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Due to the presence of noise in crowdsourced labels, label aggregation (LA) has become a standard procedure for post-

processing these labels. LA methods estimate true labels from crowdsourced labels by modeling worker quality. However,

most existing LA methods are iterative in nature. They require multiple passes through all crowdsourced labels, jointly

and iteratively updating true labels and worker qualities until a termination condition is met. As a result, these methods

are burdened with high space and time complexities, which restrict their applicability in scenarios where scalability and

online aggregation are essential. Furthermore, deining a suitable termination condition for iterative algorithms can be

challenging. In this paper, we view LA as a dynamic system and represent it as a Dynamic Bayesian Network. From this

dynamic model, we derive two lightweight and scalable algorithms: LAonepass and LAtwopass. These algorithms can eiciently

and efectively estimate worker qualities and true labels by traversing all labels at most twice, thereby eliminating the need

for explicit termination conditions and multiple traversals over the crowdsourced labels. Due to their dynamic nature, the

proposed algorithms are also capable of performing label aggregation online. We provide theoretical proof of the convergence

property of the proposed algorithms and bound the error of the estimated worker qualities. Furthermore, we analyze the space

and time complexities of our proposed algorithms, demonstrating their equivalence to those of majority voting. Through

experiments conducted on 20 real-world datasets, we demonstrate that our proposed algorithms can efectively and eiciently
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aggregate labels in both oline and online settings, even though they traverse all labels at most twice. The code is on

https://github.com/yyang318/LA_onepass.

CCS Concepts: · Information systems → Crowdsourcing; · Computing methodologies → Unsupervised learning; ·

Mathematics of computing → Bayesian networks.

Additional Key Words and Phrases: crowdsourcing, truth inference, online truth inference, Bayesian networks

1 INTRODUCTION

Machine learning tasks frequently necessitate training labels. Traditional methods of label collection, such as
seeking assistance from domain experts or data vendors, are often costly and time-intensive, thus failing to meet
the burgeoning demand for labels. In contrast, crowdsourcing emerges as a cost-efective and eicient method for
label acquisition [1, 3, 5, 20]. Crowdsourcing platforms, such as Amazon’s Mechanical Turk1 [21] and FigureEight
[10], provide a platform for label requesters to delegate labeling tasks to crowd workers. These crowd workers, in
return for a monetary reward, undertake the task of labeling. Nevertheless, despite the low-cost of crowdsourcing,
the labels acquired may be prone to errors as crowd workers, unlike experts, may label tasks incorrectly [25].
This results in crowdsourced labels typically being less accurate than those sourced from experts. To mitigate
these inaccuracies, it is common to gather multiple labels for each task from various workers, and subsequently
aggregate these labels [23].

Crowdsourced label aggregation (LA) is a process that aggregates labels from a crowd of workers and estimates
the true label for each task. LA is also referred to as truth inference in crowdsourcing [62] or truth discovery in
the database community [33]. LA is typically unsupervised due to the unavailability of ground-truth labels for
supervision. The simplest form of LA, Majority Voting (MV) [15], assumes that the label supported by the most
workers is the true label for each task. While this approach is straightforward and comes with low space and
time complexities Ð O(� +� ) and O(��), respectively, where� is the number of workers and� is the number
of tasks, it fails to consider the varying reliability of workers in a realistic crowdsourcing scenario [23].

In order to address the limitation of MV, recent LAmethods model worker qualities during the label aggregation
process. The underlying principle is that labels from high-quality workers are more likely to be accurate, thus
these labels should carry more weight in determining the true label for each task. According to this principle,
these LA algorithms jointly and iteratively estimate true labels and worker qualities until a certain convergence
condition is satisied [9, 27, 37, 57]. Empirical results have demonstrated the superiority of such LA methods over
MV in terms of accuracy [62].

However, despite their advantages, the iterative nature of most LA methods introduces two primary limitations.
Firstly, these methods need to load the entire dataset of crowdsourced labels into memory, resulting in a space
complexity of at least O(��). Secondly, they require multiple iterations over the entire dataset, leading to a
time complexity of at least O(���), where � represents the number of iterations necessary for the algorithm to
converge. These limitations highlight the necessity for more eicient and scalable LA methods.

The limitations of iterative LA methods pose signiicant challenges for their practical applications:
Scalability. Crowdsourced datasets can be considerably large. For instance, the ImageNet project employed

crowdsourced workers from Amazon Mechanical Turk to label and verify over 11 million images [29]. In our
experiments, we found that a recently developed iterative LA method EBCC [37], which has the second-best
overall mean accuracy, took about 4 hours to train a dataset (senti) with over 500K labels, while MV completed
in less than a second. Additionally, iterative LA methods like LAA [40] and TiReMGE [54] need to load all the
crowdsourced labels in memory, leading to memory exhaustion for large datasets. Hence, the development of LA
methods with low space and time complexities is highly desirable for scalability.

1https://www.mturk.com/
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Online Aggregation.Many crowdsourcing projects are continuous and can last for years. For example, the
eBird project2, started in 2002, crowdsources bird populations and species globally. With around 225 million
observations reported in 2022 alone [13], the accumulation of data challenges not only the scalability of LA
methods but also their ability to perform online label aggregation, i.e., LA can be executed continuously on the
latest data subset without loading the complete dataset, and aggregated labels can be discarded due to limited
storage or privacy concerns [8].

Termination Condition. Iterative algorithms require a termination condition to stop. However, setting this
condition is non-trivial. A loose condition may lead to non-convergence, hurting LA performance, whereas a
strict condition may result in unnecessary computations without improving LA’s performance.
Several attempts have been made to address the aforementioned limitations. In order to improve scalability,

methods such as IWMV [30] and BWA [34] employ simpliied, computationally eicient procedures for the
estimation of worker qualities and true labels. These methods have managed to enhance the eiciency of LA
algorithms to some degree. However, being iterative in nature, these methods still necessitate the loading of
all crowdsourced labels into memory to perform label aggregation. More recent developments include SBIC
[42] and BiLA [19], which were created speciically for online label aggregation. SBIC, however, is restricted to
decision-making tasks with only two classes. On the other hand, BiLA, being a neural network-based method,
demands substantial resources for label aggregation, thereby diminishing its scalability and eiciency. While a
small number of online aggregation methods, such as SBIC [42] and iCRH [36] do not require explicit termination
conditions, SBIC is constrained by its task limitations, and iCRH lacks theoretical assurances for worker quality
convergence. Thus, there is an immediate need for LA algorithms that are scalable, facilitate online aggregation,
do not require explicit termination conditions, and provide robust theoretical guarantees.

The identiied need inspires us to design an efective and eicient LA algorithm, named LAonepass. This algorithm
is scalable, capable of online label aggregation, and does not require a termination condition. This algorithm
addresses the three aforementioned limitations concurrently. Speciically, we assign each label a time-slice,
representing the index of the label’s task, giving both labels and tasks temporal attributes. We then view LA as
a dynamic system, with worker qualities evolving over time following the estimation of true labels. To model
this dynamic system, we utilize the Dynamic Bayesian network [28]. Worker qualities are treated as (unknown)
temporal variables evolving over time, while the (observed) crowdsourced labels and (unknown) true labels of
each task are modeled as non-temporal variables instantiated within one time-slice. During the estimation of
unknown variables at each time-slice, worker qualities can be eiciently estimated by Maximum A Posterior
(MAP), and the true label can be estimated by analytically solving a straightforward optimization problem.
This allows crowdsourced labels to be traversed only once, reducing both the space and time complexities to
O(� +� ) and O(��), respectively, matching the complexities of MV. We also provide proof of convergence
for the estimated worker quality and a rate of convergence. Importantly, even when the crowdsourced labels
are traversed only once, the error of the estimated worker quality can be bounded with high probability. Unlike
iterative algorithms, LAonepass terminates after all crowdsourced labels have been traversed once, removing the
need to set an explicit termination condition.
However, a drawback of the single traversal is that the true labels estimated earlier might not be accurate

since the worker quality estimates have not yet converged. To mitigate this issue, we develop LAtwopass, an
extension of LAonepass. It uses the (converged) worker quality estimates from LAonepass to re-estimate the true
labels by performing a weighted majority vote. Though LAtwopass traverses the crowdsourced labels twice, it
can generally improve aggregation accuracy. The overhead for LAtwopass is minimal compared to LAonepass, as
it does not re-estimate worker qualities during the second pass through the labels. Owing to their low space
and time complexities and the dynamic system’s nature, both LAonepass and LAtwopass can be conigured for

2www.ebird.org/
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online label aggregation without any algorithmic modiications. Beneiting from the advantages conferred by the
dynamic system, LAonepass and LAtwopass are distinguished as lightweight label aggregation algorithms, because
they exhibit the following shared characteristics:

• Eiciency: LAonepass and LAtwopass require only one or two passes over the entire crowdsourced labels,
respectively, ensuring eicient label aggregation. They eliminate the need for multiple repetitive iterations,
often required by other iterative LA algorithms, thereby simplifying the overall computational process.

