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I 

 

Abstract 

Special sports environment of swimmers increases the difficulty of event monitoring and 

daily training. Computational vision makes it possible to solve these problems. The pose 

estimation of swimmers is a basic problem to be solved in tasks of relevant computer 

vision. The past methods not only require a complex implementation process, but also 

have a very unstable performance in the face of frequent morphological changes of 

swimmers, and most of them only fit the scenarios that include a single swimmer.  

In this thesis, we implement a method for the pose estimation of swimmers based on 

deep learning, which fits scenarios containing multiple swimmers. We follow the top-

down method and combine the HRNet with YOLOv5 to implement our model. Our 

method achieves ideal accuracy, the model is easy to be trained and deployed. In addition, 

we also propose a dataset with annotated key points for swimmers and a slew of datasets 

for swimmer detection. Our key point dataset is composed of the underwater view of 

swimmers. Compared with the side view, the torso of swimmers collected by the 

underwater view is much suitable for a broad spectrum of deep learning tasks. 

 

 

Keywords: Multi-swimmer pose estimation, swimmer detection, HRNet, YOLOv5, 

DCNN. 
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Chapter 1 

Introduction 

 

 

In this chapter, we introduce background and motivations, 

the research questions, the contributions, objectives, and 

structure of this thesis, respectively. 
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1.1 Background and Motivation 

Swimming is a popular event in sports competitions. However, special environment of 

swimmers increases the difficulty of event monitoring and daily coaching, it is coriaceous 

for people to intuitively understand the real-time dynamics and movement details of 

swimmers. After the competition, analysts often need to replay game footage and spend 

hours manually recording player gestures and analysing events to insights from the 

footage (Lienhart et al., 2018). This has brought great resistance to swimming 

competitions and swimmers' daily training as well as limited the development of 

swimming.  

    In recent years, swimming analysis has been combined with machine vision, which 

has intelligent algorithms that automatedly and tediously analyses instead of using human 

eyes. Computer vision is able to make efficient, fast, and accurate analyses of movements, 

conditions, and environment, which help referees effectively supervise sports events, so 

as to obtain more accurate scores. In addition, these methods analyze athletes' 

performance from a more comprehensive perspective than human beings, effectively 

optimize athletes' performance and reduce athletes' risk as much as possible (Thomas et 

al., 2017). 

Pose estimation of swimmers is the basis of swimming-related machine vision tasks. 

The result of pose estimation is the most essential description of human motion that can 

be used as the input feature of machine vision-related tasks, such as motion recognition 

of swimmers, kinematic pose rectification of swimmers, drowning detection and rescue, 

so on (Zecha et al., 2018; Liu et al., 2015; Moeslund & Granum, 2001). 

In the early days, underwater surveillance systems were not perfect that made it 

impossible for machine vision, which relies on sensor equipment (cameras, etc.), to 

develop rapidly in the swimming industry, most poses of swimmers are estimated from a 

side perspective or over water view with visual data taken from an ordinary camera 

installed outside of the transparent swimming lanes (Haner et al., 2015; Woinoski et al., 
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2020). In recent years, with the maturity of intelligent surveillance systems, important 

swimming events began to introduce underwater monitoring, for instance, in 2016, Rio 

Olympic Games, underwater photography robot carrying the new Canon 1DX MarkII 

made its debut, the underwater tracking camera also came out not long ago. Relevant 

equipment is also gradually popular in ordinary swimming pools (Giblin et al., 2016; Sha 

et al., 2013).  

In the past, conventional methods based on graph structure or background modeling 

are thought as the most common solution to the problem of swimmer pose estimation 

(Tsumita et al., 2019). However, these methods suffer from unsatisfactory detection 

accuracy, speed of detection, and the accuracy decreases further in the face of the 

unfamiliar pose or scene (Zhang et al., 2021). With the adventure of big data, the 

emergence of abundant data and computing resources (e.g., GPU, etc) led to the 

burgeoning deep learning which is highly dependent on the amount of data (Cheng et al, 

2017). Compared with the methods which rely on manually designed features, the 

methods based on deep learning using CNNs (i.e., convolutional neural networks) extract 

features from a large amount of data which obtains more abundant and effective 

information (Patel & Kalani, 2021).   

Most of the methods proposed in recent years for the pose estimation of swimmers 

are only applicable to scenarios with a single swimmer, which is called the method of 

single-swimmer pose estimation. These methods only fit for post-match analysis or 

training based on the appropriate scene, which is unable to be applied in real-time 

interactive scenarios that include several swimmers, such as swimming contests. As a 

result, it is necessitous to devise a method that fits for the scenarios containing multiple 

swimmers, which is called the method of multiswimmer pose estimation in the following. 

1.2 Research Questions 

In order to fill the technical gap, in this thesis, we study the existing pose estimation and 

purpose to realize the method for the multiswimmer pose estimation based on deep 
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learning and optimize its performance. The main research questions of this thesis are as 

follows: 

(1) Identifying the gaps in the pose estimation of swimmers through studying the 

development process and current situation of the related methods. 

(2) What kinds of technology can be implemented to realize multi-swimmer pose 

estimation? 

(3) For multiswimmer pose estimation problems, what are the superiorities of our 

approach compared with the antecedent approaches on accuracy and speed? 

During the research process of this thesis, we need to choose an appropriate method 

based on deep learning to procure pose estimation of swimmers in scenarios with multiple 

swimmers. We need to make datasets and train our deep neural network to implement the 

function of the model. We adjust the training parameters several times and evaluate the 

performance of the trained models so as to obtain the best results. 

1.3 Contributions 

In this thesis, we implement the pose estimation method that is suitable for multi-person 

scenes based on deep learning. We follow the top-down method and construct the multi-

swimmer pose estimator by combining the object detection model with the single-person 

pose estimation model. Moreover, underwater monitoring opens up a new view for 

machine vision related to swimmers. Therefore, unlike most previous studies, we decide 

to utilize the visual data obtained from the underwater perspective to implement our 

model. Specifically, we mainly make the following contributions: 

(1) We propose an end-to-end multiswimmer pose estimation model. We use an interface 

to link the swimmer detection model with the single-swimmer pose estimation model 

to estimate the pose of swimmers in a scene containing multiple swimmers. 

(2) We propose an annotated keypoint dataset with 2,500 images, which is the first 

dataset made of an underwater perspective and with scenes containing multiple 
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swimmers. 

(3) We obtain the best performing models for pose estimation of a single swimmer by 

training two sizes of HRNet and performing multiple evaluations and optimization 

of the experimental results. Compared with previously proposed methods, our 

network has advantages in feature extraction as well as computational speed. 

(4) We propose three annotated datasets for swimmer detection which include 421, 1755, 

and 3700 images respectively. At present, the dataset for swimmer detection is very 

rare, and our dataset is the first dataset for swimmer detection made using underwater 

perspective, which is suitable for deep learning. 

(5) By training YOLOv5, we successfully implemented a swimmer detection model. 

Compared with the swimmer detection model implemented by traditional methods, 

our model has advantages in speed and accuracy.  

In addition, in this thesis, we summarize and analyze the development of methods 

for pose estimation of swimmers, and systematically describe the technical status in this 

field. Our proposed method makes up for the technical gap in multi-swimmer pose 

estimation and swimmer detection in this field. 

1.4  Objectives of This Thesis 

Firstly, the existing human pose estimation methods are reviewed, the work of pose 

estimation for swimmers based on related pose estimation techniques is introduced, then 

the gaps in the field of pose estimation of swimmers are analyzed. Secondly, we propose 

a method for multiswimmer pose estimation. Finally, we implement and assess the 

method we propose. 

In addition, we choose the top-down method to realize multiswimmer pose 

estimation. This kind of method is able to be interpreted as the assembly of an object 

detection model and a single-person pose estimation model. Therefore, we also introduce 

object detection methods and then select the appropriate method to realize the detection 

of swimmers. 
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1.5  Structure of This Thesis 

Other chapters of the thesis are listed as follows: 

▪ Chapter 2: Literature Review. In this chapter, we firstly retrace the deep 

learning method based on DNN. Then, we review the pose estimation techniques 

into two categories. The first part is for the single-person pose estimation. We 

introduce the traditional machine learning methods and deep learning-based 

methods respectively. The second part is for multi-person pose estimation. We 

introduce the top-down method and the bottom-up method respectively. In the top-

down method, we depict the object detection technology and its application in 

multi-person pose estimation. In addition, while introducing each kind of method, 

we also review the related work of swimmer pose estimation based on this kind 

of method. 

▪ Chapter 3: Methodology. Our proposed multiswimmer pose estimation model is 

interpreted in this chapter. This chapter is divided into four parts. The first part 

gives an overview of the multiswimmer pose estimation model. In the second part, 

we introduce the structure and implementation of HRNet for single-swimmer pose 

estimation. In the third part, we introduce the structure and implementation 

method of YOLOv5 for swimmer detection. In the fourth part, we introduce the 

YOLOv5 interface for the connecting of YOLOv5 and HRNet. What’s more, the 

information for the dataset and experiment is also stated in this chapter. 

▪ Chapter 4: Result. In this chapter, we implement the proposed method and show 

the evaluation and performance of the model. The evaluation results and 

performance of the YOLOv5 trained on three different sizes of datasets, the 

evaluation results and performance of the single-swimmer pose estimator based 

on HRNet, the evaluation results of multiswimmer pose estimation model based 

on the combination of YOLOv5 and HRNet, are demonstrated respectively. 

Moreover, we objectively analyzed the limitations of the above experiments. 

▪ Chapter 5: Analysis and Discussions. We systematically summarize and analyze 

the experimental results, in this chapter. 
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▪ Chapter 6: Conclusion and Future Work. The conclusion of this thesis and the 

future work are unfolded in this chapter. 
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Chapter 2 

Literature Review 

 

In this chapter, we firstly overview the deep learning method 

based on DNN. Then, we group the pose estimation into two 

categories. The first part is the single-person pose estimation 

model. The second part is the multi-person pose estimation 

model. In the top-down method, we introduce object detection 

technology.  
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2.1  Introduction 

The pose estimation of swimmers is regarded as a problem of human pose estimation, 

which means to calculate the pose parameters of various parts of the human body 

according to visual information. It mainly includes two-dimensional and three-

dimensional methods. Two-dimensional estimation refers to the calculation of the two-

dimensional coordinates of each key point of human body in the image plane. The focus 

of our research work is mainly on two-dimensional human pose estimation, which 

referred to as human pose estimation (Parekh & Patel, 2021). 

   According to the number of detected objects, human pose estimation is grouped into 

two categories: Single-person pose estimation and multi-person pose estimation (Zheng 

et al., 2020). In this chapter, we firstly introduce the deep neural networks, then we 

interpret the two kinds of techniques mentioned above respectively. At present, most 

works on pose estimation of swimmers are based on single-human pose estimation 

methods, these works are also reviewed in the part of single-human pose estimation. 

2.2  Deep Learning 

Deep learning was firstly proposed in 2006 (Hinton & Osindero, 2006) which specifically 

refers to learning the regularity and representation of data through deep neural networks 

(DNNs). Neural network is composed of neurons with weights and biases. It is regarded 

as a model for information processing by simulating biological neurons. In the process of 

training, by adjusting the weight and bias of neurons, we finally obtain a model that 

processes the input information close to or in line with our expected output.  

    The mathematical representation of neurons was proposed in 1943 (McCulloch and 

Pitts, 1943) which proved that neurons can simulate different logical operation by 

connecting with each other and running synchronization. This is the earliest research on 

neural networks. The "deep" in DNN refers to a series of layers with more nonlinear 

operations than shallow learning. A shallow neural network generally consists of an input 
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layer, 1-2 hidden layers, and an output layer, while the hidden layer of the deep neural 

network is usually larger than 5 layers, which has the ability of deeper abstraction and 

dimensionality reduction (Bashar, 2019; Schmidhuber, 2015). 

In the fully connected DNN, the neurons of each layer are connected separately to 

all neurons of the adjacent layers. The potential problem of fully connected DNN 

structures is an inflation of the number of parameters, a deficit that is particularly apparent 

when the inputs of the network are images. The image is made of pixels, and each pixel 

in turn is made of colour. For instance, each pixel in a 1000 × 1000 picture has three 

parameters to represent colour information. If we use a DNN containing 1M neurons in a 

single hidden layer to process this picture, this hidden layer is able to generate 3 × 1012 

parameters. In the process of training, such a large amount of data easily leads to over 

fitting, the model is easy to learn unimportant features, and consumes a lot of computing 

resources. In addition, the spatial structure of the image is not taken into account in the 

process of digitization, so the network hardly retains the spatial features. Therefore, in the 

past, image-based machine vision tasks are a big challenge in deep learning (O'Shea & 

Nash, 2015). 

While observing the outside world, human eyes usually observe the local 

information of the object first, and obtain the global information through the local 

information. During this process, the local features of the object (such as contour, 

boundary, human eyes, nose, mouth, etc.) are employed. The neocognitron (Fukushima 

& Miyake, 1982) was evolved from the human characteristics. Following the idea of 

neocognitron, the first Convolutional Neural Networks (CNN) was proposed (LeCun et 

al., 1989).  

For image recognition and classification tasks, the conventional classifier such as 

SVM (Cortes & Vapnik, 1995), takes use of artificial features that was designed based on 

the priori knowledge, like HOG feature (Dalal & Triggs, 2005) and SIFT feature (Lowe, 

2004). The outstanding performance of CNN stems from its ability to extract efficient 
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representations such as high-level features from a vast amount of originally input data by 

using statistical learning methods (Alom et al., 2019).  

The convolutional layer is the core of CNN. Different from the traditional fully 

connected network, the neuron nodes in the convolution layer no longer need to connect 

all neurons in the previous layer but only feel the local area of the previous layer through 

the convolution core, the local area is also called the receptive field of convolution core. 

