-to-HDL tools on a 

basic and common DSP algorithm. 

for (lag = 0; lag < Nlag; lag++) 

{  

  for(i=length/2; i < length; i++) 

  { 

   result[lag] += x[i]*y[i-lag]; 

  } 

} 
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The code of the reference program was used as a starting point for Impulse 

CoDeveloper design. However, due to specific limitations inherited from FPGA 

hardware synthesis, certain conventions had to be preserved. For example: there is no 

recursion for FPGA hardware processes and limited support of function calls, pointers 

must be resolvable at compile time to static references to specific memory locations and 

others (Impulse Accelerated Technologies, 2008c). Although these constraints did not 

hamper development of the software correlator significantly, they were taken into 

account during conversion of the developed software application to synthesisable RTL. 

5.3.2 Hardware Implementation of the Correlator in Impulse CoDeveloper (Stage 

3) 

Initially, as a start-up point for creating a full-scale hardware correlation application a 

simple, two-channel correlator was implemented in Impulse CoDeveloper Application 

Manager. A simulation model running in Application Manager is demonstrated in 

Figure 5.5. 

 

Figure 5.5. Simulation Model of Two-Channel Correlator Running in Impulse CoDeveloper 

Application Monitor 

The developed model features two input streams (“x” and “y”) and one respective 

output (“r”). The main processing module, ie the hardware module with Impulse C code 
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converted from the software correlator, is called “correlation”. This particular module is 

converted to synthesisable Verilog HDL via “Generate HDL” command.  

Impulse CoDeveloper streaming model also requires two additional entities: 

“Producer” and “Consumer”. The Producer process writes data into the actual, 

functional application process (to “correlation” in this case), whereas the Consumer 

accepts (reads) processed values from an output stream(s). Both processes are 

implemented in software module of Impulse CoDeveloper (see 4.3.2). 

For the targeted algorithm of cross-correlation (Figure 5.4) the following 

manipulations with the code are required for Impulse C to generate efficient HDL. First 

of all, as long as the code relies on operations with arrays, loop unrolling will not be 

efficient in this case. According, to Impulse C support, the hardware can read at most 

two elements at a time from memories where arrays are stored. A more effective way of 

producing a parallelised HDL version of the algorithm is to introduce splitting of the 

arrays as shown in Figure 5.6. 

 

Figure 5.6. Introducing Splitting of the Arrays in Impulse C 

nSample1Copy* and nSample2Copy* arrays are copies of arrays nSample1 and 

nSample2 with input samples. This alteration forces Impulse C to generate additional 

multipliers in the HDL and therefore increases the parallelisation of the algorithm. 

Additional temporary variable tmp is introduced to reduce multiple access to nResult 

array. For the example code in Figure 5.6, four copies of the input array are used, 

therefore, this code will use four multipliers on FPGA and, therefore, it should run four 

for (lag = 0; lag < Nlag; lag++) 

{  

tmp=nResult[lag]; 

for(j=length/2; j < length; j+=4)  

{ 

#pragma CO PIPELINE 

tmp+= nSample1[j]*nSample2[j-lag]; 

tmp+= nSample1Copy1[j+1]*nSample2Copy1[j+1-lag]; 

tmp+= nSample1Copy2[j+2]*nSample2Copy2[j+2-lag]; 

tmp+= nSample1Copy3[j+3]*nSample2Copy3[j+3-lag]; 

} 

nResult[lag]=tmp; 

} 
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times faster than the conventional code in Figure 5.4. Introducing additional copies of 

input arrays will increase the parallelism of the algorithm implemented in hardware. 

The next step is to maximise the clock frequency for the generated HDL. This is 

achieved by manipulating with stageDelay parameter. The computations in an 

Impulse C process are broken down into stages. Each stage consists of a set of 

computations that can be performed in one cycle. Stage delay is defined by the 

maximum number of combinational delays or levels of logic within a given stage. 

Considerable stage delays may reduce the maximum operational frequency of the 

overall hardware design. stageDelay pragma introduces additional register stages in 

order to break down the longest propagation path in the hardware and, therefore, 

increase the potential maximum frequency. Introducing this parameter results in more 

pipeline stages but with increased overall throughput (Pellerin & Thibault, 2005). For 

the code in Figure 5.6 stageDelay will be introduced to break down additions of tmp 

variable into multiple stages: 

 

Figure 5.7. Using stageDelay Parameter in Impulse C 

tmp1 is introduced to aid with the breaking-down of additions into multiple 

stages. The definition of a right value for a stageDelay is aided by Pipeline Graph 

utility in Stage Master tool. This graphical tool plots values of stageDelay versus 

resulting theoretical operational frequency of the pipelined block (Effective Rate in 

Impulse C terms). Figure 5.8 shows an example Pipeline Graph plotted for 6-channel 

correlated version. 

#pragma CO PIPELINE 

#pragma CO set stageDelay 32 

tmp1+= nSample1[j]*nSample2[j-lag]; 

tmp1+= nSample1Copy1[j+1]*nSample2Copy1[j+1-lag]; 

tmp1+= nSample1Copy2[j+2]*nSample2Copy2[j+2-lag]; 

tmp1+= nSample1Copy3[j+3]*nSample2Copy3[j+3-lag]; 

tmp = tmp1; 
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Figure 5.8. Pipeline Graph with stageDelay values for 6-Channel Correlator Design 

From Figure 5.8 it is seen that stageDelay of 32 projects the maximum 

performance. It should be noted that the vendor’s synthesis and place and route tools 

might introduce additional optimizations and path-breaking, thus affecting the final 

maximum operational clock of the pipelined block. 

Using the configuration function of Impulse C, the developed two-channel 

correlator core was replicated the required number of times to facilitate the required 

number of channels. It should be noted that these replicated cores are also operating in 

parallel in hardware. 6-, 8-, 10-, 12-, and 16-channel versions of correlator were 

generated. For multi-channel correlation, signals have to be re-utilised in computations. 

For example, for 4-channel correlation of signals x1, x2, x3, and x4 the output cross 

products will be: x1×x2, x1×x3, x1×x4, x2×x3, x2×x4, and x3×x4. In this example each 

signal participates in computation three times (for three output cross-products). This 

issue is important in Impulse C since data streams have one-to-one connectivity and 

cannot be connected to multiple correlation cores. 

To circumvent this problem a simple demultiplexor process was implemented in 

Impulse C hardware module. The purpose of this process is merely to replicate an input 

stream required a number of times, so that each of those copies of the input stream will 
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be connected to precisely one correlation core. An example of 6-channel correlator top-

level entity with implemented demultiplexors is given in Figure 5.9. Respective listings 

of software and hardware modules and the include file for a 6-channel correlator are 

given in Appendix A5. The idea of implementing cross-correlation algorithm in an 

Impulse C environment might be derived from this design. Other versions of correlator 

design (8-, 10-, 12-, and 16-channels) are, in fact, the same and are presented only on 

the CD enclosed with this thesis. They differ only in the Impulse configuration function, 

which instantiates and connects hardware and software processes in a specified manner. 

Correlator top-level entity

Stream x1 Stream r12 channel correlator process 1Demux 1

Stream
Stream

Stream
Stream

Stream

Stream x2 Stream r22 channel correlator process 2Demux 2

Stream
Stream

Stream
Stream

Stream

Stream x5 Stream r142 channel correlator process 14Demux 5

Stream

Stream
Stream
Stream

Stream

Stream x6 Stream r152 channel correlator process 15

Stream

Stream
Stream
Stream

Stream

Demux 6

 

Figure 5.9. Top-Level Entity of the 6-Channel Correlator with Implemented Demultiplexors 

The reported delay introduced by these demultiplexors is one clock cycle and, 

therefore, its influence on the overall design’s performance can be negated. 

As  mentioned in 4.3.2, only one concurrent software process is supported in the 

exported Impulse C software module on XD1000. This effectively means, that 

providing data to a hardware process(es) from the software part of Impulse C design has 

to be done in a sequential manner or some sort of synchronisation mechanism has to be 

provided. However, available realisation of Impulse C software-to-hardware 
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synchronisation tools on XD1000 PSP has certain shortcomings. This issue is discussed 

in more detail in 7.1.1. 

To test Impulse C capabilities of generating accelerated HDL code from ANSI C 

input, the execution time of correlator design will be measured. This time will be then 

compared with execution software implementation of the correlator algorithm run on a 

conventional PC. The time is measured from a software module with Linux 

gettimeofday functions (bits of code measuring time are commented on in Appendix 

A5 to maintain compatibility when simulated in a Windows environment). These 

functions measure time with an accuracy of nanoseconds. Respective results are 

presented in 6.1 and discussed in 7.1.1. 

After the performance of an Impulse C project had been verified, it was exported 

into ready-for-synthesis Quartus II project using the “Export Generated Hardware 

(HDL)” feature. Software module of the Impulse C project is exported using “Export 

Generated Software” feature. The Quartus II project is then compiled and the received 

bit stream programs XD1000 target server. Exported software project is transferred to 

XD1000 where it can be compiled by a standard GCC compiler and executed. 

5.4 I/O Framework (Stage 4 and Stage 5) 

As established in 3.1.2, implementation of I/O interfaces in FPGA-based design can be 

a challenging and time-consuming problem. Hence, it is highly preferable to re-use 

already available and working I/O designs for PCIe Stratix II GX board to reduce the 

development time. In the given project, PCI Express to DDR2 SDRAM Reference 

Design from Altera Corporation will be used as a foundation for the I/O framework. 

5.4.1 PCI Express to DDR2 SDRAM Reference Design from Altera Corporation 

The block diagram of PCI Express to DDR2 SDRAM Reference Design from Altera 

Corporation reference design is given in Figure 5.10. 
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Figure 5.10. PCI Express to DDR2 SDRAM Reference Design Block Diagram (Altera Corporation, 

2006) 

This design uses the Stratix II GX PCI Express Development Kit as a hardware 

platform and features Altera’s PCI Express MegaCore function core which instantiates 

PCIe interface in the maximum available configuration for the board – ×8. The 

Reference Design provides an example interface between the Altera PCIe 

MegaCore function and the Altera’s DDR2 SDRAM Controller MegaCore function that 

enables access to external 64-bit, 256 MB DDR2 SDRAM memory through the PCIe 

bus. Hence, the design operates in two clock domains – clock domain of PCIe core and 

clock domain of DDR2 Controller. Altera’s PCI Express to DDR2 SDRAM Reference 

Design also demonstrates an example of a typical user application (GUI-based 

Windows Application) that interfaces to the system side of the Altera PCIe MegaCore 

function. The GUI application of the reference design performs read and write 

operations to the onboard SDRAM vie ×8 PCIe interface. This application has only 

demonstrational capabilities: the types of data for transfer are pre-defined (zeroes, ones, 

random, etc), the maximum size of transfer is limited to 4,096 bytes, etc. 

This reference design does employ actual DMA algorithm, although DMA logic is 

present in the design files and demonstrational GUI software has “DMA Read” and 
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“DMA Write” options. When these options are used, common CPU-polling transactions 

are performed. 

Nevertheless, this design was used as a starting point for I/O framework 

development. 

5.4.2 Developed I/O Framework (Stage 4) 

The framework design above is re-used in the given project with necessary amendments 

and modifications. Figure 5.11 shows the full block diagram of the implemented I/O 

framework. 
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Rx Top

Tx Top

Correlator

Clock Domain Boundary

Rx_pcie

DMA reg

Tx_ddr_resp

Correlator’s 

DDR Controller 

Driver

 

Figure 5.11. I/O Framework Block Diagram 

Blocks in red represent logic introduced into the original reference design. 

Coloured blocks tx_ddr_resp and rx_pcie in the original design logic (blocks in grey) 

are the only blocks modified in the original design. Their full code listings are given in 

Appendix A6 with introduced changes indicated by respective code comments. 

The main idea of the implemented I/O framework is to preserve as much as 

possible of the reference design’s logic while providing necessary interfacing of the 

correlator to the onboard DDR2 SDRAM memory. All communications from the 

system’s side of PCIe interface are preserved, which allows to perform read and write 
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operations from PC’s side. Furthermore, all of the reference design interface signals to 

DDR2 Controller are connected via the switch block. The switch is also connected to 

the Correlator’s DDR Controller Driver. Hence, the switch performs merely controlling 

functions connecting either the original reference design or the correlator. The switch is 

necessary as only one instance can operate with the DDR2 Controller at any one 

moment in time. 

The switch is controlled from the PC via the DMA Control register. Although the 

reference design features DMA logic, the DMA mechanism is not supported – although 

DMA-initiated transactions can be issued from a demonstrational GUI application, they 

are implemented by means of constant polling of the CPU. Hence, the DMA Register is 

used in this implementation entirely for control purposes: by asserting reserved 20th bit 

in the DMA Register the switch connects the Correlator’s DDR Controller Driver to the 

DDR2 Controller, thus allowing the correlator to work with the onboard memory. The 

code of the switch module is given in Appendix A7. 

The Correlator’s DDR Controller Driver reads the onboard memory and feeds the 

correlator with unprocessed data. Once the correlator finishes processing, the driver 

reads processed data from the correlator and writes it to the SDRAM. After this, the 

switch connects the original design (grey block Rx Top and Tx Top in Figure 5.11) to 

the DDR Controller, restoring the software application’s control over the SDRAM. To 

test and debug the Correlator’s DDR Controller Driver the “Interfacing DDR2 SDRAM 

with Stratix II, Stratix II GX, and Arria GX Devices” reference design was used (Altera 

Corporation, 2007b). This design featured a demonstrational DDR driver, which was 

modified to suit the desired functionality of the Correlator’s DDR Controller Driver. 

Besides, this reference design features simulation ModelSim model for verification of 

the design performance. ModelSim provides a comprehensive software simulation and 

debug environment for Verilog and VHDL designs. Software simulation of ModelSim 

exposes implicit hardware state in the FPGA (see challenges in FPGA programming in 

3.1.2) and reduces hardware debugging efforts. The code of the Correlator’s DDR 

Controller Driver is listed in Appendix A8. 

Simultaneously with connecting the switch to the application interfaces, the 

application (Correlator block in Figure 5.11) itself is enabled and starts acquiring data 

from the DDR2 SDRAM and performs processing according to its algorithm. Once the 

processing is finished and output data is recorded to the memory, the application returns 

control to the original design (a switch connects the original design’s interfaces to 
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DDR2 SDRAM) and also asserts 25th bit in the DMA Register (also reserved bit), which 

is checked by the Software Control Application and serves as a “processing complete” 

flag. 

5.4.3 Software Control Application (Stage 5) 

The aforementioned software console application was developed in Jungo WinDriver 

PCI/PCI Express/PCMCIA development tool, which comes with the board. The 

application is based on the diagnostic application utility for Altera’s PCIe-featuring 

boards – pci_dev_kit. The code of this application was generated by WinDriver Wizard 

and the whole utility is supplied as an example of accessing Altera hardware by 

provided WinDriver functions.  

The current version of software control application supports writing and reading 

data to and from the onboard SDRAM memory via instantiated PCIe ×8 link. There are 

several supported write and read functions in pci_dev_kit diagnostic applications: 

� ALTERA_WriteByte – writes 8 bits of data; 

� ALTERA_WriteWord – writes 16 bits of data; 

� ALTERA_WriteDword – writes 32 bits of data; 

� ALTERA_ReadByte – reads 8 bits of data; 

� ALTERA_ReadWord – reads 16 bits of data; 

� ALTERA_ReadDword – reads 32 bits of data. 

Figure 5.12 shows example calls of ALTERA_WriteWord and ALTERA_ReadDword 

functions.  

 

Figure 5.12. Example Calls of Write and Read Functions to Onboard SDRAM Memory 

ALTERA_WriteWord function performs write of 8-bit value file1[i] to offset j  

at memory address space ad_sp in device specified by handler hALTERA. Similarly, 

ALTERA_ReadDword reads 32-bit value from offset 0xC in memory address space 

ALTERA_AD_BAR2 and returns the read value to the data variable. The reference design, 

ALTERA_WriteWord(hALTERA, ad_sp, j, (WORD)file1[i]); 

data = ALTERA_ReadDword(hALTERA, ALTERA_AD_BAR2, 0xC); 
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which is used as a foundation for the developed I/O framework, supports the following 

memory address spaces: 

Table 5.2. Memory Address Space in PCI Express to DDR2 SDRAM Reference Design (Altera 

Corporation, 2006) 

Memory 

Region 
Block Size Memory Type Description 

BAR0 & BAR1 16 MByte 64 bit, prefetchable 16 MByte DDR2 memory range 
capable of supporting 24 bits of 
address bus 

BAR2 4 KBytes 32 bit, non-
prefetchable 

Internal reference design DMA 
configuration registers 

Data exchange between the computer and onboard SDRAM memory is carried 

out via BAR0 or BAR1. Control and configuration commands operate with BAR2. For 

example, the switch module is controlled by asserting reserved 20th bit at offset 0xC of 

BAR2 (the DMA Register) – see 5.4.2 for more details. 

Although software control application supports DMA requests and the reference 

design has implemented DMA mechanism (DMA registers, DMA control mechanisms, 

etc), DMA read and write operations are not supported. Consequently, the developed 

software control application inherits this limitation. The impact of this shortcoming is 

discussed in 7.1.2. 

The current version of the software control application was developed targeting 

integrated Impulse C correlator design. Nevertheless, the I/O framework and software 

control application as a part of this framework can be adapted and modified to 

accommodate other desired applications. 

The only file modified from original pci_dev_kit application is alt_pcidiasg.c. Its 

listing is given in Appendix A9. 

5.5 Chapter Summary 

This chapter describes how the implementation process of this work was undertaken. 

Visualisation of the project stages, development platforms and software tools applied at 

these respective stages  are presented in Figure 5.1. Initial trial correlator design setting 

design approaches are presented, which are followed by conditions and reservations 

accepted for the correlation implementation in this work. 
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The remainder of this chapter consists of two major parts: the correlator 

implementation and the I/O framework. The correlation implementation part introduces 

experiences of extracting parallelism and achieving accelerated HDL performance of 

correlation algorithm in Impulse C. The I/O framework part describes how PCI Express 

to DDR2 SDRAM Reference Design was used as a foundation for the framework and 

also highlights the creation of software control application in the Jungo WinDriver 

PCI/PCI Express/PCMCIA development tool. 

The next chapter presents the results obtained from the implementations of this 

chapter. 
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CHAPTER 6   

Results 

There's two possible outcomes: if the result confirms the hypothesis, then you've made a 

discovery. If the result is contrary to the hypothesis, then you've made a discovery. 

— Enrico Fermi 

This chapter presents results obtained from the implementation stages of this work:  the 

correlator hardware design on XD1000 system from Stage 3 and the I/O framework for 

the high-performance hybrid DSP system with software control application from Stage 

4 and 5. 

6.1 Correlator Design (Stage 3) 

This section will present performance results obtained from the execution of the 

reference program on a conventional PC (Stage 3), which is referred to as software 

execution or “SW”, and from the execution of generated, synthesised and programmed 

Impulse C correlator projects on the XD1000 development system (Stage 2), which is 

referred to as hardware execution or “HW”. As established in 5.2.2, a correlator with 

various numbers of channels (6, 8, 10, 12, and 16) has been designed and tested in both 

software and hardware. 

According to Equation (2.2), depending on the number of input channels, a 

correlator produces a different number of unique outputs or cross-products. Table 6.1 

gives the number of cross-products for the selected range of input channels. 
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Table 6.1. Number of Output Cross-Products Depending on the Number of Input Channels 

# of input channels # of output cross-products 

6 30 

8 56 

10 90 

11 110 

12 132 

16 240 

The problem size demonstrated in Table 6.1 has an impact on the logic utilisation 

of the EP2S180F150C3 chip. For 6-, 8-, 10-, and 11-channels the logic utilisation was 

31, 51, 84 and 97% respectively (with eight copies of input arrays introduced for array 

splitting – see 5.3.1). The 12-channel correlator design exhausted all the available logic 

registers in XD1000’s EP2S180 device: it required 159,964 logic registers whereas the 

FPGA contains only 143,520. Therefore, hardware implementations were limited to a 

maximum 11-channels.  

Hardware implementations were simulated using an Impulse C Stage Master 

Debugger, which was discussed in 4.3.2. This simulation determined the precise number 

of clock cycles required for pure processing only, ie how many cycles elapsed since the 

first sample arrived in computational cores until the very last output sample is recorded. 
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Figure 6.1. Simulation of Hardware Implementation in Stage Master Debugger 

The zoomed section in Figure 6.1 shows the number of elapsed clock cycles for 

full processing. The generated computational cores are executed in parallel so the 

number of elapsed clock cycles in simulation will be the same for any number of 

channels. By dividing the number of elapsed clock cycles by the operating frequency of 

the FPGA (see 4.2.2) an estimated theoretical execution time can obtained.  

The reference program from Stage 3 was executed on a conventional PC with the 

following configuration: Intel Pentium D 3.4 GHz, 1 GB of RAM, Windows XP 

Professional with SP2. 

For software and hardware implementations the design was run three time and an 

averaged value of execution time was recorded. The actual measured execution time for 

software and hardware implementations along with simulation execution time for 

hardware are plotted in Figure 6.2. 
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Figure 6.2. Performance Results of Software and Hardware Implementations 

Table 6.2 presents data used to plot graph in Figure 6.2. 

Table 6.2. Performance Results Data of Software and Hardware Implementations 

Number of channels 6 8 10 11 12 16 

Number of cross-products 30 56 90 110 132 240 

SW 9.28 17.50 27.72 32.1 40.68 72.73 

HW 
measured 

28.80 38.62 48.87 53.15   

HW 
simulation 
(100 MHz) 

0.80 0.80 0.80 0.80 0.80 0.80 
Execution time, 

sec 

HW 
simulation 
(400 MHz) 

0.20 0.20 0.20 0.20 0.20 0.20 

Table 6.2 also features data for hardware simulation when the FPGA operational 

frequency is 400 MHz (not plotted in Figure 6.2). The current version of XD1000 PSP 

by default limits the FPGA frequency to 100 MHz. However, the employed Stratix II 

device supports frequencies of up to 400 MHz and operational frequency can be 

changed by editing PLL properties. 

These results are discussed in 7.1.  
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6.2 I/O Framework with Software Control Application (Stage 4 and 

Stage 5) 

Another outcome of this work is the operational I/O framework for CPU+FPGA 

architecture. As an estimation test of the developed framework a 6-channel correlator 

generated from an Impulse CoDeveloper was programmed into the PCI Express 

Development Kit Stratix II GX edition. Software control application was used to write 

4,096 bytes of data into onboard SDRAM memory. Then the application triggered the 

correlator design and read the processed values from the memory after the “processing 

complete” flag (25th bit of the DMA Register) is asserted (see 5.4.2). A sample run of 

the Software Control Program for the 6-channel correlator processing 4,096 8-bit 

samples is shown in Figure 6.3: 

 

Figure 6.3. Sample Run of Software Control Application 
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CHAPTER 7   

Discussion 

For everything you have missed, you have gained something else, and for everything 

you gain, you lose something else. 

— Ralph Waldo Emerson 

The structure of this chapter is as follows: first, discussion of the obtained results is 

given, which is followed by suggestions of alleviating known shortcomings and future 

developments. The chapter concludes with an overall summary. 

7.1 Discussions 

This work delivers two main outcomes: 

1. Multi-channel cross-correlator design working in a CPU+FPGA architecture and 

developed with new top-down design methodology (Figure 4.7). 

2. I/O framework for CPU+FPGA architecture with software control application. 

All research objectives (see 1.2) are achieved, satisfied and are covered by 

outcomes of this project. The following sections group the discussions for these 

respective outcomes. 

