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I 

 

Abstract 

With the aging of contemporary society, cognitive impairment and dementia in the 

elderly, mainly Alzheimer's disease (AD), have become increasingly serious. As a 

multifactor, multistage, and clinical syndrome with concomitant diseases, senile 

cognitive impairment will take progress to irreversible dementia after clinical 

symptoms appear, eventually lead to death. Alzheimer's disease is currently irreversible, 

effective treatments lack in clinical practice. The development of a patient's status will 

go through several stages, so early diagnosis is essential. Early intervention of 

Alzheimer's disease can effectively slow down the disease progression while reduce the 

burden on patients' families and our society.  

    This thesis introduces a method based on deep learning for early diagnosis and 

screening AD. The method is to slice a 3D magnetic resonance image of a human brain 

so as to generate a two-dimensional image, then we use an object detection network 

Faster R-CNN to detect the atrophy of the hippocampus region of human brain to 

realize the diagnosis of AD. A new network is modified and optimized based on VGG16 

as the basic network of Faster R-CNN to extract feature maps and obtain 100% high-

precision detection of AD samples. At the same time, 97.67% of the detected image 

accuracy is obtained for the validation set. 

 

 

 

 

Keywords: Alzheimer's disease, early diagnosis, deep learning, object detection, Faster 

R-CNN.  



II 

 

Content 

Abstract .......................................................................................................................... I 

Content .......................................................................................................................... II 

List of Figures ............................................................................................................... V 

List of Tables .............................................................................................................. VII 

Attestation of Authorship .......................................................................................... VIII 

Acknowledgment .........................................................................................................IX 

Chapter 1 ........................................................................................................................ 1 

1.1 Background and Motivation ............................................................................. 2 

1.2 Research Question ............................................................................................ 5 

1.3 Contributions..................................................................................................... 5 

1.4 Objectives of This Thesis .................................................................................. 6 

1.5 The Structure of This Thesis ............................................................................. 6 

Chapter 2 ........................................................................................................................ 8 

2.1 Introduction ....................................................................................................... 9 

2.2 Common Medical Images ................................................................................. 9 

2.2.1 Magnetic Resonance Imaging (MRI)...................................................... 9 

2.2.2 Computer Tomography (CT) ................................................................ 10 

2.2.3 X-Ray Image ......................................................................................... 10 

2.2.4 Ultrasound Imaging .............................................................................. 10 

2.2.5 Positron Emission Tomography (PET) Image ...................................... 11 

2.2.6 Pathological Image................................................................................ 11 

2.3 Diagnostic Methods for Alzheimer's Disease ................................................. 11 

2.3.1 Detecting Changes in The Electrophysiology of Human Brain ............ 11 

2.3.2 Non-invasive Techniques to Find Biomarkers of The Disease ............. 12 

2.4 Hippocampus .................................................................................................. 12 

2.5 Deep Learning ................................................................................................. 13 

2.6 Convolutional Neural Network ....................................................................... 13 



III 

 

2.6.1 Convolutional Layer ............................................................................. 14 

2.6.2 Activation Layer.................................................................................... 14 

2.6.3 Pooling Layer ........................................................................................ 15 

2.6.4 Dropout Layer ....................................................................................... 15 

2.6.5 Fully Connected Layer .......................................................................... 16 

2.6.6 Transposed Convolution Layer ............................................................. 16 

2.7 Classic Convolutional Neural Networks ......................................................... 18 

2.7.1 AlexNet ................................................................................................. 18 

2.7.2 VGG ...................................................................................................... 19 

2.7.3 ResNet ................................................................................................... 20 

2.7.4 DenseNet ............................................................................................... 21 

2.8 Loss Function .................................................................................................. 23 

2.8.1 Zero-one Loss ....................................................................................... 23 

2.8.2 Cross Entropy Loss Function ................................................................ 24 

2.9 Optimizers ....................................................................................................... 26 

2.9.1 Stochastic Gradient Descent ................................................................. 26 

2.9.2 Stochastic Gradient Descent with Momentum ..................................... 26 

2.9.3 AdaGrad ................................................................................................ 27 

2.9.4 Root Mean Square Propagation ............................................................ 27 

2.9.5 Adam ..................................................................................................... 28 

2.10 Region of Interest .......................................................................................... 28 

2.11 Object Detection ........................................................................................... 29 

2.11.1 Regions with CNN Features (R-CNN) ............................................... 29 

2.11.2 Fast R-CNN......................................................................................... 30 

2.11.3 Faster R-CNN ..................................................................................... 30 

2.11.4 You Only Look Once (YOLO) ............................................................ 31 

2.11.5 Single Shot Multibox Detector (SSD) ................................................ 32 

2.12 Related Work ................................................................................................. 33 

Chapter 3 ...................................................................................................................... 34 



IV 

 

3.1 Research Design.............................................................................................. 35 

3.2 Pretraining ....................................................................................................... 37 

3.3 Validation Method ........................................................................................... 39 

3.4 Tuning and Optimization ................................................................................ 41 

3.5 Test Method..................................................................................................... 45 

Chapter 4 ...................................................................................................................... 47 

4.1 Data Collection ............................................................................................... 48 

4.2 Data Set Preprocessing ................................................................................... 49 

4.2.1 MRI Slicing ........................................................................................... 50 

4.2.2 Screening............................................................................................... 51 

4.2.3 Labelling ............................................................................................... 51 

4.3 Experimental Environment ............................................................................. 52 

4.4 Experiment Procedure ..................................................................................... 54 

4.5 Experimental Results ...................................................................................... 57 

Chapter 5 ...................................................................................................................... 61 

5.1 Analysis ........................................................................................................... 62 

5.2 Discussions ..................................................................................................... 75 

Chapter 6 ...................................................................................................................... 76 

6.1 Conclusion ...................................................................................................... 77 

6.2 Limitations ...................................................................................................... 77 

6.3 Future Work .................................................................................................... 78 

References .................................................................................................................... 79 

  



V 

 

List of Figures 

Figure 2.1 Residual block ..................................................................................... 21 

Figure 2.2 The sigmoid function ........................................................................... 24 

Figure 3.1 Our research design process ................................................................ 35 

Figure 3.2 The structure of Faster R-CNN network ............................................. 36 

Figure 3.3 The structure of RPN ........................................................................... 37 

Figure 3.4 The input-output relationship of the RoI Pooling layer ....................... 38 

Figure 3.5 Classification and bounding box regression in Faster R-CNN ........... 38 

Figure 3.6 The modified part structure diagram of the newNetwork ................... 42 

Figure 3.7 The parameter settings for the transposed convolutional layer ........... 43 

Figure 3.8 Faster R-CNN network structure based on the newNetwork .............. 43 

Figure 3.9 Faster R-CNN network layer parameters based on the newNetwork.. 45 

Figure 3.10 The process of the test method .......................................................... 46 

Figure 4.1 Examples of MRI ................................................................................ 49 

Figure 4.2 Examples of slice of MRI .................................................................... 50 

Figure 4.3 The labeling process ............................................................................ 52 

Figure 4.4 Examples of the dataset ....................................................................... 52 

Figure 4.5 The hyperparameters in this experiment ............................................. 55 

Figure 4.6 The first step of training Faster R-CNN .............................................. 55 

Figure 4.7 The second step of training Faster R-CNN ......................................... 56 

Figure 4.8 The third step of training Faster R-CNN ............................................. 56 

Figure 4.9 The fourth step of training Faster R-CNN ........................................... 57 

Figure 4.10 The confusion matrix of the result of VGG16 + Faster R-CNN ....... 58 

Figure 4.11 The confusion matrix of the result of VGG19 + Faster R-CNN ....... 59 

Figure 4.12 The confusion matrix of the result of newNetwork + Faster R-CNN59 

Figure 5.1 The examples of test results of AlexNet+Faster R-CNN .................... 62 

Figure 5.2 The examples of test results of GoogLeNet-Faster R-CNN ................ 63 

Figure 5.3 Examples of test results of Inceptionv3+Faster R-CNN ..................... 63 



VI 

 

Figure 5.4 Examples of test results of MobileNetv2+Faster R-CNN ................... 64 

Figure 5.5 Examples of test results of SqueezeNet+Faster R-CNN ..................... 65 

Figure 5.6 The examples of test results of ResNet18+Faster R-CNN .................. 66 

Figure 5.7 The examples of test results of ResNet50+Faster R-CNN .................. 66 

Figure 5.8 The examples of test results of ResNet101+Faster R-CNN ................ 67 

Figure 5.9 The examples of test results of VGG16-Faster R-CNN ...................... 68 

Figure 5.10 Examples of test results of VGG19-Faster R-CNN........................... 68 

Figure 5.11 VGG16+Faster R-CNN parameters after feature extraction layer .... 70 

Figure 5.12 The newNetwork+Faster R-CNN parameters after feature extraction 

layer................................................................................................................ 70 

Figure 5.13 The examples of test results of newNetwork+Faster R-CNN ........... 71 

Figure 5.14 Comparison of detection rates with different models ........................ 71 

Figure 5.15 Comparison of the accuracy of detected images with different models

........................................................................................................................ 72 

Figure 5.16 The comparisons of sizes with different models ............................... 73 

Figure 5.17 The comparison of detection time with different models .................. 74 

Figure 5.18 The comparisons of layers with different models ............................. 74 

 

  



VII 

 

List of Tables 

Table 3.1 Basic networks supported by MATLAB in Faster R-CNN................... 39 

Table 3.2 The confusion matrix ............................................................................ 40 

Table 4.1 Results of experiment ............................................................................ 57 

  



VIII 

 

Attestation of Authorship 

 

 

 

 

 

Signature:                     Date:  16 March 2020 

  



IX 

 

Acknowledgment 

First of all, I thank my supervisor Dr. Wei Qi Yan. In the early stage of this thesis project, 

Dr. Yan patiently discussed with me the direction of the dissertation and gave me a lot 

of scientific and effective suggestions on experimental methods. During my completion 

of this thesis, he has paid regular attention to the progress of my thesis and provided 

great help in the problems encountered in my experiments. In addition, the deep 

learning courses delivered by Dr. Yan gave me a better understanding of deep learning 

so that I can finish this thesis. 

    Secondly, I would like to thank Auckland University of Technology (AUT). AUT 

is a wonderful university, the courses are well designed. The four courses I completed 

in the first semester have greatly supported my thesis work. In addition, AUT provides 

great hardware facilities, especially high-performance computers in the laboratory, 

which greatly reduces the training time of deep learning models. 

    Finally, I thank my wife for her support and encouragement during my studies, 

especially for taking care of my family while I was working for this thesis. 

 

 

Shouming Sun 

Auckland, New Zealand 

March 2020 

 

  



1 

 

 

 

 

 

Chapter 1 

Introduction 

 

 

 

 

       This chapter consists of five parts. First, an overview of the 

current state of Alzheimer's disease, the necessity and 

importance of early diagnosis, screening using Deep 

Learning methods will be introduced. Sections 1.2 and 1.3 

will list the main research issues to be discussed in this thesis 

and make meaningful contributions to the field of deep 

learning. Section 1.4 will explain the significance of this 

research and its implementation. Finally, the detailed 

content of this thesis and the core content of each chapter 

will be introduced in Section 1.5. 
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1.1 Background and Motivation 

Alzheimer's disease (AD) is a disease usually occurred in old age which is a slowly 

progressive, genetically complex, deteriorating over time and irreversible 

neurodegenerative disease of the brain (Hampel, et al., 2011). The early symptoms of 

this disease are mild memory loss and mild language impairment (Braak & Braak, 

1995), the clinical manifestations, in turn, are: Easy to forget, irritability, inability to 

speak normally, loss of long-term memory, loss of motivation for survival, difficulty in 

taking care of oneself and abnormal behavior, gradually lose physical functions, 

eventually leading to death (Billones, Demetria, Hostallero, & Naval, 2016). AD is now 

the fifth reason of death among older Americans (Association, 2017). 