• Online Label Aggregation: The ability to handle online label aggregation without requiring algorithmic
modiications further emphasizes the lightweight characteristics of LAonepass and LAtwopass. This allows
these algorithms to adapt to real-time changes and accommodate new crowdsourced labels seamlessly.

• Scalability: The design of the proposed dynamic system enables LAonepass and LAtwopass to handle large
datasets. Their eiciency does not degrade signiicantly with the increase in data volume, demonstrating
scalability - a critical feature of lightweight and online algorithms.

• Lower Time and Space Complexities: The time and space complexities of LAonepass and LAtwopass are on par
with Majority Voting, one of the simplest and lightest label aggregation methods. This further solidiies the
lightweight property of LAonepass and LAtwopass.

To summarize, we make the following contributions in this paper:

(1) We propose viewing crowdsourced label aggregation as a dynamic system, with task identiiers serving as
time-slices. Using a Dynamic Bayesian Network to model this system, we develop two label aggregation
algorithms, LAonepass and LAtwopass. These algorithms traverse all the labels once and twice, respectively.
Importantly, both LAonepass and LAtwopass aggregate labels without the need for explicit termination condi-
tions.

(2) We prove that the estimated worker qualities in LAonepass converge at a rate of 1/
√
� , where � is the number

of tasks for which true labels have been estimated. Furthermore, we show that the error in the estimated
worker quality can be bounded with a higher probability as � increases.

(3) We perform an analysis of the space and time complexities of LAonepass and LAtwopass. Our indings reveal
that these complexities are equal to those of the Majority Voting (MV) method and considerably lower than
those of iterative techniques.

(4) Owing to the dynamic nature of our system model, we show that LAonepass and LAtwopass can perform label
aggregation online without any additional algorithmic modiications.

(5) Extensive experiments are conducted on 20 real-world datasets to demonstrate the eiciency and efective-
ness of our proposed algorithms. When compared with state-of-the-art label aggregation (LA) methods
in both oline and online scenarios, our methods not only achieve comparable accuracy but also exhibit
superior eiciency. This conirms their practical applicability and efectiveness.

2 PROBLEM STATEMENT & RELATED WORK

In this section, we begin by formally deining the problem of Label Aggregation (LA). Subsequently, we review
related works relevant to this topic.

2.1 Problem Statement of Label Aggregation

In this paper, we consider a scenario where there are� tasks and� workers. Each task � has � mutually exclusive
classes, indexed from 1 to � , and its unknown true label �� is drawn from the set [�], which represents the
integers 1, . . . , � . Each task is labeled by the workers, and the label from worker � ∈ [�] for task � ∈ [� ] is
denoted as ��,� , where ��,� ∈ [�]. Each worker � is associated with an unknown quality variable�� , representing
the reliability of the worker’s labels. For ease of reference, we denote the complete set of crowdsourced labels as
X = {��,� |� ∈ [�], � ∈ [� ]}.

ACM Trans. Knowl. Discov. Data.
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The primary objective of this study is to aggregate X to estimate the true labelsY = {�̂� |� ∈ [� ]} for each task
as well as the worker qualities W = {�̂� |� ∈ [�]}. For the sake of simplicity, we assume that each worker labels
all tasks. However, our proposed algorithms can also accommodate situations where each worker labels only a
subset of tasks, efectively dealing with label sparsity.
It is important to highlight that this paper speciically concentrates on the single-truth LA problem, where

each task has only one true label. This stands in contrast to multi-truth LA methods, such as MCMLD [60].
Furthermore, our method is universal and solely relies on crowdsourced labels as input. This distinguishes our
method from other LA methods that incorporate features of workers or tasks into their inputs. For instance, ART
[57] integrates workers’ social networks into their aggregation model, and CLA [39] utilizes side information to
group tasks. However, obtaining such features can be challenging in crowdsourcing scenarios and may not always
be available in every crowdsourcing application. Additionally, we adhere to the traditional label aggregation
setting, where labels are aggregated locally on a single machine, distinguishing our approach from the setting
where labels can be aggregated in a decentralized manner [16]. The setting of the label aggregation problem
studied in this paper is summarized in comparison with other methods in Table 1.

Table 1. Label aggregation methods’ seetings and assumptions comparison

Method Number of true labels Input to the method Working environment

MCMLD [60] Multiple Labels Local
ART [57] Single Labels & social network structure Local
CLA [39] Single Labels & task features Local

Decentralized [16] Single Labels & decentralized source network Decentralized

Ours Single Labels Local

2.2 Related Work

Crowdsourcing, a problem-solving approach leveraging collective intelligence [12], has demonstrated signiicant
advantages in addressing many challenges that are intuitively understood by humans yet diicult for computers
to solve. These challenges span ields such as transportation [46], task assignment [48], recommender systems
[47], pandemic prevention [7], among others. In this paper, our focus is on scenarios wherein cost-efective
crowdsourced labels have been collected, necessitating the label aggregation algorithms to estimate the true
labels for each crowdsourced task. Therefore, in this section, we review prior work related to our study in the
ield of label aggregation.

2.2.1 Worker modeling. Active research works of LA focus on how to model worker qualities. The irst LA
method considering worker quality can be dated back to 1979 when Dawid and Skene proposed an algorithm,
commonly known as DS, to aggregate clinical diagnoses of doctors [9]. DS is classiied as the łconfusion matrixž
model in the literature, because it uses a � × � confusion matrix to capture the probabilities that a worker’s
label is generated conditioned on the task’s true label. A large number of LA methods are descendants of DS
[19, 27, 61]. For example, LFC [44] extends DS by adding priors to confusion matrices. EBCC [37] clusters the
tasks when estimating the confusion matrices.
Another commonly adopted worker quality model is łone-coinž model. One-coin model treats the quality of

each worker as a single parameter relecting the quality of worker’s labels. For example, ZC [11] models worker
quality as a value between 0 and 1, representing the probability of a worker’s label being correct. IWMV [30]
transforms such probability for estimating true labels, having a provable theoretical guarantee on the error rate.
There are also some one-coin models treating worker quality as a real number, where a higher value means the
worker’s labels are more likely to be true [32, 34].

ACM Trans. Knowl. Discov. Data.
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Beyondmodeling worker qualities and true labels, some works explore other characteristics of label aggregation.
For instance, Li et al. [38] propose three fairness-enhancing methods: Pre-TD, Post-TD, and FairTD. These
methods estimate worker qualities and biases iteratively and selectively remove bias from the labels during label
aggregation, striking an optimal balance between fairness and accuracy. Jiang et al. [22] propose a two-stage
incentive mechanism for crowdsourcing to incentivize workers to discover the true labels while addressing the
issue of copied labels, and introduce a label aggregation algorithm and a reverse auction mechanism to ensure
high accuracy and maximize social welfare.

2.2.2 Modeling techniques and solution framework. The Probabilistic Graphical Model (PGM) [28] is the most
prevalent technique employed to solve LA problems [18, 23, 27, 34, 51]. A PGM illustrates the conditional
dependencies between random variables. Most PGMs utilized in LA are generative, modeling the conditional
probability of a worker’s label given the unknown worker quality and true label.
Techniques other than PGMs are also in use. The optimization-based method [32, 45] directly constructs an

objective function that encapsulates the relationship between worker qualities and true labels. Ma et al. [41]
model the crowdsourced labels as a matrix and estimate worker qualities and true labels via matrix completion.
Methods employing neural networks, such as LAA [40], are also used in LA, modeling the non-linear relationship
among crowd labels, worker qualities, and true labels.

Recently, several methods have emerged that learn features to aid label aggregation. TiReMGE [54] learns the
features of workers and tasks from the task-worker interaction graph using a graph neural network and uses the
learned features to guide the estimation of worker qualities. TIRA [55] utilizes a hierarchical graph auto-encoder
and a vector initialization method based on worker reliabilities for label aggregation in crowdsourcing. TILCC
[53] uses CRH [32] to extract task features and subsequently applies these features to aggregate labels based on
clustering.
Regardless of the modeling techniques used, most LA algorithms inherently follow an iterative process [62].

