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Abstract: The efficient recognition and classification of personal protective equipment are essential
for ensuring the safety of personnel in complex industrial settings. Using the existing methods,
manually performing macro-level classification and identification of personnel in intricate spheres is
tedious, time-consuming, and inefficient. The availability of several artificial intelligence models in
recent times presents a new paradigm shift in object classification and tracking in complex settings.
In this study, several compact and efficient deep learning model architectures are explored, and
a new efficient model is constructed by fusing the learning capabilities of the individual, efficient
models for better object feature learning and optimal inferencing. The proposed model ensures rapid
identification of personnel in complex working environments for appropriate safety measures. The
new model construct follows the contributory learning theory whereby each fussed model brings its
learned features that are then combined to obtain a more accurate and rapid model using normalized
quantization-aware learning. The major contribution of the work is the introduction of a normal-
ized quantization-aware learning strategy to fuse the features learned by each of the contributing
models. During the investigation, a separable convolutional driven model was constructed as a base
model, and then the various efficient architectures were combined for the rapid identification and
classification of the various hardhat classes used in complex industrial settings. A remarkable rapid
classification and accuracy were recorded with the new resultant model.

Keywords: deep learning ensemble; rapid object classification; onsite personnel identification; nor-
malized quantization-aware learning; complex industrial scene

1. Introduction

The concept of contributory learning, otherwise generally referred to as ensemble
learning, merges different pieces of model architectures (see Figure 1) to build a unified
model that offers superior learning features and generalization for enhanced object clas-
sification performance. Deep artificial learning models that possess diverse processing
architecture provide a more outstanding performance against conventional or shallow ob-
ject classification models. By extension, the unified contributory learning models blend the
advantages of the artificial deep learning models to derive a final model with an improved
generalization performance.

The object classification task deals with new observation categorization, relying on
a hypothesis derived or learned from a collection of training data. The mapping of the
features of input data to their corresponding or fitting labels represents the hypothesis that
the core objective is to relatively approximate the actual undetermined function as closely as
possible to minimize generalization errors [1]. Despite the efforts of the single architectures
to reduce the generalization errors, it is challenging to attain a satisfactory performance,
especially with inadequate, unbalanced, noisy, and high-dimensional complex data [2].
This is orchestrated by the single models’ difficulty in capturing the multiple features
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embedded in the input data and their corresponding structures. It, therefore, becomes
imperative to construct a rapid, efficient model that can learn the various characteristics of
complex data efficiently.
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In the unified learning concept, a collection of features that passes through diverse
transformations is initially extracted and learned. Then, multiple learning models or al-
gorithms are deployed to generate weak predictive results based on the learned features
before the fusion of the individually learned features by an intermediate mechanism to
produce a superior discriminative or classification framework. A conventional unified
learning model consists of two phases: (1) the initial classification result production step
with various weak classifiers and (2) the fusion of the multiple results to form a reliable
model to produce an outcome with an appropriate mechanism. There are several exten-
sively deployed ensemble classification schemes in task classifications, such as random
forest [3], AdaBoost [4], gradient boosting [5], random subspace [6], etc. Through a training
dataset random sampling, the Bagging approach creates sample subsets, which are used to
train basic models for inferencing [7].

In random subspace utility, a set of feature subspaces are constructed by performing
features random sampling and training basic classifiers in their subspace domains to
produce multiple results that are then unified into a single final result [6]. In Gradient
Boosting, data are randomly sampled to create a sum of the last residuals by integrating tiny
models that forcefully make predictions near the actual value [8]. The ensemble stacking
approach is vital in constructing unified, efficient learning models. This method combines
the outputs of different base models using an effective selection mechanism to yield a
superior classification or predictive model.

The stacking approach deploys a meta-learning concept in task processing to fuse or
integrate base models’ outputs [9]. A model blending concept is birthed when a linear
model constitutes the last decision-making portion of the stacking model. In the stacking
process or stacked regression, the dataset is divided randomly into D equal parts. Given a
Dth fold cross-validation of the dataset, a set is reserved for the proposed model test while
the remaining are used for the model training. The predictions of the various base learning
models are obtained using the train test pair subsets of the dataset, which then serve as the
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meta-data deployed to construct a meta-model. These shallow algorithms lack robustness
for learning similar fine-grained features and thus significantly impact the performance
of the trained model. This investigation introduces a quantization-aware meta-learning
feature-based deep learning architecture fusing method. This method learns the object
features, is lightweight, and rapidly processes new objects due to quantization.