7.1.1 Correlator Design 

As can be seen from Figure 6.2, hardware design simulation with operational frequency 

100 MHz achieves speedups from ×10 to ×90 for a different number of channels over 

software implementation. Table 7.1 summarises hardware speed-ups versus software for 

100 MHz and 400 MHz operational frequencies. 
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Table 7.1. Achieved Simulation Speed-ups 

Number of channels 6 8 10 11 12 16 

Number of cross-products 30 56 90 110 132 240 

Speed-ups (100 MHz) 11.63 21.92 34.72 40.20 50.96 91.11 

Speed-ups (400 MHz) 46.52 87.68 138.88 160.79 203.85 364.44 

These speed-ups in hardware implementation are “obscured” by the polling 

streaming approach applied in XD1000 PSP. This issue will be discussed in more detail. 

In limitations of XD1000 PSP listed in 4.2.2, it was stated that software-hardware 

communication via streams is not DMA. Instead, input-output is CPU polling and yields 

only 2 MB/sec of the supported 400 MB/sec for each link of the HyperTransport 

interface (full HT, however, yields to 3.2 GB/sec). This is also supported by the fact that 

when different parallelisation effort (different granularity of array splitting) is applied to 

a correlator with a fixed number of input channels, the execution time remains the same. 

Theoretically, different parallelisation of the same correlator design should produce 

different performance results, which are not visible due to the slow I/O communication. 

One option to alleviate this shortcoming of slow streaming interfaces in XD1000 

implementation is to use shared memory communication. In this approach, input and 

output data is transferred across SRAM (DDR2 SDRAM is not supported) memory 

available on XD1000 co-processor module. The shared memory yields 800 MB/sec of 

bandwidth and is likely to overcome the issue of slow communication for the correlator 

design. However, the implemented streaming approach is more natural for DSP 

applications and, therefore ,was preserved for future developments of the project. 

Nevertheless, even shared memory approach with greater bandwidth has 

challenges when it comes to actual implementation. Working with shared memory from 

both software and hardware processes requires some sort of scheduling or 

synchronisation mechanisms.  Impulse C features semaphores (co_semaphore), which 

serve precisely this purpose – to perform one-to-many process synchronisation. 

Unfortunately, currently semaphores are supported only for hardware processes’ 

synchronisation and are not callable from software processes. This leaves only one 

remaining option for synchronisation  –  Impulse C signals (co_signal). However, these 

signals are one-to-one synchronisation and therefore  are impractical to perform control 

over shared memory access for applications featuring dozens of processes. Therefore, 

even though shared memory communication offers higher bandwidth than streaming 
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communication, it is unfeasible for many applications including the targeted one in this 

project. 

In addition, as mentioned earlier, no concurrent software processes are currently 

supported in XD1000 PSP. This implies that communication from the software process 

to the inherently parallel hardware process implemented in an FPGA accelerator has to 

be done in a sequential manner, which limits the parallelisation degree of the whole 

system. 

The overall efforts required to implement a scalable, multi-channel correlation 

design using high-level FPGA programming in Stage 2 are significantly less than using 

traditional FPGA development tools in Stage 1. Moreover, the correlator design of 

Stage 1 required more development time but has less functionally than the correlator 

developed in Stage 2, which is more flexible and scalable. The process of developing 

the correlator in Impulse C in Stage 2 required little to no HDL design techniques: clock 

and parallel execution had to be considered. However, no low-level debugging tools 

(signal analyzers) were used whatsoever. 

The fact that Impulse C can actually generate accelerated HDL from C input 

demonstrates the potential of this tool. Admittedly, certain manipulations, uncommon 

for conventional programming, had to be performed with the C code to produce 

efficiently parallelised hardware design. For the targeted correlator design, these 

manipulations included array splitting, pipelining, and introducing stage delays. In fact, 

to generate HDL designs with reasonable speed-ups from high-level FPGA 

programming tools, a knowledge and practical understanding of hardware operation are 

still required. While there is yet no “green button” solution to generate final and 

complete hardware designs from entirely software algorithm implementations, 

consideration of hardware implementation execution and understanding of parallel and 

clock concepts are required. This issue is discussed more in 7.3. 

It should be also noted that, current implementation of input arrays splitting 

requires replicated copies of the same input arrays, which results in increased logic 

utilisation. A more practical way of introducing parallelism while avoiding FPGA fabric 

waste, is copying input data into smaller sub-arrays each storing a separate portion of 

input data samples. Such approach will require respective changes to cross-correlation 

algorithm (Figure 5.4). 

While the results demonstrate the advantage of using reconfigurable hardware for 

performance enhancement of the DSP application, several key issues should be taken 
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into account. Firstly, the C-to-HDL conversion is not as sophisticated and efficient as 

manually created ones yet. Logic utilisation of automatically generated designs is an 

important issue, which should be taken in account when working with C-to-HDL tools. 

As reported in 6.1, 12-channel correlator could not fit into capacious Stratix II 

EP2S180F150C3 chip. Since little to no control tools over logic utilisation exist when 

HLP is applied for FPGA programming, the issue of effective resource utilisation is one 

of the major concerns when working with C-to-HDL compilers. The only option so far 

to fit a large-scale Impulse C design into the targeted FPGA is to use a trial-end-error 

approach and refine the input C-code: reduce number of used variables, limit buffers’ 

and arrays’ sizes, etc and then attempt to place and to route to see if the refined design 

fits the targeted device. 

Due to limitations of Impulse C parser, certain parts of configuration function 

(4.3.2) had to be created manually or with the help of scripts, which generated 

configuration function code. For example, the parser of configuration function cannot 

handle manipulation of arrays in complex for-loops containing more than one index. 

Such loops were utilised for interconnecting copies of input streams after 

demultiplexors. Due to similar deficiencies of the parser, the exported module of the 

correlator project is not generated correctly and, therefore, has to be modified manually 

(providing correct names of the copied streams in the exported file co_init.c). 

Another encountered limitation of Impulse C is that the hardware process can take 

only up to 32 arguments, ie 32 interfaces in total. This limitation, however, did not 

affect this implementation where a process with the most interfaces is Producer, which 

arranges input channels and feeds the computational cores. 

It has to be mentioned that the C source code of the reference correlation program 

(Stage 3) is not aimed to calculate cross-correlation functions with maximum efficiency. 

Rather it was created as a reference point and a foundation for Impulse C 

implementations. The purpose of the reference program is to prototype a situation when 

a working algorithm written in HLL is adapted to a hardware implementation by a C-to-

HDL compiler. Therefore, another option of increasing the processing performance is to 

elaborate the implemented algorithm. 

A similar concept applies to model signals. The selected signals are entirely test 

signals introduced only to test and verify correlation algorithm. Nevertheless, they 

belong to 128 MHz bandwidth, which is traditional for many DSP applications and are 

sampled with 6-bits to prototype data coming from ADCs. 
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7.1.2 I/O Framework 

The I/O framework presented in this work is feasible to accommodate both correlator 

designs generated from Impulse CoDeveloper as well as manually developed ones. The 

framework can accommodate other DSP applications with streaming and a memory-

buffered approach with few or no changes at all required. 

The approach of re-using the original reference design was selected due to the two 

primary reasons: 

1. To fit into the development timeframe by re-using as much of the existing 

and configured I/O communication as possible, thus addressing the 

FPGA’s I/O interfaces challenge discussed in 3.1.2. 

2. The possibility to implement demultiplexing approach in wideband 

correlators. This approach is explained in the following paragraph. 

The sampling bit rates of modern ADCs are an order of magnitude faster than 

operational rates of VLSI integrated circuits (few hundreds Mbit/s) which are widely 

used for large-scale correlators. For this purpose a demultiplexing approach is applied 

for lag correlators – each sample output is divided into n streams with n contiguous 

samples all going to a different stream. The result is obtained by cross-correlating each 

stream of one signal with every stream of the other signal (Thompson et al., 2001a). For 

example, the MMA correlator (Escoffier, 1997) features a workflow where 

demultiplexed bit streams work with a large RAM. The output streams from a sampler 

are recorded in n blocks each containing a contiguous data as sampled. The 

corresponding blocks of data are then read out and cross-correlated by the correlator. 

The output is recorded into the RAM as well. 

Hence, the current implementation employs the same demultiplexing approach 

where onboard SDRAM is used as an intermediate buffer where the demultiplexed 

unprocessed data and output results are stored. The demultiplexing approach allows 

processing of substantial amounts of data characteristic for wideband correlators and is 

very practical for the selected framework. This demultiplexing approach should not be 

confused with demultiplexors in Impulse CoDeveloper correlator design (5.3.2), which 

had to be introduced to alleviate one-to-one connectivity of Impulse C streams. 

Similar to the correlator design implementation on XD1000, the I/O framework 

developed for the high-performance hybrid DSP system (3.2) lacks DMA interrupts. 

The  I/O framework inherited the polling mechanism for reading and writing data from 
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and to the board’s SDRAM from the PCI Express to DDR2 SDRAM Reference Design. 

A more effective way to perform memory read/write is to use DMA, which does not 

involve the CPU for the whole period of interaction as opposed to Programmed 

Input/Output (PIO). 

Presently the CPU’s involvement in the developed Software Control Application 

comes down entirely to administrative and control functions: streaming data in the 

actual processing system implemented in the FPGA, polling for and fetching processed 

data back. Whereas, to highlight the actual benefits of CPU+FPGA architecture, the 

CPU can be involved in a shared or selective computation, eg in completely un-

parallelisable computations which cannot be accelerated in reconfigurable hardware. 

In addition, implementation of the data exchange interfaces (PCIe core, DDR2 

SDRAM controller) on the FPGA was taken from the reference designs and might be 

enhanced. For example, DDR2 core is clocked with a conservative clock of PCIe core 

of 250 MHz, whereas the reference design features a clock domain boundary and, 

therefore , the DDR2 controller can be theoretically clocked with a supported 333MHz. 

These issues leave significant room for further sophistication and enhancement of the 

targeted correlation applications. 

To develop, test and debug the framework approximately ∼6 months of work were 

spent. Traditional development tools were applied at this stage –  HDL coding and the 

SignalTap Analyzer monitoring tool for debugging. First, this indicates that traditional 

hardware design methodology is challenging to work with and, therefore, time-

consuming. Second, it highlights that even if reconfigurable hardware features high-

speed interfaces beneficial for a certain application, to employ these interfaces 

efficiently in a real-life implementation often comes down to a time-consuming task. 

This predominantly happens due to the necessity to develop basic input-output 

interfaces practically from scratch – see 7.3 for more details. 

7.2 Future Work 

As stated in 3.2, the full projected system is highly flexible. The number of available 

interfaces on the PCI Express development board allows vast opportunities for 

interconnection and makes the proposed system exceptionally scalable. The fact that the 

proposed system uses a commodity PC as a platform implies even far bigger 

perspectives, as the system can be scaled at the PC’s cost, the cost of the FPGA PCIe 
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board and the cost of  the ADC kit, which even added up together still place the 

proposed CPU+FPGA framework as an actual challenger to complex and expensive 

high-profile DSP solutions (eg BEE2). The average cost of the proposed system consists 

of the cost of  the PCIe development board  –  $1,500 USD (academic price) and cost of 

a commercially- available PC  –  $1,000-$2,500 USD. Whereas the indicated cost of the  

BEE2 system is $3,000 to $5,000 USD without the cost of FPGAs. Moreover, the 

proposed system (Figure 3.7) is not limited to cross-correlation only: it can also 

accommodate a range of high-performance DSP applications. 

In the current implementation of the I/O framework, the data is written to and read 

back from the onboard memory for buffering, whereas potentially the board has all the 

interfaces to perform real-time processing and implement an entirely streaming 

approach. The board has high-speed Mezzanine connectors which are routed to the 

transceivers inside Stratix II GX chip. This option allows direct, intermediate data 

acquisition (eg from ADCs) and further streaming of it into the chip for immediate 

processing. Furthermore, the output, processed data can be streamed via any of the 

available interfaces: PCIe, Gigabit Ethernet or SFP. The next section gives an example 

of how a high-performance DSP application performing real-time processing can be 

implemented on the developed framework. 

As stated earlier, the I/O framework does not support DMA, which for real-life 

processing tasks can become a serious reason for performance degradation. The PCI 

Express to DDR2 SDRAM Reference Design (5.4.1) has embedded DMA logic which, 

however, is not used in the actual operation. As for the developed software control 

application, it already supports DMA interrupts. Enabling DMA support in the reference 

design is recommended in case of employing the framework in real-life high-speed 

processing and, therefore, considered as one of the future development stages. 

For the correlator design, the primary goal was to achieve a speed-up in the 

computational core of the correlation algorithm on hardware platform. Therefore, in 

case of the further development of the correlator design a speed-up might be searched 

outside of the correlation computation loops  –  more careful clock cycle considerations 

of input and output streaming interfaces, eliminating or merging variables manipulation 

stages, etc. 

Besides, as it was mentioned the implemented code of cross-correlation (Figure 

5.4) was not developed with the intention of performing cross-correlation with 

maximum efficiency. Therefore, the cross-correlation algorithm itself can be improved. 
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Additionally, in case the correlator design is applied for correlation calculation in 

practical applications (eg for radio-astronomical applications), an FX type of correlation 

might be considered. Due to the fact that in this correlation Fourier transform is applied 

before calculating cross-products, it offers some advantage in the required number of 

cross-products calculations, as opposed to XF correlators where Fourier transform is 

applied after cross-products are calculated. 

The XD1000 implementation of the correlator can be enhanced by employing 

shared memory interfaces between software and hardware processes. This will allow to 

overcome the shortcoming of the slow streaming communication of  the XD1000 PSP. 

However, as stated in 7.1.1, to implement the shared memory approach a 

synchronisation mechanism is required between the communicating processes. 

Currently, such a synchronisation utility is not feasible to implement with the supported 

tools. Support of such synchronisation tools will theoretically increase communication 

throughput between processes and, therefore, the overall XD1000 performance. 

7.3 Summary 

Some parts of the work presented in this thesis have been published in several sources: 

(Leonov & Kitaev, 2007) and most recently, (Leonov & Kitaev, 2008). 

The proposed approach of simultaneous involvement of the CPU and the FPGA 

for correlation in this thesis can be expanded to other DSP applications, such as image- 

processing, telecommunication, cryptography, provided that the data input-output 

interfaces are fast, well-tested and reliable. As stated before, FPGA has no knowledge 

about any I/O interfaces before it is configured, whereas for any DSP application input-

output throughput is one of the critical questions in achieving top performance. Thus, 

although CPU+FPGA-based computing can deliver a significant increase in 

performance for a number of applications, the current state of FPGA development 

requires a substantial amount of expertise and design efforts to achieve the respective 

speed-up. 

The new top-down design flow (Figure 4.7) applied in this work has demonstrated 

its viability for developing DSP applications in hybrid CPU+FPGA architecture. 

Applying HLL for FPGA programming enables production of high-speed applications 

working in a reconfigurable computing environment with development time 

conservation in comparison with traditional hardware development workflow. However, 

certain challenges still exist in the field of C-to-HDL compilers. Apart from employing 
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naturally sequential languages for parallel programming, implementation of I/O 

interfaces (particularly for such I/O-sensitive applications as DSP applications) remains 

one of the most considerable challenges for the compilers. Figure 7.1 outlines 

application implementation techniques for reconfigurable computing. 

 

Figure 7.1. Application Implementation Techniques (Kitaev & Molteno, 2008) 

According to Figure 7.1, for currently existing high-level FPGA programming 

tools speed-ups of ×20 to ×50 are achievable: similar speed-ups were achieved in this 

work with an Impulse CoDeveloper (see 6.1). It has to be acknowledged that C-coded 

hardware designs are not as efficient in terms of achieving performance acceleration as 

HDL-coded ones. However, there is a way to bridge the gap between them. It is 

envisioned that current nonexistent hybrid tools with “software-like” approach of 

implementing algorithmical steps and “hardware-like” techniques of determining I/O 

interfaces and parallelism will be capable of creating designs achieving speed-ups 

comparable to manually-created ones. The experiences of this work comply with this 

hypothesis – cross-correlation algorithm implementation with Impulse C means took the 

small portion of overall time and efforts, whilst parallelism extraction and I/O 

framework development required the most attention and multiple stages. Therefore, the 

output of this thesis conforms to the idea that such hybrid tools are necessary and 

require attention from the DSP research community. 

Another interesting research direction is to have an entity, which will 

automatically decide which part of a DSP algorithm is optimal to execute in hardware 
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and which part in software (Galanis, Milidonis, Theodoridis, Soudris, & Goutis, 2007). 

The data flow of this idea is given in Figure 7.2. 
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Figure 7.2. Data Flow for RC System with Algorithm Partition (Gokhale & Graham, 2005) 

Such systems performing algorithm partitioning on-the-fly can be considered as a 

next step evolution of today’s C-to-HDL compilers. One example is the Garp C 

compiler (Callahan, Hauser, & Wawrzynek, 2000). During compilation it evaluates 

candidates for execution in the reconfigurable hardware. Then it removes operations 

unsupported on FPGAs, which will be executed on a CPU. The compiler than trims the 

paths so that they fit into the FPGA and breaks down the long ones to increase 
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performance (automatic introducing of stage delays as in 5.3.2). Finally, Garp estimates 

hardware versus software execution of the candidate loop and decides on its 

implementation: reconfigurable hardware or CPU. 

Many reference designs for contemporary FPGA-featured boards have entirely 

demonstrational capabilities with fixed functionality. Such designs have little or no 

service for the actual end-users who might benefit from using the boards. As 

demonstrated, the Stratix II GX PCI Express Development Kit and similar products 

equipped with high-speed communicational interfaces featuring reconfigurable 

hardware, can be efficiently employed in CPU+FPGA architecture and perform 

computationally-intensive applications of the DSP field. In reality, a DSP system 

developer first has to modify and debug existing communicational design(s) or 

whatever I/O framework is available to her or him. Often, this wastes a significant 

amount of development time and ends up in creating the required I/O interfaces 

completely from scratch. Instead, the DSP research community can start contributing to 

the shared pool of resources  –  an open-source repository of modified, re-worked and 

amended designs along with contributing  entirely new implementations of various 

functionalities (I/O interfaces, memory controllers and drivers, etc). Such a repository or 

library might help the research community to avoid wastage of development time on re-

developing the same functionalities all over again and elaborate on the actual designs’ 

algorithms, rather than be obstructed with implementation technicalities and difficulties 

of I/O interfaces, memory operations, etc. In the case of this project, the contribution for 

the Stratix II GX PCI Express Development Kit for this library can offer a clear-text 

HDL design supporting DMA with well-established, tested and verified data exchange 

via PCIe link. The developed I/O framework can be a contribution to this repository if it 

is ever established. 
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Appendix A1. Components of the 32-lag Hardware 
Correlator Design 

Correlator.vhd (top-level entity). 

--Code was created by Maxim Leonov 
--Copyright 2007 Auckland University of Technology 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity Correlator is 
   generic(LAGS : integer := 32); 
   port ( 
   clk  : in std_logic; 
   A  : in std_logic_vector(5 downto 0); 
   B  : in std_logic_vector(5 downto 0); 
   

Ncycles : in unsigned (31 downto 0); 
   adr    : in    unsigned(15 downto 0); 
   adr_out : out unsigned(15 downto 0);   
     counter_out : out unsigned(31 downto 0); 
   data_out : out std_logic_vector(31 downto 0) 
        ); 
end entity; 
 
architecture C_logic of Correlator is 
   component CorrelatorLag is 
   port ( 
  clock  : IN  std_logic; 
  latch  : IN  std_logic; 
  dataa  : IN std_logic_vector(5 downto 0); 
  datab  : IN std_logic_vector(5 downto 0); 
  clear  : IN std_logic; 
  overflow : OUT  std_logic; 
  LatchedOutput :  OUT  std_logic_vector(31 downto 0); 
  shiftouta :  OUT  std_logic_vector(5 downto 0); 
  shiftoutb :  OUT  std_logic_vector(5 downto 0)   
        ); 
   end component; 
 
type INTERCONNECT is array (0 to LAGS) of std_logic_vector(5 downto 0); 
 signal Intercon : INTERCONNECT; 
 
type RESULTS is array (0 to LAGS - 1) of std_logic_vector(31 downto 0); 
 signal LatchedResults : RESULTS; 
  
 type CLRACCUMS is array (0 to LAGS - 1) of std_logic; 
  
signal ClearAccums  : CLRACCUMS;  
 signal latch  : std_logic; 
 signal LastLatch  : std_logic; 
    signal LastLastLatch  : std_logic; 
 signal OverflowLatch  : std_logic; 
 signal SynchronousLatch : std_logic; 
 signal counter  : unsigned (31 downto 0); 
 
 
begin 
 
   -- Generate all the lag elements and interconnect 
   ELEMENTS:for LAG in 0 to LAGS-1 generate 
             lagelement: CorrelatorLag port map(clk,    -- 
clock 
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 SynchronousLatch, --latch 
           
 Intercon(LAG), --dataa 
           
 B,   --datab 
           
 ClearAccums(LAG), --clear 
           
 OverflowLatch, --overflow 
           
 LatchedResults(LAG),--LatchedOutput 
           
 Intercon(LAG+1) --shiftoutA 
           
 ); 
   end generate ELEMENTS; 
 
    -- Pass the "A" data to the first lag 
 Intercon(0) <= A; 
 
 
 process (clk, adr, counter) 
   begin 
     
 if (rising_edge(clk)) then    
     
     if (counter = Ncycles) then 
      latch <= '1'; 
  ClearAccums(TO_INTEGER(adr)) <= '1'; 
  counter <= "00000000000000000000000000000000"; 
   
     else latch <= '0'; 
  counter <= counter + 1; -- counting clock cycles 
  ClearAccums(TO_INTEGER(adr)) <= '0'; 
     end if; 
   
 -- drive data to output port according to address requested 
  LastLatch <= latch; 
  LastLastLatch <= LastLatch; 
  SynchronousLatch <= LastLatch and not LastLastLatch; 

-- SynchronousLatch goes high for one clock cycle 
  data_out <= LatchedResults(TO_INTEGER(adr));   
 
 
 end if; 
 counter_out <= counter; 
 adr_out <= adr; 
 
end process; 
 
end architecture; 
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Appendix A2. Simulink Test Model for 32-lag Hardware 
Correlator Design 
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Appendix A3. MATLAB Script to Generate Model Signals 
for Correlation 

sine_generation.m 

%%Code was created by Maxim Leonov 
%%Copyright 2007 Auckland University of Technology 
N = 4194304; 
A = 9; 
F = 32*10^6; 
Fs = 256*10^6; 
t = 0:1/Fs:N/Fs; 
x = round(awgn(A*cos(2*pi*t*F), 3, 'measured', [1]))'; 
fid = fopen('input_signals.txt', 'w+'); 
fprintf(fid, '%i\n', x); 
fclose(fid); 
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Appendix A4. Reference Software N-Channel Correlation 
Program 

correlation.c 

//Code was created by Maxim Leonov 
//Copyright 2008 Auckland University of Technology 
#include <stdlib.h> 
#include <stdio.h> 
#include <time.h> 
#include <windows.h> 
#include <winbase.h> 
#define length 64   
#define Nlag 32  //number of correlator's lags 
#define Ns 6  //number of signals or CHANNELS 
#define INPUT_FILE_A "input_signals.txt" 
#define sequences_length  4194304//input sequence length 4096  
 
main() 
{ 
 int i,j,k,p,lag; 
 int count_x = 0; 
 int end_x = 0; 
 int out_count; 
 char c; 
 float signals[Ns][length]; 
 float results[(Ns*(Ns-1))/2][Nlag]; 
 float *file1 = (float*)malloc(sequences_length * sizeof *file1); 
 LARGE_INTEGER ticksPerSecond; 
 LARGE_INTEGER tick;   // A point in time 
 LARGE_INTEGER start_ticks, end_ticks, cputime;  
 