Xiao and Wang also argue that most existing label aggregation algorithms can be uniied under one iterative
framework. They provide evidence that the unknown variables - worker qualities, and true labels converge if
these variables are estimated iteratively [56]. It is important to note that the iterative LA algorithms estimate true
labels and worker qualities by traversing the entire dataset multiple times, until a speciic termination condition
is met. This iterative nature constitutes the primary bottleneck in enhancing the time and space complexities of
iterative LA algorithms.
Online LA. Online LA has been explored in the database community, speciically in scenarios where labels

are continuous and passively collected from data sources such as the web. For instance, Li et al. delve into the
temporal relationships among true labels and web reliability, proposing an incremental truth inference framework
capable of dynamically updating true labels and web reliabilities [35]. Yang et al. develop a PGM-based truth
inference mechanism capable of incrementally estimating true labels, taking into account object correlations [58].
Yang et al. propose a method to dynamically update web reliability during the estimation of true labels over data
streams, enhancing the eiciency of truth inference algorithms [58]. More recently, Pang et al. [43] and Wang
et al. [50] independently develop privacy-preserving truth inference methods for protecting individual privacy
while estimating true labels over data streams.

The above-mentioned online LA methods primarily focus on the aggregation of numerical labels. However, in
the context of crowdsourcing applications, labels are typically categorical. Feng et al. [14] propose the INQUIRE
framework that incrementally updates its internal probabilistic worker and task models. However, their heuristic
combination of worker and task models does not guarantee the convergence of estimated worker qualities, thereby
impacting its overall performance. Li et al. [36] develop iCRH, an incremental version of CRH [32], for incremental
label aggregation. Nevertheless, iCRH also does not guarantee the convergence of its estimated worker qualities.
More recent works include SBIC [42] and BiLA [19], both developed for online label aggregation. SBIC leverages

ACM Trans. Knowl. Discov. Data.
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streaming variational inference [4] to update worker qualities and true labels and, like our proposed method, it
can aggregate labels online by traversing labels only once. However, SBIC is limited to the aggregation of labels
of tasks with only two classes. BiLA utilizes neural networks to represent its internal probability distributions
but requires multiple traversals of the present labels to update worker qualities, which is proven to be ineicient
in our experiments. In contrast, the algorithms we propose in this paper can aggregate labels of tasks with any
number of classes and require at most two traversals of all the crowdsourced labels, providing an accurate and
eicient means to aggregate labels online.

3 METHOD

In this section, we describe the proposed Dynamic Bayesian network (DBN) model for LA, and present LAonepass

algorithm derived from the proposed dynamic model.

3.1 The Dynamic Model

��,�

��,���
�

��

��−1
�

� ∈ [�]� ∈ [�]
time �time � − 1

(a) B→

��,1

��,1�1
�

�1

� ∈ [�]

�

�

time 1

(b) B1

Fig. 1. Proposed DBN model. The intra-time-slice edge is in red; the inter-time-slice edge is in blue.

We consider LA as a dynamic system that evolves over � time-slices, corresponding to the total number of
tasks. Here, the index � serves a dual purpose: it signiies the index of the task � and also represents the time-slice
or the state of the dynamic system. Consequently,� refers to the total number of tasks as well as the system’s life
span. At each time-slice � ∈ [� ], the system estimates the true label for task � . Each worker � has an associated
quality score�� ∈ [0, 1], representing the likelihood of their label being true. This score evolves over time, getting
updated after the estimation of �� until the system concludes at time-slice � .
This dynamic system can be modeled using a Dynamic Bayesian Network (DBN), where�� is considered as

a temporal variable evolving over time. For the sake of convenience, we introduce a superscript to the worker
quality ��

� to denote its state at time-slice � . Meanwhile, ��,� and �� are modeled as non-temporal variables,
instantiated within their own time-slices. The DBN can be efectively described using two Bayesian networks:
B→ and B1 as in Fig. 1. B→ is a 2-time-slice Bayesian network (2TBN) illustrating the relationship between
variables within a single time-slice and the evolution of variables across two consecutive time-slices. On the
other hand, B1 depicts the initial state of the system.

ACM Trans. Knowl. Discov. Data.



8 • Yang et al.

3.1.1 2TBN B→. In the 2TBN B→, there are two kinds of edges, namely, inter-time-slice and intra-time-slice
edges connecting the variables. The inter-time-slice edges connect variables ��

� , ��,� , and �� within time-slice
� , expressing their relationship through an auxiliary deterministic variable ��,� that indicates whether worker
� labeled task � correctly. Hence, ��,� = ✶(��,� = �� ), where ✶(·) is the indicator function. As the correctness of
worker �’s label is determined by��

� ∈ [0, 1], we model ��,� as a Bernoulli random variable with parameter��
� :

��,� ∼ ��� (��
� ), � (��,� |��

� ) = (��
� )��,� (1 −��

� )1−��,� . (1)

The intra-time-slice edge connects��−1
� and ��

� , depicting the evolution of a worker’s quality over time by

specifying the transition probability � (��
� |��−1

� ). We treat � (��
� |��−1

� ) as the posterior distribution of��−1
� after

observing the labels of task � − 1 and estimating its true label. In other words,��−1
� is the prior of��

� .

3.1.2 Initial state B1. B1 expresses the initial state of the dynamic system. The relation of variables is the same
as that of time-slice � in B→, except that it needs to specify the initial state of temporal variable�1

� . Given that
�� is the probability of worker � labeling tasks correctly, we model�� as a Beta random variable, and its initial
state�1

� corresponds to a Beta distribution with hyperparameters � and � :

�1
� ∼ ����(�, �), � (�1

� ) ∝ (�1
� )�−1 (1 −�1

� )�−1. (2)

3.2 Estimation

Given the model architecture, the joint probability of W� = {��
� |� ∈ [�]}, C� = {��,� |� ∈ [�]} and X� = {��,� |� ∈

[�]} within time-slice � can be factorized as

� (W� , C� ,X� , �� ) =
∏

�

� (��,� |��
� , ��,� , �� ) =

∏

�

(��
� )��,� (1 −��

� )1−��,� , (3)

and its log-likelihood function �� = log � (W� , C� ,X� , �� ) is

�� =

�︁

�=1

��,� log�
�
� + (1 − ��,� ) log(1 −��

� )

=

�︁

�=1

✶(��,� = �� ) log��
� + (1 − ✶(��,� = �� )) log(1 −��

� ).
(4)

We estimate the true label �� by maximizing �� , which can be easily solved via:

�̂� = argmax
�

{
�︁

�=1

��
� ✶(��,� = �) |� ∈ [�]}. (5)

Provided that ��−1
� is the prior of ��

� , and the DBN in Fig. 1 is a irst-order Markov model, the posterior
probability of��

� after observing ��,� and estimating �� is

� (��
� |��,� , ��,� , �� ,��−1

� ) ∝ � (��,� |��
� , ��,� , �� )� (��

� |��−1
� ). (6)

By the chain rule of probability, the above posterior probability can be expanded as:

� (��
� |��,� ,��−1

� ) ∝
�
∏

� ′=1

� (��,� ′ |�� ′
� )� (�1

� )

= (��
� )��,�+�−1 (1 −��

� )�−��,�+�−1,

(7)

where��,� =
∑�

� ′=1 ✶(��,� ′ = �̂� ′ ) is the number of tasks worker � has labeled correctly up to time-slice � , and � −��,�

is the number of tasks worker � has labeled incorrectly up to time-slice � . The variables ��,� and � encapsulate
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Algorithm 1 LAonepass

Input: Crowdsourced labels X, hyperparameters � and �
Output: Estimated true labels Y and estimated worker qualities W

1: Initialize qualities W = {�� |� ∈ [�]} by � and � .
2: for � ∈ [� ] do
3: Estimate true label �̂� by Equation (5);
4: for � ∈ [�] do
5: Update worker quality �̂�

� by Equation (8);
6: end for

7: end for

8: return Y = {�̂� |� ∈ [� ]}, W = {�̂�
� |� ∈ [�]}.

all the necessary information about the labeling history of worker � , and they are suicient statistics for the
worker quality��

� . Therefore, to estimate worker qualities at time � and the true label of task � , it’s not necessary
to store all the historical crowdsourced labels before time � . Instead, we just need to keep track of ��,� and � ,
which signiicantly reduces the memory requirements of the algorithm. This eicient use of information is a key
advantage of the LAonepass approach.
It can be observed that the posterior � (��

� |��,� ,��−1
� ) can be compactly written as � (��

� |��,� ). � (��
� |��,� ) ∼

����(��,� + �, � −��,� + �) is again a Beta distribution. Therefore, we can estimate��
� by Maximum a Posteriori

(MAP):

�̂�
� =

��,� + � − 1

� + � + � − 2
. (8)

The form of Equation (8) aligns with our expectations, encapsulating the estimated likelihood of worker �
accurately labeling tasks up to the time-slice � . This estimation is informed by prior beliefs denoted by � and � .