In addition to convolutional layers, input layers, excitation layers, pooling layers, fully 

connected layers are also typical structures of CNN. These layers are described in detail 

in the following: 

⚫ Convolution layer. Convolution operations refer to filtering small areas of an image 

by using a filter (convolution kernel) to obtain the eigenvalues of those small areas, 

which is also known as feature mapping. Once the local feature is extracted, its 

location relationship with other features is determined. In practice, there are often 

multiple convolution kernels. If an image block has a large value with this 

convolution, it is considered that the image block is very close to this feature. This 

also reflects on special structures, CNN is able to learn some information related to 

spatial structures. Specifically, if the number of input feature maps (i.e., the number 

of input channels) is n, the number of convolution layer filters (convolution cores) is 

m, each of M filters has N channels, which should be convoluted with the input n 

channels to obtain n feature maps, and then sum the n feature maps with the offset 

(one filter corresponds to one shared offset) to generate one feature map as the output 

of the convolution kernel(i.e., channel fusion). 

    Similarly, the operations are also performed on other M-1 filters. Therefore, the 

final output of this layer is feature maps, which means the output channel is equal to 

the number of filters (Dumoulin & Visin, 2016). In this process, all elements on the 

same feature graph output share the same convolution kernel, which is called weight 

sharing. The convolution kernels corresponding to different feature maps are diverses. 

Therefore, all elements (neurons) on the same feature map (the same channel) are the 

same feature detection for different locations of the image. The weight-sharing 
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structure of the feature map reduces the complexity of the network model and the 

number of weights (Yi et al. 2016). This advantage is much evident when 

multidimensional images are input into the network. With regard to images, without 

convolution, the number of learning parameters is catastrophic (Albawi et al. 2017). 

⚫ Excitation layer. In CNN, the convolution operation is a linear operation of weighted 

summation. If the neural network only includes convolution layers, the output is a 

linear combination of inputs no matter how many layers there are, the expression 

ability of the network is limited, so it cannot learn the non-linear function. Therefore, 

CNN introduces an activation function that often acts on each neuron output from the 

convolution layer and the connective layer, which introduces a nonlinear factor to the 

neurons, makes the network more expressive, and nearly approaches any functions, 

so that neural network is applied to many nonlinear models. Activation functions are 

sigmoid and tanh function, ReLU function, and so on (LeCun et al. 2015; Krizhevsky 

et al. 2012 ). 

⚫ Pooling layer. In CNN, the pooling layer usually follows the convolution or 

excitation function, in order to simplify the output of the convolution layer. It divides 

the input into non-overlapping regions, reduces the resolution of the feature maps 

through pooling operation for each region. For example, max pooling is to filter the 

maximum value in the region and mean pooling is to calculate the average value for 

each region. After convolution operations, the image is still large, pooling is able to 

further reduce the data dimension, which not only greatly retrenches computation 

cost, but also helps avoid overfitting. In addition, pooling operation makes feature 

extraction not greatly affected by the change of target location (LeCun et al. 2015). 

⚫ Full connection layer. After multiple operations, the input of the network is output 

into multiple groups of feature maps, which are successively combined into a group 

of signals after full connection operation. Specifically, firstly it maps all the two-

dimensional output of feature maps from the previous convolution layer or pool layer 

onto a one-dimensional feature vector, and then sum all the features with different 

weights to obtain the input expression. Finally, the model outputs a vector whose 

dimension is equal to the number of categories (the number of output neurons), which 



 
 

13 

represents the probability of each category. Then, the category with the highest score 

is judged as the input category. Full connection layer plays the role of “classifier” in 

CNN (O'Shea & Nash, 2015). 

 

Figure 2.2: An example of the structure of CNN. 

As shown in Figure 2.1, a complete convolution network is usually formed by 

repeated stacking of the structures. So far, many classical CNNs have been proposed 

which have some differences in organizational structure, but the basic network layers are 

similar. For instance, LeNet (LeCun et al., 1998) is one of the earliest CNN models, which 

consists of two convolutional layers, two pooling layers, and two fully connected layers. 

The first CNN named AlexNet (Krizhevsky et al., 2012) is regarded as a deeper and 

broader version of LeNet. It has five convolutional layers, three of them are connected to 

the max pooling layer, and three fully connected layers.  

AlexNet takes advantage of ReLU as the activation function to solve the gradient 

dispersion problem of sigmoid function if the network is deep. It is worth mentioning that 

this study successfully applies CUDA to accelerate the training of DCNN and utilizes the 

powerful parallel computing ability of GPU to process a number of matrix operations 

during training (Sze et al., 2017). The VGG network proposed by Simonyan and 

Zisserman (2014) takes small convolution kernels to replace the large convolution kernel 

to obtain a large receptive field. Their research outcome has proved that increasing the 

depth of the network is able to improve the final performance of the network to a certain 

extent and greatly reduce the error rate. In addition, model generalization is also 

enhanced. The full connection layer is replaced by the average pooling layer in 

GoogLeNet (Szegedy et al., 2015), which greatly reduces the number of parameters. In 
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addition, 11 convolutions in the Inception module of GoogLeNet are utilized to reduce 

the dimension of the input signature graph, thereby reducing the amount of computation. 

Based on the above design, GoogLeNet has a deeper network than AlexNet and VGG 

with less computation and higher accuracy.  

The well-known Batch Normalization (BN) method was proposed in GoogLeNet 

and Inception V2 (Ioffe & Szegedy, 2015). BN is a very effective regularization method, 

which is able to speed up the training of large convolution networks, the classification 

accuracy is greatly improved after convergence. Although the deeper the network is 

theoretically, the higher its performance is. In fact, if the network reaches a depth, the 

phenomenon of gradient disappearing becomes more and more obvious, the training 

effect of the network is not ideal, which limits the depth of the network. ResNet (He et 

al., 2015) is related to residual network, which solves the problem of network 

disappearance due to the gradients by applying a shortcut connection between the output 

inputs instead of a plain stacked network. Compared with ResNet, DenseNet takes use of 

a dense connection mechanism. The input of each layer of the network includes the output 

of all previous layers. DenseNet improves the performance of the network through feature 

reuse (Huang et al., 2017). 

2.3  Single-Person Pose Estimation 

In the past, most of the research methods are related to human pose estimation by using 

traditional methods based on graph structure. After 2014, the methods based on deep 

learning began to turn up. This kind of method broke the limitations of many traditional 

methods, improved the accuracy and speed of pose estimation to a new level. In this 

chapter, we classify and discuss the existing related technologies based on these two kinds 

of methods. 
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2.3.1 Traditional Methods 

The basic idea of the conventional single-person pose estimation algorithm is to construct 

the human pose template library based on prior knowledge and utilize template matching 

to detect the human pose. Because the human body is non-rigid and there are various 

kinds of gestures, it is difficult for the human body template library to cover all kinds of 

human poses. In order to clinch this problem, pictorial structure algorithm is proposed 

(Fischler & Elschlager, 1973). This kind of methods adopt artificially designed features 

to represent the parts of the human body and the pair-wise bearing between the parts is 

constrained by using a spatial model, which makes the template matching have some 

flexibility while being reasonably constrained. Before 2012, the pictorial structure 

algorithm is widely harnessed in the tasks of pose estimation (Josyula & Ostadabbas, 

2021). 

A method (Zecha et al., 2012) was proposed to estimate the pose of swimmers 

through part-based models that are trained discriminatively (Felzenszwalb et al., 2009). 

In the work, the task of pose estimation is thought as a detection problem. Sub-models 

were trained for different poses of the same swimming style. The hypothesis is that every 

swimming style has periodicity, in the experiment, the methods split the swimming cycle 

into sections, the continuous images were treated in each period as the same pose, a sub-

model was trained for it. Finally, these models were combined into a hybrid model, each 

hybrid model was specific to only one swimming style.  

For example, breaststroke is split into four movements, the breaststroke hybrid model 

consists of four submodules and the butterfly swimming is only divided into two 

movements, the hybrid model of butterfly-stroke contains only two sub-models. The 

experimental results show that there was no obvious boundary between the actions, this 

method often made errors during the overrun, and more sophisticated algorithms are 

needed to reduce the occurrence of errors. 
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   Before the emergence of the method based on deep learning, most studies were 

devoted to improving the graph structure, a slew of algorithms were committed to 

designing more effective features (Lowe, 2004), and others were committed to designing 

more flexible spatial models (Andriluka et al., 2009; Yang & Ramanan, 2011;). However, 

the overall accuracy of pose estimation based on traditional methods is not high.  

    There are two main reasons for the low practical value of the traditional method. 

Firstly, the computational cost of low-level features such as specifically designed HOG 

and shift features is high, the features extracted by these methods are generally limited 

which cannot make full use of image information. Secondly, if the angle of pose changes 

a lot, the template model with a single shape cannot accurately match the changed pose, 

there may be multiple feasible solutions, the result of pose estimation is not unique. This 

makes the traditional method hard to be used in complex scenes (Josyula & Ostadabbas, 

2021; Liu et al., 2015). 

2.3.2 Methods Based on Deep Learning 

CNN has become a research hotspot in the field of machine vision since 2012, the earliest 

one for pattern classification problems, later for object detection and segmentation 

problems. DeepPose network (Toshev and Szegedy, 2014) was proposed firstly, which is 

the first time that CNN has been employed to solve the problem of human pose 

estimation. Since then, the related work on pose estimation of swimmers began to 

combine conventional methods with deep learning methods to improve the efficiency of 

the proposed models.  

    A method was proposed to estimate the pose of swimmers by using the DCNN 

representation of DPM (Zecha et al., 2017). The conventional HOG feature was abundant, 

AlexNet (Krizhevsky et al., 2012) was employed to extract depth features and completed 

the classification of components directly through the network, the relationships between 

the body parts are constrained by graphical model (Chen & Yuille, 2014). This work still 

retains the inertia of traditional methods, which achieved pose estimation based on the 
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graph structure method, as a result, this method still has the limitations brought by 

template matching.  

    In fact, DCNNs are able to obtain multi-scale and multiclass human node features 

under different receptive fields and contextual information of each feature, there is no 

need to use deformable part mode and constrain the relationship between body parts. 

Deep learning methods often integrate feature extraction, classification, and spatial 

location modeling into a network without independent disassembly. 

According to the way of predicting key points, the pose estimation methods based on 

deep learning are split into 2-fold: The methods based on regression and the methods 

based on heatmaps. The regression methods output the key coordinates directly with an 

end-to-end structure (Carreira et al, 2016). The difficulty of this kind of methods is that 

the direct regression of coordinates from image sequence is a nonlinear problem, the full 

connection layer for regression coordinates would have low spatial generalization ability 

of models, which is able to easily lead to overfitting (Dang et al., 2019). After that, a 

method of transition processing is proffered to generate a heatmap and estimate the 

position of key points (Wei et al., 2016).  

Heatmap is to represent each kind of coordinates with a probability graph and 

generate a probability for each pixel position in the image, which is utilized to represent 

the probability that the point belongs to the corresponding category of key points. The 

closer the distance from the key point position, the higher the probability of the pixel is 

tending to 1.00, and the distance from the key point position, the closer the probability of 

the pixel is 0, which is able to be simulated by Gaussian functions (Zhang et al., 2020). 

Compared with regressing the coordinates of key points directly, the heatmap better 

preserves the spatial location information, which is helpful for network training. Through 

using the contextual information retained by heatmaps, CNN is able to establish the 

spatial structure between nodes implicitly, the deformable model based on prior 

knowledge is no longer needed (Chen et al., 2020).  
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Heatmaps were firstly employed in convolutional pose machines (CPMs). The large 

receptive field is beneficial for the model to learn the spatial structure of various parts of 

the human body. The network of CPMs consists of four sequentially connected phases. 

In each stage, the classical VGG network was taken to extract belief maps. Deep 

supervision was added between each stage to ensure the quality of deep net training (Wei 

et al., 2016). 

CPMs were combined with temporal sequence models to solve the problem of pose 

estimation of swimmers (Einfalt et al., 2018). In their work, the importance of spatial 

information and temporal information was emphasized on CPMs. Various styles of 

swimming pose information are integrated into the network together so as to boost the 

network better and obtain the contextual information between body parts. CNN is added 

to learn the temporal information and optimize the output of the CPMs network. The 

approach successfully improved the performance of the CPMs based on the task of pose 

estimation of swimmers. 

In order to learn effective spatial and representational information, CPMs increase 

the receptive field through max pooling and multistep large convolution kernels. 

However, max pooling reduces the resolution of the image, resulting in the loss of details, 

and large convolution cores mean huge computational costs. Most of the high-

performance networks proposed after CPMs follow the idea of increasing the receptive 

field, they generally obey the high-to-low and the low-to-high structures. High-to-low 

structures are utilized to increase the receptive field by reducing the resolution of the input 

which is known as downsampling. The low-to-high structure restores the low-resolution 

representation to the original resolution, which is known as upsampling. In order to 

improve network performance, the networks carry out multiple downsampling or 

upsampling. These processes are usually sequentially connected to form the entire 

network (Yang et al., 2017).  

For example, a symmetrical structure (Newell et al., 2016) was proposed to 

concatenate high-to-low structures and low-to-high structures. The cascaded pyramid 
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networks and the simple baselines network take use of a structure that cascades 

heavyweight high-to-low structures with a lightweight low-to-high structure (Chen et al., 

2018; Sun et al., 2019; Xiao et al., 2018). 

 

Figure 2.2: An example of max pooling 

 

Figure 2.3: An example of max unpooling 

 

The downsampling methods include max pooling and average pooling. Max pooling 

segments the input image into several rectangle areas and selects the maximum value of 

each region as output. The specific operation is shown in Figure 2.2, assuming that the 
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input is a 4  4 matrix, we utilize a 2  2 filter to pool it in the stride of 2, each element 

of the output matrix corresponds to the maximum value of 2  2 regions in the input 

matrix. Other values, other than the maximum value, are discarded in the process, which 

is information loss during the max pooling (Guo et al., 2016). Upsampling is applied to 

restore the resolution of the feature map. There are three popularly harnessed upsampling 

methods: 

(1) Unpooling. Unpooling is regarded as the inverse process of pooling. As shown in 

Figure 2.3, taking maximum unpooling as an example, it extends the location 

information of the maximum value retained after max pooling to feature map, and 

takes use of 0 to supplement the position other than the maximum value (Zeiler & 

Fergus, 2014). 