 FILE *result_file; 
 FILE *f1;  
 
 result_file = fopen("results.txt","w"); 
 
 for (i = 0; i < (Ns*(Ns-1))/2; i++ ) 
 { 
  for(j = 0; j < Nlag; j++) 
  { 
   results[i][j]=0; 
  }   
 } 
  
 f1 = fopen(INPUT_FILE_A, "r"); 
 if ( f1 == NULL ) { 

fprintf(stderr, "Error opening input file %s\n", 
INPUT_FILE_A); 

  c = getc(stdin); 
  exit(-1); 
 } 
 
 for(i=0; i<sequences_length; i++) 
 { 
  fscanf(f1, "%f", &file1[i]); 
 } 
 
/*** start time measurement */ 
printf ("Value of CLOCKS_PER_SEC is :    %i  ticks/sec\n",CLOCKS_PER_SEC   ); 
// get the high resolution counter's accuracy 
if (!QueryPerformanceFrequency(&ticksPerSecond)) 
 printf("\tno go QueryPerformance not present"); 
printf ("\tfreq test:   %I64Ld ticks/sec\n",ticksPerSecond    ); 
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// what time is it? 
if (!QueryPerformanceCounter(&tick) )  

printf("no go counter not installed");   
printf ("QueryPerformanceCounter testpoint :   %I64Ld  ticks\n",tick); 
QueryPerformanceCounter(&start_ticks);  
 
 /*Start of Correlation*/ 
do 
{ 

for ( i = count_x, j = 0; i < count_x+length; i++, j++ ) //acquiring 
length samples from input sequence 
{ 

if (i >= sequences_length) 
{ 

end_x = 1; 
break; 

} 
for(p = 0; p < Ns; p++) 
signals[p][j] = file1[i]; 

} 
if (end_x == 0)//processed the whole input sequence? 
{ 

out_count = 0; 
for(p = 0; p < Ns-1; p++)//selecting first signal 
{ 

for(k = p+1; k < Ns; k++)   //selecting second signal 
{ 

for (lag = 0; lag < Nlag; lag++) //running through 
lags 
{ 

//running through signal values 
for(j=length/2; j < length; j++)  
{ 

results[out_count][lag] += signals[k][j]*signals[p][j-lag]; 
} 

} 
out_count++; 

} 
} 
//moving across input sequence using length window 
count_x = count_x + length;  

} 
} while(end_x == 0); 
 /*End of Correlation*/ 
 
QueryPerformanceCounter(&end_ticks);  
cputime.QuadPart = end_ticks.QuadPart- start_ticks.QuadPart; 
 
printf ("\tElapsed CPU time test:   %.9f  sec  ticks %d\n", 
 ((float)cputime.QuadPart/(float)ticksPerSecond.QuadPart), 

cputime.QuadPart); 
 
/*** end time measurement */ 
 
//print results into file 
 for (i = 0; i < (Ns*(Ns-1))/2; i++ ) 
 { 
  fprintf(result_file,"%i: ", i); 
  for(j = 0; j < Nlag; j++) 
  { 
   fprintf(result_file,"%f\n", results[i][j]); 
  } 
  fprintf(result_file,"\n\n"); 
 } 
 
 fclose(result_file);  
} 
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Appendix A5. 6-Channel Correlator Impulse CoDeveloper 
project 

Correlator_C_sw.c 

//////////////////////////////////////////////////////////////////////////////
/ 
// 
// Generated by Impulse CoDeveloper 
// Impulse C is Copyright(c) 2003-2007 Impulse Accelerated Technologies, Inc. 
//  
// Correlator_C_sw.c: includes the software test bench processes and 
// main() function. 
// Code was modified by Maxim Leonov 
// Copyright 2008 Auckland University of Technology 
// 
 
#include <stdio.h> 
#include "co.h" 
#include "cosim_log.h" 
#include "Correlator_C.h" 
// #include <sys/time.h> 
// #include <time.h> 
// #include <unistd.h> 
#include <malloc.h> 
 
INTYPE *filebuffer; 
const char * FileName = OUTPUT_FILE; 
FILE * outFile; 
 
extern co_architecture co_initialize(void *); 
 
void Producer(co_stream x1, co_stream x2, co_stream x3, co_stream x4, 
co_stream x5, co_stream x6) 
{ 
 
 int j, i; 
 //struct timeval t1; 
 //struct tm *pt1; 
 char t1_str[40]; 
  
 IF_SIM(cosim_logwindow log = cosim_logwindow_create("Producer");) 
 
 co_stream_open(x1, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
 co_stream_open(x2, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
 co_stream_open(x3, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
 co_stream_open(x4, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
 co_stream_open(x5, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
 co_stream_open(x6, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
 
 IF_SIM(cosim_logwindow_write(log, "Sending test data...\n");) 
 
//  gettimeofday(&t1, NULL); 
//  pt1 = localtime(&t1.tv_sec); 
//  strftime(t1_str, sizeof(t1_str), "%Y-%m-%d %H:%M:%S", pt1); 
//  printf("Start: %s.%ld (%ld microseconds) \n", t1_str, t1.tv_usec/1000, 
t1.tv_usec); 
 
 for(i=0; i<SEQUENCES_LENGTH;i++) { 
  co_stream_write(x1, &filebuffer[i], sizeof(INTYPE)); 
  co_stream_write(x2, &filebuffer[i], sizeof(INTYPE)); 
  co_stream_write(x3, &filebuffer[i], sizeof(INTYPE)); 
  co_stream_write(x4, &filebuffer[i], sizeof(INTYPE)); 
  co_stream_write(x5, &filebuffer[i], sizeof(INTYPE)); 
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  co_stream_write(x6, &filebuffer[i], sizeof(INTYPE)); 
  IF_SIM(cosim_logwindow_fwrite(log, "i=%d Value: 0x%x\n", i, 
filebuffer[i]);)  
 }   
  
 IF_SIM(cosim_logwindow_write(log, "Finished writing test data.\n");) 
 co_stream_close(x1); 
 co_stream_close(x2); 
 co_stream_close(x3); 
 co_stream_close(x4); 
 co_stream_close(x5); 
 co_stream_close(x6); 
 
} 
 
void Consumer(co_stream outstr) 
{ 
 
 OUTTYPE testValue; 
 unsigned int count = 0;  
 
 
 OUTTYPE k; 
 OUTTYPE buffer[NLAG]; 
 //struct timeval t1; 
 //struct tm *pt1; 
 char t1_str[40]; 
 int i = 0; 
 
IF_SIM(cosim_logwindow log = cosim_logwindow_create("Consumer");) 
 
co_stream_open(outstr, O_RDONLY, INT_TYPE(OUTSTREAMWIDTH)); 
   
IF_SIM(cosim_logwindow_write(log, "Consumer reading data...\n");) 
 
for(i=0; i<NLAG; i++) 
{ 
 co_stream_read(outstr, &buffer[i], sizeof(OUTTYPE)); 
 IF_SIM(cosim_logwindow_fwrite(log, "Value: 0x%08x\n", 

buffer[i]);) 
} 
 
//  gettimeofday(&t1, NULL); 
//  pt1 = localtime(&t1.tv_sec); 
//  strftime(t1_str, sizeof(t1_str), "%Y-%m-%d %H:%M:%S", pt1); 
//  printf("Finish: %s.%ld (%ld microseconds) \n", t1_str, 

t1.tv_usec/1000, t1.tv_usec); 
 
for(i=0; i<NLAG; i++) 
{ 
 printf("Filtered value %d: %d\n", i, buffer[i]);   
 fprintf(outFile, "%d\n", buffer[i]);   

//IF_SIM(cosim_logwindow_fwrite(log, "Value: 0x%08x\n", buffer[i]);)
   

 count++; 
} 
 
 //printf("\n\n"); 
 fprintf(outFile, "\n\n"); 
 
 IF_SIM(cosim_logwindow_fwrite(log, 

"Consumer read %d filtered data values\n", count);) 
 co_stream_close(outstr); 
 
} 
 
int main(int argc, char *argv[]) 
{ 
 co_architecture my_arch; 
 void *param = NULL; 
 int c, i; 
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 struct timeval t1, t2; 
 struct tm *pt1, *pt2; 
 long sec; 
 long usec; 
 const char * InputFile = INPUT_FILE; 
 FILE * inFile; 
 
// double f; 
// char t1_str[40], t2_str[40]; 
 
//  cosim_logwindow_init(); 
//  cosim_logwindow_create(str); 

printf("Impulse C is Copyright(c) 2003-2007 Impulse Accelerated 
Technologies, Inc.\n"); 

 
 filebuffer = (INTYPE*)malloc(sizeof(INTYPE)*SEQUENCES_LENGTH); 
 inFile = fopen(InputFile, "r"); 
 
 if ( inFile == NULL ) { 
  fprintf(stderr, "Error opening input file %s\n", 

InputFile); 
  c = getc(stdin); 
  exit(-1); 
 } 
 // Now read and write the data... 
 
 for(i=0; i<SEQUENCES_LENGTH;i++) 
 { 
  fscanf(inFile, "%d", &filebuffer[i]); 
 } 
 fclose(inFile); 
 
 outFile = fopen(FileName, "w"); 
 if ( outFile == NULL ) { 
  fprintf(stderr, "Error opening file %s for writing\n", 

FileName); 
  exit(-1); 
 } 
 
 
/*** start time mesurement */  
// gettimeofday(&t1, NULL); 
 
 my_arch = co_initialize(param); 
 co_execute(my_arch); 
 
// gettimeofday(&t2, NULL); 
/*** end time mesurement */ 
   
// pt1 = localtime(&t1.tv_sec); 
// pt2 = localtime(&t2.tv_sec); 
 fclose(outFile); 
/* strftime(t1_str, sizeof(t1_str), "%Y-%m-%d %H:%M:%S", pt1); 
 strftime(t2_str, sizeof(t2_str), "%Y-%m-%d %H:%M:%S", pt2); 
 printf("\n\n %s %ld \n", t1_str, t1.tv_usec/1000); 
 printf("\n\n %s %ld \n", t2_str, t2.tv_usec/1000);*/ 
  
// sec = t2.tv_sec - t1.tv_sec; 
// usec = t2.tv_usec - t1.tv_usec; 
// f = usec/1000; 
// printf("\n\n Elapsed time: %ld microseconds\n", usec); 
 

printf("\n\nApplication complete. Press the Enter key to 
continue.\n"); 

 c = getc(stdin); 
 
 return(0); 
 
} 
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Correlator_C_hw.c 

//////////////////////////////////////////////////////////////////////////////
/ 
// 
// Generated by Impulse CoDeveloper 
// Impulse C is Copyright(c) 2003-2007 Impulse Accelerated Technologies, Inc. 
//  
// Correlator_C_hw.c: includes the hardware process and configuration 
// function. 
// 
// See additional comments in Correlator_C.h. 
// Code was modified by Maxim Leonov 
// Copyright 2008 Auckland University of Technology 
// 
 
#include "co.h" 
#include "cosim_log.h" 
#include "Correlator_C.h" 
 
// Software process declarations (see Correlator_C_sw.c) 
// extern void Producer(co_stream instr); 
extern void Consumer(co_stream outstr); 
extern void Producer(co_stream x1, co_stream x2, co_stream x3, co_stream x4, 
co_stream x5, co_stream x6); 
 
// 
// This is the hardware process. 
//  
void demux(co_stream in,  
   co_stream out1, co_stream out2, co_stream out3, co_stream 
out4, co_stream out5) 
{ 
    INTYPE data; 
  
 IF_SIM(cosim_logwindow log;) 
 IF_SIM(log = cosim_logwindow_create("demux");) 
  
    while ( 1 ) { 
        co_stream_open(in, O_RDONLY, INT_TYPE(INSTREAMWIDTH)); 
        co_stream_open(out1, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
        co_stream_open(out2, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
        co_stream_open(out3, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
        co_stream_open(out4, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
        co_stream_open(out5, O_WRONLY, INT_TYPE(INSTREAMWIDTH)); 
  
   while ( co_stream_read(in, &data, sizeof(INTYPE)) == co_err_none ) 
        { 
            co_stream_write(out1, &data, sizeof(INTYPE)); 
            co_stream_write(out2, &data, sizeof(INTYPE)); 
            co_stream_write(out3, &data, sizeof(INTYPE)); 
            co_stream_write(out4, &data, sizeof(INTYPE)); 
            co_stream_write(out5, &data, sizeof(INTYPE)); 
        } 
  
        co_stream_close(in); 
        co_stream_close(out1); 
        co_stream_close(out2); 
        co_stream_close(out3); 
        co_stream_close(out4); 
        co_stream_close(out5); 
   IF_SIM(break;) // Only run once for desktop simulation 
    } 
} 
 
void correlation(co_stream x1, co_stream y1, co_stream r1) 
{ 
 int i, j, lag; 
 co_int8 count; 
 INTYPE nSample1[LENGTH]; 
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 INTYPE nSample2[LENGTH]; 
 INTYPE Sample1, Sample2; 
 OUTTYPE Result_temp[NLAG]; 
 INTYPE nSample1Copy1[LENGTH], nSample1Copy2[LENGTH],  

nSample1Copy3[LENGTH], nSample1Copy4[LENGTH],  
nSample1Copy5[LENGTH], nSample1Copy6[LENGTH], 

  nSample1Copy7[LENGTH]; 
 INTYPE nSample2Copy1[LENGTH], nSample2Copy2[LENGTH], 

nSample2Copy3[LENGTH], nSample2Copy4[LENGTH], 
nSample2Copy5[LENGTH], nSample2Copy6[LENGTH], 

  nSample2Copy7[LENGTH]; 
 OUTTYPE nResult[NLAG], tmp, tmp1; 
 OUTTYPE k; 
  
 IF_SIM(int samplesread; int sampleswritten;) 
  
 IF_SIM(cosim_logwindow log;) 
 IF_SIM(log = cosim_logwindow_create("correlation");) 
  
 for(i=0; i< NLAG; i++) 
  nResult[i]=0; 
   
 k=0; 
 i=0; 
 count=0; 
  
 do { // Hardware processes run forever 
  IF_SIM(samplesread=0; sampleswritten=0;) 
   
  co_stream_open(x1, O_RDONLY, INT_TYPE(INSTREAMWIDTH)); 
  co_stream_open(y1, O_RDONLY, INT_TYPE(INSTREAMWIDTH)); 
  co_stream_open(r1, O_WRONLY, INT_TYPE(OUTSTREAMWIDTH)); 
 
       
     
 while ( (co_stream_read(x1, &Sample1, sizeof(INTYPE) ) ==  

co_err_none) && 
(co_stream_read(y1, &Sample2, sizeof(INTYPE) ) ==  
co_err_none)) 

    { 
     nSample1[count] = Sample1; 
     nSample2[count] = Sample2; 
     nSample1Copy1[count] = Sample1; 
     nSample2Copy1[count] = Sample2; 
     nSample1Copy2[count] = Sample1; 
     nSample2Copy2[count] = Sample2; 
     nSample1Copy3[count] = Sample1; 
     nSample2Copy3[count] = Sample2; 
     nSample1Copy4[count] = Sample1; 
     nSample2Copy4[count] = Sample2; 
     nSample1Copy5[count] = Sample1; 
     nSample2Copy5[count] = Sample2; 
     nSample1Copy6[count] = Sample1; 
     nSample2Copy6[count] = Sample2; 
     nSample1Copy7[count] = Sample1; 
     nSample2Copy7[count] = Sample2; 
      IF_SIM(samplesread++;) 
IF_SIM(cosim_logwindow_fwrite(log, "nSample1[%d]: %d\n", count,  

nSample1[count]);) 
IF_SIM(cosim_logwindow_fwrite(log, "nSample2[%d]: %d\n", count,  

nSample2[count]);) 
 k++; 
 count++; 
 if(count == LENGTH) 
 {  

for (lag = 0; lag < NLAG; lag++) 
{  
 tmp=nResult[lag]; 
 tmp1 = tmp; 
 for(j = LENGTH/2; j < LENGTH-7; j+=8)  
 { 
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#pragma CO PIPELINE 
#pragma CO set stageDelay 32 
tmp1= nSample1[j]*nSample2[j-lag]; 
tmp1+= nSample1Copy1[j+1]*nSample2Copy1[j+1-lag]; 
tmp1+= nSample1Copy2[j+2]*nSample2Copy2[j+2-lag]; 
tmp1+= nSample1Copy3[j+3]*nSample2Copy3[j+3-lag]; 
tmp1+= nSample1Copy4[j+4]*nSample2Copy4[j+4-lag]; 
tmp1+= nSample1Copy5[j+5]*nSample2Copy5[j+5-lag]; 
tmp1+= nSample1Copy6[j+6]*nSample2Copy6[j+6-lag]; 
tmp1+= nSample1Copy7[j+7]*nSample2Copy7[j+7-lag]; 
tmp += tmp1; 

 } 
 nResult[lag]=tmp;   
} 
count=0; 

 } 
 
 if(k == SEQUENCES_LENGTH) 
 { 

for(i=0; i< NLAG; i++) 
{ 
 co_stream_write(r1, &nResult[i], sizeof(OUTTYPE)); 
 IF_SIM(sampleswritten++;) 
 IF_SIM(cosim_logwindow_fwrite(log, "nResult[%d]: %d\n", i, 
nResult[i]);) 
} 
k=0; 
for(i=0; i< NLAG; i++) 
 nResult[i]=0; 
break; 
} 

} 
 
co_stream_close(x1); 
co_stream_close(y1); 
co_stream_close(r1); 
IF_SIM(cosim_logwindow_fwrite(log, 
"Closing filter process, samples read: %d, samples written: %d\n", 
    samplesread, sampleswritten);) 
  
IF_SIM(break;) // Only run once for desktop simulation 
} while(1); 
} 
 
// 
// Impulse C configuration function 
// 
 
void config_Correlator_C(void *arg) 
{ 
 int i,j,l,n,t; 
 int p; 
 int k; 
 co_stream instream[NINST]; 
 co_stream interstream[NINTERST]; 
 co_stream outstream[NOUTST]; 
 co_process demux_proc[NINST]; 
 co_process correlation_proc[NOUTST]; 
 co_process producer_process; 
 co_process consumer_process[NOUTST]; 
 
 char *xname[] = {   "instream1", 
        "instream2", 
        "instream3", 
        "instream4", 
        "instream5", 
        "instream6"}; 
 char *iname[] = {"interstream1", "interstream2", "interstream3",  

"interstream4", "interstream5", "interstream6", 
   "interstream7", "interstream8", "interstream9", 

"interstream10", "interstream11", "interstream12", 
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   "interstream13", "interstream14", "interstream15", 
"interstream16", "interstream17", "interstream18", 
"interstream19", "interstream20", "interstream21", 
"interstream22", "interstream23", "interstream24", 
"interstream25", "interstream26", "interstream27", 
"interstream28", "interstream29", "interstream30"}; 

 char *dname[] = {     "demux1", 
        "demux2", 
        "demux3", 
        "demux4", 
        "demux5", 
        "demux6"}; 
 char *rname[] = {     "outstream1", 
        "outstream2", 
        "outstream3", 
        "outstream4", 
        "outstream5", 
        "outstream6", 
        "outstream7", 
        "outstream8", 
        "outstream9", 
        "outstream10", 
        "outstream11", 
        "outstream12", 
        "outstream13", 
        "outstream14", 
        "outstream15"}; 
 char *producername[] = {   "Producer1", 
        "Producer2", 
        "Producer3", 
        "Producer4", 
        "Producer5", 
        "Producer6"}; 
 char *correlationname[] = {   "correlation1", 
        "correlation2", 
        "correlation3", 
        "correlation4", 
        "correlation5", 
        "correlation6", 
        "correlation7", 
        "correlation8", 
        "correlation9", 
        "correlation10", 
        "correlation11", 
        "correlation12", 
        "correlation13", 
        "correlation14", 
        "correlation15"}; 
 char *Consumername[] = {   "Consumer1", 
        "Consumer2", 
        "Consumer3", 
        "Consumer4", 
        "Consumer5", 
        "Consumer6", 
        "Consumer7", 
        "Consumer8", 
        "Consumer9", 
        "Consumer10", 
        "Consumer11", 
        "Consumer12", 
        "Consumer13", 
        "Consumer14", 
        "Consumer15"}; 
 
 
 IF_SIM(cosim_logwindow_init();) 
 
 
 for (i=0; i<NINST; i++) { 
  instream[i]=co_stream_create(xname[i],INT_TYPE(INSTREAMWIDTH), 

INSTREAMDEPTH); //input streams 
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 } 
 
 for (i=0; i<NINTERST; i++) { 
//intermediate streams between input and correlator (avoiding unidirectional 
connectivity property of streams) 
 interstream[i]=co_stream_create(iname[i],INT_TYPE(INSTREAMWIDTH) 

,INTERSTREAMDEPTH); 
 } 
 
 for (i=0; i<NOUTST; i++) { 
 outstream[i]=co_stream_create(rname[i],INT_TYPE(OUTSTREAMWIDTH), 

OUTSTREAMDEPTH); 
 } 
  
 producer_process = co_process_create("Producer",  
 (co_function)Producer, 6, instream[0], instream[1], instream[2], 

instream[3], instream[4], instream[5]); 
 
 for (i=0; i<NOUTST; i++) { 
consumer_process[i] =  
 co_process_create(Consumername[i],(co_function)Consumer, 1,  

outstream[i]); 
 }  
 
 for (i=0; i<NINST; i++) { 
  demux_proc[i]=co_process_create(dname[i], 

(co_function)demux, 6, 
instream[i], interstream[i], 
interstream[i+6], interstream[i+12], 
interstream[i+18], interstream[i+24]); 

 } 
 
correlation_proc[0]= 
co_process_create(correlationname[0],(co_function)correlation,3, 
     interstream[0],interstream[1],outstream[0]); 
correlation_proc[1]= 
co_process_create(correlationname[1],(co_function)correlation,3, 
     interstream[6],interstream[2],outstream[1]); 
correlation_proc[2]= 
co_process_create(correlationname[2],(co_function)correlation,3, 
     interstream[12],interstream[3],outstream[2]); 
correlation_proc[3]= 
co_process_create(correlationname[3],(co_function)correlation,3, 
     interstream[18],interstream[4],outstream[3]); 
correlation_proc[4]= 
co_process_create(correlationname[4],(co_function)correlation,3, 
     interstream[24],interstream[5],outstream[4]); 
correlation_proc[5]= 
co_process_create(correlationname[5],(co_function)correlation,3, 
     interstream[7],interstream[8],outstream[5]); 
correlation_proc[6]= 
co_process_create(correlationname[6],(co_function)correlation,3, 
     interstream[13],interstream[9],outstream[6]); 
correlation_proc[7]= 
co_process_create(correlationname[7],(co_function)correlation,3,   
   interstream[19],interstream[10],outstream[7]); 
correlation_proc[8]= 
co_process_create(correlationname[8],(co_function)correlation,3, 

interstream[25],interstream[11],outstream[8]); 
correlation_proc[9]= 
co_process_create(correlationname[9],(co_function)correlation,3, 

interstream[14],interstream[15],outstream[9]); 
correlation_proc[10]= 
co_process_create(correlationname[10],(co_function)correlation,3, 

interstream[20],interstream[16],outstream[10]); 
correlation_proc[11]= 
co_process_create(correlationname[11],(co_function)correlation,3, 

interstream[26],interstream[17],outstream[11]); 
correlation_proc[12]= 
co_process_create(correlationname[12],(co_function)correlation,3, 

interstream[21],interstream[22],outstream[12]); 
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correlation_proc[13]= 
co_process_create(correlationname[13],(co_function)correlation,3, 

interstream[27],interstream[23],outstream[13]); 
correlation_proc[14]= 
co_process_create(correlationname[14],(co_function)correlation,3, 

interstream[28],interstream[29],outstream[14]);  
 
 for (i=0; i<NINST; i++) 
  co_process_config(demux_proc[i],co_loc,"PE0"); 
 for (i=0; i<NOUTST; i++) 
  co_process_config(correlation_proc[i],co_loc,"PE0"); 
} 
 
co_architecture co_initialize(int param) 
{ 
 return(co_architecture_create("Correlator_C_arch", 