    It has been more than 110 years since the first recorded patient with Alzheimer's 

disease, but humans have not overcome the disease (Association, 2016). Although some 

medicine can delay the progression of AD, such as N-methyl-D-aspartate receptor 

antagonists and acetylcholinesterase inhibitors, there is no medicine can effectively 

reverse this progress (Winslow, Onysko, Stob, & Hazlewood, 2011). 

    Alzheimer's disease not only brings great harm to the patients themselves, but also 

makes great pain to the patients’ families (Brookmeyer, Johnson, Ziegler-Graham, & 

Arrighi, 2007). They have to bear the pain of their relatives not being able to 

communicate with themselves normally, and even forget who they are. In addition, they 

have to pay a lot of time and energy to take care of patients. According to statistics, in 

2016, more than 15 million families and other unpaid caregivers in the United States 

alone, provided more than 230 billion US dollars and approximately 18.2 billion hours 

of care for patients with Alzheimer's or other dementia (Association, 2017).  

    At the same time, the treatment and care of patients with Alzheimer's disease also 

consume a large amount of social medical resources. In the US, the average medical 

insurance per capita for patients over 65 years old with AD is three times that of other 

patients. In addition, the payment of Medicaid is more than 23 times. In 2017, the total 
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payment in the U.S. for over 65 years old AD patients including healthcare, long-term 

care, and hospice were approximately $ 259 billion (Association, 2017). 

    Statistics in recent years indicate that AD is a rapidly growing global epidemic, 

with an estimated 5.5 million AD patients in the United States alone in 2017; as the 

baby boom generation ages, the number of people with AD is expected to grow to 13.8 

million in large part by mid-century. On average, one American develops AD every 66 

seconds, the rate is accelerating. By 2050, it is expected to be 33 seconds, with one 

million new cases of AD each year (Association, 2017). Globally, the number of 

patients with AD reached 24 million in 2011, which is expected to double every 20 

years by 2040 (Reitz, Brayne, & Mayeux, 2011). 

    Although AD cannot be cured at present, timely and accurately screening and 

diagnosis are still meaningful, because active treatment can delay the progress of AD, 

thereby reducing the harm caused by the disease to patients and their families (Winslow 

et al., 2011). In the past, the interpretation of medical images was performed by doctors, 

but due to the differences, subjectivity, and fatigue of different doctors, humans have 

limited interpretation of medical images (Greenspan, Van Ginneken, & Summers, 2016).  

    In recent years, with the great progress and rapid development of machine learning, 

especially deep learning, computer vision has also played a significant role in the field 

of medical imaging (Shen, Wu, & Suk, 2017). Among them, deep learning is becoming 

more and more widely used in medical image recognition by training models on a given 

data set to complete specific tasks on new data. The traditional medical image 

recognition methods are based on multifeatured fusion methods, singular value 

decomposition and wavelet transform methods have low efficiency in feature extraction 

and limited information to be mined, and the recognition effect is not ideal (Ge & Shen, 

2013). Compared with other traditional medical image recognition methods, deep 

learning can mine potential nonlinear relationships in medical images, feature 

extraction is much efficient (Bengio, 2009). In recent years, many scientists have 

applied deep learning to medical image recognition, the work provides an important 
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basis for further clinical applications (Yan Xu et al., 2014). Disease detection and 

classification are performed based on a group of sample populations to determine 

whether a sample is diseased or how badly it is, the lesion recognition is generally based 

on the identification of a lesion and other parts in a sample's own medical image 

(Razzak, Naz, & Zaib, 2018). 

    Convolutional neural networks (CNNs) in the field of deep learning have proven 

to be powerful tools for various computer vision tasks (Islam & Zhang, 2017). Because 

deep CNNs can automatically learn intermediate and advanced abstractions that the 

human eyes cannot recognize from raw data (such as medical images) (Lee et al., 2017). 

Medical image analysis teams around the world are rapidly entering the field and 

applying CNN and other deep learning methods to various applications (Greenspan et 

al., 2016). In addition, the application of convolutional neural networks to pattern 

classification of digital images has achieved high average accuracy (Liu, Yan, & Yang, 

2018). Compared with traditional machine learning methods, deep learning is a 

revolutionary method (Le Roux & Bengio, 2008). Instead of separating features using 

classifier, it can learn the parameters of neural networks directly from the image without 

human involvement (Ji, Liu, Yan, & Klette, 2019). 

   In this project, a deep learning-based method is implemented to screen and diagnose 

the images of human brain magnetic resonance imaging (MRI) to reduce the workload 

of doctors and obtain better diagnostic results (Batchelor et al., 2002). The medical 

image-based diagnosis task can be regarded as a classification task, which is to classify 

the processed medical image (Mohamed et al., 2018). In this experiment, 3D MRI 

images are sliced into two-dimensional images for classification.  

    With the development of AD, atrophic changes occur in the hippocampus of the 

human brain, these changes can be measured on MRI (Killiany et al., 2002). Therefore, 

this experiment uses deep learning methods to observe the hippocampal atrophy, so as 

to achieve the diagnosis and screening of AD. Faster R-CNN network for object 

detection is used in this experiment, so that unnecessary information in the image is 
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filtered out, the classification process focused only on the Region of Interest (ROI) 

which refers to the hippocampus region in this experiment, thereby improved the 

detection accuracy. A newNetwork-Faster R-CNN network from VGG16 is proposed 

in this thesis, which improves the precision of AD without significantly increasing the 

amount of calculation. 

1.2 Research Question 

Based on the Deep Learning method to diagnose MRI images, according to the research 

hypothesis, this thesis mainly raises the following research question: 

Question: 

“Which deep learning algorithms can get a more accurate result for diagnosing 

Alzheimer's disease?” 

    The fundamental aim of this thesis is to develop an algorithm based on deep 

learning to achieve an accurate diagnosis of Alzheimer's disease by using human brain 

MRI images. 

1.3 Contributions 

The main purpose of this project is to design a deep learning-based diagnostic method 

for diagnosing Alzheimer's disease, which could assist doctors to reduce workload 

while screening the disease for existing brain MRI images. This experiment has 

achieved the superior results of improving AD diagnosis precision by adjusting and 

optimizing the existing Faster R-CNN basic network. The experiment is divided into 

five parts: 1) download the original MRI data from ADNI; 2) preprocessing the original 

data (slicing, screening, and labelling) to generate data set; 3) pre-training the existing 

network; 4) optimization and adjustment; 5) evaluating the training model. 

    After optimization and adjustment, the model trained by the newNetwork-Faster 

R-CNN network achieves 100% prediction precision for AD samples and reaches a 
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relatively high accuracy of 97.67% for detection. 

1.4 Objectives of This Thesis 

Although Alzheimer's disease cannot be cured, it can be diagnosed early. If AD can be 

found early, it will bring much benefits. First of all, early diagnosis of AD can explain 

the symptoms and signs that patients have already appeared, so that patients can get 

timely medical care and relevant welfare support (Aël Chetelat & Baron, 2003). Those 

seeking assistance and getting a diagnosis will be accessible to the treatment, care and 

related information they need. Second, early diagnosis of AD can improve the quality 

of treatment (Querbes et al., 2009), because dementia is a syndrome with multiple 

etiologies, early diagnosis can identify those that can be treated and the factors that are 

rapidly deteriorating, as well as examine the patient's medications to obtain better 

quality of treatment. Third, the early diagnosis of AD can delay the clinical course,  

taking anti-dementia drugs early can effectively delay the decline of patients' cognitive 

ability (Leifer, 2003). In addition, early diagnosis of AD can avoid or reduce future 

costs. According to the 2010 Global AD Report in high-income countries, the average 

social cost of $ 32,865 per person is with dementia per year  (de Vugt & Verhey, 2013).  

    The purpose of this thesis is to implement the early diagnosis of AD and reduce 

the workload of doctors by using deep learning. At the same time, the existing MRI 

images can be quickly screened to predict the risk of disease in potential patients in 

advance. 

1.5 The Structure of This Thesis 

The structure of this thesis is as follows: 

    In the second chapter, the previous literature will be reviewed and discussed, 

including traditional diagnosis methods of AD. In addition, we will also introduce the 

relevant content of deep learning, including convolutional neural networks, loss 

functions, optimization algorithms, classic convolutional neural networks, and object 
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detection networks. 

    In the third chapter, the research methods of this thesis will be introduced, 

including research design, network design, validation methods, adjustment and 

optimization methods. 

    In the fourth chapter, the experimental process and results of this thesis will be 

stated, including the collection of raw data, data preprocessing, experimental hardware 

and software environment, model training process, and comparative analysis of 

experimental results. 

    In Chapter 5, the experimental results of this thesis will be analyzed and discussed 

by using the test sample comparison method. 

   In Chapter 6, the summary of this thesis and plans for our future work will be 

presented. 
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Chapter 2  

Literature Review 
 

 

 

 

Through a comprehensive review of research issues and a 

reasonable review of previous research, the focus of this thesis is on 

the early diagnosis and screening Alzheimer's disease by using 

object detection networks in deep learning. In this chapter, we will 

review and summarize the past few Achievements in research on 

medical images based on deep learning. 

 

 

 

 

 

 

  



9 

 

2.1 Introduction 

Since the German doctor, Alzheimer published the first disease case report under his 

name in 1906, the diagnostic criteria for Alzheimer's disease have been continuously 

improving (Selkoe, 2001). From AD which was considered to be an unusual cause of 

adult dementia for most of the 20th century to the National Institute of Aging-

Alzheimer's Association (NIA-AA) 2011 Working Group and the International Working 

Group (IWG) Guidelines for biomarkers as part of the diagnosis (Karlawish, Jack Jr, 

Rocca, Snyder, & Carrillo, 2017). With the continuous development and progress of 

human technology in the fields of computer vision and medical imaging, the use of 

computers for medical image analysis has become an indispensable tool and technical 

means for clinical disease diagnosis, medical research and treatment. (Miller & Brown, 

2018).  

    In recent years, deep learning, especially deep convolutional neural network, has 

rapidly developed into a research hotspot in the field of medical image analysis (Shen 

et al., 2017). It can automatically extract hidden data that cannot be recognized by the 

human eye from big data in medical images disease diagnostic characteristics (Ortiz, 

Munilla, Gorriz, & Ramirez, 2016).  

    This chapter will introduce general medical images and common diagnostic 

methods of Alzheimer's disease. The basics of Deep Learning will be introduced later, 

including the construction of convolutional neural networks, loss functions and 

optimizers. Finally, the typical convolutional neural networks and object detection 

networks will be introduced. 

2.2 Common Medical Images 

2.2.1 Magnetic Resonance Imaging (MRI)  

MRI image is measurement based on the principle that the magnetic resonance signals 

generated by hydrogen nuclei in human tissues, organs and lesions under the influence 
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of external strong magnetic fields are different in size. The information received by the 

external MRI signal detector is 3D imaged by a computer reconstruction (Ogawa, Lee, 

Kay, & Tank, 1990). It can provide very clear human soft tissue anatomy and lesion 

images. Moreover, it can represent accurate images of brain anatomy without using 

ionizing radiation (Giedd, 2004). 

2.2.2 Computer Tomography (CT) 

CT uses a precise collimated X-ray beam to scan a section of a certain thickness of a 

part of the human body, a detector rotating with the radiation beam receives X-rays 

transmitted through the section. Finally, computers, utilizing X-ray signal, received by 

the detector, reconstruct a 3D image of the corresponding cross-section of a human 

body (Ciernik et al., 2003). It has sub-millimeter-level spatial resolution, can provide 

clear human bone tissue anatomy and lesion images, and has been widely used in a 

variety of clinical disease examinations and auxiliary diagnosis (Senohradski, Karovic, 

& Miric, 2001). 