(2) Linear interpolation. The essence of interpolation is to utilize known data to 

estimate unknown data. The nearest neighbor algorithm is the simplest and most 

broadly utilized algorithm, which has low computational complexity. In this method, 

among the four adjacent pixels, the value of the closest pixel is selected as the value 

of the pixel to be solved. This method may cause discontinuity in the grayscale of the 

image generated by interpolation, the obvious jagged shape may appear where the 

grayscale changes. However, because of its low computational complexity and fast 

generation speed, it is still adopted by many networks (Mazzini, 2018). 

(3) Transposed convolution. Transpose convolution (deconvolution) is widely utilized 

in the fields of image segmentation. Deconvolution is able to be seen as a reverse 

convolution process (Long et al., 2015). Similar to the convolution process, the 

deconvolution process requires parameter learning, which is to expand the size of the 

picture by training the transposed convolution check (Noh et al., 2015). Compared 

with other simple filling methods, the data obtained by learning is more accurate. 

This is an ideal upsampling method at present. It has been utilized to recover the 

resolution of the feature map in some networks of pose estimation, for example, the 

DeeperCut network adds a deconvolution layer at the end for upsampling. However, 

transpose convolution significantly increases the computational complexity of the 



 
 

21 

model, so it is unrealistic to utilize transpose convolution for upsampling multiple 

times in the network (Dumoulin & Visin, 2016; Radford et al., 2015). 

    In general, information loss is inevitable in the process of reducing the resolution. 

Most resolution enhancement methods expand the resolution by adding 0 or simply 

estimating a similar value. For example, in the stacked hourglass network, max pooling 

is accommodated to reduce the resolution of the feature map, and linear interpolation is 

offered to restore the resolution of the input (Newell et al., 2016). A few methods are able 

to recover pixels that are relatively close to the original image by learning. However, the 

pixel loss caused by downsampling is not able to be completely reversed by upsampling. 

As a result, the performance of these networks is always constrained by the information 

loss caused by downsampling. 

Location and detail information is contained in the low-level features that have low 

semantics and more noise. The receptive field of high-level network is relatively large, 

the high-level features have stronger semantic information, but the resolution is very low 

and the ability to perceive details is poor, the fusion of these two features improves the 

performance of the model. In the stacked hourglass network, the skip path is added to 

preserve the high-resolution representation before downsampling the feature image and 

fuse the feature with the corresponding feature image in the way of concatenation and 

add respectively before and after each upsampling. Similarly, the features are fused with 

the same resolution in the process of upsampling and downsampling by means of channel 

splicing in U-Net (Ronneberger et al., 2015). However, these networks only have an 

additional unidirectional feature fused from high-resolution to low-resolution or from 

low-resolution to high-resolution. 

In deep nets, intermediate supervision is added between stages to optimize the 

training process. For instance, in CPM, the loss is calculated at the end of each phase to 

optimize the training results (Wei et al., 2016). Each hourglass network adds loss for 

supervision, the output heatmaps set is applied to calculate the error with the true value 

(Newell et al., 2016). 3D U-Net adds intermediate supervision in the process of two 
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upsampling. Intermediate supervision has been proved to be beneficial to network 

training in many studies (Çiçek et al., 2016). 

2.3.3 Dataset 

Nowadays, most researchers obtained the pose information of swimmers from side-

mounted cameras (Greif & Lienhart, 2010). For instance, the data collected by the camera 

that fixed on the other side of the transparent wall of a special swimming pool. The special 

swimming pool needs to be equipped with a reverse flow device to keep the swimmer in 

a relatively fixed position during swimming (Zecha et al., 2012). This kind of data is 

usually accompanied by a large number of surficial bubbles and refracted noises, 

researchers need to use a variety of methods to recover the swimmer's occluded or 

distorted limbs, which usually means more complex calculations and longer running time. 

In addition, such a complex experimental scene makes the application of the model which 

is limited to swimming lanes with similar configurations and cannot be used for the events 

that occur in ordinary swimming lanes. On the other hand, the side view means that only 

one swimmer is included in each image, so data collected from the side view cannot be 

used in the study on multi-swimmer pose estimation. 

2.4 Multi-Person Pose Estimation  

The deep learning-based methods achieved ideal performance on the task of single-person 

pose estimation, as a result, the method based on deep learning has been taken into 

account to implement multi-person pose estimation. Compared with the task of single-

person pose estimation, the task of multi-person pose estimation is much difficult, its 

input always contains multiple human objects, in addition to the correct detection of the 

location of keypoints, but also need to correctly determine which target the keypoints 

belongs to. At present, there are generally two kinds of approaches for multi-person pose 

estimation, which are top-down and bottom-up approaches. However, the existing 

research methods of multi-person pose estimation based on deep learning do not cover 
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the scenario of multi-swimmer. In the following, we review the two kinds of methods for 

multi-person pose estimation. 

2.4.1 Bottom-Up Method 

The bottom-up method was divided into two steps. The first step is to find all the key 

points from the input image, such as all heads, left hands, knees, etc., this step is usually 

directly realized by using a single person pose estimation model as a key point detector. 

The second step is to assign these key points to each target. In general, this kind of 

methods firstly detect the keypoints and then clusters the key points (Zheng et al., 2020). 

OpenPose is a classic multi-person pose estimation model which takes use of CPM 

(Wei et al., 2016) as the component to find the position of each joint from the input, and 

then proposes Part Affinity Fields (PAF) to assemble the human body (Cao et al., 2019). 

The basic principle of PAF is to establish a directional field between two adjacent key 

points which represents the degree of correlation between the two key points (Cao et al., 

2017).  

Another important work is associated embedding (Newell et al., 2017). Similar to the 

idea of OpenPose, the hourglass is firstly utilized to detect all key points in the input. The 

idea of associative embedding was proposed in the assembly of joint points. This method 

outputs an embedding for each key point. The embedding of the same person is as close 

as possible, and the embedding of different people is as different as possible.  

In addition to OpenPose and Associative Embedding, DeepCut (Pishchulin et al., 

2016) and DeeperCut (Insafutdinov et al., 2016) are also excellent. DeepCut takes 

advantage of Fast R-CNN as the body part detector to detect all the body parts, then marks 

each part as its corresponding part category, and utilizes integer linear programming to 

combine these parts to form a complete skeleton. DeeperCut is an optimization scheme, 

which adopts a more powerful residual net to extract body parts, and makes use of image 
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conditioned pairwise terms to compress the number of nodes in the candidate area, so as 

to improve the detection speed. 

In general, the bottom-up method firstly predicts all keypoints of each person in the 

input image and then groups them through manikin fitting or other algorithms. The 

advantage of this type of approach is that the computations do not increase substantially 

as the number of people in the image increases. However, bottom-up approaches face 

challenges in correctly grouping corresponding body parts if the overlap occurs between 

objects (Li et al., 2018). 

2.4.2 Top-down Method 

The top-down method is also divided into two steps, the first step is to find all human 

objects in the given image, which often needs to be achieved by using the object detection 

method. The second step is to estimate the pose of each human object separately, the 

single-person pose estimation is often directly adopted (Zheng et al., 2020).  

In terms of detection performance, compared with the bottom-up method, the top-

down method is usually much robust for two reasons: First of all, the recall obtained by 

the top-down method is higher because this kind of method detects the human body, and 

the human body is often larger than the part, so it is easier to be detected accurately.  

Secondly, the human body detection frame is helpful for spatial alignment, and the 

single-person estimation method learns more information about the relationship between 

the whole and the part, which is very helpful for point positioning (Kocabas et al., 2018). 

In terms of detection speed, top-down methods separate the process of pose estimation 

into two parts, it is often assumed that the detection speed of top-down methods is lower 

than that of bottom-up methods (Sun et al., 2020). However, with the continuous 

improvement of the detection speed of the human body detectors, the speed of the top-

down methods is also greatly improved, Therefore, in recent years, more work has taken 

the top-down method into account (Papandreou et al., 2017). 
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The advantage of the bottom-up method is that object detection speed is seldomly 

influenced by the increase of targets in the scene. This advantage is particularly obvious 

if facing the crowd. However, our task is to realize the pose estimation of swimmers. The 

number of swimmers in the lane is limited, the advantage of the bottom-up method is not 

obvious to us. On the other hand, the top-down method, which achieves a better balance 

in accuracy and speed, is more suitable for our task. Therefore, we implement multi-

swimmer pose estimation based on the top-down method. The methods for human pose 

estimation mentioned in this thesis are shown in Table 2.1. 

Table 2.1: An review of deep learning techniques used for pose estimation 

Methods References 

Single-Person Pose 

Estimation 

 

DeepPose Toshev and Szegedy, 2014 

Convolutional pose machines Wei et al., 2016 

Stacked hourglass  Newell et al., 2016 

Cascaded pyramid networks Chen et al., 2018 

Simple baselines  Xiao et al., 2018 

Multi-Person Pose 

Estimation 

OpenPose Cao et al., 2019 

Associated embedding Newell et al., 2017 

DeepCut Pishchulin et al., 2016 

DeeperCut Insafutdinov et al., 2016 

2.4.3 Object Detection 

In the top-down method, the performance of the detector is critical, the following is an 

overview of the object detection methods based on deep learning which are able to realize 

the human detector. The task of object detection is to find out interesting objects in the 

given data to predict their position and size, in the meantime, which is one of the core 

problems in the domain of machine vision. After deep learning was introduced into object 

detection, the accuracy and speed of this task have been raised to a new level, object 

detection methods have been developed at an unprecedented speed. The object detection 

methods based on deep learning are grouped into two categories, one is two-stage method, 

the other is the one-stage way (Zhao et al., 2019).  
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Table 2.2: The methods for object detection in R-CNN, Fast R-CNN, and Faster R-CNN. 

Nets Region proposal Feature extraction Classification Rect refine 

R-CNN selective search DeepNet SVM regression 

Fast R-CNN selective search DeepNet 

Faster R-CNN DeepNet 

    The two-stage object detection methods split the detection process into two stages: 

Generating region proposals, classifying the position of the candidate regions. Region 

proposals mean filtering out regions with a high probability of being an object (Hosang 

et al., 2015). There are several exemplify methods for the realization of proposals, such 

as Selective Search, EdgeBoxes, and so on (Zitnick & Dollár, 2014). CNN based on 

region proposals is canonical representative of the two-stage object detection method. For 

instance, Region CNN (R-CNN) was proposed in 2015 (Girshick et al., 2014) which is a 

milestone in the use of deep learning for object detection and has a long-standing impact 

on this field. The selective search was employed to generate candidate regions before 

detection, so as to reduce the degree of information redundancy and improve the detection 

speed (Uijlings et al., 2013). Then, CNN was applied to the candidate regions for the 

feature extraction, finally, take SVM for the classification, regression model for the 

refining of the bounding box.  

Unlike R-CNN, SPP-Net (He et al., 2015) convolutes and generates candidate 

regions, which not only reduces the storage capacity, but also speeds up the training 

speed. In addition, it makes use of spatial pyramid pooling to solve the problem of 

different size images. However, the detection speed of R-CNN and SPP-Net is still slow. 

Fast R-CNN improved R-CNN by introducing multitask learning and integrating multiple 

steps into a model. Classification and regression were probed in a CNN network, which 

greatly reduced the complexity of training and make training more convenient.  

In addition, Fast R-CNN takes use of the smooth L1 function to prevent the gradient 

from becoming too large for some points that deviate greatly and has better robustness. 

The use of truncated SVD also greatly ameliorates the detection speed of Fast R-CNN 

(Girshick, 2015). However, Fast R-CNN still needs a dedicated candidate window 
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generation module. In order to address this problem, Faster R-CNN utilizes the Region 

Proposal Network (RPN) instead of the selective search module and merges the RPN into 

Fast R-CNN to generate an end-to-end detection network (Ren et al., 2015). There are 

boosts in efficiency all the way from R-CNN, to Fast R-CNN, and to Faster R-CNN. As 

shown in Table 2.2, for Faster R-CNN, the significant distinction between R-CNN and 

Fast R-CNN is that the four steps, required for object detection, are all implemented based 

on deep neural networks that are calculated based on GPUs, which greatly improves the 

working efficiency of the model. However, Faster R-CNN only utilizes top-level features 

for prediction.  

Feature Pyramid Network (FPN) selects features at all scales that have rich semantic 

information. The prediction based on feature layer of the scale makes the generated 

proposals better than the Faster R-CNN algorithm that only performs prediction on the 

top layer (Lin et al., 2017).  

In the subsequent development, the position-sensitive score map (Dai et al., 2016) 

was proposed to address the positional sensitivity of detection. Mask R-CNN (He et al., 

2017) was proposed as a method of object detection and segmenting multitask 

collaborative learning, which introduces the ROI align to replace ROI pooling so as to 

get better positioning. However, the operation speed of the two-stage target detection 

algorithm is always unsatisfactory. 

In order to make the object detection meet the real-time requirements, the one-stage 

objects detection method was proposed based on regression analysis. This kind of 

methods abandon the candidate box and treat the object detection as a regression analysis 

problem of object location and category information. The detection results are output 

directly through the primary feedforward network, therefore, the detection speed has been 

greatly improved (Zou et al., 2019). 

The framework of one-stage object detection was firstly proposed in YOLO (i.e., 

You Only Look Once) whose core idea is to take use of the whole image as the input of 

the network and directly return the location and category of objects in the output layer. 
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The basic network of YOLO is Darknet customized based on the architecture of 

GoogLeNet, where 11 convolution layer and 33 convolution layer are utilized instead 

of inception module. The network of YOLO consists of 24 convolution layers and 2 full 

connection layers. In the process of detection, the input image is separated into N  N 

grids, each grid cell is in charge of detecting the objects whose center is in this grid. The 

output of each grid is information of a slew of bounding boxes and a group of probabilities 

representing that the object belongs to a certain category (Redmon et al., 2016).  