3.3 Algorithm Summary

The LA algorithm derived from the proposed Dynamic Bayesian Network (DBN) is summarized in Algorithm 1.
The algorithm commences with the initialization of worker qualities using the hyperparameters � and � (Line 1).
Further details regarding the initialization process will be discussed in Section 3.4. Once the worker qualities
are initialized, the algorithm proceeds to sequentially aggregate the crowdsourced labels (Lines 2-7). For each
task � , given the available crowdsourced labels, it estimates the true label �̂� (Line 3). Subsequently, based on the
estimated true label, the algorithm updates the qualities of the workers who provided labels for task � (Lines
4-6). The algorithm terminates when the true labels of all tasks are estimated, i.e., the execution of the for loop
in between Lines 2-7 is completed. In the end, the estimated true labels for each task and the estimated worker
qualities are returned. As the algorithm processes all the crowdsourced labels only once, we refer to it as LAonepass.

3.4 Hyperparameter Setings

Iterative methods like EBCC [37] and BWA [34] traditionally determine their hyperparameters by referencing
the results derived from Majority Voting (MV). This implies that their hyperparameters depend on the speciic
dataset under consideration. However, because LAonepass processes the entire dataset in one pass, using MV to
initialize the hyperparameters � and � is unfeasible. In this section, we will propose strategies for setting the
hyperparameters of our method, based on the commonly observed long-tail phenomenon in crowdsourcing.
The long-tail phenomenon in crowdsourcing refers to a situation where a signiicant proportion of workers

only contribute labels for a few tasks [31]. In such circumstances, it is beneicial to put more faith in workers
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who have labeled a larger number of tasks, as their worker quality estimates have a higher level of statistical
conidence [31]. However, it is important to remember that the worker quality estimate �̂�

� given in Equation (8)
is a point estimate and does not relect the conidence associated with the estimate. Moreover, since LAonepass

processes all labels in one pass, it does not have information about the total number of tasks each worker has
labeled at the start of the algorithm.
To circumvent this issue, we propose a pessimistic approach in setting the hyperparameters � and � with

low values. By choosing relatively low values for � and � , we ensure that the resultant worker quality estimate
�̂�
� is small at the initialization of the algorithm. Consequently, the true label estimate in Equation (5) behaves

more like the Majority Voting (MV) method. As the algorithm processes more tasks, the worker quality estimate
becomes more accurate. When a worker labels only a few tasks, the low value of �̂�

� creates a bias in the prior.
Conversely, if a worker labels a considerable number of tasks, the terms ��,� and � in Equation (8) dominate
over the hyperparameters � and � in the worker quality estimate �̂�

� . This mechanism allows the algorithm to
prioritize worker reliability based on the volume of tasks they have labeled efectively.

4 ANALYSES

In this section, we present theoretical proof to establish that (a) the estimated worker quality provided in Equation
(8) converges, and (b) the error in the estimated worker quality can be bounded. Additionally, we conduct an
analysis of the space and time complexities of LAonepass and compare them with those of iterative algorithms and
MV. Lastly, we discuss the termination conditions for our algorithm.

4.1 Convergence of Estimated Worker uality

We conduct an analysis on the convergence of the worker quality estimation provided in Equation (8), assuming
that the majority of workers are honest and do not deliberately mislabel tasks. This assumption has been
empirically veriied in previous studies [17, 59] and is further supported by our experimental results, which
indicate that the mean accuracy of the Majority Voting (MV) method exceeds 80%. By making this assumption,
we ensure that Equation (5) accurately estimates the true labels with high conidence [26]. With this premise, we
can establish the convergence of�� through the following theorem.

Theorem 1. Let �� (W) be the joint posterior probability of worker qualities at time-slice � , and �� (W) ≡
log �� (W):

�� (W) =
�︁

�=1

(��,� + � − 1) log��
�

+ (� −��,� + � − 1) log(1 −��
� ),

(9)

then W = {�̂�
� |� ∈ [�]} in Equation (8) converges to the minimizer W∗

� = argminW �� (W) at rate of � (1/
√
�).

Proof. We use Lemma 1 to prove the theorem.

Lemma 1. Let {�� (W), � = 1, 2, . . . } be a sequence of posterior probability density functions � (W|�� ) of random
vectors deined on [0, 1]� . Deine �� (W) ≡ log �� (W) as in Equation (9). Suppose for each � , there exists a strict

local maximum, W∗
� , of �� (W). Then the posterior distribution � (W|�� ) satisies asymptotic normality:

(−∇2�� (W∗
� ))1/2 (W −W∗

� )
�−→ � (0, 1) as � → ∞, (10)

where �� =
∑�

�=1��,� is the number of correctly labeled tasks by all workers up to time-slice � .

Proof. We use Theorem 2.1 in [6] to prove this lemma. Theorem 2.1 in [6] states if the following conditions
(P1-2 and C1-3) are satisied, the asymptotic normality property in Equation (10) holds.
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P1. ∇ log� (W∗
� |�� ) = 0.

P2. Σ� ≡ {−∇2 log � (W∗
� |�� )}−1 is positive deinite.

C1. łSteepnessž: as � → ∞, �2� → 0 where �2� is the largest eigenvalue of Σ� .
C2. łSmoothnessž: for any � > 0, there exists an integer � and � > 0 such that, for any � > � , and

W′ ∈ � (W∗
� ;�) = {|W′ −W∗

� | < �}, ∇2 log� (W′ |�� ) | satisies

� −�(�) ≤ ∇2 log � (W′ |�� ) |{∇2 log� (W∗
� |�� ) |}−1 ≤ � +�(�), (11)

where � denotes the identity matrix with an appropriate size and �(�) is the positive semi-deinite symmetric
matrix with the largest eigenvalue going to 0 as � → 0.

C3. łConcentrationž: for any � > 0,
∫

� (W;� ) � (W|�� )�W → 1 as � → ∞.

We will show the satisfaction of these conditions.
Proof of P1 and P2. SinceW∗

� is a local maximum of �� , the satisfaction of P1 is straightforward. The Hessian
of �� is

∇2�� (W∗
� ) = ����

(

− ��,� + � − 1

(�∗
� )2

− � −��,� + � − 1

(1 −�∗
� )2

)

�,
(12)

where ��,� is the number of correctly labeled tasks by worker � up to � . It can be observed that ∇2�� (W∗
� ) is

negative deinite because ∇2�� (W∗
� ) is a diagonal matrix whose diagonal entries are negative given reasonable

and small hyperparameters � and � . Therefore Σ� is positive deinite, and P2 satisies.
Proof of C1. As � → ∞, the diagonal entries of ∇2�� (W∗

� ) approach −∞. Hence the diagonal entries of Σ�
also approach 0. It implies all the eigenvalues of Σ� go to 0 as � → ∞. Therefore, C1 is satisied.

Proof of C2. C2 is straightforward because all the entries in ∇2�� (W) are continuous with respect to each��

in its domain.
Proof of C3. By setting ∇�� (W) = 0, we can easily ind (W∗

� )� has the form as given in Equation (8), which
is the mode of a posterior distribution ����(��,� + �, � −��,� + �). The variance of the posterior distribution is
(��,�+� ) (�−��,�+� )
(�+�+� )2 (�+�+�+1) . Because ��,� ≤ � , the denominator of the variance dominates the numerator. Therefore the

variance approaches 0 as � → ∞. This means �� (W|�� ) [W −W∗
� ] → 0. Therefore C3 satisies. □

The lemma shows the posterior distribution of worker quality converges as � → ∞, and it converges to the
minimizer W∗

� of �� (W).
From Lemma 1, we can take the expectation on the asymptotic distribution in Equation (10) and get

� [(−∇2�� (W∗
� ))1/2 (W −W∗

� )] → 0. (13)

It implies

�

��� (W|�� ) (W) −W∗
�

�

�

= � (1)
�

�(−∇2�� (W∗
� ))−1/2

�

�, (14)

where �� (W|�� ) (W) is the posterior mean of W at time-slice � . From Equation (12), we can see −∇2�� (W∗
� ) =

Θ(�). Therefore,
�

��� (W|�� ) (W) −W∗
�

�

�

= � (1/
√
�).

Moreover, the �̂�
� given by Equation (8) is the mode of posterior distribution � (��

� |�� ). Therefore we have

(
�

�Ŵ − �� (W|�� ) (W)
�

�)� =
�

��̂�
� − �� (�� |��,� ) (�� )

�

� (15)

Denote the two parameters of the posterior distribution � (�� |��,� ) as �� = ��,� + � and �� = � −��,� + � . The mode

and mean of the posterior can be written as ��−1
��+��−2 and ��

��+�� , respectively. Therefore, we can write out Equation
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(15) as

(
�

�Ŵ − �� (W|�� ) (W)
�

�

)

� =

�

�

�� − 1

�� + �� − 2
− ��

�� + ��
�

�

=

�

�

�� − ��
(�� + �� − 2) (�� + �� )

�

�

≤
�

�

1

(�� + �� − 2)
�

�

=

�

�

1

� + � + � − 2

�

�

= Θ(1/�) = � (1/
√
�).