2. Related Works

In recent years, pieces of literature on deep-learning architectural ensembles have
emerged from which our model design concept is derived. In their work, Koitka and
Friedrich [9] introduced an ensembled network based on the optimized deep convolutional
artificial network for image classifications. They adopted several convolutional neural
network architectures similar to our proposed model. During the training process, pre-
trained models were fine-tuned and partitioned into two different optimal steps by initially
training the logit layers for adaptation to random initialization for the free flow of informa-
tion and domain dataset. Then, the entire layers are trained by deploying a polynomial
decay optimizer.

Also, a neural ensemble-based detection of patterns was proposed to inspect speci-
mens using a two-level deep model architecture ensemble [10]. The first-level ensemble
was used to verify a normal cell with a superior confidence score and two expected outputs
from each network. The second-level ensemble handled defect cells emanating from the
first-level ensembled network. Then, the individual network predictions were fused using
the full voting ensemble technique [11]. A weighted convolutional neural network ensem-
ble method [12] was proposed to unify convolutional operation probabilities’ outcomes
efficiently. In their work, Nguyen and Pernkopf [13] introduced a CNN-based ensemble
technique in conjunction with the nearest neighbor filter to classify acoustic scenes. In
the work, they adopted several CNN model architectures for performing single-input and
multi-input channel learning and three base models for the ensemble network construct.

In another related investigation, Fawaz et al. [14] ensembled 60 deep-learning models
to perform time series classification tasks. Furthermore, joint training for neural network
ensembles that use a single loss function to train multiple deep learning architectures with
multiple branches was investigated [15]. The study introduced a collection of novel loss
functions that generalized several different previous techniques, and their theoretical and
empirical characteristics were thoroughly examined for joint training tasks. The presented
method in this work adheres to the aforementioned principles and practices with an
improved network fusing layer.

Furthermore, a rapid tropical cyclones (TCs) intensification (RI) predictor prosed for
safety [16] and a production forecasting of coalbed methane using a DL-driven ensemble
learning method for complex production patterns [17]. In other studies, Li and Hong [18]
deployed the DL ensemble learning method to model flood susceptibility for the reduction
of loss orchestrated by flooding. Yazdinejad et al. [19] introduced a cyber threat-hunting
model that utilizes ensemble deep learning in the industrial internet of things (IIoT) plat-
forms. Four-dimensional modeling in an industrial context typically refers to the use of 3D
modeling and visualization technology to incorporate the dimension of time, creating a
comprehensive representation of a project’s evolution over time. Kyriakaki et al. [20] inves-
tigated a 4D reconstruction of tangible cultural heritage objects from web-retrieved images
and a review of the incorporation of laser scanning and photogrammetry in 3D/4D cultural
heritage preservation and the application areas of 3D and 4D models on construction
projects was completed [21,22].

Contributions

Our research paper makes several significant contributions to the field of safety object
classification and deep learning:
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1. Unified Architecture: We introduce a unified deep learning architecture that is specifi-
cally designed for safety object classification, offering a comprehensive solution to the
challenges associated with real-time safety systems.

2. Normalized Quantization-Aware Learning: We propose and validate the effective-
ness of Normalized Quantization-Aware Learning, a novel approach that combines
quantization and normalization techniques to improve both the speed and accuracy
of safety object classification.

3. Experimental Evaluation: We provide a comprehensive evaluation of our architecture
through extensive experiments, showcasing its superior performance in terms of
accuracy, speed, and memory efficiency when compared to existing methods.

4. Real-world Applicability: We emphasize the practicality of our approach by demon-
strating its effectiveness in real-world scenarios, thereby highlighting its potential for
integration into safety-critical applications.

3. Theoretical Background

The proposed model comprises a combination of four efficient, lightweight deep
learning model architectures, with each model contributing to the unified single-model
learning process. The benchmark model for which the test result is used as a yardstick to
measure the performance of the proposed model is constructed with separable convolu-
tional neural network layers. The separable convolutional neural network [23] consists of
layers split into sub-processes or multiple convolutions to generate the same output during
the convolution process. The depth-wise convolution deploys a single convolutional filter
for an individual input channel while creating a linear combination of the resultant of the
depth-wise convolution process using the pointwise convolution mechanism.