2.2.3 X-Ray Image  

Medical X-ray imaging is to generate an electronic density measurement image of 

different tissues and lesions of the human body (Marchesini et al., 2003). X-ray based 

imaging includes 2D computer radiography, digital X-ray photography, digital 

subtraction angiography and mammography, 3D spiral computer tomography, etc., has 

been widely used in orthopedics, lung, breast and cardiovascular diseases, and clinical 

diseases detection and auxiliary diagnosis, but 2D X-ray images cannot provide 3D 

information of human tissues and organs and lesions (Shamir et al., 2008). 

2.2.4 Ultrasound Imaging  

Ultrasound imaging refers to scan human body with an ultrasound beam, receiving and 

processing reflected signals to obtain images of internal organs (Jensen, Nikolov, 

Gammelmark, & Pedersen, 2006). In recent years, ultrasound imaging technology has 
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continued being developed, new ultrasound imaging technologies such as 3D color 

ultrasound, ultrasound holography, intrabody ultrasound imaging, color Doppler 

imaging, and ultrasound biological microscope have appeared (Fenster, Downey, & 

Cardinal, 2001). 

2.2.5 Positron Emission Tomography (PET) Image 

PET uses positron information emitted when a tracer labelled with a radioactive 

element such as F18 is decaying (Gambhir, 2002). Therefore, PET image is a measure 

of the radioactivity of the corresponding tracer and can provide tumor biology 

information on characteristics (e.g., glucose metabolism, hypoxia, proliferation, etc.), 

the standard intake can be used to clinically determine the benign/malignant tumor 

(Gambhir, 2002). PET can provide more intuitive and accurate radiobiological and 

visual biological characteristics than MRI and CT (Duara et al., 1986). 

2.2.6 Pathological Image  

Pathological images refer to the removal of a size of diseased tissue from a patient, the 

tissue is made into pathological sections using eosin and hematoxylin staining methods, 

and then microscopic imaging techniques are used to image microscopic cells and 

glands (Ruiz et al., 2007). By analyzing pathological images, doctors can explore the 

cause, pathogenesis, and pathogenesis of the lesions to make pathological diagnosis. 

(Luo et al., 2017). 

2.3 Diagnostic Methods for Alzheimer's Disease 

2.3.1 Detecting Changes in The Electrophysiology of Human Brain 

Studies have shown that Alzheimer's disease affects electromagnetic activity in the 

brain. Compared with healthy older people, patients with Alzheimer's have undergone 

significant changes in their electromagnetic activity (Pazo‐Alvarez, Amenedo, & 

Cadaveira, 2004). Therefore, in the diagnosis of Alzheimer's diseases, a new technique 
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combining transcranial magnetic stimulation (TMS) and electroencephalogram (EEG) 

measures is used in disease detection. The advantage of TMS / EGG is that it can 

directly and non-invasively perturb the human cerebral cortex without the need for 

subject cooperation (Ferreri et al., 2003). 

2.3.2 Non-invasive Techniques to Find Biomarkers of The Disease 

Alzheimer's detection methods based on molecular-level biomarkers are currently 

widely studied. Many biomarkers, such as tau and b-amyloid 42, measured from 

cerebrospinal fluid (CSF), the fluid surrounding the cerebral cortex, are closely related 

to the disease. A major challenge with these biomarker detection methods is that 

collecting samples from CSF is an invasive measurement, limiting their usefulness in 

early diagnosis. As blood sample testing will not be considered an invasive technique, 

it will be an excellent source for detecting Alzheimer's disease. The role of metabolites 

and protein compounds in Alzheimer's disease has been studied from blood samples, 

thus, this method is also promising (Geekiyanage, Jicha, Nelson, & Chan, 2012). 

2.4 Hippocampus 

The hippocampus is an important part of the brain of humans and vertebrates (Xu, et 

al., 2000). It is a part of the limbic system of the brain which is located below the 

cerebral cortex and plays a role in learning, memory, stress regulation, and spatial 

navigation(Johnston & Amaral, 2004). The hippocampus is named because it looks like 

a sea horse, which appears in pairs in all animals with the hippocampus and locates in 

the left and right brain hemisphere (Pennanen et al., 2004).  

In Alzheimer's disease, the hippocampus is the first area to be damaged (Du et al., 

2004). With the development of the disease, the hippocampus gradually shrinks, and its 

clinical manifestations are memory loss and loss of direction perception.  

The hippocampus is the only tissue in the brain that can generate neurons. In other 

words, it has the ability to repair itself, and can make new neurons in the hippocampus. 
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Studies have shown that the rate of neuron generation in the hippocampus decreases 

slightly with age. In the brain tissue of Alzheimer's patients, the rate of neuron 

production in the hippocampus drops sharply (Tejani-Butt, Yang, & Pawlyk, 1995). 

2.5 Deep Learning 

Deep learning is a subfield of machine learning. Deep learning has more hidden layers, 

which uses multiple cascaded nonlinear processing units for feature extraction and 

transformation (Ngiam, et al., 2011). Compared with Machine Learning, deep learning 

has the following advantages. First, deep learning has a very strong learning ability. 

From the results of learning, deep learning performs better (Schmidhuber, 2015). 

Second, deep learning has wide coverage and good adaptability (Carin & Pencina, 

2018).  

    Deep learning neural networks have many layers and wide widths, can 

theoretically be mapped to arbitrary functions, so they can solve very complex problems 

(R. Wu, Yan, Shan, Dang, & Sun, 2015). Third, deep learning is data-driven and has 

great prospects (Y. Shen et al., 2017). Deep learning is highly data-dependent, the 

relevant experiments show that the larger the amount of data, the better it performs. 

Some tasks such as image recognition, face recognition, and natural language 

processing have even surpassed human performance (Yan, Yoshua, & Geoffrey, 2015). 

Fourth, deep learning has good portability (M. Wu & Chen, 2015). Due to the 

outstanding performance of deep learning, currently many frameworks can be used to 

deploy deep learning, such as MATLAT, TensorFlow and Pytorch, etc., and these 

frameworks are compatible with many platforms, such as Windows, Linux and Mac OS. 

2.6 Convolutional Neural Network 

A convolutional neural network is a network consisting of at least one convolutional 

layer and a fully connected layer for network output, including association weights and 

pooling layers (Kalchbrenner, Grefenstette, & Blunsom, 2014). CNN can effectively 
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reduce the dimensionality of a large amount of data information in an image to obtain 

a small amount of data while effectively retaining the feature of the image, compared 

with other deep learning models, convolutional neural networks can have better results 

in image recognition and classification (Krizhevsky, Sutskever, & Hinton, 2012). 

2.6.1 Convolutional Layer 

The first layer of CNN after the input layer is usually a convolution layer (Bayar & 

Stamm, 2016). The image of the input layer can be regarded as an array of pixel values 

of W × H × C, where W and H are the width and height of the image, C is the channel 

of the image. For an RGB image, C =3 usually. The convolution layer will use an N × 

N matrix as a filter (usually N is 3, 5 or 7) to perform the convolution operation from 

the upper left corner of the image, that is, the values in the matrix are multiplied by the 

corresponding values in the image covered by the filter, then sum up all the products to 

form the convolution value at the location of the filter.  

    After that, the filter will perform a convolution operation from left to right and 

from top to bottom according to the stride (the stride is usually 1), finally obtain a new 

array as the input of the next layer. Among them, the size of convolution kernel and the 

number of filters is manually set. During the initialization process, the weight 

parameters will be randomly generated, they will be continuously optimized in the 

subsequent training process to achieve the best classification performance.  

    The convolution process is to use these weights to continuously multiply the RGB 

values of these pictures so as to extract visual data information (LeCun & Bengio, 1995). 

The convolutional layer not only extracts the picture information, but also achieves the 

effect of dimensionality reduction (Huang, Liu, Van Der Maaten, & Weinberger, 2017). 

2.6.2 Activation Layer 

An activation layer is usually applied after each convolutional layer. It is used to 

introduce nonlinear features to a system that has just performed a linear computation 



15 

 

operation in a convolutional layer (Krupa, Wiest, Shuler, Laubach, & Nicolelis, 2004). 

Previously, nonlinear equations such as hyperbolic tangent and sigmoidal functions 

were used, but scientists have found that Rectified Linear Units (ReLU) (Nair & Hinton, 

2010) layer performs much better and can improve computing efficiency because neural 

networks can reduce greatly the training time without significant change of accuracy. It 

can also help alleviate the problem of gradient disappearance, because the gradient 

disappears exponentially in the layer, the training speed of the network is very slow 

(Zeiler et al., 2013). The ReLU layer applies the function f (x) = max (0, x) to the inputs. 

That is, all negative activations become zero. This layer could increase the nonlinear 

characteristics of the model and the entire neural network, will not affect the receptive 

field of the convolutional layer (Nair & Hinton, 2010).  

2.6.3 Pooling Layer 

In general, after the ReLU layers, pooling layer which is also called the down sampling 

layer may be selected to reduce the computational cost and control overfitting (Giusti, 

Cireşan, Masci, Gambardella, & Schmidhuber, 2013). In this category, there are also 

several layers to choose from, such as max pooling, average pooling, and L2-norm 

pooling, the most popular of which is max pooling (Giusti et al., 2013). It uses a filter 

(usually 2×2) and a stride of the same length. It is then applied to the input and the 

maximum number in each subregion of the output filter convolution calculation (Yu, 

Wang, Chen, & Wei, 2014).   

2.6.4 Dropout Layer 

To control the overfitting, the dropout layer is usually applied (Gal, Hron, & Kendall, 

2017). It discards a random activation parameter set, that is, sets these activation 

parameters to 0 in the forward pass so as to ensure that the neural network will not 

affect the training samples overmatching, which will alleviate overfitting issues (Ba & 

Frey, 2013). 
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2.6.5 Fully Connected Layer 

After feature extraction from the previous layer, the network will use a Fully Connected 

Layer to map higher-level activation mappings to the classification of the output layer 

and generate an n-dimensional vector, where n is the number of output layer 

classifications (Xu, Zhang, Gu, & Pan, 2019). This n-dimensional vector represents the 

probability of the detected image in N classifications (C.-L. Zhang, Luo, Wei, & Wu, 

2017). 

2.6.6 Transposed Convolution Layer 

The convolution operation can be regarded as a downsampling process, so the 

transposed convolution on the sampling can be regarded as the inverse process of the 

convolution operation, which is generally used for upsampling (Su, Sun, Liu, Zhai, & 

Jing, 2019). It is becoming more common in recently proposed convolutional neural 

networks, especially in generative adversarial network (GAN) (Ledig et al., 2017), a 

transposed convolutional layer appears in the up-sampling part of the generator network 

to restore the reduced dimensionality (Gao, Yuan, Wang, & Ji, 2019). 

The transposed convolution is derived as follows. Suppose the size of the 

convolution operation is 4×4 and the element matrix is 

                         （2.1）                                                                 

    The size of the convolution kernel is 3×3, the element matrix is 

                           （2.2）                                                                                                                        
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where strides=1, padding=0, that is i=4, k=3, s=1, p=0. 

According to the convolution operations, the size of the output image is 2×2. 

                  （2.3） 

    Expand the input element matrix into a column vector X, 

 

(2.4) 

Expand the element matrix of the output image into a column vector Y, 

                 (2.5) 

     For the input element matrix X and the output element matrix Y, the matrix 

operation is used to describe this process: 

                            (2.6) 

    By derivation, the sparse matrix C can be gotten: 

  

(2.7) 

   The operation of transposed convolution is to inverse this matrix calculation process, 

that is, to obtain X through C and Y. According to the size of each matrix, the calculation 

process can be easily obtained, which is the operation of transposed convolution: 

                         (2.8) 
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However, if it is substituted into the numerical calculation, the operation of 

transposed convolution only restores the size of the matrix X, but it cannot restore the 

value of each element of X. 