"Generic",config_Correlator_C,(void *)param)); 
} 
 

Correlator_C.h 

//////////////////////////////////////////////////////////////////////////////
/ 
// 
// Generated by Impulse CoDeveloper 
// Impulse C is Copyright(c) 2003-2006 Impulse Accelerated Technologies, Inc. 
// Code was modified by Maxim Leonov 
// Copyright 2008 Auckland University of Technology 
//  
 
#define INSTREAMDEPTH 128 /* INPUT buffer size for FIFO in hardware */ 
#define OUTSTREAMDEPTH 64 /* OUTPUT buffer size for FIFO in hardware */ 
#define INSTREAMWIDTH 8 /* INPUT buffer width for FIFO in hardware */ 
#define OUTSTREAMWIDTH 32 /* OUTPUT buffer width for FIFO in hardware */ 
#define INTERSTREAMDEPTH 128 /* INTERMEDIATE buffer size for FIFO in 
hardware */ 
#define INPUT_FILE "input_signals.txt" 
#define OUTPUT_FILE "correlator_out.txt" 
#define LENGTH 64 
#define NLAG 32 
#define SEQUENCES_LENGTH 4194304//4096  40960   
 
typedef int8 INTYPE; 
typedef int OUTTYPE; 
 
#define NINST 6 
#define NOUTST 15 
#define NINTERST 30 
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Appendix A6. Files Modified from the Original PCI Express 
to DDR2 SDRAM Reference Design 

tx_ddr_resp.v 

//----------------------------------------------------------------------------
- 
// Title         : tx_ddr_resp 
// Project       : PCIe-to-DDR2 SDRAM Reference Design 
//----------------------------------------------------------------------------
- 
// File          : tx_ddr_resp.v 
// Author        : Altera Corporation 
//----------------------------------------------------------------------------
- 
// Functional Description:  
// This module is part of the TX application layer interfacing with the DDR2 
// controller   
//----------------------------------------------------------------------------
--- 
// 
// Copyright 2003 Altera Corporation. All rights reserved.  Altera products 
are 
// protected under numerous U.S. and foreign patents, maskwork rights, 
copyrights and 
// other intellectual property laws.   
// This reference design file, and your use thereof, is subject to and 
governed by 
// the terms and conditions of the applicable Altera Reference Design License 
Agreement. 
// By using this reference design file, you indicate your acceptance of such 
terms and 
// conditions between you and Altera Corporation.  In the event that you do 
not agree with 
// such terms and conditions, you may not use the reference design file. 
Please promptly 
// destroy any copies you have made. 
// 
// This reference design file being provided on an "as-is" basis and as an 
accommodation  
// and therefore all warranties, representations or guarantees of any kind  
// (whether express, implied or statutory) including, without limitation, 
warranties of  
// merchantability, non-infringement, or fitness for a particular purpose, are  
// specifically disclaimed.  By making this reference design file available, 
Altera 
// expressly does not recommend, suggest or require that this reference design 
file be 
// used in combination with any other product not provided by Altera 
// Code was modified by Maxim Leonov 
// Copyright 2008 Auckland University of Technology 
 
// turn off bogus verilog processor warnings  
// altera message_off 10034 10035 10036 10037 10230  
 
// synthesis translate_off 
`timescale 1ns / 1ps 
// synthesis translate_on 
 
module tx_ddr_resp      
     
( input                                Clk_i,     // Avalon clock 
  input                                Rstn_i,    // Avalon reset 
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  // interface to the Rx pending read FIFO 
  input                                RxPndgRdFifoEmpty_i, 
  input      [49:0]                    RxPndgRdFifoDato_i, 
  output                               RxPndgRdFifoRdReq_o, 
   
  // interface to the Avalon bus 
  input                                TxReadDataValid_i, 
  input      [63:0]                    TxReadData_i, 
  output     [63:0]                    TxReadData_o, 
   
  // Interface to the Command Fifo 
  output     [127:0]                   CmdFifoDatin_o, 
  output                               CmdFifoWrReq_o, 
   
  // Interface to the Avalon Tx Control Module 
  output                               CmdFifoBusy_o, 
   
  // Interface to DMA Engine 
  input      [63:0]                    DmaDstAdr_i, 
  input                                DmaBusy_i, 
  input           
DmaReg_app_finished_i, 
 
  // cfg signals 
  input      [31:0]                    DevCsr_i,              
  input      [12:0]                    BusDev_i 
); 
 
 
wire         sm_rd_fifo;       
wire         sm_start_resp;      
wire         sm_wait_data1;    
wire         sm_wait_data2;    
wire         sm_send_first;   
wire         sm_send_last; 
reg          sm_send_last_reg; 
wire         sm_send_max; 
wire         sm_send_to_4k; 
wire [7:0]   bytes_to_RCB; 
wire         over_rd_2dw; 
wire         over_rd_1dw; 
wire [7:0]   cpl_tag;         
wire [15:0]  requester_id;  
wire [6:0]   rd_addr;       
wire [10:0]  rd_dwlen;      
wire [3:0]   fbe;            
wire [12:0]  remain_bytes; 
wire [15:0]  completer_id; 
wire         dma_req; 
wire [9:0]   wr_dw_len; 
   
reg  [7:0]   txresp_state; 
reg  [7:0]   txresp_nxt_state; 
reg          first_cpl_sreg; 
reg  [7:0]   bytes_to_RCB_reg; 
reg  [13:0]  bytes_to_RCB_add_reg; 
reg  [12:0]  curr_bcnt_reg; 
reg  [13:0]  curr_bcnt_add_reg; 
reg  [12:0]  curr_bcnt_reg_int; 
reg  [12:0]  max_payload; 
reg  [12:0]  max_payload_reg; 
reg  [13:0]  max_payload_add_reg; 
reg  [13:0]  payload_cntr;   
reg  [13:0]  nxt_payload_cntr;   
reg  [13:0]  payload_cntr_stg;   
reg  [3:0]   over_rd_bytes; 
reg  [3:0]   over_rd_bytes_reg; 
reg  [13:0]  over_rd_bytes_add_reg; 
reg  [12:0]  bytes_sent; 
reg  [12:0]  pkt_size; 
reg  [12:0]  pkt_size_reg; 
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reg  [12:0]  pkt_size_reg_mod; 
reg  [3:0]   coming_send_state; 
reg  [3:0]   coming_send_state_reg; 
reg  [6:0]   lower_addr; 
reg  [6:0]   lower_addr_reg; 
reg  [63:0]  wr_addr_reg; 
reg          PCIeAddrSpace_i; 
 
wire [1:0]   attr; 
wire [12:0]  bytes_to_4KB; 
reg  [12:0]  bytes_to_4KB_reg; 
reg  [13:0]  bytes_to_4KB_add_reg; 
wire [127:0] cpl_header; 
wire [127:0] wr_header; 
wire [127:0] mem_wr64_header; 
wire [127:0] mem_wr32_header; 
wire         dma_reg_rd; 
wire         c1; 
wire         c2; 
wire         c3; 
wire         c4; 
wire         c5; 
wire         c6; 
reg          c1_reg; 
reg          c2_reg; 
reg          c3_reg; 
reg          c4_reg; 
reg          c5_reg; 
reg          c6_reg; 
 
reg   TxReadData_reg1; 
 
localparam      TXRESP_RD_FIFO       = 8'h01; 
localparam      TXRESP_START_RESP    = 8'h02; 
localparam      TXRESP_WAIT_DATA1    = 8'h04; 
localparam      TXRESP_WAIT_DATA2    = 8'h08; 
localparam      TXRESP_SEND_FIRST    = 8'h10; 
localparam      TXRESP_SEND_MAX      = 8'h20; 
localparam      TXRESP_SEND_TO_4K    = 8'h40; 
localparam      TXRESP_SEND_LAST     = 8'h80; 
 
 
 /// state machine output assignments 
  
 assign   sm_rd_fifo    = txresp_state[0];             
 assign   sm_start_resp = txresp_state[1];       
 assign   sm_wait_data1 = txresp_state[2];     
 assign   sm_wait_data2 = txresp_state[3];     
 assign   sm_send_first = txresp_state[4];    
 assign   sm_send_max   = txresp_state[5]; 
 assign   sm_send_to_4k = txresp_state[6]; 
 assign   sm_send_last  = txresp_state[7];     
 
always @(posedge Clk_i or negedge Rstn_i)  // state machine registers 
  begin 
    if(~Rstn_i) 
      txresp_state <= TXRESP_RD_FIFO; 
    else 
      txresp_state <= txresp_nxt_state; 
  end 
 
// state machine next state gen 
 
always @(*) 
  begin 
    case(txresp_state) 
      TXRESP_RD_FIFO :  
        if(~RxPndgRdFifoEmpty_i)       
          txresp_nxt_state = TXRESP_START_RESP; 
        else 
          txresp_nxt_state = TXRESP_RD_FIFO;     
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      TXRESP_START_RESP:  // load byte count reg and calc the first byte 7 bit 
of addr 
           txresp_nxt_state = TXRESP_WAIT_DATA1; 
       
      TXRESP_WAIT_DATA1: 
        txresp_nxt_state = TXRESP_WAIT_DATA2; 
 
      TXRESP_WAIT_DATA2: 
 if (payload_cntr >= pkt_size_reg) begin 
          case(coming_send_state_reg) 
            4'b1000: txresp_nxt_state = TXRESP_SEND_FIRST; 
            4'b0100: txresp_nxt_state = TXRESP_SEND_MAX; 
            4'b0010: txresp_nxt_state = TXRESP_SEND_TO_4K; 
            4'b0001: txresp_nxt_state = TXRESP_SEND_LAST; 
            default: txresp_nxt_state = TXRESP_WAIT_DATA2; 
   endcase 
 end 
 else 
          txresp_nxt_state = TXRESP_WAIT_DATA2; 
 
      TXRESP_SEND_FIRST: 
        txresp_nxt_state = TXRESP_WAIT_DATA1; 
            
      TXRESP_SEND_MAX: 
        txresp_nxt_state = TXRESP_WAIT_DATA1; 
        
      TXRESP_SEND_TO_4K: 
        txresp_nxt_state = TXRESP_WAIT_DATA1; 
          
      TXRESP_SEND_LAST: 
        txresp_nxt_state = TXRESP_RD_FIFO; 
          
      default: 
        txresp_nxt_state = TXRESP_RD_FIFO; 
       
    endcase 
 end 
  
// decode the max payload size 
// constant signal from beginning 
always @(DevCsr_i) 
  begin 
    case(DevCsr_i[14:12]) 
      3'b000 : max_payload= 128; 
      3'b001 : max_payload= 256; 
      3'b010 : max_payload= 512; 
      3'b011 : max_payload= 1024; 
      3'b100 : max_payload= 2048; 
      default : max_payload = 2048; 
    endcase 
  end 
 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
     if(~Rstn_i) 
       max_payload_reg <= 13'h0000; 
     else  
       max_payload_reg <= max_payload; 
  end 
  
// This signal will only be asserted when sm_rd_fifo 
assign RxPndgRdFifoRdReq_o = sm_rd_fifo & ~RxPndgRdFifoEmpty_i; 
 
// These will be available from sm_start_resp till sm_send_last  
// mainly constant 
assign cpl_tag      = RxPndgRdFifoDato_i[7:0]; 
assign rd_addr      = RxPndgRdFifoDato_i[14:8]; 
assign dma_reg_rd   = RxPndgRdFifoDato_i[15]; 
assign requester_id = RxPndgRdFifoDato_i[31:16]; 
assign rd_dwlen     = RxPndgRdFifoDato_i[42:32]; 



Appendix A6. Files Modified from the Original PCI Express to DDR2 SDRAM Reference Design 

122 

assign fbe          = RxPndgRdFifoDato_i[46:43]; 
assign dma_req      = RxPndgRdFifoDato_i[47]; 
assign attr         = RxPndgRdFifoDato_i[49:48]; 
 
//assign TxReadData_o = dma_reg_rd ? 
{DmaBusy_i,31'h00000000,DmaBusy_i,31'h00000000}  
//                                 : TxReadData_i; 
assign TxReadData_o = dma_reg_rd ? 
{DmaBusy_i,{11{1'b0}},DmaReg_app_finished_i,{19{1'b0}},DmaBusy_i,{11{1'b0}},Dm
aReg_app_finished_i,{19{1'b0}}}  
                                 : TxReadData_i; 
 
// Modification 
//*********************** 
always @(posedge Clk_i or negedge Rstn_i) 
 begin 
    if(~Rstn_i) 
      TxReadData_reg1 <= 64'h0000_0000; 
    else 
               if ( dma_reg_rd ) 
                       TxReadData_reg1 <= 
{{12{1'b0}},DmaReg_app_finished_i,{19{1'b0}},{12{1'b0}},DmaReg_app_finished_i,
{19{1'b0}}} ; 
               else 
                       TxReadData_reg1 <= TxReadData_i ; 
    //else ; 
 end 
//*********************** 
 
 
// calculate the bytes to RCB that could be 64 or 128Bytes (6 or 7 zeros in 
address) 
// Available from sm_start_resp 
assign bytes_to_RCB = 8'h80 - rd_addr[6:0]; 
 
// bytes to 4KB boundary 
// Updates in different stages 
   
// pipeline for fmax 
always @(posedge Clk_i or negedge Rstn_i) begin 
  if(~Rstn_i) begin 
    bytes_to_RCB_reg <= 0; 
    bytes_to_RCB_add_reg <= 14'h0000; 
    max_payload_add_reg <= 14'h0000; 
    bytes_to_4KB_add_reg <= 14'h0000; 
    curr_bcnt_add_reg <= 14'h0000; 
    over_rd_bytes_add_reg <= 14'h0000; 
  end 
  else begin  
    bytes_to_RCB_reg <= bytes_to_RCB; 
    bytes_to_RCB_add_reg  <= ~{6'h00,bytes_to_RCB_reg[7:0]} + 14'h0001 + 
14'h0008; 
    max_payload_add_reg   <= ~{1'b0,max_payload[12:0]} + 14'h0001 + 14'h0008; 
    bytes_to_4KB_add_reg  <= ~{1'b0,bytes_to_4KB_reg[12:0]} + 14'h0001 + 
14'h0008; 
    curr_bcnt_add_reg     <= ~{1'b0,curr_bcnt_reg[12:0]} + 14'h0001 + 
14'h0008; 
    over_rd_bytes_add_reg <= ~{10'h000,over_rd_bytes_reg[3:0]} + 14'h0001 + 
14'h0008; 
  end 
end 
 
// SR reg to indicate the first completion of a read 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
     if(~Rstn_i) 
       first_cpl_sreg <= 1'b0; 
     else if(sm_start_resp) 
       first_cpl_sreg <= 1'b1; 
     else if(sm_send_first | sm_send_to_4k | sm_send_max | sm_send_last) 
       first_cpl_sreg <= 1'b0; 
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  end 
  
// special signal for pipelining the calculation of payload_cntr after  
// the sm_send_last state 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
     if(~Rstn_i) 
       sm_send_last_reg <= 1'b0; 
     else 
       sm_send_last_reg <= sm_send_last; 
  end 
 
assign c1 = dma_req; 
assign c2 = first_cpl_sreg; 
assign c3 = (curr_bcnt_reg > bytes_to_RCB_reg); 
assign c4 = (curr_bcnt_reg > max_payload_reg); 
assign c5 = (curr_bcnt_reg > bytes_to_4KB_reg); 
assign c6 = (max_payload_reg > bytes_to_4KB_reg); 
 
/// completion payload counter to keep track of the data byte returned from 
avalon 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) begin 
      c1_reg <= 0; 
      c2_reg <= 0; 
      c3_reg <= 0; 
      c4_reg <= 0; 
      c5_reg <= 0; 
      c6_reg <= 0; 
    end 
    else begin  // Rstn_i 
      c1_reg <= c1; 
      c2_reg <= c2; 
      c3_reg <= c3; 
      c4_reg <= c4; 
      c5_reg <= c5; 
      c6_reg <= c6; 
    end 
  end 
   
always @(c1, c2, c3, c4, c5, c6, bytes_to_RCB_reg, curr_bcnt_reg, 
max_payload_reg, 
         bytes_to_4KB_reg) 
  begin 
    if ((~c1 && c2 && ~c3) || (~c1 && ~c2 && ~c4) || (c1 && ~c4 && ~c5)) begin 
      pkt_size = curr_bcnt_reg; 
      coming_send_state = 4'b0001; 
    end 
    else if ((~c1 && ~c2 && c4) || (c1 && c4 && ~c6)) begin 
      pkt_size = max_payload_reg; 
      coming_send_state = 4'b0100; 
    end 
    else if (~c1 && c2 && c3) begin 
      pkt_size = bytes_to_RCB_reg; 
      coming_send_state = 4'b1000; 
    end 
    else if (c1 && c5 && c6) begin 
      pkt_size = bytes_to_4KB_reg; 
      coming_send_state = 4'b0010; 
    end 
    else begin 
      pkt_size = 13'h0000; 
      coming_send_state = 4'b0000; 
    end 
  end 
     
/// completion payload counter to keep track of the data byte returned from 
avalon 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
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    if(~Rstn_i) begin 
      pkt_size_reg <= 0; 
      coming_send_state_reg <= 0; 
    end 
    else if (sm_wait_data1) begin  // Rstn_i 
      pkt_size_reg <= pkt_size; 
      coming_send_state_reg <= coming_send_state; 
    end 
  end 
 
/// completion payload counter to keep track of the data byte returned from 
avalon 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      pkt_size_reg_mod <= 0; 
    else if (sm_wait_data2)        // Rstn_i 
      // pkt_size_reg_mod <= ~{1'b0,pkt_size_reg[11:0]} + 13'h1002; 
      pkt_size_reg_mod <= 13'h1000 - pkt_size_reg[11:0]; 
  end 
 
// Find out how many bytes are sent in each PCIe packet 
always @(sm_send_to_4k, sm_send_first, sm_send_max, sm_send_last, 
curr_bcnt_reg, 
         max_payload_reg, bytes_to_RCB_reg, bytes_to_4KB_reg) 
  begin 
    case({sm_send_to_4k, sm_send_first, sm_send_max, sm_send_last}) 
      4'b0001 : bytes_sent = curr_bcnt_reg; 
      4'b0010 : bytes_sent = max_payload_reg; 
      4'b0100 : bytes_sent = bytes_to_RCB_reg; 
      4'b1000 : bytes_sent = bytes_to_4KB_reg; 
      default : bytes_sent = 0; 
    endcase 
  end 
   
// recode the whole payload_cntr block to solve the timing problem 
always @(sm_send_first, sm_send_max, sm_send_to_4k, sm_send_last, 
sm_send_last_reg, 
  bytes_to_RCB_reg, max_payload_reg, bytes_to_4KB_reg, curr_bcnt_reg, 
         over_rd_bytes_reg, TxReadDataValid_i, payload_cntr, 
bytes_to_RCB_add_reg, 
         max_payload_add_reg, bytes_to_4KB_add_reg, curr_bcnt_add_reg,  
         over_rd_bytes_add_reg)  
  begin 
    case({sm_send_first, sm_send_max, sm_send_to_4k, sm_send_last, 
sm_send_last_reg,  
   TxReadDataValid_i}) 
      6'b000001 : nxt_payload_cntr[13:2] = payload_cntr[13:2] + 12'h002; 
      6'b100001 : nxt_payload_cntr[13:2] = payload_cntr[13:2] + 
bytes_to_RCB_add_reg[13:2]; 
      6'b010001 : nxt_payload_cntr[13:2] = payload_cntr[13:2] + 
max_payload_add_reg[13:2]; 
      6'b001001 : nxt_payload_cntr[13:2] = payload_cntr[13:2] + 
bytes_to_4KB_add_reg[13:2]; 
      6'b000101 : nxt_payload_cntr[13:2] = payload_cntr[13:2] + 
curr_bcnt_add_reg[13:2]; 
      6'b000011 : nxt_payload_cntr[13:2] = payload_cntr[13:2] + 
over_rd_bytes_add_reg[13:2]; 
      6'b100000 : nxt_payload_cntr[13:2] = payload_cntr[13:2] - 
{6'h00,bytes_to_RCB_reg[7:2]}; 
      6'b010000 : nxt_payload_cntr[13:2] = payload_cntr[13:2] - 
{1'b0,max_payload_reg[12:2]}; 
      6'b001000 : nxt_payload_cntr[13:2] = payload_cntr[13:2] - 
{1'b0,bytes_to_4KB_reg[12:2]}; 
      6'b000100 : nxt_payload_cntr[13:2] = payload_cntr[13:2] - 
{1'b0,curr_bcnt_reg[12:2]}; 
      6'b000010 : nxt_payload_cntr[13:2] = payload_cntr[13:2] - 
{10'h000,over_rd_bytes_reg[3:2]}; 
      default : nxt_payload_cntr[13:2] = payload_cntr[13:2]; 
    endcase 
  end 
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// assign nxt_payload_cntr[1:0] = 2'b00; 
 
/// completion payload counter to keep track of the data byte returned from 
avalon 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      payload_cntr[13:0] <= 0; 
    else // Rstn_i 
      payload_cntr[13:0] <= {nxt_payload_cntr[13:2],2'b00}; 
  end 
 
/// over read bytes caculation due to more data being read from the  
// avalon to compensate for the alignment 32/64 
// signals ready from start_resp onwards, mainly constant 
assign over_rd_2dw = rd_addr[2] & ~rd_dwlen[0]; 
assign over_rd_1dw = rd_dwlen[0]; 
 
always @(over_rd_2dw, over_rd_1dw ) 
  begin 
    case({over_rd_2dw, over_rd_1dw}) 
      2'b01 : over_rd_bytes = 4; 
      2'b10 : over_rd_bytes = 8; 
      default: over_rd_bytes = 0; 
    endcase 
  end 
 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      over_rd_bytes_reg <= 0; 
    else 
      over_rd_bytes_reg <= over_rd_bytes; 
  end   
   
// the current byte count register that still need to be sent for PCIe resp 
// the remaining byte count after a DMA write header is written into the 
Command FIFO 
always @(posedge Clk_i or negedge Rstn_i) begin 
  if(~Rstn_i) 
    curr_bcnt_reg <= 13'h0; 
  else if(sm_start_resp) 
    curr_bcnt_reg <= {rd_dwlen, 2'b00}; 
  else if(sm_send_first | sm_send_max | sm_send_to_4k) 
    curr_bcnt_reg <= curr_bcnt_reg - pkt_size_reg; 
  else if(sm_send_last) 
    curr_bcnt_reg <= 0; 
  else 
    curr_bcnt_reg <= curr_bcnt_reg; 
end 
   
// the current byte count register that still need to be sent for PCIe resp 
// the remaining byte count after a DMA write header is written into the 
Command FIFO 
always @(posedge Clk_i or negedge Rstn_i) begin 
  if(~Rstn_i) 
    curr_bcnt_reg_int <= 13'h0; 
  else if(sm_start_resp) 
    curr_bcnt_reg_int <= {rd_dwlen, 2'b00} + over_rd_bytes; 
  else if(sm_send_first | sm_send_max | sm_send_to_4k) 
    curr_bcnt_reg_int <= curr_bcnt_reg_int - pkt_size_reg; 
  else if(sm_send_last) 
    curr_bcnt_reg_int <= 0; 
  else 
    curr_bcnt_reg_int <= curr_bcnt_reg_int; 
end 
   
/// the remaining bcnt (for the header) 
assign remain_bytes = curr_bcnt_reg; 
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// read address reg increments byte the amount of byte in each read header 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      wr_addr_reg <= 0; 
    else if(sm_start_resp & dma_req & (cpl_tag == 8'h00)) 
      wr_addr_reg <= DmaDstAdr_i; 
    else if(dma_req & (sm_send_max | sm_send_to_4k | sm_send_last)) 
      wr_addr_reg[15:0] <= wr_addr_reg[15:0] + pkt_size_reg; 
    else 
      wr_addr_reg[15:0] <= wr_addr_reg[15:0]; 
  end 
 