The information of the bounding box includes the center coordinates of the bounding 

box relative to the grid boundary, the width and height related to the picture, and the 

confidence score of the bounding box. Confidence scores represent the likelihood of the 

network to contain an object in the predicted binding box, which is calculated by using 

IOU of the predicted box versus the true binding box. If there is no object in the binding 

box, the confidence score is 0. If the grid cell contains an object, no matter how many 

bounding boxes it contains, the grid cell only predicts one group of probability. By 

multiplying the probability of each class with the confidence score of each bounding box, 

we obtain confidence score of each bounding box for each class. The bounding box with 

the highest confidence is taken as the output of visual object detection, which also means 

that each grid predicts only one object at most (Redmon et al., 2016; Zaidi et al., 2021). 

Because the input of YOLO is the whole image, it predicts the bounding box of all 

classes of visual objects in the image at the same time. Compared with the method based 

on sliding window or RPN that obtains more context information, which increases the 

accuracy of detection. However, the limitations of YOLO are also obvious. Compared 

with the two-stage method, the detection result of YOLO for small objects, especially 

dense small objects, is very poor, mainly because YOLO divides the image into grids for 

detection, the grid may include multiple different kinds of small targets, but each grid of 

YOLO only predicts a limited number of boxes belonging to the same class (Redmon et 

al., 2016). 
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Single shot multibox detector (SSD) (Liu et al., 2016) inherits the idea of rapid 

detection in YOLO to integrate all detection processes into a convolutional network with 

the addition of multi-scale feature mapping. The PRN in Faster R-CNN generates nine 

classes of anchors on the top-level feature map to predict objects of different shapes and 

sizes. On this basis, SSD improves the processing method of multi-size objects and 

utilizes feature pyramids instead of top-level feature maps for prediction. The feature 

pyramid of SSD refers to the utilize of six scales of convolutional layers for prediction, 

and different convolutional layers obtain features of different sizes, which are exploited 

for the detection of objects with different specifications. Specifically, SSD generates 

default boxes of different sizes based on feature maps of each scale for prediction. The 

closer the top-level feature map is, the larger the size of the default box is. 

Taken SSD-300 as an example, the backbone of SSD-300 is adapted from VGG-16, 

which converts the two fully connected layers of VGG-16 into ordinary convolution 

layers and adds some new convolution layers. SSD-300 extracts six feature maps of 

different scales for prediction, generates a series of concentric default boxes, centers on 

the midpoint of each point on the feature map, and then generates several preliminary 

qualified default boxes, through detection and classification. Finally, overlapped or 

incorrect default boxes are eliminated through non-maximum suppression (NMS) to 

generate the final detection results. Different from the full connection layer adopted by 

using YOLO models, SSD directly applies two convolutions to extract the detection 

results from different feature maps, one for outputting category confidence and the other 

for outputting the location of the bounding box (Liu et al., 2016). 

SSD runs at a speed that is comparable to that of YOLO, the detection accuracy 

almost caught up with the Faster R-CNN. However, the SSD suffers from relatively 

obvious drawbacks. For example, the form of the prior box in a network is not able to 

obtain through learning and needs to be pre-determined. The parameter of the prior box 

applied by each layer of feature in the network is disparate, which makes the debug 

processes highly empirically dependent. Moreover, SSD adopts the idea of the hierarchy 

of pyramid functions, but the recall of small targets is still not ideal. This is due to SSD 
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using low-level features to detect small targets, while low-level features are extracted by 

a few convolutional layers and suffer from insufficient feature extraction (Liu et al., 

2016). 

YOLO was improved and YOLOv2 was proposed (Redmon & Farhadi, 2017), the 

focus is on solving the deficiencies of YOLO in terms of the performance on recall and 

accuracy. The basic network of YOLOv2 is Darknet-19, which includes 19 convolutional 

layers and five pooling layers. The network removes all dropout layers and adds batch 

normalization to each convolution layer, which makes the convergence speed of the 

network faster. The network also deletes the full connection layer, takes use of the anchor 

box to predict the position of the candidate box, and makes use of the K-means clustering 

method to cluster and calculate a better anchor template in the training set, which 

prominently enhances the recall rate of the algorithm. Because the full connection layer 

is removed, the resolution of the input image is no longer limited.  

In addition, YOLOv2 connects shallow features with deep features to improve the 

detection ability of the model for small objects. In terms of training, they utilize the 

resolution 448448 of images as input which is higher than that of YOLO, to pretrain the 

classifier and use images with different resolutions to multi-scale training, so that the 

model is able to adapt to image input with different sizes and enhance the prediction 

robustness of the model to multi-scale images (Thuan, 2021). 

YOLOv3 (Redmon & Farhadi, 2018) was put forward based on the improvement of 

YOLOv2. In the feature extraction part, the Darknet-53 network structure was employed 

instead of the original Darknet-19, which is a classification network with better 

comprehensive performance than ResNet-152. Similar to the ideas of the feature map 

pyramid by using SSD, YOLOv3 also takes advantage of feature maps of diverse scales 

for the detection of objects. The large receptive fields obtained from small-size feature 

maps are used to detect large-size objects, and the small receptive fields obtained from 

large-size feature maps are applied to detect small-size objects.  
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In terms of classification method, the logistic loss is used instead of softmax loss to 

make the model suitable for the multiple label classification task, which guaranteed the 

accuracy of target detection while accounting for the real-time nature. YOLOv3 takes use 

of a larger-scale model to further improve the detection accuracy, and the detection speed 

is slightly slower than YOLOv2, but compared with other detection algorithms, such as 

RetinaNet, SSD, DSSD, the comprehensive performance of YOLOv3 is still the best (Fu 

et al., 2017). In addition, YOLOv3 also provides a lightweight tiny-darknet, with a faster 

detection speed at the expense of reduced accuracy (Redmon & Farhadi, 2018; Lin et al., 

2017). 

Darknet-53 is mainly composed of 1×1 and 3×3 convolution layers. Each 

convolution layer is followed by a batch normalization layer and a Leaky ReLU, to 

prevent overfitting. Leaky ReLU is a variant of ReLU. ReLU sets all negative values to 

zero, while Leaky ReLU gives all negative values a non-zero slope, which solves the 

problem (Maas et al., 2013). The group of convolution layer, batch normalization layer, 

and Leaky ReLU is called DBL. There are 53 DBLs in Darknet-53 (Redmon & Farhadi, 

2018).  

Unlike Darknet-19, Darknet-53 does not use max pooling layer for downsampling, 

which is able to reduce the information loss caused by downsampling to some extent. The 

input of the network is added with the original input after two DBLs, which is a kind of 

conventional residual units. The purpose of introducing residual units into the network is 

to extract features and avoid gradient vanishing or exploding. Darknet-53 concatenates 

the output of the middle layer of the network and the upper sampling results of a later 

layer to achieve the purpose of multi-scale feature fusion. YOLOv3 designed three 

network outputs of different scales to predict objects at different scales (Redmon & 

Farhadi, 2018).  

YOLOv3 was refined by using a large number of tricks that contributed to improving 

detection accuracy and the improved model was named YOLOv4 (Bochkovskiy et al., 

2020). The method substantially increases the detection accuracy of YOLOv3 under 
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conditions that guarantee detection speed. A general framework was proposed for the 

object detection task consisting of backbone, neck, head. The following content 

introduces these three structures in YOLOv4： 

⚫ Backbone. YOLOv4 takes use of CSPDarknet-53 implemented by the combination 

of Darknet53 and cross stage partial network (CSPNet) as the backbone. Darknet-53 

is the backbone of YOLOv3, which is composed of a series of residual structures. In 

Darknet-53, each convolution layer was followed by a batch normalization layer and 

a Leaky ReLU, while in CSPDarknet-53, mish function replaces the Leaky ReLU as 

the activation function, as a result, the basic convolution unit is called CBM in 

CSPMarknet-53. Mish allows positive values to reach any height, which avoids 

saturation caused by positive capping. It gives a negative gradient instead of directly 

using a zero boundary (Misra, 2019). Mish improves the accuracy of CSPMarknet-

53 in the classification task.  

    The CSPNet was proposed to solve the problem that network structures require 

extensive inferential calculation, which was caused by repeating gradient information. 

Therefore, the main purpose of CSPNet is to achieve a richer gradient combination 

and reduce the amount of calculation, which is achieved by dividing the feature map 

of the basic layer into two parts, and then merging them through a cross phase 

hierarchy (Bochkovskiy et al., 2020; Wang et al., 2020).    

The existence of pooling layers makes the convolution layer insensitive to the 

dropout operation, Dropblock operation was employed for regularization in YOLOv4. 

Dropblock refers to the random discarding of local areas, which has a similar effect 

with using cutout for data augmentation. The difference between the two operations 

is that Dropblock applies the cutout operation to every feature map in the network. 

In addition, the probability of Dropblock is able to be modified at different stages of 

training, Dropblock is a more delicate operation than the cutout operation used in 

image enhancement (Ghiasi et al., 2018). 

⚫ Neck. At the end of the backbone, an SPP module designed according to the SPP-net 

(He et al., 2015) is added to increase the receptive field of the network. In the feature 

fusion, YOLOv4 takes use of the modified path aggregation network (PANet) for 
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parametric aggregation from different backbone layers for different detector levels 

((Bochkovskiy et al., 2020; Liu et al., 2018). 

⚫ Head. YOLOv4 inherits the head of YOLOv3 for multi-scale prediction, improves 

the loss function during training, and takes use of the Diou NMS method to filter the 

prediction box instead of using NMS. Diou NMS takes into account not only the 

overlapping regions of the prediction box and the ground truth box, but also the 

distance between the center points of the two boxes (Zheng et al., 2020). 

After YOLOv4 was proposed, the first version of YOLOv5 was released, which has 

four scales: YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x (Jocher et al., 2020). 

YOLOv5s network has the smallest scale, fastest detection speed, and lowest detection 

accuracy. The other three networks deepen and widen the network on the basis of 

YOLOv5s, to improve the accuracy, but the time of detection consumption continued to 

increase (Liu et al., 2021).  

   YOLOv5 possesses a much higher detection speed while the detection ability is close 

to that of YOLOv4 in most detection tasks (Li et al., 2021; Yang et al., 2020), the size of 

the model is much smaller than that of YOLOv4, which makes YOLOv5 well suited to 

be deployed on mobile devices for real-time detection. Our task is to implement the 

detection of underwater swimmers, which requires a high speed of model detection and 

convenience of deployment. As a result, we take use of YOLOv5 to procure the swimmer 

detector (Chen et al., 2021; Fang et al., 2021).  
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Chapter 3 

Methodology 

 

 

The main content of this chapter is to clearly articulate 

research methods, which satisfy the objectives of this thesis. 

The details of the research methodology for our proposed 

multi-swimmer pose estimation model are interpreted in this 

chapter. This chapter mainly has three parts. The first part 

introduces HRNet for single-swimmer pose estimation, the 

second part is related to YOLOv5 for swimmer detection, the 

third part includes the YOLOv5 interface.  

  

  



 
 

35 

3.1  Research Methods  

Our proposed multi-swimmer pose estimation model is interpreted in this chapter, which 

consists of two parts, the first part is the swimmer detector which is implemented by 

YOLOv5. The second one is the single-swimmer pose estimation model which is 

implemented by using HRNet. The two parts are connected through the detection 

interface to form an end-to-end model. 

 

Figure 3.1: An overview of our multi-swimmer pose estimation model. 

The structure of our model is described as Figure 3.1. Firstly, a set of bounding boxes 

are gotten from the input images by the swimmer detector, then these bounding boxes are 

feed into the single-swimmer pose estimation model to predict the pose of swimmer in 
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each person box. The output of our multi-swimmer pose estimation model is the 

collection of the pose information for all the swimmer in each image. 

3.2  HRNet for Single-swimmer Pose Estimation 

In this thesis, we implement a single-swimmer pose estimation method based on the 

heatmaps, High-Resolution Network (HRNet) is taken as the core network. For each kind 

of key point, we will generate a corresponding heatmap by the feature maps output by 

HRNet. The heatmap includes the possibility of each pixel in the graph to be this kind of 

key points. We will calculate the coordinates of the point according to the probability 

diagram.  

 In HRNet, the branches of the network with different resolutions are connected in 

parallel, which makes the network maintain a high-resolution representation throughout 

the whole process. The information is exchanged between branches through cross fusion 

to obtain a more reliable high-resolution representation (Sun et al., 2019).  

In the past, most networks only encapsulated unidirectional feature fusion from high-

resolution to low-resolution or from low-resolution to high-resolution, while each fusion 

layer of HRNet includes a bi-directional fusion between high-resolution and low-

resolution, which aids the network to continuously optimize the high-resolution 

representation. The network does not adopt supervised learning, which reduced the 

computational complexity to some extent, and the accuracy of the network was not 

affected. Compared with the network using a series structure, HRNet has advantages in 

retaining high-resolution features and making full use of all levels of features (Sun et al., 

2019).  
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3.2.1 The Structure of HRNet 

 

Figure 3.2: An overview of the main structure of HRNet. Some duplicated channel 

maps are represented as ellipsis. 

The structure of the HRNet is shown in Figure 3.2. Vertically, the backbone of 

HRNet consists of four parallel branch networks. The resolution of the parallel network 

is halved one by one from top to bottom. The branches exchange information through 

feature fusion. The network is divided into four stages horizontally. The first stage 

includes a high-resolution sub-network, and a low-resolution network will be added in 

each subsequent stage. Except for the fourth phase, the transition layer is added to the end 

of each phase of the network to generate the new subnetwork(Wang et al., 2020). 

 We take Figure 3.3 as an example of the network structure, Wn is applied to represent 

the subnet, n is the stage of the network.  