2.7 Classic Convolutional Neural Networks 

2.7.1 AlexNet 

In 2012, the large-scale convolutional neural network AlexNet proposed by Alex 

Krizhevsky, Ilya Sutskever, and Geoffrey Hinton won the championship of the 

ImageNet LSVRC competition, its accuracy rate surpassed the second place (Fairuz, 

Habaebi, & Elsheikh, 2018). This caused a great sensation in the academic world and 

opened the era of deep learning. Although many faster and more accurate convolutional 

neural network structures have subsequently appeared, AlexNet is still worthy of 

learning and reference as a pioneer. It sets the tone for subsequent CNNs and even other 

networks such as R-CNN (Muhammad, Ab Nasir, Ibrahim, & Sabri, 2018). 

    AlexNet contains a total of 5 convolutional layers and 3 fully connected layers 

(Minhas, Javed, Irtaza, Mahmood, & Joo, 2019). Each convolutional layer contains the 

activation function ReLU and the Local Response Normalization (LRN) layers,  

performs downsampling through the max pooling layer (Patino-Saucedo, Rostro-

Gonzalez, & Conradt, 2018). In order to reduce overfitting in fully connected layers, 

AlexNet has adopted a dropout layer which has proven to be very effective (Krizhevsky 

et al., 2012). 

    Before AlexNet, the activation function in neural networks generally selected 

sigmoid () or tanh (). However, AlexNet chose ReLU which made it much faster than 

traditional neural networks. Experiments have shown that four-layer convolutional 

nerves were tested on the CIFAR-10 data set when the training set error rate reaches 

25%, the speed using the ReLU activation function is six times faster than tanh 

(Krizhevsky, et al., 2012). 

http://papers.nips.cc/author/ilya-sutskever-3959
http://papers.nips.cc/author/geoffrey-e-hinton-121
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    In addition to the ReLU activation function, AlexNet also uses Local Response 

Normalization (Hong-meng, Di, & Xue-bin, 2017). This normalization operation 

achieves the form soft lateral inhibition, which is also behavioral inspiration of real 

neurons. The equation for LRN is  

           (2.9) 

where  represents the value produced by the number i convolution at (x, y) and 

then the result of applying the ReLU activation function, n represents several adjacent 

convolution kernels, N represents the total number of convolution kernels in this layer. 

k, n, α, β are hyperparameters, the values are obtained on the experimental validation 

set. 

    In order to prevent overfitting, AlexNet uses dropout layer after the first and 

second fully connected layers, utilizes a 50% probability to make the output of the 

neuron as 0, which breaks the fixed dependency between the neurons and makes the 

learned parameters more robust. In addition, it doubles the speed of iterative 

convergence (Alom et al., 2018). 

2.7.2 VGG 

The VGG network was proposed by the Visual Geometry Group Oxford in 2014 (Day, 

Horzinek, Schultz, & Squires, 2016). Compared with the previous state-of-the-art 

network structure, the error rate has dropped significantly. It achieved the second place 

in the ILSVRC 2014 competition in classification project and the first place in the 

positioning project (Dutta & Zisserman, 2019). VGG is developed based on the 

AlexNet which has done more in-depth research on the depth and width of deep neural 

networks than AlexNet (Sengupta, Ye, Wang, Liu, & Roy, 2019). It is an industry 

generally believe that deeper networks have stronger expression capabilities and can 

complete more complex tasks (Simonyan & Zisserman, 2014).  

    Compared with AlexNet, VGG has the following improvements: First, VGG 
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removes the LRN layer, because developers found that the role of LRN in deep 

networks is not obvious, they simply removed it. Second, VGG uses a smaller 3×3 

convolution kernel, while AlexNet uses a larger convolution kernel, e.g., 11×11 

convolution kernel, VGG has fewer parameters than AlexNet. Third, the pooling kernel 

used by VGG becomes smaller. The pooling kernel in VGG is 2×2, the stride is 2, and 

the AlexNet pooling kernel is 3×3, with a step size of 2. 

   VGG is very scalable, which is generalized when it is migrated to other image data. 

At the same time, though ResNet and Inception networks have high accuracy and 

simpler network structures based on feature extractors, VGG is always a good choice 

(Alippi, Disabato, & Roveri, 2018). 

2.7.3 ResNet 

After VGG, as the network structure continues to deepen, the gradient will gradually 

disappear during the backpropagation process, resulting in the inability to effectively 

adjust the weights of the previous network layer, because the accuracy rate is gradually 

saturated, and decrease rapidly which is called degradation problem, but this is not 

caused by overfitting, because the accuracy is higher based on training set than the 

validation set (Z. Wu, Shen, & Van Den Hengel, 2019). With the emergence of residual 

networks (ResNets) in 2015, the problems have been alleviated. ResNet can simplify 

network training and optimize easily which has also achieved higher accuracy while 

deepening the network structure (He, Zhang, Ren, & Sun, 2016). 

    ResNet creatively employs a shortcut connection to provide identity mapping 

(Akiba, Suzuki, & Fukuda, 2017). When backpropagating during training, it passes the 

gradient of the next layer to the previous layer, thereby solving the problem of gradient 

vanishing in deep networks. The principle of the residual block is shown in Figure 2.1 

(Chen, Xie, Zhang, & Xu, 2017). 
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Figure 2. 1 Residual block 

    It is assumed that the input is x, the output of the convolution layer is F(x), it is 

added to x as the mapping input, and the resultant output H (x) = F (x) + x is passed to 

the next layer. This is much easier than matching an identity map through a bunch of 

nonlinear layers, it will not add extra parameters and calculations to the network. At the 

same time, it can greatly increase the training speed and improve the training effect of 

the model when the number of layers deepens, this simple structure can well solve the 

problem of gradient vanishing (He et al., 2016). 

    ResNet has two types of residual blocks. The first type is suitable for training 

shallow networks, if the network is deeper (more than 50 layers), the second type 

(bottleneck) is recommended. Moreover, the two types have similar time complexity. 

2.7.4 DenseNet 

The emergence of ResNet allows the network structure to be developed in a deeper 

direction. The problem is the limitation of memory or video memory, as the network 

deepens, the parameters that need to be processed are also increasing (Zhu & Newsam, 

2017). DenseNet can effectively control the number of parameters while deepening the 

network. Unlike ResNet, DenseNet is a special type of convolutional neural network 

with dense connections. In such a network, there is a direct connection between any 

two network layers, that is, the input of each layer in the network is the output of all 
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previous layers. At the same time, the feature maps extracted from this layer will also 

be passed as input directly to all subsequent layers. (Zhang, Lu, Li, Kim, & Wang, 2019). 

    If the transformation function of layer i is H_i , corresponding to one or two batch-

normalization, ReLU, and Convolution operations, the output is x_i, then we can use a 

very simple equation to describe each layer of DenseNet  

            (2.10) 

    DenseNet differs from other networks in two main ways. First, it allows each layer 

in the network to be directly connected to its previous layers so as to achieve the reuse 

of features (Tang, et al., 2019). Second, it designs each layer of the network to be 

particularly narrow, that is, only very few feature maps are learned (the most extreme 

case is that each layer only learns one feature map) to achieve the purpose of reducing 

redundancy. The first point is the premise of the second point, without dense 

connections, it is impossible to design the network too narrow, otherwise underfitting 

will occur during training (Gottapu & Dagli, 2018). 

    DenseNet has the following advantages. First, the parameters of DenseNet are 

greatly reduced. Experiments have shown that the same accuracy rate is achieved based 

on the ImageNet data set, DenseNet only requires less than half of the parameters 

(Huang, et al., 2017). This is of great significance to the industry because small models 

can significantly reduce storage overhead and save bandwidth. Second, DenseNet 

requires less computation. When the accuracy equivalent to ResNet is achieved, 

DenseNet requires only half of the calculation amount of ResNet (Huang, et al., 2017). 

Nowadays, the requirement for computational efficiency in practical applications of 

deep learning is very strong, efficient models will be much meaningful to the industry.  

Third, DenseNet has very good anti-overfit performance, which is especially 

suitable for applications with relatively scarce training data. It is well known that 

insufficient training data sets can easily lead to overfitting. Experiments show that 

DenseNet reduces the error rate of the best previous results from 28.20% to 19.64% 



23 

 

based on the CIFAR data set without data enhancement (Huang et al., 2017). This 

achievement can be achieved because the features extracted from each layer of the 

convolutional neural network can be equivalent to a nonlinear transformation of the 

input data. As the depth increases, the complexity of the transformation also gradually 

increases (more complex non-linear functions).  

Compared to general neural networks that directly depend on the features of the 

last layer (the highest complexity) of the network, DenseNet can comprehensively 

utilize features with low complexity in the shallow layer, it is easier to obtain a smoother 

model with better generalization performance decision function. 

2.8 Loss Function 

The loss function is an important concept in deep learning, which reflects the degree to 

which the model fits the data. In general, the smaller the loss function, the better the 

model fits the data. At the same time, when the loss function is relatively large, it is 

expected that the corresponding gradient will also be relatively large so that the update 

will be faster when the gradient decreases. Besides, the loss function plays an important 

role in model training. The training process guides the network parameter learning 

through backpropagating the errors generated by using prediction samples and real 

sample labels to obtain the optimal model. The loss functions used in classification 

problems are listed as follows. 

2.8.1 Zero-one Loss 

Zero-one loss is a relatively simple loss function (Kohavi & Wolpert, 1996). If the 

predicted value is not equal to the target value, it is 1, otherwise, it is 0, that is 

                 (2.11) 

The significance of this loss function is that if the prediction is wrong, the value of 
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the loss function is 1; if the prediction is correct, the value of the loss function is 0. 

However, the loss function does not consider the degree of errors between the predicted 

value and the true value, that is, if the prediction is wrong, the prediction error is almost 

as same as the difference. In addition, the loss function does not contain input 

information, it cannot be used to backpropagation (Domingos & Pazzani, 1997). 

2.8.2 Cross Entropy Loss Function 

The labels of real samples in the binary classification problem model are 0 and 1, which 

represent negative and positive classes, respectively. At the end of the model, a sigmoid 

function is usually used to output a probability value. This probability reflects the 

probability that the prediction is positive (Hu, et al., 2018). The expression and graph 

of the sigmoid function are shown as 

                       (2.12) 

 

 

Figure 2. 2 The sigmoid function 

where s is the output of the previous layer of the model, the sigmoid function has the 

following characteristics: If s = 0, g (s) = 0.5; if s >> 0, g (s)≈ 1; if s << 0, then g (s)≈ 

0. Obviously, g(s) maps the linear output of the previous stage to a numerical probability 

between 0 and 1. Here g(s) is the model prediction output in the cross entropy. Figure 

2.2 shows a graph of the sigmoid function. 
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    The prediction output (the output of the Sigmoid function) characterizes the 

probability that the current sample label is  

.                    (2.13) 

    Obviously, the probability, the current sample label is 0, is expressed as 

.                    (2.14) 

     From the perspective of maximum likelihood, the two cases are integrated 

together 

.                (2.15) 

      For a model, it is desirable that the larger the probability P (y | x) the better. The 

log function is P (y | x) because the log operation does not affect the monotonicity of 

the function itself. There are 

  (2.16) 

    It is expected log P (y | x) to be as large as possible; in other words, its negative 

value -log P (y | x) is as small as possible. Then, we can introduce the loss function Loss 

= -log P (y | x), the expression of this loss function is 

.            (2.17) 

    This is a single-sample loss function, for calculating the total loss function of N 

samples, we superimpose N losses, as shown in eq.(2.18), the total loss function is  

 .          (2.18) 
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2.9 Optimizers 

2.9.1 Stochastic Gradient Descent 

Stochastic gradient descent (SGD) is an iterative method that is applied to optimize 

differential objective functions. This method iteratively updates the weight and bias 

terms by calculating the gradient of the loss function based on the mini-batch. SGD 

surpasses the simple gradient descent method on the highly nonconvex loss surface. 