 
// assign bytes_to_4KB = 13'h1000 - wr_addr_reg[11:0]; 
// read address reg increments byte the amount of byte in each read header 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      bytes_to_4KB_reg <= 0; 
    else if(sm_start_resp & dma_req & (cpl_tag == 8'h00)) 
      bytes_to_4KB_reg <= 13'h1000 - DmaDstAdr_i[11:0]; 
    else if(dma_req & (sm_send_max | sm_send_to_4k | sm_send_last)) 
      // bytes_to_4KB_reg <= ~{1'b0,wr_addr_reg[11:0]} + 
~{1'b0,pkt_size_reg[11:0]} + 13'h1002; 
      // bytes_to_4KB_reg <= ~{1'b0,wr_addr_reg[11:0]} + 
pkt_size_reg_mod[12:0]; 
      bytes_to_4KB_reg <= pkt_size_reg_mod[12:0] - wr_addr_reg[11:0]; 
    else 
      bytes_to_4KB_reg <= bytes_to_4KB_reg; 
  end 
 
// ========================================================================== 
// Gather the info to generate the PCIe Cpl header for PCIe response 
// ========================================================================== 
   
// calculate the 7 bit lower address of the first enable byte 
// based on the first byte enable 
always @(fbe,rd_addr) 
 begin 
  casex(fbe) 
    4'bxxx1 : lower_addr = {rd_addr[6:2], 2'b00}; 
    4'bxx10 : lower_addr = {rd_addr[6:2], 2'b01}; 
    4'bx100 : lower_addr = {rd_addr[6:2], 2'b10}; 
    4'b1000 : lower_addr = {rd_addr[6:2], 2'b11}; 
    default:  lower_addr = 7'b0000000; 
  endcase 
end 
 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      lower_addr_reg <= 0; 
    else if(sm_start_resp) 
      lower_addr_reg <= lower_addr; 
    else if(sm_send_first | sm_send_to_4k | sm_send_max | sm_send_last) 
      lower_addr_reg <= 0; 
    end 
 
///// Assemble the completion headers 
assign completer_id = {BusDev_i, 3'b000}; 
 
// write header format 
// assign requester_id = {BusDev_i, 3'b000}; 
 
assign cpl_header = {8'h4A, 8'h00, 2'h0, attr, 2'h0, pkt_size_reg[11:2], 
                     completer_id, 3'b000, 1'b0, remain_bytes[11:0],  
                     requester_id, cpl_tag, 1'b0, lower_addr_reg, 
32'h00000000};    
                                                   
// ========================================================================== 
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// Gather the info to generate the PCIe Write header for DMA Wr 
// ========================================================================== 
 
// In 64-bit mode, calculate the correct space 
always @(DmaDstAdr_i) begin 
  if (|DmaDstAdr_i[63:32] == 1'b1) 
    PCIeAddrSpace_i = 1'b1;  // 64-bit Memory Address 
  else 
    PCIeAddrSpace_i = 1'b0;  // 32-bit Memory Address 
end 
       
// calculate the write dw_len 
assign wr_dw_len[9:0] = pkt_size_reg[11:2]; 
  
// 64-bit addressing mem write 
assign mem_wr64_header = {8'h60, 8'h00, 6'h0, (wr_dw_len[9:0]),  
                   completer_id, cpl_tag, 4'hF, fbe,  
     wr_addr_reg[63:32],  
     // wr_addr_reg[31:3], addr_bit2, 2'b00}; 
     wr_addr_reg[31:2], 2'b00}; 
 
// 32-bit addressing write 
assign mem_wr32_header = {8'h40, 8'h00, 6'h0, (wr_dw_len[9:0]),  
                   completer_id, cpl_tag, 4'hF, fbe,  
     // wr_addr_reg[31:3], addr_bit2, 2'b00, 32'h00000000};     
     wr_addr_reg[31:2], 2'b00, 32'h00000000};     
 
// muxing the header based on the address decoding space 
assign wr_header = PCIeAddrSpace_i ? mem_wr64_header : mem_wr32_header; 
     
// ========================================================================== 
// command fifo interface 
// ========================================================================== 
 
assign CmdFifoWrReq_o = sm_send_first | sm_send_last | sm_send_max | 
sm_send_to_4k; 
 
// indicate busy one clock before accessing it 
assign CmdFifoBusy_o = sm_send_to_4k | sm_send_first | sm_send_max | 
sm_send_last; 
 
assign CmdFifoDatin_o = dma_req ? wr_header : cpl_header; 
 
endmodule 
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rx_pcie.v 

//----------------------------------------------------------------------------
- 
// Title         : rx_pcie 
// Project       : PCIe-to-DDR2 SDRAM Reference Design 
//----------------------------------------------------------------------------
- 
// File          : rx_pcie.v 
// Author        : Altera Corporation 
//----------------------------------------------------------------------------
- 
// Functional Description:  
// This module is part of the RX application layer interfacing with the PCIe 
// controller   
//----------------------------------------------------------------------------
--- 
// 
// Copyright 2003 Altera Corporation. All rights reserved.  Altera products 
are 
// protected under numerous U.S. and foreign patents, maskwork rights, 
copyrights and 
// other intellectual property laws.   
// This reference design file, and your use thereof, is subject to and 
governed by 
// the terms and conditions of the applicable Altera Reference Design License 
Agreement. 
// By using this reference design file, you indicate your acceptance of such 
terms and 
// conditions between you and Altera Corporation.  In the event that you do 
not agree with 
// such terms and conditions, you may not use the reference design file. 
Please promptly 
// destroy any copies you have made. 
// 
// This reference design file being provided on an "as-is" basis and as an 
accommodation  
// and therefore all warranties, representations or guarantees of any kind  
// (whether express, implied or statutory) including, without limitation, 
warranties of  
// merchantability, non-infringement, or fitness for a particular purpose, are  
// specifically disclaimed.  By making this reference design file available, 
Altera 
// expressly does not recommend, suggest or require that this reference design 
file be 
// used in combination with any other product not provided by Altera 
// Code was modified by Maxim Leonov 
// Copyright 2008 Auckland University of Technology 
 
// turn off bogus verilog processor warnings  
// altera message_off 10034 10035 10036 10037 10230  
 
// synthesis translate_off 
`timescale 1ns / 1ps 
// synthesis translate_on 
 
module rx_pcie 
 
  ( input               Clk_i, 
    input               Rstn_i, 
     
    // Rx port interface to PCI Exp core 
    input  [135:0]      RxDesc_i, 
    input               RxReq_i,  
    input               RxDv_i, 
    input               RxDfr_i,   
    input  [63:0]       RxData_i, 
    input  [7:0]        RxBe_i, 
       
    output              RxAck_o, 
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    output              RxRetry_o, 
    output              RxMask_o, 
    output              RxWs_o, 
    output              RxAbort_o, 
     
    // Fifo interface 
    // *FifoUsedW* signal has 1 extra bit to tell full/empty condition 
    input  [5:0]        CmdFifoUsedW_i,  // 32 entries 
    output reg          CmdFifoWrReq_o, 
    output reg [71:0]   CmdFifoDat_o, 
     
    input  [7:0]        DatFifoUsedW_i,  // 128 entries 
    output reg          DatFifoWrReq_o, 
    output reg [71:0]   DatFifoDat_o, 
     
    input  [5:0]        PndngRdFifoUsedW_i, 
    output              PndgRdFifoWrReq_o, 
    output [49:0]       PndgRdHeader_o, 
     
    // DMA interface 
    input               DmaBusy_i, 
    output              DmaRead_o, 
    output              DmaWrite_o, 
    output [63:0]       DmaSrcAdr_o, 
    output [63:0]       DmaDstAdr_o, 
    output [12:0]       DmaByteCnt_o, 
    output              DmaStart_o, 
    output              Dma_wr_busy_o, 
 //******* 
 output    DmaReg_app_enable_o, 
 input    DmaReg_app_finished_i, 
 output    DmaReg_app_finished_o, 
 
    input  [7:0]        TxDaFifo_rdusedw_i, 
    // Tx Completion interface 
    input               TxCpl_i, 
    // this is modified len (+1, +2, or unchanged) (qw) 
    input  [9:0]        TxCplLen_i, 
 
      // cfg signals 
  input      [31:0]                    DevCsr_i,              
  input      [12:0]                    BusDev_i 
  ); 
   
  //state machine encoding 
  localparam RX_IDLE         = 10'h000;    
  localparam RX_WR_ACK       = 10'h003; 
  localparam RX_WR_DATA      = 10'h005; 
  localparam RX_WR_WAIT      = 10'h009; 
  localparam RX_RD_ACK       = 10'h011; 
  localparam RX_RD_RETRY     = 10'h021; 
  localparam RX_DMA_RD1      = 10'h041; 
  localparam RX_DMA_RD2      = 10'h081; 
  localparam RX_DMA_OUT      = 10'h101; 
  localparam RX_ERR          = 10'h201; 
   
   
  wire                       is_wr_cpl; 
  wire                       is_rd;         
  wire  [10:0]               rx_dwlen;        
  wire  [31:0]               rx_addr;       
  wire  [7:0]                dma_tag;       
  wire  [7:0]                cpl_tag;       
  wire  [11:0]               cpl_bytecount; 
  wire  [7:0]                rdreq_tag;     
  wire  [15:0]               requestor_id;  
  wire  [3:0]                rx_fbe;  
  wire  [3:0]                rx_lbe;          
  wire                       len_plus_2; 
  wire                       len_plus_1; 
  wire                       dma_len_plus_2; 
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  wire                       dma_len_plus_1; 
  wire                       dma_plus_1; 
  wire                       cmd_fifo_ok;     
  wire                       dat_fifo_ok;     
  wire                       pndgrd_fifo_ok; 
  wire                       rd_cpl_buff_ok;    
  wire                       dma_cpl_buff_ok;    
  wire                       rx_wrack;   
  wire                       rx_wrdata; 
  wire                       rx_wrwait;  
  wire                       rx_rdack;   
  reg                        rx_rdack_reg;   
  reg                        TxCpl_i_reg; 
  wire                       rx_rdretry;    
  wire                       rx_dmard1;    
  wire                       rx_dmard2;    
  wire                       rx_dmaout;    
  reg                        rx_dmard1_reg;    
  reg                        rx_dmard2_reg;    
  reg                        rx_dmaout_reg;    
  wire                       rxidle;  
  wire                       rx_err;   
  wire  [71:0]               wr_header;  
  wire  [71:0]               cpl_header; 
  wire  [71:0]               rd_header;  
  wire  [71:0]               dma_header;  
  wire                       wr_header_sel;  
  wire                       cpl_header_sel; 
  wire                       rd_header_sel;  
  wire                       dma_header_sel; 
  wire  [3:0]                header_sel; 
  wire                       is_wr; 
  wire                       is_cpl_wd; 
  wire                       is_cpl_wod; 
  wire                       last_cpl; 
  wire  [2:0]                cpl_stat; 
  wire  [6:0]                bar_hit; 
  wire  [10:0]               txcpl_dw; 
  wire                       lowbe_mask_sel; 
  wire                       lowbe_fbe_sel;  
  wire                       lowbe_lbe_sel; 
  wire                       highbe_mask_sel; 
  wire                       highbe_fbe_sel;  
  wire                       highbe_lbe_sel; 
  wire                       cpl_success; 
  wire                       dma_reg_rd; 
  wire  [1:0]                attr; 
   
  reg   [71:0]               rx_header; 
  reg   [10:0]               rx_modlen; // actual length requested on avalon    
  wire  [9:0]                dma_qwlen; // actual length requested on avalon    
  reg   [10:0]               rx_wrdat_cntr; 
  reg   [11:0]               txcpl_buffer_size; 
  reg   [11:0]               txcpl_buffer_size_stg; 
  reg   [11:0]               txdabuf_inc_cnt; 
  reg   [9:0]                rx_state; 
  reg   [9:0]                rx_nxt_state; 
  reg   [3:0]                rx_lowbe; 
  reg   [3:0]                rx_highbe; 
  reg                        rxaddr_bit2_reg; 
  reg                        rxdwlen0_reg; 
  reg   [10:0]               rx_modlen_reg; 
  reg   [9:0]                dma_qwlen_reg; 
  reg   [3:0]                rx_fbe_reg; 
  reg   [3:0]                rx_lbe_reg; 
 
  wire  [10:0]               dma_dwlen;        
  reg   [10:0]               dma_dwlen_reg;        
  wire                       bar2_hit; 
  wire                       dma_reg_wr; 
  reg   [4:0]                dma_reg_sel; 
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  wire                       DmaPloAdr_wen; 
  wire                       DmaPhiAdr_wen; 
  wire                       DmaDdrAdr_wen; 
  wire                       DmaBcnt_wen; 
  wire                       DmaCtrl_wen; 
  reg                        DmaPloAdr_wen_reg; 
  reg                        DmaPhiAdr_wen_reg; 
  reg                        DmaDdrAdr_wen_reg; 
  reg                        DmaBcnt_wen_reg; 
  reg                        DmaCtrl_wen_reg; 
  reg   [31:0]               DmaPloAdr_reg; 
  reg   [31:0]               DmaPhiAdr_reg; 
  reg   [31:0]               DmaDdrAdr_reg; 
  reg   [31:0]               DmaBcnt_reg; 
  reg   [31:0]               DmaCtrl_reg; 
  reg                        DmaStart_reg; 
 
wire          last_rd_segment_1;  
wire          last_rd_segment_2;  
wire [12:0]   bytes_to_4KB; 
wire          to_4KB_sel; 
wire          remain_bytes_sel; 
wire [9:0]    rd_dw_len; 
reg [63:0]                        dma_adr; 
reg [63:0]                        dma_adr_reg; 
reg [63:0]                        ddr_dma_adr_reg; 
wire [12:0]                        rd_size; 
reg [12:0]                        rd_size_reg; 
wire [12:0]                        remain_bcnt; 
reg [12:0]                        remain_bcnt_reg; 
reg [12:0]                        remain_rdbytecnt; 
reg [12:0]                        remain_rdbytecnt_reg; 
reg [12:0]                        byte_size_reg_1; 
reg [12:0]                        byte_size_reg_2; 
reg [12:0]                        max_rd_size; 
reg [12:0]                        max_rd_size_reg; 
reg [11:0]                        max_payload_size; 
reg [1:0]                         rdsize_sel_reg; 
reg [12:0]                        bytes_to_4KB_reg; 
reg [7:0]    dma_tag_cntr; 
wire          DmaStart_int; 
wire          rd_cnt; 
 
  // decoding the rx_desc bus 
   
  assign is_rd 
= ~RxDesc_i[126] & (RxDesc_i[124:122]== 3'b000) & ~RxDesc_i[120]; 
  assign is_wr 
= RxDesc_i[126] & (RxDesc_i[124:120]==5'b00000); 
  assign is_cpl_wd 
= RxDesc_i[126] & (RxDesc_i[124:120]==5'b01010); 
  assign is_cpl_wod 
= ~RxDesc_i[126] & (RxDesc_i[124:120]==5'b01010); 
  assign rx_dwlen 
= (RxDesc_i[105:96]==0)? 11'h400 : RxDesc_i[105:96]; 
  assign rx_addr 
= RxDesc_i[125]? RxDesc_i[31:0] : RxDesc_i[63:32]; 
  assign cpl_tag       = RxDesc_i[47:40]; 
  assign cpl_bytecount = RxDesc_i[75:64]; 
  assign rdreq_tag     = RxDesc_i[79:72]; 
  assign requestor_id  = RxDesc_i[95:80]; 
  assign rx_fbe        = is_cpl_wd ? 4'hf : RxDesc_i[67:64]; 
  assign rx_lbe        = is_cpl_wd ? 4'hf : RxDesc_i[71:68]; 
  assign last_cpl      = (cpl_bytecount[11:2] == rx_dwlen ); 
  assign cpl_stat      = RxDesc_i[79:77]; 
  assign cpl_success   = (cpl_stat == 3'b000); 
  assign bar_hit       = RxDesc_i[134:128]; 
  assign bar2_hit      = RxDesc_i[130]; 
  assign dma_tag       = 8'b11111111; 
  assign attr          = RxDesc_i[109:108]; 
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//****Modification: send enable signal to application**** 
  assign DmaReg_app_enable_o = DmaCtrl_reg[10]; 
 assign DmaReg_app_finished_o = DmaCtrl_reg[11]; 
 
// decode the max read size 
 
always @(DevCsr_i) 
  begin 
    case(DevCsr_i[7:5]) 
      3'b000 : max_rd_size = 128; 
      3'b001 : max_rd_size = 256; 
      3'b010 : max_rd_size = 512; 
      3'b011 : max_rd_size = 1024; 
      3'b100 : max_rd_size = 2048; 
      default : max_rd_size = 2048; 
    endcase 
  end 
 
// Need to flop this to fix a timing violation 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) begin 
       max_rd_size_reg <= 13'h0000; 
       bytes_to_4KB_reg <= 13'h0000; 
    end 
    else begin  
       max_rd_size_reg <= max_rd_size; 
       bytes_to_4KB_reg <= bytes_to_4KB; 
    end 
  end 
 
// bytes to 4KB boundary 
// assign bytes_to_4KB = 13'h1000 - dma_adr_reg[11:0]; 
assign bytes_to_4KB = 13'h1000 - DmaSrcAdr_o[11:0]; 
   
// Divide up the whole dma request to 2 parts if it hits the 4KB boundary 
// First set the 1st_byte_size_reg to either the 4KB boundary or 
// DmaByteCnt_i 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      byte_size_reg_1 <= 0; 
    else if(rxidle & (DmaByteCnt_o > bytes_to_4KB_reg)) 
      byte_size_reg_1 <= bytes_to_4KB_reg; 
    else if(rxidle & (DmaByteCnt_o <= bytes_to_4KB_reg)) 
      byte_size_reg_1 <= DmaByteCnt_o; 
    else if(rx_dmaout & rx_dmard1_reg) 
      byte_size_reg_1 <= byte_size_reg_1 - rd_size_reg; 
  end 
 
// Divide up the whole dma request to 2 parts if it hits the 4KB boundary 
// First set the 2nd_byte_size_reg to either DmaByteCnt_i - bytes_to_4KB 
// or 0 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      byte_size_reg_2 <= 0; 
    else if(rxidle & (DmaByteCnt_o > bytes_to_4KB_reg)) 
      byte_size_reg_2 <= (DmaByteCnt_o - bytes_to_4KB_reg); 
    else if(rxidle & (DmaByteCnt_o <= bytes_to_4KB_reg)) 
      byte_size_reg_2 <= 13'h0000; 
    else if(rx_dmaout & rx_dmard2_reg) 
      byte_size_reg_2 <= byte_size_reg_2 - rd_size_reg; 
  end 
 
// read address reg increments byte the amount of byte in each read header 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      ddr_dma_adr_reg <= 0; 
    else if(DmaStart_int & rxidle) 
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      ddr_dma_adr_reg <= DmaSrcAdr_o; 
    else if(rx_dmaout_reg) 
      ddr_dma_adr_reg[15:0] <= ddr_dma_adr_reg[15:0] + dma_qwlen_reg; 
  end 
   
// read address reg increments byte the amount of byte in each read header 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      dma_adr_reg <= 0; 
    else if(DmaStart_int & rxidle) 
      dma_adr_reg <= {DmaSrcAdr_o[60:0],3'b000}; 
    else if(rx_dmaout_reg) 
      dma_adr_reg[15:0] <= dma_adr_reg[15:0] + {dma_qwlen_reg,3'b000}; 
  end 
   
assign remain_bcnt = (byte_size_reg_1 > 13'h0000) ? byte_size_reg_1 : 
              byte_size_reg_2; 
 
assign rd_size = (remain_bcnt >= max_rd_size_reg) ? max_rd_size_reg : 
          remain_bcnt; 
 
// flop this for timing reason, for fmax of 250MHz 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      remain_bcnt_reg <= 0; 
    else if (rx_dmard1 | rx_dmard2) 
      remain_bcnt_reg <= remain_bcnt; 
  end 
 
// flop this for timing reason, for fmax of 250MHz 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      rd_size_reg <= 0; 
    else if (rx_dmard1 | rx_dmard2) 
      rd_size_reg <= rd_size; 
  end 
 
assign last_rd_segment_1 = rx_dmard1_reg & (rd_size_reg == remain_bcnt_reg); 
assign last_rd_segment_2 = rx_dmard2_reg & (rd_size_reg == remain_bcnt_reg); 
 
  // modified length from dw to qword length to match the internal 64-bit 
datapath 
  // to compensate for the misaligned qwords 
  // 
  // In order to meet timing of 250MHz, some assumptions were made 
  // 1. DMA starting address should be qword aligned 
  // 2. DMA size should be multiples of 8 
  // Because of that, the above logic can be eliminated to improve timing 
  // The below is the optimized RTL 
  assign dma_dwlen = rd_size_reg[12:2]; 
  assign dma_qwlen = rd_size_reg[12:3]; 
   
  // modified length from dw to qword length to match the internal 64-bit 
datapath 
  // to compensate for the misaligned qwords 
  assign len_plus_2 = rx_addr[2] & ~rx_dwlen[0]; 
  assign len_plus_1 = rx_dwlen[0]; 
   
  always @(len_plus_2, len_plus_1, rx_dwlen) 
    begin 
      case({len_plus_2,len_plus_1}) 
        2'b01   : rx_modlen = rx_dwlen + 11'h001; 
        2'b10   : rx_modlen = rx_dwlen + 11'h002; 
        default : rx_modlen = rx_dwlen; 
      endcase 
    end 
     
  // counter to track the available buffer size (tx completion) before 
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  // accepting a read request packet 
  // TxCplLen_i is the modified length to compensate for the misaligned qwords 
   
  // special pipeline signal to solve a timing issue 
  always @(posedge Clk_i or negedge Rstn_i)  // state machine registers 
  begin 
    if(~Rstn_i) begin 
      TxCpl_i_reg <= 1'b0; 
      rx_rdack_reg <= 1'b0; 
      rx_dmard1_reg <= 1'b0; 
      rx_dmard2_reg <= 1'b0; 
      rx_dmaout_reg <= 1'b0; 
      dma_qwlen_reg <= 0; 
      dma_dwlen_reg <= 0; 
    end 
    else begin 
      TxCpl_i_reg <= TxCpl_i; 
      rx_rdack_reg <= rx_rdack; 
      rx_dmard1_reg <= rx_dmard1; 
      rx_dmard2_reg <= rx_dmard2; 
      rx_dmaout_reg <= rx_dmaout; 
      dma_qwlen_reg <= dma_qwlen; 
      dma_dwlen_reg <= dma_dwlen; 
    end 
  end 
   
  // assign txcpl_dw = {TxCplLen_i, 1'b0}; 
  assign rd_cnt = ~rx_rdack & ~rx_dmaout; 
   
  always @(posedge Clk_i or negedge Rstn_i) 
    begin 
      if(~Rstn_i) 
        txdabuf_inc_cnt <= 12'h000; 
      else if(TxCpl_i & ~rd_cnt) 
        txdabuf_inc_cnt <= txdabuf_inc_cnt + TxCplLen_i; 
      else if(~TxCpl_i & rd_cnt) 
        txdabuf_inc_cnt <= 12'h000; 
      else if(TxCpl_i & rd_cnt) 
        txdabuf_inc_cnt <= TxCplLen_i; 
      else 
        txdabuf_inc_cnt <= txdabuf_inc_cnt; 
    end 
 
  always @(posedge Clk_i or negedge Rstn_i) 
    begin 
      if(~Rstn_i) 
        txcpl_buffer_size <= 12'h060; // 128 QW available 
      else if(~rx_rdack & ~rx_dmaout) 
        txcpl_buffer_size <= txcpl_buffer_size + txdabuf_inc_cnt; 
      else if(rx_rdack & ~rx_dmaout) 
        txcpl_buffer_size <= txcpl_buffer_size - rx_modlen_reg[10:1]; 
      else if(~rx_rdack & rx_dmaout) 
        txcpl_buffer_size <= txcpl_buffer_size - dma_qwlen; 
      else 
        txcpl_buffer_size <= txcpl_buffer_size; 
    end 
 