W1 →  W2 → W3 → W4 

↘  W2 → W3 → W4 

↘ W3 → W4 

↘ W4                        

Figure 3.3: The proposed network structure 

 Figure 3.4 shows the change in the resolution of the network, where REn is employed 

to represent the resolution of the network, and n represents the stage to which the network 

belongs: 
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RE1 → RE2 → RE3 → RE4 

↘ ½RE2 → ½RE3 → ½RE4 

↘¼RE3 → ¼RE4 

↘ ⅛RE4     

  

Figure 3.4: The changes of resolution in HRNet 

Fusion layer and transition layer. The input for the fusion layer is a collection of feature 

maps of stage n which has s subnetwork {F1, F2, ···, Fs}. Input maps are aggregated to 

produce each output map. The collection of output maps is represented as {O1, O2, ..., Os}, 

Eq. (3.1) shows the specific calculation process, where f refers to the resolution of the 

output feature image Y. If the resolution of the input feature map X is less than f, function 

A represents the upsampling calculation. if the resolution of the input feature map F is 

higher than f, function A represents the downsampling calculation. If the resolution of the 

input feature map X is equal to f, function A represents direct replication. The resolutions 

of the input feature map of one subnet is as same as the resolutions of the output feature 

map (Wang et al., 2020). 

),(
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=

                        (3.1) 

The input of the transition layer connected after the fusion layer is the output Os of 

the subnetwork with the lowest resolution at this stage. A new channel Os+1 is generated 

by downsampling, Eq. (3.2) shows the specific calculation process, where fs refers to the 

resolution of Os. 
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3.2.2 Instantiation 

 

Figure 3.5: ResNet block, where d means the number of channels. (a) Bottleneck block 

(b) Basic block. 

   The first stage contains only one branch network, which mainly encapsulates four 

residual units, as shown in Figure 3.5(a). The structure of the residual unit is as same as 

that of the bottleneck in ResNet-50 (He et al., 2016), its width is 64, including a 1×1 

convolution for dimensionality reduction, a 3×3 convolution for feature extraction, a 1 × 

1 convolution for dimensionality reduction. The first two convolutions are followed by 

batch normalization and nonlinear activation of ReLU, the last 1×1 convolution without 

using ReLU, in order to maintain the diversity of features. The structure of the jump 

connection includes two possibilities: If the number of input feature channels is as same 

as the output, it is added directly, otherwise, a 1×1 convolution is added to match the 

dimension of the output feature, which usually occurs after the resolution is reduced. The 

structure of this connection is to avoid the gradient dispersion and degradation problems 

caused by the increase of network layers. The first phase contains only one branch, so the 

fusion module is not included in the phase. 

The second, third, and fourth stages are similar in structure, they are all composed of 

repetitive modules with similar structures. The second stage includes one module, which 

is composed of two parallel subnetworks. The third stage contains four repetitive 

modules, and each module consists of three parallel subnetworks. The fourth stage 
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contains three repetitive modules, and the module is composed of four parallel 

subnetworks. The subnetworks in the modules that make up each stage that utilities the 

same structure, that is, four residual network units.  

The structure of each residual network unit is as same as that of the basic block in 

ResNet-50 (He et al., 2016), as is shown in Figure 3.5(b), which includes two 3×3 

convolutions, the first of which is followed by batch normalization and nonlinear 

activation ReLU. The second convolution is followed by only one batch normalization, 

and the second, third and fourth stages all include multiple network branches with 

different resolutions, the end of each module in the stage is added fusion layer, to fuse the 

features at different resolutions. In total, eight times of multi-scale fusions were carried 

out in the second, third, and fourth stages (Wang et al., 2020). 

Taking the fusion layer of the third stage as an example, as shown in Figure 3.6, it 

spans all parallel networks in this stage and merges the characteristic graphs of all sub-

networks. The output of each sub-network after passing through the fusion layer is the 

aggregation of all sub-network inputs in that stage. Before aggregation, the characteristics 

of the same network branch are copied directly. The low-resolution feature map improves 

the resolution by using nearest neighbor upsampling and a 1×1 convolution to obtain the 

same number of channels as the high resolution. An appropriate number of stride 3×3 

convolution with stride 2 is used to reduce the resolution and increase the number of 

channels of high-resolution feature maps to match that of the low-resolution subnetwork. 

We do not use max pooling for downsampling to avoid the loss of information during 

dimensionality reduction. Downsampling through strided 3×3 convolutions is able to 

reduce the loss of information (Springenberg et al. 2014; Wang et al., 2020). 
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Figure 3.6: The structure of fusion layer and transition layer, where strided 3×3 means a 

strided 3×3 convolution, up samp. 1×1 include nearest neighbor up-sampling and a 1 × 

1 convolution. 

After the last fusion layer in each stage, we add a transition layer to generate a new 

subnetwork with more channels. As shown in Figure 3.6, in the transition layer, strided 

3×3 convolutions are applied to adjust the channels and resolution of the network, the 

resolution of the new subnetwork is halved. 

In our experiment, we implement a small network named HRNet-W32 and a large 

network named HRNet-W48. The main difference between this two networks is the width 

of the sub-network. The widths of the four parallel subnetworks of HRNet-W32 are 32, 

64, 128, and 256 respectively. The widths of the four parallel subnetworks of HRNet-

W48 are 48, 96, 192, and 384, respectively (Sun et al., 2019). 
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3.2.3 Heatmap 

 

Figure 3.7: Visualization of the heatmap of the 14 key points 
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The fourth stage consists of four network branches and outputs four feature maps in 

different resolutions. We abandon the three lower resolution outputs and only take use of 

the representation of the highest resolution sub-network output to return to the heat map. 

According to the experience, this hardly affects the performance of the network but 

reduces the computational complexity. The groundtruth heatmap is generated by using 

2D Gaussian distribution, centered on the real position of each key point, and the standard 

deviation is 2 pixels (Wang et al., 2020). Figure 3.7 displays the visualization of the 

heatmaps. 

3.2.4 Loss Function 

We take the following three different losses for experiments: 

⚫ Mean Square Error. We define the loss function as Mean Square Error (MSE) 

which was used to compare the predicted heatmaps with the groundtruth 

heatmaps, Eq. (3.3) shows how the MSE is calculated, where m is the number of 

samples, Ti is the ground truth value, Oi is the predicted value. 

𝑀𝑆𝐸 =
1

2𝑚
∑ (𝑇𝑖
𝑚
𝑖=1 − 𝑂𝑖)

2     

 (3.3) 

⚫ MSE with Online Hard Keypoints Mining. Online hard keywords mining 

(OHKM) was proposed by (Chen et al., 2018), which sorted the results of MSE 

output and screened the top eight key points with the largest loss as difficult 

cases for key regression. 

⚫ MSE and Bone loss. Bone loss (Kulon et al., 2020) was applied to compare the 

distance between predicted key points and the distance between groundtruth 

points, so as to ensure the model learns the spatial features between key points, 

such as the length of the bone. In the experiment, we take use of Bone loss and 

MSE for joint training, in the following, we call it MSEBone loss. 
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3.2.5 Dataset 

 

Figure 3.8: Sample images of swimmer datasets 

As shown in Figure 3.8, our dataset was collected by using video footage of swimming 

events, which records the athletes from an underwater view. Compared with the angle of 

side viewing, we observe a more complete swimmer's body. The dataset includes 2,500 

images with 3,615 annotated swimmers. Figure 3.9 shows the statistics on the number of 

key points contained in each sample in the swimmer key point dataset, which indicates 

the key points of the samples in our dataset are relatively complete. The dataset includes 

human bodies of both genders, including breaststroke, freestyle, butterfly, and 

backstroke. Almost all angles of underwater viewing are covered, in order to make the 
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model better adaptive to noises, we added 20% noisy images, including water reflection, 

bubbles, dim light, occlusion, and other factors. In addition, we also add empty swimming 

lanes as negatives. In the experiment, the dataset is divided into training_val set and test 

set in the proportion of 9:1, then the training_val set is divided into training set and 

validation set in the proportion of 9:1. 

 

Figure 3.9: Statistics on the number of key points contained in each sample in the 

swimmer key point dataset. The vertical axis represents the number of bounding boxes, 

each bounding box contains a swimmer, the horizontal axis shows the number of key 

points contained in each detection box. 

 

In the pose estimation for swimmers, the importance of facial key points are lower 

than that of the key points on the body, so we reduce the number of facial key points of 

the skeleton compared with that of the COCO dataset (Lin et al., 2014). As shown in 

Figure 3.10, our human key point model includes 14 key points: Nose, neck, left elbow, 

right elbow, left shoulder, right shoulder, left hip, right hip, left knee, right knee, left 

ankle, right ankle, left wrist, right wrist. 
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Figure 3.10: A complete example of the key points of the swimmer annotated in our 

dataset 

3.2.6 Evaluation Metrics 

We mark the location of each key point in the form of (x, y, v) as ground truth, where (x, 

y ) is the coordinate of the key point, v is the visibility symbol. If the value of v is 0 which 

means that the node is not annotated. If v is 1.00 which means that the node has been 

annotated but cannot be seen because of occlusion and other factors. If v is 2 means that 

it has been annotated and is able to be seen. 

The key point detector outputs the position of the key for each object. The format 

of predicted key points is as same as the ground truth. At present, the visibility index 

has not been employed for evaluation and calculation, the key point detector does not 

need to predict the visibility of key points. The following indicators are used to evaluate 

the performance of the model in the experiment: 

(1) Object Key Point Similarity (OKS). We define OKS by using Eq. (3.4). Our main 

purpose is to calculate the similarity between the true value and the key points 

predicted by the model. 

               (3.4) 
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In Eq. (3.3), the Euclidean distance between the true point and the detected key 

point is expressed. The scale of the target is represented by s, which shows the square 

root of the area occupied by the target in ground truth that is calculated by the 

coordinates of the bounding box: ))(( 1212 xxyy −− , ki denotes the normalization factor of 

the i skeletal point. The higher the value of k, the worse the annotation effect of this 

point in the whole dataset, which means that the annotation of this dimension point 

is more difficult. On the contrary, it means that this point is easier to be marked. vi is 

the visibility symbol, the detector does not predict vi, so only vi marked in the dataset 

is used here. Combined with the function δ, we filter the marked key points by using 

the value of v. 

In the calculation, k is regarded as a constant, the corresponding k of different 

key points is different. For example, the number k of human torso key points is often 

much larger than human facial key points. These constants are obtained by 

calculating the standard deviation σ of the information labeled by different people in 

the COCO dataset which contains 5,000 images. COCO dataset contains 17 

categories of human skeleton key points, the corresponding σ of each key point is 

shown in Table 3.1 (Lin et al., 2014). Our dataset only contains 14 key points, so we 

make adjustments to the sigma array. The adjusted sigma array and the corresponding 

key points are shown in Table 3.2. 

Similar to IOU, we take use of OKS to calculate AP and AR. We give a threshold 

K. If the OKS of the target is greater than the threshold, it means that the skeletal point 

of the current target has been correctly detected. If the OKS of the target is less than 

the threshold, it means that there is a phenomenon of false detection or omission of 

the skeletal point of the current target. AP is equal to the proportion of OKS greater 

than T to all OKS.  

In the experiment, we calculate the following indicators to evaluate the 

performance of the model: AP0.5 and AR0.5 if the threshold K is 0.5. AP0.75and AR0.75 

when the threshold K is 0.75, the average value of AP and AR at ten positions if the 

threshold K is 0.50, 0.55, ···, 0.95. The average AR at ten positions when k is 0.50, ..., 
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0.95. APM and ARM for medium objects, APL and ARL for large objects (Lin et al., 

2014). 

Table 3.1: The sigma of each key point in COCO dataset 

Dataset annotation 

order 
Joint name Sigma 

0 nose 0.026 

1 Leye 0.025 

2 Reye 0.025 

3 Lear 0.035 

4 Rear 0.035 

5 Lshoulder 0.079 

6 Rshoulder 0.079 

7 Lelbow 0.072 

8 Relbow 0.072 

9 Lwrist 0.062 

10 Rwrist 0.062 

11 Lhip 0.107 

12 Rhip 0.107 

13 Lknee 0.087 

14 Rknee 0.087 

15 Lankle 0.089 

16 Rankle 0.089 

 

Table 3.2: The sigma of each key point in our dataset 

Dataset annotation 

order 
Joint name Sigma 

0 Rwri 0.062 

1 Relb 0.072 

2 Rsho 0.079 

3 Neck 0.035 

4 Lsho 0.079 

5 Lelb 0.072 

6 Lwri 0.062 

7 Nose 0.026 

8 Rhip 0.107 

9 Rkne 0.087 

10 Rank 0.089 

11 Lhip 0.107 

12 Lkne 0.087 

13 Lank 0.089 
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(2) Percentage of Correct Keypoints. We take use of the percentage of correct key 

points (PCK) to evaluate the detection ability of the model for each type of joint. We 

define PCK by using Eq. (3.5), where TP means the number of correctly predicted 

points. If the distance between the detected key point and the true point is less than 

the threshold, the prediction point is considered to be correct, the distance is 

normalized by the scale of the person (Xiao et al., 2018), T means the number of true 

key points. In the experiment, we set the threshold to 0.50. 

 

T

TP
PCK =

         
(3.5) 

3.2.7 Experiment Setting 

In the experiment, we set the aspect ratio of the detection box of the swimmer to 4:3 and 

then cut the detected swimmer out of the image, we adjust its size to a fixed resolution of 

384 × 288 before importing it into the network. 

We increase the amount of data in the dataset through data augmentation, including 

three ways: Randomly rotate the image between -35 and 35, randomly scale the image to 

0.65 to 1.35 times, and flip the image horizontally randomly. 

Before training, we convert the key points marked in the dataset into heatmaps for 

subsequent calculation. We take use of Gaussian to calculate the heat maps, we set  to 

2. Therefore, in order to speed up the calculation speed, we only carry out Gaussian 

distribution on the region of 3. The size of the Gaussian kernel is 6, the size of the 

resulting Gaussian distribution is 13. 