This simple mountain climbing technique has dominated modern non-convex 

optimization. 

                     (2.19) 

where ℓ is the number of iterations, α is the learning rate, θ is the parameter vector, 

and E(θ) is the loss function. In the stochastic gradient descent algorithm, only one 

sample is used to adjust θ for each update. Therefore, stochastic gradient descent will 

bring further problems, because the calculated result is not an accurate gradient. For the 

optimization problem, though the loss function obtained by each iteration is not in the 

direction of global optimization, the direction of the large whole is toward the global 

optimization solution, and the final result is often near the global optimal solution 

(Loshchilov & Hutter, 2016). 

2.9.2 Stochastic Gradient Descent with Momentum 

In practical applications, stochastic gradient descent algorithms often do not find the 

smallest gradient. It may go beyond the minimum value, and also cause the 

consequences of too much calculation and long training time. (Murphy, 2012).  

Therefore, the stochastic gradient descent with momentum (SGDM) is updated to 

                (2.20) 



27 

 

where γ refers the contribution of the previous gradient step to the current iteration. In 

this way, during the training process, if the gradient always declines in a direction, then 

let the update speed in this direction be faster. If the gradient descent is always swinging 

in a certain direction, then let the updated speed in this direction be slower. 

2.9.3 AdaGrad 

Adaptive gradient, or AdaGrad is proposed to solve the problems of SGD and SGDM 

(Klein, Pluim, Staring, & Viergever, 2009). It can adjust different learning rates for each 

different parameter, update frequently changed parameters in smaller steps and sparse 

parameters are updated in larger steps. It deals with the learning rate component by 

dividing the learning rate by the square root of S, which is the cumulative sum of the 

current and past squared gradients (Duchi, Hazan, & Singer, 2011) 

                (2.21) 

 where  

                    (2.22) 

and S initialised to 0. 

2.9.4 Root Mean Square Propagation 

Root mean square propagation (RMSProp) is an adaptive learning rate algorithm. 

Unlike the SGDM algorithm, which uses a single learning rate, RMSpop uses a moving 

average of the element-wise squares of the parameter gradients as the learning rate, 

                   (2.23) 

where β2 is the attenuation rate of the average whose values are 0.9, 0.99, and 0.999. In 

addition, the corresponding average lengths of the square gradients are equal to 1 / (1-

β2), the updates are 10, 100, and 1000, respectively. The RMSProp algorithm employs 

this moving average to normalize the update of each parameter separately 
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                    (2.24)  

where ɛ>0 is a small constant and is added to avoid division by zero. Using RMSProp 

algorithm can effectively change the learning rate of training to eliminate swing in 

gradient descent. 

2.9.5 Adam 

Adam is another adaptive learning algorithm with rate optimization similar to 

RMSProp. It adds a momentum term when the parameters are updated and retain the 

element-wise moving average of the squared values and the parameter gradients, 

                 (2.25) 

Adam updates the network parameters by employing the moving averages as  

                       (2.26) 

where ɛ >0 is a small constant and is added to avoid division by zero. We see from the 

expression that the calculation of the updated step size can be adaptively adjusted from 

the two angles of gradient mean and gradient square, instead of being directly 

determined by the current gradient (Kingma & Ba, 2014). 

2.10 Region of Interest 

There are pretty rich information in an image, but computers cannot distinguish which 

information is important. The region that contains important information and needs to 

be processed is outlined in machine vision and image processing; in the form of boxes, 

circles, ellipses, irregular polygons, etc. from the processed images are called Region 
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of Interest (RoI). Using ROI to define the target may reduce calculations and increase 

accuracy (Poldrack, 2007). 

2.11 Object Detection 

Object detection is an important field in computer vision. Unlike the classification task, 

which only cares about the entire image, object detection focuses on specific object 

targets and obtains location and classification information of the target object at the 

same time. Classic detection models can be divided into two-stage detection models 

(e.g., R-CNN, Fast R-CNN, and Faster R-CNN) and one-stage detection models (e.g., 

YOLO and SSD). 

2.11.1 Regions with CNN Features (R-CNN) 

R-CNN algorithm was firstly proposed in 2014, which is the pioneering work of the 

two-stage detection algorithm. In this algorithm, CNN can be used to locate and 

segment objects based on regions, when supervised training samples are sparse, 

pretrained models on additional data can achieve good results after fine-tuning 

operations (Girshick, Donahue, Darrell, & Malik, 2014). 

    R-CNN splits object detection into two procedures. One is to deal with regions 

that may include objects based on the image (that is, the local cropping of the image, 

known as the Region Proposal). The second is to run on these proposed regions with 

the best performance classification network (AlexNet) to get the category of object in 

each area. 

In R-CNN algorithm, IoU is used to evaluate the accuracy of region proposal and 

ground truth. IoU calculates the ratio of the area where the two regions intersect with 

their sum to describe the coincidence of the two regions. The choice of IoU threshold 

has a significant impact on the results. When IoU is greater than 0.5, the region proposal 

is considered as a positive sample, when IoU is less than 0.1, it is thought as a 

background class. Proposals between these two thresholds, namely, hard negative will 
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be ignored because it encompasses both positive sample and background information. 

                               （2.27） 

    R-CNN algorithm will continuously be used to adjust the Region Proposal to 

match the Ground Truth which is called bounding-box regression during the training 

process. As a result, the repeated calculations through the three training models 

(Proposal, Classification, Regression) will lead to evaluation problems. Nevertheless, 

R-CNN still widely influences the depth model in detection tasks, and many subsequent 

algorithms are also aimed at improving this work. 

2.11.2 Fast R-CNN 

The reason why R-CNN is time-consuming is that CNN is performed separately on 

each Proposal, without using shared computing (Girshick, 2015). Fast R-CNN adopts 

basic networks to run the calculation on the entire image, and transfers it to the R-CNN 

sub-network, thereby shares most of the calculations and effectively reduces the 

training time (Wang, Shrivastava, & Gupta, 2017).  

    Fast R-CNN algorithm uses feature extractor to obtain a feature map from the input 

image and employs the selective search algorithm to map RoI to the feature map. Then 

RoI pooling is used to perform a pooling operation based on each RoI to obtain feature 

vectors of equal length. These feature vectors are sorted into positive and negative 

samples, and then batched into a parallel R-CNN sub-network, which performs 

classification and regression calculations at the same time (Girshick, 2015). Fast R-

CNN algorithm combines proposal, feature extractor, object classification, and location 

into a unified overall structure, and improves feature utilization efficiency through 

shared convolution calculations (Ullah, Xie, Farooq, & Sun, 2018). 

2.11.3 Faster R-CNN 

Faster R-CNN is the foundation work of the two-stage detection method. It proposes to 
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use the regional proposal networks (RPN) network to replace the selective search 

algorithm so that the detection task can be finished end-to-end by using the neural 

network. Due to the characteristics of convolution calculation shared with RCNN, the 

amount of calculation introduced by RPN is very small. In this way, Faster R-CNN 

achieves high accuracy while ensures the running speed (Ren, He, Girshick, & Sun, 

2015). 

    RPN network models the task of proposal as the problem of binary classification 

(whether it is an object) (Jiang & Learned-Miller, 2017). The first step is to generate 

anchor boxes of different sizes and length-to-width ratios on a sliding window, then the 

positive and negative of these anchor boxes are calibrated according to the set IoU 

threshold and Ground Truth (GT). Therefore, the input data that is passed into the RPN 

network is sorted into anchor boxes (coordinates) and whether each anchor box has 

objects (two-class labels).  

    RPN network maps each sample into a probability and four coordinates (Zhang, 

Lin, Liang, & He, 2016). The probability reflects the opportunity that the anchor box 

has an object and the four coordinates are used to define the position of the object. 

Finally, the loss of binary classification and coordinate regression are unified and used 

as the target of training the RPN network. After the RPN network training is completed, 

the generated region proposal is filtered according to the probability, passed through a 

similar labelling process, then transferred to the R-CNN sub-network. After that, the 

multitask loss is applied to combine the two losses for multiclassification and 

coordinate regression calculation (Ren et al., 2015). 

    Compared to the two-stage detection model, the single-stage detection model does 

not have an intermediate region detection. It directly obtains prediction results from 

pictures and is also known as a region-free method. 

2.11.4 You Only Look Once (YOLO) 

YOLO is the pioneer of the single-stage detection method, which expresses the 
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detection as a unified, end-to-end regression problem. The advantages of YOLO are 

fast, relatively few errors, and good generalization performance (Redmon, Divvala, 

Girshick, & Farhadi, 2016). 

    The workflow of YOLO is briefly described as follows: First, YOLO will scale 

and divide the picture into equally divided grids, each grid will be assigned to the 

sample to be predicted according to the IoU of ground truth. Secondly, the 

convolutional neural network modified by GoogLeNet is used to calculate each grid, 

predicts a conditional probability for each category, and generates several boxes based 

on the grid. Each box predicts five regression values, four values represent its location, 

and the fifth value represents the probability of the box containing the object and the 

accuracy of the position (represented by IoU). Finally, YOLO uses non-maximum 

suppression (NMS) filters to get the final prediction box. The calculated equation is  

 （2.28） 

    The loss function used by YOLO is divided into three parts: Coordinate error, 

object error, and category error. In order to balance the effects of class imbalance and 

large and small objects, weights are added to the loss function. 

    YOLO proposed a new idea of single-stage detection, compared with the two-

stage detection method, the advantage of speed is obvious, and its real-time 

characteristics are impressive. However, YOLO itself has shortcomings, such as the 

coarse meshing and the number of boxes generated by each mesh, which limits the 

detection of small-scale objects and similar objects. 

2.11.5 Single Shot Multibox Detector (SSD) 

SSD is another typical single-stage detection algorithm, which differs from YOLO 

mainly in two aspects. First, SSD uses a multiscale feature map. It utilizes different 

convolutional segments based on VGG and outputs a feature map to the regressor to 

improve the detection accuracy of small objects. Second, SSD uses more anchor boxes, 
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which generates boxes of different sizes and length-to-width ratios at each grid point 

and then predicts the probability based on the box (YOLO bases on the grid). 

    The SSD detection model is generally composed of the backbone network and 

detection head. As a feature extractor, the backbone network extracts representations of 

different sizes and multiple levels of abstraction in the image. The detector learns 

category and location associations based on these representations and supervision 

information. The two tasks of category prediction and location regression performed by 

detection head are often performed in parallel, jointly trained with the loss that 

constitutes multitasking (Liu et al., 2016). 

SSD is an early model of a single-stage detection model, which has an order of 

magnitude faster than the two-stage model, meanwhile achieves the accuracy of two-

stage model, so most subsequent single-stage model work is based on SSD 

improvements. 

2.12 Related Work 

A method is published for early diagnosis of Alzheimer's disease based on deep learning  

(Ji, Liu, Yan, & Klette,2019) . They employed the MRI images of human brain as the 

original data, segmented the three-dimensional MRI images during the data processing, 

selected the gray and white matter as the deep learning data set. In the method, 

eResNet50, eNASNet, and eMobileNe were implemented as basic classifiers and 

trained by using end-to-end process. After the training process is completed, the output 

results of the three basic network trainings were ensembled together to improve the 

classification accuracy. The method classified the three categories of the data set in 

pairs and achieved the accuracy of 97.65% for AD/MCI and 88.37% for MCI/CN. The 

approach did not classify all categories in the data set at one time and the preprocessing 

of the original data was relatively complicated. 
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Chapter 3  

Methodology 
 

 

 

 

This chapter mainly describes the method for diagnosing 

Alzheimer's disease by using Faster R-CNN in visual object 

recognition. In addition, this chapter details the evaluation 

methods depicted in this thesis. 
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3.1 Research Design 

Since the original data processing in the previous approach is relatively complicated, 

this experiment designed a method for deep learning training without extracting grey 

matter and white matter after slicing a three-dimensional MRI image. 