  // check buffer space 
  assign cmd_fifo_ok     = (CmdFifoUsedW_i <= 31); 
  assign dat_fifo_ok     = (DatFifoUsedW_i <= 125); 
  assign pndgrd_fifo_ok  = (PndngRdFifoUsedW_i <= 31); 
  // The correct variable to use should be rx_modlen. 
  // But to fix a timing violation at 250MHz, rx_dwlen is used 
  // In any case, the difference between rx_dwlen and rx_modlen can only be  
  // 1 entry worth of data space in the cpl_buff and so it should not cause  
  // any functional bug because sufficient buffer is provided in cpl_buff. 
  // assign rd_cpl_buff_ok  = (txcpl_buffer_size >= {2'b00,rx_modlen[10:1]}); 
  assign rd_cpl_buff_ok  = (txcpl_buffer_size >= {2'b00,rx_dwlen[10:1]}); 
  assign dma_cpl_buff_ok = (txcpl_buffer_size >= {2'b00,dma_qwlen});  
   
  // Rx control state machine 
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  always @(posedge Clk_i or negedge Rstn_i)  // state machine registers 
  begin 
    if(~Rstn_i) 
      rx_state <= RX_IDLE; 
    else 
      rx_state <= rx_nxt_state; 
  end 
   
  // state machine next state gen 
  // treating completion the same as write 
 
always @(*) 
  begin 
    case(rx_state) 
      RX_IDLE : 
        if(RxReq_i & (is_wr | is_cpl_wd | is_cpl_wod) & cmd_fifo_ok) 
          rx_nxt_state <= RX_WR_ACK; 
        else if(RxReq_i & is_rd & cmd_fifo_ok & rd_cpl_buff_ok & 
pndgrd_fifo_ok) 
          rx_nxt_state <= RX_RD_ACK; 
        else if(RxReq_i & is_rd & cmd_fifo_ok & ~pndgrd_fifo_ok) 
          rx_nxt_state <= RX_RD_RETRY; 
        else if (DmaStart_int & DmaWrite_o & ~DmaBusy_i) 
          rx_nxt_state <= RX_DMA_RD1; 
        else if (~RxReq_i) 
          rx_nxt_state <= RX_IDLE;  
        else 
          rx_nxt_state <= RX_ERR; 
                                                               
      RX_WR_ACK :     
        if(is_cpl_wd | is_wr) 
          rx_nxt_state <= RX_WR_DATA; 
        else 
          rx_nxt_state <= RX_IDLE; 
      RX_WR_DATA : 
        if(~RxDfr_i & RxDv_i) 
          rx_nxt_state <= RX_IDLE; 
        else if(~dat_fifo_ok) 
          rx_nxt_state <= RX_WR_WAIT; 
        else 
          rx_nxt_state <= RX_WR_DATA; 
           
      RX_WR_WAIT : 
        if(dat_fifo_ok) 
          rx_nxt_state <= RX_WR_DATA; 
        else 
          rx_nxt_state <= RX_WR_WAIT; 
           
      RX_RD_ACK : 
          rx_nxt_state <= RX_IDLE;   
           
      RX_RD_RETRY : 
          rx_nxt_state <= RX_IDLE; 
           
      RX_DMA_RD1: 
 if (cmd_fifo_ok & dma_cpl_buff_ok & pndgrd_fifo_ok) 
          rx_nxt_state <= RX_DMA_OUT; 
        else 
          rx_nxt_state <= RX_DMA_RD1; 
 
      RX_DMA_RD2: 
 if (cmd_fifo_ok & dma_cpl_buff_ok & pndgrd_fifo_ok) 
          rx_nxt_state <= RX_DMA_OUT; 
        else 
          rx_nxt_state <= RX_DMA_RD2; 
 
      RX_DMA_OUT: 
        if (~last_rd_segment_1 & rx_dmard1_reg) 
          rx_nxt_state <= RX_DMA_RD1; 
        else if((last_rd_segment_1 & (byte_size_reg_2 == 13'h0000)) || 
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           (last_rd_segment_2)) 
          rx_nxt_state <= RX_IDLE; 
        else if ((last_rd_segment_1 & (byte_size_reg_2 > 13'h0000)) || 
                 (~last_rd_segment_2 & rx_dmard2_reg)) 
          rx_nxt_state <= RX_DMA_RD2; 
 else 
          rx_nxt_state <= RX_DMA_OUT; 
 
      RX_ERR: 
 if (~RxDfr_i) 
          rx_nxt_state <= RX_IDLE; 
        else 
          rx_nxt_state <= RX_ERR; 
           
      default:                    
          rx_nxt_state <= RX_IDLE;    
       
      endcase 
    end 
           
// state machine output assignments 
 
assign rxidle     = ~rx_state[0]; 
assign rx_wrack   = rx_state[1]; 
assign rx_wrdata  = rx_state[2]; 
assign rx_wrwait  = rx_state[3]; 
assign rx_rdack   = rx_state[4]; 
assign rx_rdretry = rx_state[5]; 
assign rx_dmard1  = rx_state[6]; 
assign rx_dmard2  = rx_state[7]; 
assign rx_dmaout  = rx_state[8]; 
assign rx_err     = rx_state[9]; 
 
 
/// PCI Express core control interface 
// assign RxAck_o   = rx_wrack | rx_rdack | rx_err; 
assign RxAck_o   = rx_wrack | rx_rdack | (rx_err & RxReq_i); 
assign RxRetry_o = rx_rdretry; 
assign RxMask_o  = rx_rdretry; 
assign RxWs_o    = rx_wrwait | rxidle | rx_wrack ; 
 
// Command and data fifo interface 
// the command/data fifo is used to store the selected header information  
// and the write/completion data from rx port 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      CmdFifoWrReq_o <= 1'b0; 
    else 
      CmdFifoWrReq_o <= (rx_wrack & ~dma_reg_wr) | rx_rdack | rx_dmaout; 
    end 
 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DatFifoWrReq_o <= 1'b0; 
    else 
      DatFifoWrReq_o <= (RxDv_i & rx_wrdata & ~dma_reg_wr); 
    end 
 
// tag generation counter 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      dma_tag_cntr <= 8'h00; 
    else if(rxidle)  
      dma_tag_cntr <= 8'h00; 
    else if(rx_dmaout) 
      dma_tag_cntr <= dma_tag_cntr + 1; 
  end   
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// assemble the various headers 
// [4:0]   : Completion tag 
// [14:5]  : length in real QW  
// [15]    : last completion 
// [16]    : completion successful 
// [23:17] : BAR hit 
// [31:24] : reserved 
// [63:32] : Target address 
// [64]    : write request packet 
// [65]    : read request packet 
// [66]    : completion with data 
// [67]    : completion without data 
// [71:68] : reserved 
 
 
assign wr_header  = {4'h0, 4'h1, rx_addr, 8'h00, bar_hit[6:0] ,1'b0, 1'b0, 
rx_modlen[10:1], 5'h00}; 
assign rd_header  = {4'h0, 4'h2, rx_addr, 8'h00,bar_hit[6:0], 1'b0, 1'b0, 
rx_modlen[10:1], 5'h00}; 
assign cpl_header = {4'h0, is_cpl_wod, is_cpl_wd, 2'b00, 32'h00000000, 8'h00, 
bar_hit[6:0], cpl_success, last_cpl, rx_modlen[10:1], cpl_tag[4:0]};   
assign dma_header  = {4'h0, 4'h2, ddr_dma_adr_reg[31:0], 8'h00,bar_hit[6:0], 
1'b0, 1'b0, dma_qwlen, dma_tag_cntr[4:0]}; 
 
//muxing the header before writting it to the CD buffer 
assign wr_header_sel  = is_wr & rx_wrack; 
assign cpl_header_sel = (is_cpl_wd | is_cpl_wod) & rx_wrack; 
assign rd_header_sel  = rx_rdack; 
assign dma_header_sel  = rx_dmaout; 
 
assign header_sel = {dma_header_sel, rd_header_sel, cpl_header_sel, 
wr_header_sel}; 
 
always @(header_sel, rd_header_sel, cpl_header_sel, wr_header, cpl_header, 
rd_header, 
         dma_header, dma_header_sel) 
  begin 
    case(header_sel) 
      4'b0001 : rx_header = wr_header; 
      4'b0010 : rx_header = cpl_header; 
      4'b0100 : rx_header = rd_header; 
      4'b1000 : rx_header = dma_header; 
      default: rx_header = 72'h0000000000000000; 
    endcase 
  end 
   
   
// figuring out the ben 
 
// the rx write data counter 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      rx_wrdat_cntr <= 0; 
    else if(rx_wrack) 
      rx_wrdat_cntr <= rx_modlen; 
    else if((RxDv_i & rx_wrdata)) 
      rx_wrdat_cntr <= rx_wrdat_cntr - 11'h002; 
  end 
 
// registers to hold the needed RxDesc_i fields (that be gone after ack) 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      begin 
        rx_fbe_reg <= 0; 
        rx_lbe_reg <= 0; 
        rxaddr_bit2_reg <= 0; 
        rxdwlen0_reg <= 0; 
      end 
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    else if(rx_wrack) 
      begin 
        rx_fbe_reg <= rx_fbe; 
        rx_lbe_reg <= rx_lbe; 
        rxaddr_bit2_reg <= rx_addr[2]; 
        rxdwlen0_reg <= rx_dwlen[0]; 
      end 
  end 
 
// registers to hold the needed RxDesc_i fields (that be gone after ack) 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      rx_modlen_reg <= 0; 
    else 
      rx_modlen_reg <=  rx_modlen; 
  end 
 
/// the low be [3:0] 
// the source can be : 1. masking, 2. first_be, 3. last_be 
 
assign lowbe_mask_sel =  rxaddr_bit2_reg & (rx_wrdat_cntr == rx_modlen_reg);    
// the first 64-bit data of the odd address 
assign lowbe_fbe_sel  = ~rxaddr_bit2_reg &  (rx_wrdat_cntr == rx_modlen_reg);   
// first 64-bit data and even address 
assign lowbe_lbe_sel  =  (rxdwlen0_reg ^ rxaddr_bit2_reg) & (rx_wrdat_cntr == 
2);     // at the last data 
 
// muxing the sources 
always @(lowbe_lbe_sel, lowbe_fbe_sel, lowbe_mask_sel, rx_fbe_reg, rx_lbe_reg) 
  begin 
    case({lowbe_lbe_sel, lowbe_fbe_sel, lowbe_mask_sel}) 
      3'b001 : rx_lowbe = 4'h0; 
      3'b010 : rx_lowbe = rx_fbe_reg; 
      3'b100 : rx_lowbe = rx_lbe_reg; 
      default :  rx_lowbe = 4'hF; 
    endcase 
  end 
 
/// the high be [7:4] 
 
assign highbe_mask_sel =  (rxdwlen0_reg ^ rxaddr_bit2_reg) & (rx_wrdat_cntr == 
2); 
assign highbe_fbe_sel  =   rxaddr_bit2_reg & (rx_wrdat_cntr == rx_modlen_reg); 
assign highbe_lbe_sel   =  ~rxdwlen0_reg & ~rxaddr_bit2_reg & (rx_wrdat_cntr 
== 2); 
 
// muxing the sources 
always @(highbe_lbe_sel, highbe_fbe_sel, highbe_mask_sel, rx_fbe, rx_lbe) 
  begin 
    case({highbe_lbe_sel, highbe_fbe_sel, highbe_mask_sel}) 
      3'b001 : rx_highbe = 4'h0; 
      3'b010 : rx_highbe = rx_fbe; 
      3'b100 : rx_highbe = rx_lbe; 
      default :  rx_highbe = 4'hF; 
    endcase 
  end 
 
 
/// muxing between the data/ben and the header before writting into the CD 
buffer 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      CmdFifoDat_o <= 0; 
    else 
      CmdFifoDat_o <= rx_header; 
  end 
 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
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    if(~Rstn_i) 
      DatFifoDat_o <= 0; 
    else 
      DatFifoDat_o <= ({rx_highbe, rx_lowbe, RxData_i}); 
  end 
 
//// Rx pending read request 
// when a read request is accepted and sent to the avalon, some of the header 
// info needs to be saved and later used to reconstruct the completion packet 
 
// [7:0]   tag 
// [14:8]  7-bit lower address 
// [15]    DMA register read 
// [31:16] Requestor ID 
// [42:32] Requested length 
// [46:43] First Ben 
// [47]    DMA request 
// [49:48] attr 
 
 
assign PndgRdHeader_o    = rx_rdack ?  
 {attr, 1'b0, rx_fbe, rx_dwlen, requestor_id, dma_reg_rd, rx_addr[6:0], 
rdreq_tag} : 
 {attr, 1'b1, 4'b1111, dma_dwlen, requestor_id, 1'b0, dma_adr_reg[6:0], 
dma_tag_cntr}; 
assign PndgRdFifoWrReq_o = rx_rdack | rx_dmaout; 
 
// if bar2_hit and a wr_req 
// decode the lower bits of the address 
// find out which dma register it is accessing 
// write the data to the dma register 
// when the dma start register is written 
// output the dma request 
 
assign dma_reg_wr = is_wr & bar2_hit; 
assign dma_reg_rd = is_rd & bar2_hit; 
 
always @(rx_addr) 
  begin 
    case(rx_addr[7:0]) 
      8'b00000000 : dma_reg_sel = 5'b00001;     // addr[31:0] of PCIe Addr 
      8'b00000100 : dma_reg_sel = 5'b00010;     // addr[63:32] of PCIe Addr 
      8'b00001000 : dma_reg_sel = 5'b00100;     // DmaByteCnt 
      8'b00001100 : dma_reg_sel = 5'b01000;     // DmaCtrl 
      8'b00010100 : dma_reg_sel = 5'b10000;     // addr[31:0] of DDR2 Addr 
      default     : dma_reg_sel = 5'b00000;  
    endcase 
  end 
 
assign DmaPloAdr_wen = dma_reg_wr & dma_reg_sel[0]; 
assign DmaPhiAdr_wen = dma_reg_wr & dma_reg_sel[1]; 
assign DmaBcnt_wen = dma_reg_wr & dma_reg_sel[2]; 
assign DmaCtrl_wen = dma_reg_wr & dma_reg_sel[3]; 
assign DmaDdrAdr_wen = dma_reg_wr & dma_reg_sel[4]; 
 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      begin 
        DmaPloAdr_wen_reg <= 0; 
        DmaPhiAdr_wen_reg <= 0; 
        DmaDdrAdr_wen_reg <= 0; 
        DmaBcnt_wen_reg <= 0; 
        DmaCtrl_wen_reg <= 0; 
      end 
    else if(rx_wrack) 
      begin 
        DmaPloAdr_wen_reg <= DmaPloAdr_wen; 
        DmaPhiAdr_wen_reg <= DmaPhiAdr_wen; 
        DmaDdrAdr_wen_reg <= DmaDdrAdr_wen; 
        DmaBcnt_wen_reg <= DmaBcnt_wen; 
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        DmaCtrl_wen_reg <= DmaCtrl_wen; 
      end 
  end 
   
// DmaPloAdr - Dma PCIe address lower half, i.e. [31:0]   
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DmaPloAdr_reg <= 0; 
    else if(rx_wrdata & DmaPloAdr_wen_reg)    
      DmaPloAdr_reg <= RxData_i[31:0]; 
  end 
 
// DmaPhiAdr - Dma PCIe address upper half, i.e. [63:32] 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DmaPhiAdr_reg <= 0; 
    else if(rx_wrdata & DmaPhiAdr_wen_reg)    
      DmaPhiAdr_reg <= RxData_i[31:0]; 
  end 
 
// DmaDdrAdr 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DmaDdrAdr_reg <= 0; 
    else if(rx_wrdata & DmaDdrAdr_wen_reg)    
      DmaDdrAdr_reg <= RxData_i[31:0]; 
  end 
 
// Dma Byte Cnt[12:0].  Only [12:0] is used 
// The rest is ignored. 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DmaBcnt_reg <= 0; 
    else if(rx_wrdata & DmaBcnt_wen_reg)    
      DmaBcnt_reg <= RxData_i[31:0]; 
  end 
 
// DmaWr when DmaBcnt_reg[6:5] = 10b (3DW) or 11b (4DW) 
// DmaRd when DmaBcnt_reg[6:5] = 00b (3DW) or 01b (4DW) 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DmaCtrl_reg[6:5] <= 0; 
    else if(rx_wrdata & DmaCtrl_wen_reg)    
      DmaCtrl_reg[6:5] <= RxData_i[6:5]; 
  end 
 
//**** Modification made to check *************** 
 
always @(posedge Clk_i or negedge Rstn_i) 
 begin 
   if(~Rstn_i) 
     DmaCtrl_reg[10] <= 1'b0;     
   else if(rx_wrdata & DmaCtrl_wen_reg)    
     DmaCtrl_reg[10] <= RxData_i[10]; 
end 
 
always @(posedge Clk_i or negedge Rstn_i) 
 begin 
   if(~Rstn_i) 
     DmaCtrl_reg[11] <= 1'b0; 
   else if(DmaReg_app_finished_i)    
     DmaCtrl_reg[11] <= DmaReg_app_finished_i; 
 end 
//************************************************ 
 
// DmaStart bit can only set by user at DmaCtrl_reg[0] 
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// DmaDone bit can only set by hardware at DmaCtrl_reg[8] 
// When DmaStart bit is written, Dma will start if DmaBusy is not asserted 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DmaCtrl_reg[7] <= 1'b0; 
    else if(DmaStart_reg)    
      DmaCtrl_reg[7] <= 1'b0; 
    else if(rx_wrdata & DmaCtrl_wen_reg)    
      DmaCtrl_reg[7] <= RxData_i[7]; 
  end 
 
 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DmaStart_reg <= 0; 
    else  
      DmaStart_reg <= DmaCtrl_reg[7]; 
  end 
 
assign DmaRead_o = ~DmaCtrl_reg[6]; 
assign DmaWrite_o = DmaCtrl_reg[6]; 
assign DmaSrcAdr_o = DmaWrite_o ? {32'h00000000,DmaDdrAdr_reg}  
                                : {DmaPhiAdr_reg,DmaPloAdr_reg}; 
assign DmaDstAdr_o = DmaWrite_o ? {DmaPhiAdr_reg,DmaPloAdr_reg} 
                                : {32'h00000000,DmaDdrAdr_reg}; 
assign DmaByteCnt_o = DmaBcnt_reg[12:0]; 
assign DmaStart_o = DmaCtrl_reg[7]; 
assign DmaStart_int = DmaCtrl_reg[7] & ~DmaStart_reg; 
assign Dma_wr_busy_o = rx_dmard1 | rx_dmard2 | rx_dmaout; 
 
// assign DmaCtrl_reg[31] = 1 when DmaBusy from top level 
// assign DmaCtrl_reg[31] = 0 when DmaDone from top level 
always @(posedge Clk_i or negedge Rstn_i) 
  begin 
    if(~Rstn_i) 
      DmaCtrl_reg[31] <= 1'b0; 
    else 
      DmaCtrl_reg[31] <= DmaBusy_i; 
  end 
 
 
endmodule 
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Appendix A7. The Switch 

switch_top.v 

// Code was created by Maxim Leonov 
// Copyright 2008 Auckland University of Technology 
module switch_top 
 
  (  
    input         Clk_i, 
    input         Rstn_i, 
  
 input    switch_select_i, 
 output    switch_select_o, 
      
    //rx_top interfaces 
    input         rx_top_read_i, 
    input         rx_top_write_i, 
    input [31:0]  rx_top_address_i, 
    input [63:0]  rx_top_write_data_i, 
    input [7:0]   rx_top_byte_enable_i, 
    input [1:0]   rx_top_burst_count_i, 
 
 output        rx_top_ready_o, 
    output        rx_top_wrdata_req_o, 
 
 //tx_top interfaces 
 output    tx_top_rd_data_valid_o, 
 output [63:0] tx_top_read_data_o, 
 
 //driver interfaces 
    input         driver_read_i, 
    input         driver_write_i, 
    input [1:0]   driver_bank_address_i, 
    input [9:0]   driver_col_address_i, 
    input [12:0]  driver_row_address_i, 
    input [63:0]  driver_write_data_i, 
    input [7:0]   driver_byte_enable_i, 
    input [1:0]   driver_burst_count_i, 
 
 output        driver_ready_o, 
    output        driver_wrdata_req_o, 
    output [63:0] driver_read_data_o, 
 output    driver_rdata_valid_o, 
  
    //ddr_ctrlr interfaces 
    input          DdrReady_i,//1 
    input          DdrWrDataReq_i,//2 
    input [63:0]   DdrReadData_i,//3 
 input     DddReadDataValid_i, 
 
 output         DdrRead_o,//5 
 output         DdrWrite_o,//6 
    output [31:0]  DdrAddress_o,//7 
    output [63:0]  DdrWriteData_o,//8 
    output [7:0]   DdrByteEnable_o,//9 
    output [1:0]   DdrBurstCount_o  //10 
 
  ); 
 
 
wire   driver_read; 
wire   driver_write; 
wire [31:0]  driver_address; 
wire [63:0]  driver_write_data; 
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wire [7:0]  driver_byte_enable; 
wire [1:0]  driver_burst_count; 
wire   driver_ddr_ready; 
wire   driver_wrdata_req; 
 
wire   rx_top_read; 
wire   rx_top_write; 
wire [31:0]  rx_top_address; 
wire [63:0]  rx_top_write_data; 
wire [7:0]  rx_top_byte_enable; 
wire [1:0]  rx_top_burst_count; 
wire   rx_top_ready; 
wire   rx_top_wrdata_req; 
 
assign switch_select_o = switch_select_i; 
 
//connect up the address bits 
assign driver_address[8 : 0] = driver_col_address_i[9 : 1]; 
assign driver_address[21: 9] = driver_row_address_i; 
assign driver_address[23:22] = driver_bank_address_i; 
assign driver_address[31:24] = 8'h00; 
 
assign DdrRead_o = switch_select_i? driver_read_i : rx_top_read_i; 
assign DdrWrite_o = switch_select_i ? driver_write_i : rx_top_write_i; 
assign DdrAddress_o = switch_select_i ? driver_address : rx_top_address_i; 
assign DdrWriteData_o = switch_select_i ?  driver_write_data_i: 
rx_top_write_data_i; 
assign DdrByteEnable_o = switch_select_i ? driver_byte_enable_i : 
rx_top_byte_enable_i; 
assign DdrBurstCount_o = switch_select_i ? driver_burst_count_i : 
rx_top_burst_count_i; 
 
assign driver_ready_o = switch_select_i ? DdrReady_i : 1'b0; 
assign rx_top_ready_o = ~switch_select_i ? DdrReady_i : 1'b0; 
 
assign driver_wrdata_req_o = switch_select_i ? DdrWrDataReq_i : 1'b0; 
assign rx_top_wrdata_req_o = ~switch_select_i ? DdrWrDataReq_i : 1'b0; 
 
assign driver_read_data_o = switch_select_i ? DdrReadData_i : {64{1'b0}}; 
assign tx_top_read_data_o = ~switch_select_i ? DdrReadData_i : {64{1'b0}}; 
 
assign driver_rdata_valid_o = switch_select_i ? DddReadDataValid_i : 1'b0; 
assign tx_top_rd_data_valid_o = ~switch_select_i ? DddReadDataValid_i : 1'b0; 
   
endmodule 
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Appendix A8. The Correlator’s DDR Controller Driver 

ddr_ctrl_driver.v 

// Code was created by Maxim Leonov 
// Copyright 2008 Auckland University of Technology 
 