In the training process, the learning rate is set to 1.00 10-3, the decay gamma is set 

to 0.10, the decay steps are set to 170 to 200 epochs, the batch size is set to 12. We train 

the model on NVIDIA GeForce RTX2080 super GPU. The operating system is 

Ubuntu20.04. The virtual environment is Python 3.8. The training ended after the 200-th 
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iterations, with a total time of around 12 hours for the big network and around 8 hours for 

the small network. 

In the testing part, cropped swimmer boxes are sent into the trained pose estimation 

model for keypoints detection. The average heatmaps of the original image and the 

flipped image were taken as the output heatmap. Following the previous works (Chen et 

al., 2018; Law & Deng, 2018; Xiao et al., 2018), we generate the location of each 

keypoint by moving the highest response for the quarter offset in the direction from the 

highest response to the second high response. 

3.3 YOLOv5 for Swimmer Detection 

YOLOv5 has four scales of networks, the network structures of these models are similar. 

YOLOv5s is the smallest and most basic model among the four networks, the other three 

models deepen and widen the network on the basis of YOLOv5s. In this part, we take 

YOLOv5s as an example to introduce the network structure of YOLOv5. 

3.3.1 The Structure of the YOLOv5 

The network structure of YOLOv5 is mainly composed of the backbone, neck, and head. 

Backbone refers to the convolutional network used for feature extraction on the original 

image. Neck refers to the structure used to achieve feature fusion. Head refers to the 

structure used to classify and position the objects.  

The backbone of YOLOv5 mainly is composed of the focus structure, the CBS unit, 

the C3 module, and the spatial pyramid pooling (SPP) structure. The focus structure 

integrates the information of the feature map in the width and height dimension into the 

channel dimension through the slicing operation. The purpose of this structure is to reduce 

the amount of calculation and raise the inference speed (Jocher et al., 2020). CBS unit as 

the basic convolution unit is employed for feature extraction or downsampling.  



 
 

51 

The C3 module extracts rich information features from the input image. The structure 

of the C3 module is modified from the CSPNet, which is purpose to solve the problem of 

gradient information repetition in deep CNN and integrate the gradient changes into the 

feature maps (Wang et al., 2020). In the C3 module, the stacked residual blocks are 

divided from a single pipeline into two pipelines. In the trunk pipeline, the original 

residual blocks continue to be stacked. The branch pipeline is applied to skip the stacked 

residual blocks and merges the feature maps of the beginning with the end of the trunk 

after through a CBS unit. C3 module enhances the learning ability of CNN, maintains the 

accuracy while lightening the network, and reduces the computational bottleneck and 

memory cost. There are two kinds of C3 modules in YOLOv5, one for the backbone and 

another for the neck. 

SPP module in YOLOv5 is inherited from that of YOLOv4. The main function of the 

SPP module is to increase the receptive field of the network, through several max pooling 

layers with different scales (Song et al., 2021). The SPP module extracts important 

contextual features and hardly reduces the inference speed of the network (Bochkovskiy 

et al., 2020). 

 In the backbone, in order to expand the receptive field of the network for the 

extraction of high-level features, the resolution of the feature map needs to be reduced 

multiple times by downsampling which leads to the loss of low-level features. However, 

both the higher-level and the low-level feature are helpful for the detection of different 

scales of objects (Liu et al., 2018). As a result, to minimize the loss of information in the 

process of network deepening, in the neck of YOLOv5, PANet is applied to implement 

feature fusion between the feature maps in different stages for the detection of different 

scales of objects. 

PANet of YOLOv5 is implemented by combining the C3 module with the modified 

PANet proposed in YOLOv4. The modified PANet mainly consists of an FPN structure 

and a path augmentation structure. Compared with the original PANet proposed by Liu 

et al. (2018), the addition operation for the shortcut connection is replaced by the 
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concatenation operation (Bochkovskiy et al., 2020). The feature fusion ability of 

YOLOv5 is further strengthened by changing some of the basic convolution units in the 

modified PANet to the C3 module. 

YOLOv5 takes use of the same head structure with YOLOv3 which outputs three 

feature maps at three different scales. During the processing of prediction, anchor boxes 

are applied to multi-scale feature maps to detect objects of different sizes, the finer grid 

cells are applied to detect the finer objects. Finally, the output is vectors with class 

probabilities, objectness scores, and bounding boxes. 

3.3.2 Instantiation 

In YOLOv5 structure, CBS unit is the basic unit of the networks, which includes a 

convolution layer followed by a batch normalization layer and a sigmoid weighted linear 

unit (SiLU) (Elfwing et al., 2018). According to the kinds of convolution layer that 

included in the CBS unit, we classified the CBS unit into three types: 

(1) The CBS, which includes the 3×3 convolution, is called 3×3 CBS. The function of 

the 3×3 convolution is feature extraction. 

(2) The CBS which encompasses the 1×1 convolution is called 1×1 CBS, where the 1×1 

convolution is applied for reducing the dimensions of the channel for the output. 

(3) The CBS, which encapsulates 3×3 convolution of 2 strides, is called strided 3×3 CBS, 

where the 2-strided 3×3 convolution is applied for downsampling. 

    CBS is also a component of other modules, such as focus structure, C3 module, and 

so on, the backbone, neck, and head of the network, are stacked by these above structures.  

The backbone of the network includes a focus structure and three C3_1 modules each 

of which is followed by a strided 3×3 CBS unit, the end of the backbone is an SPP module. 

The focus structure mainly consists of 4 parallel slice layers, a concatenation layer, and a 

3×3 CBS unit. The process of slicing operation and concatenation operation shows the 
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input representation with the scale of W×H×C is sliced into four representations with a 

scale of W/2×H /2×C, then the four representations are connected through the 

concatenation layer which outputs a representation with the scale of W / 2×H / 2×4 C 

(Zhou et al., 2021). 

SPP module includes a 1×1 CBS unit follows by using four parallel operations, three 

of them are max pooling layers with kernel sizes of 5 × 5, 9 × 9, 13 × 13, respectively, 

and the other is a skip connection which connects the input and output of the three max 

pooling layers, the four parallel followed by a concatenation layer, the output of the 

concatenation layer finally goes through a 1×1 CBS unit.  

C3 module has two kinds of structures: the C3_1 module which is used in the 

backbone, and the C3_2 module which is offered in the neck. The C3_1 module is split 

into two branches. The first branch includes a 1×1 CBS unit, and the second branch 

encompasses a 1×1 CBS unit followed by N bottleneck structures. These two branches 

are finally connected into one branch by a concatenation layer followed by a 1×1 CBS 

unit. The bottleneck includes a 1×1 CBS unit followed by a 3×3 CBS unit. Finally, the 

output of the 3×3 unit is added with the input of the 1×1 CBS unit through a skip 

connection. The C3_2 module has a similar structure as the C3_1 module, where the N 

bottleneck structures are changed to N convolution blocks. The convolution block is 

composed of a 1×1 CBS unit followed by a 3×3 CBS unit.  

In the neck of the network, the output of the SPP module firstly go through the FPN 

structure which is formed by the stacking of two structurally identical FPN modules, The 

FPN module is composed of a C3_2 module followed by a 1×1 CBS unit, an upsampling 

layer, and a concatenation layer. In the sampling layer, we upsample the output of the 1×1 

CBS unit through the nearest neighbor algorithm. Similarly, the path augmentation 

structure is also formed by the stacking of two PAN modules. The PAN module includes 

a C3_2 module followed by a strided 3×3 CBS units whose output will be concatenated 

with the output of the CBS unit with the same resolution in the FPN structure. The second 

PAN module is followed by a C3_2 module as the end of the PANet. 
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 The head of the neural network is composed of three 1×1 convolution layers, the 

input of each convolution layer is the output of the final three C3_2 modules in PANet. 

3.3.3 Loss function 

In YOLOv5, different loss functions are employed for the classification of positive 

samples, the classification of foreground and background, and the regression of the 

bounding box (Kasper-Eulaers et al., 2021). Our task is a single classification problem, 

so the classification of positive samples is undesired, only the following two loss 

functions are used in our experiment: 

(1)  CIoU loss. We take use of CIoU loss for the regression of bounding boxes. CIoU loss 

is based on DIoU loss defined as Eq. (3.6). In Eq. (3.9), besides the coverage area and 

center point distance, CIoU loss adds the aspect ratio factor calculated by Eq. (3.8), where 

v is the consistency of aspect ratio calculated by Eq. (3.7), α is a positive trade-off 

parameter (Zheng et al., 2020). 
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 In our experiment, Eq. (3.9) is calculated in the following ways with the same 

meaning: 
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    In Eq. (3.10), Dcenter is the distance between the center of ground truth and the center 

of the prediction box. Ddiagonal is diagonal distance of the minimum closure region 

containing both the prediction box and ground truth box. 

We take use of BCEWithLogitsLoss for the classification of background and upground. 

BCEWithLogitsLoss is composed of BCELoss defined as Eq. (3.12) and sigmoid defined 

as Eq. (3.13), BCEWithLogitsLoss is defined as Eq. (3.14), where ln is the loss 

corresponding to the n-th sample. 
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3.3.4 Dataset 

 

Figure 3.11: The example of images in our datasets. 

Our dataset comes from 20 videos related to swimming competitions with a total duration 

of 2 hours. We randomly select video frames from these videos to make datasets, as 

shown in Figure 3.11, the video frames we selected include swimmers taken from various 

angles, such as surface view, underwater view, far distant view, and close view. 

In order to find the most appropriate amount of data, we totally create three datasets 

with different scales: Swimmer-421, Swimmer-1755, Swimmer-3700. Swimmer-421 is 

the smallest dataset which contains 421 images. On the basis of Swimmer-421, we add 

1,334 images to increase the total amount of images to 1,755 and named the new dataset 

as Swimmer-175. Similarly, Swimmer-3700 is made based on Swimmer-1755, by adding 

1,945 images. As shown in Figure 3.12. the data sources of the three datasets are the same, 

so their data structures are similar. 

We annotate all three datasets, and each dataset only labeled swimmers. Figure 3.13 

shows the number, width, height, and center coordinates of all bounding boxes in the 

three datasets. In the experiment, each of the three datasets is divided into training_val 
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set, test set in the ratio of 9:1, then the training_val set is divided into training set and 

validation set in the ratio of 9:1. 

  

(a) 

 

(b) 
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(c) 

Figure 3.12: The structures of the three swimmer datasets (a) The data structures of the 

Swimmer-421 (b) The data structures of the Swimmer-1755 (c) The data structures of 

the Swimmer-3700 dataset 
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(a) 

 

(b) 

 

 

(c) 
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Figure 3.13: Annotated labels of the three swimmer datasets (a) The information of 

bounding box annotated in Swimmer-421 (b) The information of bounding box annotated 

in Swimmer-1755 (c) The information of bounding box annotated in Swimmer-3700  

3.3.5 Evaluation Metrics 

In the experiment, precision represents the probability of correct prediction among all the 

results predicted as positive samples. Recall indicates the proportion correctly predicted 

in all positive samples. We use recall as abscissa and precision as ordinate to generate the 

PR curve. We calculate the area under the PR curve as the average precision (AP), and 

mAP represents the average value of each category of AP. Intersection over Union (IoU) 

is employed to evaluate the correctness of the boundary box. It represents the ratio of the 

intersection and union of detection box and ground truth.  

    In our experiments, we set a threshold for the IOU. If the IOU of the detection box is 

greater than the threshold, it is considered as the right box. mAP@0.5 was applied to 

represent the mAP if the threshold of IOU is set to 0.5. mAP@0.5: 0.95 shows the average 

mAP over different IoU thresholds (from 0.5 to 0.95 in steps of 0.05). Furthermore, we 

take use of Frames Per Second (FPS) to evaluate the detection speed of the model, which 

refers to the number of images detected by the model per second. 

3.3.6 Experiment Setting 

We conducted two experiments to select the most suitable YOLOv5 model as the 

detection head of our multi-swimmer pose estimation model. There are totally three 

datasets with different sizes are used in the experiment. In the first experiment, we utilize 

the smallest data named Swimmer-421 to train and test YOLOv5s and YOLOv5x, 

respectively. We compared the experimental results of the two models to select the 

specifications of the model for the second experiment. In the second experiment, we take 

the dataset named Swimmer-1755 and the dataset named Swimmer-3700 dataset to train 

and test YOLOv5s respectively and compare the experimental results with the results of 
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YOLOv5s in the first experiment to explore the impact of the amount of data on the 

performance of the model. The input size of both YOLOv5s and YOLOv5x are 640×640. 

 

Figure 3.14: The result of the mosaic operation 

We enhance the dataset before the training of each model. We set the parameters 

hgain, sgain, vgain to 1.5010-2, 0.70, 0.40, respectively to randomly enhance the gamut 

of the image. We randomly translate, scale, and flip the images with adjustment factors 

of 0.10, 0.50, 0.50, respectively. Furthermore, we also carried out the mosaic operation 

on the image. As shown in Figure 3.14, the mosaic operation refers to randomly selecting 

four training images, scaling, and putting them together into the same picture. Mosaic 

helps to improve the detection of small objects (Bochkovskiy et al., 2020; Kong et al., 

2021). 

In the experiment, we set the batch size to 16 to train YOLOv5s, and batch size to 6 

to train YOLOv5x. Except for batch size, other training parameters of the two models are 

set as follows: We warm up the model in the first three epochs, which is a learning rate 

optimization method. The specific way is using a small learning rate at the beginning of 

the model training. During the process of warming up, the model tends to be stable 

gradually. The operation of warming up accelerates the convergence speed of the model 

and makes the model more effective (Goyal et al., 2017). The pre-set learning rate for 
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training is applied after the first three epochs. We set the initial learning rate to 0.01 and 

the final learning rate to 2.0010-3. We apply stochastic gradient descent (SGD) in 

training, enable nesterov, set momentum to 0.94, and weight decay to 5.00 x10-4. 