 

 

Figure 3. 1 Our research design process 

 

For a medical diagnosis, accuracy is more important than the speed, because a 

wrong diagnosis can have serious consequences for patients. The less serious 

consequence is that an ordinary person is misdiagnosed as sick, which can cause them 

psychological stress and shortages of medical resources (Schladt, Schneider, Schild, & 

Tremel, 2011). The serious consequence is to diagnose the sick person as normal, which 

will delay the patient's treatment. Therefore, the method chosen in this experiment is 
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based on Faster R-CNN on MATLAB platform, though it is very time-consuming for 

training and test. Figure 3.1 shows the process of this experiment. 

     For Faster R-CNN network, it needs a traditional CNN network as the basic 

network for feature extraction. Its structure is as shown in Figure 3.2. 

 

Figure 3. 2 The structure of Faster R-CNN network 

We see from Figure 3.2, Faster R-CNN network is mainly divided into four parts 

according to its functionalities.  

    First, the feature extraction layer and its previous layers are working for feature 

extraction in the entire network. The feature maps, extracted through these layers, will 

be shared with the Region Proposal Network and subsequent fully connected layers.  

   Second, the Region Proposal Network extracts feature maps based on the feature 

extraction layer to generate region proposals. It uses softmax layer to determine whether 

anchors belong to the background or foreground, gives the corresponding labels [-1,0,1], 

and uses bounding box regression to modify the anchors so as to obtain accuracy 

proposals. The structure of RPN is shown in Figure 3.3. 

    After completed the extraction of feature maps and generating region proposals, 

they are sent to the RoI pooling layer as input. This layer combines the input 

information to extract the proposal feature maps, and sends the results to the subsequent 

fully connected layers to determine the target classification. That is, after passing the 

RPN and RoI Pooling layers, Faster R-CNN network determines that the object 
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classification is based on the characteristics of ROI rather than the characteristics of the 

entire image. Figure 3.4 shows the input-output relationship of the ROI pooling layer. 

 

 
Figure 3. 3 The structure of RPN 

 

    The last part is to determine the target classification according to the proposal 

feature maps and use the bounding box regression once again to obtain the final 

accurate position of the detection box. The network structure of this part is as shown in 

Figure 3.5, the left branch is classification, and the right branch is bounding box 

regression. 

    The Faster R-CNN network based on the MATLAB platform supports a total of 

11 existing network structures as the basic network for feature extraction. The list is 

shown in Table 3.1. 

3.2 Pretraining 

In this experiment, 60% of the preprocessed data is selected as the training set, the 

remaining 40% of the data set is used as the validation set. We use the training set to 

pretrain the 11 basic networks supported by Faster R-CNN to discover a basic network 
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which is suitable for this data set. During the pretraining process, each network trains 

only 10 epochs. After the pretraining is completed, the validation method is used to 

validate the validation set.  

 

Figure 3. 4 The input-output relationship of the RoI Pooling layer 

 
Figure 3. 5 Classification and bounding box regression in Faster R-CNN 
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Table 3. 1 Basic networks supported by MATLAB in Faster R-CNN 

3.3 Validation Method 

Since the process of Faster R-CNN training does not support the validation set, in this 

experiment, the performance of our training model needs to be evaluated after training. 

Each image in the validation set will be verified by the trained model. The detection 

result has three outputs: bboxes, scores, and labels.  

   The bboxes refers to the position of object (hippocampus region) detected in the 

input image, with M×4 matrix returns, where M is the number of bounding boxes. Each 

row of the bbox contains a four-element vector of the form (x , y, width, height), where 

x and y refer to the coordinates of the upper-left pixel of the corresponding bounding 

box, width and height stand for the width and height of the bounding box, respectively. 

    Scores refer to the detection confidence which are returned as M×1 vectors, where 

M is the number of bounding boxes. The higher this score, the higher the confidence in 

the detection, the more likely the bounding box contains the detected object 

(hippocampus region). 

    Labels refer to the labels of the bounding box which are returned in the form of 

M×1 classification array of M labels. That means, the classification label of the detected 

object is the classification of the sample being diagnosed in this experiment. 
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    After the pretraining, due to the performance problems of the model, multiple 

target objects are detected. In fact, for the validation set of this experiment, only one 

hippocampal region needs to be detected, so only the one with the highest score of 

bounding boxes is used to determine the classification among all the detection results. 

    This experiment uses Faster R-CNN to detect the ROI, the most important factor 

for validation is the accuracy of classification. Therefore, the validation method of this 

experiment only evaluates accuracy of the classification, recall and precision of each 

category. There are three categories in this experiment: Alzheimer’s Disease (AD), 

Cognitively Normal (CN), and Mild Cognitive Impairment (MCI). 

    The performance index for evaluating classification tasks is generally the 

classification accuracy, that is, the ratio of the number of correctly classified samples 

to the total number of samples for a given data. In this experiment, the detection results 

of each image in the validation set will be compared with the label, the correct number 

of all detections will be added and divided by the number of the validation set to obtain 

the detection accuracy. The confusion matrix is shown in Table 3.2. 

 

Table 3. 2 The confusion matrix 

 

    The calculation formula for accuracy is shown as 

.       （3.1） 

    Recall refers to the proportion that is predicted to be positive among all positives, 

recall is a very important indicator in disease diagnosis. For multiclassification, the 

recall for each category needs to be calculated. The calculations are shown as 
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                 （3.2） 

 

                 （3.3） 

 

 .              （3.4） 

    Precision refers to the proportion of samples that are truly positive among the 

samples that are predicted to be positive. For multiclassification, the precision for each 

class needs to be calculated. The calculations are shown as 

               （3.5） 

               （3.6） 

               （3.7） 

3.4 Tuning and Optimization 

After pretraining, the best basic network with good performance will be selected for 

further tuning and optimization based on the validation results. Tuning and optimization 

mainly include the following aspects: 

    First, modifying the basic network of feature extraction improves performance 

based on the existing data sets. Of course, this may increase the amount of calculations. 

    Second, adjusting the more accurate RPN method includes reducing the number 

of proposals to improve accuracy. 

    Third, improving the classification regression layer includes extracting features 
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and classification by increasing the number of layers. 

    Finally, adjusting the optimizer, learning rate, and number of epochs achieves the 

best performance. 

    In this experiment, Faster R-CNN using VGG16 as the basic network was selected 

for adjustment and optimization based on the results of pretraining. After the attempts, 

a transposed convolution layer is added after the relu5_3 layer as the new feature 

extraction layer. The kernel size is 4×4, the number of filters is 512, the stride size is 

4×4, and the cropping size is 1. The modified part structure diagram of the newNetwork 

and specific parameters are shown in Figure 3.6 and Figure 3.7. The significance of 

adding the transposed convolution layer is related to upsampling the feature map 

extracted through the basic network. At the same time, the parameters in the transposed 

convolution matrix are continuously optimized with the training process to increase the 

dimension of the feature map while better retaining the feature information of the image. 

 

Figure 3. 6 The modified part structure of the newNetwork 
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Figure 3. 7 The parameter settings for the transposed convolutional layer 

 

 

Figure 3. 8 Faster R-CNN network structure based on the newNetwork 

 

    Figure 3.8 shows the network structure of Faster R-CNN based on the 

newNetwork. Figure 3.9 illustrates the network layer parameters of Faster R-CNN 

based on the newNetwork. 
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Figure 3. 9 Faster R-CNN network layer parameters based on the newNetwork 

 

3.5 Test Method 

To verify the specific performance of the training model, a sample from each 

classification outside the data set is sliced, the sliced image is used for the trained model. 

The test results are output graphically to view whether the test results are correctly 
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classified and whether the hippocampal region is correctly detected. Figure 3.10 shows 

the process of the test method. 

 

Figure 3. 10 The process of the test method 
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Chapter 4  

Experiments and Results 
 

 

 

 

    The main content of this chapter is to introduce the whole 

experimental process, including hardware and software 

environment of the experiment, the setting of experimental 

parameters, the collection and preprocessing of the data 

set, the optimization of the experimental model, etc. In 

addition, a comparison of experimental results is listed at 

the end of this chapter. 
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4.1 Data Collection 

Alzheimer's Disease Neuroimaging Initiative (ADNI) is linked to experimental data to 

determine the relationship between cognitive, clinical, biochemical biomarkers, 

imaging and genetic across Alzheimer's disease, early diagnosis and tracking of this 

disease. ADNI is committed to detect AD at the earliest possible stage (before dementia) 

by applying new diagnostic methods at the earliest possible stage. 

    The data set for this experiment is a part of the collection of ADNI 1. All raw data 

are MRI images related to the head of patients or volunteers. There are three categories 

in ADNI 1 data set: Alzheimer’s Disease (AD), Cognitively Normal (CN), and Mild 

Cognitive Impairment (MCI) (Gauthier et al., 2006). Amongst them, AD indicates that 

patients with Alzheimer disease have been diagnosed, CN indicates normal cognitive 

status, CN participants are the controls used in the ADNI study and they show no signs 

of depression, mild cognitive impairment or dementia. MCI indicates mild cognitive 

impairment patients, MCI participants can basically take care of their daily activities, 

there is no significant level of damage in other cognitive areas, there are no signs of 

dementia. The MRI image preview is shown in Figure 4.1. 

(a) 
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(b)

(c) 

Figure 4. 1 Examples of MRI 

4.2 Data Set Preprocessing 

Since the limit capability of current deep learning to deal with 3D images (Mohamed, 

et al., 2018), such as MRI, the original data needs to be preprocessed. The preprocessing 

of the data set in this experiment is divided into three parts: MRI slicing, screening, and 

labelling. 
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4.2.1 MRI Slicing 

MRI imaging uses layer-by-layer scanning to synthesize all layer images into a 3D 

image, so the inverse operation is performed during the preprocessing of the image data, 

that is, the MRI image is layered (sliced) along the bottom to the top of the head. In this 

experiment, a piece of MATLAB code is used for slicing. Each MRI sample is cut into 

approximately 256 slices, however, only a small part of the slice contains the 

hippocampus, so only 56 slices of each sample are selected for manual screening. Even 

if so, there is no guarantee that all the remaining images contain clear information about 

the hippocampus, because the hippocampus is located at the height of human eyes. For 

example, the first image in Figure 4.2 cannot find the hippocampus clearly. An example 

of reserved slices is shown in Figure 4.2. 

 

Figure 4. 2 Examples of slice of MRI 
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4.2.2 Screening 

Since the samples show different positions of the scans, even if a part of the slice image 

is retained when slicing, it cannot guarantee that all the reserved slices contain 

hippocampus, so that manual screening is required. After screening, 10 pictures 

containing clear hippocampus are selected from each sample.  

    In this experiment, 100 samples were selected for each category. After the 

screening, about 10 slices were selected for each sample, a total of 3343 images were 

used as the data set. 

4.2.3 Labelling 

Although the filtered data is stored in different categories, all the images look too 

similar and some interference factors also affect the accuracy of the diagnosis, such as 

the shape of the skull, individual differences, etc, thus, simple image classification 

algorithms cannot achieve the diagnosis of Alzheimer's disease. A simple classification 

experiment was implemented based on the screened data set, but the accuracy of the 

diagnosis was unsatisfactory. 