// synthesis translate_off 
`timescale 1ns / 1ps 
// synthesis translate_on 
 
module ddr_ctrl_driver ( 
      // inputs: 
 clk, 
 local_rdata, 
 local_rdata_valid, 
 local_ready, 
 local_wdata_req, 
 reset_n, 
 
 enable, 
 data_r1, 
 data_r2, 
 data_r3, 
 data_r4, 
 data_r5, 
 data_r6, 
 data_r7, 
 data_r8, 
 data_r9, 
 data_r10, 
 data_r11, 
 data_r12, 
 data_r13, 
 data_r14, 
 data_r15, 
        
 in_stream_x1_ready, 
 in_stream_x2_ready, 
 in_stream_x3_ready, 
 in_stream_x4_ready, 
 in_stream_x5_ready, 
 in_stream_x6_ready, 
 out_stream_r1_ready, 
 out_stream_r2_ready, 
 out_stream_r3_ready, 
 out_stream_r4_ready, 
 out_stream_r5_ready, 
 out_stream_r6_ready, 
 out_stream_r7_ready, 
 out_stream_r8_ready, 
 out_stream_r9_ready, 
 out_stream_r10_ready, 
 out_stream_r11_ready, 
 out_stream_r12_ready, 
 out_stream_r13_ready, 
 out_stream_r14_ready, 
 out_stream_r15_ready, 
 out_stream_r1_closed, 
 out_stream_r2_closed, 
 out_stream_r3_closed, 
 out_stream_r4_closed, 
 out_stream_r5_closed, 
 out_stream_r6_closed, 
 out_stream_r7_closed, 
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 out_stream_r8_closed, 
 out_stream_r9_closed, 
 out_stream_r10_closed, 
 out_stream_r11_closed, 
 out_stream_r12_closed, 
 out_stream_r13_closed, 
 out_stream_r14_closed, 
 out_stream_r15_closed, 
 
 
 // outputs: 
 data_to_corr_o, 
 corr_x1_rd_data_valid_o, 
 corr_x2_rd_data_valid_o, 
 corr_x3_rd_data_valid_o, 
 corr_x4_rd_data_valid_o, 
 corr_x5_rd_data_valid_o, 
 corr_x6_rd_data_valid_o, 
 corr_wrdata_req_o_r1, 
 corr_wrdata_req_o_r2, 
 corr_wrdata_req_o_r3, 
 corr_wrdata_req_o_r4, 
 corr_wrdata_req_o_r5, 
 corr_wrdata_req_o_r6, 
 corr_wrdata_req_o_r7, 
 corr_wrdata_req_o_r8, 
 corr_wrdata_req_o_r9, 
 corr_wrdata_req_o_r10, 
 corr_wrdata_req_o_r11, 
 corr_wrdata_req_o_r12, 
 corr_wrdata_req_o_r13, 
 corr_wrdata_req_o_r14, 
 corr_wrdata_req_o_r15, 
 read_count_o, 
 
 burst_begin, 
 local_bank_addr, 
 local_be, 
 local_col_addr, 
 local_cs_addr, 
 local_read_req, 
 local_row_addr, 
 local_size, 
 local_wdata, 
 local_write_req, 
 pnf_per_byte, 
 pnf_persist, 
 test_complete 
                                  ); 
 
  output           burst_begin; 
  output  [  1: 0] local_bank_addr; 
  output  [  7: 0] local_be; 
  output  [  9: 0] local_col_addr; 
  output           local_cs_addr; 
  output           local_read_req; 
  output  [ 12: 0] local_row_addr; 
  output  [  1: 0] local_size; 
  output  [ 63: 0] local_wdata; 
  output           local_write_req; 
  output  [  7: 0] pnf_per_byte; 
  output           pnf_persist; 
  output           test_complete; 
  output  [ 63: 0] data_to_corr_o; 
  output      corr_x1_rd_data_valid_o; 
  output      corr_x2_rd_data_valid_o; 
  output      corr_x3_rd_data_valid_o; 
  output      corr_x4_rd_data_valid_o; 
  output      corr_x5_rd_data_valid_o; 
  output      corr_x6_rd_data_valid_o; 
  output     corr_wrdata_req_o_r1; 
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  output     corr_wrdata_req_o_r2; 
  output     corr_wrdata_req_o_r3; 
  output     corr_wrdata_req_o_r4; 
  output     corr_wrdata_req_o_r5; 
  output     corr_wrdata_req_o_r6; 
  output     corr_wrdata_req_o_r7; 
  output     corr_wrdata_req_o_r8; 
  output     corr_wrdata_req_o_r9; 
  output     corr_wrdata_req_o_r10; 
  output     corr_wrdata_req_o_r11; 
  output     corr_wrdata_req_o_r12; 
  output     corr_wrdata_req_o_r13; 
  output     corr_wrdata_req_o_r14; 
  output     corr_wrdata_req_o_r15; 
  output  [ 15: 0] read_count_o; 
 
 
  input            clk; 
input     enable; 
input    in_stream_x1_ready; 
input    in_stream_x2_ready; 
input    in_stream_x3_ready; 
input    in_stream_x4_ready; 
input    in_stream_x5_ready; 
input    in_stream_x6_ready; 
input    out_stream_r1_ready; 
input    out_stream_r2_ready; 
input    out_stream_r3_ready; 
input    out_stream_r4_ready; 
input    out_stream_r5_ready; 
input    out_stream_r6_ready; 
input    out_stream_r7_ready; 
input    out_stream_r8_ready; 
input    out_stream_r9_ready; 
input    out_stream_r10_ready; 
input    out_stream_r11_ready; 
input    out_stream_r12_ready; 
input    out_stream_r13_ready; 
input    out_stream_r14_ready; 
input    out_stream_r15_ready; 
input    out_stream_r1_closed; 
input    out_stream_r2_closed; 
input    out_stream_r3_closed; 
input    out_stream_r4_closed; 
input    out_stream_r5_closed; 
input    out_stream_r6_closed; 
input    out_stream_r7_closed; 
input    out_stream_r8_closed; 
input    out_stream_r9_closed; 
input    out_stream_r10_closed; 
input    out_stream_r11_closed; 
input    out_stream_r12_closed; 
input    out_stream_r13_closed; 
input    out_stream_r14_closed; 
input    out_stream_r15_closed; 
input   [ 63: 0] local_rdata; 
input    local_rdata_valid; 
input    local_ready; 
input    local_wdata_req; 
input    reset_n; 
input [ 63: 0] data_r1; 
input [ 63: 0] data_r2; 
input [ 63: 0] data_r3; 
input [ 63: 0] data_r4; 
input [ 63: 0] data_r5; 
input [ 63: 0] data_r6; 
input [ 63: 0] data_r7; 
input [ 63: 0] data_r8; 
input [ 63: 0] data_r9; 
input [ 63: 0] data_r10; 
input [ 63: 0] data_r11; 
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input [ 63: 0] data_r12; 
input [ 63: 0] data_r13; 
input [ 63: 0] data_r14; 
input [ 63: 0] data_r15; 
 
 
 
  wire    [  1: 0] LOCAL_BURST_LEN_s; 
  wire    [  1: 0] MAX_BANK; 
  wire             MAX_CHIPSEL; 
  wire    [  9: 0] MAX_COL; 
  wire    [ 12: 0] MAX_ROW; 
  wire             MIN_CHIPSEL; 
  wire    [  1: 0] DATA_BANK; 
  wire    [  9: 0] DATA_COL; 
  wire    [ 12: 0] DATA_ROW; 
  wire             DATA_CHIPSEL; 
  wire    [  1: 0] DATA_OUT_BANK; 
  wire    [  9: 0] DATA_OUT_COL; 
  wire    [ 12: 0] DATA_OUT_ROW; 
  wire             DATA_OUT_CHIPSEL; 
  wire             avalon_burst_mode; 
  wire             avalon_read_burst_max_address; 
  reg     [  1: 0] bank_addr; 
//  wire    [ 17: 0] be; 
  wire    [  7: 0] be; 
  reg     [  2: 0] burst_beat_count; 
  reg              burst_begin; 
  reg     [  9: 0] col_addr; 
  wire    [  7: 0] compare; 
  reg     [  7: 0] compare_reg; 
  reg     [  7: 0] compare_valid; 
  reg     [  7: 0] compare_valid_reg; 
  reg              cs_addr; 
  wire    [63: 0] dgen_data; 
  reg              dgen_enable; 
  reg     [63: 0] dgen_ldata; 
  reg              dgen_load; 
  wire             dgen_pause; 
  reg              last_rdata_valid; 
  reg              last_wdata_req; 
  wire    [  1: 0] local_bank_addr; 
//  wire    [ 17: 0] local_be; 
  wire    [  7: 0] local_be; 
  wire    [  9: 0] local_col_addr; 
  wire             local_cs_addr; 
  wire             local_read_req; 
  wire    [ 12: 0] local_row_addr; 
  wire    [  1: 0] local_size; 
//  wire    [143: 0] local_wdata; 
  wire    [63: 0] local_wdata; 
  wire             local_write_req; 
  wire    [ 17: 0] pnf_per_byte; 
  reg              pnf_persist; 
  reg              pnf_persist1; 
  wire             reached_data_address; 
  reg              reached_data_count; 
  wire             reached_data_out_address; 
  reg              reached_data_out_count; 
  wire             reached_max_address; 
  reg              reached_max_count; 
  reg              read_req; 
  reg     [  7: 0] reads_remaining; 
  reg              reset_address; 
  reg     [ 12: 0] row_addr; 
  wire    [  1: 0] size; 
  reg     [  3: 0] state; 
  reg              test_complete; 
  reg              wait_first_write_data; 
//  wire    [143: 0] wdata; 
  wire    [63: 0] wdata; 
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  wire             wdata_req; 
  reg              write_req; 
  reg     [  7: 0] writes_remaining; 
 
wire    enable; 
wire    in_streams_ready; 
 
reg     out_stream_ready; 
reg     out_stream_closed; 
 
reg  [ 15: 0] read_count; 
 
reg  [  3: 0] read_state; 
reg  [  3: 0] write_state; 
 
reg     read_done; 
 
reg     stream_x1_wr_enable_reg; 
reg     stream_x2_wr_enable_reg; 
reg     stream_x3_wr_enable_reg; 
reg     stream_x4_wr_enable_reg; 
reg     stream_x5_wr_enable_reg; 
reg     stream_x6_wr_enable_reg; 
 
reg     corr_wrdata_req_r0_reg; 
reg     corr_wrdata_req_r1_reg; 
reg     corr_wrdata_req_r2_reg; 
reg     corr_wrdata_req_r3_reg; 
reg     corr_wrdata_req_r4_reg; 
reg     corr_wrdata_req_r5_reg; 
reg     corr_wrdata_req_r6_reg; 
reg     corr_wrdata_req_r7_reg; 
reg     corr_wrdata_req_r8_reg; 
reg     corr_wrdata_req_r9_reg; 
reg     corr_wrdata_req_r10_reg; 
reg     corr_wrdata_req_r11_reg; 
reg     corr_wrdata_req_r12_reg; 
reg     corr_wrdata_req_r13_reg; 
reg     corr_wrdata_req_r14_reg; 
 
assign corr_x1_rd_data_valid_o = stream_x1_wr_enable_reg; 
assign corr_x2_rd_data_valid_o = stream_x2_wr_enable_reg; 
assign corr_x3_rd_data_valid_o = stream_x3_wr_enable_reg; 
assign corr_x4_rd_data_valid_o = stream_x4_wr_enable_reg; 
assign corr_x5_rd_data_valid_o = stream_x5_wr_enable_reg; 
assign corr_x6_rd_data_valid_o = stream_x6_wr_enable_reg; 
 
assign corr_wrdata_req_o_r1 = corr_wrdata_req_r0_reg; 
assign corr_wrdata_req_o_r2 = corr_wrdata_req_r1_reg; 
assign corr_wrdata_req_o_r3 = corr_wrdata_req_r2_reg; 
assign corr_wrdata_req_o_r4 = corr_wrdata_req_r3_reg; 
assign corr_wrdata_req_o_r5 = corr_wrdata_req_r4_reg; 
assign corr_wrdata_req_o_r6 = corr_wrdata_req_r5_reg; 
assign corr_wrdata_req_o_r7 = corr_wrdata_req_r6_reg; 
assign corr_wrdata_req_o_r8 = corr_wrdata_req_r7_reg; 
assign corr_wrdata_req_o_r9 = corr_wrdata_req_r8_reg; 
assign corr_wrdata_req_o_r10 = corr_wrdata_req_r9_reg; 
assign corr_wrdata_req_o_r11 = corr_wrdata_req_r10_reg; 
assign corr_wrdata_req_o_r12 = corr_wrdata_req_r11_reg; 
assign corr_wrdata_req_o_r13 = corr_wrdata_req_r12_reg; 
assign corr_wrdata_req_o_r14 = corr_wrdata_req_r13_reg; 
assign corr_wrdata_req_o_r15 = corr_wrdata_req_r14_reg; 
 
  assign avalon_burst_mode = 0; 
  assign MIN_CHIPSEL = 0; 
  assign MAX_CHIPSEL = 0; 
  assign MAX_ROW = 8;//0; 
  assign MAX_BANK = 0;//0; 
//  assign MAX_COL = 16;//96; 
  // 
// assign MAX_ROW = 1<<(13-1); 
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 assign MAX_COL = 1<<(10-1); 
  
 assign DATA_CHIPSEL = 0; 
 assign DATA_BANK = 0; 
// assign DATA_ROW = 1<<(4-1); 
 assign DATA_COL = 1<<(10-1); 
// assign DATA_ROW = 72; 
 assign DATA_ROW = 200; 
  
 assign DATA_OUT_CHIPSEL = 0; 
 assign DATA_OUT_BANK = 0; 
// assign DATA_OUT_ROW = 4; 
 assign DATA_OUT_ROW = 0; 
 assign DATA_OUT_COL = 132;//32 output samples 
  
// assign DATA_OUT_COL = 512; 
 
  assign local_cs_addr = cs_addr; 
 
  assign local_row_addr = row_addr; 
  assign local_bank_addr = bank_addr; 
  assign local_col_addr = col_addr; 
  assign local_write_req = write_req; 
  assign local_read_req = read_req; 
  assign local_wdata = wdata; 
 
assign data_to_corr_o = local_rdata; 
//assign corr_rd_data_valid_o = local_rdata_valid; 
//assign wdata = data_from_corr_i; 
 
assign read_count_o = read_count;   
  //The LOCAL_BURST_LEN_s is a signal used insted of the parameter 
LOCAL_BURST_LEN 
  assign LOCAL_BURST_LEN_s = 1; 
  //LOCAL INTERFACE (NON-AVALON) 
  assign wdata_req = local_wdata_req; 
//assign corr_wrdata_req_o = local_wdata_req; 
 
 
  assign local_be = be; 
 
  assign be = -1; 
  assign pnf_per_byte = compare_valid_reg; 
  assign local_size = size; 
  //FIX 
  assign size = LOCAL_BURST_LEN_s[1 : 0]; 
  assign reached_data_address = (col_addr >= (DATA_COL - (2 * 2))) && 
(row_addr == DATA_ROW) && (bank_addr == DATA_BANK) && (cs_addr == 
DATA_CHIPSEL); 
  assign reached_data_out_address = (col_addr >= (DATA_OUT_COL - (2 * 2))) && 
(row_addr == DATA_OUT_ROW) && (bank_addr == DATA_OUT_BANK) && (cs_addr == 
DATA_OUT_CHIPSEL); 
  assign reached_max_address = (col_addr >= (MAX_COL - (2 * 2))) && (row_addr 
== MAX_ROW) && (bank_addr == MAX_BANK) && (cs_addr == MAX_CHIPSEL); 
  assign avalon_read_burst_max_address = (col_addr >= (MAX_COL - (2 * 4))) && 
(row_addr == MAX_ROW) && (bank_addr == MAX_BANK) && (cs_addr == MAX_CHIPSEL); 
 
one_bit_mux out_ready_mux ( 
 .data0 ( out_stream_r1_ready ), 
 .data1 ( out_stream_r2_ready ), 
 .data10 ( out_stream_r11_ready ), 
 .data11 ( out_stream_r12_ready ), 
 .data12 ( out_stream_r13_ready ), 
 .data13 ( out_stream_r14_ready ), 
 .data14 ( out_stream_r15_ready ), 
 .data2 ( out_stream_r3_ready ), 
 .data3 ( out_stream_r4_ready ), 
 .data4 ( out_stream_r5_ready ), 
 .data5 ( out_stream_r6_ready ), 
 .data6 ( out_stream_r7_ready ), 
 .data7 ( out_stream_r8_ready ), 
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 .data8 ( out_stream_r9_ready ), 
 .data9 ( out_stream_r10_ready ), 
 .sel ( write_state ), 
 .result ( out_stream_ready ) 
 ); 
 
one_bit_mux out_closed_mux ( 
 .data0 ( out_stream_r1_closed ), 
 .data1 ( out_stream_r2_closed ), 
 .data10 ( out_stream_r11_closed ), 
 .data11 ( out_stream_r12_closed ), 
 .data12 ( out_stream_r13_closed ), 
 .data13 ( out_stream_r14_closed ), 
 .data14 ( out_stream_r15_closed ), 
 .data2 ( out_stream_r3_closed ), 
 .data3 ( out_stream_r4_closed ), 
 .data4 ( out_stream_r5_closed ), 
 .data5 ( out_stream_r6_closed ), 
 .data6 ( out_stream_r7_closed ), 
 .data7 ( out_stream_r8_closed ), 
 .data8 ( out_stream_r9_closed ), 
 .data9 ( out_stream_r10_closed ), 
 .sel ( write_state ), 
 .result ( out_stream_closed ) 
 ); 
 
mux_64bits out_data_mux ( 
 .data0x ( data_r1 ), 
 .data1x ( data_r2 ), 
 .data10x ( data_r11 ), 
 .data11x ( data_r12 ), 
 .data12x ( data_r13 ), 
 .data13x ( data_r14 ), 
 .data14x ( data_r15 ), 
 .data2x ( data_r3 ), 
 .data3x ( data_r4 ), 
 .data4x ( data_r5 ), 
 .data5x ( data_r6 ), 
 .data6x ( data_r7 ), 
 .data7x ( data_r8 ), 
 .data8x ( data_r9 ), 
 .data9x ( data_r10 ), 
 .sel ( write_state ), 
 .result ( wdata ) 
 ); 
 
  // 
  //----------------------------------------------------------------- 
  //Main clocked process 
  //----------------------------------------------------------------- 
  //Read / Write control state machine & address counter 
  //----------------------------------------------------------------- 
  always @(posedge clk or negedge reset_n) 
    begin 
      if (reset_n == 0) 
        begin 
          //Reset - asynchronously force all register outputs LOW 
          state <= 4'b0000; 
    read_state <= 4'b0000; 
    write_state <= 4'b0000; 
    read_done <= 1'b0; 
 
          write_req <= 1'b0; 
          read_req <= 1'b0; 
          burst_begin <= 0; 
          burst_beat_count <= 0; 
          cs_addr <= 0; 
          row_addr <= 0; 
          bank_addr <= 0; 
          col_addr <= 0; 
          dgen_enable <= 1'b0; 
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          dgen_load <= 1'b0; 
          wait_first_write_data <= 1'b0; 
    reached_data_count <= 1'b0;  
    reached_data_out_count <= 1'b0; 
    reached_max_count <= 1'b0; 
          test_complete <= 1'b0; 
          writes_remaining <= 0; 
          reads_remaining <= 0; 
          reset_address <= 1'b0; 
    read_count <= 0; 
    stream_x1_wr_enable_reg <= 1'b0; 
    stream_x2_wr_enable_reg <= 1'b0; 
    stream_x3_wr_enable_reg <= 1'b0; 
    stream_x4_wr_enable_reg <= 1'b0; 
    stream_x5_wr_enable_reg <= 1'b0; 
    stream_x6_wr_enable_reg <= 1'b0; 
  corr_wrdata_req_r0_reg <= 1'b0; 
  corr_wrdata_req_r1_reg <= 1'b0; 
  corr_wrdata_req_r2_reg <= 1'b0; 
  corr_wrdata_req_r3_reg <= 1'b0; 
  corr_wrdata_req_r4_reg <= 1'b0; 
  corr_wrdata_req_r5_reg <= 1'b0; 
  corr_wrdata_req_r6_reg <= 1'b0; 
  corr_wrdata_req_r7_reg <= 1'b0; 
  corr_wrdata_req_r8_reg <= 1'b0; 
  corr_wrdata_req_r9_reg <= 1'b0; 
  corr_wrdata_req_r10_reg <= 1'b0; 
  corr_wrdata_req_r11_reg <= 1'b0; 
  corr_wrdata_req_r12_reg <= 1'b0; 
  corr_wrdata_req_r13_reg <= 1'b0; 
  corr_wrdata_req_r14_reg <= 1'b0; 
     
//    out_stream_ready <= 1'b0; 
//    out_stream_closed <= 1'b0; 
        end 
      else if(enable) 
        begin 
          reset_address <= 1'b0; 
          reached_max_count <= reached_max_address; 
    reached_data_count <= reached_data_address; 
    reached_data_out_count <= reached_data_out_address; 
          read_req <= 1'b0; 
          write_req <= 1'b0; 
          dgen_load <= 1'b0; 
    stream_x1_wr_enable_reg <= 1'b0; 
    stream_x2_wr_enable_reg <= 1'b0; 
    stream_x3_wr_enable_reg <= 1'b0; 
    stream_x4_wr_enable_reg <= 1'b0; 
    stream_x5_wr_enable_reg <= 1'b0; 
    stream_x6_wr_enable_reg <= 1'b0; 
  corr_wrdata_req_r0_reg <= 1'b0; 
  corr_wrdata_req_r1_reg <= 1'b0; 
  corr_wrdata_req_r2_reg <= 1'b0; 
  corr_wrdata_req_r3_reg <= 1'b0; 
  corr_wrdata_req_r4_reg <= 1'b0; 
  corr_wrdata_req_r5_reg <= 1'b0; 
  corr_wrdata_req_r6_reg <= 1'b0; 
  corr_wrdata_req_r7_reg <= 1'b0; 
  corr_wrdata_req_r8_reg <= 1'b0; 
  corr_wrdata_req_r9_reg <= 1'b0; 
  corr_wrdata_req_r10_reg <= 1'b0; 
  corr_wrdata_req_r11_reg <= 1'b0; 
  corr_wrdata_req_r12_reg <= 1'b0; 
  corr_wrdata_req_r13_reg <= 1'b0; 
  corr_wrdata_req_r14_reg <= 1'b0; 
//    read_done <= 1'b0; 
//    read_count <= 0; 
//          test_complete <= 1'b0; 
          if (last_wdata_req) 
              wait_first_write_data <= 0; 
          if (write_req && local_ready) 
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            begin 
              if (wdata_req) 
                  writes_remaining <= writes_remaining + (size - 1); 
              else  
                writes_remaining <= writes_remaining + size; 
            end 
          else if ((wdata_req) && (writes_remaining > 0)) 
              //size 
              writes_remaining <= writes_remaining - 1'b1; 
          else  
            writes_remaining <= writes_remaining; 
          if (read_req && local_ready) 
            begin 
              if (local_rdata_valid) 
                  reads_remaining <= reads_remaining + (size - 1); 
              else  
                reads_remaining <= reads_remaining + size; 
            end 
          else if ((local_rdata_valid) && (reads_remaining > 0)) 
              reads_remaining <= reads_remaining - 1'b1; 
          else  
            reads_remaining <= reads_remaining; 
          case (state) 
           