All the models were trained based on NVIDIA GeForce RTX2080 super GPU. The 

operating system is Microsoft Windows 10. The virtual environment is Python 3.8. The 

training is ended after the 200-th iterations, with a total time of around 2.3 hours for the 

YOLOv5x on the Swimmer-421 dataset, 0.40 hours for the YOLOv5s on the Swimmer-

421 dataset, 1.6 hours for YOLOv5s on the Swimmer-1755 dataset, 3.30 hours for the 

YOLOv5s on the Swimmer-3700 dataset. 

3.4 YOLOv5 Interface 

We set the parameters for YOLOv5 model in the process of parameters setting of HRNet, 

and then invoke the YOLOv5 model via the YOLOv5 interface with these parameters, to 

detect swimmers in the picture. The YOLOv5 interface mainly includes two parts: Image 

preprocessing and detection. 

Before feeding the pictures into the YOLOv5 model, it is necessary to standardize 

the size of input pictures by adaptive scaling, YOLOv5 takes use of a new method 

modified from the original adaptive scaling strategy of YOLOv4, which takes advantage 

of the minimal information to fill the images. The new method greatly reduces 

information redundancy and substantially improves the detection speed of the model. In 

image preprocessing, we take use of Algorithm 1 to realize adaptive filling of the input 

images: 
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  Adaptive Image Rescaling 

 Original Image 

 Rescaled Image 

1:   autobox(imgo,input shape = 640,color = (114, 114, 114), 

mode =′ auto′) 

2:          imgshape ← [imgo Width,imgo Height] 

3:         input shape is integer  

4:               auratio ← float(input shape)/max(imgshape) 

5:         

6:               auratio ← max(input shape)/max(imgshape) 

7:          

8:        new unpad ← (integer(round(imgshape[1] ∗ auratio)), 

integer(round(imgshape[0] ∗ auratio))) 

9:         mode is ′auto′  

10:               dwidth ← MOD(input shape − new unpad[0], 32)/2 

11:             dheight ← MOD(input shape − new unpad[1], 32)/2 

12:           mode is ′square′  

13:             dwidth ← (input shape − new unpad[0])/2 

14:             dheight ← (input shape − new unpad[1])/2 

15:          

16:               raise error NotImplementedError 

17:         

18:       topadd,bottomadd ← integer(round(dheight − 0.1)), 

integer(round(dheight + 0.1)) 

19:        leftadd,rightadd ← integer(round(dwidth − 0.1)), 

integer(round(dwidth + 0.1)) 

20:          img ← OpenCV.resize(imgo,new unpad, 

interpolation = OpenCV.INTER LINEAR) 

21:        img = 

OpenCV.copyMakeBorder(img,topadd,bottomadd,leftadd, 

rightadd,OpenCV.BORDER CONSTANT,value = color) 

22:          img,auratio,dwidth,dheight 

23:    
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In the detection section, we invoke YOLOv5s model by using the parameters in the 

HRNet, and send the image to a suitable format for detection, the detection process is 

implemented by using Algorithm 2. 

  Detection Process 

 Image 

 Detection Result 

1:   predict(images,color mode =′ BGR′) 

2:      img ← prepare data(images,color mode = color mode) 

3:        img ← load img to GPU 

4:       length(img) <= max batch size  

5:               detections ← model(img,augment = augment)[0] 

6:         

7:               detections ← torch.empty((img.shape[0], 10647, 85)) to GPU 

8:             i = 0 → length(img),stride = max batch size  

9:                     detections[i : i + max batch size] = model 

(img[i : i + max batch size]).detach() 

10:               

11:          

12:        detections ← Non − Maximum Suppression(detections, 0.5, 

0.45,agnostic = agnostic nms) 

13:         i = 0 → length(images)  

14:             detections[i] is not None  

15:                   detections[i] ← scale coords(detections[i], 

img[i].shape[1 :],images[i].shape[: 2] 

16:               

17:         

18:         detections 

19:    

 

 

where the function scale_ coords in line 15 is applied to map the predicted coordinates 

back to the original image. It is implemented in the following code: 
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  Calculate Bounding Box Coordinates on Original Image 

 NMS Result, Rescaled Image, Original Image 

 Coordinates of Bounding Box 

1:   scale coords(coords,from image shape,to image shape) 

2:      gain ← max(from image shape)/max(to image shape) 

3:      coords[first column,third column] ← coords[first column, 

third column] − (from image shape[1] − to image shape[1] 

∗ gain)/2 

4:       coords[second column,fourth column] ← coords[second column, 

fourth column] − (from image shape[0] − to image shape[0] 

∗ gain)/2 

5:       coords[first four columns] ← coords[first four columns]/gain 

6:        coords[first four columns] ← coords[first four columns].clamp 

(min = 0) 

7:         coords 

8:    
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Chapter 4 

Results 

 

 

The main content of this chapter is the evaluation and 

performance of the swimmer detector based on YOLOv5, the 

evaluation of the single swimmer estimator is based on HRNet, 

the evaluation and performance of the multi-swimmer pose 

estimation model are based on the combination of YOLOv5 and 

HRNet. Moreover, we objectively analyze the limitations of our 

experiments. 
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4.1 Swimmer Detection 

In this part, we unfold the training and testing results of YOLOv5x and YOLOv5s based 

on Swimmer-421 dataset, training and testing results of YOLOv5s based on the 

Swimmer-1755 dataset and Swimmer-3700 dataset. Table 4.1 shows the parameter 

quantity of the two models. YOLOv5x has more params and higher GFLOPs than that 

of YOLOv5s, which means higher spatial complexity and computational complexity. 

Table 4.1: The parameters of YOLOv5s and YOLOv5x 

Backbone YOLOv5s YOLOv5x 

#Params 7.10M 87.20M 

GFLOPs 16.30  217.10  

4.1.1 Results on Swimmer-421 Dataset 

Figure 4.1 (a) shows that during the training of YOLOv5x, the objectness loss on the 

training set declined continuously, whereas the objectness loss on the validation set 

declined first and then rose, which is overfitting phenomenon. Figure 4.1 (b) shows 

overfitting also occurs during the training of YOLOv5s, but it is not as serious as 

YOLOv5x. Therefore, we believe that the reason for overfitting phenomenon is the scale 

of dataset is too small for the models with high complexity. 
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(a) 

 

(b) 

Figure 4.1: Training result of YOLOv5x and YOLOv5s on the Swimmer-421 dataset. (a) 

Training result of YOLOv5x on Swimmer421 dataset (b) Training result of YOLOv5s 

based on Swimmer421 dataset. The figures named box and val_box show the loss of the 

bounding box on the training set and the validation set during the training period, 

respectively. The figures named objectness and val_objectness show the loss of the 

classification of foreground and background on the training set and the validation set, 

respectively. The other four figures show the following indicators of the model on the 

validation set during the training period: Precision, Recall, mAP@0.5, and mAP@0.5: 

0.95. 

    The results of YOLO v5x and YOLOv5s based on the test set are shown in Table 4.2, 

precision (95.00%) and mAP@.5:.95 (48.70%) of YOLOv5s are higher than those of 

YOLOv5x, which may result from the severe overfitting of YOLOv5x during the training. 

In terms of detection speed the average detection speed of YOLOv5s for each image is 

196.0fps, which is much higher than 47.00 fps of YOLOv5x, the YOLOv5s model 

outperformed YOLOv5x in both detection ability and detection speed. Figure 4.2 shows 

the performance of the two models for objects of different sizes, the detection effect of 

both models is excellent.  

mailto:mAP@.5:.95
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Table 4.2: Test result of YOLOv5s and YOLOv5x that trained with Swimmer-421 set 

 

Model YOLOv5x YOLOv5s 

Precision 94.40% 95.00% 

Recall 96.30% 94.80% 

mAP@0.5 95.10% 94.90% 

mAP@0.5:0.95 44.90% 48.70% 

Time(Inference) 19.90 ms 4.00 ms 

Time(NMS) 1.30 ms 1.10 ms 

Speed(Total) 47.00 fps 196.00 fps 

 

 

(a)                              (b) 

Figure 4.2: (a) The examples of detection results for YOLOv5s (b) The example of 

detection results for YOLOv5x. 
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Swimmer detection is a simple classification problem, there are only two types of 

objects to be detected: Swimmer and background, and the amount of data for the 

experiment is limited, the network scale of YOLOv5s is already sufficient for our task, 

YOLOv5x with deeper and wider network structure is not only easy to overfit but also 

has slower detection speed, therefore, we take use of YOLOv5s for the latter experiments. 

4.1.2 Results on Swimmer-1755 and Swimmer-3700 

 

 

Figure 4.3: Detection results of YOLOv5s on the wild dataset. 

    We optimized the performance of YOLOv5s to generate a swimmer detector for 

multi-swimmer pose estimation. In order to obtain more objective results, we take use of 

the trained model to detect a set of data other than the three datasets we proposed to 

demonstrate the variation of their detection ability, which is hereafter referred to as the 

wild dataset. The example of the detection results on the wild dataset with YOLOv5s that 

trained on Swimmer-421 is shown in Figure 4.3. The model is prone to misunderstanding 

the background as swimmers in the underwater view compared to the other view, and the 

error of the bounding boxes detected is also greater. We believe that these phenomena 
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arise because YOLOv5s overfits the information in Swimmer-421, taking some 

background information as spuriously correct features. What’s more, the dataset in the 

experiment is small. The angle of a swimmer in the dataset is limited, so the model is 

prone to errors when detecting some strange angles. 

 

(a) 

         

(b) 

Figure 4.4: (a)Training result of YOLOv5s based on the Swimmer-1755 dataset (b) 

Training result of YOLOv5s based on Swimmer-3700 dataset 
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We trained and tested the YOLOv5s model by using training set and the test set of 

the Swimmer-1755 dataset and the Swimmer-3700 dataset respectively. As shown in 

Figure 4.4, the overfitting is significantly improved by training with the Swimmer-1755 

dataset and almost disappeared by training with the Swimmer-3700 dataset, we see that 

the training set of Swimmer-3,700 has the most appropriate data volume for YOLOv5s. 

 

Figure 4.5: The precision curve, recall curve, precision-recall curve, F1 score curve of 

YOLOv5s trained with different datasets. 

    The test results of the new models are shown in Table 4.3. With the increase of 

training data, the precision, recall, and mAP of this model are all increased. For instance, 

the model trained on Swimmer-3700 improves the mAP@0.5 by 4.40% (versus model 

trained on Swimmer-421), 2.50% (versus model trained on Swimmer-1755). As shown 
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in Figure 4.5, YOLOv5 trained with Swimmer-3700 dataset obtained the best 

performance on all the curves. 

Table 4.3: Test result of YOLOv5s that trained with different datasets 

Models YOLOv5s 

Datasets Swimmer-421 Swimmer-1755 Swimmer-3700 

Precisions         95.00% 94.70% 97.60% 

Recalls    94.80% 97.90% 98.50% 

mAP@0.5   94.90% 96.80% 99.30% 

mAP@0.5:0.95 48.70% 59.30% 80.30% 

Time(Inference) 4.00 ms 3.30 ms 2.90 ms 

Time(NMS) 1.10 ms 1.00 ms 1.00 ms 

Speed(Total) 196.00 fps 232.6 fps 256.40 fps 
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Figure 4.6: The detection results based on the wild dataset for different models (a) 

Model trained with Swimmer-421 (b) Model trained with Swimmer-1755 (c) Model 

trained with Swimmer-3700 

 

Figure 4.7: The detection results based on the wild dataset for different models (a) 

Model trained with Swimmer-421 (b) Model trained with Swimmer-1755 (c) Model 

trained with Swimmer-3700 

    Figure 4.6 shows the evolution of performance for the models based on the images 

with easily confusing backgrounds. With the increase in the amount of data, the 

phenomenon of false detection gradually disappeared. As shown in Figure 4.7, the boxes 

generated by the model become more and more accurate. According to the experimental 

results, YOLOv5s which was trained based on Swimmer-3700 performs the best on both 

the test set and the wild datasets, so we take it as the final swimmer detector. 
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4.2 Result of Single-Swimmer Pose Estimation Model 

We trained the HRNet of two sizes three times by using three different loss functions, 

respectively. The input of the two networks is the group of bounding boxes including a 

single swimmer cropped from the input images. The position of the bounding boxes is 

annotated by humans.  

We evaluate the performance of the model using indicators such as AP, APM, APL, 

AR, the results are shown in Table 4.5 and Table 4.6. Both of the two networks were 

trained with MSE loss that achieve the most ideal effect. Compared with that of using 

other loss functions, the large network has obtained the best value on all indexes except 

APM and ARM. For example, we obtained an AP rate of 95.30% and an AR rate of 96.60%, 

but these scores are only slightly superior to the results of the small network. The small 

network trained with MSE loss obtained an AP rate of 95.20% as well as an AR rate of 

96.50%. The small networks are ahead of large networks by 1.50% in APM and 1.60% in 

ARM. The network using MSEBone loss for joint training obtained the worst results, 

which may be due to the difficulty of learning spatial information, the model needs a large 

amount of data. However, our dataset is small, which is not enough to obtain ideal results.  

Table 4.4 shows the parameter quantity of this model, the parameter quantity of the 

small network is 28.50M while the large network is 63.60M, which means, the small 

model has less spatial complexity than the large network. In terms of computational 

complexity of the model, the GFLOPs were 16.00 for the small network and 32.90 for the 

large network. This illustrates the low computational complexity of small networks, 

which also means that small networks possess lower temporal complexity. So, the small 

network is faster in training and prediction. 