On the other hand, the spatially separable convolutions decompose convolution
operations into two individual processes. In a typical convolution operation [24,25], if a
3 × 3 kernel filter is employed, a sample image can be convolved directly with the kernel.
However, in spatially separable convolution, a 3× 1 kernel is first used to convolve over the
given image sample before a 1 × 3 kernel, which is more parameter efficient compared to
the conventional convolution layers because of minimal matrix computations. The diagram
in Figure 2 shows the benchmark custom model built with the SeparableConv2D layers
during the study.

The proposed architecture’s first base model (BM1) is derived from the Inception-V3
architecture. The Inception-V3 [26] is a CNN architecture that is among the Inception model
group of networks that enhances the object classification tasks through the incorporation
of several techniques such as convolution factorization, regularization, label smoothing,
parallelized computations, dimension reduction, and integration of an auxiliary classifier
for object label information propagation down the bottom of the network. The convolution
factorization assists the model in minimizing the computational complexity of the architec-
ture through network parameter reduction, thereby boosting the network efficiency. The
auxiliary classifier is a tiny CNN layer integrated in between the network layers during the
training process, and the loss emanating from it is summed into the primary network loss.

The second base model (BM2) is derived from the Xception deep learning architec-
ture [23], inspired by the Inception deep CNN modules. The Xception module convolution
layers were swapped with depth-wise separable convolutions, which yields slightly supe-
rior performance than the Inception V3 on large, benchmarked image classification datasets.
Two notable changes in the Xception architecture exist: the reordering of convolution opera-
tions and the integration or non-integration non-linearity function. In the enhanced module,
a 1×1 convolution operation is first performed by the depth-wise separable convolution
layers before conducting a channel-wise spatial convolution. On the second change, an
intermediary ReLU non-linearity function is absent, unlike the typical Inception module
incorporated with a non-linearity function after the initial operation.
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Furthermore, the third base model (BM3) is made of the DenseNet121 CNN model
that uses dense connections between CNN layers via dense blocks in which all layers in the
network are directly linked. In the network, the preservation of the working principle of
the feed-forward layers is achieved by fusing each layer in the network with extra inputs
from prior layers, which then transfer their feature maps to all successive layers. Finally, the
fourth base model (BM4) is derived from the MobileNet CNN architecture [27], which also
uses depth-wise separable convolutions to construct lightweight artificial deep networks.
In the network architecture, two straightforward global hyperparameter strategies were
introduced to mitigate and balance the difference between latency and accuracy efficiently.

Stacking is an ensemble strategy consisting of a two-layer structure for combining
the outputs of multiple base architectures through the meta-model learning concept to
identify an optimal classification or regression model [27]. The feature learning capabil-
ities of different CNN models can be integrated to form an optimal model for a supe-
rior classification model without necessarily increasing the depth of the new networks.
This strategy can correct errors emanating from the base models to enhance the perfor-
mance of the ensembled model by maximizing the learning capabilities of the different
contributing models.
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In this work, we fuse the features from these efficient architectures using a normal-
ized low-bit precision quantization-aware learning paradigm to arrive at a more efficient
and rapid model for the object classification task. The low-bit precision quantization-
aware learning reduces the computational and memory requirements of the introduced
network by representing the model weight and activations using a lower number of bits. It
also helped mitigate the performance degradation due to the quantization process when
mapping continuous values to a finite set of discrete values. The quantization process is
represented as:

Q(x) = b(x/∆) · ∆e

where:
Q(x) is the quantized value of x, and ∆ is the size of the quantization step, determined

by the number of bits used for the quantization process. The quantized weight error is
computed using:

E = w − q(w)

where:
E represents the quantization error, w is the model’s original floating-point weight,

and q(w) is the quantized weight. The quantized activation error is represented by:

E = a − q(a)

where:
E is the quantization error, a is the original floating-point activation, and q(a) is the

quantized activation.