    Image Labeler is one of the useful tools of MATLAB for data labelling, which can 

be used to define rectangular ROI labels, scene labels, pixel ROI labels, polyline ROI 

labels, and use these labels to interactively mark other data. In this experiment, Image 

Labeler marks up a rectangular ROI which contains the hippocampus and pons of the 

human brain image. The labelling process is shown in Figure 4.3. 

    After labelling, the three categories of data sets are merged by using MATLAB to 

form a data set for training and test. This data set contains a total of 33434 samples. 

Among them, the first column of data represents the path information of each image, 

the remaining three columns represent the coordinate positions of the three classified 

ROIs. In addition, each row of data corresponds to the information of each image. An 

example of the dataset is shown in Figure 4.4. 
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Figure 4. 3 The labeling process 

 

 

Figure 4. 4 Examples of the dataset 

4.3 Experimental Environment 

Deep learning is increasingly demanding hardware resources for two main reasons. 

First, the process requires a large amount of data resources, including the data itself and 

labels of the data, because deep learning requires more training data than other methods 
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due to a large number of parameters and strong expression ability, more training 

samples usually lead to higher accuracy(Sun, Shrivastava, Singh, & Gupta, 2017). 

Second, the scale of deep learning networks continues to increase and deepen, so that 

deep learning has to calculate massive parameters during the training process. Google 

used a data set of more than 300 million images to train on 50 GPUs using asynchronous 

parallel computing methods, but they could only train four rounds in two months (Sun 

et al., 2017).  

    Deep learning, no matter during training the model or testing the model, requires 

a large number of computing resources, such as memory, GPU/TPU/NPU, and storage, 

etc. 

    Classic deep learning models have a huge number of parameters to obtain strong 

representation. For example, VGG16 network has more than 108  parameters and 

occupies more than 500 MB of memory space (Simonyan & Zisserman, 2014). This 

model cannot be used in mobile phones and other hardware resources. Training these 

models requires more memory to save intermediate results in the learning process (e.g., 

gradients used to update parameters, activation maps of the processing layers of the 

model, etc.). 

    When GPU is used to speed up the training process, the video memory size of the 

graphic card has become another bottleneck. In some complex tasks, such as UberNet, 

which integrates recognition, segmentation, and detection tasks into a single network, 

now if an advanced graphic card does not use a special algorithm, its memory capacity 

will not even be sufficient to deal with a single input image, which will bring 

tremendous resource to the learning and test (Kokkinos, 2017).  

    The amount of computation is reflected in CPU and GPU time. Due to a large 

number of parameters of deep learning models and the requirement for a huge number 

of floating-point operations, both the training and test phases occupy a large amount of 

CPU /GPU computing time. Taking training as an example, because a single training 
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set needs to carry out calculations and has a large number of training samples, even if 

it is accelerated by using multiple GPUs, the learning time of large-scale deep models 

is often in weeks or even months. When testing, though it can complete many tasks in 

real time with high-performance GPU card acceleration, on common resource-

constrained platforms, the classic deep learning model not only exceeds the memory, 

storage, and other resources that the platform can provide. Its running time and CPU 

usage are also far beyond the standard, which has affected the widespread application 

of deep learning. 

    The hardware resources used in this experiment include the Intel i7-9750H CPU, 

1TB SSD, 16GB of memory, and Nvidia Geforce RTX 2070 graphics card with 8GB 

of video memory. In addition, the software environment of this experiment is based on 

MATLAB 2019a version with the Deep Learning Toolbox as the main tool. At the same 

time, the Parallel Computing Toolbox is also employed to support the parallel 

computing function of GPUs. In addition, the Computer Vision Toolbox is also installed 

to support our algorithms and functions in this experiment. 

    There are several hyperparameters that can be adjusted when using the Deep 

Learning Toolbox of MATLAB. The hyperparameters in this experiment are listed in 

Figure 4.5. 

4.4 Experiment Procedure 

There are four steps of the training process for Faster R-CNN. The first one is to train 

a Region Proposal Network (RPN), which uses a pretrained model on ImageNet data 

set to initialize the feature extraction network and train the RPN network. Figure 4.6 

shows the training start state of Faster R-CNN, we see that the object classes are divided 

into three categories: AD, CN and MCI, the training process is carried out based on the 

GPU. 
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Figure 4. 5 The hyperparameters in this experiment 

 
Figure 4. 6 The first step of training Faster R-CNN 

 

    The second step is to train a Fast R-CNN Network using the RPN from Step 1. 

This step utilizes the model pretrained based on ImageNet to initialize the Fast R-CNN 
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feature extraction network and applies the candidate frames generated by the RPN 

network trained in Step 1 as input to train a Fast R-CNN network. So far, each layer of 

the two networks parameters is not shared at all. Figure 4.7 shows the second step of 

training Faster R-CNN. 

 

Figure 4. 7 The second step of training Faster R-CNN 

 

    The third step of training is re-training RPN using weight sharing with Fast R-

CNN. It uses the parameters of Fast R-CNN network of Step 2 to initialize a new RPN 

network, we set the learning rate of the feature extraction network parameters shared 

by RPN and Fast R-CNN to 0. In this way, it fixes the feature extraction network and 

only learns the characteristics of the RPN network Parameters. At this point, both 

networks have shared all common convolutional layers. Figure 4.8 shows the third step 

of training Faster R-CNN. 

 

Figure 4. 8 The third step of training Faster R-CNN 

 

    The last step of training is re-training Fast R-CNN using updated RPN. At this step, 

the shared network layers are still fixed. The training process adds the unique network 
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layers of Fast R-CNN to continue training and fine-tuning. So far, the RPN and Fast R-

CNN network completely share the parameters. Using Fast R-CNN can complete the 

candidate frame extraction and target detection functions at the same time. Figure 4.9 

shows the last step of training Faster R-CNN. 

 
Figure 4. 9 The fourth step of training Faster R-CNN 

4.5 Experimental Results 

 

Table 4. 1 Results of experiment 

 

This experiment tested various basic networks supported by the Faster R-CNN network 

of MATLAB. The basic networks performed poorly on the data set of this experiment, 

such as AlexNet, SqueezeNet, and GoogLeNet. However, in these networks, VGG, 
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ResNet, Inceptionv3, and the newNetwork obtained high accuracy. As shown in Table 

4.1, the results of all basic networks implemented in this experiment with model size 

and detection time.  

    A total of 1334 images are used for verification in this experiment. We see from 

the experimental results that the Faster R-CNN network based on VGG19, ResNet18, 

ResNet101, GoogLeNet, MobileNetv2, Inceptionv3, and the newNetwork cannot 

detect all the images. Among them, GoogLeNet has the lowest detection rate with 

96.25%, only 1284 of 1334 validation images are detected. In contrast, detection 

models based on AlexNet, VGG16, SqueezeNet, and ResNet50 detected all the 

validation images. The Faster R-CNN network based on VGG19 and the newNetwork 

detected almost all images, the performance is almost excellent. 

    In terms of the accuracy of the detected images, the performance of detectors based 

on VGG16, VGG19, the newNetwork is excellent with the accuracy of more than 97%. 

In addition, they have the highest relatively high detection precision for AD and MCI 

samples, which is crucial in disease detection. Figure 4.10, Figure 4.11, and Figure 4.12 

show the confusion matrixes based on the detection results of the three networks. 

 

Figure 4. 10 The confusion matrix of the result of VGG16 + Faster R-CNN 
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Figure 4. 11 The confusion matrix of the result of VGG19 + Faster R-CNN 

 

 

Figure 4. 12 The confusion matrix of the result of newNetwork + Faster R-CNN 

 

    From the confusion matrix, we see that the detector based on the newNetwork has 

achieved 100% detection precision for AD samples, which means, it has correctly 

detected all AD samples. This is significant for the diagnosis and screening of 

Alzheimer's disease. 

   In terms of model size and detection time, the detector models based on the VGG 

basic networks have large sizes, which require about 500MB of storage space, but the 

detection time for the entire validation set is relatively short. 
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Chapter 5  

Analysis and Discussions 
 

 

 

 

In this chapter, dialectical comparative analysis of the 

results of all models in the experiment is performed. In 

addition, in the last section of this chapter, a 

discussion of experimental results is presented. 
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5.1 Analysis 

In order to verify the robustness of various models, this experiment selected one image 

of each category of samples for test. 

    Faster R-CNN + AlexNet as the base network has only five convolutional layers, 

the number of network layers is not deep enough and the number of filters is small, this 

results in poor performance of feature extraction. Although it can detect all the 

verification images, the accuracy is only 62.1%. From the test image in Figure 5.1, we 

see that AlexNet + Faster R-CNN fail to correctly classify AD samples and detect 

hippocampus region. It detects many regions that do not contain hippocampus and even 

searches the regions outside the effective image area as hippocampus regions. On the 

other hand, due to the shallow number of neural network layers and the small number 

of calculation parameters, AlexNet + Faster R-CNN performs well in model size and 

detection time. 

 

Figure 5. 1 The examples of test results of AlexNet+Faster R-CNN 

 

    The network structure of GoogLeNet+Faster R-CNN which has 155 layers is 

much more complicated than AlexNet+Faster R-CNN. The Inception structure used by 

GoogLeNet provides a wider network structure by using 1×1, 3×3, and 5×5 

convolution kernels. However, such a complex feature extraction network has not 

achieved good results in the data set of this experiment and its detection rate is the 

lowest among all models. From the test example shown in Figure 5.2, we see that 

GoogLeNet+Faster R-CNN fails to correctly classify the CN and MCI samples, the 
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confidence of the bounding box contains the hippocampus region is also low. 

 

Figure 5. 2 The examples of test results of GoogLeNet-Faster R-CNN 

 

    Compared to GoogLeNet, Inceptionv3 has structural changes. It uses the 

RMSProp optimizer and turns the 7×7 convolution into a 1×7 and 7×1 convolution 

kernel stack (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojna, 2016). The number of 

network layers of Inceptionv3+Faster R-CNN has also increased to 327 layers. At the 

same time, the detection rate and accuracy of the validation set in this experiment have 

also been improved. However, because the network structure is too deep, the amount 

of calculation increases, the detection time for the entire validation set is also the longest. 

Figure 5.3 shows the examples of test results of Inceptionv3+Faster R-CNN, the 

accuracy is much better than GoogLeNet+Faster R-CNN. 

 

Figure 5. 3 Examples of test results of Inceptionv3+Faster R-CNN 

 

As a lightweight network, MobileNetv2 uses inverted residuals, which is different from 
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the traditional residual block in which the number of feature map channels is reduced 

before the 3×3 convolution layer, and increased after the 3×3 convolution layer. 

Inverted residuals use the opposite approach, first increase the number of channels in 

the feature map and then compress the number of channels after passing through a 3×3 

convolution layer (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018).  

    In addition, MobileNetv2 uses linear bottlenecks to avoid damages to feature maps 

using ReLU after channel number compression. In this way, even though 

MobileNetv2+Faster R-CNN has a network depth of 177 layers, its model size can still 

be controlled to be very small, only 18.8MB. However, because MobileNetv2 was 

originally designed to run on mobile devices, the number of channels extracted by the 

feature map is not enough, which leads to average performance on the data set of this 

experiment. Figure 5.4 shows the examples of test by using MobileNetv2+Faster R-

CNN.  

 

Figure 5. 4 Examples of test results of MobileNetv2+Faster R-CNN 

 

    Like MobileNetv2, SqueezeNet is also designed to minimize the amount of 

calculation and learnable parameters for model training and test, thereby reduce the size 

of the model and facilitate the preservation and transmission of the model. SqueezeNet 

focuses on the application of the embedded environment, the size of the model can 

achieve only about 2% of the AlexNet model while the same level of accuracy as 

AlexNet (Iandola et al., 2016). This reflects in the results of this experiment. However, 
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SqueezeNet exchanges for a smaller number of parameters by increasing the depth of 

the network, though it can reduce the parameters of the network, it loses the network 

parallelism and the test time will be longer. Figure 5.5 shows the examples of test results 

of SqueezeNet-Faster R-CNN. Like AlexNet+Faster R-CNN, SqueezeNet+Faster R-

CNN also suffers from inaccurate classification and confusion of bounding box 

predictions. It performs poorly in the data set of this experiment. 