Table 4.4: The parameters of HRNet with two sizes 

 

Backbone HRNet-W32 HRNet-W48 

#Params 28.50M 63.60M 

GFLOPs 16.00 32.90 
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Table 4.5: The performance of HRNet-W32 on the test set 

 

Backbone HRNet-W32 

Loss 
MSE 

(%) 

MSE+OHKM 

(%) 

MSE+BONE 

(%) 

AP 95.20 87.40 42.00 

AP50 99.00 99.00 95.40 

AP75 98.00 98.00 24.80 

APM 92.40 84.20 36.20 

APL 95.80 88.20 44.30 

AR 96.50 91.20 48.60 

AR50 99.70 99.70 97.30 

AR75 98.60 98.90 40.90 

ARM 95.70 90.40 47.80 

ARL 96.60 91.30 48.70 

 

Table 4.6: The performance of HRNet-W48 on the test set 

 

Backbones HRNet-W48 

Loss 
MSE 

(%) 

MSE+OHKM 

(%) 

MSE+BONE 

(%) 

AP 95.30 95.00 76.40 

AP50 99.00 99.00 99.00 

AP75 99.00 97.00 85.00 

APM 90.90 91.80 68.30 

APL 96.10 95.50 78.20 

AR 96.60 96.40 80.90 

AR50 99.70 99.70 99.20 

AR75 99.20 98.60 88.20 

ARM 94.10 95.30 76.70 

ARL 97.10 96.50 81.60 

Figure 4.8 shows the performance of HRNet-W48 and HRNet-W32 networks for 

each type of key point using PCK@0.50 as the metric. Taken the large network trained 

mailto:PCK@0.5
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with MSE as an example, the network has a strong recognition ability for most joint 

points.  

For example, the scores on joint points of shoulders, noses, and hips for large 

networks are more than 99.00%. The recognition ability of the network for elbow and 

wrist joints is weak, only a score of about 97.00% is obtained. The reasons for this 

phenomenon are: Firstly, the hand joints need to enter and exit the water frequently to 

complete the stroke, which makes the hand joints disappear intermittently in the 

underwater perspective. Consequently, the number of hand key points in the dataset is 

less than that of other joint points. Secondly, the bubbles caused by the arm in the stroke 

will also block the hand joint points, which blurs the characteristics of the hand joints. In 

general, our model still achieves ideal detection results after training with a small amount 

of data. This proves that our method is very practical in swimmer pose estimation. 
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Figure 4.8: The performance of networks for each type of keypoints by using PCK@0.50 

metric (a) The scores of HRNet-W32 with MSE loss, MSEOHKM loss, MSEBone loss, 

respectively (b) The scores of HRNet-W48 that trained with MSE, MSEOHKM loss, 

MSEBone loss, respectively 

 

Figure 4.9: Value loss curve of HRNet-W48 during the training with different training 

parameters. LR means initial learning rate. 

Value loss of this model is based on the validation set during the training time. As 

shown in Figure 4.9, though the network trained with MSE loss achieved the best 

performance, its value loss fluctuated violently in the training process. We believe that 

this is caused by using a small size batch and a big learning rate during the training. Since 

the batch size is limited by computing resources, we reduced the learning rate and 

retrained the HRNet-W48. We set the initial learning rate as 5.0010-4, and the learning 

rate is attenuated at 50, 80, 110, 140, 170, and 190 epochs with 0.70 as the decay rate. 

The red curve in Figure 4.9 shows the changes of value loss during training, compared to 

the results using 1.0010-3 as the initial learning rate, it converges better. 

Table 4.7: The performance of HRNet-W48 trained with different initial learning rates 

Backbone HRNet-W48 

Loss MSE 

Learning rates 1.0010-3 5.0010-4 

AP 95.30% 95.60% 

AP50 99.00% 99.00% 

AP75 99.00% 99.00% 

APM 90.90% 92.50% 

mailto:PCK@0.5
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APL 96.10% 96.20% 

AR 96.60% 97.10% 

AR50 99.70% 99.70% 

AR75 99.20% 99.20% 

ARM 94.10% 95.90% 

ARL 97.10% 97.30% 

 

 

Figure 4.10: The performance of HRNet-W48 that trained with different learning rates 

for each type of keypoints. LR means initial learning rate. 
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Figure 4.11: The result on the recording of the swimming event (a) The result of HRNet-

W48 takes use of 1.0010-3 as the initial learning rate (b) The result of HRNet-W48 

utilizes 5.0010-4 as the initial learning rate. 

The testing results of the HRNet-W48 trained with different learning rate are shown 

in Table 4.7, which reveal that the new model that trained with a smaller learning rate 

performs better on most evaluating indicators. Figure 4.10 shows the performance of the 

two models for each type of key point, the new model obtains stronger capability on 

identifying hard key points, such as elbow, knee, and ankle. As shown in Figure 4.11, the 

new model accurately detects the missing joint points of the previous model. Therefore, 

in the following experiments, we combine the new model with YOLOv5s to form our 

multi-swimmer pose estimation model. 

4.3 Result of Multi-swimmer Pose Estimation Model 

In this section, we show the test results of the multi-swimmer pose estimation model, 

which is actually the result of changing the input of the single-swimmer pose estimation 

model from the manually annotated bounding boxes to the bounding boxes detected by 

the swimmer detector. The swimmer detector and the single-swimmer pose estimation 

model are obtained from the previous experiments of this thesis.  

As shown in Table 4.8, we evaluate the model using metrics such as AP, APM, APL, 

AR, and the performance of the single-swimmer pose estimation model is shown again 

for comparison. The AP rate of the multi-swimmer pose estimation model is as same as 

that of the single-swimmer pose estimation model, the AR rate of 96.90% is slightly lower 

than that of the single swimmer pose estimation model (97.10%). In general, the swimmer 

detector has no significant impact on the performance of the model. 

Table 4.8: The performance of our multi-swimmer pose estimation model on the test set 

Backbones 
HRNet-W48 

(%) 

HRNet-W48 &YOLOv5s 

(%) 

AP 95.60 95.60 

AP50 99.00 99.00 
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AP75 99.00 97.00 

APM 92.50 92.50 

APL 96.20 96.20 

AR 97.10 96.90 

AR50 99.70 99.40 

AR75 99.20 99.10 

ARM 95.90 95.60 

ARL 97.30 97.30 

4.4 Limitations of This Research Project 

(1) The scenes on the two kinds of datasets we used are not rich, so the recognition ability 

of our model will be impaired in cross-scene tasks. 

(2) Most of our experimental results are based on small datasets with a single class, 

which makes our conclusions have a bit of limitation and are not applicable to the 

results obtained on large multiclassification datasets. 
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Chapter 5 

Analysis and Discussions 

 

 

We systematically summarize and analyze the 

experimental results of all the models in this chapter. 
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5.1  Analysis 

The precision of YOLOv5s trained on the Swimmer-421 dataset is 95.00% which is better 

than that (94.40%) of YOLOv5x trained on the Swimmer-421 dataset and that (94.70%) 

of the YOLOv5s trained on the Swimmer-1755 dataset. YOLOv5s got the highest 

precision at 97.60% after the training based on the Swimmer-3700 dataset. The mAP@0.5 

of YOLOv5s trained on the Swimmer-421 dataset is 94.90% which is lower than that 

(95.10%) of YOLOv5x trained on the Swimmer-421 dataset and that (96.80%) of 

YOLOv5s trained on the Swimmer-1755 dataset. YOLOv5s achieved the highest 

mAP@0.5 at 99.30% after training on the Swimmer-3700. In terms of detection speed, 

the average time for YOLOv5s trained on the Swimmer-421 to detect each image is 

196.00 fps, outperforming the 47.00 fps of YOLOv5x. 

Among the models that used 1.0010-3 as the initial learning rate during the training, 

the HRNet-W48 achieved an AP rate of 95.30% and an APL rate of 96.10% after training 

by using MSE loss which outperforms the HRNet-W48 trained by using other loss 

functions, and all the HRNet-W32. However, the APM of HRNet-W32 trained with MSE 

loss is 92.40% which is 1.5 points higher than the APM of HRNet-W48 trained with MSE 

loss. The highest AR rate 96.60% and the highest ARL rate 97.10% are achieved by 

HRNet-W48 trained with MSE loss. The highest ARM rate 95.70% is achieved by the 

HRNet-W32 trained with MSE loss. 

 On the other hand, compared with the HRNet-W48 taking use of 1.0010-3 as the 

initial learning rate during the training, the HRNet-W48 makings use of 5.0010-4 as the 

initial learning rate get better results on most of the metrics, such as APM of 92.50%, an 

ARM of 95.90%, which also get the best performance, among all the models. 

The AP of our multi-swimmer pose estimation model is 95.60% which is as same as 

that of the trained HRNet-W48 that takes use of ground truth bounding box as input. The 

AR rate of our multi-swimmer pose estimation model is 96.90% which reduces by 0.20% 

compared with 97.10% of the trained HRNet-W48. 
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5.2 Discussion 

After training the YOLOv5s and YOLOv5x on the Swimmer-421 dataset, we found that 

both of the two models achieved high degrees of performance, compared with the 

YOLOv5x, YOLOv5s performs better on most evaluation metrics. By contrasting the loss 

curves during the training, we found that overfitting happens on both of the two models 

and the overfitting is much severe for YOLOv5x which has higher model complexity, 

which is also the reason why it performed worse than the YOLOv5s. We believe that 

overfitting arises because our dataset contains only a single class of objects which has 

limited variation in the appearance and motion, the features that need to be learned are 

limited, and the size of the Swimmer-421 dataset is small which both make the models 

over learn bootless features based on the training set, treating the background features as 

false-positive features. This outcome proves that the network size of the YOLOv5s is 

adequate for our task and a deeper network does not mean better performance. 

Furthermore, in terms of detection speed, the advantage of the YOLOv5s is obvious, it 

acquired four times faster than the YOLOv5x. 

According to the results of the first experiment, we decided to take YOLOv5s to 

implement the swimmer detector. In the second experiment, we took use of two larger 

datasets to train YOLOv5s, with the intent of obtaining a swimmer detector that has better 

performance. YOLOv5s which was trained based on the Swimmer-3700 dataset performs 

best. The result shows that larger datasets assist the model to fit more effective features 

and further converge. Finally, we take the best performing model as the swimmer detector 

of the multi-swimmer pose estimation. 

We compared the result of HRNet-w32 and HRNet-w48 that was trained with MSE 

loss, MSEOHKM loss, and MSEBone loss respectively. Among the three obtained 

HRNet-w32 models, the network trained with MSE loss achieved the best performance 

in most evaluation metrics. Similarly, HRNet-w48 trained with MSE also achieved the 

best performance compared with the other two HRNet-w48. We think the reason is that 

more data is needed while fitting difficult samples and spatial relationships, so the size of 



 
 

85 

our dataset limits other two networks to obtain better results. In addition, HRNet-w48 

trained with MSE loss performs better than the HRNet-w32 trained with MSE loss on 

objects other than medium objects. 

In order to improve the performance of the HRNet-w48 trained with MSE loss, we 

retrained the HRNet-w48 and reduced the initial learning rate during the training to match 

with the small batch size. Compared to the results of the model using 1.0010-3 as the 

initial learning rate, the loss of the retrained model converges better. We finally chose the 

retrained HRNet-w48 as part of our multi-swimmer pose estimation model. 

Our multi-swimmer pose estimation model was implemented by combining the 

selected YOLOv5s and the selected HRNet-w48. Our model gets the same precision as 

that of the selected HRNet-w48, but with a slightly lower recall rate than that of selected 

HRNet-w48. In terms of computational time, the swimmer detector has an average 

detection time of only 3.90 ms for each image which hardly contributes to the inferential 

time for the model. The experimental result illustrates that the performance of our 

proposed top-down multi-swimmer pose estimation model is hardly limited by the 

swimmer detector. 
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Chapter 6 

Conclusion and Future Work 

 

In this chapter, we will demonstrate the conclusion of 

the research and envision our future work. 
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6.1  Conclusion 

The purpose of this thesis is to devise and implement a pose estimation method that fits 

the scenarios containing multiple swimmers. In this thesis, we introduced the method for 

human pose estimation and object detection. We also reviewed the development process 

and current research trends related to the pose estimation of swimmers. By comparing the 

existing methods, we finally chose the top-down method to achieve an end-to-end multi-

swimmer pose estimation model based on deep learning. 

In our approach, HRNet was employed to enforce the single-swimmer pose 

estimation model which innovatively alters the link between high and low-resolution 

from series to parallel, thus retaining the high-resolution representation in the whole 

network structure. At the same time, the network also introduces a cross-fusion module 

in high and low-resolution to improve the performance of the model. Compared with the 

single-swimmer pose estimation model implemented by traditional methods in the past, 

our model supports parallel computing such as GPU processing, which greatly shortens 

the running time of the model. Our model saves a lot of complex training processes which 

is easier to be deployed and implemented. On the other hand, YOLOv5s was applied to 

procure the swimmer detector, which achieves ideal performance on both detection speed 

and detection ability. 

In summary, through combing the excellent performance swimmer detector and 

single-swimmer pose estimation model, our multi-swimmer pose estimation model 

breaks the limitations of the top-down-based method and achieved almost the same well 

performance as the single-swimmer pose estimation model with minimal increase in 

detection time. Compared with the prevenient methods for the pose estimation of 

swimmers which are only applicable to scenarios with a single swimmer, our method fits 

for the scenarios containing multiple swimmers, which means a wider application range.  
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6.2  Future Work 

At present, our model does not fully meet the standard of real-time detection in terms of 

speed. In the future, we plan to adjust the structure of the single-swimmer pose estimation 

model so as to obtain a higher detection speed. The scale of our dataset is small, the 

expansion of the dataset will be completed in the future.  

Moreover, our model is limited to apply the information in a single image so as to 

predict the position and pose of the object. However, in the prediction of continuous 

frames, the information of front and rear frames is also very important, which not only 

reduces the prediction time but also plays a reference role in the face of occlusion and 

other problems. As a result, we plan to apply this kind of information for detection. 

The pose estimation of swimmers is the basis of many machine vision algorithms, 

the swimmers’ pose correction based on pose estimation is the research direction of our 

future work. 
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