(16)

Hence,
�

�Ŵ − �� (W|�� ) (W)
�

�

= � (1/
√
�). By triangle inequality:

�

�Ŵ −W∗
�

�

� ≤
�

�Ŵ − �� (W|�� ) (W)
�

� +
�

��� (W|�� ) (W) −W∗
�

�

�. (17)

We have shown that
�

��� (W|�� ) (W) − W∗
�

�

�

= � (1/
√
�) and

�

�Ŵ − �� (W|�� ) (W
)

| = � (1/
√
�), so

�

�Ŵ − W∗
�

�

�

=

� (1/
√
�), which proves the theorem. □

This theorem demonstrates that the worker quality estimated by Equation (8) converges at a rate of � (1/
√
�),

even when traversing all the labels only once. Additionally, the corollary below provides an upper bound on the
error in the worker quality estimation.

Corollary 1. � (
�

�W −W∗
�

�

� ≤ �/
√
�) ≥ Φ(�) − Φ(−�) where � is a positive real value, and Φ(·) is the CDF of

standard Normal distribution.

Proof. From Equation (10) and given the fact that W∗
� is a vector of scalars, we can derive

Ŵ �−→ � (W∗
� , Σ� ), (18)

where Σ� ≡ {−∇2 log� (W∗
� |�� )}−1 = {−∇2�� (W∗

� )}−1 as deined in Lemma 1. By transformation of Normal
distribution, we have

� (
�

�Ŵ −W∗
�

�

� ≤ �Σ1/2
� ) = Φ(�) − Φ(−�), (19)

where � is a positive real number and Φ(·) is the CDF of standard Normal distribution. Since Σ
1/2
� is the standard

deviation of the Normal distribution in Equation (18), � (
�

�Ŵ −W∗
�

�

� ≤ �Σ1/2
� ) can be interpreted as the probability

that Ŵ falls within � standard deviations away from W∗
� .

From Equation (12), we have
(

∇2�� (W∗
� )
)

� ≤ −� , which implies that (Σ� )1/2� ≤ 1/
√
� . Therefore,

� (
�

�Ŵ −W∗
�

�

� ≤ �Σ1/2
� ) ≤ � (

�

�Ŵ −W∗
�

�

� ≤ �/
√
�), (20)

which implies � (
�

�Ŵ −W∗
�

�

� ≤ �/
√
�) ≥ Φ(�) − Φ(−�). □

Corollary 1 establishes that the error in the estimated worker quality can be more tightly bounded with a
higher probability as the value of � increases. We will also empirically verify it in the experiment.

4.2 Space and Time Complexities

We analyze and compare the space and time complexities of LAonepass, the iterative LA algorithms and Majority
Voting (MV). The results of this comparison are summarized in Table 2.
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Table 2. Space and time complexities comparison

MV LAonepass Iterative LA algorithms

Space Complexity O(� +� ) O(� +� ) O(��)
Time Complexity O(��) O(��) O(���)

4.2.1 Space complexity (SC). In Algorithm 1, LAonepass requires initializingW for all the workers, which takes
up O(�) space. It also reserves O(� ) space for storing the estimated true labels. The space complexity (SC)
of caching hyperparameters is O(1). Additionally, the algorithm needs to maintain ��,� and � for each worker,
requiring O(�) space. At each time � , it needs to load the labels of task � , which is at most� . After the true label
of task � is estimated, the labels of task � can be discarded. Therefore, the SC of loading/storing labels is O(�).
The overall space complexity of LAonepass is O(� +� ).

Regarding the iterative LA algorithms [62], the space complexity (SC) of caching worker qualities and true
labels is the same as that of LAonepass. However, the iterative LA algorithms need to load the entire dataset,
requiring O(��) space. Therefore, the overall space complexity of the iterative LA algorithms is O(��).

As for MV, it requires reserving space for storing the estimated true labels, which amounts to O(� ). Additionally,
for each task, it needs to load the corresponding labels, requiring O(�) space. Thus, the overall space complexity
of MV is O(� +� ).

4.2.2 Time complexity (TC) . As demonstrated in Algorithm 1, LAonepass performs the estimation of one true label
and updates all worker qualities at each time-slice. Estimating one true label involves aggregating a maximum of
� labels, resulting in a time complexity of O(�). Updating one worker quality is done in O(1) time, as shown
in Equation (8). Overall, it takes O(�) to update all worker qualities in one time-slice. Considering a total of �
tasks, the overall time complexity of LAonepass is O(��).

Regarding the iterative LA algorithms [62], all the estimated true labels and worker qualities need to be updated
in each iteration, with a time complexity of O(��) per iteration, which is equivalent to the time complexity of
LAonepass. Assuming the algorithms take � iterations to converge, the overall time complexity of the iterative LA
algorithms is O(���) [36].

For MV, it estimates one true label by aggregating a maximum of� labels, taking O(�) time. With a total of
� tasks, the overall time complexity is O(��).

In summary, both the space complexity (SC) and time complexity (TC) of LAonepass are equivalent to those
of MV. The lower SC and TC of LAonepass make it more scalable and practical for aggregating labels in very
large-scale datasets.

Remark 1. The time complexity (TC) analysis in Section 4.2.2 considers the worst-case scenario where each worker

labels all the tasks. However, in practice, it is more realistic to assume that each worker labels only a subset of tasks.

In such cases, we can replace � with �̄ in the "Time" row of Table 2, where �̄ represents the average number of tasks

labeled by each worker. Similarly, the space complexity (SC) of the iterative LA algorithms in Table 2 is O(�̄�) if
each worker only labels a subset of tasks. This adjustment relects the actual resource requirements when each worker

only labels a subset of tasks.

Remark 2. The analyzed space complexity (SC) and time complexity (TC) presented in Table 2 are based on the

general iterative LA algorithms’ framework [62]. They serve as lower bounds for the SC and TC of iterative methods.

However, it is important to note that depending on the speciic models and implementations of iterative methods, the

actual SC and TC can be higher than the values provided in the table.

For instance, consider the LAA model [40], which is a neural network-based label aggregation approach. LAA takes

the "one-hot code" of crowdsourced labels as input, resulting in a higher SC of up to O(���). Another example is the
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BWA model [34], which can only aggregate labels when � = 2. In its multi-class extension where � > 2, BWA adopts

an "one-versus-all" classiier approach, which requires running its base model � times. Consequently, the TC of BWA

can reach up to O(����).
Therefore, it is important to consider the speciic characteristics and models of iterative methods when assessing

their SC and TC, as they can deviate from the general framework and exhibit diferent resource requirements.

4.3 Analysis of Termination Condition

As outlined in Algorithm 1, LAonepass traverses all the labels exactly once and terminates when each label has
been processed. Therefore, the termination condition of LAonepass is implicit, ending the process once all the
labels have been processed once. This contrasts the iterative label aggregation algorithms , which require an
explicit termination condition to be set.

Compared to the explicit termination condition in iterative LA methods, the implicit termination condition of
LAonepass ofers several advantages. Firstly, explicitly setting the termination condition to be neither too loose
nor too strict can be detrimental to the performance of iterative algorithms. A loose termination condition may
cause premature termination before accurate estimation of worker qualities and true labels, thus compromising
the performance of the LA algorithm. Conversely, a strict termination condition may prolong the iterative
process unnecessarily. The additional iterations resulting from a strict termination condition may not improve
the LA’s performance but instead waste computational power and delay the completion of label aggregation. In
contrast, the implicit termination condition of LAonepass eliminates the need for explicitly deining the termination
condition.

Secondly, using the implicit termination condition is an inherent property of the dynamic model and estimation
procedures described in Section 3.1 and Section 3.2, respectively. This enables LAonepass to aggregate labels
more eiciently than the iterative algorithm. The update procedures in Algorithm 1 can be viewed as stochastic
operations, where each iteration estimates the true label for one task and updates the qualities of workers who
provided labels for that task. Consequently, as the algorithm estimates more true labels, the estimated worker
qualities become more accurate. Moreover, LAonepass terminates when each task’s true label is estimated only
once, further enhancing its eiciency compared to the iterative LA algorithms.
However, there is a downside to traversing all the labels only once and relying on the implicit termination

condition. LAonepass estimates the true labels one by one as it traverses all the labels only once. When the algorithm
aggregates more labels, the estimated worker qualities converge, and the estimated true labels become more
accurate. However, this poses a challenge: the true labels estimated early in the process may not be accurate
because the estimated worker qualities are yet to converge. To address this issue, we develop LAtwopass, which
will be discussed in detail in Section 5.1.