4. Material and Method

The experimental procedure and the proposed model evaluation matrices are pre-
sented in this section. The experiment was conducted on a high-end GeForce RTX TITAN
Xp GPU computer with 12 GB graphic capability, cuDNN, and CUDA Toolkits. The model
was trained, validated, and tested in five hours. The model was built on the TensorFlow
open-source deep learning framework and Python programming language. The hardhat
dataset used for the experiment was curated using camera sensors in different positional
angles, and others were scrapped from the web with 1705 samples of eight different classes.
The dataset was split into training and test sets with 1225 and 480 samples, respectively.
The training set was further divided to obtain the validation set with an 80% and 20%
sample split strategy.

According to the global hardhats color coding system, white identifies the managing
team, engineers, supervisors, and forepersons in the construction and industrial settings.
This class was labeled as 4 and denoted with “Mg” during the experiments. Furthermore,
the blue hardhat color coding identified the electricians and high machine operators and
was designated with ET&O and labeled class 0; the pink hardhat color identified the female
workers and was represented with “FF” and labeled as class 1 during the experiment. The
red color coding recognized the firefighters and was defined with “FW” and marked with
class 2. The yellow color coding recognized the laborer and heavy-duty machine operators
and was denoted with “LH&C” and classed as 3. In continuation, the safety officers were
identified with the green color code, marked with “SO”, and classed with the number 5.
Also, the site visitors were coded with gray, denoted as “SV”, and classed with the number
7. Finally, the brown hardhat color coding identified the welders and high-heat equipment
operators and was represented with “W&HHO” with the number 7 class.

The hardhats were macro-grouped into eight classes. Due to the high volume of data
required for training and testing the reliable deep learning model, data augmentation was
used to artificially increase the dataset volume and boost the classification accuracy of the
proposed model. The dataset was rescaled to 1/255, 40◦ rotation range, width shift range of
0.2, height shift range of 0.2, shear range of 0.2, zoom range of 0.2, and horizontally flipped.
In the proposed model-building process, a custom benchmark model was first built and
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trained using five SeparableConv2D layers, as shown in Figure 2. The results of the custom
model were used to measure the hardhat classification capabilities of the main proposed
architecture. Then, the BM1, BM2, BM3, and BM4 were trained separately and then linearly
combined using normalized low-bit precision quantization-aware learning. Each selected
architecture and the final proposed model were trained using a learning rate scheduler of
9 × 10−4 and compiled using a categorical cross-entropy as a loss function with an
Adam optimizer, all trained with 100 epochs. As illustrated in Figure 3, a quantized
layer was used to perform the final classification task using a softmax function after the
unifying mechanism.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 14 
 

 

positional angles, and others were scrapped from the web with 1705 samples of eight dif-

ferent classes. The dataset was split into training and test sets with 1225 and 480 samples, 

respectively. The training set was further divided to obtain the validation set with an 80% 

and 20% sample split strategy.  

According to the global hardhats color coding system, white identifies the managing 

team, engineers, supervisors, and forepersons in the construction and industrial settings. 

This class was labeled as 4 and denoted with “Mg” during the experiments. Furthermore, 

the blue hardhat color coding identified the electricians and high machine operators and 

was designated with ET&O and labeled class 0; the pink hardhat color identified the fe-

male workers and was represented with “FF” and labeled as class 1 during the experi-

ment. The red color coding recognized the firefighters and was defined with “FW” and 

marked with class 2. The yellow color coding recognized the laborer and heavy-duty ma-

chine operators and was denoted with “LH&C” and classed as 3. In continuation, the 

safety officers were identified with the green color code, marked with “SO”, and classed 

with the number 5. Also, the site visitors were coded with gray, denoted as “SV”, and 

classed with the number 7. Finally, the brown hardhat color coding identified the welders 

and high-heat equipment operators and was represented with “W&HHO” with the num-

ber 7 class. 

The hardhats were macro-grouped into eight classes. Due to the high volume of data 

required for training and testing the reliable deep learning model, data augmentation was 

used to artificially increase the dataset volume and boost the classification accuracy of the 

proposed model. The dataset was rescaled to 1./255, 40° rotation range, width shift range 

of 0.2, height shift range of 0.2, shear range of 0.2, zoom range of 0.2, and horizontally 

flipped. In the proposed model-building process, a custom benchmark model was first 

built and trained using five SeparableConv2D layers, as shown in Figure 2. The results of 

the custom model were used to measure the hardhat classification capabilities of the main 

proposed architecture. Then, the BM1, BM2, BM3, and BM4 were trained separately and 

then linearly combined using normalized low-bit precision quantization-aware learning. 