              4'd0: begin 
                  reached_max_count <= 0; 
      reached_data_count <= 0; 
      reached_data_out_count <= 1'b0; 
                  if (avalon_burst_mode == 0) 
                    begin 
                      if (1 == 0) 
                          state <= 5; 
                      else  
                        state <= 1; 
                    end 
                  else  
                    begin 
                      burst_begin <= 1; 
                      write_req <= 1'b1; 
                      state <= 10; 
                    end 
 
                  //Reset just in case! 
                  writes_remaining <= 0; 
           
                  reads_remaining <= 0; 
              end // 4'd0  
           
              4'd3: begin 
     case (write_state) 
 4'd0: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 1; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r0_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r0_reg <= local_wdata_req; 
 end 
 end //write_state 4'd0 
 4'd1: begin 
if (reached_data_out_count) 
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 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 2; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r1_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r1_reg <= local_wdata_req; 
 end 
 end //write_state 4'd1 
 4'd2: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 3; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r2_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r2_reg <= local_wdata_req; 
 end 
 end //write_state 4'd2 
 4'd3: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 4; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r3_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r3_reg <= local_wdata_req; 
 end 
 end //write_state 4'd3 
 4'd4: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 5; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r4_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
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corr_wrdata_req_r4_reg <= local_wdata_req; 
 end 
 end //write_state 4'd4 
 4'd5: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 6; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r5_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r5_reg <= local_wdata_req; 
 end 
 end //write_state 4'd5 
 4'd6: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 7; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r6_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r6_reg <= local_wdata_req; 
 end 
 end //write_state 4'd6 
 4'd7: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 8; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r7_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r7_reg <= local_wdata_req; 
 end 
 end //write_state 4'd7 
 4'd8: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 9; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r8_reg <= 1'b0; 
end 
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 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r8_reg <= local_wdata_req; 
 end 
 end //write_state 4'd8 
 4'd9: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 10; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r9_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r9_reg <= local_wdata_req; 
 end 
 end //write_state 4'd9 
 4'd10: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 11; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r10_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r10_reg <= local_wdata_req; 
 end 
 end //write_state 4'd10 
 4'd11: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 12; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r11_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r11_reg <= local_wdata_req; 
 end 
 end //write_state 4'd11 
 4'd12: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
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 reached_data_out_count <= 1'b0; 
 write_state <= 13; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r12_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r12_reg <= local_wdata_req; 
 end 
 end //write_state 4'd12 
 4'd13: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 reached_data_out_count <= 1'b0; 
 write_state <= 14; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r13_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r13_reg <= local_wdata_req; 
 end 
 end //write_state 4'd13 
 4'd14: begin 
if (reached_data_out_count) 
 begin    
   write_req <= 1'b0; 
   if (writes_remaining == 0) 
begin 
 state <= 4; 
 reset_address <= 1'b1; 
 corr_wrdata_req_r14_reg <= 1'b0; 
end 
 end 
else if(out_stream_ready & ~out_stream_closed) 
 begin 
if (local_ready) 
write_req <= 1'b1; 
corr_wrdata_req_r14_reg <= local_wdata_req; 
 end 
 end //write_state 4'd14 
endcase 
              end // 4'd1  
           
              4'd4: begin 
                      if (writes_remaining == 0) 
                        begin 
//                          state <= 0; 
  test_complete <= 1'b1; 
                        end 
                    end // 4'd2  
           
              4'd1: begin 
case (read_state) 
 4'd0: begin 
read_state <= 1; 
 end 
 4'd1: begin 
if(in_stream_x1_ready && in_stream_x2_ready && in_stream_x3_ready && 
in_stream_x4_ready && in_stream_x5_ready && in_stream_x6_ready) begin 
 if (local_ready && ~read_done) begin 
read_req <= 1'b1; 
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read_done <= 1'b1; 
read_state  <= 1; 
stream_x1_wr_enable_reg <= 1'b0; 
stream_x2_wr_enable_reg <= 1'b0; 
stream_x3_wr_enable_reg <= 1'b0; 
stream_x4_wr_enable_reg <= 1'b0; 
stream_x5_wr_enable_reg <= 1'b0; 
stream_x6_wr_enable_reg <= 1'b0; 
 end 
 if(local_rdata_valid && read_done) begin 
stream_x1_wr_enable_reg <= 1'b1; 
stream_x2_wr_enable_reg <= 1'b1; 
stream_x3_wr_enable_reg <= 1'b1; 
stream_x4_wr_enable_reg <= 1'b1; 
stream_x5_wr_enable_reg <= 1'b1; 
stream_x6_wr_enable_reg <= 1'b1; 
read_req <= 1'b0; 
read_done <= 1'b0; 
read_state  <= 1; 
 end 
end 
 end //read_state 4'd1 
 4'd3: begin 
read_req <= 1'b0;//just in case 
reset_address <= 1'b1; 
 end //read_state 4'd3 
endcase 
if (reached_data_count) begin 
 read_state <= 7; 
 state <= 3; 
 read_req <= 1'b0; 
 reset_address <= 1'b1; 
end 
              end // 4'd3            
          endcase // state 
 
          if (reset_address) 
            begin 
              //(others => '0') 
              cs_addr <= MIN_CHIPSEL; 
 
              row_addr <= 0; 
              bank_addr <= 0; 
              col_addr <= 0; 
            end 
          else if ((local_ready && read_req) && (state == 1))  
   begin 
     read_count <= read_count + 1'b1; 
              if (col_addr >= DATA_COL) 
                begin 
                  col_addr <= 0; 
                  if (row_addr == DATA_ROW) 
                    begin 
                      row_addr <= 0; 
                      if (bank_addr == DATA_BANK) 
                        begin 
                          bank_addr <= 0; 
                          if (cs_addr == DATA_CHIPSEL) 
                              //reached_max_count <= TRUE 
                              //(others => '0') 
                              cs_addr <= MIN_CHIPSEL; 
 
                          else  
                            cs_addr <= cs_addr + 1'b1; 
                        end 
                      else  
                        bank_addr <= bank_addr + 1'b1; 
                    end 
                  else  
                    row_addr <= row_addr + 1'b1; 
                end 



Appendix A8. The Correlator’s DDR Controller Driver 

158 

              else  
                col_addr <= col_addr + (2 * 2); 
   end 
    else if ((local_ready && write_req) && (state == 3)) 
              if (col_addr >= DATA_OUT_COL) 
                begin 
                  col_addr <= 0; 
                  if (row_addr == DATA_OUT_ROW) 
                    begin 
                      row_addr <= 0; 
                      if (bank_addr == DATA_OUT_BANK) 
                        begin 
                          bank_addr <= 0; 
                          if (cs_addr == DATA_OUT_CHIPSEL) 
                              //reached_max_count <= TRUE 
                              //(others => '0') 
                              cs_addr <= MIN_CHIPSEL; 
 
                          else  
                            cs_addr <= cs_addr + 1'b1; 
                        end 
                      else  
                        bank_addr <= bank_addr + 1'b1; 
                    end 
                  else  
                    row_addr <= row_addr + 1'b1; 
                end 
              else  
                col_addr <= col_addr + (2 * 2); 
  end 
 end  
 
 
 
  //------------------------------------------------------------ 
  //LFSR re-load data storage 
  //Comparator masking and test pass signal generation 
  //------------------------------------------------------------ 
  always @(posedge clk or negedge reset_n) 
    begin 
      if (reset_n == 0) 
        begin 
          dgen_ldata <= 0; 
          last_wdata_req <= 1'b0; 
          //all ones 
          compare_valid <= -1; 
 
          //all ones 
          compare_valid_reg <= -1; 
 
          pnf_persist <= 1'b1; 
          pnf_persist1 <= 1'b1; 
          //all ones 
          compare_reg <= -1; 
 
          last_rdata_valid <= 1'b0; 
        end 
      else  
        begin 
          last_wdata_req <= wdata_req; 
          last_rdata_valid <= local_rdata_valid; 
          compare_reg <= compare; 
          if (wdata_req) 
              //Store the data from the first write in a burst  
              //Used to reload the lfsr for the first read in a burst in WRITE  

1, READ 1 mode 
 
              if (wait_first_write_data) 
                  dgen_ldata <= dgen_data; 
          //Enable the comparator result when read data is valid 
          if (last_rdata_valid) 
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              compare_valid <= compare_reg; 
          //Create the overall persistent passnotfail output 
          if (~&compare_valid) 
              pnf_persist1 <= 1'b0; 
          //Extra register stage to help Tco / Fmax on comparator output pins 
          compare_valid_reg <= compare_valid; 
 
          pnf_persist <= pnf_persist1; 
        end 
    end 
 
 
 
endmodule 
 



Appendix A9. Software Control Application 

160 

Appendix A9. Software Control Application 

altera_diag.c 

// Code was created by Maxim Leonov 
// Copyright 2008 Auckland University of Technology 
 
#include "../lib/altera_lib.h" 
#include "samples/shared/pci_diag_lib.h" 
#include <stdio.h> 
 
#include <time.h> 
#include <stdlib.h> 
#include <windows.h> 
#include <winbase.h> 
 
// input of command from user 
static char line[256]; 
 
char *ALTERA_GetAddrSpaceName(ALTERA_ADDR addrSpace) 
{ 
    return  
        addrSpace==ALTERA_AD_BAR0 ? "Addr Space BAR0" : 
        addrSpace==ALTERA_AD_BAR1 ? "Addr Space BAR1" : 
        addrSpace==ALTERA_AD_BAR2 ? "Addr Space BAR2" : 
        addrSpace==ALTERA_AD_BAR3 ? "Addr Space BAR3" : 
        addrSpace==ALTERA_AD_BAR4 ? "Addr Space BAR4" : 
        addrSpace==ALTERA_AD_BAR5 ? "Addr Space BAR5" : 
        "Invalid"; 
} 
 
void ALTERA_AccessRanges(ALTERA_HANDLE hALTERA) 
{ 
    int cmd, cmd2; 
    int i; 
    UINT32 addr, data; 
    ALTERA_ADDR ad_sp = ALTERA_AD_BAR0; 
    ALTERA_MODE ad_mode = ALTERA_MODE_DWORD; 
 
    for (i = ALTERA_AD_BAR0;  
        i<ALTERA_ITEMS && !ALTERA_IsAddrSpaceActive(hALTERA, (ALTERA_ADDR)i);  

i++) 
    {} 
    ad_sp = (ALTERA_ADDR)i; 
    if (ad_sp==ALTERA_ITEMS) 
    { 
        printf ("No active memory or IO ranges on board!\n"); 
        return; 
    } 
 
    do 
    { 
        printf ("Access the board's memory and IO ranges\n"); 
        printf ("---------------------------------------\n"); 
        printf ("1. Change active memory space: 

%s\n",ALTERA_GetAddrSpaceName(ad_sp)); 
        printf ("2. Toggle active mode: %s\n",  
            ad_mode==ALTERA_MODE_BYTE ? "BYTE (8 bit)" : 
            ad_mode==ALTERA_MODE_WORD ? "WORD (16 bit)" : "DWORD (32 bit)"); 
        printf ("3. Read from board\n"); 
        printf ("4. Write to board\n"); 
  printf ("99. Back to main menu\n"); 
        printf ("\n"); 
        printf ("Enter option: "); 
        cmd = 0; 



Appendix A9. Software Control Application 

161 

        fgets(line, sizeof(line), stdin); 
        sscanf(line, "%d",&cmd); 
        switch (cmd) 
        { 
        case 1: 
            printf ("Choose memory or IO space:\n"); 
            printf ("--------------------------\n"); 
            for (i=ALTERA_AD_BAR0; i<ALTERA_ITEMS; i++) 
            { 
                printf ("%d. %s", i+1, 

ALTERA_GetAddrSpaceName((ALTERA_ADDR)i)); 
                if (!ALTERA_IsAddrSpaceActive(hALTERA, (ALTERA_ADDR)i)) 
                    printf (" - space not active"); 
                printf("\n"); 
            } 
            printf ("Enter option: "); 
            cmd2 = 99; 
            fgets(line, sizeof(line), stdin); 
            sscanf(line, "%d",&cmd2); 
            if (cmd2>=1 && cmd2<ALTERA_ITEMS+1) 
            { 
                ad_sp = (ALTERA_ADDR)(cmd2-1); 
                if (!ALTERA_IsAddrSpaceActive(hALTERA, ad_sp)) 
                    printf ("Chosen space not active!\n"); 
            } 
            break; 
        case 2: 
            ad_mode = (ALTERA_MODE)((ad_mode + 1) % 3); 
            break; 
        case 3: 
            printf ("Enter offset to read from: "); 
            fgets(line, sizeof(line), stdin); 
            sscanf (line, "%x", &addr); 
            switch (ad_mode) 
            { 
            case ALTERA_MODE_BYTE: 
                data = ALTERA_ReadByte(hALTERA, ad_sp, addr); 
                break; 
            case ALTERA_MODE_WORD: 
                data = ALTERA_ReadWord(hALTERA, ad_sp, addr); 
                break; 
            case ALTERA_MODE_DWORD: 
                data = ALTERA_ReadDword(hALTERA, ad_sp, addr); 
                break; 
            } 
            printf ("Value read: %x\n", data); 
            break; 
        case 4: 
            printf ("Enter offset to write to: "); 
            fgets(line, sizeof(line), stdin); 
            sscanf (line,"%x", &addr); 
            printf ("Enter data to write %s: ", 
                ad_mode==ALTERA_MODE_BYTE ? "BYTE (8 bit)" : 
                ad_mode==ALTERA_MODE_WORD ? "WORD (16 bit)" : "DWORD (32  

bit)"); 
            fgets(line, sizeof(line), stdin); 
            sscanf (line, "%x",&data); 
            switch (ad_mode) 
            { 
            case ALTERA_MODE_BYTE: 
                ALTERA_WriteByte(hALTERA, ad_sp, addr, (BYTE) data); 
                break; 
            case ALTERA_MODE_WORD: 
                ALTERA_WriteWord(hALTERA, ad_sp, addr, (WORD) data); 
                break; 
            case ALTERA_MODE_DWORD: 
                ALTERA_WriteDword(hALTERA, ad_sp, addr, data); 
                break; 
            } 
            break; 
        } 
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    } while (cmd!=99); 
} 
 
void DLLCALLCONV ALTERA_IntHandlerRoutine(ALTERA_HANDLE hALTERA, 
ALTERA_INT_RESULT *intResult) 
{ 
    printf ("Got Int number %ld\n", intResult->dwCounter); 
} 
 
void ALTERA_EnableDisableInterrupts(ALTERA_HANDLE hALTERA) 
{ 
    int cmd; 
 
    printf ("WARNING!!!\n"); 
    printf ("----------\n"); 
    printf ("Your hardware has level sensitive interrupts.\n"); 
    printf ("You must modify the source code of ALTERA_IntEnable(), in the  

file altera_lib.c,\n"); 
    printf ("to acknowledge the interrupt before enabling interrupts.\n"); 
    printf ("Without this modification, your PC will HANG upon interrupt!\n"); 
    printf ("\n"); 
 
    do 
    { 
        printf ("Enable / Disable interrupts\n"); 
        printf ("---------------------------\n"); 
        printf ("1. %s Int\n", ALTERA_IntIsEnabled(hALTERA) ? "Disable" :  

"Enable"); 
        printf ("99. Back to main menu\n"); 
        printf ("\n"); 
        printf ("Enter option: "); 
        cmd = 0; 
        fgets(line, sizeof(line), stdin); 
        sscanf(line, "%d",&cmd); 
        switch (cmd) 
        { 
        case 1: 
            if (ALTERA_IntIsEnabled(hALTERA)) 
            { 
                printf ("Disabling interrupt Int\n"); 
                ALTERA_IntDisable(hALTERA); 
            } 
            else 
            { 
                printf ("Enabling interrupt Int\n"); 
                if (!ALTERA_IntEnable(hALTERA, ALTERA_IntHandlerRoutine)) 
                    printf ("failed enabling interrupt Int\n"); 
            } 
            break; 
        } 
    } while (cmd!=99); 
} 
 
ALTERA_HANDLE ALTERA_LocateAndOpenBoard (DWORD dwVendorID, DWORD dwDeviceID) 
{ 
    DWORD cards, my_card; 
    ALTERA_HANDLE hALTERA = NULL; 
 
    if (dwVendorID==0) 
    { 
        printf("Enter VendorID: "); 
        fgets(line, sizeof(line), stdin); 
        sscanf(line, "%lx", &dwVendorID); 
 
        printf("Enter DeviceID: "); 
        fgets(line, sizeof(line), stdin); 
        sscanf(line, "%lx", &dwDeviceID); 
    } 
    cards = ALTERA_CountCards (dwVendorID, dwDeviceID); 
    if (cards==0) 
    { 
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        printf("%s", ALTERA_ErrorString); 
        return NULL; 
    } 
    else if (cards==1) my_card = 1; 
    else 
    { 
        DWORD i; 
 
        printf("Found %ld matching PCI cards\n", cards); 
        printf("Select card (1-%ld): ", cards); 
        i = 0; 
        fgets(line, sizeof(line), stdin); 
        sscanf (line, "%ld",&i); 
        if (i>=1 && i <=cards) my_card = i; 
        else  
        { 
            printf ("Choice out of range\n"); 
            return NULL; 
        } 
    } 
    if (ALTERA_Open (&hALTERA, dwVendorID, dwDeviceID, my_card - 1)) 
        printf ("ALTERA PCI card found!\n"); 
    else printf ("%s", ALTERA_ErrorString); 
    return hALTERA; 
} 
 
int main() 
{ 
    int cmd, j, i; 
 int fileValue1, fileValue2; 
 char c; 
 UINT32 data, k; 
    ALTERA_HANDLE hALTERA = NULL; 
    HANDLE hWD; 
    ALTERA_ADDR ad_sp = ALTERA_AD_BAR0; 
    ALTERA_MODE ad_mode = ALTERA_MODE_DWORD; 
 INT32 file1[sequences_length]; 
 INT32 file2[sequences_length]; 
 FILE *f1;      
 FILE *f2; 
 FILE *res; 
 LARGE_INTEGER ticksPerSecond; 
 LARGE_INTEGER tick;   // A point in time 
 LARGE_INTEGER start_ticks, end_ticks, cputime;   
  
  
 
    printf ("Software Control Application.\n"); 
    printf ("Application accesses hardware using " WD_PROD_NAME ".\n"); 
 
    // make sure WinDriver is loaded 
    if (!PCI_Get_WD_handle(&hWD)) return 0; 
    WD_Close (hWD); 
 
    if (ALTERA_DEFAULT_VENDOR_ID) 
        hALTERA = ALTERA_LocateAndOpenBoard(ALTERA_DEFAULT_VENDOR_ID, 
ALTERA_DEFAULT_DEVICE_ID); 
 
    do 
    { 
        printf ("\n"); 
        printf ("CORRELATOR main menu\n"); 
        printf ("-------------------\n"); 
        printf ("1. Scan PCI bus\n"); 
        printf ("2. Locate/Choose ALTERA board\n"); 
        if (hALTERA) 
        { 
            printf ("3. PCI configuration registers\n"); 
            printf ("4. Access ALTERA memory and IO ranges\n"); 
            printf ("5. Enable / Disable interrupts\n"); 
   printf ("6. Write data for correlator\n"); 
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        } 
        printf ("99. Exit\n"); 
        printf ("Enter option: "); 
        cmd = 0; 
        fgets(line, sizeof(line), stdin); 
        sscanf(line, "%d",&cmd); 
        switch (cmd) 
        { 
        case 1: // Scan PCI bus 
            PCI_Print_all_cards_info(); 
            break; 
        case 2: // Locate ALTERA board 
            if (hALTERA) ALTERA_Close(hALTERA); 
            hALTERA = ALTERA_LocateAndOpenBoard(0, 0); 
            if (!hALTERA) printf ("ALTERA card open failed!\n"); 
            break; 
        case 3: // PCI configuration registers 
            if (hALTERA) 
            { 
                WD_PCI_SLOT pciSlot; 
                ALTERA_GetPciSlot(hALTERA, &pciSlot); 
                PCI_EditConfigReg(pciSlot); 
                break; 
            } 
        case 4: // Access ALTERA memory and IO ranges 
            if (hALTERA) ALTERA_AccessRanges(hALTERA); 
            break; 
        case 5: // Enable / Disable interrupts 
            if (hALTERA) 
                ALTERA_EnableDisableInterrupts(hALTERA); 
            break; 
        case 6: 
   f1 = fopen("signalA_in.dat", "r"); 
   if ( f1 == NULL ) { 
    fprintf(stderr, "Error opening input file %s\n", 
"signalA_in.dat"); 
   } 
 
   f2 = fopen("signalB_in.dat", "r"); 
   if ( f2 == NULL ) { 
    fprintf(stderr, "Error opening input file %s\n", 
"signalB_in.dat"); 
   } 
   res = fopen("results.txt", "w"); 
 
   i = 0; 
   while (fscanf(f1,"%d",&fileValue1) != EOF) { 
    file1[i] = fileValue1; 
    i++; 
   } 
   i = 0; 
   while (fscanf(f2,"%d",&fileValue2) != EOF) { 
    file2[i] = fileValue2; 
    i++; 
   } 
 
   printf ("\tValue of CLOCKS_PER_SEC is :    %i  
ticks/sec\n",CLOCKS_PER_SEC   ); 
   // get the high resolution counter's accuracy 
   if (!QueryPerformanceFrequency(&ticksPerSecond)) 
    printf("\tno go QueryPerformance not present"); 
   printf ("\tfreq test:   %I64Ld ticks/sec\n",ticksPerSecond    
); 
   // what time is it? 
   if (!QueryPerformanceCounter(&tick) ) printf("no go 
counter not installed");   
    printf ("\tQueryPerformanceCounter testpoint :   
%I64Ld  ticks\n",tick); 
   QueryPerformanceCounter(&start_ticks);  
   /* start foo()  */ 
   printf ("\t\t\tWriting data for correlator...\n"); 
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   for(i = 0, j = 0; i <= sequences_length; i++, j = j+ 4) 
//writing with raw data 
   { 
    ALTERA_WriteWord(hALTERA, ad_sp, j, (WORD)file1[i]); 
    ALTERA_WriteWord(hALTERA, ad_sp, j+2,  

(WORD)file2[i]); 
   /* ALTERA_WriteWord(hALTERA, ad_sp, j, (WORD)0); 
    ALTERA_WriteWord(hALTERA, ad_sp, j+2, (WORD)1);*/ 
   } 
   printf ("\t\t\tFinished writing data for correlator.\n"); 
   printf ("\t\tEnabling correlator design.\n"); 
   ALTERA_WriteDword(hALTERA, ALTERA_AD_BAR2, 0xC, 0x400);  

//triggering correlator 
   printf ("\t\t\tWaiting for completion...\n"); 
   do 
   { 
    data = ALTERA_ReadDword(hALTERA, ALTERA_AD_BAR2,  

0xC); 
    //printf("%h", data); 
 
   }while(data == 0x80000); 
   printf("\t\tReading of processed data completed.\n"); 
 
   /* end foo( ) */ 
   QueryPerformanceCounter(&end_ticks);  
   cputime.QuadPart = end_ticks.QuadPart-  

start_ticks.QuadPart; 
   printf ("\tElapsed CPU time test:   %.9f  sec  ticks  

%d\n", 
   ((float)cputime.QuadPart/(float)ticksPerSecond.QuadPart), 

cputime.QuadPart); 
    
   printf("\t\tProcessing completed.\n"); 
   printf ("\t\t\tReading processed data back...\n"); 
   for(k = 0; k <= 64; k = k + 4) //reading processed data  

back 
   { 
    data = ALTERA_ReadDword(hALTERA, ad_sp, k); 
    fprintf(res, "%i %i\n", k, data); 
    //printf ("Value read: %x\n", data); 
   } 
   fclose(f1); 
   fclose(f2); 
   fclose(res); 
   break; 
 
        } 
    } while (cmd!=99); 
 
    if (hALTERA) ALTERA_Close(hALTERA); 
 
    return 0; 
} 