5 EXTENSIONS

In this section, we introduce two extensions. The irst extension can improve the accuracy of LAonepass by
traversing the crowdsourced labels again. The second extension describes how the proposed algorithms aggregate
labels online.

5.1 Two Pass Algorithm

As discussed in Section 4.3, the issue of inaccurate early estimates of true labels arises due to the convergence status
of worker qualities. To solve this problem, we develop LAtwopass, a straightforward extension of LAonepass that
involves a second traversal of the labels. In LAtwopass, the converged worker qualities obtained from LAonepass are
utilized to perform weighted majority voting (WMV) during the second traversal, resulting in the re-estimation of
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true labels. We have chosen to employ WMV, as depicted in Equation (21), due to its proven theoretical guarantee
[30].

�� = ��̂� − 1, �̂� = argmax
�

{
�︁

�=1

��✶(��,� = �) |� ∈ [�]
}

. (21)

The re-estimation of true labels in LAtwopass incurs little overhead compared to LAonepass, as it does not involve
the estimation of worker qualities during the second traversal. Consequently, the second pass of LAtwopass can be
executed as eiciently as MV, while maintaining the same space complexity (SC) and time complexity (TC) as
LAonepass. By leveraging the converged worker qualities from the irst pass, LAtwopass enhances the accuracy of
true label estimation without introducing signiicant computational burden.

5.2 Online Aggregation

Since we model LA as a dynamic system, both LAonepass and LAtwopass can naturally be conigured to aggregate
labels online. This is particularly useful when labels are received sequentially in chunks, where each chunk
contains labels for a few tasks. In fact, the proposed algorithms can handle the extreme case where each chunk
only contains labels for a single task.
In the online aggregation setting, LAonepass estimates the worker qualities and true labels for the tasks in the

current chunk. On the other hand, LAtwopass utilizes the worker qualities estimated by LAonepass to re-estimate
the true labels within the same chunk. Once the true labels in the current chunk are estimated, the labels within
that chunk can be discarded.
It’s worth noting that the information regarding worker qualities is retained in the posterior worker quality

distributions, which are then used to estimate the true labels in the subsequent chunk. As a result, both LAonepass

and LAtwopass can efectively aggregate labels online without the need to revisit historical labels.

Remark 3. If labels are aggregated online, there could be an ininite number of tasks arriving over time. However,

if we assume there are a inite number of workers, the space complexity (Space) of both MV and LAonepass (as shown

in Table 2) becomes O(∞) due to the analyses conducted in Section 4.2, which were based on an oline scenario

where all the estimated true labels were stored. Notably, neither MV nor LAonepass requires the estimated true label

and crowdsourced labels of a task at time-slice � to estimate the true label of a task at time-slice � + 1. Thus, if we can
discard the estimated true label after it has been computed, the space complexity of both MV and LAonepass can be

reduced to O(�) even when there is an ininite number of tasks. Similarly, the time complexity (TC) of both MV and

LAonepass for estimating one true label at time-slice � is O(�). The same analyses of time and space complexity also

apply to LAtwopass.

6 EXPERIMENTS

In this section, we provide experimental results to evaluate the performance of LAonepass and LAtwopass. We
conduct evaluations in both oline and online settings. The results from the oline and online experiments
are reported and analyzed in Sections 6.2 and 6.3, respectively. In the oline setting, all labels for each dataset
are fed into the algorithm in one pass. On the contrary, in the online setting, the labels from each dataset
are divided into chunks, and these chunks are fed sequentially into the algorithms. The code is on https:
//github.com/yyang318/LA_onepass.
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Table 3. Datasets statistics.

Dataset #Tasks #Workers #Classes #Label #Tasks with true labels

Single Choice Tasks

senti 98980 1960 5 569282 1000
fact 42624 57 3 214960 576
CF 300 461 5 1720 300

CF_amt 300 110 5 6025 300
MS 700 44 10 2945 700
dog 807 109 4 8070 807
face 584 27 4 5242 584
adult 11040 825 4 89948 333
mill 1891 37332 4 214658 1891
web 2665 177 5 15567 2653

Decision Making Tasks

SP 4999 203 2 27746 4999
SP_amt 500 143 2 10000 500
ZC_all 2040 78 2 20372 2040
ZC_in 2040 25 2 10626 2040
ZC_us 2040 74 2 11271 2040
prod 8315 176 2 24945 8315
tweet 1000 85 2 20000 1000
bird 108 39 2 4212 108
trec 19033 762 2 88385 2275
rte 800 164 2 8000 800

6.1 Experiment Setup

6.1.1 Methods. In the oline setting, the methods for comparison include MV, DS [9], LFC [44], IWMV [30],
EBCC [37], BWA [34], LAA [40], ZC [11], TiReMGE [54] and TILCC [53]. All the methods for comparison except
MV are iterative methods, which require loading all the crowdsourced labels to perform LA.

In the online setting, we use MV, iCRH [36] and two recent methods BiLA [19] and SBIC [42] for comparison.
They all have the ability to perform LA online without revisiting historical data. Descriptions of these methods
have been discussed in Section 2.2.

6.1.2 Datasets. We evaluate our methods using 20 publicly available real-world datasets. These datasets were
sourced from ive diferent collections [2, 24, 49, 61, 62], and encompass a broad spectrum of tasks such as
sentiment analysis, entity resolution, face recognition, and quiz answering. The dataset sizes range from 1,720 to
569,282 entries. According to the taxonomy described in [62], the tasks can be classiied as either single-choice
tasks (� > 2) or decision-making tasks (� = 2). The dataset statistics are summarized in Table 3. These datasets
are frequently used to evaluate label aggregation methods. For instance, 19 of these datasets were used in BWA
and 17 in EBCC. Please note that the column labeled #Tasks with true labels in Table 3 denotes the number of
ground-truth labels available in each dataset. These ground-truth labels are used solely for evaluation purposes,
and not as input for label aggregation algorithms.

6.1.3 Termination condition. In the oline setting, all comparison methods, except MV, are iterative and require
a termination condition to stop iterations. We adopt the following termination conditions:

• For DS, LFC, ZC, and IWMV, we utilize the condition used in [62], which halts the algorithms after 20
iterations.
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• For EBCC and BWA, we use the condition provided in the authors’ code. It terminates the algorithms
when the probabilities of each task’s classes being true, between two successive iterations, are less than a
given threshold. Empirically, we ind that EBCC and BWA halt after an average of 113.1 and 36.8 iterations,
respectively.

• For LAA and TiReMGE, they cease after 150 epochs according to the authors’ code.
• For TILCC, the algorithm terminates when the learned clusters between two consecutive iterations remain
the same. Empirically, we observe that TILCC stops after an average of 15.5 iterations.

• For BiLA, it runs 20 epochs at each online chunk according to the authors’ code.

6.1.4 Metrics. We employ accuracy as a metric to assess the performance of an algorithm. Accuracy is deined
as the ratio of correctly estimated true labels to the total number of tasks. The eiciency of a method is evaluated
by its runtime, measured in seconds.

6.1.5 Hyperparameters. As per the recommendations outlined in Section 3.4, we set � = 2 and � = 2 for all
datasets. The efects of these hyperparameter selections will be empirically validated in Section 6.2.4.

6.1.6 Randomness. The outcomes of the algorithms can be inluenced by the inherent randomness present in
their executions. The sources of such randomness can be categorized as follows:

Draws: All the methods estimate true labels by comparing the trustworthiness score of each task’s classes, as
depicted in the in-bracket term of Equation (5). In cases where the trustworthiness scores of some classes are
tied, a class is randomly chosen from those with the highest trustworthiness scores to assign the true label.

TaskOrder: LAonepass and LAtwopass estimate true labels sequentially, and in the online setting, all the algorithms
estimate true labels in sequential chunks. Consequently, the task order can afect the algorithms’ performance.
To mitigate the impact of this randomness, we run all the methods 20 times for each dataset and report the

average accuracies in both oline and online settings. For the online evaluation, we shule the order of tasks in
each run. When we evaluate the performance of LAonepass and LAtwopass oline, we also shule the task order
because they estimate true labels sequentially. In the case of EBCC, we run the algorithm 40 times with random
initialization and report the highest accuracy with the best ELBO (Evidence Lower BOund), in line with the code
implemented by the authors of EBCC.

6.1.7 Implementation and experimental environment. The experiments are executed on an AMD 5900 CPU with
32GB RAM. To ensure a fair comparison, we adopt the implementation style in [62] and use pure Python (standard
packages) to implement MV, LAonepass, LAtwopass, MV, DS, LFC, ZC, EBCC, BWA, TILCC, iCRH, and SBIC. As
BiLA, LAA, and TiReMGE are neural network-based models and rely on backpropagation for training, we use the
codes provided by their authors, which are implemented in Tensorlow and Python, for these experiments.