 

Figure 5. 5 The examples of test results of SqueezeNet+Faster R-CNN 

 

ResNet networks have always been considered as excellent feature extraction 

networks. They also perform very well on the data set of this experiment and have 

achieved relatively high accuracy. ResNet18+Faster R-CNN uses different shallow 

residual blocks, rather than the other two ResNet networks, two 3×3 convolution 

kernels are used in each residual block. The accuracy of the detected image was 94.82% 

based on the data set of this experiment, but its image detection rate was lower than that 

of ResNet50 with deeper network layers. 

 Figure 5.6 shows the examples of test results of ResNet18+Faster R-CNN. 

ResNet50+Faster R-CNN and ResNet101+Faster R-CNN use residual blocks suitable 

for deeper network structures to resolve the gradient vanishing problem (He, et al., 

2016). ResNet101+Faster R-CNN has a network structure of 358 layers, which is 

almost twice the 188 layers of ResNet50-Faster R-CNN. However, the performance of 

a deeper network structure is not necessarily better. On the data set of this experiment, 
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the detection rate of ResNet101-Faster R-CNN for the validation set image is the lowest 

one among the three ResNet networks, though the accuracy of the detected image is 

slightly higher than the other two. In addition, with deepening the network structure, 

the model size and detection time of ResNet-Faster R-CNN also increase. Figure 5.7 

and Figure 5.8 show the examples of test results of ResNet50+Faster R-CNN and 

ResNet101+Faster R-CNN. 

 

Figure 5. 6 The examples of test results of ResNet18+Faster R-CNN 

 

 

Figure 5. 7 The examples of test results of ResNet50+Faster R-CNN 
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Figure 5. 8 The examples of test results of ResNet101+Faster R-CNN 

 

   Although the VGG network has a simple structure, it is a promising network. It can 

extract useful features of the image well, so it has a wide range of applications in the 

image field. Each convolutional layer of the VGG network uses the same 3×3 small 

convolution kernel while using the 2×2 pooling layer with the same parameters to 

reduce the dimension. With the increase of the number of convolutional layers, the 

number of channels of the convolution kernel continues to increase, though the structure 

of VGG is simple, the number of weights is very large. Taken VGG16 as an example, 

it has reached 138,357,544 parameters. These parameters include convolution kernel 

weights and fully connected layer weights.  

    Therefore, the VGG network has two main disadvantages. First, the training time 

is too long, it is difficult to adjust the parameters. Second, the model size is too large, 

which requires a large storage space and is not conducive to deployment. For example, 

it is not conducive to install them in mobile devices and embedded systems (Simonyan 

& Zisserman, 2014).  

    In addition, because the VGG network does not have residual blocks like ResNet 

to effectively transfer gradients, its network layers cannot be constructed too deeply, so 

VGG16 has only 13 convolutional layers and three fully connected layers, while 

VGG19 has only 16 convolutional layers and three fully connected layers. But for the 

data set of this experiment, the performance of VGG is good enough. VGG16+Faster 
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R-CNN detected all the validation set images and achieved an accuracy of 97.38%, 

while VGG19+Faster R-CNN only had one image not detected, and obtained the 

highest detected image accuracy of all models in this experiment, at the same time, they 

have achieved relatively high detection precision of AD and MCI. Figure 5.9 and Figure 

5.10 show the examples of test results of VGG16+Faster R-CNN and VGG19+Faster 

R-CNN. 

 

Figure 5. 9 The examples of test results of VGG16-Faster R-CNN 

 

 

Figure 5. 10 Examples of test results of VGG19-Faster R-CNN 

 

VGG16+Faster R-CNN has excellent phenotypic performance in this experiment. 

It not only can detect all the images in the validation set but also achieves a relatively 

high accuracy of the detected images and high precision of the prediction of AD 

samples. The newNetwork+Faster R-CNN based on the VGG16 network adjustment 
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has been experimentally verified and achieved good performance. The added 

transposed convolutional layer makes the feature map dimension input to the RPN 

network increase from the original 14×14×512 to 54×54×512, the increase of this 

dimension only affects the RPN network.  

Figure 5.11 and Figure 5.12 show the parameters after feature extraction layer of 

VGG16+Faster R-CNN and newNetwork+Faster R-CNN. The effect is that the 

accuracy of the detected image and the precision of AD and MCI prediction are 

improved without significantly increasing the amount of calculation. The significance 

of adding a transposed convolution layer is that it can upsample the feature map 

extracted by the feature extraction network. The upsampling does not use a predefined 

interpolation method, and it has learnable parameters. In this way, the upsampled 

feature map can restore more fine-grained feature degrees compared to the original 

feature map. 
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Figure 5. 11 VGG16+Faster R-CNN parameters after feature extraction layer 

 

 

 

Figure 5. 12 The newNetwork+Faster R-CNN parameters after feature extraction 

layer 
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    Furthermore, the upsampled feature map not only is helpful for the classification 

task of the RPN network but also significantly improves the regression of the bounding 

box. Figure 5.13 shows the examples of test results of newNetwork+Faster R-CNN.  

Compared with Figure 5.9, we find that the confidence for the hippocampal region 

contained in the bounding box increased from 0.99618 for AD, 0.98179 for CN and 

0.98843 for MCI in VGG16+Faster R-CNN to 0.99932 for AD, 0.99955 for CN and 

0.99946 for MCI in newNetwork+Faster R-CNN, respectively. 

 

 

Figure 5. 13 The examples of test results of newNetwork+Faster R-CNN 

 

 

 

Figure 5. 14 Comparison of detection rates with different models 
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    The object detection network faces the challenge that it cannot detect all objects 

in the image, the challenge in this experiment is that it cannot accurately detect the 

hippocampus region. The basic networks have distinct feature map extraction 

capabilities, which makes RPN networks detect objects with different capabilities when 

conducting bounding box regressions.  

    Figure 5.14 shows the comparison of detection rates with different models. 

Amongst all the models, only Faster R-CNN networks based on AlexNet, VGG16, 

SqueezeNet, and ResNet50 detected all images from the validation set. In the same 

network structure, as the network layer deepens, the detection rate decreases. For 

example, the detection rate of VGG19+Faster R-CNN is 99.93%, which is lower than 

100% of VGG16+Faster R-CNN. Similarly, the detection rate of ResNet101+Faster R-

CNN is 99.63%, which is lower than that of ResNet50+Faster R-CNN. Although 

newNetwork+Faster R-CNN only has one more transposed convolutional layer than 

VGG16+Faster R-CNN, its detection rate drops a little. 

 

 

Figure 5. 15 Comparison of the accuracy of detected images with different models 
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      The accuracy of all the detected images is calculated in this experiment. Figure 

5.15 shows the comparison of the accuracy of detected images with different models. 

We see from the comparison that with the same basic network structure, as the network 

layer deepens, the accuracy of the detected image improves slightly.  

    For example, VGG19+Faster R-CNN with 16 convolutional layers only improves 

the detection accuracy of the image by 0.59% than the VGG16-Faster R-CNN with 13 

convolutional layers, but the loss is the detection rate of the image. Similarly, the 

detection accuracy of ResNet101+Faster R-CNN is 0.72% higher than that of 

ResNet50+Faster R-CNN, but the detection rate of 0.37% is lost. 

 

 

Figure 5. 16 The comparisons of sizes with different models  

 

    Figure 5.16 shows the comparison of size with different models. Due to the huge 

amount of basic network parameters based on the VGG structure, the three VGG-based 

models in this experiment have the largest size, almost all reach 500 MB. In contrast, 

other lightweight models are much smaller, such as SqueezeNet, GoogLeNet, and 

MobileNetv2. These models are easier to deploy and store, but they perform poorly on 

the dataset in this experiment. In addition, as the number of layers in the same network 

architecture deepens, the model size also increases. 
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Figure 5. 17 The comparison of detection time with different models  

 

 

Figure 5. 18 The comparisons of layers with different models 

 

     In terms of the detection time of the validation set, it is closely related to the 

number of layers of the network. Figure 5.17 and Figure 5.18 show the comparisons of 

detection time and layers with various models. ResNet101+Faster R-CNN and 

Inceptionv3+Faster R-CNN have more than 300 network layers, the detection time is 

relatively long. In contrast, AlexNet+Faster R-CNN is the network having the lowest 

number of layers with only 35 and its detection time is also the shortest. In addition, the 

three detection networks based on the VGG structure are relatively few at the network 

layer, so they performed well in terms of detection time. 
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5.2 Discussions 

AD is a progressive and degenerative neurological disease. The clinical symptom is that 

patients fall into dementia in their later years. Due to the increasing cost of nursing for 

AD, early accurate diagnosis is very important, and deep learning methods have made 

great contributions to the diagnosis of AD. 

   In this experiment, the MRI image set related to human heads downloaded from 

ADNI was imported as the raw data, the required data set was generated after 

preprocessing. According to the method described in Section 3.1, an AD detection 

model based on Faster R-CNN architecture was constructed and compared. MATLAB 

supports several basic networks for feature extraction. Our experiments show that the 

newNetwork+Faster R-CNN modified based on the VGG16+Faster R-CNN network 

can achieve 100% detection precision of AD samples and obtain 97.67% accuracy of 

the detected image. 
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Chapter 6 

Conclusion and Future Work 
 

 

 

 

In this project, a deep learning-based method for the 

early diagnosis of Alzheimer's disease is discussed, the 

research results and research method innovations are 

explained in detail. In this chapter, we also integrate and 

organize these conclusions into context and illustrate the 

limitations of this experiment, meanwhile point out our 

future work at the end of this thesis. 
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6.1 Conclusion 

The purpose of this thesis is to study how to use deep learning to classify MRI images 

of human brain, to achieve early diagnosis and screening of Alzheimer's disease. The 

original MRI image downloaded from ADNI is a three-dimensional image, which is 

difficult to deal with traditional convolutional neural networks. Therefore, in this 

experiment, the 3D image was sliced to obtain 2D images.  

    After the slicing, the images containing hippocampus region are selected and 

labelled with the MATLAB image labelling tool so as to form a dataset. Faster R-CNN 

network for object detection was used in this experiment which can classify according 

to the characteristics of ROI so that it can focus on studying the atrophy of the 

hippocampus to diagnose Alzheimer's disease. 

    In our experiment, many basic networks for feature map extraction are used. From 

the experimental results, the newNetwork based on VGG16 adjustment has achieved 

good performance. It adds a transposed convolution layer after the relu5_3 layer of the 

original VGG16 as a new feature extraction layer for Faster R-CNN with the kernel 

size of 44, the number of filters of 512, the stride size of 44, and the cropping size of 

1. It not only achieved relatively high image detection rate (only one image was not 

detected) and detection image accuracy but also obtained the highest detection precision 

for AD and MCI samples. In addition, confidence in the hippocampal region detected 

has also been improved. 

6.2 Limitations 

(1) In this experiment, the dataset used is slice images of 100 samples from each 

classification. The number of original samples is insufficient, which may affect the 

robustness of the model. 

(2) The process of labelling the dataset is handled manually, which may generate the 

bias of the hippocampus region and affect the accuracy of the proposed model. 
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6.3 Future Work 

We will work towards the research directions: 

(1) Increasing the number of samples is needed in the dataset to improve the accuracy 

of the model. 

(2) Only one slice image is selected for each sample, which makes the dataset more 

diverse, thereby improves the robustness of the model. 

(3) We will continue to tune the network structure and develop new algorithms to get 

better performance. 
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