Each selected architecture and the final proposed model were trained using a learning rate 

scheduler of 9 × 10⁻⁴ and compiled using a categorical cross-entropy as a loss function with 

an Adam optimizer, all trained with 100 epochs. As illustrated in Figure 3, a quantized 

layer was used to perform the final classification task using a softmax function after the 

unifying mechanism. 

 

Figure 3. The proposed unified deep-learning architecture. Figure 3. The proposed unified deep-learning architecture.

5. Results

This section presents a detailed analysis of the proposed method to ensure that the
results obtained are interpreted correctly with their corresponding significant relationships
spotted. The statistical tests are vital in evaluating the statistical differences in performance
of each constructed custom model, the adopted and the proposed models. We measured
the accuracy, precision, recall, and F1 scores of all the models involved in the experiment.
Also, empirical processes were performed to establish the presence or absence of consid-
erable variations using the performance metrics’ mean values of the custom, individual
contributing, and proposed models. Furthermore, the mean square errors (MSE), means-
square-log-errors (MSLE), and the Matthews correlation coefficient (MCC) scores were
obtained for all the models to reaffirm the proposed model’s performance.

The performance metrics obtained from the custom-built model and BM1 are shown in
Figures 4 and 5 with respect to the precision, recall, and F1 scores. It was observed that the
custom model rightly classified all the hardhats from the test data except class 4(Mg), which
represents the managers, and class 6(SV), which recognizes the site visitors. The difficulty
in classifying these two samples of the hardhat is due to the close relationship between their
color coding, i.e., gray and white. The custom model rightly classified 54 samples of the
managers’ hardhat and misclassified six samples out of the 60 test samples as site visitors.
On the other hand, it appropriately classified 39 samples of the site visitor’s hardhat test
samples and wrongly classified 21 samples as the managers’ hardhat (see Table 1). The BM1
also rightly classified all the test samples except the two highly similar classes. It recorded a
precision of 87%, recall of 88%, and F1-score of 88% for class 4(Mg) and 88%, 87%, and 87%,
respectively, for the site visitor class. This implies that BM1 rightly classified 53 samples
as managers and misclassed seven samples as site visitors while rightfully classifying
52 samples as site visitors and wrongly classifying eight samples as managers.
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Table 1. The classification and misclassification between the managers’ and site visitors’ test samples.

Custom T F BM1 T F

Mg 54 6 Mg 53 7
Sv 39 21 Sv 52 8

BM2 T F BM3 T F

Mg 55 5 Mg 55 5
Sv 54 6 Sv 48 12

BM4 T F Proposed T F

Mg 55 5 Mg 57 3
Sv 55 5 Sv 58 2

In continuation, all attention and analysis are focused on the two similar samples
since all the models rightly classified all the other test samples except these two. To have a
balanced representation of the values extracted from the experiments in charts presented
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in Figures 6–9, the absolute natural logarithm (Ln) of the values was computed and used
to plot the various charts. For BM2, a 90% precision, 91% recall, and a 91% F1-score for
class 4(Mg) were obtained, and 92%, 90%, and 91% for the site visitor class (see Figures 6
and 7). This indicates that BM2 rightfully classified 55 samples out of the 60 test samples
as managers and incorrectly classified five samples as site visitors. The model also rightly
classified 54 samples of site visitors and misclassified six samples as managers (see Table 1).
The BM3, on the other hand, yielded a 91% precision, 80% recall, and 85% F1 score for class
4(Mg) and 92%, 92%, and 92%, respectively, for the site visitor class. This indicates that
BM3 classified 55 samples appropriately as managers and misclassified five samples as
site visitors, while 51 were rightfully classified as site visitors and nine were misclassified
as managers.
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Figure 9. Results from the proposed models.

Figures 8 and 9 below represent the results of various metrics using the BM4 and the
proposed model. The BM4 produced a 92% precision, recall, and F1-score for class 4(Mg)
and the same scores for the site visitor class. This indicates that BM4 rightfully classified
55 samples from managers and site visitors and misclassified five samples each from both
classes. On the other hand, the proposed model produced 97% precision, 95% recall, and a
97% F1-score for class 4(Mg) and 96% precision, 98% recall, and a 97% F1-score for class
6(SV), indicating a superior performance compared to the custom-built model and the
individual contributing learning models. The proposed model misclassified only three
managers’ samples and two site visitors’ samples (see Figure 9).