6.2 Ofline Experimental Results

6.2.1 Accuracy results. The average accuracies of each method across 20 datasets are summarized in Table 4. We
found that the memory requirements for LAA for the senti and mill datasets, as well as TiReMGE for the senti
dataset, exceeded the memory capacity of our machine (32GB). Therefore, we omitted the experiments for these
models.
From Table 4, irstly, it can be observed that LAtwopass and LAonepass rank irst and fourth respectively, out

of all the methods in terms of overall mean accuracy. This indicates the eicacy of our proposed algorithms in
estimating true labels, even though they only traverse all labels at most twice.
Secondly, LAtwopass and LAonepass perform exceptionally well for single-choice tasks, ranking within the top

three of all methods. However, they do not perform as well in decision-making tasks. Upon analysis, we ind
that DS, LFC, and EBCC, which belong to the confusion matrix based LA methods, achieve high accuracies on
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Table 4. Results for ofline accuracy. The final three rows provide a summary of mean accuracy across 10 single-choice tasks,

10 decision-making tasks, and all 20 datasets respectively.

MV DS LFC IWMV EBCC BWA LAA ZC TiReMGE TILCC LAonepass LAtwopass

senti 0.8832 0.8240 0.8180 0.8905 0.8400 0.8900 - 0.8890 0.8925 0.8104 0.8916 0.8921

fact 0.9016 0.8507 0.8611 0.9010 0.8915 0.8872 0.8960 0.9010 0.9025 0.8594 0.9010 0.9010

CF 0.8832 0.7967 0.8167 0.8805 0.8833 0.8933 0.8548 0.8800 0.8808 0.8787 0.8827 0.8830

CF_amt 0.8535 0.8567 0.8367 0.8567 0.8633 0.8600 0.8483 0.8533 0.8447 0.8038 0.8570 0.8563

MS 0.7023 0.7643 0.7743 0.7986 0.7871 0.7857 0.6903 0.7971 0.7148 0.7951 0.7936 0.7960

face 0.6381 0.6404 0.6404 0.6301 0.6336 0.6182 0.6509 0.6284 0.6330 0.5993 0.6315 0.6300

adult 0.7581 0.7447 0.7628 0.7658 0.7477 0.7417 0.6727 0.7219 0.7511 0.7940 0.7622 0.7655

dog 0.8229 0.8426 0.8426 0.8297 0.8401 0.8315 0.8364 0.8302 0.8107 0.8204 0.8317 0.8310

web 0.7298 0.8255 0.8326 0.8450 0.7441 0.8225 0.8420 0.8398 0.5872 0.4069 0.8138 0.8370

mill 0.9050 0.9062 0.9214 0.9060 0.7478 0.9318 - 0.9032 - 0.9040 0.9135 0.9135

SP 0.8865 0.9148 0.9148 0.9049 0.9152 0.9170 0.8794 0.9166 0.8857 0.8967 0.8948 0.9032

SP_amt 0.9425 0.9440 0.9440 0.9448 0.9440 0.9460 0.9440 0.9460 0.9433 0.9436 0.9444 0.9444

ZC_all 0.8312 0.7926 0.7922 0.8342 0.8642 0.8353 0.7754 0.8299 0.8328 0.7832 0.8358 0.8432

ZC_in 0.7406 0.7608 0.7598 0.7490 0.7755 0.7652 0.6703 0.7725 0.7779 0.7182 0.7442 0.7488

ZC_us 0.8613 0.8211 0.8211 0.8706 0.9123 0.8868 0.8103 0.8578 0.8679 0.7784 0.8627 0.8687

product 0.8966 0.9366 0.9373 0.9274 0.9349 0.9194 0.8449 0.9280 0.8966 0.8809 0.9078 0.9257

tweet 0.9321 0.9600 0.9600 0.9476 0.9610 0.9560 0.9569 0.9510 0.9353 0.9550 0.9510 0.9486

bird 0.7593 0.8796 0.8981 0.7222 0.8611 0.7593 0.8847 0.7222 0.5556 0.8426 0.7611 0.7519

rte 0.8966 0.9275 0.9275 0.9283 0.9313 0.9275 0.9172 0.9250 0.9162 0.9209 0.9215 0.9279

trec 0.6524 0.7046 0.7024 0.5912 0.7037 0.6044 0.5832 0.5697 0.6455 0.7016 0.6433 0.6323

mean

single choice
0.8078 0.8052 0.8107 0.8304 0.7979 0.8262 0.7864 0.8244 0.7797 0.7672 0.8279 0.8305

mean

decision making
0.8399 0.8642 0.8657 0.8420 0.8803 0.8517 0.8266 0.8419 0.8257 0.8421 0.8467 0.8495

mean

overall
0.8238 0.8347 0.8382 0.8362 0.8391 0.8389 0.8088 0.8331 0.8039 0.8047 0.8373 0.8400

the bird and trec datasets because the workers in these datasets exhibit signiicant variability among classes.
Consequently, these methods substantially outperform others on these two datasets, which boost their mean
accuracies for decision-making tasks. In the case of single-choice tasks, the confusion matrix methods model the
quality of each worker using a matrix with at least �2 − � free parameters. When � is large, there may not be
suicient labels to estimate the parameters accurately. Hence, the confusion matrix methods are less efective
than the one-coin methods, including IWMV, BWA, ZC, and our proposed methods, for single-choice tasks.
Thirdly, the mean accuracies of LAA, TiReMGE, and TILCC are even worse than MV. LAA uses a neural

network (variational auto-encoder) to learn the non-linear relationship between workers and tasks. However,
LAA’s objective may be too aggressive to be generalizable. TiReMGE and TILCC are recent methods that learn
features from crowdsourced labels while performing LA. Although TiReMGE achieve the best accuracy on senti
and fact, and TILCC outperforms other methods on the adult dataset, their feature extraction techniques are not
robust, limiting their generalizability to a wide range of crowdsourcing tasks.
Lastly, it can be observed that there is no single method with best performance across all the datasets. As

illustrated in Fig. 2, if we count the number of times a method ranks within the top three among all datasets,
EBCC emerges as the winner. However, EBCC is unstable as it performs signiicantly worse on the mill dataset
compared to other methods. The mill dataset is a quiz dataset where each task’s class represents a choice, and the
meanings of the choices vary across tasks. In this case, EBCC incorrectly clusters tasks based on workers’ labels.
In contrast, the accuracies of LAtwopass and LAonepass never rank in the bottom three among all the methods,
demonstrating the stability and robustness of our methods.
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Fig. 2. Number of times each method ranks among the top three or botom three for each dataset in terms of accuracy.

Table 5. One-sided Wilcoxon signed rank test results

Overall Decision Making Single Choice

Method z-statistics sig. level p-value z-statistics sig. level p-value z-statistics sig. level p-value

DS 133 0.1559 41 0.0967 29 0.4609
LFC 136 0.1305 42 0.0801 30 0.4229

IMWV 163 * 0.0200 36 0.2158 45 0.0654

EBCC 162 * 0.0181 55 ** 0.0010 26 0.5771

BWA 164 * 0.0133 44 0.0577 37 0.1875

LAA 66 0.8036 18 0.8389 17 0.5781

ZC 127.5 0.2152 32.5 0.3477 30 0.4229

TiReMGE 88 0.6160 34 0.2783 15 0.8203
TILCC 85 0.7738 32 0.3477 13 0.9346

LAonepass 182 ** 0.0014 48 * 0.0186 47 * 0.0244

LAtwopass 177 ** 0.0028 45 * 0.0420 46.5 * 0.0322

6.2.2 Comparison to MV. The Majority Vote (MV) is a simple method for LA and is often used as a baseline
to evaluate the performance of more complex LA methods. In this section, we conduct a one-sided Wilcoxon
signed-rank test [52] on each method versus MV based on each method’s accuracies on the datasets. The results
from the Wilcoxon test determine whether each method is signiicantly more accurate than MV and to what
extent. We use two signiicance levels: p-value thresholds of 0.01(**) and 0.05(*). Z-statistics are computed during
the test to derive the p-values.
The results are summarized in Table 5. From Table 5, we observe that both LAtwopass and LAonepass reach the

** signiicance level when the test is performed over all datasets. Furthermore, these two methods are the only
ones reaching the * signiicance level when tests are performed over all datasets, decision-making datasets, and
single-choice datasets. This provides statistical evidence that LAtwopass and LAonepass perform better than MV in
terms of accuracy.
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Fig. 3. Ofline Runtime Results. The methods in the legend are sorted descendingly based on their mean runtime.

It should be noted that due to the small sample size (the number of datasets) in the test, the results of the
Wilcoxon test may not be entirely accurate. However, we consider them complementary to the accuracy results
in Table 5, illustrating the improvements of our methods compared to MV.

6.2.3 Runtime results. Figure 3 depicts the average runtime results of the methods performed across all datasets.
Given that MV does not estimate worker qualities, it can be regarded as the lower bound for the runtime of
LA methods. From the igure, it is evident that LAonepass ranks second in terms of runtime among all methods,
being very close to the most eicient method, MV. LAtwopass ranks third, adding only a minimal computational
overhead to LAonepass. Compared to the most eicient iterative method, LAonepass is still more than 10 times faster.
Notably, even though EBCC has the second highest overall mean accuracy among all methods and signiicantly
outperforms others in decision making tasks, it is extraordinarily ineicient, being several orders of magnitude
slower than LAonepass and LAtwopass. The high eiciency of LAonepass and LAtwopass makes them scalable and
practical for aggregating very large-scale datasets.

6.2.4 Varying hyperparameters. Fig. 4 presents the accuracies of the proposed methods initialized with diferent
hyperparameters. Both � and � are varied from (2, 2) to (6, 6), resulting in 25 unique initial settings. From Fig.
4, it can be observed that the gaps between the best and worst accuracies of LAtwopass and LAonepass initialized
by diferent hyperparameters are approximately 0.002 and 0.003, respectively. This reveals that the proposed
methods are not overly sensitive to hyperparameters, which is in stark contrast to many iterative algorithms that
demand careful hyperparameter tuning. For instance, EBCC requires careful adjustment of 6 hyperparameters to
achieve the reported accuracies.

Fig. 4 also demonstrates that our methods perform marginally better when � ≤ � . This aligns with our analysis
in Section 3.4 that suggests a pessimistic hyperparameter setting is beneicial. It’s noteworthy that the accuracies
exhibit a downward trend as � and � increase. This is due to the fact that larger � and � values correspond to
stronger priors, leading the estimated worker quality in Equation (8) to be largely inluenced by the prior rather
than the empirical statistics ��,� and � .

6.2.5 Worker uality Convergence Study. Two simulations are conducted to verify the convergence claims made
in Section 4.1. In the irst simulation, 20 workers are generated, each with the same true worker quality of 0.6.
These workers label 50 tasks, each with 3 classes, and their labels are produced based on their worker qualities.
The generated labels are then fed into LAonepass to estimate worker qualities. The results are shown in Fig. 5. In
Fig. 5, the red line signiies the true worker quality. The green traces represent the evolution of the estimated
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Fig. 4. Accuracies of the proposed methods under diferent hyperparameters. (Let) LAtwopass. (Right) LAonepass.

0 10 20 30 40 50
Task index

0.0

0.2

0.4

0.6

0.8

1.0

W
or

ke
r q

ua
lit

y

true w = 0.6
estimated w

bound = 1
bound = 2

Fig. 5. First worker quality convergence study experimental result. All the true worker qualities are set to 0.6.

worker qualities. The blue and orange curves, computed by setting � = 1, 2 in Corollary (1), denote the error
bounds, which restrict the error with at least 67% and 95% probabilities, respectively.
In the second simulation, 20 workers are generated again, but this time their worker qualities are sampled

from the range [0.4, 0.7]. The other settings are consistent with the irst simulation. The results of the second
simulation are depicted in Fig. 6. From Fig. 5 and Fig. 6, it can be seen that the estimated worker qualities converge
to their true values, irrespective of whether all the workers share the same quality or not. Also, the estimation
errors can be bounded with a high probability. These results provide empirical validation for the assertions made
in Section 4.1.

6.3 Online Experimental Results

In this section, we discuss the results of online label aggregation experiments. Adhering to the experimental
approach outlined in [19], we partition the tasks from each dataset into ten equal parts (chunks) and report the
accuracy up to each chunk for every method. It is worth noting that only partial ground truth labels are available
for evaluation in certain datasets. If we randomly divided the tasks into ten chunks without accounting for this
restriction, some tasks in speciic chunks might lack ground truth labels for evaluation. To circumvent this issue,
we distribute tasks with and without ground truth labels randomly across the ten chunks, ensuring each chunk
contains a subset of tasks with ground truth labels for evaluation.

Fig. 7 displays the accuracies averaged over 20 experimental runs for each dataset. The average accuracies and
runtimes for single-choice tasks and decision-making tasks are depicted in Fig. 8 (a) and (b), respectively.
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Fig. 6. Second worker quality convergence study experimental result. The true worker qualities are sampled in the interval

[0.4, 0.7].
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Fig. 7. Online accuracy results for the 20 real-world datasets.
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Fig. 8. Online average accuracy and runtime results for single choice and decision making tasks.

6.3.1 Accuracy results. Based on the experimental indings, we can observe that LAtwopass surpasses all other
methods in terms of accuracy, excluding the irst chunk. LAonepass also showcases strong performance, ranking
second for single-choice tasks and second for decision-making tasks with the irst 5 chunks. These results highlight
the efectiveness of the proposed methods in online label aggregation, without necessitating revisiting historical
labels. iCRH [36], an incremental version of the iterative label aggregation method CRH [32], does not guarantee
convergence of estimated worker qualities, leading to a lower accuracy compared to our method. SBIC, designed
for streaming label aggregation with single pass traversal of labels, displays performance comparable to LAonepass.
However, its applicability is restricted to decision-making tasks, which limits its usefulness. BiLA, a member
of the "confusion matrix" family of methods, demonstrates relatively strong performance on decision-making
tasks, particularly on the bird and trec datasets. Yet, it performs poorly in single-choice tasks. Notably, BiLA’s
accuracies on CF and MS lag behind other methods by more than 10%. This can be ascribed to the larger number
of classes and the scarcity of labels in these two datasets, as relected in Table 3, making it challenging for
BiLA to estimate accurately the confusion matrices that represent worker qualities. Additionally, BiLA exhibits
considerable luctuations in accuracy across chunks in multiple datasets, making it unstable for online label
aggregation.

6.3.2 Runtime results. According to Fig. 8, we can observe that MV demonstrates the highest eiciency. LAonepass

and LAtwopass are ranked second and fourth, respectively. iCRH, which processes labels in a single pass similar
to LAonepass, necessitates additional computational steps to monitor the maximum accumulated errors made by
workers to normalize worker qualities. Consequently, iCRH is slower compared to LAonepass. Considering that
LAtwopass necessitates performing weighted majority voting on the crowdsourced labels following the LAonepass, it
exhibits a marginally slower performance in comparison to iCRH. Even though SBIC processes labels in a single
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pass, its average runtime is comparable to that of LAtwopass, which processes labels twice. This can be ascribed
to the complexity of computations in SBIC, such as the sigmoid functions employed when updating its model
parameters. Conversely, the proposed methods rely on basic arithmetic functions to estimate worker qualities
and true labels. BiLA showcases the least eicient performance due to its reliance on neural networks. Although
BiLA can aggregate labels online without revisiting historical data, it requires multiple scans of the labels in the
current chunk for training its model through backpropagation. Notably, the runtime of BiLA for the irst chunk
is signiicantly longer than that of other methods, as it requires additional time to initialize its neural model.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel lightweight model for aggregating crowdsourced labels. We frame label
aggregation as a dynamic system and represent it with a Dynamic Bayesian network. Based on this model, we
derive two algorithms: LAtwopass and LAonepass. These algorithms proiciently aggregate labels by traversing the
dataset no more than twice. We prove that the worker quality estimated by LAonepass converges at a rate of

� (1/
√
�), with bounded error. Moreover, we demonstrate that our proposed algorithms possess space and time

complexities comparable to those of MV.
We conduct extensive experiments on 20 real-world datasets to evaluate our methods. The results from oline

experiments show that our methods deliver competitive accuracy in comparison to state-of-the-art iterative
approaches, and they display high eiciency, with runtime akin to that of MV. Our methods’ scalability and
practicality are underscored by their low space and time complexities, rendering them suitable for aggregating
labels in large-scale datasets. In addition, our methods can perform online label aggregation without the necessity
for extra conigurations. The results of online experiments demonstrate that our proposed methods outperform
state-of-the-art online LA methods in terms of accuracy and real-time label aggregation capability.
Our methods belong to the "one-coin" methods category, which represents worker quality with a single

parameter. The experimental results suggest that "confusion matrix" methods outperform "one-coin" methods in
decision-making tasks. In our future work, we aim to enhance our method by incorporating the use of a confusion
matrix to model worker quality. We anticipate that this approach will yield superior performance, speciically for
decision-making tasks.
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