During the experiments, the test accuracy and mean scores of the various studied
models were also observed (see Table 2). The accuracy of the custom model and the adopted
co-learner models ranges from 94% to 98%, with the custom-built model yielding the least
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accuracy, followed by the BM3, while BM2 and BM4 recorded the highest accuracy among
the adopted models. The proposed model produced an exceptional accuracy of 99% better
than the custom model and the other co-learner models. The custom benchmark model
produced a means square error score of 0.23, a mean square log error of 0.006, and an MCC
score of 0.94 compared to the introduced model, which produced a lower mean square
error of 0.04, MSLE of 0.001, and MCC of 0.99.

Table 2. Accuracy and mean matric results from all models.

Model Test Accuracy MSE MSLE MCC

Custom 0.94 0.23 0.006 0.94
BM1 0.97 0.13 0.004 0.96
BM2 0.98 0.09 0.003 0.97
BM3 0.96 0.14 0.004 0.96
BM4 0.98 0.08 0.002 0.98

Proposed 0.99 0.04 0.001 0.99

With a negligible performance loss, our quantized model reduced significantly from
61 M parameter weight to 4 M parameter weight and processing speed from 45 s to 0.01 s.
The deep quantization targets extremely latency-driven applications that run on embedded
devices. These devices require real-time inferencing, and our proposed method yields the
needed characteristics to function in real-time.

6. Discussion and Conclusions

For the smooth convergence of the constructed custom model, the various co-learning
and contributing models, and the actual proposed model, strategies such as hyperpa-
rameter optimization, batch normalization through implicit regularizations, learning rate
annealing, and aggressive dropouts for enhanced generalization process were judiciously
deployed in the various architectures used during the experiments. Table 2 above shows
the performance representation of the benchmarked custom, custom, and proposed mod-
els. The introduced model outperformed the custom model by gains in convergence
and accuracy from 0.94 to 0.99, which is highly significant in the object recognition and
classification domain.

Deep CNN architectures are affected by high variance during training and inferencing
due to their specific training data dependence. Thus, they are highly prone to overfitting,
which causes increased bias and generalization reduction. We checkmated this issue by
training different efficient models and obtaining a collection of diverse predictive models.
These were then unified to form a single efficient model capable of rapid and optimal object
classification. Various base-learning models were selected and experimented with during
the experimentation process to determine the best models for rapid and accurate object
feature learning. The models were then evaluated for efficiency, accuracy, and the best
combination to yield the proposed model. The results of the experiments were statistically
evaluated to determine the significant improvement in the trained models.

We also compared the proposed rapid and efficient model with other related models
in the literature. Our model yielded superior performance in terms of accuracy, efficiency,
and less complex architecture for the classification and identification of fine-grained macro-
level hardhats in complex settings (see Table 3). The introduced architecture uses few
learning parameters; thus, it is less computationally intensive, which is a critical factor to
consider during the model inference process and deployment in the embedded settings.
The proposed unified learning model achieved an accuracy of 99.01% and a mean square
error of 0.04, which are remarkable in the PPE recognition and classification domain.
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Table 3. Accuracy and mean matric results from all models.

Method MAP (Accuracy)

YoloV4 0.859
Centernet2 0.909
Swin-CMR 0.921

YoloV5 with PT 0.922
Proposed 0.99

The combination of several efficient deep learning architectures yielded a superior,
promising predictive and object identification performance that individual learning or
constituent models could not accomplish, as observed from the different experiments
conducted in this work. The proposed model architectural unification strategy, driven
by the ensemble learning, concept minimized the model variance problems through the
optimal combination of predictions from the multiple co-learning models, thereby reducing
the introduced model sensitivity to specified training algorithms and data. The performance
of the proposed unified model simulates an actual real-world situation with minimal
variance, reduced overfitting, and enhanced generalization, which led to the emergence of
an efficient and rapid processing model. The proposed model is considered to help develop
an industrial safety solution to detect the different types of hardhats in the industrial setting
to ensure the safety of personnel and other critical infrastructures. The model will be
extended to learn diverse safety vests and other safety apparel attributes for a robust and
more fine-grain safety PPE classification and macro-level identity recognition in other areas
such as disaster scene object, mapping, and classification and recognition.
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